
https://github.com/head-first-csharp/fifth-edition

Andrew Stellman
Unity Lab #1

Andrew Stellman

Andrew Stellman
Unity is a great way to practice your C# skills! These Unity Labs are specially designed to help you ramp up on Unity and start writing 3D games in C#.

Andrew Stellman

Andrew Stellman
Check out our GitHub page for videos, downloads, and more!

Andrew Stellman

Andrew Stellman

Andrew Stellman

Andrew Stellman

Praise for Head First C#

“In a sea of dry technical manuals, Head First C# stands out as a beacon of brilliance. Its unique teaching style
not only imparts essential knowledge but also sparks curiosity and fuels passion for coding. An indispensable
resource for beginners!”

—Gerald Versluis, Senior Software Engineer at Microsoft

“Head First C# started my career as a software engineer and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books have helped me to launch my career.”

—Ryan White, Game Developer

“If you’re a new C# developer (welcome to the party!), I highly recommend Head First C#. Andrew and Jennifer
have written a concise, authoritative, and most of all, fun introduction to C# development. I wish I’d had this
book when I was first learning C#!”

—Jon Galloway, Senior Program Manager on the .NET Community Team, Microsoft

“Not only does Head First C# cover all the nuances it took me a long time to understand, it has that Head First
magic going on where it is just a super fun read.”

—Jeff Counts, Senior C# Developer

“Head First C# is a great book with fun examples that keep learning interesting.”

—Lindsey Bieda, Lead Software Engineer

“Head First C# is a great book, both for brand-new developers and developers like myself coming from a Java
background. No assumptions are made as to the reader’s proficiency, yet the material builds up quickly enough
for those who are not complete newbies—a hard balance to strike. This book got me up to speed in no time for
my first large-scale C# development project at work—I highly recommend it.”

—Shalewa Odusanya, Principal

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I’ve ever
seen—the samples are clear, the topics are concise and well written. The mini-games that guide you through the
different programming challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”

—Johnny Halife, Partner

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The many
coding challenges keep it fun, even when the concepts are tough.”

—Rebeca Dunn-Krahn, Founding Partner, Sempahore Solutions

Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want
to learn C# in depth and have fun doing it, this is THE book for you.”

—Andy Parker, fledgling C# Programmer

“It’s hard to really learn a programming language without good, engaging examples, and this book is full of them! Head
First C# will guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

—Chris Burrows, Software Engineer

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable
while covering a great amount of detail in a unique style. If you’ve been turned off by more conventional books on C#,
you’ll love this one.”

—Jay Hilyard, Director and Software Security Architect, and author of
 C# 6.0 Cookbook

“I’d recommend this book to anyone looking for a great introduction into the world of programming and C#. From the
first page onward, the authors walk the reader through some of the more challenging concepts of C# in a simple, easy-
to-follow way. At the end of some of the larger projects/labs, the reader can look back at their programs and stand in
awe of what they’ve accomplished.”

—David Sterling, Principal Software Developer

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style is
sure to captivate readers—from the humorously annotated examples to the Fireside Chats, where the abstract class and
interface butt heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

— Joseph Albahari, inventor of LINQPad, and coauthor of C# 12 in a Nutshell and
C# 12 Pocket Reference

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to
jump into the C# waters. I will recommend it to the advanced developer that wants to understand better what is
happening with their code. [I will recommend it to developers who] want to find a better way to explain how C# works
to their less-seasoned developer friends.”

—Giuseppe Turitto, Director of Engineering

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and
enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Advanced Systems Analyst

“Going through this Head First C# book was a great experience. I have not come across a book series which actually
teaches you so well.…This is a book I would definitely recommend to people wanting to learn C#.”

—Krishna Pala, MCP

Praise for the Head First Approach

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

—Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, former VP of Design, Twitter, and founder of Newsvine

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of

pragmatism and wit.”

— Ken Goldstein, Executive VP & Managing Director, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Related books from O’Reilly
C# 12 in a Nutshell by Joseph Albahari
Unity Game Development Cookbook, 2nd Edition
	 by	Paris	Buttfield-Addison,	Jon	Manning,	and	Tim	Nugent
Programming C# 12 by	Ian	Griffiths
Functional Programming with C# by	Simon	J.	Painter
C# 12 Pocket Reference by	Joseph	Albahari	and	Ben	Albahari
Learning Blazor	by	David	Pine

We love this book so much!

Other books in O’Reilly’s Head First series
Head First Android Development
Head First Design Patterns
Head First Git
Head First Python
Head First Go
Head First HTML and CSS
Head First iPhone and iPad Development
Head First Java
Head First JavaScript Programming
Head First Learn to Code
Head First Object-Oriented Analysis and Design
Head First Programming
Head First Python
Head First Software Architecture
Head First SQL
Head First Swift
Head First Web Design

Beijing		•		Boston		•		Farnham		•			Sebastopol			•		Tokyo

Head First C#

Wouldn’t it be dreamy if
there was a C# book that’s

more fun than memorizing
a dictionary? It’s probably
nothing but a fantasy...

Andrew Stellman
Jennifer Greene

Head First C#
by Andrew Stellman and Jennifer Greene

Copyright © 2024 Andrew Stellman and Jennifer Greene. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Series Creators: Kathy Sierra and Bert Bates

Series Advisors: Eric Freeman and Elisabeth Robson

Acquisitions Editor: Brian Guerin

Development Editor: Michele Cronin

Production Editor: Katherine Tozer

Proofreader: Piper Editorial Consulting, LLC

Indexer: Potomac Indexing, LLC

Cover Design: Susan Thompson, based on a series design by Ellie Volckhausen

Cover and Interior
Illustrations: José Marzan Jr.

Page Viewers: Samosa the Pomeranian and Rosalie the Australian Labradoodle

Printing History:
November 2007: First Edition
May 2010: Second Edition
August 2013: Third Edition
December 2020: Fourth Edition
July 2024: Fifth Edition

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

No pigeons, ducks, ostriches, elephants, dogs, hippos, chameleons, bees, clowns, aliens, game masters, jewel thieves, or
superheroes were harmed in the making of this book.

ISBN: 978-1-098-14178-3

[LSI] [2024-12-19]

C# Lab 111Head First C# Unity Lab 111https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Unity Lab #1
Explore C# with Unity
Welcome to your first Head First C# Unity Lab.
Writing code is a skill, and like any other skill, getting
better at it takes practice and experimentation.
Unity will be a really valuable tool for that.

Unity is a cross-platform game development tool
that you can use to make professional-quality games,
simulations, and more. It’s also a fun and satisfying
way to get practice with the C# tools and ideas
you’ll learn throughout this book. We designed these
short, targeted labs to reinforce the concepts and
techniques you just learned to help you hone your C#
skills. These labs are optional, but valuable practice…
even if you aren’t planning to write games in C#.

In this first lab, you’ll get started with Unity. You’ll
get oriented with the Unity editor, and you’ll start
creating and manipulating 3D shapes. That will lay
down a foundation to write code in the next lab.

Unity Lab #1
Explore C# with Unity

112 	 https://github.com/head-first-csharp/fifth-edition

Unity is a powerful tool for game design
Welcome to the world of Unity, a complete system for designing professional-
quality games—both two-dimensional (2D) and three-dimensional (3D)—as well as
simulations, tools, and projects. Unity includes many powerful things, including...

Our Unity Labs will focus on using Unity as a tool to explore C# and practicing with
the C# tools and ideas that you’ve learned throughout the book.
The Head First C# Unity Labs are laser-focused on a developer-centric learning path. The goal of these labs
is to help you ramp up on Unity quickly, with the same focus on brain-friendly just-in-time learning you’ll see
throughout Head First C# to give you lots of targeted, effective practice with C# ideas and techniques.

A cross-platform game engine
A game engine displays the graphics, keeps track of the 2D or 3D
characters, detects when they hit each other, makes them act like
real-world physical objects, and much, much more. Unity will do all
of these things for the 3D games you build throughout this book.

An ecosystem for game creation
Beyond being an enormously powerful tool for creating games, Unity
also features an ecosystem to help you build and learn. The Learn
Unity page (https://unity.com/learn) has valuable self-guided learning
resources, and the Unity forums (https://forum.unity.com) help you
connect with other game designers and ask questions. The Unity
Asset Store (https://assetstore.unity.com) provides free and paid assets like
characters, shapes, and effects that you can use in your Unity projects.

A powerful 2D and 3D scene editor
You’ll be spending a lot of time in the Unity editor. It
lets you edit levels full of 2D or 3D objects, with tools
that you can use to design complete worlds for your
games. Unity games use C# to define their behavior,
and the Unity editor integrates with Visual Studio to
give you a seamless game development environment.

While these Unity Labs will concentrate on C# development
in Unity, if you’re a visual artist or designer, the Unity editor
has many artist-friendly tools designed just for you. Check
them out here: https://unity.com/solutions/artist-designers

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 113

Unity Hub may look a little different.

The	screenshots	in	this	book	were	taken	with	Unity 6	and	Unity Hub 3.10.0.	
You	can	use	Unity	Hub	to	install	many	different	versions	of	Unity	on	the	same	
computer,	but	you	can	only	install	the	latest	version	of	Unity	Hub.	The	Unity	

development	team	is	constantly	improving	Unity	Hub	and	the	Unity	editor,	so	it’s	possible	
that	what	you	see	won’t	quite	match	what’s	shown	on	this	page.	

Watch it!

Download Unity Hub
Unity Hub is an application that helps you manage your Unity projects and your Unity installations,
and it’s the starting point for creating your new Unity project. Start by downloading Unity Hub from
https://unity.com/developer-tools—then install it and run it.

Click on Installs to
manage the installed

versions of Unity.

Unity Hub helps you manage your Unity installs
and projects. We used screenshots from Unity

6 in these Unity Labs, because that was the
most recent version available when we went to
production. You should install the latest official

release. When you click the Install Editor
button, Unity Hub will display a list of official
releases. Install the most recent version of

Unity 6. Make sure you choose the version (x64
or Arm64) that matches your hardware.

Unity Hub lets you install multiple versions of Unity on the same computer, so you should install
the same version that we used to build these labs. Click the Install Editor button and install the
version of Unity 6 that matches your hardware (x64 or Arm64—that’s the same version we used to
take the screenshots in these labs. Once it’s installed, make sure that it’s set as the preferred version.

The Unity installer may prompt you to install a different version of Visual Studio. You can have
multiple installations of Visual Studio on the same computer too, but if you already have one
version of Visual Studio installed there’s no need to make the Unity installer add another one.

You can learn more about installing Unity Hub on Windows and macOS here:
https://docs.unity3d.com/Manual/GettingStartedInstallingUnity.html

All of the screenshots in this book were taken with the free Personal Edition of Unity. You’ll need to enter your unity.com username and password into Unity Hub to activate your license.

Unity Hub lets you
have many Unity
installs on the same
computer. So even
if there’s a newer
version of Unity
available, you can use
Unity Hub to install
the version we used
in the Unity Labs.

Unity Lab #1
Explore C# with Unity

114 	 https://github.com/head-first-csharp/fifth-edition

Use Unity Hub to create a new project
Click the button on the Project page in Unity Hub to create a new Unity project.
Name it Unity Lab 1, select the Universal 3D template, and check that you’re creating it in
a sensible location (usually the Unity Projects folder underneath your home directory).

Click Create Project to create the new folder with the Unity project. When you create a new
project, Unity generates a lot of files (just like Visual Studio does when it creates new projects
for you). It could take Unity a minute or two to create all of the files for your new project.

Work with your project in the Unity editor
Once your project is created, it will load in the Unity editor, a powerful tool that you’ll use
to create 3D environments. Here are some important parts of the Unity editor:

OK! You’re all ready to get started on your first Unity project.

The Scene view is your
main interactive view

of the world that you’re
creating. You use it to

position 3D shapes,
cameras, lights, and all
of the other objects in

your game.

The Hierarchy window shows you all of the
objects in your scene.

Use the Project window
to work with the files
in your Unity project.

Every object
in your game
has properties,
which you’ll view
and edit in the
Inspector window.

You’ll use the Scene window to edit the objects in your scene, including lights, cameras, and
shapes. Notice the “Game” tab at the top? That lets you switch to the Game window, which lets you see the player’s view of your game when you run it.

You can use this
dropdown to change
the layout of the
Unity editor.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 115

You can use
Visual Studio
to debug
the code in
your Unity
games. Just
choose Visual
Studio as
the external
script editor
in Unity’s
preferences.

If you don’t see Visual Studio in the External Script Editor dropdown, choose Browse
and navigate to Visual Studio. On Windows it’s normally an executable called devenv.exe

in the folder C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\.
 On a Mac it’s typically an app called Visual Studio in the Applications folder.

Take control of the Unity layout
The Unity editor is like an IDE for all of the parts of your Unity project that aren’t C#.
You’ll use it to work with scenes, edit 3D shapes, create materials, and so much more.

When you started up Unity, did you notice that your screen looked a little different from our
screenshot? Just like in Visual Studio, the windows and panels in the Unity editor can be
rearranged in many different layouts. We chose a layout that works well for screenshots in a
book. We also chose dark mode, which we think is easier to read when these pages are printed.

Choose the Wide layout to match our screenshots
We’ve chosen the Wide layout because it works well for the screenshots in these labs. Find
the Layout dropdown in the toolbar and choose Wide so your Unity editor looks like ours.

Set up Unity to work with Visual Studio
The goal of these Unity Labs is to give you an exciting and fun way to explore C#.
The Unity editor works with Visual Studio and VSCode to make it easy to edit and debug
the code for your games. Open the Unity Preferences Window (on Windows choose
Preferences from the Edit menu; on a Mac choose Settings from the Unity menu). Click on
External Tools on the left, click the External Script Editor dropdown, and choose Visual
Studio 2022 (or Visual Studio Code if you’re using VSCode) from the list of options.

You can download
PDFs of all of these
Unity Labs and print

them out if that
makes it easier for
you to follow along.

Once you change the layout with the Layout dropdown on the right side of the toolbar, the dropdown changes its label to match the layout that you selected.

You’ll write code and do
some debugging with Visual
Studio or VSCode in the
next Unity Lab. This lab
is about getting used to
the way Unity works so
you’re ready to do that.

Unity Lab #1
Explore C# with Unity

116 	 https://github.com/head-first-csharp/fifth-edition

Your scene is a 3D environment
As soon as you start the editor, you’re editing a scene. You can think of scenes as levels in your Unity
games. Every game in Unity is made up of one or more scenes. Each scene contains a separate 3D
environment, with its own set of lights, shapes, and other 3D objects. When you created your project,
Unity added a scene called SampleScene and stored it in a file called SampleScene.unity.

Add a sphere to your scene by choosing GameObject >> 3D Object >> Sphere from the menu:

A sphere will appear in your Scene window. Everything you see in the Scene window is shown from the
perspective of the Scene view camera, which “looks” at the scene and captures what it sees.

The Scene window shows you all of the objects in your scene from the
perspective of the scene camera. It shows a perspective grid to help
you see how far away the objects are from the Scene view camera.

This is a light that illuminates the scene.

When you run your
game, you’ll see it
from the perspective
of this camera.

Here’s the sphere
that you added.

These are called Unity’s
“primitive objects.” We’ll be
using them a lot throughout
these Unity Labs.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 117

Unity games are made with GameObjects
When you added a sphere to your scene, you created a new GameObject. The
GameObject is a fundamental concept in Unity. Every item, shape, character,
light, camera, and special effect in your Unity game is a GameObject. Any scenery,
characters, and props that you use in a game are represented by GameObjects.

In these Unity Labs, you’ll build games with different kinds of GameObjects, including:

Spheres

Cubes

Planes

Capsules

Cylinders

Lights

Cameras

Each GameObject contains several components that provide its shape, set its position,
and give it all of its behavior. For example:

 ! Transform components determine the position and rotation of the GameObject.

 ! Material components change the way the GameObject is rendered—or how it’s
drawn by Unity—by changing the color, reflection, smoothness, and more.

 ! Script components use C# scripts to determine the GameObject’s behavior.

GameObjects
are the
fundamental
objects in
Unity, and
components
are the
basic building
blocks of
their behavior.
The Inspector
window shows
you details
about each
GameObject in
your scene and
its components.

ren-der, verb.
to represent or depict artistically.
Michelangelo rendered his favorite model with
more detail than he used in any of his other drawings.

Unity Lab #1
Explore C# with Unity

118 	 https://github.com/head-first-csharp/fifth-edition

Use the Move Gizmo to move your GameObjects
The Tools panel lets you choose Transform tools. If the Move Tool isn’t selected, click on the sphere that
you just added, then click the Move Tool in the Tools overlay to select it.

The Move Tool lets you use the Move Gizmo to move GameObjects around the 3D space. You should see
red, green, and blue arrows and a cube appear in the middle of the window. This is the Move Gizmo, which
you can use to move the selected object around the scene.

Move your mouse cursor over the cube at the center of the Move Gizmo—notice how each of the faces of the
cube lights up as you move your mouse cursor over it? Click on the upper-left face and drag the sphere around.
You’re moving the sphere in the X-Y plane.

When you click on the upper-left face of the
cube in the middle of the Move Gizmo, its X
and Y arrows light up and you can drag your
sphere around the X-Y plane in your scene.

Move your sphere around the scene to get a feel for how the Move Gizmo works.
Click and drag each of the three arrows to drag it along each plane individually. Try
clicking on each of the faces of the cube in the Scene Gizmo to drag it around all three
planes. Notice how the sphere gets smaller as it moves farther away from you—or really,
the scene camera—and larger as it gets closer.

The Move
Gizmo lets
you move
GameObjects
along any
axis or plane
of the 3D
space in
your scene.

Using the Move Tool displays the Move Gizmo as arrows and a cube on top of the GameObject that’s currently selected. When you click the sphere and then choose the Move Tool, you’ll see the Move Gizmo appear on the sphere. Click anywhere else in the scene to deselect the sphere and the Move Gizmo goes away.

The Tools overlay lets you choose tools to manipulate
GameObjects. You’ll use the Move Tool to move your
sphere around the scene. In the Wide view, the Tools

overlay is vertical. You can right-click the two lines at the
top to change its orientation so it’s horizontal, or you can
drag it to the toolbar or the side of the window to dock it.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 119

Save your scene often! Use File >> Save or Ctrl+S / ⌘S to save the scene right now.

The Inspector shows your GameObject’s components
As you move your sphere around the 3D space, watch the Inspector window,
which is on the right side of the Unity editor if you’re using the Wide layout. Look
through the Inspector window—you’ll see that your sphere has four components
labeled Transform, Sphere (Mesh Filter), Mesh Renderer, and Sphere Collider.

Every GameObject has a set of components that provide the basic building blocks of
its behavior, and every GameObject has a Transform component that drives its
location, rotation, and scale.

You can see the Transform component in action as you use the Move Gizmo to drag
the sphere around the X-Y plane. Watch the X and Y numbers in the Position row
of the Transform component change as the sphere moves.

Try clicking on each of the other two faces of the Move Gizmo cube and dragging to move the sphere in
the X-Z and Y-Z planes. Then click on the red, green, and blue arrows and drag the sphere along just the
X, Y, or Z axis. You’ll see the X, Y, and Z values in the Transform component change as you move the
sphere.

Now hold down Shift to turn the cube in the middle of the Gizmo into a square. Click and drag on that
square to move the sphere in the plane that’s parallel to the Scene view camera.

Once you’re done experimenting with the Move Gizmo, use the sphere’s Transform component context
menu to reset the component to its default values. Click the context menu button () at the top of the
Transform panel and choose Reset from the menu.

The position will reset back to [0, 0, 0].

If you accidentally
deselect a GameObject,
just click on it again. If

it’s not visible in the
scene, you can select it
in the Hierarchy window,
which shows all of the

GameObjects in the scene.
When you reset the layout

to Wide, the Hierarchy
window is in the lower-left
corner of the Unity editor.

Use the context menu to reset a component.
You can either click the three dots or
right-click anywhere in the top line of the
Transform panel in the Inspector window to
bring up the context menu.

Did you notice the grid in your 3D
space? As you’re dragging the sphere

around, hold down the Control key.
That causes the GameObject that

you’re moving to snap to the grid. You’ll
see the numbers in the Transform

component move by whole numbers
instead of small decimal increments.

You can learn more about the tools and how to use them to position GameObjects in the Unity
Manual. Click Help >> Unity Manual and search for the “Positioning GameObjects” page.

Unity Lab #1
Explore C# with Unity

120 	 https://github.com/head-first-csharp/fifth-edition

Add a material to your Sphere GameObject
Unity uses materials to provide color, patterns, textures, and other visual effects. Your sphere looks
pretty boring right now because it just has the default material, which causes the 3D object to be rendered
in a plain, off-white color. Let’s make it look like a billiard ball.

Select the sphere.
When the sphere is selected, you can see its material as a component in the Inspector window:

We’ll make your sphere more interesting by adding a texture—that’s just a simple image file
that’s wrapped around a 3D shape, almost like you printed the picture on a rubber sheet and
stretched it around your object.

Go to our Billiard Ball Textures page on GitHub.
Go to https://github.com/head-first-csharp/fifth-edition and click on the Billiard Ball Textures link to
browse a folder of texture files for a complete set of billiard balls.

Download the texture for the 8 ball.
Click on the file 8 Ball Texture.png to view the texture for an 8 ball. It’s an ordinary 1200 × 600
PNG image file that you can open in your favorite image viewer.

Download the file into a folder on your computer.

(You might need to right-click on the Download button to save the file, or click Download to open it and then
save it, depending on your browser.)

1

2

3

We designed this
image file so that
it looks like an 8
ball when Unity
“wraps” it around a
sphere.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 121

Import the 8 Ball Texture image into your Unity project.
Right-click on the Assets folder in the Project window, choose Import New Asset and
import the texture file. You should now see it when you click on the Assets folder in the
Project window.

You right-clicked inside
the Assets folder in
the Project window to
import the new asset,
so Unity imported
the texture into that
folder.

Add the texture to your sphere.
Now you just need to take that texture and “wrap” it around your sphere. Click on 8 Ball
Texture in the Project window to select it. Once it’s selected, drag it into the Hierarchy
window onto the Sphere that you added.

4

5

Your sphere now looks like an 8 ball. Check the
Inspector, which is showing the 8 Ball GameObject. Now
it has a new material component:

Check your Assets window again.
Unity created a new Materials
folder in it and added a material
called 8 Ball Texture.

Unity Lab #1
Explore C# with Unity

122 	 https://github.com/head-first-csharp/fifth-edition

I’m learning C# for my job, not to write
video games. Why should I care about

Unity?

Unity is a great way to really “get” C#.
Programming is a skill, and the more practice you get writing C# code, the better
your coding skills will get. That’s why we designed the Unity Labs throughout
this book to specifically help you practice your C# skills and reinforce the
C# tools and concepts that you learn in each chapter. As you write more C#
code, you’ll get better at it, and that’s a really effective way to become a great C#
developer. Neuroscience tells us that we learn more effectively when we experiment,
so we designed these Unity Labs with lots of options for experimentation, and
suggestions for how you can get creative and keep going with each lab.

But Unity gives us an even more important opportunity to help get important
C# concepts and techniques into your brain. When you’re learning a new
programming language, it’s really helpful to see how that language works with lots
of different platforms and technologies. That’s why we included both console apps
and MAUI apps in the main chapter material, and in some cases even have you
build the same project using both technologies. Adding Unity to the mix gives you
a third perspective, which can accelerate your understanding of C#.

Do you want to make sure your Unity projects are always backed up? Try Unity Version Control.
Unity Version Control is a version control system that lets you back up your projects to cloud storage that comes free
with your Unity account—and it’s built right into the Unity editor, which makes it easy for you to use.

Click the Unity Version Control
button in the toolbar to open the

Unity Version Control window. The
first time you use it, you’ll get an
option to log in or sign up. When

you sign in with your Unity ID, you’ll
get to a web page where you can
sign into your Unity account, then
sign up for the free Unity VCS level
and join your default organization.

Then you can check in changes any
time you want.

Go to the Head First C# GitHub page for a free PDF that gives you step-by-step instructions
for setting Unity Version Control: https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 123

Rotate your sphere
Click the Rotate tool in the toolbar. You can use the Q, W, E, R, T, and Y keys to quickly switch
between the Transform tools—press E and W to toggle between the Rotate tool and Move Tool.

Click on the sphere. Unity will display a wireframe sphere Rotate Gizmo with red, blue, and
green circles. Click the red circle and drag it to rotate the sphere around the X axis.

Click and drag the green and blue circles to rotate around
the Y and Z axes. The outer white circle rotates the sphere along the
axis coming out of the Scene view camera. Watch the Rotation numbers
change in the Inspector window.

Open the context menu of the Transform panel in the Inspector window. Click
Reset, just like you did before. It will reset everything in the Transform component back to
default values—in this case, it will change your sphere’s rotation back to [0, 0, 0].

Use these options from farther down
in the context menu to reset the
position and rotation of a GameObject.

Click the three dots (or right-click anywhere in
the header of the Transform panel) to bring up the
context menu. The Reset option at the top of the
menu resets the component to its default values.

1

2

3

Use File >> Save or Ctrl+S / ⌘S to save the scene right now. Save early, save often!

We switched the Tools overlay to a
horizontal view by right-clicking on
the two lines and choosing Horizontal.
Try it out.

It’s easy to
reset your
windows and
scene camera.

If you change your Scene
view so you can’t see your
sphere anymore, or if you
drag your windows out of
position, just use the Layout
dropdown in the upper-right
corner to reset the Unity
editor to the Wide layout. It
will reset the window layout
and the Scene view

Relax

Unity Lab #1
Explore C# with Unity

124 	 https://github.com/head-first-csharp/fifth-edition

Move the Scene view camera with the View Tool and Scene Gizmo
Use the mouse scroll wheel or scroll feature on your trackpad to zoom in and out, and toggle between the Move
and Rotate Gizmos. Notice that the sphere changes size, but the Gizmos don’t. The Scene window in the editor
shows you the view from a virtual camera, and the scroll feature zooms that camera in and out.

Press Q to select the View Tool, or choose it from the toolbar. Your cursor will change to a hand.

The View Tool pans around the scene by changing the position and rotation of the scene camera. When the
View Tool is selected, you can click anywhere in the scene to pan.

Click and
drag the View Tool around
the scene to pan the scene camera.

Hold down Alt (or Option on a Mac) while
dragging the View Tool to rotate the scene
camera around the center of the scene.

When the View Tool is selected, you can pan the scene camera by clicking and dragging, and you can
rotate it by holding down Alt (or Option) and dragging. Use the mouse scroll wheel to zoom. Holding
down the right mouse button lets you fly through the scene using the W-A-S-D keys.

When you rotate the scene camera, keep an eye on the Scene Gizmo in the upper-right corner of the Scene
window. The Scene Gizmo always displays the camera’s orientation—check it out as you use the View Tool to
move the Scene view camera. Click on the X, Y, and Z cones to snap the camera to an axis.

The Unity Manual has great tips on navigating scenes: https://docs.unity3d.com/Manual/SceneViewNavigation.html

Click any of the cones in
the Scene Gizmo to snap the
camera to an axis. Drag them
around to rotate the camera.

Hold down Alt (Windows) or Option (Mac) while
dragging and the View Tool turns into an eye and
rotates the view around the center of the window.

Take a minute and look at this page—it’s got some really useful stuff.

If an “AI Navigation” box is
making it hard to see what’s

going on, right-click on its
header and choose Hide.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 125

When you click on the Directional Light GameObject
in the Hierarchy window, the Inspector shows you its
components. It just has two: a Transform component
that provides its position and rotation and a Light
component that actually casts the light. What do
you think you’ll use the Add Component button for?

You can click on the Help icon
for any component to bring up

the Unity Manual page for it.

Q: I’m still not clear on exactly what a component is. What
does it do, and how is it different from a GameObject?

A: A GameObject doesn’t actually do much on its own. All a
GameObject really does is serve as a container for components.
When you used the GameObject menu to add a sphere to your scene,
Unity created a new GameObject and added all of the components
that make up a sphere, including a Transform component to give it
position, rotation, and scale, a default material to give it its plain white
color, and a few other components to give it its shape, and help your
game figure out when it bumps into other objects. These components
are what make it a sphere.

Q: So does that mean I can just add any component to a
GameObject and it gets that behavior?

A: Yes, exactly. When Unity created your scene, it added two
GameObjects, one called Main Camera and another called Directional
Light. If you click on Main Camera in the Hierarchy window, you’ll see
that it has three components: a Transform, a Camera, and an Audio
Listener. If you think about it, that’s all a camera actually needs to
do: be somewhere, and pick up visuals and audio. The Directional
Light GameObject just has two components: a Transform and a Light,
which casts light on other GameObjects in the scene.

Q: If I add a Light component to any GameObject, does it
become a light?

A: Yes! A light is just a GameObject with a Light component. If you
click on the Add Component button at the bottom of the Inspector and
add a Light component to your ball, it will start emitting light. If you
add another GameObject to the scene, it will reflect that light.

Q: It sounds like you’re being careful with the way you
talk about light. Is there a reason you talk about emitting and
reflecting light? Why don’t you just say that it glows?

A: Because there’s a difference between a GameObject that emits
light and one that glows. If you add a Light component to your ball, it
will start emitting light—but it won’t look any different, because the
Light only affects other GameObjects in the scene that reflect its
light. If you want your GameObject to glow, you’ll need to change its
material or use another component that affects how it’s rendered.

there are no Dumb Questions

Unity Lab #1
Explore C# with Unity

126 	 https://github.com/head-first-csharp/fifth-edition

Get creative!
We built these Unity Labs to give you a platform to experiment on your
own with C# because that’s the single most effective way for you to become
a great C# developer. This lab lays down the foundation to start writing
Unity code—which you’ll do in the next lab. At the end of each Unity Lab, we’ll
include suggestions for things that you can try on your own. Take some time to
experiment with everything you just learned before moving to the next chapter:

 ! Add a few more spheres to your scene. Try using some of the other billiard
ball maps. You can download them all from the same location where you
downloaded 8 Ball Texture.png.

 ! Try adding other shapes by choosing Cube, Cylinder, or Capsule from the
GameObject >> 3D Object menu.

 ! Experiment with using different images as textures. See what happens to
photos of people or scenery when you use them to create textures and add
them to different shapes.

 ! Can you create an interesting 3D scene out of shapes, textures, and lights?

The more C#
code you write,
the better
you’ll get at it.
That’s the most
effective way
for you to
become a great
C# developer.
We designed
these Unity Labs
to give you a
platform for
practice and
experimentation.

When you’re ready to move on
to the next chapter, make sure
you save your project, because
you’ll come back to it in the
next lab. Unity will prompt you
to save when you quit.

 ◾ The Scene view is your main interactive view of the
world that you’re creating.

 ◾ When you select an object and use the Move Tool,
Unity displays the Move Gizmo that lets you move
objects around your scene.

 ◾ The View Tool lets you pan around the scene.
The Scene Gizmo always displays the camera’s
orientation.

 ◾ Unity uses materials to provide color, patterns,
textures, and other visual effects.

 ◾ Some materials use textures, or image files wrapped
around shapes.

 ◾ Your game’s scenery, characters, props, cameras, and
lights are all built from GameObjects.

 ◾ GameObjects are the fundamental objects in Unity.
Components are the building blocks for their
behavior.

 ◾ Every GameObject has a Transform component that
provides its position, rotation, and scale.

 ◾ The Project window gives you a folder-based view of
your project’s assets, including C# scripts and textures.

 ◾ The Hierarchy window shows all of the GameObjects
in the scene.

 ◾ Unity Version Control System (VCS) is an easy way
to back up projects to free cloud storage that comes
with a Unity Personal account. Download a PDF
to help you set up version control in Visual Studio,
VSCode, and Unity for free from our GitHub page:
https://github.com/head-first-csharp/fifth-edition

Bullet Points

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform
free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900v_8x9.25

	Title page
	Copyright
	About the authors
	Table of Contents
	Introduction
	Who is this book for?
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did
	README.md
	The technical review team
	Acknowledgments

	Chapter 1
	Learn C#…and learn to become a great developer
	Write code and explore C# with Visual Studio
	Install Visual Studio Community Edition
	Run Visual Studio
	Create and run your first C# project in Visual Studio
	You can use Visual Studio Code with Head First C#
	Install the C# extensions
	Create and run your first project in Visual Studio Code
	Set up Visual Studio Code for the next project
	Let’s build a game!
	Break up large projects into smaller parts
	Here’s how you’ll build your game
	Create a .NET MAUI project in Visual Studio
	Run your new .NET MAUI app
	MAUI apps work on all of your devices
	Here’s the page that you’ll build
	Start editing your XAML code
	Add the XAML for a Button and a Label
	Use a FlexLayout to make a grid of animal buttons
	Write C# code to add the animals to the buttons
	Start editing the PlayAgainButton event handler method
	Add more statements to your event handler
	Add animals to your buttons
	Run your app!
	Visual Studio makes it easy to use Git
	Add C# code to handle mouse clicks
	Enter the code for the event handler
	Run your app and find all the pairs
	Finish the game by adding a timer
	Add a timer to your game’s code
	Finish the code for your game
	Even better ifs…

	Chapter 2
	Take a closer look at the files in your console app
	Statements are the building blocks for your apps
	Statements live inside methods
	Your methods use variables to work with data
	Generate a new method to work with variables
	Add code that uses operators to your method
	Use the debugger to watch your variables change
	Use code snippets to help write loops
	Use operators to work with variables
	if statements make decisions
	Loops perform an action over and over
	Controls drive the mechanics of your user interfaces
	Other controls you’ll use in this book
	Build a .NET MAUI app to experiment with controls
	Create a new app to experiment with controls
	Explore your new MAUI app and figure out how it works
	Add an Entry control to your app
	Add properties to your Entry control
	Make your Entry control update a Label control
	Combine horizontal and vertical stack layouts
	Add a Picker control to display a list of choices

	Unity Lab #1
	Unity is a powerful tool for game design
	Download Unity Hub
	Use Unity Hub to create a new project
	Your scene is a 3D environment
	Unity games are made with GameObjects
	Use the Move Gizmo to move your GameObjects
	The Inspector shows your GameObject’s components
	Add a material to your Sphere GameObject
	Rotate your sphere
	Get creative!

	Chapter 3
	Classes help you organize your code
	If code is useful, classes can help you reuse it
	Some methods take parameters and return a value
	Visual Studio helps you explore parameters and return values
	Let’s build an app that picks random cards
	You’ll use an array to store the cards
	Create an app with a Main method
	Add a class called CardPicker to your app
	Use Quick Actions to remove unnecessary using lines
	Convert between namespace styles
	Use the new keyword to create an array of strings
	Ana’s working on her next game
	Ana’s game is evolving…
	Build a paper prototype for a classic game
	Build a MAUI version of your random card app
	Make your MAUI app pick random cards
	Reuse your CardPicker class
	Add a using directive to use code in another namespace
	Ana's prototypes look great…
	Ana can use objects to solve her problem
	You use a class to build an object
	When you create a new object from a class, it’s called an instance of that class
	A better solution for Ana…brought to you by objects
	An instance uses fields to keep track of things
	Thanks for the memory
	What’s on your app’s mind
	Sometimes code can be difficult to read
	Most code doesn’t come with a manual
	Use intuitive class and method names
	Build a class to work with some guys
	There’s an easier way to initialize objects with C#
	Use the C# Interactive window or csi to run C# code

	Chapter 4
	Owen could use our help!
	Character sheets store different types of data on paper
	A variable’s type determines what kind of data it can store
	C# has several types for storing integers
	Types for storing really HUGE and really numbers
	Let’s talk about strings
	A literal is a value written directly into your code
	A variable is like a data to-go cup
	Other types come in different sizes too
	10 pounds of data in a 5-pound bag
	Casting lets you copy values that C# can’t automatically convert to another type
	C# does some conversions automatically
	When you call a method, the arguments need to be compatible with the types of the parameters
	Owen is constantly improving his game…
	Let’s help Owen experiment with ability scores
	Fix the compiler error by adding a cast
	Use reference variables to access your objects
	References are like sticky notes for your objects
	If there aren’t any more references,your object gets garbage-collected
	Multiple references and their side effects
	Two references mean TWO variables that can change the same object’s data
	Objects use references to talk to each other
	Arrays hold multiple values
	Arrays can contain reference variables
	null means a reference points to nothing
	Use the string? type when a string might be null
	Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
	Sloppy Joe's menu app uses a Grid layout
	Grid controls
	Define the rows and columns for a Grid
	Create the Sloppy Joe's menu app and set up the grid
	The C# code for the main page
	Can we make the app more accessible?
	Use the SetValue method to change a control’s semantic properties

	Unity Lab #2
	C# scripts add behavior to your GameObjects
	Add a C# script to your GameObject
	Write C# code to rotate your sphere
	Add a breakpoint and debug your game
	Use the debugger to understand Time.deltaTime
	Add a cylinder to show where the Y axis is
	Add fields to your class for the rotation angle and speed
	Use Debug.DrawRay to explore how 3D vectors work
	Run the game to see the ray in the Scene view
	Rotate your ball around a point in the scene
	Use Unity to take a closer look at rotation and vectors
	Get creative!

	Chapter 5
	Let’s help Owen roll for damage
	Create a console app to calculate damage
	Design a MAUI version of the damage calculator app
	Tabletop talk (or maybe…dice discussion?)
	Let’s try to fix that bug
	Use Debug.WriteLine to print diagnostic information
	It’s easy to accidentally misuse your objects
	Encapsulation means keeping some data in a class private
	Use encapsulation to control access to your class’s methods and fields
	But is the RealName field REALLY protected?
	Private fields and methods can only be accessed from instances of the same class
	Why encapsulation? Think of an object as an opaque box…
	Let’s use encapsulation toimprove the SwordDamage class
	Encapsulation keeps your data safe
	Write a console app to test the PaintballGun class
	Properties make encapsulation easier
	Modify your top-level statements to use the Balls property
	Auto-implemented properties simplify your code
	Use a private setter to create a read-only property
	What if we want to change the magazine size?
	Use a constructor with parameters to initialize properties
	Specify arguments when you use the new keyword
	Initialize fields and properties inline or in the constructor
	Make the screen reader announce each roll
	A few useful facts about methods and properties

	Chapter 6
	Calculate damage for MORE weapons
	Use a switch statement to match several candidates
	One more thing…can we calculate damage for a dagger? And a mace? And a staff? and...
	When your classes use inheritance, you only need to write your code once
	Build up your class model by starting general and getting more specific
	How would you design a zoo simulator?
	Different animals have different behaviors
	Every subclass extends its base class
	Any place where you can use a base class, you can use one of its subclasses instead
	Use a colon to extend a base class
	We know that inheritance adds the base class fields, properties, and methods to the subclass…
	A subclass can override methods to change or replace members it inherited
	Some members are only implemented in a subclass
	Use the debugger to understand how overriding works
	Build an app to explore virtual and override
	A subclass can hide methods in the base class
	Use the override and virtual keywords to inherit behavior
	A subclass can access its base class using the base keyword
	When a base class has a constructor, your subclass needs to call it
	A subclass and base class can have different constructors
	It’s time to finish the job for Owen
	A class should do one thing
	Build a beehive management system
	How the Beehive Management System app works
	The page uses a grid to lay out the controls for the UI
	The Beehive Management System class model
	All bees in the system extend the Bee class
	All the constants are in their own static class
	The worker bees extend the Bee class
	The Queen class: how she manages the worker bees
	Here’s the code-behind for MainPage.xaml.cs
	Feedback drives your beehive management game
	The Beehive Management System is turn-based…now let’s convert it to real-time
	Some classes should never be instantiated
	An abstract class is an intentionally incomplete class
	Like we said, some classes should never be instantiated
	An abstract method doesn’t have a body
	Abstract properties work just like abstract methods
	The Deadly Diamond of Death

	Unity Lab #3
	Let’s build a game in Unity!
	Create a new material inside the Materials folder
	Spawn a billiard ball at a random point in the scene
	Use the debugger to understand Random.value
	Turn your GameObject into a prefab
	Create a script to control the game
	Attach the GameController script to the Main Camera
	Press Play to run your code
	Use the Inspector to work with GameObject instances
	Use physics to keep balls from overlapping
	Get creative!

	Chapter 7
	The beehive is under attack!
	We could use casting to call the DefendHive method…
	An interface defines methods and properties that a class must implement…
	Interfaces let unrelated classes do the same job
	Get a little practice using interfaces
	If you’re given… What’s the picture?
	If you’re given… What’s the declaration?
	You can’t instantiate an interface, but you can reference an interface
	Interface references are ordinary object references
	The RoboBee 4000 can do a worker bee’s job without using valuable honey
	The IWorker's Job property is a hack
	Use is to check the type of an object
	Use is to access methods in a subclass
	What if we want different animals to swim or hunt in packs?
	Use interfaces to work with classes that do the same job
	Safely navigate your class hierarchy with is
	C# has another tool for safe type conversion: the as keyword
	Use upcasting and downcasting tomove up and down a class hierarchy
	A quick example of upcasting
	Upcasting turns your CoffeeMaker into an Appliance
	Downcasting turns your Appliance back into a CoffeeMaker
	Upcasting and downcasting work with interfaces too
	Interfaces can inherit from other interfaces
	Interfaces can have static members
	Default implementations give bodies to interface methods
	Add a ScareAdults method with a default implementation
	Data binding updates MAUI controls automatically
	Add data binding to the default MAUI app
	Make Moods implement the INotifyPropertyChanged interface
	Use the PropertyChanged event to make data binding work
	Polymorphism means that one object can take many different forms

	Chapter 8
	If a constructor just sets fields, use a primary constructor instead
	A primary constructor can extend a base constructor
	Strings don’t always work for storing categories of data
	Enums let you work with a set of valid values
	Enums let you represent numbers with names
	We could use an array to create a deck of cards…
	Arrays can be annoying to work with
	Lists make it easy to store collections of…anything
	Lists are more flexible than arrays
	Let’s build an app to store shoes
	Generic collections can store any type
	You can use collection expressions to create Lists
	Let’s create a List of Ducks
	Sorting lists can be tricky
	IComparable<Duck> helps your List sort its Ducks
	Use IComparer to tell your List how to sort
	Create an instance of your comparer object
	Comparers can do complex comparisons
	Overriding a ToString method lets an object describe itself
	Update your foreach loops to let your Ducks and Cards write themselves to the console
	You can upcast an entire list using IEnumerable<T>
	Use a Dictionary to store keys and values
	The Dictionary functionality rundown
	Write an app that uses a Dictionary
	And yet MORE collection types…
	A queue is FIFO—first in, first out
	A stack is LIFO—last in, first out
	CollectionView is a MAUI control built for displaying collections
	ObservableCollection is a collection made for data binding
	Add your Card class to the project
	Use XAML to instantiate your objects for data binding
	Modify your app to use a resource Dictionary
	Modify the event handlers to use the resource Dictionary
	Use what you’ve learned to build an app with two decks

	Unity Lab #4
	Add a score that goes up when the player clicks a ball
	Add two different modes to your game
	Add game mode to your game
	Add a UI to your game
	Set up the Text that will display the score in the UI
	Add a Button that calls a method to start the game
	Make the Play Again button and Score Text work
	Finish the code for the game
	Get creative!

	Chapter 9
	Jimmy’s a Captain Amazing superfan…
	…but his collection’s all over the place
	Use LINQ to query your collections
	LINQ works with any sequence
	LINQ’s query syntax
	LINQ works with objects
	Use a LINQ query to finish the app for Jimmy
	The var keyword lets C# figure out variable types for you
	LINQ is versatile
	LINQ queries aren’t run until you access their results
	Use a group query to separate your sequence into groups
	Use join queries to merge data from two sequences
	Use the new keyword to create anonymous types
	Unit tests help you make sure your code works
	Start writing your first test method
	Give your unit tests access to the classes they’re testing
	One project can only access public classes in another project
	Use the Arrange-Act-Assert pattern to write an effective test
	Finish your first unit test
	Write a unit test for the GetReviews method
	Write unit tests to handle edge cases and weird data
	Use the => operator to create lambda expressions
	Refactor a clown with lambdas
	Use the ?: operator to make your lambdas make choices
	LINQ queries are made up of methods
	LINQ declarative syntax can be refactored into chained methods
	Use the => operator to create switch expressions
	Explore the Enumerable class
	Create an enumerable sequence by hand
	Use yield return to create your own sequences
	Use yield return to refactor ManualSportSequence
	Downloadable exercise: Go Fish

	Chapter 10
	.NET uses streams to read and write data
	Different streams read and write different things
	A FileStream reads and writes bytes in a file
	Write text to a file in three simple steps
	The Swindler launches another diabolical plan
	Use a StreamReader to read a file
	Data can go through more than one stream
	Use the static File and Directory classes to work with files and directories
	IDisposable makes sure objects are closed properly
	Avoid filesystem errors with using statements
	Use a MemoryStream to stream data to memory
	What happens to an object when it’s serialized?
	But what exactly IS an object’s state?What needs to be saved?
	When an object is serialized, all of the objects it refers to get serialized too…
	Use JsonSerializer to serialize your objects
	JSON only includes data, not specific C# types
	Next up: we’ll take a deep dive into our data
	C# strings are encoded with Unicode
	Visual Studio works really well with Unicode
	.NET uses Unicode to store characters and text
	C# can use byte arrays to move data around
	Use a BinaryWriter to write binary data
	Use BinaryReader to read the data back in
	A hex dump lets you see the bytes in your files
	Use StreamReader to build a hex dumper
	Use Stream.Read to read bytes from a stream
	Modify your hex dumper to read directly from the stream
	Run your app from the command line
	Pass command-line arguments to an app run in the IDE
	Downloadable exercise: Hide and Seek

	Unity Lab #5
	Create a new Unity project and start to set up the scene
	Set up the camera
	Create a GameObject for the player
	Introducing Unity’s navigation system
	Install the AI Navigation package
	Things you’ll do with navigation
	Set up the NavMesh
	Make your player automatically navigate the play area

	Chapter 11
	The life and death of an object
	Use the GC class (with caution) to force garbage collection
	Your last chance to DO something…your object’s finalizer
	When EXACTLY does a finalizer run?
	Finalizers can’t depend on other objects
	A struct looks like an object…
	Values get copied; references get assigned
	Structs are value types; objects are reference types
	The stack vs. the heap: more on memory
	Use out parameters to make a methodreturn more than one value
	Pass by reference using the ref modifier
	Use optional parameters to set default values
	A null reference doesn’t refer to any object
	Non-nullable reference types help you avoid NREs
	Nullable value types can be null…and handled safely
	The null-coalescing operator ?? checks for nulls automatically
	“Captain” Amazing…not so much
	Records give your objects value equality automatically
	Don’t modify records—copy them
	Extension methods add new behavior to EXISTING classes
	Extending a fundamental type: string

	Chapter 12
	Your hex dumper reads a filenamefrom the command line
	When your program throws an exception, the CLR generates an Exception object
	All Exception objects inherit from System.Exception
	There are some files you just can’t dump
	What happens when a method you want to call is risky?
	Handle exceptions with try and catch
	Use the debugger to follow the try/catch flow
	If you have code that ALWAYS needs to run, use a finally block
	Catch-all exceptions handle System.Exception
	Use the right exception for the situation
	Exception filters help you create precise handlers
	The worst catch block EVER: catch-all plus comments
	Temporary solutions are OK (temporarily)
	Use NuGet to add a logging library to your app
	Add logging to your ExceptionExperiment app

	Unity Lab #6
	Let’s pick up where the last Unity Lab left off
	Add a platform to your scene
	Use bake options to make the platform walkable
	Include the stairs and ramp in the NavMesh
	Make the player navigate around the obstacles
	Get creative!
	Downloadable exercise: animal match boss battle

	Thank you for reading our book!
	Index

