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Post-processing 
a.k.a. retouching 

“Magic”





Exposure + 2.40





Highlight -78





White balance 

Temperature 2600 
Tint +23





Clarity + 63





Vibrance +75 





Shadow + 70
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Learning-based Photo Post-Processing
Bychkovsky et al. 2011, Learning Photographic Global Tonal Adjustment 

with a Database of Input / Output Image Pairs

MIT-Adobe FiveK Dataset

x5000
+ 

Learning-based 
Global Tonal 
Adjustment



Yan et al. 2014, Automatic Photo Adjustment Using Deep Neural Networks

Input Output

Learning-based Photo Post-Processing



Gharbi et al., Deep Bilateral Learning for Real-Time Image Enhancement

Learning-based Photo Post-Processing



Paired v.s. Unpaired Image Translation

[Zhu et al. 2017, Unpaired Image-to-Image Translation 
using Cycle-Consistent Adversarial Networks]

[Isola et al. 2017, Image-to-Image Translation 
with Conditional Adversarial Networks]



CycleGAN 
[Zhu et al. 2017, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks]



Generator 

Encoder/
decoder-based 

CNN

[Zhu et al. 2017, Unpaired Image-to-Image Translation 
using Cycle-Consistent Adversarial Networks]

256x256 px256x256 px



Deep learning
Input Output

Hidden 
Layer

Dataset Deep neural networks

…
Raw

…

Retouched

Traditional deep-learning approaches generate 
black boxes (CNNs) out of existing ones (datasets). 

To understand the magic of photo retouching, 
we need a white box result.
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Pick a image operation, estimate the parameter. Repeat until done.

Exposure  
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Balance 
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Clarity 
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Shadow 
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Filters

Curve representation
Image Operations (Filters)
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Learning to Make Decisions

AgentEnvironment 
(Model)

Action

Policy 

(new state, reward)

state ! action

state ! action



Learning to Make Decisions



Learning to Make Decisions
States Actions States Actions States



Gradient-based Policy Optimization 

NN weights

PolicyLoss Value

Discrete policy (filter selection)
Continuous (deterministic) policy 

parameter estimation

Monte-Carlo Estimation of (Stochastic) Policy Gradient



Gradient-based Policy Optimization 

NN weights

PolicyLoss Value

Continuous (deterministic) policy 
parameter estimation

Deterministic Policy Gradient Theorem
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https://pixabay.com/

Designing the Reward Function

r = —D(              ,         v                                        )

Generated Target (i.e. “ground truth”)



(Conditional) Generative Adversarial Networks (c-GANs)
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Generator 
CNN 

Differentiable  
Retouching 

Model

Real sample

“Fake” sample

Discriminator 

Wasserstein 
GAN Critic, 

gradient 
penalized

Loss
Rewards

Raw Images

…

…

Retouched Images

Reward: Earth Mover’s Distance
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Postprocessing Model  
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content preserving 

human-understandable

Deep Reinforcement 
Learning 

  

Learn image operations, 
instead of pixels

Generative Adversarial 
Networks 

Training without pairs

Advantages: infinite resolution, human-understandable (reverse engineering 
artistic styles), unpaired training

Limitations: RL/GAN stability, hyper-parameters, faces



Reproducible research: 
https://github.com/yuanming-hu/exposure

Retouch your photos with Exposure!

https://github.com/yuanming-hu/exposure


Reproducible research: 
https://github.com/yuanming-hu/exposure Thank you! 

Questions are welcome!

Retouch your photos with Exposure!

https://github.com/yuanming-hu/exposure

