Skip to content

Code for "Inference Suboptimality in Variational Autoencoders"

License

Notifications You must be signed in to change notification settings

lxuechen/inference-suboptimality

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Mar 17, 2020
72242d2 · Mar 17, 2020

History

19 Commits
Apr 13, 2018
Apr 13, 2018
Apr 13, 2018
May 10, 2018
Jun 1, 2018
Apr 13, 2018
Apr 13, 2018
Apr 13, 2018
Apr 13, 2018
Apr 13, 2018
Mar 17, 2020
Apr 13, 2018

Repository files navigation

inference-suboptimality

Code regarding evaluation for paper Inference Suboptimality in Variational Autoencoders. [arxiv]

Dependencies

  • python3
  • pytorch==0.2.0
  • tqdm

Training

To train on MNIST and Fashion, unzip the compressed files in folder datasets/.

python run.py --train --dataset <dataset> (--lr-schedule --warmup --early-stopping)

To train on CIFAR, set the argument for the dataset flag to cifar. The dataset should be downloaded automatically, if not already downloaded.

Evaluation

  • IWAE: python run.py --eval-iwae --dataset <dataset> --eval-path <ckpt path>
  • AIS: python run.py --eval-ais --dataset <dataset> --eval-path <ckpt path>
  • Local FFG: python local_ffg.py --dataset <dataset> --eval-path <ckpt path>
  • Local Flow: python local_flow.py --dataset <dataset> --eval-path <ckpt path>
  • BDMC: python bdmc.py --eval-path <ckpt path> --n-ais-iwae <num samples> --n-ais-dist <num dist>

Other Experiments

For decoder size, flow affect amortization, test set gap and other experiments, refer to this.

Citation

If you use our code, please consider cite the following: Chris Cremer, Xuechen Li, David Duvenaud. Inference Suboptimality in Variational Autoencoders.

@article{cremer2018inference,
  title={Inference Suboptimality in Variational Autoencoders},
  author={Cremer, Chris and Li, Xuechen and Duvenaud, David},
  journal={ICML},
  year={2018}
}

About

Code for "Inference Suboptimality in Variational Autoencoders"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages