item2vec的相似度

上面的word2vec中,可以训练得到每个item的vec,当然也可根据每个item的vector计算他们之间的相似度,我推荐直接采用similar by vector,这样可以由query得到topk个最接近的词,如下:

similar_by_vector(vector, topn=10, restrict_vocab=None) method of gensim.models.word2vec.Word2Vec instance
    Deprecated, use self.wv.similar_by_vector() instead.

下面三者得到的结果是一样的,无论是比较vector,还是word,归根结底比较的还是向量。

sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]]
...
model.similar_by_vector(model.wv['cat'])
#[('cat', 0.9999999403953552), ('say', 0.06181219592690468), ('dog', 0.05950310826301575), ('meow', 0.011392313987016678), ('woof', -0.1317243129014969)]
model.similarity('cat','say')
#0.061812192
model
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值