一、引言
在当今数据驱动的时代,数据可视化作为将复杂数据转化为直观、易懂信息的关键手段,其重要性不言而喻。Python 凭借其丰富的可视化库生态系统,成为数据可视化领域的首选编程语言之一。其中,Plotly 和 Bokeh 作为两款强大的交互式可视化库,为 Python 数据可视化带来了新的高度。它们不仅能够创建出令人惊叹的静态图表,更重要的是,通过强大的交互功能,让用户能够深入探索数据,发现数据背后隐藏的故事。
本文将深入探讨 Plotly 和 Bokeh 的高级用法,帮助读者充分掌握这两款库的核心功能,提升数据可视化的能力。无论你是数据分析师、数据科学家,还是对数据可视化感兴趣的开发者,都能从本文中获取到有价值的知识和实践经验,从而在数据可视化的道路上迈出坚实的步伐。
二、Plotly 高级用法
2.1 丰富的图表类型
2.1.1 3D 图表
Plotly 在创建 3D 图表方面表现卓越,能够帮助用户以全新的视角展示数据。例如,在处理地理空间数据时,3D 表面图可以直观地呈现地形的起伏变化。
python
import plotly.graph_objects as go
import numpy as np
# 生成模拟地形数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
fig = go.Figure(data=[go.Surface(x=X, y=Y, z=Z)])
fig.upd