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Abstract

We trained a convolutional neural network (CNN) to map raw pixels from a sin-
gle front-facing camera directly to steering commands. This end-to-end approach
proved surprisingly powerful. With minimum training data from humans the sys-
tem learns to drive in traffic on local roads with or without lane markings and on
highways. It also operates in areas with unclear visual guidance such as in parking
lots and on unpaved roads.
The system automatically learns internal representations of the necessary process-
ing steps such as detecting useful road features with only the human steering angle
as the training signal. We never explicitly trained it to detect, for example, the out-
line of roads.
Compared to explicit decomposition of the problem, such as lane marking detec-
tion, path planning, and control, our end-to-end system optimizes all processing
steps simultaneously. We argue that this will eventually lead to better perfor-
mance and smaller systems. Better performance will result because the internal
components self-optimize to maximize overall system performance, instead of op-
timizing human-selected intermediate criteria, e. g., lane detection. Such criteria
understandably are selected for ease of human interpretation which doesn’t auto-
matically guarantee maximum system performance. Smaller networks are possi-
ble because the system learns to solve the problem with the minimal number of
processing steps.
We used an NVIDIA DevBox and Torch 7 for training and an NVIDIA
DRIVETM PX self-driving car computer also running Torch 7 for determining
where to drive. The system operates at 30 frames per second (FPS).

1

ar
X

iv
:1

60
4.

07
31

6v
1 

 [
cs

.C
V

] 
 2

5 
A

pr
 2

01
6



1 Introduction

CNNs [1] have revolutionized pattern recognition [2]. Prior to the widespread adoption of CNNs,
most pattern recognition tasks were performed using an initial stage of hand-crafted feature extrac-
tion followed by a classifier. The breakthrough of CNNs is that features are learned automatically
from training examples. The CNN approach is especially powerful in image recognition tasks be-
cause the convolution operation captures the 2D nature of images. Also, by using the convolution
kernels to scan an entire image, relatively few parameters need to be learned compared to the total
number of operations.

While CNNs with learned features have been in commercial use for over twenty years [3], their
adoption has exploded in the last few years because of two recent developments. First, large, labeled
data sets such as the Large Scale Visual Recognition Challenge (ILSVRC) [4] have become avail-
able for training and validation. Second, CNN learning algorithms have been implemented on the
massively parallel graphics processing units (GPUs) which tremendously accelerate learning and
inference.

In this paper, we describe a CNN that goes beyond pattern recognition. It learns the entire pro-
cessing pipeline needed to steer an automobile. The groundwork for this project was done over 10
years ago in a Defense Advanced Research Projects Agency (DARPA) seedling project known as
DARPA Autonomous Vehicle (DAVE) [5] in which a sub-scale radio control (RC) car drove through
a junk-filled alley way. DAVE was trained on hours of human driving in similar, but not identical en-
vironments. The training data included video from two cameras coupled with left and right steering
commands from a human operator.

In many ways, DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the
Autonomous Land Vehicle in a Neural Network (ALVINN) system. It demonstrated that an end-to-
end trained neural network can indeed steer a car on public roads. Our work differs in that 25 years of
advances let us apply far more data and computational power to the task. In addition, our experience
with CNNs lets us make use of this powerful technology. (ALVINN used a fully-connected network
which is tiny by today’s standard.)

While DAVE demonstrated the potential of end-to-end learning, and indeed was used to justify
starting the DARPA Learning Applied to Ground Robots (LAGR) program [7], DAVE’s performance
was not sufficiently reliable to provide a full alternative to more modular approaches to off-road
driving. DAVE’s mean distance between crashes was about 20 meters in complex environments.

Nine months ago, a new effort was started at NVIDIA that sought to build on DAVE and create a
robust system for driving on public roads. The primary motivation for this work is to avoid the need
to recognize specific human-designated features, such as lane markings, guard rails, or other cars,
and to avoid having to create a collection of “if, then, else” rules, based on observation of these
features. This paper describes preliminary results of this new effort.

2 Overview of the DAVE-2 System

Figure 1 shows a simplified block diagram of the collection system for training data for DAVE-2.
Three cameras are mounted behind the windshield of the data-acquisition car. Time-stamped video
from the cameras is captured simultaneously with the steering angle applied by the human driver.
This steering command is obtained by tapping into the vehicle’s Controller Area Network (CAN)
bus. In order to make our system independent of the car geometry, we represent the steering com-
mand as 1/r where r is the turning radius in meters. We use 1/r instead of r to prevent a singularity
when driving straight (the turning radius for driving straight is infinity). 1/r smoothly transitions
through zero from left turns (negative values) to right turns (positive values).

Training data contains single images sampled from the video, paired with the corresponding steering
command (1/r). Training with data from only the human driver is not sufficient. The network must
learn how to recover from mistakes. Otherwise the car will slowly drift off the road. The training
data is therefore augmented with additional images that show the car in different shifts from the
center of the lane and rotations from the direction of the road.
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Figure 1: High-level view of the data collection system.

Images for two specific off-center shifts can be obtained from the left and the right camera. Ad-
ditional shifts between the cameras and all rotations are simulated by viewpoint transformation of
the image from the nearest camera. Precise viewpoint transformation requires 3D scene knowledge
which we don’t have. We therefore approximate the transformation by assuming all points below
the horizon are on flat ground and all points above the horizon are infinitely far away. This works
fine for flat terrain but it introduces distortions for objects that stick above the ground, such as cars,
poles, trees, and buildings. Fortunately these distortions don’t pose a big problem for network train-
ing. The steering label for transformed images is adjusted to one that would steer the vehicle back
to the desired location and orientation in two seconds.

A block diagram of our training system is shown in Figure 2. Images are fed into a CNN which
then computes a proposed steering command. The proposed command is compared to the desired
command for that image and the weights of the CNN are adjusted to bring the CNN output closer to
the desired output. The weight adjustment is accomplished using back propagation as implemented
in the Torch 7 machine learning package.

Left camera

Center camera

Right camera

Random shift 
and rotation

Adjust for shift 
and rotation

CNN -
Back propagation
weight adjustment

Recorded 
steering 

wheel angle

Network 
computed 
steering 
command

Desired steering command

Error

Figure 2: Training the neural network.

Once trained, the network can generate steering from the video images of a single center camera.
This configuration is shown in Figure 3.
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Figure 3: The trained network is used to generate steering commands from a single front-facing
center camera.

3 Data Collection

Training data was collected by driving on a wide variety of roads and in a diverse set of lighting
and weather conditions. Most road data was collected in central New Jersey, although highway data
was also collected from Illinois, Michigan, Pennsylvania, and New York. Other road types include
two-lane roads (with and without lane markings), residential roads with parked cars, tunnels, and
unpaved roads. Data was collected in clear, cloudy, foggy, snowy, and rainy weather, both day and
night. In some instances, the sun was low in the sky, resulting in glare reflecting from the road
surface and scattering from the windshield.

Data was acquired using either our drive-by-wire test vehicle, which is a 2016 Lincoln MKZ, or
using a 2013 Ford Focus with cameras placed in similar positions to those in the Lincoln. The
system has no dependencies on any particular vehicle make or model. Drivers were encouraged to
maintain full attentiveness, but otherwise drive as they usually do. As of March 28, 2016, about 72
hours of driving data was collected.

4 Network Architecture

We train the weights of our network to minimize the mean squared error between the steering com-
mand output by the network and the command of either the human driver, or the adjusted steering
command for off-center and rotated images (see Section 5.2). Our network architecture is shown in
Figure 4. The network consists of 9 layers, including a normalization layer, 5 convolutional layers
and 3 fully connected layers. The input image is split into YUV planes and passed to the network.

The first layer of the network performs image normalization. The normalizer is hard-coded and is not
adjusted in the learning process. Performing normalization in the network allows the normalization
scheme to be altered with the network architecture and to be accelerated via GPU processing.

The convolutional layers were designed to perform feature extraction and were chosen empirically
through a series of experiments that varied layer configurations. We use strided convolutions in the
first three convolutional layers with a 2×2 stride and a 5×5 kernel and a non-strided convolution
with a 3×3 kernel size in the last two convolutional layers.

We follow the five convolutional layers with three fully connected layers leading to an output control
value which is the inverse turning radius. The fully connected layers are designed to function as a
controller for steering, but we note that by training the system end-to-end, it is not possible to make
a clean break between which parts of the network function primarily as feature extractor and which
serve as controller.

5 Training Details

5.1 Data Selection

The first step to training a neural network is selecting the frames to use. Our collected data is
labeled with road type, weather condition, and the driver’s activity (staying in a lane, switching
lanes, turning, and so forth). To train a CNN to do lane following we only select data where the
driver was staying in a lane and discard the rest. We then sample that video at 10 FPS. A higher
sampling rate would result in including images that are highly similar and thus not provide much
useful information.
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Figure 4: CNN architecture. The network has about 27 million connections and 250 thousand
parameters.

To remove a bias towards driving straight the training data includes a higher proportion of frames
that represent road curves.

5.2 Augmentation

After selecting the final set of frames we augment the data by adding artificial shifts and rotations
to teach the network how to recover from a poor position or orientation. The magnitude of these
perturbations is chosen randomly from a normal distribution. The distribution has zero mean, and the
standard deviation is twice the standard deviation that we measured with human drivers. Artificially
augmenting the data does add undesirable artifacts as the magnitude increases (see Section 2).

6 Simulation

Before road-testing a trained CNN, we first evaluate the networks performance in simulation. A
simplified block diagram of the simulation system is shown in Figure 5.

The simulator takes pre-recorded videos from a forward-facing on-board camera on a human-driven
data-collection vehicle and generates images that approximate what would appear if the CNN were,
instead, steering the vehicle. These test videos are time-synchronized with recorded steering com-
mands generated by the human driver.
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Since human drivers might not be driving in the center of the lane all the time, we manually calibrate
the lane center associated with each frame in the video used by the simulator. We call this position
the “ground truth”.

The simulator transforms the original images to account for departures from the ground truth. Note
that this transformation also includes any discrepancy between the human driven path and the ground
truth. The transformation is accomplished by the same methods described in Section 2.

The simulator accesses the recorded test video along with the synchronized steering commands that
occurred when the video was captured. The simulator sends the first frame of the chosen test video,
adjusted for any departures from the ground truth, to the input of the trained CNN. The CNN then
returns a steering command for that frame. The CNN steering commands as well as the recorded
human-driver commands are fed into the dynamic model [8] of the vehicle to update the position
and orientation of the simulated vehicle.

The simulator then modifies the next frame in the test video so that the image appears as if the
vehicle were at the position that resulted by following steering commands from the CNN. This new
image is then fed to the CNN and the process repeats.

The simulator records the off-center distance (distance from the car to the lane center), the yaw, and
the distance traveled by the virtual car. When the off-center distance exceeds one meter, a virtual
human intervention is triggered, and the virtual vehicle position and orientation is reset to match the
ground truth of the corresponding frame of the original test video.

Library of recorded test 
routes: videos and time-
synchronized steering 

commands

CNNShift and rotate

Update car 
position and 
orientation

Synthesized
image of road as

would be seen from
simulated vehicle Network 

computed 
steering 

command

Figure 5: Block-diagram of the drive simulator.

7 Evaluation

Evaluating our networks is done in two steps, first in simulation, and then in on-road tests.

In simulation we have the networks provide steering commands in our simulator to an ensemble
of prerecorded test routes that correspond to about a total of three hours and 100 miles of driving
in Monmouth County, NJ. The test data was taken in diverse lighting and weather conditions and
includes highways, local roads, and residential streets.

7.1 Simulation Tests

We estimate what percentage of the time the network could drive the car (autonomy). The metric is
determined by counting simulated human interventions (see Section 6). These interventions occur
when the simulated vehicle departs from the center line by more than one meter. We assume that
in real life an actual intervention would require a total of six seconds: this is the time required
for a human to retake control of the vehicle, re-center it, and then restart the self-steering mode.
We calculate the percentage autonomy by counting the number of interventions, multiplying by 6
seconds, dividing by the elapsed time of the simulated test, and then subtracting the result from 1:

autonomy = (1− (number of interventions) · 6 seconds
elapsed time [seconds]

) · 100 (1)
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Figure 6: Screen shot of the simulator in interactive mode. See Section 7.1 for explanation of the
performance metrics. The green area on the left is unknown because of the viewpoint transformation.
The highlighted wide rectangle below the horizon is the area which is sent to the CNN.

Thus, if we had 10 interventions in 600 seconds, we would have an autonomy value of

(1− 10 · 6
600

) · 100 = 90%

7.2 On-road Tests

After a trained network has demonstrated good performance in the simulator, the network is loaded
on the DRIVETM PX in our test car and taken out for a road test. For these tests we measure per-
formance as the fraction of time during which the car performs autonomous steering. This time
excludes lane changes and turns from one road to another. For a typical drive in Monmouth County
NJ from our office in Holmdel to Atlantic Highlands, we are autonomous approximately 98% of the
time. We also drove 10 miles on the Garden State Parkway (a multi-lane divided highway with on
and off ramps) with zero intercepts.

A video of our test car driving in diverse conditions can be seen in [9].

7.3 Visualization of Internal CNN State

Figures 7 and 8 show the activations of the first two feature map layers for two different example
inputs, an unpaved road and a forest. In case of the unpaved road, the feature map activations clearly
show the outline of the road while in case of the forest the feature maps contain mostly noise, i. e.,
the CNN finds no useful information in this image.

This demonstrates that the CNN learned to detect useful road features on its own, i. e., with only the
human steering angle as training signal. We never explicitly trained it to detect the outlines of roads,
for example.
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Figure 7: How the CNN “sees” an unpaved road. Top: subset of the camera image sent to the CNN.
Bottom left: Activation of the first layer feature maps. Bottom right: Activation of the second layer
feature maps. This demonstrates that the CNN learned to detect useful road features on its own, i. e.,
with only the human steering angle as training signal. We never explicitly trained it to detect the
outlines of roads.

Figure 8: Example image with no road. The activations of the first two feature maps appear to
contain mostly noise, i. e., the CNN doesn’t recognize any useful features in this image.
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8 Conclusions

We have empirically demonstrated that CNNs are able to learn the entire task of lane and road
following without manual decomposition into road or lane marking detection, semantic abstraction,
path planning, and control. A small amount of training data from less than a hundred hours of driving
was sufficient to train the car to operate in diverse conditions, on highways, local and residential
roads in sunny, cloudy, and rainy conditions. The CNN is able to learn meaningful road features
from a very sparse training signal (steering alone).

The system learns for example to detect the outline of a road without the need of explicit labels
during training.

More work is needed to improve the robustness of the network, to find methods to verify the robust-
ness, and to improve visualization of the network-internal processing steps.
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