wenet-基于预训练模型进行增量训练

本文详细介绍了如何使用wenet框架进行语音识别模型的训练。首先,准备训练数据并上传到远程服务器,接着修改run.sh脚本,包括设置GPU、数据路径、词典、模型配置等。使用预训练模型进行增量训练,并调整参数如batch_size和max_epoch。此外,还涉及数据预处理脚本aishell_data_prep.sh的修改。最后,通过运行run.sh执行训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1867-154075-0014

重中之重

run.sh脚本分析

wenet aishell脚本解析_weixin_43870390的博客-CSDN博客

一、准备工作

第一步:准备训练数据,拷贝到远程服务器

将准备好的数据文件0529_0531_dataset,上传到恒源云上的/hy-tmp/wenet/examples/aishell/s0下

0529_0531_merge_label .txt标签文件的内容中,每行为音频ID 空格 音频标签,无表头

本地文件:

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值