dbo:abstract
|
- 高度過剰数(こうどかじょうすう、英: highly abundant number)は自然数で、 m < n である全ての自然数 m に対して を満たす自然数 n のことである。ただし σ は約数関数である。具体的には 1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108,120,144,168,180,192,... (オンライン整数列大辞典の数列 A002093) である。過剰数という名前を使っているが、すべての高度過剰数が過剰数とは限らない。特に最初の9つの高度過剰数のうち、 1, 2, 3, 4, 8, 10, 16 は不足数、6 は完全数であり過剰数ではない。12 と 18 以上の高度過剰数は全て過剰数である。 高度過剰数はPillaiによって定義され、AlaogluとErdősによって発展した。Alaoglu と Erdős は104までの高度過剰数を表した。 例えば、5 は高度過剰数でない。なぜなら σ(5) = 5+1 = 6 となり 5 より小さな 4 が σ(4) = 4 + 2 + 1 = 7 となり σ(5) よりも大きいからである。8 は高度過剰数である。なぜなら σ(8) = 8 + 4 + 2 + 1 = 15 となり 8 未満の数で σ(8) を上回る数は存在しないからである。 奇数の高度過剰数は 1 と 3 だけである。 (ja)
- 高度過剰数(こうどかじょうすう、英: highly abundant number)は自然数で、 m < n である全ての自然数 m に対して を満たす自然数 n のことである。ただし σ は約数関数である。具体的には 1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108,120,144,168,180,192,... (オンライン整数列大辞典の数列 A002093) である。過剰数という名前を使っているが、すべての高度過剰数が過剰数とは限らない。特に最初の9つの高度過剰数のうち、 1, 2, 3, 4, 8, 10, 16 は不足数、6 は完全数であり過剰数ではない。12 と 18 以上の高度過剰数は全て過剰数である。 高度過剰数はPillaiによって定義され、AlaogluとErdősによって発展した。Alaoglu と Erdős は104までの高度過剰数を表した。 例えば、5 は高度過剰数でない。なぜなら σ(5) = 5+1 = 6 となり 5 より小さな 4 が σ(4) = 4 + 2 + 1 = 7 となり σ(5) よりも大きいからである。8 は高度過剰数である。なぜなら σ(8) = 8 + 4 + 2 + 1 = 15 となり 8 未満の数で σ(8) を上回る数は存在しないからである。 奇数の高度過剰数は 1 と 3 だけである。 (ja)
|
rdfs:comment
|
- 高度過剰数(こうどかじょうすう、英: highly abundant number)は自然数で、 m < n である全ての自然数 m に対して を満たす自然数 n のことである。ただし σ は約数関数である。具体的には 1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108,120,144,168,180,192,... (オンライン整数列大辞典の数列 A002093) である。過剰数という名前を使っているが、すべての高度過剰数が過剰数とは限らない。特に最初の9つの高度過剰数のうち、 1, 2, 3, 4, 8, 10, 16 は不足数、6 は完全数であり過剰数ではない。12 と 18 以上の高度過剰数は全て過剰数である。 高度過剰数はPillaiによって定義され、AlaogluとErdősによって発展した。Alaoglu と Erdős は104までの高度過剰数を表した。 奇数の高度過剰数は 1 と 3 だけである。 (ja)
- 高度過剰数(こうどかじょうすう、英: highly abundant number)は自然数で、 m < n である全ての自然数 m に対して を満たす自然数 n のことである。ただし σ は約数関数である。具体的には 1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108,120,144,168,180,192,... (オンライン整数列大辞典の数列 A002093) である。過剰数という名前を使っているが、すべての高度過剰数が過剰数とは限らない。特に最初の9つの高度過剰数のうち、 1, 2, 3, 4, 8, 10, 16 は不足数、6 は完全数であり過剰数ではない。12 と 18 以上の高度過剰数は全て過剰数である。 高度過剰数はPillaiによって定義され、AlaogluとErdősによって発展した。Alaoglu と Erdős は104までの高度過剰数を表した。 奇数の高度過剰数は 1 と 3 だけである。 (ja)
|