A red, cuboid electrochemical cell is in the center of the picture, with a few wires protruding from the front. Tubes run from each side of the cell to a peristaltic pump and tank on each side. The frame holding the pumps and tanks is white 3D printed plastic.

An Open Source Flow Battery

The flow battery is one of the more interesting ideas for grid energy storage – after all, how many batteries combine electron current with fluid current? If you’re interested in trying your hand at building one of these, the scientists behind the Flow Battery Research Collective just released the design and build instructions for a small zinc-iodide flow battery.

The battery consists of a central electrochemical cell, divided into two separated halves, with a reservoir and peristaltic pump on each side to push electrolyte through the cell. The cell uses brass-backed grafoil (compressed graphite sheets) as the current collectors, graphite felt as porous electrodes, and matte photo paper as the separator membrane between the electrolyte chambers. The cell frame itself and the reservoir tanks are 3D printed out of polypropylene for increased chemical resistance, while the supporting frame for the rest of the cell can be printed from any rigid filament.

The cell uses an open source potentiostat to control charge and discharge cycles, and an Arduino to control the peristaltic pumps. The electrolyte itself uses zinc chloride and potassium iodide as the main ingredients. During charge, zinc deposits on the cathode, while iodine and polyhalogen ions form in the anode compartment. During discharge, zinc redissolves in what is now the anode compartment, while the iodine and polyhalogen ions are reduced back to iodides and chlorides. Considering the stains that iodide ions can leave, the researchers do advise testing the cell for leaks with distilled water before filling it with electrolyte.

If you decide to try one of these builds, there’s a forum available to document your progress or ask for advice. This may have the clearest instructions, but it isn’t the only homemade flow cell out there. It’s also possible to make these with very high energy densities.

COTS Components Combine To DIY Solar Power Station

They’re marketed as “Solar Generators” or “Solar Power Stations” but what they are is a nice box with a battery, charge controller, and inverter inside. [DoItYourselfDad] on Youtube decided that since all of those parts are available separately, he could put one together himself.

The project is a nice simple job for a weekend afternoon. (He claims 2 hours.) Because it’s all COTS components, it just a matter of wiring everything together, and sticking into a box.  [DoItYourselfDad] walks his viewers through this process very clearly, including installing a shunt to monitor the battery. (This is the kind of video you could send to your brother-in-law in good conscience.)

Strictly speaking, he didn’t need the shunt, since his fancy LiFePo pack from TimeUSB has one built in with Bluetooth connectivity. Having a dedicated screen is nice, though, as is the ability to charge from wall power or solar, via the two different charge controllers [DoItYourselfDad] includes. If it were our power station, we’d be sure to put in a DC-DC converter for USB-PD functionality, but his use case must be different as he has a 120 V inverter as the only output. That’s the nice thing about doing it yourself, though: you can include all the features you want, and none that you don’t.

We’re not totally sure about his claim that the clear cargo box was chosen because he was inspired by late-90s Macintosh computers, but it’s a perfectly usable case, and the build quality is probably as good as the cheapest options on TEMU.

This project is simple, but it does the job. Have you made a more sophisticated battery box, or other more-impressive project? Don’t cast shade on [DoItYourselfDad]: cast light on your work by letting us know about it!. Continue reading “COTS Components Combine To DIY Solar Power Station”

Save Cells From The Landfill, Get A Power Bank For Your Troubles

A hefty portable power bank is a handy thing to DIY, but one needs to get their hands on a number of matching lithium-ion cells to make it happen. [Chris Doel] points out an easy solution: salvage them from disposable vapes and build a solid 35-cell power bank. Single use devices? Not on his watch!

[Chris] has made it his mission to build useful things like power banks out of cells harvested from disposable vapes. He finds them — hundreds of them — on the ground or in bins (especially after events like music festivals) but has also found that vape shops are more than happy to hand them over if asked. Extracting usable cells is most of the work, and [Chris] has refined safely doing so into an art.

Disposable vapes are in all shapes and sizes, but cells inside are fairly similar.

Many different vapes use the same cell types on the inside, and once one has 35 identical cells in healthy condition it’s just a matter of using a compatible 3D-printed enclosure with two PCBs to connect the cells, and a pre-made board handles the power bank functionality, including recharging.

We’d like to highlight a few design features that strike us as interesting. One is the three little bendy “wings” that cradle each cell, ensuring cells are centered and held snugly even if they aren’t exactly the right size.  Another is the use of spring terminals to avoid the need to solder to individual cells. The PCBs themselves also double as cell balancers, providing a way to passively balance all 35 cells and ensure they are at the same voltage level during initial construction. After the cells are confirmed to be balanced, a solder jumper near each terminal is closed to bypass that functionality for final assembly.

The result is a hefty power bank that can power just about anything, and maybe the best part is that it can be opened and individual cells swapped out as they reach the end of their useful life. With an estimated 260 million disposable vapes thrown in the trash every year in the UK alone, each one containing a rechargeable lithium-ion cell, there’s no shortage of cells for an enterprising hacker willing to put in a bit of work.

Power banks not your thing? [Chris] has also created a DIY e-bike battery using salvaged cells, and that’s a money saver right there.

Learn all about it in the video, embedded below. And if you find yourself curious about what exactly goes on in a lithium-ion battery, let our own Arya Voronova tell you all about it.

Continue reading “Save Cells From The Landfill, Get A Power Bank For Your Troubles”

Black and white photo of Evertop computer on desk

The Evertop: A Low-Power, Off-Grid Solar Gem

When was the last time you saw a computer actually outlast your weekend trip – and then some? Enter the Evertop, a portable IBM XT emulator powered by an ESP32 that doesn’t just flirt with low power; it basically lives off the grid. Designed by [ericjenott], hacker with a love for old-school computing and survivalist flair, this machine emulates 1980s PCs, runs DOS, Windows 3.0, and even MINIX, and stays powered for hundreds of hours. It has a built-in solar panel and 20,000mAh of battery, basically making it an old-school dream in a new-school shell.

What makes this build truly outstanding – besides the specs – is how it survives with no access to external power. It sports a 5.83-inch e-ink display that consumes zilch when static, hardware switches to cut off unused peripherals (because why waste power on a serial port you’re not using?), and a solar panel that pulls 700mA in full sun. And you guessed it – yes, it can hibernate to disk and resume where you left off. The Evertop is a tribute to 1980s computing, and a serious tool to gain some traction at remote hacker camps.

For the full breakdown, the original post has everything from firmware details to hibernation circuitry. Whether you’re a retro purist or an off-grid prepper, the Evertop deserves a place on your bench. Check out [ericjenott]’s project on Github here.

Handheld 18650 Analyzer Scopes Out Salvaged Cells

You can salvage lithium 18650 cells from all sorts of modern gadgets, from disposable vapes to cordless power tools. The tricky part, other than physically liberating them from whatever they are installed in, is figuring out if they’re worth keeping or not. Just because an 18650 cell takes a charge doesn’t necessarily mean it’s any good — it could have vastly reduced capacity, or fail under heavy load.

If you’re going to take salvaging these cells seriously, you should really invest in a charger that is capable of running some capacity tests against the cell. Or if you’re a bit more adventurous, you can build this “Battery Health Monitor” designed by [DIY GUY Chris]. Although the fact that it can only accept a single cell at a time is certainly a limitation if you’ve got a lot of batteries to go though, the fact that it’s portable and only needs a USB-C connection for power means you can take it with you on your salvaging adventures.

The key to this project is a pair of chips from Texas Instruments. The BQ27441 is a “Fuel Gauge” IC, and is able to determine an 18650’s current capacity, which can be compared to the cell’s original design capacity to come up with an estimate of its overall health. The other chip, the BQ24075, keeps an eye on all the charging parameters to make sure the cell is being topped up safely and efficiently.

With these two purpose-built chips doing a lot of the heavy lifting, it only takes a relatively simple microcontroller to tie them together and provide user feedback. In this case [DIY GUY Chris] has gone with the ATmega328P, with a pair of addressable WS2812B LED bars to show the battery’s health and charge levels. As an added bonus, if you plug the device into your computer, it will output charging statistics over the serial port.

The whole project is released under the MIT license, and everything from the STL files for the 3D printed enclosure to the MCU’s Arduino-flavored firmware is provided. If you’re looking to build one yourself, you can either follow along with the step-by-step assembly instructions, or watch the build video below. Or really treat yourself and do both — you deserve it.

If your battery salvaging operation is too large for a single-cell tester, perhaps it’s time to upgrade to this 40-slot wall mounted unit.

Continue reading “Handheld 18650 Analyzer Scopes Out Salvaged Cells”

Integrated BMS Makes Battery Packs Easy

[Editor’s note: The hacker requested that we remove the image for legal reasons, so it’s blurry now. We hope all’s well!]

Lithium technology has ushered in a new era of batteries with exceptionally high energy density for a reasonably low cost. This has made a lot possible that would have been unheard of even 20 years ago such as electric cars, or laptops that can run all day on a single charge. But like anything there are tradeoffs to using these batteries. They are much more complex to use than something like a lead acid battery, generally requiring a battery management system (BMS) to keep the cells in tip-top shape. Generally these are standalone systems but [CallMeC] integrated this one into the buswork for a battery pack instead.

The BMS is generally intended to make sure that slight chemical imbalances in the battery cells don’t cause the pack to wear out prematurely. They do this by maintaining an electrical connection to each cell in the battery so they can charge them individually when needed, making sure that they are all balanced with each other. This BMS has all of these connections printed onto a PCB, but also included with the PCB is the high-power bus that would normally be taken care of by bus bar or nickel strips. This reduces the complexity of assembling the battery and ensures that any time it’s hooked up to a number of cells, the BMS is instantly ready to go.

Although this specific build is meant for fairly large lithium iron phosphate batteries, this type of design could go a long way towards making quick battery packs out of cells of any type of battery chemistry that typically need a BMS system, from larger 18650 packs or perhaps even larger cells like those out of a Nissan Leaf.

Have Li-ion Batteries Gone Too Far?

The proliferation of affordable lithium batteries has made modern life convenient in a way we could only imagine in the 80s when everything was powered by squadrons of AAs, or has it? [Ian Bogost] ponders whether sticking a lithium in every new device is really the best idea.

There’s no doubt, that for some applications, lithium-based chemistries are a critically-enabling technology. NiMH-based EVs of the 1990s suffered short range and slow recharge times which made them only useful as commuter cars, but is a flashlight really better with lithium than with a replaceable cell? When household electronics are treated as disposable, and Right to Repair is only a glimmer in the eye of some legislators, a worn-out cell in a rarely-used device might destine it to the trash bin, especially for the less technically inclined.

[Bogost] decries “the misconception that rechargeables are always better,” although we wonder why his article completely fails to mention the existence of rechargeable NiMH AAs and AAAs which are loads better than their forebears in the 90s. Perhaps even more relevantly, standardized pouch and cylindrical lithium cells are available like the venerable 18650 which we know many makers prefer due to their easy-to-obtain nature. Regardless, we can certainly agree with the author that easy to source and replace batteries are few and far between in many consumer electronics these days. Perhaps new EU regulations will help?

Once you’ve selected a battery for your project, don’t forget to manage it if it’s a Li-ion cell. With great power density, comes great responsibility.