

EuroPython 2019, Basel

Victor Stinner

Python performance
Past, Present, Future

Past

1989: CPython (Guido van Rossum)

1997: Jython (Jim Hugunin)

1998: Stackless Python (Christian
Tismer)

2006: IronPython (Jim Hugunin)

2014: MicroPython (Damien George)

Python Implementations

2002-2012: psyco (Armin Rigo)

2007: PyPy

2009-2010: Unladen Swallow (Google)

2014-2017: Pyston (Dropbox)

2016-2017: Pyjion (Microsoft)

Notice end date for most of these
projects...

Faster Pythons

Fork CPython

Implementation from scratch

Two approaches

Unladen Swallow, Pyston, Pyjion, …

Performance limited by old CPython
design (1989)

Specific memory allocators, C
structures, reference counting,
specific GC, …

CPython is limited to 1 thread
because of the GIL (more later)

Fork CPython

PyPy, Jython, IronPython, …

Jython and IronPython have no GIL!

PyPy uses an efficient tracing
garbage collector

C extensions: no support, or slow

cpyext creates CPython PyObject on
demand, sync with PyPy objects

From scratch

CPython has around 30 active core
developers to maintain it

New features first land into CPython

Why would users prefer an outdated
and incompatible implementation?

Who will sponsor the development?

Competition with CPython

“Most Python code at Google isn't
performance critical”

“deployment was too difficult: being
a replacement was not enough.”

“Our potential customers eventually
found other ways of solving their
performance problems.”

http://qinsb.blogspot.com/2011/03/
unladen-swallow-retrospective.html

Unladen Swallow (2011)

“Dropbox has increasingly been
writing its performance-sensitive
code in other languages, such as
Go”

“We spent much more time than we
expected on compatibility”

https://blog.pyston.org/2017/01/31/
pyston-0-6-1-released-and-future-plans/

Pyston & Dropbox (2017)

CPython remains the reference
implementation but shows its age

Multiple optimization projects failed

PyPy: drop-in replacement, 4.4x
faster, but not widely adopted yet:
why?

Summary

 Present

Let’s say that you identified your
code causing the performance
bottleneck

How to make your code faster?

Optimize your code

Drop-in replacement for CPython!

4.4x faster than CPython in average
(exact speedup depends on your
workflow)

Fully compatible with CPython

PyPy just works!

Support C extension with cpyext:
heavily optimized in 2018, but still
slower than CPython
(more about the C API later...)

Larger memory footprint (JIT)

Longer startup time (JIT)

PyPy issues

CPython GIL

CPython: release the GIL

CPython: multiprocessing

Work around the GIL limitation

Shared memory (Python 3.8) avoids
memory copies between workers

New pickle version 5 (Python 3.8)
avoids copying large objects:
PEP 574

Multiprocessing

Easy way to write C extension

Syntax similar to Python

Support multiple Python versions

Handle reference counting for you

The optimizer emits efficient code
using CPython internals for you

Cython

JIT compiler translating subset of
Python and NumPy into fast code

Simplified Threading: release GIL

SIMD Vectorization: SSE, AVX, AVX-512

GPU Acceleration: NVIDIA's CUDA and
AMD's ROCm

Numba

https://speed.python.org

Track CPython performance

Stable benchmarks

PyPy doesn’t require any code
change

Multiprocessing scales

Use Cython, don’t use the C API
directly

Numba makes numpy faster

Summary

Future

Python C API

Evolved organically: internal
functions are exported by mistake

First written to be consumed by
CPython itself

No design: expose everything

It exposes too many implementation
details

Python C API

Python 3.8 now has 3 levels of C API:

Include/: public “stable” C API

Include/cpython/: C API specific to
CPython

Include/internal/: internal C API

Many private functions (“_Py…”) and
PyInterpreterState structure moved
to the internal API.

Python 3.8 changes

Support multiple Python versions:
Python 3.8, 3.9, …

CPython 3.8 debug build is ABI
compatible with the release build

It can use C extensions compiled in
release mode

It has much more sanity checks at
runtime to detect bugs

Stable ABI

CPython list: array of pointers
PyObject*

PyPy specialized list: list of integers
int64_t array[n]

Can it be implemented in CPython?

Can we modify PyListObject?

Specialized lists

Problem 1: PyList_GET_ITEM() macro
access directly
PyListObject.ob_item[index] (PyObject*)

C extensions must not access
PyListObject fields directly

PyList_GET_ITEM() macro could be
modified to convert int64_t to
PyObject*, but...

Accessing structs

Problem 2: PyList_GET_ITEM() returns
a borrowed reference, Py_DECREF()
must not be called

If PyList_GET_ITEM() would create a
temporary object, when should it
be destroyed? We don’t know…

Many C functions return borrowed
references

Borrowed reference

Make structures opaque. Such
code must fail with a compiler
error:
PyObject *obj = PyLong_FromLong(1);
PyTypeObject *type = obj->ob_type;

Remove functions using borrowed
references or “stealing”
refererences

Replace macros with function calls

Better C API

Any C API change can break an
unknown number of projects

Maybe not all C API design issues
can be fixed

Updating all C extensions on PyPI
will take a lot of time

… there should be another way…

Break compatibility?

New C API: correct since day 1

PyHandle: opaque integer

Similar to an Unix file descriptor or
Windows HANDLE:
open(), dup(), close()

New PyHandle C API

CPython: Implemented on top of
the current C API

PyPy: More efficient than the
current C API

Cython: no need to change your
code, Cython will generate code
using PyHandle for you

New PyHandle C API

Reference counting

“Remove the GIL”: replace unique
GIL with one lock per mutable
object

Atomic increment/decrement

Log INCREF/DECREF

Reference counting doesn’t scale
with the number of threads

Gilectomy

Many modern language
implementations use tracing GC

PyPy has a tracing GC

Existing C API would continue to
use reference counting

Tracing GC for CPython

Subinterpreters

Eric Snow’s PEP 554 “Multiple
Interpreters in the Stdlib”

Replace the unique Global
Interpreter Lock (GIL) with one lock
per interpreter

Work-in-progress refactoring of
CPython complex internals

Subinterpreters

CPython GIL

CPython GIL

CPython subinterpreters

Expectation (should be verified with
a working implementation):

Lower memory footprint: share more
memory

Faster locks (no syscall?)

Limitation: Python objects cannot
be shared between interpreters

Subinterpreters

Current C API has design issues

New “PyHandle” C API

Tracing garbage collector for
CPython

CPython subinterpreters

Summary

 Conclusion

Many previous optimizations
projects failed

Cython, multiprocessing and
Numba are working well to make
your code faster

PyHandle, tracing GC and
subinterpreters are very promising!

Conclusion

http://pypy.org/

https://faster-cpython.readthedocs.io/

https://pythoncapi.readthedocs.io/

https://speed.python.org/

https://mail.python.org/mailman3/lists/
speed.python.org/

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

