1、背景
随机数有很多用处,比如生成随机颜色等。
关于随机数并不随机的说法:计算机产生的随机数都是伪随机数,是根据种子seed和特定算法计算出来的。所以,只要种子一定,算法一定,产生的随机数是相同的。
要想产生不重复的随机数,可以用系统时间做种子。
OpenCV中用GetTickCount(),C 中用time()
RNG类是opencv里C++的随机数产生器。它可产生一个64位的int随机数。
目前可按均匀分布和高斯分布产生随机数。随机数的产生采用的是Multiply-With-Carry算法和Ziggurat算法。
产生一个随机数 :
cv::RNG可以产生3种随机数
cv::RNG(int seed) 使用种子seed产生一个64位随机整数,默认0
cv::RNG::uniform( ) 产生一个均匀分布的随机数
cv::RNG::gaussian( ) 产生一个高斯分布的随机数
RNG::uniform(a, b ) 返回一个[a,b)范围的均匀分布的随机数,
a,b的数据类型要一致,而且必须是int、float、double中的一种,默认是int。
RNG::gaussian( σ) 返回一个均值为0,标准差为σ的随机数。
如果要产生均值为λ,标准差为σ的随机数,可以λ+ RNG::gaussian( σ)
返回下一个随机数:
并不是一次只能返回一个随机数,实际上系统已经生成一个随机数组。
如果我们要连续获得随机数,没有