文章目录
摘要
论文链接:https://arxiv.org/abs/2303.17602
以人为中心的视觉任务因其广泛的应用而受到越来越多的研究关注。本文旨在从大量未标记的人类图像中学习通用的人类表示,可以最大程度上有利于下游以人类为中心的任务。我们称这种方法为SOLIDER,一种语义可控的自监督学习框架。与现有的自监督学习方法不同,SOLIDER利用来自人体图像的先验知识构建伪语义标签,并将更多的语义信息导入到学习的表示中。不同的下游任务总是需要不同比例的语义信息和外观信息。例如,人体解析需要更多的语义信息,而行人重识别需要更多的外观信息来进行识别。因此,单一的学习到的表示不能满足所有的需求。为了解决这个问题,SOLIDER引入了一个带有语义控制器的条件网络。在模型训练完成后,用户可以向控制器发送值,生成具有不同比例语义信息的表示,以适应下游任务的不同需求。最后,在6个下游人类中心视觉任务上对SOLIDER进行了验证。它超越了最先进的技术,并为这些任务建立了新的基线。代码发布在https://github.com/tinyvision/SOLIDER。
1、简介
以人为中心的视觉分析在监控、体育、增强现实、视频制作等领域有着广泛的应用。行人重识别[13,14,41,82],属性识别[72,78],行人搜索[76,92],行人检测[3,24,32],人体解析[27,53],姿态估计[58,90]近年来取得了相当大的进展。另一方面,在当前的计算机视觉社区中有大量的人类图像。例如,即使是一个未标记的行人重识别数据集,LUPerson [25, 26] (#Img≈4.18M)也比ImageNet数据集(#Img≈1M