多波束测线布设
摘 要
多波束测深系统是由单波束测深发展而来的水深测量系统,研究多波束测线布设 对于海洋测绘具有重要意义。本文建立测线优化模型,运用各类几何方法、向量分析、 最小二乘法、贪心算法、模拟退火等方法研究多波束测深的覆盖宽度、相邻条带之间 的重叠率以及测线布设问题。 针对问题一:首先简要介绍多波束测量仪的工作原理,以海域中心点为坐标原点 建立合适的坐标系。其次利用相似三角形原理计算海水深度,并通过几何知识推导关 键角的关系式,然后基于正弦定理计算覆盖宽度。接着利用几何知识推导重叠率的计 算公式并代入变量计算。最后得到特定位置处的指标,存放在 result1.xlsx 中。同时进 行结果分析,并利用控制变量法探究覆盖宽度、重叠率随各参数的变化。 针对问题二:以海域坡面中心为坐标原点建立三维空间坐标系,参考问题一,首 先利用向量分析,根据向量叉乘得到测线方向与其在水平面上的投影组成的平面和海 底坡面的交线的点向式方程,代入相应坐标求得海水深度。其次,利用线面角计算公 式求得水平面与覆盖宽度所在直线的夹角。然后根据问题一建立的模型求解得到特定 位置处的覆盖宽度,存放在 result2.xlsx 中。最后进行结果分析以及原因分析。 针对问题三:对于一个具体的矩形海域,首先利用数学证明得到平行等深线走向 进行测线布设是最佳方案。其次建立以测线总长度最短为目标,以测线完全覆盖海域、 相邻条带之间的重叠率的取值范围为约束条件,建立单目标优化模型。然后基于贪心 算法的循环遍历法,确定最优测线布设为 34 条,得到测线总长度为 125936 m 。最后 利用模拟退火对测线布设仿真检验,发现两种方法计算得到的误差很小,由此验证了 模型的可靠性,并对开角、坡度进行灵敏度分析。
针对问题四:首先利用单波束测量数据确定海域初貌,发现其地形起伏大,难以 求解测线布设。其次参考问题三,利用等深线图对该海域进行初步划分。基于最小二 乘法将各划分区域拟合成便于求解的坡面方程,通过粒子群算法求解得到坡面方程, 并对拟合效果不佳的区域进行进一步划分。然后仍以测线的总长度最小为优化目标, 修正问题三的约束条件,建立单目标优化模型。仍采用贪心算法求解各区域测线布设, 得到测线的总长度、漏测海区占总待测海域面积的百分比、叠率超过 20%部分的总长 度分别为 622 海里、3.48%、30 海里。最后进行结果分析和原因分析。 文章的最后,对本文建立的模型进行评价,并在考虑检查线的情况对模型进行一 定程度的改进。
关键词:多波束测线布设、目标优化模型、最小二乘法、贪心算法、模拟退火仿真
一、 问题重述
多波束测深系统是由单波束测深发展而来的水深测量系统,近年来得到广泛应用。 与单束测深仪相比,多束波测深系统能够同时获取多个相邻窄波束,获取条带式的海 底地形数据,实现从“点到线”测量到“线到面”的跨越,具有分辨率高、精度高、 效率高、覆盖范围大、自动化成图等优势。[1-2] 了解多波束测量的工作原理,建立数学模型解决以下问题。 问题一:已知海底的坡度为 ,测线方向垂直于坡面所在的竖直平面,建立多波 束测深时覆盖宽度及相邻条带之间重叠率的数学模型,在多波束换能器的开角为 120, 坡度为 1.5 ,海域中心海水深度为 70m 时应用该模型,计算海水深度、覆盖率重叠率 等指标值。 问题二:在一个矩形待测海域中,已知海底坡面法向在水平面上的投影与测线方 向的夹角为 ,建立多波束测深覆盖宽度的数学模型。在开角、坡度、海域中心处海 水深度确定时,应用该模型计算某些位置、特定 的覆盖宽度。 问题三:在一个长 2 海里、宽 4 海里的矩形海域中,海域中心处海水深度、坡度、 开角均已知,在满足完全覆盖、重叠率 10%~20%的前提下,为该海域设计一组长度最 短的测线。 问题四:已知一个确定海域的单波束测量数据,据此设计多波束测量船的测线。 为保证测量效果和效率,测线条带要尽可能地完全覆盖整个海域;且相邻条带之间的 重叠率尽量小于 20%;测线总长度要尽量短。在设计出具体地测线后,从测线的总长 度、漏测海域占比、重叠率超过 20%的总长度分析该测线的实施效果。
二、 问题分析
2.1 问题一的分析
在问题一中,要求在海底坡度为 的情况下建立多波束测深的覆盖宽度和相邻条 带之间重叠率的数学模型,并在多波束换能器开角、坡度、海域中心处海水深度等具 体参数值下求解海水深度、覆盖宽度和重叠率。首先,以海域中心为坐标原点建立三 维空间直角坐标系,由几何知识推导出海水深度的计算公式,在此基础上利用正弦定 理得到覆盖宽度的表达式。对于重叠率的计算,根据题目给出海底地形平坦的计算公 式推导出重叠率的一般定义式,据此得到重叠率的计算公式。至此,模型建立完成, 将具体参数值带入我们的模型中,即可分别得到海水深度、覆盖宽度和重叠率的求解 结果。
2.2 问题二的分析
在问题二中,已知一个矩形海域,其测线方向与海底坡面的法向在水平面的投影 的夹角为 ,要求我们建立覆盖宽度的数学模型,再代入具体参数求解不同位置、不 同测线方向夹角的覆盖宽度。由问题一的模型,只要已知水平面与覆盖宽度所在直线 的夹角、该位置处的海水深度,就可以求解覆盖宽度,因此我们需要利用立体几何知 识建立数学模型得到这两个参数的计算公式,再利用问题一的模型,即可得到问题二 覆盖宽度的求解模型,代入具体参数求解即可。
2.3 问题三的分析
在问题三中,给出一个具体的矩形海域,要求我们为该海域设计一组测线,满足 测量长度最短、可完全覆盖整片待测海域、相邻条带之间的重叠率在 10%~20%等限 制条件。对于多波束测深的测线布设,需要从测线方向和测线间距两个方面考虑,根 据国家明确规定,测线方向平行等深线方向最佳,我们对此进行了证明;对于测线间 距建立单目标优化模型,在求解时,首先考虑边界覆盖情况,确定东海岸第一条测线, 然后基于贪心算法逐步优化求解第二、第三条测线……从而得到最优测线布设。最后, 采用模拟退火对求解结果进行仿真验证。
2.4 问题四的分析
在问题四中,基于某海域的单波束测量数据,为多波束测量提供测线布设方案。 为保证测量的完整性和效率,测线扫描形成的条带要尽量覆盖整片海域;相邻条带重 叠率在 20%以下为宜;测线长度应尽量短。由于海底地形起伏较大,整片海域直接测 量,效果不佳,因此需要根据等深线对海域进行划分,对不同区域分别进行测线布设。 根据已知海水深度数据基于最小二乘法确定坡面方程,将各海域地形转化为坡面,利 用问题三建立的优化模型确定最优布设方案。
三、 模型假设
1. 假设不考虑探测船的垂荡纵摇等运动对测深作业造成的影响。 2. 假设进行测深作业时,海面上没有漂浮海冰等障碍物影响测线方向的布设。 3. 假设声波在海水中作匀速直线传播,不会在中途遇到小颗粒等发生折射现象。 4. 假设单波束测量的海水深度数据较为准确,基本符合该海域的地形,可以为多波 束测线布设提供正确参考。
五、 模型的建立与求解
5.1 问题一:多波束测深的覆盖宽度及重叠率的数学模型
在问题一中,要求在海底坡度为 的情况下建立多波束测深的覆盖宽度和相邻条 带之间重叠率的数学模型,并在具体参数值下求解海水深度、覆盖宽度和重叠率。首 先,我们建立三维直角坐标系,然后由平面几何知识、正弦定理建立模型,得到海水 深度、覆盖宽度和重叠率的计算公式,代入具体参数值得到求解结果,具体操作如下。 5.1.1 多波束测深的覆盖宽度及重叠率模型的建立
多波束测深原理 为了保证模型的建立符合实际情况,首先对多波束测量仪的工作原理进行简要说 明。
三维空间直角坐标系的建立
根据测量船的运动情况,以海域中心点为坐标原点 O ,以测量船的行驶方向(测 线方向)为 x 轴,以测线间距的分布方向为 y 轴,以海水深度方向为 z 轴,建立三维 空间直角坐标系 O x y z ( , , ) 如下,问题一建模都在此坐标系中进行。
多波束测深覆盖宽度及重叠率的计算
1) 计算海水深度
如图所示,多波束测深条带的覆盖宽度 W 与换能器开角 、海水深度 D 有关。因 此,计算多波束在某位置下的覆盖宽度的前提是海水深度已知。我们通过以下步骤计 算测线距中心点不同距离下的海水深度。
2) 基于正弦定理计算覆盖宽度
由式(1)我们已经得到了海水深度的计算方式,在此基础上,通过增添辅助线, 结合平面几何知识和正弦定理可以给出覆盖宽度的计算公式,具体操作如下。
在上图中,过点 A 作垂线 AE BC ⊥ ,垂足为 E ,交海底坡面 BF 于点 G 。通过查阅 资料,多波束测深系统发射出的波束总是左右对称的,若波束数为奇数,多波换能器 左右发射的波束数相等且沿中央波束对称;若波束数为偶数,多波束换能器左右发射 的波束数相等且按换能器垂线方向对称。[4]即 ABC 为始终为等腰三角形,AB AC
3) 计算相邻条带之间重叠率
在多波束测量的过程中,为了实现全覆盖测量,保证数据的完整性,相邻测线测 量的相邻条带之间应有一定程度的重叠。兼顾测量的便利性和效率,重叠率的最佳值 介于 10%~20%之间。 由题目可知,在测线相互平行且海底地形平坦的情况下,相邻条带之间重叠率 的定义为:
由几何关系易得, W− d 表示相邻条带的重叠长度,则根据上式,我们得到相邻 条带重叠率的一般定义如下
据此一般定义,可以在问题一中测线相互平行且海底地形为坡面的情况下计算相 邻条带之间的重叠率
如上图所示,假设距海域中心点 y 处的测线的覆盖宽度为 HI ,该测线与相邻测线 条带的重叠区域为 HF ,则该测量条带与上一条测线的重叠率 n为:
结果分析
① 海水深度:不同位置的海水深度随着测线距中心点处的距离增大而减小,减小幅 度为 tan ,与海底的坡高沿 Y 轴方向增大相符。海水深度只与海域中心处的海水深 度和海底坡度 有关。
② 覆盖宽度:多波束测量的覆盖宽度与海水深度的变化趋势一致,随着海水深度的 减小而减小,说明在测线间距、换能器开角一定时,多波束测量仪在浅水区的覆盖宽 度更小。
③ 重叠率:分析上表可知,在海水深度较大处相邻条带之间重叠率较大,能够实现全 覆盖,但影响效率;在海水深度较小处相邻条带之间的重叠率较小甚至小于 0,出现 漏测现象。因此,在深水区可以增大测线间距,从而提高测量效率;相应地,在浅水 区应增加测线布设数量,从而实现全覆盖。
5.1.3 控制变量法探究覆盖宽度、重叠率随各参数的变化规律
根据上述的结果分析,为了深入探究覆盖宽度、重叠率随各参数的变化规律,我 们利用控制变量法,分别探究多波束换能器的开角 对条带的覆盖宽度 W 和重叠率 的影响以及测线间距 d 对相邻条带的重叠率的影响
5.2 问题二:多波束测深覆盖宽度的数学模型
在问题二中,已知一个矩形海域,坡度为 ,且测线方向与海底坡面的法向在水 平面的投影的夹角为 ,在此前提下建立覆盖宽度的数学模型。由问题一知,只要已 知水平面与覆盖宽度所在直线的夹角、该位置处的海水深度,就可以求解覆盖宽度, 因此我们需建立数学模型得到这两个参数的计算公式,再利用问题一模型求解即可。 问题二的建模思路如下图所示。
5.2.1 多波束测深覆盖宽度模型的建立
◼ 建立三维空间直角坐标系 以海底坡面的中心为坐标原点 O' ,水平向右为 x 轴正方向,垂直向上为 y 轴正方 向,海水深度为 z 轴建立新的三维直角坐标系 O X Y Z '( ', ', ') ,坐标系满足右手定则。如 图所示
覆盖宽度的数学模型 根据问题一建立的模型(5),只要已知水平面与覆盖宽度所在直线的夹角 、该 位置处的海水深度 D ,即可通过正弦定理求得多波束测深的覆盖宽度。所以问题二的 重点是求沿测线方向的海水深度 D 和夹角 。
1) 计算海水深度 D
为了让模型的建立过程更加直观易懂,我们记测线方向与其在 X O Y ' ' ' 面上投影 组成的平面为面 I,海底坡面为面 II。记海底坡面法向量为 p n ,平面 I 的法向量为 I n , 如下图所示。
计算水平面与覆盖宽度所在直线的夹角
为了使建模过程更加直观,做如下空间三维图和平面二维图,将多波束的扫射平 面提取出来,从而将问题二与问题一相联系。在上述过程中,我们已经得到了海水深 度的表达式,只需再给出水平面与覆盖宽度所在直线的夹角 的计算公式,即可利用 问题一中的模型求解覆盖宽度 W 。