摘要
YOLOv12是Yolo系列的最新改进版本,其优势如下:
-
突破性的精度-速度平衡
YOLOv12 首次在 YOLO 框架中成功集成注意力机制,通过 区域注意力(Area Attention) 和 FlashAttention 技术,在保持实时推理速度(如 YOLOv12-N 仅需 1.64ms)的同时显著提升精度(40.6% mAP)。其创新设计解决了传统注意力机制的二次计算复杂度和内存访问效率问题,使注意力模型在实时检测中首次超越 CNN 架构(如 YOLOv10-N 精度提升 2.1%)。 -
硬件友好的高效架构
通过 残差高效层聚合网络(R-ELAN) 优化梯度流与特征聚合,结合 大核深度卷积(7×7)替代位置编码 等精简设计,大幅降低计算开销(如 YOLOv12-S 的 FLOPs 仅为 RT-DETR-R18 的 36%)。该架构在 GPU(T4/RTX 3080)和 CPU 平台均实现 SOTA 速度,且支持 TensorRT 加速,为工业部署提供高性价比方案。