搭建python开发环境
安装的说明
通常大家都会选择将python集成开发环境安装到windows下,开发环境对新手友好。在物联网中我们需要使用linux系统作为后台服务器,所以在本章节我们在电脑虚拟机上安装ubuntu系统,window下安装anconda+vscode,在window下编写代码在虚拟机ubuntu下运行web后台服务器和嵌入式。建议读者可以将环境全部放入ubuntu中,这样有利于开发。
python版本的选择
python具有两个版本,初学者可能会纠结二者的区别,现在大多数的开发人员都会选择python3,而且python3在字符编码,多线程上进行了优化,现在深度学习的框架等第三方安装包对python3大的支持也是越来越大。本书选择的是python3进行开发。
安装anconda 和vscode…
anaconda是Python的一个开源发行版本,主要面向科学计算。我们可以简单理解为,Anaconda是一个预装了很多我们用的到或用不到的第三方库的Python。而且相比于大家熟悉的pip install命令,Anaconda中增加了conda install命令。当你熟悉了Anaconda以后会发现,conda install会比pip install更方便一些。比如大家经常烦恼的lxml包的问题,在Windows下pip是无法顺利安装的,而conda命令则可以。
下载
从官网下载:https://www.anaconda.com/download/不过官网速度比较慢,不太推荐。
与Python相对应,Anaconda的版本分为Anaconda2和Anaconda3,大家可以自行下载日常常用的版本,提供32位和64位下载。
当然了,如果你真的选择去官网下载Anaconda的话会发现,速度慢到令人发指;当你等待了30多分钟下载安装完以后想要安装或者更新其中的包时,又会发现其速度慢到会断开连接安装报错……
从清华镜像下载:Tsinghua Open Source Mirror(推荐)https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
选择相应的版本进行下载就好(直接找2019年最新版的Anaconda3)。
安装
下载完成后安装。C盘不吃紧的同学可以一路next,C盘如果吃紧最好换个地方,日积月累Anaconda会占用不小的地方……
下载过程中除了安装位置外,还有要确定下图中第一个将anaconda添加到环境变量中去,这样cmd命令行可以直接使用conda的一些命令,第二个是否默认安装3.6(下图2018版本的界面,所以是3.6),可能现在的最新版本已经到了3.7,这里我建议不要安装3.7,自己在后面的环境搭建中安装。如果是3.6的话没问题,因为目前一些深度学习框架并不支持3.7。
安装完成之后最近安装里面出现如下的软件:
测试安装
一路安装完成以后,就可以打开cmd测试一下安装结果。
分别输入python、ipython、conda、jupyter notebook等命令,会看到相应的结果,说明安装成功。(python是进入python交互命令行;ipython是进入ipython交互命令行,很强大;conda是Anaconda的配置命令;jupyter notebook则会启动Web端的ipython notebook)
配置下载地址
设置国内镜像
别着急,现在还没完事呢。
如果你现在就猴急猴急地去安装很多packages,你会被conda的龟速感动得声泪俱下,因为Anaconda.org的服务器在国外。所幸的是,清华TUNA镜像源有Anaconda仓库的镜像,我们在CMD中将清华地址加入conda的配置。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
设置一个新的python环境
# 查看当前环境下已安装的包
conda list
# 查看某个指定环境的已安装包
conda list -n python36
# 查找package信息
conda search numpy
# 安装package
conda install -n python36 numpy# 如果不用-n指定环境名称,则被安装在当前活跃环境# 也可以通过-c指定通过某个channel安装
# 更新package
conda update numpy
# 删除package
conda remove numpy