ピタゴラス数は、 a2 + b2 = c2を成り立たせる3つの自然数a 、 b 、cの組である。この数の組は一般的に(a, b, c)と書かれ、その一例は(3, 4, 5)である。 (a, b, c)がピタゴラス数の場合、任意の正の整数kに対して(ka, kb, kc)も同様である。原始ピタゴラス数は、 a 、 b 、 cが互いに素である三つの数の組である。 たとえば、 (3, 4, 5)は原始ピタゴラス数であるが、 (6, 8, 10)はそうではない。三辺がピタゴラス数で構成される三角形は、必然的に直角三角形になる。 これはピタゴラスの定理に由来しており、すべての直角三角形の辺の長さは次の式を満たすと述べている。 ;したがって、ピタゴラス数は直角三角形の3つの整数の辺の長さを表す。ただし、非整数の辺を持つ直角三角形は、ピタゴラス三角形を形成しない。たとえば、三辺がそれぞれ1,1,√2の三角形は直角三角形であるが、は整数ではないので、はピタゴラス数ではない。 ピタゴラス数は古くから知られてる。最も古い既知の記録は、紀元前1800年頃のバビロニアの粘土板であるプリンプトン322からのもので、六十進法で書かれている。 1900年の初期にエドガージェームズバンクスによって発見され、1922年にジョージアーサープリンプトンに10ドルで売却された。

Property Value
dbo:abstract
  • ピタゴラス数は、 a2 + b2 = c2を成り立たせる3つの自然数a 、 b 、cの組である。この数の組は一般的に(a, b, c)と書かれ、その一例は(3, 4, 5)である。 (a, b, c)がピタゴラス数の場合、任意の正の整数kに対して(ka, kb, kc)も同様である。原始ピタゴラス数は、 a 、 b 、 cが互いに素である三つの数の組である。 たとえば、 (3, 4, 5)は原始ピタゴラス数であるが、 (6, 8, 10)はそうではない。三辺がピタゴラス数で構成される三角形は、必然的に直角三角形になる。 これはピタゴラスの定理に由来しており、すべての直角三角形の辺の長さは次の式を満たすと述べている。 ;したがって、ピタゴラス数は直角三角形の3つの整数の辺の長さを表す。ただし、非整数の辺を持つ直角三角形は、ピタゴラス三角形を形成しない。たとえば、三辺がそれぞれ1,1,√2の三角形は直角三角形であるが、は整数ではないので、はピタゴラス数ではない。 ピタゴラス数は古くから知られてる。最も古い既知の記録は、紀元前1800年頃のバビロニアの粘土板であるプリンプトン322からのもので、六十進法で書かれている。 1900年の初期にエドガージェームズバンクスによって発見され、1922年にジョージアーサープリンプトンに10ドルで売却された。 整数解を探す場合、方程式a2 + b2 = c2はディオファントス方程式である。したがって、ピタゴラス数は、非線形ディオファントス方程式の最も古い既知の解の1つである。 (ja)
  • ピタゴラス数は、 a2 + b2 = c2を成り立たせる3つの自然数a 、 b 、cの組である。この数の組は一般的に(a, b, c)と書かれ、その一例は(3, 4, 5)である。 (a, b, c)がピタゴラス数の場合、任意の正の整数kに対して(ka, kb, kc)も同様である。原始ピタゴラス数は、 a 、 b 、 cが互いに素である三つの数の組である。 たとえば、 (3, 4, 5)は原始ピタゴラス数であるが、 (6, 8, 10)はそうではない。三辺がピタゴラス数で構成される三角形は、必然的に直角三角形になる。 これはピタゴラスの定理に由来しており、すべての直角三角形の辺の長さは次の式を満たすと述べている。 ;したがって、ピタゴラス数は直角三角形の3つの整数の辺の長さを表す。ただし、非整数の辺を持つ直角三角形は、ピタゴラス三角形を形成しない。たとえば、三辺がそれぞれ1,1,√2の三角形は直角三角形であるが、は整数ではないので、はピタゴラス数ではない。 ピタゴラス数は古くから知られてる。最も古い既知の記録は、紀元前1800年頃のバビロニアの粘土板であるプリンプトン322からのもので、六十進法で書かれている。 1900年の初期にエドガージェームズバンクスによって発見され、1922年にジョージアーサープリンプトンに10ドルで売却された。 整数解を探す場合、方程式a2 + b2 = c2はディオファントス方程式である。したがって、ピタゴラス数は、非線形ディオファントス方程式の最も古い既知の解の1つである。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 24420 (xsd:integer)
dbo:wikiPageLength
  • 4487 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90781541 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ピタゴラス数は、 a2 + b2 = c2を成り立たせる3つの自然数a 、 b 、cの組である。この数の組は一般的に(a, b, c)と書かれ、その一例は(3, 4, 5)である。 (a, b, c)がピタゴラス数の場合、任意の正の整数kに対して(ka, kb, kc)も同様である。原始ピタゴラス数は、 a 、 b 、 cが互いに素である三つの数の組である。 たとえば、 (3, 4, 5)は原始ピタゴラス数であるが、 (6, 8, 10)はそうではない。三辺がピタゴラス数で構成される三角形は、必然的に直角三角形になる。 これはピタゴラスの定理に由来しており、すべての直角三角形の辺の長さは次の式を満たすと述べている。 ;したがって、ピタゴラス数は直角三角形の3つの整数の辺の長さを表す。ただし、非整数の辺を持つ直角三角形は、ピタゴラス三角形を形成しない。たとえば、三辺がそれぞれ1,1,√2の三角形は直角三角形であるが、は整数ではないので、はピタゴラス数ではない。 ピタゴラス数は古くから知られてる。最も古い既知の記録は、紀元前1800年頃のバビロニアの粘土板であるプリンプトン322からのもので、六十進法で書かれている。 1900年の初期にエドガージェームズバンクスによって発見され、1922年にジョージアーサープリンプトンに10ドルで売却された。 (ja)
  • ピタゴラス数は、 a2 + b2 = c2を成り立たせる3つの自然数a 、 b 、cの組である。この数の組は一般的に(a, b, c)と書かれ、その一例は(3, 4, 5)である。 (a, b, c)がピタゴラス数の場合、任意の正の整数kに対して(ka, kb, kc)も同様である。原始ピタゴラス数は、 a 、 b 、 cが互いに素である三つの数の組である。 たとえば、 (3, 4, 5)は原始ピタゴラス数であるが、 (6, 8, 10)はそうではない。三辺がピタゴラス数で構成される三角形は、必然的に直角三角形になる。 これはピタゴラスの定理に由来しており、すべての直角三角形の辺の長さは次の式を満たすと述べている。 ;したがって、ピタゴラス数は直角三角形の3つの整数の辺の長さを表す。ただし、非整数の辺を持つ直角三角形は、ピタゴラス三角形を形成しない。たとえば、三辺がそれぞれ1,1,√2の三角形は直角三角形であるが、は整数ではないので、はピタゴラス数ではない。 ピタゴラス数は古くから知られてる。最も古い既知の記録は、紀元前1800年頃のバビロニアの粘土板であるプリンプトン322からのもので、六十進法で書かれている。 1900年の初期にエドガージェームズバンクスによって発見され、1922年にジョージアーサープリンプトンに10ドルで売却された。 (ja)
rdfs:label
  • ピタゴラス数 (ja)
  • ピタゴラス数 (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of