Copyright | (c) 2019 Andrew Lelechenko |
---|---|
License | BSD3 |
Maintainer | Andrew Lelechenko <[email protected]> |
Safe Haskell | None |
Language | Haskell2010 |
Data.Poly.Orthogonal
Description
Classical orthogonal polynomials.
Since: 0.4.0.0
Synopsis
- legendre :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => [Poly v a]
- legendreShifted :: forall a (v :: Type -> Type). (Eq a, Euclidean a, Ring a, Vector v a) => [Poly v a]
- gegenbauer :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => a -> [Poly v a]
- jacobi :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => a -> a -> [Poly v a]
- chebyshev1 :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a]
- chebyshev2 :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a]
- hermiteProb :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a]
- hermitePhys :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a]
- laguerre :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => [Poly v a]
- laguerreGen :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => a -> [Poly v a]
Documentation
legendre :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => [Poly v a] Source #
>>>
take 3 legendre :: [Data.Poly.VPoly Double]
[1.0,1.0 * X + 0.0,1.5 * X^2 + 0.0 * X + (-0.5)]
Since: 0.4.0.0
legendreShifted :: forall a (v :: Type -> Type). (Eq a, Euclidean a, Ring a, Vector v a) => [Poly v a] Source #
>>>
take 3 legendreShifted :: [Data.Poly.VPoly Integer]
[1,2 * X + (-1),6 * X^2 + (-6) * X + 1]
Since: 0.4.0.0
gegenbauer :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => a -> [Poly v a] Source #
Since: 0.4.0.0
jacobi :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => a -> a -> [Poly v a] Source #
Since: 0.4.0.0
chebyshev1 :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a] Source #
Chebyshev polynomials of the first kind.
>>>
take 3 chebyshev1 :: [Data.Poly.VPoly Integer]
[1,1 * X + 0,2 * X^2 + 0 * X + (-1)]
Since: 0.4.0.0
chebyshev2 :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a] Source #
Chebyshev polynomials of the second kind.
>>>
take 3 chebyshev2 :: [Data.Poly.VPoly Integer]
[1,2 * X + 0,4 * X^2 + 0 * X + (-1)]
Since: 0.4.0.0
hermiteProb :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a] Source #
Probabilists' Hermite polynomials.
>>>
take 3 hermiteProb :: [Data.Poly.VPoly Integer]
[1,1 * X + 0,1 * X^2 + 0 * X + (-1)]
Since: 0.4.0.0
hermitePhys :: forall a (v :: Type -> Type). (Eq a, Ring a, Vector v a) => [Poly v a] Source #
Physicists' Hermite polynomials.
>>>
take 3 hermitePhys :: [Data.Poly.VPoly Double]
[1.0,2.0 * X + 0.0,4.0 * X^2 + 0.0 * X + (-2.0)]
Since: 0.4.0.0
laguerre :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => [Poly v a] Source #
>>>
take 3 laguerre :: [Data.Poly.VPoly Double]
[1.0,(-1.0) * X + 1.0,0.5 * X^2 + (-2.0) * X + 1.0]
Since: 0.4.0.0
laguerreGen :: forall a (v :: Type -> Type). (Eq a, Field a, Vector v a) => a -> [Poly v a] Source #
Generalized Laguerre polynomials
Since: 0.4.0.0