Skip to content

nicohlr/ipychart

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Aug 24, 2024
b7f0b9e · Aug 24, 2024
Aug 24, 2024
Aug 24, 2024
Aug 18, 2024
Aug 24, 2024
Aug 18, 2024
Aug 23, 2024
Aug 8, 2024
Aug 8, 2024
Aug 19, 2024
Aug 8, 2024
Aug 8, 2024
Aug 8, 2024
Aug 8, 2024
Aug 18, 2024
May 25, 2020
Aug 8, 2024
Aug 20, 2024
Aug 8, 2024
Aug 19, 2024
Nov 16, 2021
Jun 26, 2019
Aug 24, 2024
Aug 19, 2024
Jun 26, 2019
Aug 8, 2024
Aug 8, 2024
Aug 17, 2024
Aug 19, 2024
Aug 19, 2024

Repository files navigation


The power of Chart.js with Python

GitHub GitHub release (latest by date) Binder Awesome Chart.js

Installation

You can install ipychart from your terminal using pip or conda:

# using pip
$ pip install ipychart

# using conda
$ conda install -c conda-forge ipychart

Documentation

Usage

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the the cells of your jupyter notebook environment:

You can also create charts directly from a pandas dataframe. See the Pandas Interface section of the documentation for more details.

Development Installation

For a development installation:

$ git clone https://github.com/nicohlr/ipychart.git
$ cd ipychart
$ conda install jupyterlab -c conda-forge
$ cd ipychart/src
$ jlpm install 
$ cd .. 
$ pip install -e .
$ jupyter nbextension install --py --symlink --sys-prefix ipychart
$ jupyter nbextension enable --py --sys-prefix ipychart

References

License

Ipychart is available under the MIT license.