https://github.com/head-first-csharp/fifth-edition P

OREILLY" R
K Chetk out our Github Oob%‘é 6\
page for videos, N7
downloads, and move! _ %006
e .)
Head First e

A Learner's Guide to
Real-World Programming
with C# and .NET

Andrew Stellman
& Jennifer Greene

Free PDF of chapters 1 to 4

fesseo
.....
2p000

This PDF has cvcr\/‘[')\ihg in the ; ;

A Brain-Friendly Guide

Andrew Stellman
Free PDF of chapters 1 to 4

Andrew Stellman

Andrew Stellman
This PDF has everything in the first 300+ pages of the book.

Andrew Stellman

Andrew Stellman
Check out our GitHub page for videos, downloads, and more!

Andrew Stellman

Andrew Stellman

Andrew Stellman

Head First

#

What will you learn from this book?

Create apps, games, and more using this engaging, highly visual
introduction to C#, .NET, and software development. You'll learn
how to use classes and object-oriented programming, create
3D games in Unity, and query data with LINQ. And you'll do it all
by solving puzzles, completing hands-on exercises, and building
real-world applications. Interested in a development career?
You'll learn important development techniques and ideas—just like
many others who've learned to code with this book and are now
professional developers, team leads, coding streamers, and more.
There's no experience required except the desire to learn. And
this is the best place to start.

Understand the N e ‘f:”d s o
velationship between RN P I"Vs\é“f £ . f ond f,
tlasses and ob etts, ’/// T §\é eh he very
and equip \/oursc|f A &L= -

with tlnat krow]cdg: ; \/ \ N

to build SuCCCSS%u! apps. v “ .\

What's so special about this book?

If you've read a Head First book, you know what to expect: a visually
rich format designed for the way your brain works. If you haven't, you're
in for a treat. With this book, you'll learn C# through a multisensory
experience that engages your mind—rather than a text-heavy
approach that puts you to sleep.

C#/ NET

US $7999 CAN $9999
ISBN: 978-1-098-14178-3

JOCHEROOY

781098"141783

“Thank you so much! Your
books have helped me
to launch my career.”

—Ryan White
Game Developer

“In a sea of dry technicall
manuals, Head First C#
stands out as a beacon
of brilliance. Its unique
teaching style not
only imparts essential
knowledge but also
sparks curiosity and
fuels passion for coding.
An indispensable
resource for beginners!”

—Gerald Versluis

Senior Software Engineer
at Microsoft

"Andrew and Jennifer
have written a concise,
authoritative, and, most
of all, fun introduction
to C# development.”

—Jon Galloway
Senior Program Manager on

the .NET Community Team
at Microsoft

O'REILLY"

Praise for Head First C#
“In a sea of dry technical manuals, Head First C# stands out as a beacon of brilliance. Its unique teaching style

not only imparts essential knowledge but also sparks curiosity and fuels passion for coding. An indispensable
resource for beginners!”

—Gerald Versluis, Senior Software Engineer at Microsoft

“Head Furst C# started my career as a software engineer and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books have helped me to launch my career.”

—Ryan White, Game Developer

“If you’re a new C# developer (welcome to the party!), I highly recommend Head First C#. Andrew and Jennifer

have written a concise, authoritative, and most of all, fun introduction to C# development. I wish I'd had this
book when I was first learning C#!”

—Jon Galloway, Senior Program Manager on the .NET Community Team, Microsoft

“Not only does Head First C# cover all the nuances it took me a long time to understand, it has that Head First
magic going on where it is just a super fun read.”

—Jeff Counts, Senior C# Developer

“Head Furst C# is a great book with fun examples that keep learning interesting.”

—Lindsey Bieda, Lead Software Engineer

“Head First C# 1s a great book, both for brand-new developers and developers like myself coming from a Java

background. No assumptions are made as to the reader’s proficiency, yet the material builds up quickly enough

for those who are not complete newbies—a hard balance to strike. This book got me up to speed in no time for
my first large-scale C# development project at work—T highly recommend it.”

—Shalewa Odusanya, Principal

“Head First C# 1s an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I've ever

seen—the samples are clear, the topics are concise and well written. The mini-games that guide you through the

different programming challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”
—Johnny Halife, Partner

“Head First C# 1s a comprehensive guide to learning C# that reads like a conversation with a friend. The many
coding challenges keep it fun, even when the concepts are tough.”

—Rebeca Dunn-Krahn, Founding Partner, Sempahore Solutions

Praise for Head First C#

“I've never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want
to learn C# in depth and have fun doing it, this is THE book for you.”

—Andy Parker, fledgling C# Programmer

“It’s hard to really learn a programming language without good, engaging examples, and this book is full of them! Head
First C# will guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

—Chris Burrows, Software Engineer

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable
while covering a great amount of detail in a unique style. If you’ve been turned off by more conventional books on C#,
you’ll love this one.”

—Jay Hilyard, Director and Software Security Architect, and author of
C# 6.0 Cookbook

“I'd recommend this book to anyone looking for a great introduction into the world of programming and C#. From the
first page onward, the authors walk the reader through some of the more challenging concepts of C# in a simple, easy-
to-follow way. At the end of some of the larger projects/labs, the reader can look back at their programs and stand in
awe of what they’ve accomplished.”

—David Sterling, Principal Software Developer

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style is
sure to captivate readers—from the humorously annotated examples to the Fireside Chats, where the abstract class and
interface butt heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

—Joseph Albahari, inventor of LINQPad, and coauthor of C# 12 in a Nutshell and
C# 12 Pocket Reference

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to
jump into the C# waters. I will recommend it to the advanced developer that wants to understand better what is
happening with their code. [I will recommend it to developers who] want to find a better way to explain how C# works
to their less-seasoned developer friends.”

—Giuseppe Turitto, Director of Engineering

‘“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and
enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Advanced Systems Analyst

“Going through this Head First C# book was a great experience. I have not come across a book series which actually
teaches you so well....This is a book I would definitely recommend to people wanting to learn C#.”

—Krishna Pala, MCP

Praise for the Head First Approach
“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely tres ‘cool.” It
1s fun, but they cover a lot of ground and they are right to the point. I'm really impressed.”

—Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, former VP of Design, Twitter, and founder of Newsvine

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive VP & Managing Director, Disney Online

“Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller...Bueller...Bueller...” this book is on the float
belting out ‘Shake it up, baby!””

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Related books from O’Reilly We love this book so much/
C# 12 in a Nutshell by Joseph Albahari /

Unity Game Development Cookbook, 2nd Edition
by Paris Buttfield-Addison, Jon Manning, and Tim Nugent

Programming C# 12 by lan Griffiths

Functional Programming with C# by Simon J. Painter

C# 12 Pocket Reference by Joseph Albahari and Ben Albahari
Learning Blazor by David Pine

Other books in O’Reilly’s Head First series
Head First Android Development
Head First Design Patterns
Head First Git
Head First Python
Head First Go
Head First HTML and CSS
Head First iPhone and iPad Development
Head First Java
Head First JavaScript Programming
Head First Learn to Code
Head First Object-Oriented Analysis and Design
Head First Programming
Head First Python
Head First Software Architecture
Head First SQL
Head First Swift
Head First Web Design

Head First C#

Wouldn't it be dreamy If
there was a C# book that's
more fun than memorizing
a dictionary? It's probably
nothing but a fantasy...

Andrew Stellman
Jennifer Greene

O'REILLY

Beijing + Boston < Farnham + Sebastopol « Tokyo

Head First C#
by Andrew Stellman and Jennifer Greene

Copyright © 2024 Andrew Stellman and Jennifer Greene. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oretlly.com.

Series Creators: Kathy Sierra and Bert Bates
Series Advisors: Eric Freeman and Elisabeth Robson
Acquisitions Editor: Brian Guerin

Development Editor: Michele Cronin

Production Editor: Katherine Tozer

Proofreader: Piper Editorial Consulting, LLC

Indexer: Potomac Indexing, LLC

Cover Design: Susan Thompson, based on a series design by Ellie Volckhausen
Cover and Interior

lllustrations: José Marzan Jr.

Page Viewers: Samosa the Pomeranian and Rosalie the Australian Labradoodle

Printing History:

November 2007: First Edition
May 2010: Second Edition
August 2013: Third Edition
December 2020: Fourth Edition
July 2024: Fifth Edition

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

No pigeons, ducks, ostriches, elephants, dogs, hippos, chameleons, bees, clowns, aliens, game masters, jewel thieves, or
superheroes were harmed in the making of this book.

ISBN: 978-1-098-14178-3
[LSI] [2024-12-19]

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you'll be in our hearts forever.

the authors

Thanks for reading our book! We really
love writing about this stuff, and we hope you
get a lot out of It...

Andvew

This photo (and the photo of the
Qowanus Canal) by Nisha Sondhe ~~—>

Andrew Stellman, despite being raised a New Yorker,
has lived in Minneapolis, Geneva, and Pittsburgh...&wice,
first in the early *90s when he graduated from Carnegie
Mellon’s School of Computer Science, and then again

in the early 2000s while he and Jenny were starting their
consulting business and writing their first book for O’Reilly.

Andrew’s first job after college was building software at a
record company, EMI-Capitol Records—which actually
made sense, as he went to LaGuardia High School of
Music & Art and the Performing Arts to study cello and
jazz bass guitar. He and Jenny first worked together at

a company on Wall Street that built financial software,
where he was managing a team of programmers. Over the
years he’s architected large-scale real-time backend systems,
managed large international software teams, been a senior
vice president at a major financial firm, and consulted for
companies, schools, and organizations, including Microsoft,
the National Bureau of Economic Research, and MIT.
He’s had the privilege of working with some pretty
amazing developers during that time, and likes to think
that he’s learned a few things from them.

When he’s not writing books, Andrew keeps himself busy
writing useless (but fun) software, playing (and making)
both music and video games, practicing krav maga, tai chi,
and aikido, and owning a crazy Pomeranian.

...because we know you're
going to have a great
time learning CH#,

Jennifer Greene studied philosophy in
college but, like everyone else in the field,
couldn’t find a job doing it. Luckily, she’s a
great software engineer, so she started out

working at an online service, and that’s the
first time she really got a good sense of what
good software development looked like.

She moved to New York in 1998 to work
on software quality at a financial software
company. She’s managed teams of
developers, testers, and PMs on software
projects in media and finance since then.

Jenny has traveled all over the world to work
with different software teams and build all
kinds of cool projects.

She loves traveling, watching Bollywood
movies, reading the occasional comic book,
playing video games, and hanging out with
her Australian Labradoodle.

vam\/ and Andrew have been building software and wri‘f‘.ing about software engineering {:ogc-{‘)\cr sinte *{')\c\/ Fivst

met in 1998. Theiv fivst book, Applied Software Prgjecé Management, was published by O'Reilly in 2005. Other
Stellman and Greene books published by O'Rcilly intlude Beautiful Teams (2009), Learning Agile (2014), Head Fiest
Agile (2017), and their Livst book in the Head Fivst sevies, Head First PMP (2007), now in its fourth edition.

They founded Stellman ¢ Greene Consulting in 2003 1o build a veally (—\ascina{:ing software yro\)ca{: for stientists
studying herbitide exposure in Vietnam veterans. [n addition to building softwave and writing books, chy'vc tonsulted
for tompanies and spoken at confeventes and meetings of software engineers, avehitects, and project managevs.

Learn move about them on their website, Building Better So«féware (h‘[:‘t’:PSf/ /) www.sfellman—grecrme.com).

viii

Qee \)Chh\/ and Andrew

table of contents

Table of Contents (Summary)

Intro XXIX
1 Start building apps with C#: Build something great.. fast! 1
2 Variables, statements, and methods: Dive into C# code 65
Unity Lab 1: Explore C# with Unity 111
3 Namespaces and classes: Organizing your code 127
4 Data, types, objects, and references: Managing your app’s data 189
Unity Lab 2: White CH Code for Unity 257
5 Encapsulation: How objects keep their secrets 271
Inheritance: Your object’s family tree 325
Unity Lab 3: GameObject Instances 403
Interfaces, casting, and is: Making classes keep their promises 415
8 Enums and collections: Organizing your data 473
Unity Lab 4: User Interfaces 339
9 LINQ and lambdas: Get control of your data 553
10 Reading and writing files: Save the last byte for me 621
Unity Lab 5: Raycasting 673
11 Captain Amazing: The Death of the Object 687
12 Exception handling: Putting out fires gets old 731
Unity Lab 6: Scene Navigation 763
L
Table of Contents (the real thing)
Intro

Your brain on C#. Here you are trying to learn something,
while here your brain is doing you a favor by making sure the learning doesn't stick.
Your brain’s thinking, “Better leave room for more important things, like which wild
animals to avoid and whether naked snowboarding is a bad idea” So how do you

trick your brain into thinking that your life depends on knowing C#?

Who is this book for? XXX
We know what you’re thinking xxxi
Metacognition XxxX1il
Bend your brain into submission XXXV
Read me XXXV1
The technical review team XXXV
Acknowledgments x1

table of contents

start building apps with C#
Build something great...fast!

Want to build great apps...right now?

With C#, you’ve got a modern programming language and a valuable tool at your
fingertips. And with Visual Studio, you've got an amazing development environment
with highly intuitive features that make coding as easy as possible. Not only is Visual
Studio a great tool for writing code, it's also a really effective learning tool for

exploring C#. Sound appealing? Let’s get coding!

Learn C#...and learn to become a great developer 2
Write code and explore C# with Visual Studio 3
Install Visual Studio Community Edition 4
__ Run Visual Studio 5
_ Create and run your first C# project in Visual Studio 6
Time Elapsed: 0.0 seconds You can use Visual Studio Code with Head First C# 12
Create and run your first project in Visual Studio Code 14
-l‘ . V " Set up Visual Studio Code for the next project 17
Let’s build a game! 18
;] Create a .NET MAUI project in Visual Studio 22
— Run your new NET MAUI app 24
. ..‘ . MAUI apps work on all of your devices 25
Start editing your XAML code 27
. e Use a FlexLayout to make a grid of animal buttons 34
— o o Write C# code to add the animals to the buttons 38
Run your app! 46
Visual Studio makes it easy to use Git 51
Add C# code to handle mouse clicks 52
Add a timer to your game’s code 60
Finish the code for your game 62

CrReATE THE DEsIsn THE PacE WRITE CH
ProsecT Cope

table of contents

variables, statements, and methods
Dive into C# code

You’re not just an IDE user. You’re a developer.

You can get a lot of work done using the IDE, but there’s only so far it can take you.
Visual Studio is one of the most advanced software development tools ever made, but a
powerful IDE is only the beginning. It's time to dive in to C# code: how it’s structured,
how it works, and how you can take control of it...because there’s no limit to what you

can get your apps to do.

Take a closer look at the files in your console app 66
Statements are the building blocks for your apps 68
... Statements live inside methods 6
Rellldalles ks Your methods use variables to work with data 70
Duck ow v i

Ostrich : Generate a new method to work with variables 72
SEZS” Add code that uses operators to your method 73
owl Use the debugger to watch your variables change 74
e : Use code snippets to help write loops 76
... Use operators to work with variables 77
if statements make decisions 78
Loops perform an action over and over 79
Controls drive the mechanics of your user interfaces 88
Other controls you’ll use in this book 89
Create a new app to experiment with controls 91
Explore your new MAUI app and figure out how it works 92
Add an Entry control to your app 96
Add properties to your Entry control 97
Make your Entry control update a Label control 98

Combine horizontal and vertical stack layouts 103

Add a Picker control to display a list of choices 104

tabfe of'contents

Unity Lab 1
Explore C# with Unity

Welcome to your first Head First C# Unity Lab. Writing code
is a skill, and like any other skill, getting better at it takes
practice and experimentation. Unity will be a really valuable
tool for that. In this lab, you can begin practicing what you’ve
learned about C# in Chapters 1 and 2.

Unity is a powerful tool for game design 112
Download Unity Hub 113
Use Unity Hub to create a new project 114
Your scene is a 3D environment 116
Unity games are made with GameObjects 117
Use the Move Gizmo to move your GameObjects 118
The Inspector shows your GameObject’s components 119
Add a material to your Sphere GameObject 120
Rotate your sphere 123
Get creative! 126

Xii

table of contents

namespaces and classes
Organizing your code

Great developers keep their code and data organized.

What'’s the first thing you do when you're creating an app? You think about what it’s

supposed to do, whether you're solving a problem, creating a game, or just having fun.
But it's not always obvious how individual statements fit into your app’s bigger picture...and

that’'s where classes come in. They let you organize your code around the features you're

creating and the problems the app needs to solve. Classes can help you organize your
data too, by using them to create objects that represent any “thing” your app needs to know

about—and the classes that you design serve as “blueprints” for the objects used in your app.

Classes help you organize your code 128
Some methods take parameters and return a value 130
Let’s build an app that picks random cards 132
Create an app with a Main method 134
Use Quick Actions to remove unnecessary using lines 138
Convert between namespace styles 139
Use the new keyword to create an array of strings 140
Build a paper prototype for a classic game 148
Build a MAUI version of your random card app 150
Reuse your CardPicker class 154
Add a using directive to use code in another namespace 155

You use a class to build an object 159

A better solution for Ana...brought to you by objects 161
An instance uses fields to keep track of things 165
Use intuitive class and method names 172
Build a class to work with some guys 178

Use the C# Interactive window or csi to run C# code 188

Sy <@

xiii

table of contents

data, types, objects, and references
Managing your app’s data

Data and objects are the building blocks of your apps.

What would your apps be without data? Think about it for a minute. Without data, your
programs are...well, it's actually hard to imagine writing code without data. You need
information from your users, and you use that to look up or produce new information to give
back to them. In fact, almost everything you do in programming involves working with data
in one way or another. In this chapter, you'll learn the ins and outs of C#'s data types and
references, see how to work with data in your program, and even learn a few more things

about objects (guess what...objects are data, too!).

A variable’s type determines what kind of data it can store 192
C# has several types for storing integers 193
Let’s talk about strings 195
A literal is a value written directly into your code 196

Casting lets you copy values that C# can’t

automatically convert to another type 202
C# does some conversions automatically 205
Use reference variables to access your objects 222
References are like sticky notes for your objects 223
Multiple references and their side effects 226
Two references mean TWO variables that

can change the same object’s data 233
Objects use references to talk to each other 234
Arrays hold multiple values 236
null means a reference points to nothing 241
Use the string? type when a string might be null 243
Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches! 246
Grid controls 248
Create the Sloppy Joe’s menu app and set up the grid 250

Use the SetValue method to change a control’s semantic properties 256

Xiv

table of contents

Unity Lab 2
Write C# Code for Unity

Unity isn’t just a powerful, cross-platform engine and editor
for building 2D and 3D games and simulations. It’s also a great
way to get practice writing C# code. In this lab, you'll get
more practice writing C# code for a project in Unity.

C# scripts add behavior to your GameObjects 258
Add a C# script to your GameObject 259
Write C# code to rotate your sphere 260
Add a breakpoint and debug your game 262
Use the debugger to understand Time.deltaTime 263
Add a cylinder to show where the Y axis is 264
Add fields to your class for the rotation angle and speed 265
Use Debug.DrawRay to explore how 3D vectors work 266
Run the game to see the ray in the Scene view 267
Rotate your ball around a point in the scene 268
Use Unity to take a closer look at rotation and vectors 269
Get creative! 270

XV

table of contents

encapsulation
How objects keep their secrets

Ever wished for a little more privacy?

Sometimes your objects feel the same way. Just like you don’t want anybody you don’t
trust reading your journal or paging through your bank statements, good objects don't let
other objects go poking around their fields. In this chapter, you’re going to learn about
the power of encapsulation, a way of programming that helps you make code that’s
flexible, easy to use, and difficult to misuse. You'll make your objects’ data private,
and add properties to protect how that data is accessed—and you’ll keep your objects’

important data from leaking out to other objects so they don’t accidentally misuse it.

Let’s help Owen roll for damage 272
Create a console app to calculate damage 273
Design a MAUI version of the damage calculator app 275
Use Debug WriteLine to print diagnostic information 281

Use encapsulation to control access to your class’s
methods and fields 286

Private fields and methods can only be accessed
from instances of the same class 288

W Why encapsulation? Think of an object as an opaque box... 293

Let’s use encapsulation to
® 70 FIND THE NUMBER OF HIT

i he S D 1 7

PoTs (HPD oF pAmAcE FoR improve the SwordDamage class 29

A SWORD ATTACK, RoLL 3Db Write a console app to test the PaintballGun class 299

(THREE 6—SIDED DICE) AND) L

ADD “BASE DAmAGE” oF 3HP. Auto-implemented properties simplify your code 302
R SomE SWORDS ARE FLAMING, Use a private setter to create a read-only property 303

WHICH CAUSES AN EXTRA ZHP . - .

OF DAMAGE. Use a constructor with parameters to initialize properties 305
% SomE sworRDs ARE mAélc. For Specify arguments when you use the new keyword 306

MAGIC SWORDS, THE 3Dé RoLL o o)

1S MULTIPLIED By 1. 75 AND Initialize fields and properties inline or in the constructor 313

ROUNDED DOWN, AND THE :

BASE DAMAGE AND FLAMING
DAMAGE ARE ADDED To THE Damage Calculator
RESULT.

4

[}
Flaming :

XVi

table of contents

inheritance
Your object’s family tree

Sometimes you DO want to be just like your parents.

Ever run across a class that almost does exactly what you want your class to do?
Found yourself thinking that if you could just change a few things, that class would be
perfect? With inheritance, you can extend an existing class so your new class gets all
of its behavior—with the flexibility to make changes to that behavior so you can tailor
it however you want. Inheritance is one of the most powerful concepts and techniques
in the C# language: with it, you can avoid duplicate code, model the real world more

closely, and end up with apps that are easier to maintain and less prone to bugs.

Use a switch statement to match several candidates 327

When your classes use inheritance, you only need to write
your code once 330

How would you design a zoo simulator? 332

[
;%\ ‘ Any place where you can use a base class,
~ N g you can use one of its subclasses instead 338

—

A subclass can override methods to change or

[

replace members it inherited 344

Build an app to explore virtual and override 352

0 A subclass can hide methods in the base class 354
”&2 Use the override and virtual keywords to inherit behavior 356
A class should do one thing 366

Build a Beehive Management System 370

Feedback drives your beehive management game 388

The Beehive Management System is turn-based...

now let’s convert it to real-time 390
An abstract class is an intentionally incomplete class 394
Abstract properties work just like abstract methods 398
The Deadly Diamond of Death 401

XVii

tabfe of'contents

Unity Lab 3

(rame0bject Instances

C# is an object-oriented language, and since these Head
First C# Unity Labs are all about getting practice
writing C# code, it makes sense that these labs will focus
on creating objects.

Let’s build a game in Unity! 404
Create a new material inside the Materials folder 405
Spawn a billiard ball at a random point in the scene 406
Use the debugger to understand Random.value 407
Turn your GameObject into a prefab 408
Create a script to control the game 409
Attach the GameController script to the Main Camera 410
Press Play to run your code 411
Use the Inspector to work with GameObject instances 412
Use physics to keep balls from overlapping 413
Get creative! 414

= Hierarchy
+ v
P SampleScene*
& Main Camera

ectional Light
) OneBall(Clone)
) OneBall(Clone)
@ OneBall(Clone)
7 OneBall(Clone)

xviil

table of contents

interfaces, casting, and is
Making classes keep their promises

Need an object to do a specific job? Use an interface.
Sometimes you need to group your objects together based on the things they can
do rather than the classes they inherit from—and that’'s where interfaces come

in. You can use an interface to define a specific job. Any instance of a class that
implements the interface is guaranteed to do that job, no matter what other classes
it's related to. To make it all work, any class that implements an interface must

promise to fulfill all of its obligations...or the compiler will break its kneecaps, see?

The beehive is under attack! 416
We could use casting to call the DefendHive method... 417
An interface defines methods and properties

that a class must implement... 418
Interfaces let unrelated classes do the same job 419
Get a little practice using interfaces 420
You can’t instantiate an interface, but you

can reference an interface 426
Interface references are ordinary object references 429
The RoboBee 4000 can do a worker bee’s job

without using valuable honey 430
What if we want different animals to swim or hunt in packs? 438
Use interfaces to work with classes that do the same job 439
Safely navigate your class hierarchy with is 440
C# has another tool for safe type conversion: the as keyword 441

Use upcasting and downcasting to

move up and down a class hierarchy 442
Upcasting and downcasting work with interfaces too 446
Default implementations give bodies to interface methods 456
Data binding updates MAUI controls automatically 459

Polymorphism means that one object can take many different forms 469

Defend
the hive at all costs.

Xix

table of contents

enums and collections
Organizing your data

Data isn’t always as neat and tidy as you’d like it to be.

In the real world, you don’t receive your data in tidy little bits and pieces. No, your data’s
going to come at you in loads, piles, and bunches. You’ll need some pretty powerful tools
to organize all of it—and lucky for us, C# has just the tools we need. Enums are types that
let you define valid values to categorize your data. Collections are special objects that
store many values, letting you store, sort, and manage all the data that your apps need
to pore through. That way, you can spend your time thinking about writing apps to work
with your data, and let the collections worry about keeping track of it for you.

The varely played

Duke of Oxen tard. If a constructor just sets fields, use a primary constructor instead 474
- A primary constructor can extend a base constructor 475
Enums let you work with a set of valid values 477

Enums let you represent numbers with names 478

Lists make it easy to store collections of...anything 483

Let’s build an app to store shoes 487

Generic collections can store any type 490

You can use collection expressions to create Lists 496

IComparable<Duck> helps your List sort its Ducks 499

Create an instance of your comparer object 501

Comparers can do complex comparisons 502

You can upcast an entire list using IEnumerable<T> 510

The Dictionary functionality rundown 513

CollectionView is a MAUI control built for displaying collections 524

ObservableCollection is a collection made for data binding 525
Use XAML to instantiate your objects for data binding 529
Modify your app to use a resource Dictionary 530
Modify the event handlers to use the resource Dictionary 532
Use what you’ve learned to build an app with two decks 533

— Sorted b\/ kind of duck... —_— s

XX

table of contents

Unity Lab 4

User Interfaces

In the last Unity Lab you started to build a game, using a
prefab to create GameObject instances that appear at random
points in 3D space and fly in circles. This Unity Lab picks up
where the last one left off, allowing you to apply what you’ve
learned about interfaces in C# and more.

Add a score that goes up when the player clicks a ball 540
Add two different modes to your game 541
Add game mode to your game 542
Add a UI to your game 544
Set up the Text that will display the score in the Ul 545
Add a button that calls a method to start the game 546
Make the Play Again buton and Score Text work 547
Finish the code for the game 548
Get creative! 552

When the last ball is added, the
game switches to its Game Over
mode. The Play Again button pops
up and no more balls get added.

This screenshot shows the
game in its running mode. Balls
are added and the player can
click on them to score.

XXi

table of contents

LING and lambdas
Get control of your data

It’s a data-driven world...we all need to know how to live in it.

Gone are the days when you could program for days, even weeks, without dealing with loads of data.
Today, everything is about data, and that's where LINQ comes in. LINQ is a feature of C# and .NET
that not only lets you query data in your .NET collections in an intuitive way, but lets you group data
and merge data from different data sources. You'll use anonymous objects to manage your data
in new and interesting ways. You’'ll add unit tests to make sure your code is working the way you
want. Once you've got the hang of wrangling your data into manageable chunks, you can use lambda

expressions to refactor your C# code to make it easier to work with and more expressive.

Jimmy’s a Captain Amazing super-fan... 554
Use LINQ to query your collections 556
Use a LINQ query to finish the app for Jimmy 564
The var keyword lets C# figure out variable types for you 566
LINQ is versatile 572
Use a group query to separate your sequence into groups 574
Use join queries to merge data from two sequences 577
Use the new keyword to create anonymous types 578
Unit tests help you make sure your code works 587
Start writing your first test method 588
One project can only access public classes in another project 590
Use the Arrange-Act-Assert pattern to write an effective test 591
Write a unit test for the GetReviews method 594
Use the => operator to create lambda expressions 598
Use the ?: operator to make your lambdas make choices 603
LINQ queries are made up of methods 604
LINQ declarative syntax can be refactored into chained methods 606
Use the => operator to create switch expressions 609
Explore the Enumerable class 613

Use yield return to create your own sequences 615

xXii

table of contents

reading and writing Yiles
Save the last byte for me

Sometimes it pays to be persistent.

So far, all of your programs have been pretty short-lived. They fire up, run for a while,

and shut down. But that’s not always enough, especially when you're dealing with

important information. You need to be able to save your work. In this chapter, we’ll look

at how to write data to a file, and then how to read that information back in from a

file. You'll learn about streams, and how to store your objects in files with serialization,

and get down to the actual bits and bytes of hexadecimal, Unicode, and binary data.

G &
® & 04
G N R

0000:
0005:
0010:
0015:

45 6¢c 65 6d 65 6e 74 61 Elementa
72 79 2c 20 6d 79 20 64 ry, my d
65 61 72 20 57 61 7u4 73 ear Wats
6f 6e 21 on!

This objCC{’«
has two byte
fields, width
and hcig\\{»

.NET uses streams to read and write data
Different streams read and write different things
Use a StreamReader to read a file

Use the static File and Directory classes to work with
files and directories

IDisposable makes sure objects are closed properly
Avoid filesystem errors with using statements

Use a MemoryStream to stream data to memory
What happens to an object when it’s serialized?
Use JsonSerializer to serialize your objects
JSON only includes data, not specific C# types
C# strings are encoded with Unicode

.NET uses Unicode to store characters and text
C# can use byte arrays to move data around
Use a BinaryWriter to write binary data

Use BinaryReader to read the data back in

Use StreamReader to build a hex dumper

Use Stream.Read to read bytes from a stream

Modify your hex dumper to read directly from the stream

Run your app from the command line

622
623
629

634
637
638
639
645
648
651
655
658
660
661
662
665
666
667
668

xxiii

tabfe of'contents

XXV

Unity Lab 5
Raycasting

When you set up a scene in Unity, you’re creating a virtual 3D
world for the characters in your game to move around in. But
in most games, things aren’t directly controlled by the player.
So how do these objects find their way around a scene? In this
lab, we’ll look at how C# can help.

Create a new Unity project and start to set up the scene 674
Set up the camera 675
Create a GameObyject for the player 676
Introducing Unity’s navigation system 677
Install the AI Navigation package 678
Things you’ll do with navigation 679
Set up the NavMesh 680
Make your player automatically navigate the play area 683

The tamera is ?oin{;in‘grdown, ()
+this box is the vicw\?ov-{:. The
X shows the lotation wheve the

usev tlicked on the sereen.

¥ The method ¢asts'a vay up to

100 units |on5 that stavts at
4— the tamera and passes Jchrough
the point that the user clicked

e Fay hits the «cloo\r/}\ e —>

table of contents

CAPTAIN AMAZING

TH'ELD EA(H Head First C#
OF THEOBJECT | [

The life and death of an object 690
Use the GC class (with caution) to force garbage collection 691
Your last chance to DO something...

your object’s finalizer 692
When EXACTLY does a finalizer run? 693
Finalizers can’t depend on other objects 695
A struct looks like an object... 699
Values get copied; references get assigned 700
Structs are value types; objects are reference types 701
The stack versus the heap: more on memory 703

Use out parameters to make a method

return more than one value 706
Pass by reference using the ref modifier 707
Use optional parameters to set default values 708
A null reference doesn’t refer to any object 709
Non-nullable reference types help you avoid NREs 710
Nullable value types can be null...and handled safely 713
The null-coalescing operator ?? checks for nulls automatically 714
“Captain” Amazing...not so much 715
Records give your objects value equality automatically 717
Don’t modify records—copy them 718
Extension methods add new behavior to EXISTING classes 723
Extending a fundamental type: string 724

Just...need to do...

-~ gasp -
one..last...thing...

XXV

table of contents

exception handling
Putting out fires gets old

When you have to deal with error after error, it’s called “putting out fires.”
Imagine: it's a few years from now. You spent all that time working on your C# skills and continuing

to learn and improve, and now you’re one of the most senior developers at a big tech company. Now
you're getting panicked phone calls in the middle of the night from your support team because your app
crashes, or doesn’t behave like it’s supposed to. You want to spend your time writing code, not putting
out fires! Because nothing pulls you out of the programming groove like having to fix a strange bug you
don’t recognize. Luckily, C# has exception handling, which lets you write code to deal with problems

that come up. Better yet, you can even plan for those problems, and keep things running when they

happen.

Your hex dumper reads a filename
from the command line 732

When your program throws an exception, the CLR generates

an Exception object 736
All Exception objects inherit from System.Exception 737
There are some files you just can’t dump 740
What happens when a method you want to call is risky? 741
Handle exceptions with try and catch 742
Use the debugger to follow the try/catch flow 743
Catch-all exceptions handle System.Exception 745
Use the right exception for the situation 750
Exception filters help you create precise handlers 754
The worst catch block EVER: catch-all plus comments 756
Temporary solutions are OK (temporarily) 757
Use NuGet to add a logging library to your app 759
int[] anArray = {3, 4, 1, 11}; Add logging to your ExceptionExperiment app 760

int aValue = anArray[15];

@@
+ .
c‘elbf‘ior\ 0

I wonder

My Process method

what happens if will blow up If it gets

I click here.., bad input data,

XXVi

table of contents

Unity Lab 6

Scene Navigation

In the last Unity Lab, you created a scene with a floor (a plane)
and a player (a sphere nested under a cylinder), and you used
a NavMesh, a NavMesh Agent, and raycasting to get your
player to follow your mouse clicks around the scene. In this
lab, you’ll add to the scene with the help of C#.

Let’s pick up where the last Unity Lab left off 764
Add a platform to your scene 765
Use bake options to make the platform walkable 766
Include the stairs and ramp in the NavMesh 767
Make the player navigate around the obstacles 769
Get creative! 770

This NavMesh Obstacle carves a moving hole in the NavMesh that
o prevents the player going up the ramp. You’ll add a script that lets
the user drag it up and down to block and unblock the ramp.

XXVii

Ave You veady?

how to use this book
Intro

I can't believe they
put that in a book
on learning CH#.

[n Lhis section, we answer the burning u\ucs{:ion:

“So why DID {:\'\c\/ \7ch that in a book on learning CH#?

XXixX

how to use this book

Who is this book for?

If you can answer “yes” to all of these:

o Do you want to learn C# (and pick up some knowledge of
game development and Unity along the way)?

e Do you like to tinker? Do you learn by doing, rather than
just reading?

e Do you prefer interesting and stimulating conversation
to dry, dull, academic lectures?

This book is for you.

Who should probably back away from this book?
If you can answer “yes” to any of these:
o Are you more interested in theory than practice?

e Does the idea of doing projects and writing code make you
bored and a little twitchy?

9 Are you afraid to try something different? Do you think
a book about a serious topic like development needs to be
serious all the time?

you might consider trying another book first.

Do I need to know another
programming language to
use this book?

A lot of people learn C# as a second (or third, or sixteenth) language,
but you don’t need to have written a lot of code to get started.

If you’ve written programs (even small ones!) in any programming language, taken an
introductory programming class at school or online, done some scripting, used a database query
language, done some web page design, or worked with Excel functions, then you've definitely
got the background for this book, and you’ll feel right at home.

What if you have less experience? That’s OK! You can go at your own pace, which is why
thousands of beginners have used our book to learn C# as their first programming language.

fﬁ”]v;g Fsu:cc f H‘(\:i-s bo}k is vight for Eou? Try doing the fivst few ehapters—you tan download a

H‘:fCC :) he{: ivst four chaytc!rs rom h{:{;‘:s:/ / gi{:hub-tom/ hcad—‘ci\rs{:—cshav-y/ ‘Fi‘(‘\‘th—-cdiﬁon.
you've still comfortable after doing all of the exertises, then this book will work well for you.

XXX intro

We know what you're thinking

“How can this be a serious C# programming book?”

“What’s with all the graphics?”
“Can I actually learn it this way?” \[

We know what your brain is thinking

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you
encounter? Everything it can to stop them from interfering with the brain’s rea/
job—recording things that matler. It doesn’t bother saving the boring things;
they never make it past the “this is obviously not important™ filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps out in front of you. What happens inside your head
and body?

Neurons fire. Emotions crank up. Chemicals surge.
And that’s how your brain knows... Your -k wor

This must be important! Don’t forget it!

Great. Only 800
more dull, dry,
boring pages.

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. \
You're studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously unimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really bzg things. Like
tigers. Like the danger of fire. Like how you should never have posted
those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey
brain, thank you very much, but no matter how dull
this book is, and how little I'm registering on the
emotional Richter scale right now, I really do want
you to keep this stuff’ around.”

you are here » XXXi

how to use this book

We think of a “Head First’ reader as a learner.

So what does it take to learn something? First you have to getit, then
make sure you don’t forgetit. It's not about pushing facts into your head.
Based on the |atest research in cognitive science, neurobiology, and
educational psychology, learning takes a lot more than text on a page.

We know what turns your brain on.

A
‘ og 0 some of the Head First learning principles:

Make it visual. Images are far more memorable than
words alone, and make learning much more effective (up

to 89% improvement in recall and transfer studies). They

also make things more understandable.

o I 1 3 &
5 b
DOS DOS Dog D°5 D05 Dog D05

Put the words within or near the graphics they relate to, rather than at
the bottom or on another page, and learners will be up to twice as likely to be able to
solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40%
better on postlearning tests if the content spoke directly to the reader, using a first-person, conversational
style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don't take
yourself too seriously. Which would you pay more attention to:a stimulating dinner party companion, or a

lecture?

Get the learner to think more deeply. Unless you actively flex your neurons, nothing much
happens in your head. A reader hasto be motivated, engaged, curious, and inspired to solve problems,

draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-
provoking questions, and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. Wwe've all had the”l really want to learn this
but | can't stay awake past page one” experience.Your brain pays attention to things that are out
of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical
topic doesn't have to be boring. Your prain will learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something is largely
dependent on its emotional content. You remember what you care about. You remember when
you feel something. No, we're not talking heart-wrenching stories about a boy and his dog. We're
talking emotions like surprise, curiosity, fun, “what the...?” and the amazing “Ahal | got this!”
feeling that comes when you solve a puzzle, learn something everybody else thinks is hard—or

maybe just realize you've learned so much great new stuff and it feels so good to be able to useit.

Even stary emotions tan help

ideas stiek in Your brain. \

XXXii intro

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you
think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when
we were growing up. We were expecled to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn
how to build programs in C#. And you probably don’t want to spend

I wonder how I can trick
my brain into remembering
this stuff..

alot of time on it. If you want to use what you read in this book, you
need to remember what you read. And for that, you’ve got to understand it.
To get the most from this book, or any book or learning experience, take
responsibility for your brain. Your brain on s content.

The trick is to get your brain to see the new material you’re learning as o
Really Important. Crucial to your well-being. As important as a tiger. o
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking:

So just how DO you get your brain to treat C# like it was a
hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way

is about sheer repetition. You obviously know that you are able to learn and
remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t fee/ important, but
they keep looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially
different types of brain activity. The things on the previous page are a big part of
the solution, and they’re all things that have been proven to help your brain work
in your favor. For example, studies show that putting words within the pictures they
describe (as opposed to somewhere else on the page, like in a caption or in the
body text) causes your brain to try to make sense of how the words and pictures
relate, and this causes more neurons to fire. More neurons firing = more chances
for your brain to get that this is something worth paying attention to, and possibly
recording;

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and
hold up their end. The amazing thing is, your brain doesn’t necessarily care that
the “conversation” is between you and a book! On the other hand, if the writing
style is formal and dry, your brain perceives it the same way you experience being
lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning;

you are here » XXXiii

how to use this book

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As
far as your brain’s concerned, a picture really zs worth a thousand words.
And when text and pictures work together, we embedded the text i the
pictures because your brain works more effectively when the text is within

the thing the text refers to, as opposed to in a caption or buried in the text
somewhere.

We used redundancy, saying the same thing in different ways and with
different media types, and multiple senses, to increase the chance that the
content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty, and we used
pictures and ideas with at least some emotional content, because your brain is tuned to pay attention to the
biochemistry of emotions. That which causes you to fee/ something is more likely to be remembered, even
if that feeling is nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay
more attention when it believes you’re in a conversation than if it thinks you’re passively <
listening to a presentation. Your brain does this even when you’re reading.

We included dozens of activities, because your brain is tuned to learn and remember OBige;
more when you do things than when you read about things. And we made the paper

puzzles and code exercises challenging yet doable, because that’s what most people

prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while someone else
wants to understand the big picture first, and someone else just wants to see an example. But regardless of
your own learning preference, everyone benefits from seeing the same content represented in multiple ways.

We included content for both sides of your brain, because the more of your brain you engage, the
more likely you are to learn and remember, and the longer you can stay focused. Since working one side of
the brain often means giving the other side a chance to rest, you can be more productive at learning for a
longer period of time.

And we included stories and exercises that present more than one point
of view, because your brain is tuned to learn more deeply when it’s forced
to make evaluations and judgments.

We included challenges, with exercises, and asked questions that don’t
always have a straight answer, because your brain is tuned to learn and
remember when it has to work at something. Think about it—you can’t
get your body in shape just by watching people at the gym. But we did our
best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-

understand example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because
you’re a person. And your brain pays more attention to people than it does to things.

XXXiV intro

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering,

Do the exercises. Write your own notes.
We put them in, but if we did them for you,

that would be like having someone else do

your workouts for you. And don’t just look at

the exercises. Use a pencil. There’s plenty of
evidence that physical activity /e learning

can increase the learning

Read the “There are no Dumb Questions”
sections.

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens ¢/ you put the

®

®

Here’s what YOU can do to bend
your brain into subwission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Cut this out and stick it

on Your refrigerator.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Write a lot of code!

There’s only one way to really learn C# so it sticks:
write a lot of code. And that’s what you’re going

to do throughout this book. Coding is a skill, and the
only way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises

book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when you
solve the exercises. If you get stuck, don’t be afraid

Drink water. Lots of it. to peek at the solution! We included a solution to

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

each exercise for a reason: it’s easy to get snagged on
something small. But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

you are here » XXXV

how to use this book

REAPME.md

This 1s a learning experience, not a reference book. We deliberately stripped out everything that
might get in the way of learning whatever it is we’re working on at that point in the book. And the
first time through, you need to begin at the beginning, because the book makes assumptions about
what you've already seen and learned.

The activities are NOT optional.

The puzzles and activities are not add-ons; they’re part of the core content of the book. Some of
them are to help with memory, some for understanding, and some to help you apply what you’ve
learned. Don’t skip the written problems. The pool puzzles are the only things you don’t fave
to do, but they’re good for giving your brain a chance to think about twisty little logic puzzles—and
they’re definitely a great way to really speed up the learning process.

The redundancy is intentional and important.

One distinct difference in a Head First book 1s that we want you to really get it. And we want you to
finish the book remembering what you’ve learned. Most reference books don’t have retention and
recall as a goal, but this book is about learning, so you’ll see some of the same concepts come up
more than once.

Do all the exercises!

The one big assumption that we made when we wrote this book 1s that you want to learn how to
program in C#. So we know you want to get your hands dirty right away, and dig right into the
code. We gave you a lot of opportunities to sharpen your skills by putting exercises in every chapter.
We've labeled some of them “Do this!”—when you see that, it means that we’ll walk you through
all of the steps to solve a particular problem. But when you see the Exercise logo with the running
shoes, then we’ve left a big portion of the problem up to you to solve, and we gave you the solution
that we came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll learn
the most if you try to solve the problem first.

We’ve also included all the exercise solutions’ source code with the rest of the code from this book.
You can find all of it on our GitHub page: https://github.com/head-first-csharp/fifih-edition
The “Brain Power” questions don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience is for you
to decide if and when your answers are right. In some of the Brain Power questions you will find
hints to point you in the right direction.

XXXVi intro

We’re targeting C# 12, Visual Studio 2022, and Visual Studio Code.

This book is all about helping you learn C#. The team at Microsoft that develops and maintains C# releases
updates to the language. CG# 12 is the current version at the time this book is going into production. We also
lean very heavily on Visual Studio, Microsoft’s integrated development environment (IDE), as a tool for learning,
teaching, and exploring C#. The screenshots in this book were taken with the latest versions of Visual
Studio 2022 and Visual Studio Code available at the time of production. We included instructions for
installing Visual Studio and Visual Studio Code in Chapter 1.

C# is constantly evolving, and new versions will have great new features! But don’t worry—the features of C#
that are part of the core learning in this book will be unchanged, so you will be able to use this book with future
versions of C#. The Microsoft teams that maintain Visual Studio and Visual Studio for Mac routinely release
updates, and very rarely those changes will affect screenshots in this book.

The Unity Lab sections in this book target Unity 6, the latest version of Unity available with long-term support
when this book went into production. We included instructions for installing Unity in the first Unity Lab.

You can watch full video walkthroughs of Visual Studio, Visual Studio Code, and Unity installation on our
YouTube channel: Atips://www.youtube.com/@headfirstcsharp

All of the code in this book is released under an open source license
that lets you use it for your own projects. You can download it from
our GitHub page (https://github.com/head-first-csharp/fifth-edition).

How we use games in this book

learning and teaching C#. Here's why:

+ Games are familiar. You're about to immerse yourself in a lot of new concepts and ideas. Giving
something familiar to grab onto can make the learning process go more smoothly.

« Games make it easier to explain projects. When you do any of the projects in this book, the first thing you
need to do is understand what we're asking you to build—and that can be surprisingly difficult. When we
use games for our projects, that makes it easier for you to quickly figure out what we’re asking and dive

right into the code.

« Games are fun to write! Your brain is much more receptive to new information when you're having fun, so

including coding projects where you'll build games is, well, a no-brainer (excuse the pun).

We use games throughout this book to help you learn broader C# and programming concepts. They’re
an important part of the book. You should do all of the game-related projects in the book, even if you’re
not interested in game development. (The Unity Labs are optional, but strongly recommended.)

you are here

You're going to be writing code for lots of projects throughout this book, and many of those projects
are games. We didn’t do this just because we love games. Games can be effective tools for

you

XXXVii

the review team

The technical review team

Charlotte M. Ellett

Layla Porter

Photo credit: Ryan Lash/TED

“If I have seen further, it is by standing on the shoulders of giants.”
—Isaac Newton

The book you’re reading has very few errors in it, and we give a TON of credit for its high quality to our
amazing team of technical reviewers—the giants who kindly lent us their shoulders.

To the review team: we're so incredibly grateful for the work that you all did for this book. Thank you so

much!

Charlotte M. Ellett is a game developer and programmer, electronics enthusiast and maker, and has been a
TED Resident, Red Hat developer relations expert, and Space Gamp Crew Trainer. She enjoys making DIY
projects and conducting experiments with (not on) her family, and teaching the next generation of engineers
and scientists. You can find her at CharlotteMEllett.com.

Layla Porter is an experienced software engineer and developer advocate specialising in .NET technologies.
Layla has been awarded the Microsoft MVP award for the past five years and the GitHub Star award for the
past three. She has spoken at developer conferences all over Europe and North America and is a YouTube
content creator. She enjoys hiking, reading urban fantasy novels, playing video games with her husband, and

doting on her two miniature pinschers, Gookie and Lily. & Layla " ‘{:ually used the third edition of this book 4o learn
C# in 2015 before applying for her fiest developer \)ob.’

Gerald Versluis is a senior software engineer at Microsoft on the NET MAUI team. Besides his day job he
is also passionate about sharing his knowledge and learning with others. Gerald regularly speaks at conferences,
writes blogs and articles, post videos on his YouTube channel, and contributes to open source projects. You can
find Gerald on every major social media platform under @jfversluis or on his website: Attps://jfoersluis.dev

We also want to give special thanks to Joe Albahari and Jon Skeet for their incredible technical guidance and
really careful and thoughtful review of the first edition, which truly set us up for the success we’ve had with this
book over the years. We benefited so much from your input—even more, in fact, than we realized at the time.

XXXViii intro

“Shoulders of giants”

This is the fifth edition of Head First C#, which means a lot of what you’ll read in this book was also
in an earlier edition. Some of it even dates back to the very first edition from 2008! So it’s important
to us that we acknowledge the amazing contributions of our fourth edition tech review team:

bold
Aé\\lt\/ Ged Lisa Kellner
Y 3y v "' "
Lisa was also
&€— on the team
for the third,
setond, and
Fiest editions.
Thank \/ou!
And our third edition tech review team: .
Joh Halif Rebeta Dwm—Kva\m Chyis Burvows And our second edition team:
ny Mahve ' David Skerling Nick Paladino

A T e

And finally, our first edition team:

Chris and David helped us with both the third and second editions

Thank vou!
Lisa Kellner Joe Albahari Jay Hilyard Daniel Kinnaer nK You

Kvishna Pala

5iuscp}>e Turitto

2

e e Folks from the fiest edition
team who aren't ?id:wcd,
but just as amazing: Wayne
Bradney, Dave Murdoch,
and espetially Bridgette
Julie Landers.

And super special thanks to our wonderful readevs—especially Alan Ouellette, Jeff Counts, Terry Graham, Sergei Kulagin,
Willian Piva, Jim Cupee, Mike Olgren, David Horvitz, and Qreq Combow—who let us know about issues they found while
veading our book, and professor Joe Varrasso at Mohawk College for being an early adopter of our book for his course.

Thank you all so mueh// you are here » XXXiX

Mithele Croni
acknowledgments These Fco?lc ave amazing an d onin

it's been such a privilege working
with them. Thank you all!

Acknowledgments \V

Our editor:

First and foremost, we want to thank our amazing editor, Michele Cronin, for
everything you’ve done for this book. It was such a pleasure working with you!

The O’Reilly team: There are so many people at O’Reilly we want to thank that we hope we don’t forget
anyone! First, last, and always, we we want to thank Mary Treseler, who’s been with
Katherine Tozer us on our journey with O’Reilly from the very beginning. Special thanks to production
editor Katherine Tozer, indexer Joanne Sprott, and Elizabeth Oliver for her sharp
proofread—all of whom helped get this book from production to press in record time. A
huge and heartfelt thanks to Amanda Quinn, Zan McQuade, Olivia MacDonald,
Melissa Duffield, and Brian Guerin for getting this project on track from the
beginning, and being so supportive of our books and training courses over the years.
And a big shout-out to our other friends at O’Reilly: Mike Hendrickson, Lindsay
Ventimiglia, David Michelson, Jeff Bleiel, and, of course, Tim O’Reilly. If you're
reading this book right now, then you can thank the best publicity team in the industry:
Marsee Henon, Kathryn Barrett, and the rest of the wonderful folks at Sebastopol.

We also want to give a shout-out to some of our favorite O’Reilly authors:

. Dr. Paris Buttfield-Addison, Jon Manning, and Tim Nugent, whose book
Unity Game Development Cookbook is just simply amazing, and whose other O’Reilly
books, including Head First Swifi, are also fantastic.

* Joseph Albahari, who wrote the thoroughly indispensable C# 12 in a Nutshell.

* David Pine, whose Learning Blazor: Build Single-Page Apps with WebAssembly and C# is
perfect for anyone who wants to build modern web apps in C#.

..ahd a few more folks who have been so incredibly supportive over the years

Thank you so much to Cathy Vice for her amazing piece on epilepsy that we used in Chapter 10, and for all her
epilepsy advocacy work. Thank you to Jesse Liberty for some great advice and all of his books over the years. And we
really, really want to thank Jeremy Sinclair for his advice on characters, and for being a pillar of the .NET community.

And an enormous thank you to our friends at Microsoft who helped us so much with this book—your support
through this project was amazing. Thank you so much to Maddy Montaquila, Shane Neuville, and Gerald
Versluis from the MAUI team—especially Shane’s feedback on our code and Gerald’s unbeliavably valuable tech review.
We’re grateful for Jen Gentleman for teaching us about some great Windows features (like the emoji panel!)

We’re also so grateful to Dominic Nahous, Jordan Matthiesen, and John Miller from the Visual Studio for Mac
team, and to Cody Beyer, who was instrumental in getting our whole partnership with that team started. Thank you to
David Sterling for an awesome review of previous editions, and Immeo Landwerth for helping us nail down topics
we should cover in the fourth edition. Extra special thanks to Mads Torgersen, program manager for the C#
language, for all the wonderful guidance and advice he’s given us over the years. You all are fantastic!

And finally, we’re especially grateful to Jon Galloway, who provided so much amazing code for the Blazor projects in
the Blazor downloadable PDF—collaborating with you was a truly wonderful experience. Thank you so much!

x| intro

1 start building apps with C#

Build something great...fast!

Want to build great apps...right now?

With C#, you’ve got a modern programming language and a valuable tool at your

fingertips. And with Visual Studio, you've got an amazing development environment with
highly intuitive features that make coding as easy as possible. Not only is Visual Studio
a great tool for writing code, it's also a really effective learning tool for exploring C#.

Sound appealing? Let’s get coding!

this is a new chapter

start your C# journey

Learn C#..and learn o becowme a great developer

Do you want to become a great developer? Yes? Then you came to the right book! You ean become a
great developer, and G# is the perfect language to help you get there. Here’s why:

* C# is a powerful, modern language that lets you do incredible things. You can use it to build
everything from games to websites to serious business applications. You name it, C# can do it.

* C# skills are in demand. Are you looking to land a programming job? C# is one of the most
in-demand programming languages around because companies all over the world use G# to
build their desktop applications and websites.

* C# is cross-platform. You can write apps that run on Windows, macOS, Linux, and even on
your Android and iPhone devices.

..Wwith a learning systewm that’s effective and fun

When you learn C#—when you learn to really be effective with it—you’re learning more than just a
language. You’re learning a whole new way of thinking... and that’s where we come in. We've
spent more than 15 years developing, experimenting with, and testing out new and different ways
to help you get C# ideas into your brain. You’ll use powerful programming environments to
build real projects and write lots of code. You’ll learn and practice important
development ideas and patterns that help you write great code. You’ll
learn how to use modern Al tools to superpower your code and level up your
learning skills. By the time you’re done, you’ll have the foundation for successful
and satisfying software development.

C# sounds great! How do I
get started?

Welcome to the world of C#. Let’s dive in!

Many people who used previous editions of +his book
have veathed out to us over the years to tell us how
our book helped them stavt their development eaveers.
We're looking Fov-wa!rd to kca\ring from You 'Eoo!

/

“Head First C# started my career as a software engineer
and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books
have helped me to launch my career.”

—Ryan White, Game Developer

2 Chapter 1

Write code and explore C# with Visval Studio

The best way to get started with C# is to write lots of code.

This book uses pictures, puzzles, quizzes, stories, and games to help you
learn C# in a way that suits your brain. Every one of those elements is built to help
you with a single goal: to keep things interesting while we help you get C# concepts,
ideas, and skills into your brain.

This book is also full of C# projects that arc specifically designed to give you
lots of different ways to explore C# and learn about important ideas and concepts
that will help you become a great developer. We designed those projects to be
engaging, fun, and interactive to give you lots of opportunities to put those concepts,
ideas, and skills into practice.

Visual Studio is your free gateway to G+

Learning C# is all about exploring and growing your skills at your own pace, and
that’s where Visual Studio comes in. It’s an amazing tool built by Microsoft. At its
heart, it’s an editor for your C# code and projects, but it’s much more than that. It’s
a creative tool that helps you with every aspect of C# development. We’ll use Visual
Studio throughout this book as an important tool to help you learn and explore C#.

Visual Studio is an IDE—that’s short for integrated development
environment—a text editor, visual designer, file manager, and debugger...it’s like a
multitool for everything you need to write code.

Here are just a few of the things that Visual Studio helps you do:

* It’s a file and project manager. C# projects are often made up of a lot of
files. Visual Studio makes it easy to see exactly where they are, and integrates

with version control systems like Git to make sure you never lose a line of code.

% It helps you edit and manage your code. Visual Studio has many
intuitive features to help you edit your code and C# projects, including
powerful Al-driven tools like IntelliSense pop-ups and IntelliCode code
completion that give you great suggestions to help keep you in the flow.

* It’s a debugger that lets you see your code in action. When you debug
your apps in Visual Studio, you can see exactly what your code is doing while
it runs—which is a great way to really understand how C# code works.

Q€0 TDE Tips ——

We'll often refer to Visual Studio as
“the IDE" throughout this book. Keep
an eye out for handy IDE tips that help
you become a more efficient coder.

g

Studio Code instead of
Visual Studio, that’s Your
IDE. They've both |DEs!/

I£ You detide to use Visual

build something great...fast!

Visual Studio is only
available for Windows.
Luckily, you can also use
Visual Studio Code to do
all of the projects in this
book. If you’re using a
Mac or Linux, or if you
want to use Visual Studio
Code instead of Visual
Studio, skip ahead to the
next section, where we’ll
show you how to set it up
and use it to create your
first C# project.

Visual Studio

1sa powerful

Jevelo]oment
environment,
and it's an
amazing
learning tool
to llel]) you
explore C+,

you are here »

3

install visual studio

Install Visval Studio Community Edition

Open https:/ /visualstudio.microsofi.com and download Visual Studio Community Edition. It’s
available for both Windows and macOS. The installers look a little different depending on which
platform you’re using. Make sure you install the NET desktop development tools and .NET Multi-
platform App UI (or INET MAUI) development tools. We’ll be doing 3D game development with
Unity, so make sure you check that option too.

When you run the Visual Studio installer, select the “.NET desktop development,” “.NET Multi-
platform App UI development (MAUI),” and “Game development with Unity” options to install the
Visual Studio tools you’ll use in this book. You should also select “ASPNET and web development”
if you plan to download the Head First C# Blazor Learner’s Guide and learn about web
development with C#.

NET .NET desktop development £ You 1C°VSC‘E to seleet one of
Build WPF, Windows Forms, and console applications these options, \)uS{: wait until
using C#, Visual Basic, and F# with .NET and .NET Frame... the installation Finishes and vun

the Visual Studio Installer a9ain.

“ .NET Multi-platform App Ul development
Build Android, iOS, Windows, and Mac apps from a single
codebase using C# with .NET MAUI.

Q Game development with Unity

Create 2D and 3D games with Unity, a powerful cross-
platform development environment.

@ ASP.NET and web development
Build web applications using ASP.NET Core, ASP.NET,
HTML/JavaScript, and Containers including Docker supp...

This book was written on a Mac. All of the Visual Studio and Unity sc\rccmh?‘l:s
[in this book weve taken vunning Windows || in a Parallels Desktop virtual macthine.

You can use Visual Studio for Mac, but it’s no longer supported by Microsoft.

Visual Studio for Mac was a great tool for learning C# on a Mac! But while we were finishing up
this edition of Head First C#, Microsoft announced that they would stop development on it and
end support in 2024. If you’re using a Mac or Linux, the folks at Microsoft recommend running

Windows virtual machine (VM) using software like VirtualBox or Parallels Desktop.

An easy way to get started is to download VirtualBox for free from https.//www.virtualbox.org and
then download a Windows virtual machine from Microsoft that contains an evaluation version of
Windows from https://developer.microsoft.com/en-us/windows/downloads/virtual-machines.

We’ll also show you how to use Visual Studio Code later in the chapter.

All of the projects in this book can be done in Visual Studio Code on Windows or macOS.

4 Chapter 1

build something great...fast!

Run Visval Studio

We’re going to jump right into code! Once the installer finishes, run Visual Studio.

X The first time you start Visual
Sign in to Visual Studio Studio, it may ask you to sign
in to your Microsoft account. If
you don’t have an account, you
can create one by clicking the
“Create an account” button. This
is how Microsoft activates your
\ Sreate o account ‘ free license for the Community
Edition of Visual Studio.

Sync settings across devices, collaborate in real time,
and integrate seamlessly with Azure Services.

Skip this for now

X
Personalize your Visual Studio
experience Development settings
General
Optimize the layout and keyboard shortcuts for your Choose your color theme
workflow. Select the color theme that fits your style. Dt oK
09 Visual studio
You can always change these settings later.
You’ll also be prompted to choose a —
. lue (Extra Contrast) ® Light
color theme. We used Light for the 00 Vs sudo 00 ol sudo
screenshots in this book because ——
they’re easier to see in print, but

many users prefer the Dark theme.

Keep an eye out for these “velax” boxes—they point out
some Lommon issues that 3 lot of veaders run into, so You

know they've oming and don’t have +o worry about them. R

Relax ...

Grab a cup of coffee—it can take some time for Visual Studio to install.

Don’t worry if it takes a few minutes (or more!) to finish installing Visual Studio. And while
we’re on the subject, here’s something else that you don’t have to worry about.

All of the screenshots in this book were taken with Visual Studio 2022 Community Edition, the latest
version available while we were writing it. If Microsoft released a newer version of Visual Studio since
we took these screenshots, feel free to try it! The code and ideas that we teach should still work just fine.
But if you want the screenshots to match, Microsoft makes older versions of Visual Studio available for
download—and you can always install different versions of Visual Studio on the same computer:
https://visualstudio.microsoft.com/vs/older-downloads

If you run into trouble installing Visual Studio or running your first project, head to our YouTube
channel (https.//www.youtube.com/@headfirstcsharp) to see videos of the entire installation process.

you are here » 5

dive right into visual studio

Create and run your first C# project in Visval Studio

The best way to learn C# is to start writing code, so you’re going to write a lot of code—and create a lot of
apps!—throughout this book. Each app will get its own project, or a folder that Visual Studio creates with
special files to organize all of the code.

Q Tell Visual Studio to create a new project.

When you launch Visual Studio, the first thing you’ll see is a Get Started window with four options.

Click “Create a new project” to create a new project.

Visual Studio 2022

Open recent

As you use Visual Studio, any projects, folders, or files that you open will show up here for quick access.

You can pin anything that you open frequently so that it's always at the top of the list.

\

show you this “Get Started” window.
Click Create a new project to tell Visual
Studio to create a new project folder and
generate initial code files for you.

If you already have a project open (or if
you close a project, or click the “Continue
without code” link on the “Get Started”
page), you can create a new project by
choosing New Project from the File menu.

When you first start Visual Studio, it will

J

N
—=

l.lj’"ﬁ

2%

Get started

Clone a repository

Get code from an online repository like GitHub
or Azure DevOps

Open a project or solution
Open a local Visual Studio project or .sin file

Open a local folder
Navigate and edit code within any folder

Create a new project
Choose a project template with code scaffolding
to get started

Continue without code =

When you create a new project, Visual Studio will ask you which of its preject templates you
want to use. Every C# project consists of a set of folders and files. Visual Studio has many built-in
templates that it can use to generate different kinds of projects. In this book, you’ll use Visual Studio’s
templates to create three kinds of projects: Console App projects, .NET MAUI projects, and MSTest
unit test projects. (You’ll also create Unity projects, but you won’t use Visual Studio to create them.)

You'll be writing a lot of code throughout this book, which means you'll be creating a lot of projects. Most of those
projects will be Console App projects, just like the one you're creating now—so you can follow these directions any
time you need to create a new Console App project. Just make sure you choose a different project name each time so
that Visual Studio creates the project in a new folder (don’t worry—it will warn you if that name already exists).

6 Chapter 1

build something great...fast!

Choose a project template for Visual Studio to use. Enter “Console App in the

Visual Studio creates new projects using a template that determines what

seavth box or stvoll down

files to create. Choose the Console App template and click Next. £he Console P\‘Y\’ {-'c"'?la{"c'

Create a New prOJeC'[Search for templates (Alt+S) P~ é—)

A list of your recently accessed templates will be C¥ Console App

displayed here. A project for creating a command-line application that can run on .NET on Windows,

Make sure Yyou thoose C# and Linux and macOS

not 3 di-(:‘(:CYCn{: |an50856- —-———@ Llinux ~ macOS Windows Console

Recent project templates All languages v All platforms d All project types -

Enter a name for your project and click Next.

Your project’s name is important—it determines file and folder names, and you’ll see it inside
some of the code that Visual Studio generates for you. If we ask you to pick a specific name,
make sure you do; otherwise, the code in your project may not match screenshots in the book.

Configure your new project
Enter your yro)cc{: name heve.

COnSO'e App C# Linux macOS Windows Console .
Visual Studio will eveate a new

Project name ‘FOIdCY ma{'f,hihs \/OW‘ Fro\)c{,{
I pa | mame in this location. Feel free

Location +’° F".’k a d"(:‘(:crﬂ\'l: IOCa'EiOn
C:\Users\Public\source\repos v

Make sure you’re using the current version of .NET.
The current version of .NET at the time we’re writing this is 9.0-—make sure the version that
you’re using is 9.0 (or higher). Then click the Create button to create your project.

Additional information

Console App ¢ L macOs Windows Console

Framework @

| NET 9.0 (Standard Term Support) H

D Enable container support @

Container 0S @

Once Visual Studio creates your project, it will open a file called Program.cs with this code:

[The code for your app isin a

MyFirstConsoleApp v file called Program.cs. You

Console.WriteLine("Hello, World!");

{& 15" // See https://aka.ms/new-console-template can edit it in this window.
2

you are here »

run your new C# project

o

Run your app.
The app Visual Studio created for you is ready to run. At the top of the Visual Studio IDE, find the button
with a green triangle and your app’s name and click it:

P MyFirstConsoleApp

Look at your app’s output.
When you run your program, the Microsoft Visual Studio Debug Console window will pop up and
show you the output of the program:

Microsoft Visual Studio Debur X S N7

Hello, World!

C:\Users\Public\source\repos\MyFirstConsoleApp\MyFirstConsoleApp\bin\Debug\net9.0\
MyFirstConsoleApp.exe (process 12U488) exited with code 0 (0x0).

To automatically close the console when debugging stops, enable Tools—>Options->De
bugging->Automatically close the console when debugging stops.

Press any Key to close this window . . .|

When Visual Studio created your Console App project, it
created folders with files in them. It’s displaying one of
those files, Program.cs, which has all of the C# code in

your app. Compare the contents of the file with what you

see when you run the app. Can you figure out what it does?

At the top of the window is the output of the program:

Hello, World!

Then there’s a line break, followed by some additional text:

C:\path-to-your-project—folder\MyFirstConsoleApp\MyFirstConsoleApp\bin\Debug\
net9.0\MyFirstConsoleApp.exe (process ####) exited with code 0.

To automatically close the console when debugging stops, enable Tools—Options-
>Debugging—Automatically close the console when debugging stops.

Press any key to close this window .

You'll see the same message at the bottom of every Debug Console window. Your program printed a single
line of text (Hello, World!)and then exited. Visual Studio is keeping the output window open until you
press a key to close it so you can see the output before the window disappears.

Press a key to close the window. Then run your program again.

This is how you’ll run all of the Console App projects that you’ll build throughout the book.

8 Chapter 1

build something great...fast!

Visual Studio is a great tool to help you learn and explore C#. You're going to be writing a lot of
code throughout this book, so this is a great time to get familiar with it.

Visual Studio is an IDE, or integrated development environment. If you haven’t used an IDE before it may look very
busy, so this is a great time to get used to it. One of the most important ways to get new ideas, information, skills, and
tools to stick in your brain is to write them down. So take a close look at the different parts of Visual Studio and write
down what you think they do. It's OK if you aren’t 100% sure—just take your best guess!

” File Edit ew Git Project Build Debug Test Analyze Tools Extensions Window Help MyfFir...leApp - O X
i Debug ~ AnyCPU ~ P MyfirstConsoleApp ~ [> B R Wl =S| |8 Live Share &)
~ # Solution Explorer v ax S
S a
- - 8 0-s08 [wW | A=
(& 1 |/ see https://aka.ms/new-console-template for more information N I o A
2 Console.WriteLine("Hello, World!"); Search Solution Explorer (Ctri+:) L g
fi3 Solution ‘MyFirstConsoleApp’ (1 of 1 project) = &
3 2

4 [&5] MyFirstConsoleApp
b &8 Dependencies
C# Program.cs

100% ~ & @ No issues found g <4 » Ln: 1 Ch: 1 SPC CRLF | eeennniiinniiiiiiiinnnnnnnn,
Output v I x
Show output from: Debug - = I [.

‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe' (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
'MyFirstConsoleApp.exe' (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe' (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
The program '[2360] MyFirstConsoleApp.exe' has exited with code @ (0x0).

<4 3 Solution Explorer | Git Changes

[Ready 1" Add to Source Control ~ i Select Repository « [}

When you created your app, it contained a file with two lines. Write down what you think each line does.

// See https://aka.ms/new-console-template for more information.

you are here » 9

get familiar with your tools

Try moving the panels in Visual Studio around. Click the pushpin button (I) to collapse
the Solution Explorer window into the side panel. Reset the layout by choosing Reset
Window Layout from the Window menu, then use the View menu to open other windows.

arpen your penci]
N ySoluﬁon

” Eile Edit Project Build Debug Test Anpalyze Tools Extensions Window Help MyfFir...leApp — m] X
i Debug ~ AnyCPU ~ P MyFirstConsoleApp ~ [> B 5 ik (A Cff | B2 |/ Live Share &)

What's New? ~ % | Solution Explorer ~ax|g
) Q

[MyFrsTeomsotepr v *+ .0 0-s00 (%W Fl= 3
) 1¢” |/ see https://aka.ms/new-console-template for more information Al e . A
2 Console.WriteLine("Hello, World!"); Search Solution Explorer (Ctrl+ 2 g‘

3 i3 Solution ‘MyfFirstConsoleApp’ (1 of 1 project) = &

4 [&5] MyFirstConsoleApp
b &8 Dependencies

T"“S s 'H‘\C Cdibr window‘ I‘t lC{S You Cd‘£ c# Program.cs

salukion. It used. colors. to. make the tode. . The Selution Explorer.

sasicn Lo vead. the. £ode.in Program.£s. .. shows all of the files and
Folders in the project

I » e se a0 lets you open them in
. cno 0 Hheeditor

‘MyFirstConsoleApp.exe' (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\ a
'MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe' (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe' (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
*MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\™
The program '[2360] MyFirstConsoleApp.exe' has exited with code © (@x@).

< » Solution Explorer = Git Changes

L_,| Ready /> Add to Source Control ~ i Select Repository « Q

When you created your app, it contained a file with two lines. Write down what you think each line does.

// See https://aka.ms/new-console-template for more information.

Console.WriteLine("Hello, World!");
This line of code causes the app. to print, the text “Hello, World!” (without the. quotation marks).

10 Chapter 1

build something great...fast!

Keep an eye out for these QEA sections. They often answer your most pressing
questions, and point out questions other veaders ave thinking of. In fact, a lot
of them are veal questions Lrom veaders of previous editions of £his book!

“\

there]gre no

Dumb Questions

Q: So if Visual Studio writes code for me, is
learning C# just a matter of learning how to use it?

A: No. The IDE is great at automatically generating
some code for you, but it can only do so much. There
are some things it's really good at, like setting up good
starting points for you, and automatically changing
properties of controls in your Ul. It did all of that by
taking the information you gave it and feeding it into a
template that generated files. The most important part
of programming—figuring out what your program needs
to do and making it do it—is something that no IDE can
do for you. Even though the Visual Studio IDE is one
of the most advanced development environments out
there, it can only go so far. It's you—not the IDE—who
write the code that actually does the work.

Q,: What if the IDE creates code | don’t want in
my project?

A: You can change or delete it. The IDE is set up to
create code based on the way the element you dragged
or added is most commonly used, but sometimes that’s
not exactly what you wanted. Everything the IDE does
for you—every line of code it creates, every file it adds—
can be changed, either manually by editing the files
directly or through an easy-to-use interface in the IDE.

Visual Studio will generate code you can

Q: Why did you ask me to install Visual Studio
Community Edition? Are you sure that | don’t need
to use one of the versions of Visual Studio that isn’t
free to do everything in this book?

A: There’s nothing in this book that you can’t do
with the free version of Visual Studio (which you

can download from Microsoft's website). The main
differences between Community and the other editions
aren’t going to stop you from writing C# and creating
fully functional, complete applications. (The paid
editions have additional features that are useful for
professional software organizations and teams.)

Q,: My screen doesn’t look like yours! It’'s
missing some of the windows, and others are in the
wrong place. Did | do something wrong? How can |
reset it?

A: If you click on the Reset Window Layout
command under the Window menu, the IDE will restore
the default window layout for you. Then use the View
menu to open any windows that are missing. You can
find some of the windows you'll see later in this chapter
in its Other Windows submenu. That will make your
screen look like the ones in this chapter and throughout
the book.

Some windows eollapse b
.dc«cauH:. Use the Pushpin button
in the upper—right corner of
the window 1o make it stay open.

use as a starting point for your applications.
Malcing sure the app does what it's
supposeJ to do is entirely up to you.

you are here » 11

install visual studio code

You can use Visual Studio Code with Head First C+

If you’re using Visual Studio (and not VSCode), you can skip ahead to “Let’s Build a Game!”

If you’ve been around the development world at all over the last few years, you’ve probably heard a lot of buzz and
excitement about Visual Studio Code (often called VSCode). It’s a powerful code editor that runs on Windows,
Mac, and Linux, and it’s gotten very popular among developers because it’s easy to use, versatile, fast, and intuitive.

If you’re using Windows, we recommend that you consider using Visual Studio (rot VSCode) because it’s
spectfically built for C# and has some built-in tools that VSCode currently lacks. However, all of the projects in
this book can be done with VSCode. Most of the screenshots in this book will show Visual Studio, but we’ll
also tell you how to do the same thing in VSCode where it differs from Visual Studio.

To use this book with Visual Studio Code, start by downloading it from Attps://code.visualstudio.com. Run the installer,
and choose all of the default options. After the installer finishes, open VSCode. It will prompt you to choose a color
theme. We chose Dark Modern for our screenshots because we used a light theme for Visual Studio, so choosing a
dark theme for VSCode will help make it easier to tell the screenshots apart.

,O Search

The first time You
vun VSCode, it
shows You a Weleome
+ab with a bunch

oAF scH:ihgs you tan
thoose, intluding
tolor theme. You tan
90 through those
sc{;{:ings, or \/ou tan
Just elose the tab.

J

Show All Commands
Open File
Open Folder Ctrl + O

Open Recent

®oA0 @Wo

Using Visual Studio Code is optional. You can use VSCode to do all of the projects in this book on
Windows or macOS. (Linux readers may need to run an Android emulator to do the .NET MAUI—we’ll
talk about that later.)

If you have trouble installing VS Code or running your first project,
head to our YouTube channel (https://www.youtube.com/@headfirstcsharp)
to see videos of the entire Windows or macOS installation process.

12 Chapter 1

build something great...fast!

Install the C# extensions

Click the Extensions button on the left side of the

VSCode window to open the Extensions panel. At the top of
the panel is a search box with the text “Search Extensions in
the Marketplace.” Search for each of these extensions:

EXTENSIONS

Vv INSTALLED

. D29
% C# Dev Kit: This extension has the tools you need to NET vl\jErTrlnétaﬂllﬁTq?lrt " Ol ™
create, edit, and debug C# and .NET projects. : FHENSIOn mstalls ance {g}
* _NET MAUI: Most chapters in this book have a
project that uses NET MAUI, a framework for .NET MAUI
creating desktop and mobile apps in C#. 0 I c# C# Dev Kit with tools...
. . . . Bj £ Microsoft g {:o:}
% Unity: The Unity Labs give you a chance to practice
your C# skills by building 3D games and simulations. c# <) 45ms
Make sure each extension is the official one from Microsoft. CH = upport for C#

Click the Install button on cach extension to install it. % Microsoft i
C# Dev Kit O 17ms

0‘3 Official C# extension from ...
£ Microsoft ug 45

VSCode may prompt You

to vestart after installing
.NET MAUI 34K K 5 extensions. It may also disfla\/

Extend C# Dev Kit with tools... Getting Started tabs that
£ Microsoft Install |\ have useful information.

C# Dev Kit DM Kk 25

Official C# extension from ...
£ Microsoft Install | v

This setting tells VSCode where to show . e
the output of your app- Set it to use the D .
Terminal window; otherwise, some apps you

build later in the book won £ work.

Change the C+ debug console setting

Once you have your extensions set up, click
the gear icon in the lower-left corner of the Csharp > Debug: Console (Modlified in User)
VSCode window and choose Settings (or press
Citrl comma or 3 comma). Search for the
setting csharp.debug.console—you should
see a dropdown with several options. Change
the setting to integrated Terminal. integratedTerminal

Note: This option is only used for the dotnet debug configuration type.

When launching console projects, indicates which console the target

program should be launched into.

Now you’re ready to write some C# code!

you are here » 13

create a project in visual studio code

Create and run your first project in Visual Studio Code

Visual Studio Code is first and foremost an editor, which means its features are specialized for
opening and editing many different kinds of files. A VSCode window is typically used to edit files in a
folder and its subfolders. When you open VSCode, it remembers the most recent folder you opened.
But when you first open it, you’ll need to select a folder. We’ll walk you through the steps for creating a
folder with a new .NET project in it.

On Windows, the menu is at the top of the window (if you make the
window very narrow, click the menu button B to display it). On macOS,
you’ll see the menu in the menu bar at the top of the screen.

Click this button to
open and close the
lefthand panel. If
VSCode does not
currently have a folder
open, the panel will
have buttons to open
a folder and create a
new .NET project.

If you don’t see the

Create .NET Project
button, you can open
the Command Palette
(Ctri+Shift+P or € 38 P)
and choose .NET: New
Project from the menu

that’s displayed.

(1)

v

\’I File Edit Selection View

@ EXPLORER

v NO FOLDER OPENED

p You have not yet opened a folder.

2 | Open Folder

Opening a folder will close all
ﬁl> currently open editors. To keep them
open, add a folder instead.

0 - =
Bj You can open a folder containing a
.NET project or solution, or create a
new .NET project.

’ Create .NET Project

®
{é} > OUTLINE

> TIMELINE
XN ®0A0 @o

Click the Create .NET Project button.

»{J Welcome X

Start

[ri New File...
C’\j Open File...
= Open Folder...

>< Connect to...

Recent

MyFirstConsoleApp2

L Search

Walkthrd

C:\Users\andrews...

v

Show welcome page on start

A box will appear at the top of the VSCode window with a list of project types, and a search box with
the prompt “Select a template to create a new .NET Project.” Type Conso'le into the search
box, then choose Console App from the list of templates to create a new .NET Console App project.

EXPLORER

Console

Console App Common, Console
Vv NO FOLDER OPENED

14 Chapter 1

build something great...fast!

Select a folder for your new project.

VSCode will display a folder browser window. Choose a location for your new project. The folder
browser window has a “New folder” button. You’ll be creating a lot of projects throughout this book, so we
suggest creating a folder called “Projects” underneath your home folder or Documents folder to hold them.

Create a new folder inside the folder where you keep your projects and name it MyFirstConsoleApp.
Then navigate to the MyFirstConsoleApp folder that you just created and click Select Folder.

Give your project a name.
Every C# project has a name. You’ll usually give the project folder the same name as the project. After you
select your folder, VSCode will prompt you for a project name:

Name the new project

MyFirstConsoleApp

Press ‘Enter’ to confirm your input or ‘Escape’ to cancel

Type MyFirstConsoleApp into the box, then press the Enter key to create the project. VSCode may
ask you if you trust the authors of the folder. This is a really useful security feature, because it prevents you
from accidentally opening malicious code. Click the “Yes, I trust the authors® button. You have the
option of checking a box to always trust everything in your projects folder.

Install the .NET Core SDK. (You only need to do this once!)

Before you can create and run C# and .NET apps, you need to install the NET Core SDK. The casiest
way to do this on Windows is to install Visual Studio 2022. If you don’t have the SDK installed, VSCode

will display a window prompting you to get it. Click the “Get the SDK” button—this opens a browser
window with the page Attps://dot.net/core-sdk-vscode. Follow the instructions to download the latest version of
your SDK for your operating system. Be careful to choose the architecture that matches your computer. For
Mac users: if your Mac was made after 2019, choose Arm64; if you’re using an older Intel Mac, choose Intel.

The .NET Core SDK cannot be located: Error running dotnet -- £ X

info: Error: Command failed: dotnet --info ‘dotnet’ is not Visual Studio Code is

recognized as an internal or external command, operable “a”\/ F°F“'a"' with a lot
developers betause it's

|i5h{:wci5h{, open sourte,

and has a huge cz‘.os\/s{:cm

program or batch file. ‘dotnet’ is not recognized as an internal

or external command, operable program or batch file. . .NET

Core debugging will not be enabled. Make sure the .NET Core of extensions and +ools.
SDK is installed and is on the path. But using it will require You
B ———— 'b° do a M‘.‘UC movre manual
Source: C# (Exten... | Disable message in settings Get the SDK Help work like this, which is why

we retommend using Visual

Studio instead.

you are here » 15

run your app in visual studio code

e Expand the Solution Explorer and open Program.cs.
After VSCode creates your CG# project, the Explorer panel on the left will contain several collapsible
sections. VSCode is file- and folder-based, and the Explorer is used to browse those files and open them
for editing.

Expand the Solution Explorer section at the bottom of the Explorer. The Solution Explorer is part
of the C# Dev Kit, which lets VSCode work with C# projects. It shows you all of the files and subfolders
that VSCode created for your project—in this case, your app has one file with C# code called Program.cs.

Click Program.cs in the Solution Explorer to open the file.

e Run your app.
When you have a C# code file (a file that ends with .¢s) open in the Solution Explorer, you’ll see a Run
button) in the upper-right corner of the window. Click that button to run the app.

You can also press F5 and choose “Start Debugging” from the Run menu to run your app. VSCode
may prompt you to select a debugger. If it does, choose C#. If it asks for a launch configuration, choose
the one that matches the project name. You can press F5 any time you want to run your app.Your app
will start running, and Visual Studio will open the Debug Console panel to show you the output and
let you interact with it. This is how you’ll run all of the Console App projects that you’ll build
throughout the book.

Edit Selection - L MyFirstConsoleApp

EXPLORER C¢ Program.cs X

> MYFIRSTCONSOLEAPP MyFirstConsoleApp > € Program.cs

> OUTLINE .
> TIMELINE Cconsole.WriteLine("Hello, World!™);
O IIIONEXETORE Click this button to run
Expand the Solution Explorer, which your C# app. You’ll see
is typically at the bottom of the it when you’re editing
> 8 Dependencies Explorer panel. You can collapse the afile that ends with
T other sections to make it bigger. Click “.cs” and has C# code.
2 on Program.cs to see the code that
Visual Studio created for you. This
file contains all of the code in your
app—in this case, two lines of code.

v © MyFirstConsoleApp
v [MyFirstConsoleApp

TERMINAL PORT ALY so S 3%
windows Powershell build C:\Users\Public\... v/

Copyright (C) Microsoft Corporation. All rdhts reserved. 38t MyFirstConsoleApp.exe

RS CINRULEEIES S CSIDNR CETREEIE Make sure that your app’s output is
| : i . .
e in the Terminal panel. If you see the
Ehreganeey “Hello, World!” text in the Debug
d B Console, you need to go back and

- . " " onnects - @ follow the instructions to change
Here’s the line of the C# debug console setting.
text your app wrote. s C:\Users\PWAic\Projects\MyFirstConsoleApp> ||

X ®0A0 W0 £ Projects: 1 Screen Reader Optimized Ln3,Col 1 Spaces:4 UTF-8withBOM CRLF C# @ [

16 Chapter 1

build something great...fast!

Set up Visual Studio Code for the next project

VSCode is a great code editor! But unlike Visual Studio, it’s not designed specifically for C# and .NET projects. It
does a great job with C#, but you need to do a little extra work to get it up and running;

First open a folder, then add a project

VSCode is extremely flexible, and there are many ways to use it. If you’re new to VSCode, we recommend that you
create a new folder for every project in the book. When you start a new project, choose Close Folder from
the File menu to close the current folder, then create a new folder and open it.

& This is how you veset VSCode

The Command Palette s You tan start a new project.

All of the actions that you need to do to create and run projects can be run from the Command Palette, the
centralized hub for all of the VSCode features. Press Ctrl+Shift+P (or € 8P on a Mac) to display the Command
Palette. Use the .NET: New Project to create a new project in the current folder. There are also commands to open
and close .NET solutions. You’ll learn more about solutions throughout this chapter.

When you have a .NET app’s project folder open, you can run it by choosing Debug: Start Debugging from the
Command Palette. Choose the C# option to start running your Console App project.

Vou’“ need to install NET
MAU| before you move on
to the vest 08' the thapter.
H: \/oulrc using Visual Studio
2022 you alveady installed

H . it, but it \/ou’\rc using VSCode
Install NET MAUI before reading the rest of this chapter youll eed to do 1t manually.

In the rest of this chapter, you’ll build a game using NET MAUI (Multi-platform App UI), a powerful cross-platform
framework that lets you create visual apps in .NET and C# that can run on Windows, macOS, Android, and 1OS.

NET MAUI
Cc#

Install an extension for C#...

Before you can install and run your .NET MAUI apps, you’ll need to install the .NET MAUI workload for .NET.
The easiest way to do this on Windows is to install Visual Studio 2022 and choose the NET MAUI option.

You can also install NET MAUI from the command line. Typically it looks like this:
dotnet workload install maui or sudo dotnet workload install maui

If you’re using a Mac or Linux, you may need to use sudo to run with elevated privileges. If you’re on a Mac, you’ll
also need to install XCode. You can install the Android SDK as well (but it’s optional). See this page for more
details: Attps://learn.microsofl.com/dotnet /maui/get-started/installation?tabs=visual-studio-code

If you're using Linux, you'll need an Android device for the .NET MAUI projects

NET MAUI does not run natively on Linux. If you have an Android device, you can debug directly on it. This page
shows you how to set up an Android device so you can connect it to your computer and run your MAUI apps on it:
hitps://learn.microsofl.com/dotnet/maur/android /device /setup

As an alternative, every MAUI project in this book has a Blazor alternative, where you’ll build a web app version
that runs in a browser. Download the Head First C# Blazor Learner’s Guide from our GitHub page for more
information—you can get it as a free PDF: https://github.com/head-first-csharp/fifih-edition

you are here » 17

dive right into a fun C# project

Let’s build a game!

You've built your first C# app, and that’s great! Now that you’ve done

that, let’s build something a little more complex. We’re going to build The game displays 16 buttons
an animal matching game, where a player is shown eight pairs of with eight paivs of matthing
animals and needs to click on them in pairs to make them disappear. animals in 3 vandom ovder.

‘/ou ylay b\/ é|ickih3 animals in

- o0 x paivs: first click one animal,

Animal Matching Game then click its mateh. Mateh

all cigh‘[‘, animals and You win

Time elapsed: 6.4s the game!

EILLIE I
When you eliek a matehed paiv

E \/ /— of animals, Jd'\cy both disappear-
=

Animal Matching Game

55

ﬁ a8 < | —>Time elapsed: 7.3s
\ T 7 - 8
To make ‘U\ihgs more ﬂ Y
extiting, the game
When you elick the first button, it starts a timer as o
éhahges eolov. |£ You click on its mateh, soon as you start
then both animals disappear. |£ you elick the game. Can you
any other animal, the tolor of the fivst beat your best time? e
button ¢hanges back and You have to
start over with a new pair.
You tan changc the size of the ‘g ﬂ had
window and the animal buttons ——> a
will vearrange themselves out to
£l up the new width. L Y,

The rest of this chapter is dedicated to walking you through creating the Animal Matching Game
project. This project is built with .NET MAUI, a cross-platform framework for building desktop and
mobile apps. There are several MAUI projects scattered throughout this book. You also have the
option of using these projects to learn about web development using Blazor, Microsoft’s powerful web
development framework. Download the Head First C# Blazor Learner’s Guide—it’s a free PDF with
web versions of every MAUI project in this book (https:/github.com/head-first-csharp/fifth-edition).

18 Chapter 1

build something great...fast!

When \/ou’vc found all eight yair: of animals., the
game disyla\/s a big “Pla\/ again? button, with
your Linal £ime undevneath it. Click the button
Lo veset the game and start over again

Animal Matching Game

Play again?

Time elapsed: 10.7s

Keep an eye out for these “Game Desion...and Beyond” clements stattered £hroughout
the book. We'll use game design principles as 8 way %o learn and explore Iv.n?o‘r{:.an‘{’.
programming oncepts and ideas that apply to any kind of project, not just video games.

‘Game Design..and Beyondoonnne

» What is a game?

It may seem obvious what a game is. But think about it for a minute--it's not as simple as it
seems.

* Do all games have a winner? Do they always end? Not necessarily. What about a flight
simulator? A game where you design an amusement park? Or a farming simulator? What
about a game like The Sims?

* Are games always fun? Not for everyone. Some players like a “grind” where they do the
same thing over and over again; others find that miserable.

* |s there always decision making, conflict, or problem solving? Not in all games. Walking
simulators are games where the player just explores in an environment, and there are often
no puzzles or conflicts at all.

* It's actually pretty hard to pin down exactly what a game is. If you read textbooks on game
design, you'll find all sorts of compelling definitions. So for our purposes, let’s define the
meaning of “game” like this:

A game is a program that lets you play with it in a way that (hopefully) is as entertaining
to play as it is to make.

you are here » 19

how you’ll do this project

Break up large projects into smaller parts

Our goal in this book is to help you to learn C#, but we also help you become a great developer,
and one of the most important skills great developers work on is tackling large projects. You’ll build a
lot of projects throughout this book. They’ll be smaller starting with the next chapter, but they’ll get
bigger as you go further. As the projects get bigger, we’ll show you how to break them up into smaller
parts that you can work on one after another. This project is no exception—it’s a larger project, like
the ones you’ll do later in the book—so you’ll do it in five parts.

MainPage.xaml.cs

CReATE THE ~ DEsisn THE Page WRITE C# HANDLE Mouse App 4 Gane
ProJecT CoDE CLicks TIMER

The goal of this project is to help get you used to writing C# and using
the IDE. If you run into any trouble with this project, you can watch a full
video walkthrough on our YouTube channel: https:/lwww.youtube.comi@
headfirstcsharp

You can download all of the code and a PDF of this chapter from our GitHub
page: https:ligithub.comlhead-first-csharplfifth-edition

Relax ...

This chapter is all about learning the basics, getting used to creating
projects, editing code, and building your game.

Don’t worry if there are things that you don’t understand yet. By the end of the book, you'll
understand everything that’'s going on in this game. For now, just follow the step-by-step
instructions to get your game up and running. This will give you a solid foundation to build on later.

20 Chapter 1

Here’s how you'll build your game

You’ll build your animal matching game using .NET MAUI
(which stands for .NET Multi-platform App UI, or just MAUI).
MAUI is a technology that you can use to create apps in C#
that run natively as desktop apps on Windows and macOS, or as
mobile apps on your Android or iOS mobile devices.

The rest of this chapter will walk you through building the
game. You’ll be doing it in a series of separate parts:

First you’ll create a new .NET MAUI

project in Visual Studio.
You just created a new console application. Now
you’ll create a new MAUI app.

Then you’ll use XAML to design the page.

Individual screens in MAUI apps are called pages.
You’ll design them using XAML, a design language
you’ll use to define how those pages work.

You’ll write C# code to add random
animal emoji to the page.

When your app first loads, it will run that code to
display 16 buttons with eight pairs of animal emoji in
a random order.

You’ll make the gameplay work.

The game needs to detect when the user clicks on
pairs of emoji, keep track of the pairs, and end the
game when they’ve found all of the matches. You’ll
write that code too.

Finally, you’ll make the game more
exciting by adding a timer.

Your timer will start when the player starts the game,
and keep track of how long it takes the player to find
all eight pairs of animals.

build something great...fast!

This FroJcC£ ¢an take anywhere from 20
minutes to over an hour, dc‘?cnding on how

Euickl\/ you type. We learn better when we don't
eel vushed, so give yourself plenty of time.

<FlexLayout> elass MyClass {
<Button/> void Xyz() {
/7 ..
<Button/> }}
ﬁ{cXLa\/oub

MainPage.xaml MainPage.xaml.cs

I

Play again?

Time Elapsed: 0.0 seconds

Time Elapsed: 0.0 seconds

-

you are here » 21

create a new maui app

Create a NET MAVI project in Visual Studio

You can create a .NET MAUI app in Visual Studio just like you did with the console app at the beginning of the

chapter, using the “Create a new project” button displayed when you first open Visual Studio. If it’s already open,
choose New >> Project (Ctrl+Shift+N) from the File menu to bring up the “Create a new project” window.

Create a new project

Recent project templates

BN Console App <3

/

‘/ou)” see

the Console
Aep Lemplate
in the list
o(: vcccn{:

o g gg NET MAUI App
L A project for creating a NET MAUI application for i0S, Android, Mac Catalyst, WinUl

MAUI

All languages Al platforms Al project types

and Tizen

C# Android i0S MacCatalyst ~ macOS ~ MAUI Tizen

ndroid, Mac Catalyst, WinU|,

C# Android Blazor

mac0s MAUI

Tizen Windows

Use the search box to search
for “MAUL,” then choose
the .NET MAUI App project
template from the list.

Lemplates
because Yyou
eveated one

.NET MAUI App

A project for creating a .NET MAUI application for iOS, Android, Mac Catalyst, WinUI

. and Tizen
earlier.
C# Android i0S Mac Catalyst macOS MAUI Tizen
Windows
Choose the NET MAUI App project template and click Next. Visual Studio will
prompt you for a project name, just like it did when you created a Console App project.
Enter AnimalMatchingGame as the project name and click Next.
Configure your new project
.NET MAUI App C# Android i0S Mac Catalyst macOS MAUI Tizen Windows
Project name

Make sure you enter

‘ AnimalMatchingGame

AnimalMatchingGame as the project

name; otherwise, your code won’t

Finally, Visual Studio will ask you to choose a version of .NET—choose the latest

| match the screenshots in the book.

version, just like you did when you created the Console App project. Then click the
Create button to create your new .NET MAUI project.

22 Chapter 1

build something great...fast!

Create a NET MAVI project in Visual Studio Code

If you’re using Visual Studio Code, creating a .NET MAUI project is really similar to creating the Console App project,
just like you did at the beginning of the chapter. First, close your current app by choosing File >> Close Folder
(Cul+K F or 3K F). It’s really important o close your folder; otherwise, you’ll add a new project to the same solution.

Next, create the NET MAUI App project. Use Ctrl+Shift+P or ¢ 3P to open the Command Palette. Choose the
command .NET: NEW Project to create a new project. VSCode will prompt for the project type.

Choose the .NET MAUI App project type. You can type “MAUI” to filter the options.

Create a new .NET project Make sure you enter

AnimalMatchingGame as
the project name; otherwise,
.NET MAUI App Android, iOS, Mac Catalyst, macOS, MAUI, Mobile, Tizen, Windows your code won’t match the
.NET MAUI Blazor Hybrid App Android, Blazor, Blazor Hybrid, iOS, Mac t, macOS, MAUI, Mobile,... screenshots in the book.

.NET MAUI Class Library Android, iOS, Mac Cataly MAUI, Mobil

maui|

VSCode will ask you to give the project a name. Name your project AnimalMatchingGame. VSCode will
prompt you for a directory. Choose the default directory. You should now see your project in the Solution Explorer

at the bottom of the Explorer panel. Expand the Solution

Explorer and collapse
all of the other sections
of the Explorer window.

When it comes time to run your project, do the following—this is different from
running a Console App:

1. Expand the Solution Explorer in the Explorer panel.

2. Expand the file MainPage.xam! to reveal MainPage.xaml.cs (it may be

expanded already). Rt
. . . > ANIMALMATCHINGGAME
3. Click on MainPage.xaml.cs to select it.
> OUTLINE
4. Open the Command Palette (Ctrl+Shift+P or £+ 38 P) and choose S TIMELINE

Debug: Start Debugging. You can also open MainPage.xaml
and either press F5 or choose Start Debugging fom the Run menu.

< SOLUTION EXPLORER
v © AnimalMatchingGame

5. VSCode may prompt you to select a debugger. Select NET MAUL v @ AnimalMatchingGame
Once you do that, your app should start running in a new window.

%@ Dependencies
Properties
Platforms

NET MAUI
App.xaml|

Install an extension for C#...
AppShell.xaml

>
>
>
> Resources
>
>
v

, MainPage.xaml
There’s another way to run your

MAUI app. Choose Debug
project associated with this Run project associated with this file

file from the dropdown next t.O Debug project associated with this file
the Run button at the upper right The Solution Explorer section may be at
corner of the VSCode window. the very bottom of the Explorer window.

> v

MainPage.xaml.cs

MauiProgram.cs

you are here » 23

maui apps can run anywhere

Run your new .NET MAUI app

In Visual Studio: click » Vindows Machine -

Debug menu.

In Visual Studio Code: open MainPage.xaml and choose Start

in the toolbar or choose Start Debugging (F5) from the

Debugging (F5) from the Run

menu. If it prompts you to select a debugger, choose .NET MAUI from the list. On macOS you may see a
prompt warning that AnimalMatchingGame is from an unidentified developer,

and asking if you’re sure you want to open it. Click Open Anyway.

The IDE will build your code, which means converting it to an executable

program that your operating system can run. Then it will start your app:

®) AnimalMatchingGame

Home

s

G

In macOS, If the VSCode
.NET MAUI extension displays

When you see Do this! (or Now do
this!, or Debug this!, etc.), go to
Visual Studio and follow along. We’ll
tell you exactly what to do, and point
out what to look for to get the most
out of the example we show you.

These sereenshots were made with
NET 9. |£ you've using a different
version of .NET, the default MAU|
app may look a little different.

the message “Debugging
cancelled: Xcode not found,”
it means you need to install | Hello, World! Home
or update Xcode, a suite of
development tools builtby | Welcometo
Apple. If you didn’tinstall [T Multi-platform App U
it when you set up Visual
Studio Code and the C#
extensions, you can install

it from the App Store. Make
sure you actually open it and

AnimalMatchingGame

-- = (m] X
P NOR @ ¢ L[|]

If you’re using
Windows and get
a pop-up about
setting your device
to developer mode,
click the link to
go to settings
for developers

accept the Xcode chense Hello, World! . and toggle the i
agreement; otherwise, you Developer mode
may get an error when you Welcome to setting.
try to debug a MAUI app in)

Visual Studio Code. | ‘NET Multi-platform App Ul

Stop your MAUI app

You can stop your app by closing the app window. You can also choose Stop Debugging (Shift+F5) from the
Debug menu in Visual Studio or Run menu in VSCode, or click the square Stop button in the IDE’s toolbar.

You can start or stop your app at any time. If there are syntax errors (like typos or invalid keywords) in the

C# or XAML code, the IDE won’t be able to run the app.

For tips on running your app, see https:/lgithub.com/head-first-csharplfifth-edition.

24 Chapter 1

build something great...fast!

MAVI apps work on all of your devices

MAUI is a cross-platform framework for building visual apps, which means the apps
that you build can run on your Android and 10S devices. Many of the chapters in this book
include .NET MAUI projects so you can learn to build more visual apps. H”
€llo, Woriqy
You can run MAUI apps on an Android device directly from Visual Studio. This page shows Welcome t,

-NET My

ti-play tform App Uy /
|

you how to set up an Android device so you can connect it to your computer and run your
MAUI apps on it: kttps://learn.microsoft.com/dotnet/maui/android/ device/setup

You can also run MAUI apps on your 108 device, but it requires a little more setup—and it
costs money because you need to join the Apple Developer Program. This page walks you
through the process: Attps://learn.microsoft.com/dotnet/maui/10s/ device-provisioning

MPAU| apps ave designed with XAML

XAML (the X is pronounted like Z, and it rhymes with “camel”) is a mavkup |an5u,agc that \/ou'll usc. to
build the usev interfaces for your MAWU| apps. XAML is based on XML (so if you've ever worked with
HTML, you have a head start). Heve's an example of a XAML tag for a button:

<Button Text="Click" Clicked="Button_Click" />

This book is about learning C#, so we'll give you Just enough XAML so Yyou ean build great—looking
MAUI apps—and we'll make sure that you have a solid foundation for leavning move.

...

Are you seeing errors or having problems in Visual Studio Code?

If you see an error window when you try to run your code—it may have a message like “Android SDK: Install
: required” or a warning about licenses—then there are some installation steps that you still need to do:

https.//learn.microsoft.com/dotnet/maui/get-started/installation ?tabs=visual-studio-code

Follow all of the steps on that page. Make sure you've installed all of the VSCode extensions, the .NET and .NET
¢ MAUI workloads, the Android SDK, and the latest XCode if you’re using a Mac. If you're still running into problems,
create a new .NET MAUI project and watch the Terminal window for error messages as soon as the project opens,
¢ and look for instructions on how to accept a license. Follow those instructions exactly. You may need to install the
most recent version of OpenJDK first: https.//learn.microsoft.com/java/openjdk/download

If you keep getting license errors on Windows, open the Command Palette and choose .NET MAUI: Configure
: Android and then Review Android Licenses to accept the licenses. You may need to do this while running VSCode
: as administrator. You can also choose “How to Configure Android” to see a web page with complete instructions.

If you’re using a Mac, are you getting any of the following errors when you run your app: “No debug target available,
skipping debugging,” an error about Android or iOS, or an error about prelaunch tasks terminating? Press {+ 3P to

open the command palette, choose .NET MAUI: Pick macOS Device, and select your computer from the list, then

open MainPage.xaml and press F5 to run your app again.

If MAUI is still giving you problems, Microsoft has a page to help
troubleshoot it: https://learn.microsoft.com/dotnet/maui/troubleshooting you are here » 25

think before you code

You ARE HERE

We'll inelude a “map” like this at the start
of eath of the sections of this project to
help you keep track of the big picture.

Design THE PAGE ~ WriTE CFH- HANDLE Mouse App 4 éWE

Cove Cricks TImER
I) H

Here’s the page that you'll build
When you start a project, the first thing you always want to do is take You'll use XAML to lay out your
a few minutes to understand the big picture. What are you going to ?aﬂf‘ A lot of C# developers
create? How will it work? Let’s take a look at the page you’re about to tonsider XAML a eove skill, and
build. many C# Jobs require Yyou to

o o know at least some XAML, so we
th,in you open an app built w1th- NET MAUI, the first thing it shows wanted to make sure to include
you is a page that you interact with. That page uses controls, or enough of it in this book +o give

visual widgets like buttons and labels, to create a user interface (or Ul)

You 8 5ood gvrouhding init

that you can interact with. Here’s the page that you’re going to design: J/

The page has a
\roup o utton
Coh‘{',V'OlS ‘{:h8+, the
user tan click on.

\/ou," in‘{',C C#
tode later to
make them display
animal C'\'\t'{')'| inad
vandom order.

Time Elapsed: 0.0 seconds

Play again?

This label displays the number of seconds elapsed
sinte the player clicked the first animal.

-

This button has the text
“Play again?” and starts
the 9ame. Later \/ou,"
write C# tode to make

it invisible while the game

IS running.

26 Chapter 1

build something great...fast!

Start editing your XAML code

The Solution Explorer lets you edit code files by double-clicking on them (or single-clicking in [1f you close any of]
VSCode). We'll work with two files: MainPage.xam! (which contains your XAML code) and the files, you can

MainPage.xaml.cs (which has the C# code for your game). This is what it looks like in Visual Studio: open them again by
double-clicking on

0Q File Edit View Git Project Buld Debug Test Apalyze Tools Extensions Window Help Search (Ctrl+Q P AnimalMatchingGame.App @) = u] them in the SOlUtion
i Er)) | B-0-SBB| X@6B(9 - be‘ug -/ Anycru - P Windows Machine ~ [> [D&LLL 12 Lveshare Explorer_ |f you
...... £ [T vainragesamics N R ——— ’ :
......... g © Newto NETMAUR Cick here o ear morel | Dorit show again % @,,’j ©-s08 (W £ don t ‘See It’ you (':an
= : : o : | @ omenrace e open it by choosing
&t Solution ‘AnimalMatchingGame' (1 of 1 pro) .
. : S o T x A‘E}AnlmﬂlM&tthlngGangm ’ Solution Explorer
1 roSo0° com/winfx. xam’ 1 b &8 Dependencies
MainPagexaml + > LLWCHICIID é_\ inPage"> 3 I :‘%mf from the View menu. j
@ New to .NET MAUI? Click here to learn more! | Don't show a YOU €an use ‘Ehcsc -{;abs SHE e Resouces v
{_p {: e b D Appxaml
[&#] AnimalMatchingGame (net8.0-android) ~ [Cont switth bc{weca ‘CI'CS i’ ';A””STQ‘TS‘
1 <?xml_version="1.0" encoding=" In Your FTOJCL{:- N s
12 HeightRequest="185" . .
1 Aspect="AspectFit"
w SemanticProperties.Description="dot net bot in a race car number eight” /> | Solution Explorer v ax
16 <Labe = o
(7 - lexf:”Hello, viorld!" @ vaq ®e-s @ “zo -)‘
Style="{StaticResource Headline}"
19 SemanticProperties.HeadingLevel="Levell" /> Search Solution Explorer (Ctrl+; P »
20
i; T <L3b$lxt:”Welcome to
 .NET Multi-platform App UI" ﬁ SO|Ution VAnimaIMatChingGamEI (1 Of 1 prOjeCt)
—— Style:"{S%at)c‘Resoux‘ce Subrieadlirle}" . 4 AnimalMatchingGame
[vSCode looks a SoRanticpropartier.bescriptiona-ueLeons o dot net HILEL plattorn:dpp U i
little dliff t th " F 2 PP b &8 Dependencies
Ittle aifreren 5 e - <Button b i
Name="Cou . Q Properties WO
tabs work the same Heypri 4 ion i"rcrc ave the {{::
SemanticProperties.Hint="Counts the number of times you click" o
way. Just make s e & i > BR iles you'll edit in
HorizontalOptions="Fill" /> s {_)‘ C‘[‘,
sure you expand o ekicaiEhaciayorty > D) Appxaml 1S ?YOJC
. . </ScrollView> E
Solution Explorerin > [AppShellxaml
</ContentPage> <)
the Explorer panel. | ... " e o 4 [} MainPagexaml
It helps to collapse b C# MainPagexaml.cs
the top section. C# MauiProgram.cs
Make sure you expand MainPage.xaml|
in the Solution Explorer—that’s the - :
only way to see MainPage.xaml.cs. Solution Explorer = Git Changes Class View

You can always edit your XAML by hand instead of using the Toolbox
or Properties windows.

t‘ When you use Visual Studio Code to edit the XAML code in MainPage.xaml, you may
W{-Xt@h X notice that it's missing some of the features we show in Visual Studio. At the time
we’re writing this, VSCode’s .NET MAUI editor doesn’t have a Toolbox or a Properties window.

Even if you’re using Visual Studio, you might find that an element you need isn’t in the Toolbox,
or a property isn’t in the Properties window. That’s okay—the only thing those windows do is add
or change tags in your XAML code. You get exactly the same XAML code whether you type it
in or use the IDE’s built-in tools.

In fact, it’s often faster to edit your XAML by hand than to search the Toolbox or Properties
windows. So even if we tell you to use the Toolbox or Properties window, you can always type
in the XAML code instead.

you are here » 27

start writing xaml code

Add the XAML for a Button and a Label

The first thing we’ll do is design the page for the game. It will have 16 buttons D _ ho '
to display the animal emoji, plus a “Play again?” button to restart the game (B t IS'

when the player wins.

®

28

Delete everything between the opening and closing VerticalStackLayout tags.
XAML is a tag-based markup language. That means your XAML code uses tags to define everything
that appears in your app. Here’s an example of a tag—you can find it near the top of MainPage.xaml:

<ScrollView>

That’s an opening tag. You can find its matching closing tag near the end of the file:
</ScrollView>.

These tags add a ScrollView control to the page. If your app is in a window that’s smaller than its
contents, everything between the opening and closing tag can be scrolled up and down.

Find the opening VerticalStackLayout tag. It’s on the next few lines of the file, and it looks like this:

<VerticalStackLayout If you’re using a different version of .NET
Padding="30,0" than we did, the XAML in the page may

Spacing="25"> start out a little different. That’s OK—you
just need to get the XAML for your page to
exactly match the XAML code below.

Next, find the closing VerticalStackLayout tag:

</VerticalStackLayout>

Now carefully delete all of the lines between those two tags. The XAML code in your
MainPage.xam! file should now look like this:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http:// schemas.microsoft.com/winfx/2009/xaml1"
x:Class="AnimalMatchingGame.MainPage">

<ScrollView> [n the next step, you'll
<VerticalStackLayout put your new XAML tode

Padding="30,0" vight heve, wheve you
Spacing="25"> deleted the old code.

</VerticalStackLayout>
</ScrollView>

</ContentPage> &At the time we’re writing this, the .NET MAUI extension for Visual Studio
Code does not have a Toolbox. If you’re using Visual Studio Code, you
may not be able to do all of the fancy drag-and-drop XAML editing you
get with Visual Studio, so you’ll need to carefully type in all of the XAML
line by line. But don’t worry, your app will still work the same way.

Chapter 1

build something great...fast!

Delete the C# code that goes with the XAML that you just deleted.

If you try to run your app right now, Visual Studio will give you an error message and refuse to run it,
because the G# code depends on things you just deleted. Expand MainPage.xaml in the Solution
Explorer and open MainPage.xaml.cs and find this code:

private void OnCounterClicked(object sender, EventArgs e)

Delete it, and the next 10 lines of code, up to and including the closing curly brace }. Be careful not to delete
the final closing } at the end of the file. Then delete this line of code: int count = 0;

Your C# code should now look like this:

)
You Il learn about ¢l
namespace AnimalMatchingGame; ut elasses and

{
{

public partial class MainPage :

public MainPage()

{

InitializeComponent();

}
}
}

ContentPage

’j namespaces in Chapter 3.

Make sure you 90 back to the
é— Solution Explover and open
/\/TainPagc.*aml.cs 1o edit the

C# tode. You may need to .
expand MainPagc-mml 4o see it

Go back to MainPage.xaml and use the Toolbox to add the “Play Again?” button.
You’ll be editing the XAML code again, so switch back to the MainPage.xaml tab. If you don’t

see the Toolbox panel, expand it by clicking the tab on the side of the window. Add a few extra blank
lines where you deleted the code between the opening and closing VerticalStackLayout tags. Then
drag the Button out of the Toolbox and drop it onto one of the lines that you added.

o Toolbox v 31X MainPage.xaml.cs
— Search T box - C il il .0-1 ~ [i
2 Search Toolbox P [€#) AnimalMatchingGame (net7.0-maccatalyst) [VerticalStackLayout
g 4 Controls a 1 <?xml version="1.0" encoding="utf-8" ?>
2 N 2 -<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
: i 3 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
: BoxView u x:Class="AnimalMatchingGame.MainPage">
5% Activitylndicator 5
G\ Button 6 - <ScrollView>
E CarouselvN 7 = <Vertica¥$tikaiyout
B CollectionVie — 22:;;:3;--;; on
. T DatePicker Drag the Button out of VerticalOpt;ons="CentEr“>
Click on the Editor th
Toolbox. +3b ot e Toolbox and onto a |
oolox - o | @ e blank line between the
on {‘,hc sudc A tabel Opening and closing </SC:£\{i\z;ti:;:lStackLayout>
the window ® uswview | VerticalStackLayout tags.
'EO C)‘Pahd I‘E E Picker </ContentPage>
"F \/OIA don"f‘, &1 ProgressBar 18
fFC l':” C}“sc You should now see a new Button tag between the VerticalStackLayout tags—it’s OK if the
Jc:o \;* o™ spacing or indenting is a little different, because extra spaces or lines don’t matter in XAML:
€ VIEW meénu.
. . <VerticalStackLayout
Click the pin :
Padding="30,0"
bu‘H‘,on in ‘H’IC Spacing:||25|'|> thn \/ou d\ra%ed ‘H’\C BU'{:{',OV\ Ou‘t 0‘(: *{:\nc
uF?cr_riSh'{: foolbox and into Your tode, Visual Studio
= X) .
cormer to <Button Text="* /> added this Button tag. [€ you're wsing
. so
keep it from </VerticalStackLayout> VSCode, you may "°+j ha\.lc 3 Toolbox,
¢ollapsing, Lype this in exactly like it appears heve

you are here » 29

add a button then add a label

30

If you’re using Visual Studio Code, you may not have a Toolbox panel or Properties window.
You'll need to type the XAML into the MainPage.xaml file so it exactly matches our code.

Add properties to the XAML tag for the “Play again?” button.
XAML tags have properties that let you set options to customize how they're displayed on the
page. The Properties window in Visual Studio makes it easier to edit them.

Click on the code for the Button tag in MainPage.xaml, so your cursor is somewhere between the
opening < and closing > angle brackets. Then look at the Properties window—it’s usually
docked in the lower-right corner of Visual Studio. If you don'’t see it, choose Properties or
Properties Window from the View menu. Make sure it says “Type Button” at the top, so you know
that you're editing the button.

Find the Text property and set it to “Play again?”

Then find the FontSize property and set it to “Large.” Make sure youve editing the Button

Properties v I x Properties v I X

Type Button Type
I A | P
Arrange By: Name ¥ Arrange By: Name v
0O -
2aed FontFamily a
@ —> Play again? -
—> LlLarge v
Tenror el - GestureRecognizers (Collection) mD

When you’re done editing the button, the XAML for it should look like this:
<Button Text="Play again?" FontSize="Large" />

The Button tag now has Text and FontSize properties.

Edit the XAML code by hand for your button to give it a name.

You can also edit XAML code by hand—for example, if you run into trouble with the Properties
window, you could type the XAML directly into the editor. You need to make sure that you
copy all of the brackets, quotes, etc. exactly, otherwise your code won't run!

In the next part of the project, you’ll write C# code to make your “Play again?” button visible
when the game is over, and invisible while the game is running. You’ll give it a name that the C#
code can use to tell it to show or hide itself.

Use the editor to add an x:Name property to give your button a name. It should look like this:
<Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large" />

XAML tags have properties that let you set options
to customize how tlney’re JisPlayeJ on the page.

Chapter 1

build something great...fast!

Add an event handler so your button does something.

When you click a button, it executes C# code called an event handler. Visual Studio makes it easy to add
one. Place your mouse cursor just before the /> at the end of the Button tag and start typing Clicked.
Visual Studio will pop up an IntelliSense window:

FontSize="Large" Cli] />

t Al Clicked
(lip

Choose Clicked from the list and either click on it or press Enter. Visual Studio will then show you this:

FontSize="Large" Clicked:"l“ /> A XAML f:ag tan be on a

single line or split aevoss
e oo Wi s
,] put the break in a space (not
Press Enter to add a new event handler. Your XAML tag should now look like this: {he spate_in “Play a ain”)

<Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large"
Clicked="PlayAgainButton_Clicked" />

Switch to the MainPage.xaml.cs tab. You can see the code that Visual Studio added, which looks like this:

private void PlayAgainButton_Clicked(object sender, EventArgs e)
{

! \
If you use IntelliSense to complete your line, it may not add the C# code—you’ll need to open
MainPage.xaml.cs and add this code to by hand. Your app will still work just fine.

When You see an exertise, that's your chance to get some practice on

our own. Make sure You do every exercise—they've an important ?arﬁ,

of the book. £ an exevtise is part of a project, then the project won't
\[work until you Bc{: it vight. But don't worry—we'll always give you the

solution. And it You get stuek, it's always 0K to peek at +he solution!

Exercise

Add a Label control to your XAML page.

Go back to the screenshot of the game that shows the “Play again?” button. Notice how it also has text above
the button that displays the time elapsed? That's a Label. It's up to you to add a tag for it. Here’s what you'll do:

1. Switch to the MainPage.xaml tab.

2. Open the Toolbox and drag a Label into your XAML code. Make sure it gets added directly below the
Button, just like you did in Step 3 when you were adding the Button.

3. Use the Properties window to set the Text property to “Time Elapsed: 0.0 seconds” and the FontSize
to “Large” just like you did in Step 4 when you were adding the Button.

4. Edit the XAML code by hand and set the x:Name to “TimeElapsed” just like you did in Step 5 when you

were adding the Button.
g [If you’re using VSCode and don’t have a Toolbox, skip straight to
| the Exercise Solution and carefully add the <Label ... /> tag.

you are here » 31

here’s some more q & a

Exercise

Solution

Add a Label control to your XAML page.

If you followed the steps in the exercise correctly, your XAML code in MainPage.xaml should now look like this:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="AnimalMatchingGame.MainPage">

<ScrollView> It's OK if there are line breaks
<VerticalStackLayout between the properties in a tag, or if
Padding="30,0" the properties are in a different order.

Spacing="25">

<Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large"
Clicked="PlayAgainButton_Clicked" />

<Label x:Name="TimeElapsed" Text="Time Elapsed: 0.0 seconds"
FontSize="Large" />
in the exertise.
' the Label that you added in {
e ak Zc’cwccw the Text and
but you don't have to.

</VerticalStackLayout> et
</ScrollView> We added a line bre

FontSize yroycvhcs;
</ContentPage>

The C# code in MainPage.xaml.cs didn’t get modified as part of the exercise, so it should still look like this—if you're
using Visual Studio Code, you had to carefully type in the PlayAgainButton_Clicked method by hand:

namespace AnimalMatchingGame;

public partial class MainPage : ContentPage

{ Before you move on, make sure that
public MainPage() your XAML and C# code matches
{ ours exactly, and that your app looks

InitializeComponent(); like our screenshot when you run it.

}
private void PlayAgainButton_Clicked(object sender, EventArgs e)
{ =
}

}

If you run your app now, it should look like this, ===

Press F5 4o vun Your app again. In VSCode
you need to switth back to the XAML code
in MainPage.xaml and then press F5.

Time Elapsed: 0.0 seconds

32 Chapter 1

thereqare no o
b Questions

Dum

Q,: What exactly is a “page” in a MAUI app?

A: A NET MAUI app is usually built out of one
or more pages, or individual screens that have
different layouts and contain controls like labels
and buttons. Some MAUI apps have multiple pages
that let you navigate between them. Your Animal
Matching Game app will just have a single page
with 16 animal buttons, a “Play again?” button, and
a label to show the elapsed time.

Q: So those buttons and labels are controls?

A: Yes. Everything you see on a MAUI page

is a control—including the page itself, which is a
ContentPage control. Some controls are dedicated
to making your page look a certain way, like the
VerticalStackLayout control that causes other
controls to be stacked one on top of another.
Others, like the Button and Label controls, are
there to display some kind of widget that the user
can see and interact with. We'll talk more about
controls in the next chapter.

build something great...fast!

Q,: It looks like some controls contain others,
like the VerticalStackLayout in my app contains
Button and a Label. What'’s going on there?

A: When you include layout control like
VerticalStackLayout on your page, you can't
actually see it. Its whole purpose is to cause

the other controls on the page to be displayed a
certain way—in this case, to be stacked on top

of each other. You need a way to tell MAUI which
other controls on the page you want it to stack. To
do that, you nest those other controls inside the
VerticalStackLayout by including their tags between
its opening <VerticalStackLayout> tag and its
closing </VerticalStackLayout> tag.

Q,: Why do some tags like <ScrollView>
have a closing </ScrollView> tag, but
others like <Button> don’t have one?

A: A Button control doesn’t need to have any
other controls nested inside of it, so there’s no
need for it to have a closing tag—instead, you can
just end the tag with /> to make it self-closing.

These Brain Power boxes are heve 1o gjive you something
4o think about. When You see one, don't \')us{: g0 on {‘p

the next seetion. Take a £ew minutes and a«:{uall\/ think
about what you've being asked. That will veally help you

get this matevial into your brain faster! \L

Your app is looking good so far, but now you need to add some buttons. How
do you think you'll do that? What do you think you'll have to add to the XAML to
get 16 buttons to be displayed in a layout with four rows of four buttons?

you are here » 33

add more xaml on your own

Use a FlexLayout to make a grid of animal buttons

The XAML for your page currently has three tags that determine its layout: there’s a ContentPage
tag on the outside that displays the whole view. It contains a ScrollView—everything nested between
its start and end tags will scroll if it goes off the bottom of the page. Inside it 1s a VerticalStackLayout,
which causes everything between its start and end tags to be stacked on top of each other in the order
that they appear. Inside all of those tags are self-closing Button and Label tags.

The next thing you’ll do is add a FlexLayout, which arranges anything inside of it in rows,
wrapping them to the next row so they all fit inside its total width. You’ll add 16 Button tags inside
the FlexLayout. You’ll get them to display in a 4x4 grid by setting the width of each button to 100
and the width of the FlexLayout to 400, so exactly four buttons will fit on each row.

—<ContentPage>

— <ScrollView>
— <VerticalStackLayout> (<Button]/>}

Play again?

<Label />

Time Elapsed: 0.0 seconds

< L >
— <FlexLayout> FlexLayout

<Button /> | <Button /> | <Button /> | <Button />

4 ¥4 4
<Button /> | <Button /> | <Button /> | <Button />

The Button
controls are in
a FlexLayout,
which arranges
its contents in a
horizontal stack,
wrapping them
to anew line
when there are
too many to fit
on a single row.

\ / / 4

<Button /> | <Button /> | <Button /> | <Button l>\

. 4 / P

<Button /> | <Button /> | <Button /> | <Button />

— </FlexLayout> </FlexLayout>) . g g
— </VerticalStackLayout>
— </ScrollView> You'll set the width of each button to 100 and
— </ContentPage> the width of the FlexLayout to 400, which will

cause it to put at most four buttons on each row.

34 Chapter 1

build something great...fast!

This looks like a big exercise! But don’t worry, just take it step by step. |

EXerciSe *{ We know you can do it! And remember, it’s not cheating to look at the

solution...in fact, seeing the solution is a great way to help you learn.

It’s time to finish designing your page. In this exercise, you'll add a FlexLayout underneath the Label that you added in the
last exercise. Next, you'll set its properties. Then you’ll add a button. And finally, you’ll copy the XAML for that button and
paste it 15 more times, so you have a total of 16 buttons on your page. If you're using VSCode and don’t have a Toolbox, just
type the XAML exactly how it appears in the instructions instead of dragging it out of the Toolbox.

Add extra space for your FlexLayout control

Take a careful look at the screenshot that we just showed you. It shows you how the whole page works. Now go back to
Visual Studio and look at the XAML for your page, and figure out exactly where the FlexLayout should go—just below the
<Label ... />tag.

Now put your cursor at that location and press Enter a few times to give yourself space to drag the FlexLayout.

Add the FlexLayout control just below the Label

1. Open the Toolbox and drag a FlexLayout into your XAML code. Make sure it gets added directly below the Label,
into the extra space you just added. It will look like this: <FlexLayout></FlexLayout>.

2. Position your cursor between the > and < in the middle of the XAML you just added and add several blank lines
between the opening and closing tags (you'll drag a button into that space later in the exercise).

3. Place your cursor directly on the opening <FlexLayout> tag. Make sure the Properties window shows that the
type is FlexLayout.

4. Use the Properties window to set the Wrap property to “Wrap” and the MaximumWidthRequest property to “400.”
5. Edit the XAML code by hand and set the x:Name to "AnimalButtons" just like you did in the last exercise.

Add the first Button inside the FlexLayout

1. Open the Toolbox and drag a Button into your XAML code. Make sure it gets added in the space that you added
between the opening and closing tags of the FlexLayout. It will look like this: <Button Text="" />

2. Place your cursor inside the Button tag. Make sure the Properties window shows that the type is Button.

Use the Properties window to set the Button’s HeightRequest property to “100,” the WidthRequest property to
“100,” and the FontSize property to “60.” The dropdown in the Properties window won’t have numbers—you can
either type “60” into the window or choose Caption from the dropdown list to set the font size.

4. Edit the XAML for the button and delete the Text property by selecting it in the code editor and pressing Delete.
Your cursor should now be inside the Button control.

5. Keep the cursor where it is and edit the XAML code by hand to set the BackgroundColor property to “LightBlue,”
the BorderColor property to “Black,” and the BorderWidth property to “1.” Visual Studio's IntelliSense pop-up will
help you match the colors (but if you're using Visual Studio Code, you may not get a nice pop-up).

6. Add a Clicked event handler, just like you did with PlayAgainButton. Choose <New Event Handler> from the
dropdown, so it creates a new event handler method in the C# code. Use the default name Button_Clicked.
,& £ you've using VSCode, you might need to enter it by hand into MainPage.xaml.¢s. [t
Add the rest of the Buttons will be \)us{: like Pla\/AgainBchton_Clickcd, C%CC\?{: without “P|a\/A53in" in the name.
Copy the <Button ... />tag thatyou justadded. Then paste 15 identical tags below it. You should now have a
total of 16 identical Button tags inside a FlexLayout just below the Label. Run your app—it should match our screenshot.

you are here » 35

exercise solution

Exercise
Solution

It's time to finish designing your page. In this exercise, you'll add a FlexLayout underneath the Label that you added in the
last exercise. Next, you'll set its properties. Then you'll add a button. And finally, you’ll copy the XAML for that button and
paste it 15 more times, so you have a total of 16 buttons on your page.

If you followed the steps in the exercise correctly, your XAML code in MainPage.xaml should now look like this:

<?xml version="1.0" encoding="utf-8" ?> Make sure the

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="AnimalMatchingGame.MainPage">

openin {;35 o‘("
Your lexLayout
is \righ{: below the

<ScrollViews |£ You those a diu’\crcnf name tor Your Projcc{:, Yo",” see that name heve. Labcl, snd Ehat ks
<VerticalStackLayout This looks like a lot of XAML code, but properties mateh
Padding="30,0" most of it is Jjust the 16 identical Button ours. Be caveful
Spacing="25"> tags that you copied and pasted. to add a Maximum

and not Minimum

<Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large" width vequest o,
Clicked="PlayAgainButton_Clicked" /> your buttons won't
be in a 4x4 grid.

<Label x:Name="TimeElapsed" Text="Time Elapsed: 0.0 seconds" FontSize="Large;Q
<FlexLayout x:Name="AnimalButtons" Wrap="Wrap" MaximumWidthRequest="400">

<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"

[Itlooks like there is a lot of XAML code here! But most of the XAML that you
l added is the same <Button ... />tag copied and pasted 16 times.

36 Chapter 1

Thc 16 Button tags should be identical. [t's 0K build something great...fast!
if the properties are in 3 diffevent order.

| Exercise

N Solution —]

HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
<Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>

</FlexLayout>
Make sure every button has the Clicked="Button_Clicked" property.
</VerticalStackLayout> If the Clicked event handler has a different name, your C# code won’t
</ScrollView> match ours. You can delete the Clicked property from all of the buttons,
then re-add it with the correct name. Once you add the event handler, it
</ContentPage> will show up in the dropdown when you change the other buttons.

Here’s the Button_Clicked event handler method in your MainPage.xaml.cs file:

private void Button_Clicked(object sender, EventArgs e)

{
N— |£ \/ou‘\rc using VSCodc, \/ou'“ need {‘p open MainPagc%aml»cs and add
} £his event handler method by hand. Make sure it matehes cxad;l\/!

I can check if my solution is right by
comparing it with the screenshot. That makes
it easier!

Play again?

Time Elapsed: 0.0 seconds

That's right!

If your app looks like this screenshot
when you run it, you got things
right. There's just one more thing
you need to check: make sure that
the x:Name properties match the
ones in our solution exactly—the
C# code you write will use them.

you are here » 37

start writing C# code
You ARE HERE

.} [

> (]

WRITE CH
CoDE

Write C# code to add the animals to the buttons

You started this book to learn C#. You’ve done all the preparation: creating the project, and
designing the page for your app. Now it’s time to get started writing C# code.

x|

|

w|®|
|5 |

We’ll give you all of the code for this project, and show you exactly where it goes. But the goal
is to get you started learning C#, so we’ll also work with you to help you understand how it
all works—and that will provide you with a solid foundation to start writing code on your own.

You’ll add code that’s run every time the “Play again?” button is clicked. Here’s what it will do:

Make the animal buttons visible

2

Make the "Play again?" button invisible

\

Create a list of 16 pairs of animal emoji

\

For each of the 16 buttons: <&

Pick a random animal from the list

2

Add that random animal to the button

i

Remove the animal from the list

2

Keep going until it runs out of buttons

38 Chapter 1

build something great...fast!

Start editing the PlayAgainButton event handler method

When you were writing the XAML code for the “Play again?” button, you added an event handler:

FontSize="Large" Clicked="|" />

=5l <New Event Handler>

When you did this, Visual Studio added Clicked="PlayAgainButton_Clicked" to the XAML tag for

the button. It also added this C# code to MamnPage.xaml.cs:

private void PlayAgainButton_Clicked(object sender, EventArgs e)
{

}

That’s a method. C# code is made up of statements, or specific tasks that you’re

telling your app to execute. Those statements are bundled into methods. Methods
have a name—this method is named PlayAgainButton_Clicked.

Visual Studio generated that method for you automatically when you added
the Clicked event handler to your XAML code to give you a place to add the
statements that will tell it what to do when the “Play again?” button is clicked.

Add a C# statement to the event handler method

~ Your C# Code

Methods

Statements

| Every statement ‘
in C# ends with a |
semicolon (;).

Place your cursor on the line between the opening { curly bracket and closing } curly bracket of the method.

Then start typing the following line of code to make the animal buttons visible:

AnimalButtons.IsVisible = true;

47— T)o 1his!

As you're typing, you'll see some of Visual Studio’s really powerful tools that help you write code:

private void PlayAgainButton_Clicked(object sender, EventArgs e)

' When you’re typing code, |

{ | Tab Tab to accept | & |
AnimalButtons.IslVisible = false;
¥ A IsLoaded <
[This is an IntelliSense | A IsReadOnly
window. Visual Studio © IsSet

period key. It shows [& Alignltems
you options that you
can use to add to
the code you just A Automationld
wrote. If you choose
IsVisible, it will auto-

&, AnimationlsRunning

Y CascadelnputTransparent

complete that part of A Classld
| the statement for you. | ﬁ / @ @;, l—l 53

\VSCode ma not show you suggcs{:ions

you may see Visual Studio
giving you suggestions
to complete the entire

statement. This is a really

displays it as soon
aspyo{l oress the P isvisible powerful feature called

IntelliCode. It uses an
artificial intelligence
system trained on millions
of lines of code to give you
suggestions—and more
often than not, it seems to

be able to read your mind!

like

this. [£'s a feature of Visual Studio.

you are here » 39

add code to hide and show the buttons

Add more statements to your event handler

When the player clicks the “Play again?” button, the app will display the animal buttons, hide the
“Play again?” button, and then fill the animal buttons with eight pairs of animal emoji in a random
order. You're going to add statements to the PlayAgainButton_Clicked event handler method to do all

that.

o

40

/"D@ this!
Add a statement to make the “Play again?” button invisible.

Do you remember how you used the x:Name property in your XAML code to give names
to the “Play again?” button and the FlexLayout that contains the 16 animal buttons?
Take a minute and go back to that XAML code—you gave the FlexLayout the name
“AnimalButtons,” and you just added a line of code that used that name.

You also used an x:Name to give the “Play again?” button the name “PlayAgainButton.”
Now add a second line of code to your event handler method:

private void PlayAgainButton_Clicked(object sender, EventArgs e)

{ _ .
AnimalButtons.IsVisible = true; Add this line of code vight
PlayAgainButton.IsVisible = false; below the one you just added.

K We made the tode that’s

already in your files a lighter

[’ eolor to make it easier \Por
You to see what to add.

That statement turns the “Play again?” button invisible.

Make the animal buttons invisible when the app starts.

Take a closer look at the first statement that you added to your event handler method. It
makes the FlexLayout that contains the animal buttons visible. But wait a minute—it’s
already visible! You saw it when you ran your app. Let’s do something about that.

Go back to the XAML code in MainPage.xaml and set the IsVisible property to "false":

<FlexLayout x:Name="AnimalButtons" Wrap="Wrap"
MaximumWidthRequest="400" IsVisible="false">

Did you notice that you're setting the same IsVisible property in both the C# code
and XAML? When the app starts, the IsVisible="false" in the XAML causes the
page to display without the FlexLayout and its buttons. When you click the “Play Again?”
button, the first line of code in its Clicked event handler method sets that property to true,
causing the FlexLayout and its buttons to appear on the page.

Now your app will make the animal buttons invisible when it starts up. As soon as the player
clicks the “Play again?” button to start the game, it will show the animal buttons and hide
the “Play again?” button.

The properties on controls can be set in hoth XAML and C# code.

Chapter 1

build something great...fast!

6 Run your app and make sure it works so far.
When you’re writing code, you don’t just write a complete app from beginning to end, and then run
it to see if it works. That’s not how it works at all! Writing code is a creative process. There are
many, many ways to make your code do a specific thing, and in a lot of cases, the only way you can
really be sure you’re happy with it is to try writing it one way—and if you don’t like it, change it.

Plus, it’s easy to make syntax errors in your code. A syntax error means that you wrote something
that 1sn’t valid C# code, like using a keyword or symbol incorrectly or using a name that doesn’t exist.
For example, if you enter an extra } closing curly brace at the end of a method and then try to run it,
Visual Studio will give you an error telling you that it can’t build your code (which is what it does to
turn your C# code into something that your computer can actually execute).

What does all that mean?

It means that you’ll #un your apps all the time, over and over again. And that’s perfectly fine!
It’s absolutely OK to run your app after even a tiny change, just to see what that change did. The
more comfortable you are running your app, the more you’ll feel like you can experiment and make
changes—and the more fun you’ll have with it.

So go ahead and run your app now. Make sure it starts out with the “Play again?” button visible
and the animal buttons invisible. Click the “Play again?” button and make sure it hides itself and
shows the animal buttons. When you’re done, close the app (or stop it from inside Visual Studio).

i o 3

Time Elapsed: 0.0 seconds

Play again?

Time Elapsed: 0.0 seconds

»

|
When You start the app, \/ou)” see the “Play Cliek the “Play a9ain” button 4o cause it 4o
again?” button but no animal buttons. disappear and the animal buttons 4o appear.

When you enter your C# code, even tiny errors can make a big difference.

Some people say that you truly become a developer after the first time you've spent hours tracking
down a misplaced period. Case matters: AnimalButtons is different from animalButtons. Extra
commas, semicolons, parentheses, etc. can break your code—or, worse, change your code so

that it still builds but does something different than what you want it to do. The IDE’s Al-assisted
IntelliSense and IntelliCode features can help you avoid those problems...but it can’t do everything
for you. It’s up to you to make sure your code is right—and that it does what you expect it to do.

you are here » 41

each button gets an emoji

Add animals to your buttons

This game won’t be much fun without animals to click on. Let’s update the “Play again?” button’s event handler method
to set up the buttons with eight pairs of emoji positioned randomly on the buttons.

Q Start creating a List of animal emoji.
Your event handler method needs to start with eight pairs of emoji, so you’re going to write a statement that
creates them and stores them in something called a List (you’ll learn a lot more about that in Chapter 8).

Switch back to MainPage.xaml.cs and start typing this line of code right gfler the statements that
you just added—but don’t end it with a semicolon, because that’s not the end of the statement yet:

List<string> animalEmoji = [

While you’re typing, you’ll see IntelliSense windows pop up to help you enter that code. The text that you type
will be in a bold color, followed by a suggestion generated by IntelliCode:

private void PlayAgainButton_Clicked(object sender, EventArgs e)

{
AnimalButtons.IsVisible = true; We took this streenshot just after we {:\/Pcd the
PlayAgainButton.IsVisible = false; word “List” The vest of the line is in a lighter

tolor to indicate that it’s an [ntelliCode su%cs{:ion.

List<string> list = new List<string>();
o I -
Org List<> System.Collections.Generic

.. 9 ListProxyChangedEventArgs

priv “g ListStringTypeConverter The IntelliSense pop—up

{ 93 ListView shows different valid words
& ListViewCachingStrategy that complete what you

} & ListViewSelectionMode started typing. £ looks a
0[2 ListBindableAttribute System.ComponentModel little di‘c event in /SCode,

9g ListChangedEventArgs System.ComponentModel ¥ but has the same options.

& R o F O
As soon as you typed the opening square bracket], Visual Studio added a matching one, placing your mouse
cursor between the two brackets.:
List<string> animalEmoji = [£— The mouse tursor should now be between the [brackets J.

Press Enter, then add a semicolon to the end. Your PlayAgainButton_Clicked method should now look like this:

private void PlayAgainButton_Clicked(object sender, EventArgs e)
{

AnimalButtons.IsVisible = true;

PlayAgainButton.IsVisible = false;

List<string> animalEmoji = [

15— Make sure You add the semitolon a(”ccr the closing J bratket.
42 Chapter 1

build something great...fast!

Some people think the plural emoji is
emojj) others think it's emojis. We went

d)
[with Cmo\)i——bu'{: both ways are ‘("'mc_l

e Add a pair of animal emoji to your list.
Your C# statement isn’t done yet. Make sure your cursor is placed on the blank line you added between
the brackets. Now let’s add eight pairs of animal emoji. You can find emoji by going to your

favorite emoji website (for example, https://emojipedia.org/nature) and copying individual emoji characters.
Alternately...

If you’re using Windows, use the Windows emoji panel (press Windows logo key + period). If you’re
using a Mac, use the Character Viewer panel (press the fn key, or Ctrl+38 +Space on older Macs).

Go back to your code and add a double quote " then paste the character—we used an octopus—
followed by another " and a comma, a space, another ", the same character again, and one more "
and comma. You might notice Visual Studio helping you enter this list—for example, when you enter a
double quote, it adds the closing quote.

Here’s what your list should look like now:

List<string> animalEmoji = [
IIQII' llgll,

Ii

— How to enter emoji

If you’re using Windows, use the emoji panel If you’re using a Mac, use the Character Viewer panel,
by pressing Windows logo key s period. by pressing Ctrl + 3 + space. Use the search box to search
Use the search box to search for a specific for a specific animal. When you find the emoji you want to
animal. When you find the emoji you want to enter, click on it to enter it as if you’d typed it.

enter, click on it to enter it as if you’d typed it.

— X B 40 X 0 & ¢ (x]

—» B3 Show Emoji & Symbols
& ©@ QU P & Q

Show Keyboard Viewer

3 c - (3
o g | Open Keyboard Settings... ’i«s.) j\nz ﬁ?\\ ‘.)“f ﬁ "“7 \/ \\\Q§
og X

Emoji

You tan also bring up the mae0S
DB Chavatter Viewer using the [nput
menu in the menu bav. H: Yyou

Press @ + peviod to bring don't see the [nput menu, open

up the Windows emoji panel, System Settings and searth for
a Yca"\/ usc(:ul 'b)ol ha‘t “.IV\FM{', W\Chu"—'{',hCY'C)S an OP‘{',.IOV\
lets 2 enter cmo‘")i casil\/- that you tan +urn on to show

QB8 ®&E Q@F »

the in?u{‘, menu in the menu bar.

you are here » 43

finish the first part of the code

44

o

Add the rest of the animal emoji pairs to your list.

Then do the same thing for seven more emoji so you end up with eight pairs of animal
emoji between the brackets. We added a blowfish, elephant, whale, camel, brontosaurus,
kangaroo, and porcupine—but you can add whatever animals (or other emoji!) that you want.

Add a ; after the closing curly bracket. This is what your statement should look like now:

A List is a eollection that stoves a
set of values in order. You'll learn all
about tollections in Chapters 8 and 9.

When You use [brackets J 4o syccif\/ a List, you'rc

using a tollettion expression. Eath animal in quotes is a
separate string value, and values ave separated by tommas.
You'll learn more about expressions in Chapter 8.

List<string> animalEmoji = [
n g n , n g n ,
R, e, e veally caretal with Dele-check that Yo ading this
", "8, the quotes and commas. tode inside the { brfackcﬁs } after the
" ", D If you miss one, your Pla\/AgainBuH‘,on__Cthcd method, and
", R code won’t build. not the Button_Clicked method.
n m n , n g n ,
n @ n , n a n .

1;

Finish the method.

You'll learn more about
loops in the next thapter.

Add the rest of the code to add random animal emoji to the buttons—this code goes after the

closing]; at the end of the collection expression and before the } at the end of the method:

foreach (var button in AnimalButtons.Children.O0fType<Button>())

{

int index
string nextEmoji
button.Text = nextEmoji;

animalEmoji.RemoveAt(index);

}

Before you run your app, read through the code that you just added. It’s OK if you don’t

This is a foreach
loop. It goes through
a collection (like
your list of emoji)
and executes a set of
statements for each
item it finds.

Random.Shared.Next(animalEmoji.Count);
animalEmoji[index];

understand everything that’s going on with it yet. An important part of learning C# is

starting to make the code make sense, and reading through it is a great way to do that.

Chapter 1

Reading through C# code—even if you don’t understand all

of it yet—is a great way to make it all start to make sense.

build something great...fast!

Make sure your code matches ours.
Here’s all of the G# code that you've added so far. We gave the parts that Visual Studio generated
for you automatically a lighter color so you can see the code that you entered yourself.

namespace AnimalMatchingGame; I you ehose a diffevent name for your

Projc(:[:, this line will mateh that name.

public partial class MainPage : ContentPage

{

public MainPage()

{
3

You added this line to make

InitializeComponent(); the animal buttons invisible

when the app Fiest starts up-

private void PlayAgainButton_Clicked(object sender, EventArgs e)

{

AnimalButtons.IsVisible = true;
PlayAgainButton.IsVisible = false;

List<string> animalEmoji = [

1;

Qr, g,

n a0 n 0 Visual Studio will
||%u ! ||%u' automatically indent
nggn " nggn " Make sure there ave exactly eight your code for you so’it
ngyn’ wg’ matthing paivs of emji. That's part Iook.s like ours. If you'’re
"I‘n_n?" ||hu 0“: Wha'{', makes 'H‘\C 33"\6 wovk. using VSCode, press
||m|| ! ""‘" ! Alt-Shift-F or _-Shift-F
" " pe ! to automatically fix the
! ! | indentation in your file.

foreach (var button in AnimalButtons.Children.O0fType<Button>())

{

int index = Random.Shared.Next(animalEmoji.Count);
string nextEmoji = animalEmoji[index];
button.Text = nextEmoji;
animalEmoji.RemoveAt(index);

You Jus{ added
this tode 1o add
the emoji to the

w ‘bons.

private void Button_Clicked(object sender, EventArgs e)

{
3

1

Visual Studio added this empty Button_Clicked event handler method

when you added a Clicked property to the button that you copied and

pasted. Make sure it’s there! If you’re using VSCode, you might need to

carefully type it by hand if it didn’t get added automatically.

you are here » 45

you created it and it works

Run your app!

Run your app again. The first thing you’ll see is the “Play again?” button. Click
the button—you should now see eight pairs of animals in random positions:

Time Elapsed: 0.0 seconds
. 0 ’ .
o | M
o B

Stop it and run it again a few times. The animals should get reshuffled in a
different order every time you click the “Play again?” button.

to look good!

that you’ll add.

46 Chapter 1

If you’re using Visual Studio, you
might see the in-app toolbar
hovering at the top of the window:

Go to Live Visual Tree

We hid the in-app toolbar in our
screenshots. You can keep yours

NG visible or use the arrow at the right

to collapse it.

You can also turn it off if you want
(but you don't have to!). Click the
first button in the runtime tools to

bring up the Live Visual Tree panel

in the IDE:

Live Visual Tree v 1 x

%K—‘@i@ @ =, @aR
Sea 8 =

Se s b
Enable In-app Toolbar
< W ANManviatenimgGame.exe [12804] 408

Then click the first button in the
Live Visual Tree to enable or
disable the in-app toolbar.

Wow, thi's game i's already starting

You’ve set the stage for the next part

When you build a new game, you’re not just
writing code. You're also running a project. A really
effective way to run a project is to build it in small
increments, taking stock along the way to make
sure things are going in a good direction. That way
you have plenty of opportunities to change course.

build something great...fast!

This is a penil-and—paper exertise. We intluded 3 lot of games and

?uzzlcs like this ‘[‘)woughou{‘, the book. ‘/ou should do all {:hcv.n,
because there's neurostiente evidente that writing things down is an

effective way to get important tontepts into your brain faster.

Who Does Wbétt?

C# statement What it does

List<string> animalEmoji = [

g, a8, Make the button display the selected emoji
n @1 n n @] 1] pay)
n @ n , n @ n '

n @ n , n @ n ,

" m n , n m n , i .

nlyn wign Find every button in the FlexLayout and repeat the
" gy " W ' statements between the { curly brackets } for each of them
n m n , n ﬁ n .

Make the “Play again?” button invisible

foreach (var button in AnimalButtons.Children.O0fType<Button>())
1

Create a list of eight pairs of emoji

animalEmoji.RemoveAt(index);

Make the FlexLayout with the emoji buttons visible

button.Text = nextEmoji;

Pick a random number between 0 and the number

string nextEmoji = animalEmojilindex]; of emoji left in the list and call it “index”

AnimalButtons.IsVisible = true;

Remove the chosen emoji from the list

int index = Random.Shared.Next(animalEmoji.Count);

Use the random number called “index”
PlayAgainButton.IsVisible = false; to get a random emoji from the list

you are here » 47

do all of the pencil and paper exercise

C# statement WI’IO Does WI]Ett 9 What it does
List<string> animalEmoji = [’Solutlon

" @ " g " Make the button display the selected emoji
"G, G,
QR
", nE
umn, ||mn,
"B, R,
.,
"®", "®",

Find every button in the FlexLayout and repeat the
statements between the { curly brackets } for each of them

Make the “Play again?” button invisible

Create a list of eight pairs of emoji

foreach (var button in AnimalButtons.Chi

{

.0fType<Button>())
Make the FlexLayout with the emoji buttons visible

animalEmoji.RemoveAt(index);

Pick/a random number between 0 and the number

button.Text = nextEmoji; of emoji left in the list and call it “index”

string nextEmoji = animalEmoji[index];

. o Remove the chosen emoji from the list
AnimalButtons.IsVisible = true;

int index = Random.Shared.Next(animalEfioji.Count);
se the random number called “index”

PlayAgainButton.IsVisible = false; to get a random emoji from the list

Here's another pentil-and—paper exertise. Take a few minutes 4o do it/

Nmﬂhrp your penci])
W\/f/ en your pency

Here's a pencil-and-paper exercise that will help you really start to understand your C# code.

1. Take a piece of paper and turn it on its side so it’s in landscape orientation, and draw a
vertical line down the middle.

2. Write out the entire PlayAgainButton_Clicked method by hand on the left side of the paper,
leaving space between each statement. (You don’t need to be accurate with the emoji.)

3. Ontheright side of the paper, write each of the “what it does” answers above next to the
statement that it's connected to. Read down both sides—it should all start to make sense.

48 Chapter 1

I'm not sure about these "Sharpen your pencil” and matching
exercises, Isn't it better to just give me the code to type into

build something great...fast!

the IDE?

Working on your code comprehension skills
will make you a better developer.

The pencil-and-paper exercises are not optional. They

give your brain a different way to absorb the information.

But they do something even more important: they give you , .
opportunities to make mistakes. Making mistakes is a We've sevious—take
part of learning, and we’ve all made plenty of mistakes (you the time to do the
may even find one or two typos in this book!). Nobody writes \’C“Cil‘a“d‘\’a"fr
perfect code the first time—really good programmers always —exevéises. They've
assume that the code that they write today will probably cav'cgu”\/ designed to
need to change tomorrow. In fact, later in the book you’ll veinforte importan

)
learn about refactoring, a name for programming techniques tontepts, and {')‘iz’"
that are all about improving your code after you've written it. the fastest way

aet the ideas in this
book into Yyour brain.

We'll add bullet points like £his +o 9ive

Bul]et Points

a quick summary of many of the ideas
K and tools that YOM)VC seen so fav.

m Visual Studio is Microsoft's IDE—or integrated
development environment—that simplifies and assists
in editing and managing your C# code files.

m_.Console apps are cross-platform apps that use text
for input and output.

u NET MAUI (or .NET Multi-platform App Ul) is a cross-
platform framework for building visual apps in C#.

= MAUI user interfaces are designed in XAML
(eXtensible Application Markup Language), an XML-
based markup language that uses tags and properties
to define controls in a user interface.

= MAUI apps are made up of pages that show controls.

» The FlexLayout control contains other controls and
wraps them so they display on the page.

m The IDE’s Properties window makes it easy to edit the
properties of your controls like the text or font size.

m C# is made up of statements grouped into methods.

= An event handler method gets executed when
specific events—Ilike button clicks—happen.

m Visual Studio’s Al-assisted IntelliSense and
IntelliCode help you enter code more quickly.

you are here » 49

save your code with git

My project has a lot of code already! Wouldn't it be
dreamy if there was an easy way for me to save everything
I've done someplace where I can save my code, share it, and
always find it any time I want?

You can use Git to save all of your code,
and Visual Studio will help make it easy.

You're going to write a lot of code in this book! Wouldn't it
be great if there was a convenient place to put that code so
you can always go back to it?

We bet that you’ll write some apps that you really like, and
you’ll want to share them with your friends so they can see
the great things you’ve built.

,,i = e = Do you have a desktop and a laptop? A computer at home
] and at an office? Wouldn't it be great if you could start a
project on one computer, then finish it on another one?

Imagine you’re working on a project. You've spent hours
getting the code right, and you’re really happy with it.
Then you make a few changes, and...oh no! Something
went completely wrong, your code is broken, and you don’t
remember exactly what you changed. It would be great if
you could see a history of all the changes you made, right?

Git can help you do all of those things!

Here are just a few things Git can do for you

50

*

*
*
*

It can save your files somewhere that you can access them from anywhere, any time.
It lets you save snapshots of your work so you can go back and see exactly what changed.
It lets you share your code with anyone (or keep it private!).

It lets a group of people collaborate on a project together—so if you’re learning C# with
your friends, you can all work on code together.

Chapter 1

build something great...fast!

Visval Studio makes it easy to use Git

Git is a really powerful and flexible tool that can help you save, manage, and share
the code and files for all of your projects. It can also be complex and confusing
at times! Luckily, Visual Studio has built-in Git suppeort that takes care of the

complexity. It helps you with Git, so you can concentrate on your code.

Visual Studio ean hcl? You treate
a new §it vepository on Gittub,

Visual Studio’s Git features help you
easily add your tode to any Git and
push hanges as often as you want.

_

% the popular Platform for source
tode hostin and -
. . nd ¢ollaboration.
Create a Git repository 9 tion
Push to a new remote “® Initialize a local Git repository L J Git Changes
: Publi [J Git Changes &
Q GitHub Local path ©® C:\Users\Public\s
) Azure DevOps .gitignore template D Default (VisualStu T main Y Pull || 1 Push
License template @ None Finished the third part of the animal matching game
Other
Add a READMEmd @
&) existing remote
< Local only () Create a new GitHub repository Commit Staged v Amend =
Account R Signin...
v Staged Changes
Owner There are no staged changes.
Repository name AnimalMatchingd
v Changes - 38 + Stage All
Description Enter the descript =] .gitignore
Private repository @ B AnimalMatchingGame
[&] AnimalMatchingGame.sin
E] AnimalMatchingGame.csproj AnimalMatchingGame
|§, App.xaml AnimalMatchingGame
@ App.xaml.cs AnimalMatchingGame

@ AppShell.xaml| AnimalMatchingGame

@ AppShell.xaml.cs AnimalMatchingGame

|§, MainPage.xaml AnimalMatchingGame

We recommend that you create a GitHub account and use it to
save the code for each of the projects in this book. That will

make it easy for you to go back and revisit past projects any time!

Our free Head First C# Guide to Git PDF gives you a simple,

step-by-step guide to saving your code

Download it from https:ligithub.coml/head-first-csharplfifth-edition.

OREILLY

Head First
G .t
A Leamer's Guide

to Understanding Git
from the Inside Out

in Git with Visual Studio.

We’ll give you everything you need to use Visual Studio to save and share
your projects. But there is a lot more that you can do with Git, especially if
you’re working with large teams! If you’re fascinated by what you see and

want to do a deep dive into Git, check out Head First Git by Raju Gandhi.

Roju Gandhi

@B A Brain—Friendly Guide

you are here » 51

how mouse clicks will work

You ARE HERE

s\,

i & /7

HANDLE Mouse
CLicks

Add G+ code to handle mouse clicks

You've got buttons with random animal emoji. Now you need them to do
something when the player clicks them. Here’s how it will work:

The player clicks the first button.
The player clicks buttons in pairs. When they click the
) first button, the game keeps track of that particular
S . button’s animal. The button that the player clicked
’k) changes color, so they can see what animal they
. clicked on.
o | N
28 The player clicks the second button.
il The game looks at the animal on the second button
: y and compares it against the first one they clicked on.
: The game compares its animal against the animal
W on the button that it kept track of from the first click.
s
‘“ The game
W repeats this
until all eight
@ 2 pairs of
animals are

matched.

alke
e

The game checks for a match.

If the animals match, the game goes through all of the
emoji in its list of shuffled animal emoji. It finds any emoji
in the list that match the animal pair the player found and
replaces them with blanks.

If the animals don’t match, the game doesn’t do anything;

In either case, it resets its last animal found so it can do
the whole thing over for the next click.

41 41

52 Chapter 1

build something great...fast!

en your penci]

Button lastClicked;
bool findingMatch = false;

. When you added the Clicked event handler to your animal button, Visual Studio automatically
added a method called Button_Clicked to MainPage.xaml.cs. Here’s the code that will go into that method. Before
you add this code to your app, read through it and try to figure out what it does.

We've asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.

1. What does matchesFound do?

int matchesFound; <€

(:o”owcd by a s?acc and
another double quote.

Colors.LightBlue;

{
if (sender is Button buttonClicked)
{
{

buttonClicked.BackgroundColor =

lastClicked = buttonClicked;

findingMatch = true;
}
else
{

{ c That's a double quote
matchesFound++; A
lastClicked.Text = " ";
buttonClicked.Text = " ";

}

lastClicked.BackgroundColor =

buttonClicked.BackgroundColor =

findingMatch = false;
}
}
if (matchesFound == 8)
{
matchesFound = 0;
AnimalButtons.IsVisible = false;
PlayAgainButton.IsVisible = true;
}

4. What do the last six lines of the method starting with if (matchesFound

private void Button_Clicked(object sender, EventArgs e)

if (!string.IsNullOrWhiteSpace(buttonClicked.Text) && (findingMatch == false))

Colors.Red;

} 2. What do these three lines of code do?

if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text))

\ 3. What does this block of code do?

-~

Colors.LightBlue;

8) and going to the end do?

you are here »

53

this code runs when the user clicks

Z~Sharpren vyour penci]
S olition

We've asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.

Button lastClicked; 1. What does matchesFound do?
bool findingMatch = false; [£ keeps track of the number
int matchesFound; <€ - -
of pairs of animals the player
?rlvate void Button_Clicked(object sender, EventArgs e) \cound, so the game Can end
if (sender is Button buttonClicked) when {:hc\/ found all 8 paivs.
{
if (!string.IsNullOrWhiteSpace(buttonClicked.Text) && (findingMatch == false))
buttonClicked.BackgroundColor = Colors.Red; | 2-Whatdo these three lines of code do?
lastClicked = buttonClicked; These lines are vun when the player elicks the
, Fndingflateh = true; first button of a potential mateh to change
else its color 4o ved and keep track of it.
{
if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text))
{
matchesFound++; \ .
lastClicked.Text = " "; 3. What does this block of code do?
buttonClicked.Text = " "; This block of code is run when the
3 i
lastClicked.BackgroundColor = Colors.LightBlue; >?la\/cr clicks on the second button
buttonClicked.BackgroundColor = Colors.LightBlue; [in the paiv. H: the animals mateh,
} findingMatch = false; it adds one to matthesFound and
} J blanks out the animals on both
if (matchesFound == 8) buttons. [also vesets the eolor of
{ the fiest button back and gets set
matchesFound = 0; . .
AnimalButtons.IsVisible = false; for the player to click the fiest
PlayAgainButton.IsVisible = true; button in 3 pair again.
}
4. What do the last six lines of the method starting with if (matchesFound == 8) and going to the end do?

[£ matehesFound equals 8, the player found all 8 pairs of animals. When that happens, these lines
veset the aame by setting matehesFound back to zero, hiding the animal buttons, and showing the
“Play a9ain?” button so the player can start a new game by clicking the “Play again?” button.

Do you see a warning in the Error List window about a non-nullable field? Your code will still run even when you
see green warnings (unlike red errors, which mean your code can’t run). But you should still pay attention to
warnings! Don’t worry about this warning for now—you’ll learn about what it is and how to fix itin Chapter 11.

54 Chapter 1

build something great...fast!

Enter the code for the event handler

Did you do the “Sharpen your pencil” exercise? If not, take a few minutes and do it—you may not understand 100% of
the code in the Button_Clicked event handler method yet, but you should at least have a basic sense of what’s going on.
And, more importantly, you've had a chance to look at it closely enough so that it should be familiar.

That familiarity will make it easier to use the IDE to type the code into the method. Stop your app if it’s
running—close the window or choose Stop Debugging (Shift+F5) from the Debug or Run menu—then edit MainPage.
xaml.cs, find the Button_Clicked event handler method that Visual Studio added for you, and click on the line between
its opening { and closing } curly brackets.

Now start typing the code from the “Sharpen” solution linc by line. If you haven’t used an IDE like Visual
Studio or VSCode to write code, it may be a little weird seeing its IntelliSense and IntelliCode suggestions pop up. Use
them if you can—the more you get used to them, the faster and easier it will be to write code later on in the book.

You need to be really careful when you’re entering code, because if your opening parentheses or brackets don’t have
matches, or if you miss a semicolon at the end of a statement, your code won’t build. Luckily, Visual Studio has a lot of
features to help you write code that builds:

* When you enter 1f it automatically adds the opening and closing parentheses () so you don’t accidentally leave
them out.

* If you put your cursor in front of an opening parenthesis or bracket, it will highlight the closing one so you can
casily see its match.

* Alot of the time, when you enter code that has problems—like writing matchesFnd instead of
matchesFound, for example—it will often point out the error by drawing a red squiggly line underneath it.

@0 IDE T5p: The Error List

An operating system like Windows, macOS, Android, or iOS can't run C# code. That's why Visual Studio has to build your
code, or turn it into a binary (a file that the operating system can run). Let's do an experiment and break your code.

Go to the first line of code in your Button_Clicked method. Press Enter twice, then add this on its own line: Xyz

Check the bottom of the code editor again—you'll see an icon that looks like this: or |:| If you don't see the
icon, choose Build Solution from the Build menu to tell Visual Studio to try to build your code.

Click the icon (or choose Error List from the View menu) to open the Error List window. You'll see two errors in the window
(if you're using a Mac it's called Errors and not Error List, and it looks a little different, but it displays the same information):

Error List v X

Entire Solution - I@ 2 Errors ‘ |A 0 Warnings I @ 0 of 2 Messages Build + IntelliSense - Search Error List P~
* Code Description Project File Line Suppression State
@ CS1002 ; expected AnimalMatchingGame (ne... MainPage.xaml.cs 46 Active
& (CS0103 The name 'Xyz' does not exist in the current context AnimalMatchingGame (ne... MainPage.xaml.cs 46 Active

Visual Studio displayed these errors because Xyz is not valid C# code, and the errors prevent it from building your app.
Your code won't run with those errors, so go ahead and delete the Xyz line that you added and build your app again.

If there are no other errors in your code, the Error List should be empty, and you'll see an icon that looks like this at the
bottom of the Visual Studio windovv:‘ @ No issues found ‘ or ‘ @ Build successful. ‘—that tells you that your app builds.

you are here » 55

now your game does more

Run your app and find all the pairs

Try running your app. If you entered all of the code correctly, it should start up and
show you the “Play again?” button. Click the button to see a random list of animals.
Then click each pair of animals one by one—each pair will disappear after you click
it. Once you click the last pair of animals, the buttons will disappear and you’ll see

the “Play again?” button again.

S ’ S — g ———_\|/
EIEIE 1 ..-c::..-e',’_\ E-IE K

a1 a1 a1 a1 ‘ a1 a1

Try experimenting with your app. Click mismatched pairs. Click in the window but
outside the buttons. Click on the “Time elapsed” label. Click an empty button. Is
your app working?

Uh-oh—there’s a bug in your code

If you typed in all of the code correctly, you may have noticed a problem. Start
your app, click the “Play again?” button to show the random animals, and click on a
pair to make the animals disappear from their buttons. Now click the one of the
blank buttons, then the other—and repeat that seven times. Wait, what
happened? Did the animal buttons disappear and the “Play again?” button appear,
as if you’d won the game? That’s not supposed to happen! Your game has a bug

Don’t worry, this bug is not your fault!

We left that bug in your code on purpose. You’re going to be writing a lot of code
throughout this book. Every chapter has several projects for you to work on...and
there are opportunities for bugs in every one of those projects. Finding and fixing
bugs is a normal and healthy part of writing code—and a really valuable skill for you
to practice.

When you find a bug, you need to sleuth it out

Every bug is different. Code can break in many different ways. But there’s one
thing all bugs have common: every one of them is caused by a problem in the
code. So when there’s a bug, your job is to figure out what’s causing it, because
you can’t fix the problem until you know why it’s happening.

If you’ve ever read a mystery novel or watched a detective show, you know that to
solve a mystery, you need to find the culprit. So let’s do that right now. It’s time
to put on your Sherlock Holmes cap, grab your magnifying glass, and sleuth out
what’s causing the bug.

56 Chapter 1

If your game doesn’t work
the way it should or you
don’t see the bug on this
page, go back and check
the code you entered
against the code in the
book. It’s really easy to
overlook a typo. Finding
those issues is a good
use of your time, because
spotting errors in your
code is a really good

developer skill to work on.

Every l)ug is
caused Ly a
prol)lem in
the c0c[e, SO
the first step
n fixing a
l)ug 1s {iguring

out what's

causing it.

@ build something great...fast!
Finding and Pm'mg bugs is one part ‘{',Y?Bng, nine parts H\inkin;ﬁ.n @) O
and 100% guaranteed to make you a better developer. That's O
what these “Sleuth it Out” sections ave all about. \' =

of Sleuth it Out
The Case of the Unexpected Match

You’ve probably heard the word “bug” before.

You might have even said something like this to your friends at some point in the past: “That game is really
buggy, it has so many glitches.” Every bug has an explanation, and everything in your program happens for a
reason...but not every bug is easy to track down. That’s why we'll include tips for sleuthing out bugs throughout
the book, starting with this “Sleuth it Out” section.

Every bug has a culprit.
Bugs are weird. They're what happens when your code does something you didn’t expect it to do.

But bugs are also normal. Every developer spends time finding and fixing bugs. It's a
normal part of writing code. You're going to write code that doesn’t do what you expect it
to. And when you do, the first thing you need to do is figure out what’s causing the bug.

The first step in finding a bug is thinking about what might have caused it.

Sherlock Holmes once said, “Crime is common. Logic is rare. Therefore it is upon the

logic rather than upon the crime that you should dwell.” That's great advice for figuring out what caused a bug.
Don't get frustrated because your app doesn’t do what you want (that's dwelling on the crime!). Instead, think
about the logic of the situation. So let’s look at the code and figure out what's going on.

Read the code carefully and search for clues.

We know that all of the code for handling mouse clicks is in the Button_Clicked event handler that you just
added. So let’s go back to the code and see if we can find clues about what went wrong.

Luckily, you did that “Sharpen your pencil” exercise. You looked closely at the code in the Button_Clicked
event handler method to understand it. (If you haven’t done that exercise yet, go back and do it now!)

Based on what we found in the “Sharpen your pencil” exercise, we already know a few things about the code:

+ The event handler uses matchesFound to keep track of the number of pairs of animals the player found, so
the game can end when they find all eight pairs.

+ There’s a part of the event handler that checks if the animals on the two buttons that the player clicked on
match each other. If they do match, it adds one to matchesFound and blanks out both buttons.

+ If matchesFound equals 8, the player found all 8 pairs of animals. There’s code at the end of the event
handler that checks to see if matchesFound is equal to 8, and if that’s true it resets the game.

Those are the important clues that will help us find and fix the bug. Before you go on, can you sleuth out
what’s causing the game to end early if you keep clicking a button that’s already been cleared?

you are here » 57

find the bug and fix it Y O

O

r-{ f)‘\} .

q”
=/ Sleuth it Out

Why did the bug happen?
Let’s think about those three clues for a minute. Here’s what we know:
+ The game uses matchesFound to keep track of the number of pairs of animals the player found.

+ If the player clicks on a pair, the game increases matchesFound by 1 and blanks out the buttons the player
clicked on.

+ When matchesFound reaches 8, the game resets itself.

So what are these clues telling us? There’s one conclusion that we can draw from these clues:
Somehow matchesFound is being increased by 1 when the player clicks on a button that’s already blanked out.
Which means we have a starting point: the code that increases matchesFound by 1.

Go back to the scene of the crime
Here’s the part of the code that increases matchesFound - the specific line that does that is in boldface:
if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text))

{
matchesFound++; 6_1 :
lastClicked.Text = " "; This statement uses the ++ operator to inerease
buttonClicked.Text = " "; the value of matehesFound by I. You'll learn about
} +4 and other operators in the next chapter.

The first line of code in the statements that we just showed you is an if statement, checks if something is true, and
if it is then it executes statements. In this case, if the player clicked a different button than the first one in the pair
(that's what “buttonClicked != lastClicked” checks for) and if the animals on those two buttons match (“buttonClicked.
Text == lastClicked.Text"), it increases matchesFound by 1 and blanks out both buttons.

This is where things went wrong—which means it's also where we can fix the bug. We just need to find a way to keep
matchesFound from getting increased by 1 if the player clicked a button that’s already blank.

We found the culprit, so now we can fix the bug.

Position your cursor between the last two closing parentheses)) in the if statement and press Enter to add a line.
Then enter the following code: && (!String.IsNullOrWhiteSpace(buttonClicked.Text))

Here’s what your code should now look like:

if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text)
&& (!String.IsNullOrWhiteSpace(buttonClicked.Text)))

{ ,\ Adding this eode to your “if” statement causes it

matchesFound++;
lastClicked.Text = " *; to make sure the button that the Player clicked on

buttonClicked.Text = " K ; is mot blank before addi"ﬁ | to matthesFound.

}

Once you've edited the if statement, run your app again. Now the bug should be fixed.

58

Chapter 1

build something great...fast!

You ARE HERE

Finish the game by adding a timer

Our animal match game will be more exciting if players can try to
beat their best time. We’ll add a timer that “ticks” after a fixed
interval by repeatedly calling a method.

Let’s add some extitement to the 5amcf The time
clapsed since the game started will appear at the
bottom of the window, (‘,ov\s‘tah{:l\/ 90ing up, and
only stopping after the last animal is matehed.

|

Time Elapsed; 6.1 seconds

Timers "tick” evér
time interval by
calling methods
over and over
again. You'll use a
" timer that starts

40 n

A

when the player
starts the game and
ends when the last
animal is matched.

you are here » 59

make your timer tick

Add a timer to your game’s code
In this last part of your project, you’ll add a timer to your game to make it more exciting, It /-—D(g) tbisy

will keep track of the time elapsed (in tenths of seconds), starting when the player clicks the
“Play again?” button and stopping when they find the last match.

@ Add a line of code to the end of the PlayAgainButton_Clicked event

handler to start a timer.

Go to the very end of the PlayAgainButton_Clicked event handler. There are two closing curly
brackets } at the end of the method on separate lines. Add three lines between the brackets, then
add the following line of code into that space that you created:

foreach (var button in AnimalButtons.Children.OfType<Button>())

{
int index = Random.Shared.Next(animalEmoji.Count);
string nextEmoji = animalEmoji[index];
button.Text = nextEmoji;
animalEmoji.RemoveAt(index);

3

Dispatcher.StartTimer(TimeSpan.FromSeconds(.1), TimerTick);

}

The line of code that you just added causes your app to start a timer that executes a
method called TimerTick every 0.1 of a second.

@ Examine the error and click on “TimerTick” in the code you just added.
You just added a line of code to start a timer that “ticks” every 10th of a second. Every time it
ticks, it calls a method called TimerTick. But hold on—your C# code doesn’t have a TimerTick
method. If you try to build your code, you’ll see an error in the Error List window:

€ (CS0103 The name ‘TimerTick' does not exist in the current context

And there will be a red squiggly line underneath TimerTicK in the line of code that you added.
Click on TimerTick in the C# code—when you click on it, Visual Studio will display an icon
shaped like a light bulb or screwdriver in the left margin.

35 button.Text = nextEmoji;

36 animalEmoji.RemoveAt(index);

37 }

38

39 Dispatcher.StartTimer(TimeSpan.FromSeconds(.1), TimerTick);
4o 3

41 1\

\thn you elick on TimerTick in the C# tode, Visual . . |
Studio displays either a light bulb or sevewdriver lfu‘.on. The ud. saiagly line Jc,clls ™ ‘md;rr
1€ looks sightly different in Visual Studio Code, byt 1 merTick that theve's an evvor here

works the sa)
60 Chapter 1 ¢ € sdme way

build something great...fast!

Use Visual Studio to generate a new TimerTick method.

The code that you added has an error because it refers to a method called TimerTick that doesn’t
exist. When you click on it, a light bulb or screwdriver icon shows up in the lefthand margin. If you
hover over it, you can see an error message and icon directly underneath it as well:

7=

Generate method 'TimerTick'

In VSCodc, the Quick

" | @ 50103 The name ‘TimerTick' does not exist in the current context

Aetions iton looks like
Generate property ‘TimerTick' Lines 37 to 38 .
[}
Generate field 'TimerTick' . . . a l Sh‘{.’ l?lﬁlb, V\O‘{', a
Generate read-only field ‘TimerTick' :?rlvate bool TimerTick() SCV‘CWdV‘IVCY‘.

Clicking the icon brings up the Quick Actions menu, which gives you some suggested potential
fixes for the error. You can also click on TimerTick and press Alt+Enter or Gtrl+. on Windows or
36 +. on a Mac—that’s a Control or 3 plus period—to on a Mac to bring up the menu:

&~

Generate method 'TimerTick' > | € 50103 The name 'TimerTick' does not exist in the current context

Generate property ‘TimerTick' Lines 37 to 38
Generate field ‘TimerTick')))
Generate read-only field 'TimerTick' :?rlvate el Ve el
Generate local ‘TimerTick' + throw new NotImplementedException();
Generate parameter ‘TimerTick' +}
+

Generate method 'TimerTick'

Button lastClicked;
Generate variable 'TimerTick' 4

Preview changes

The first option in the Quick Actions menu should be “Generate method "TimerTick”—and if you
select that option, you’'ll see a preview to the right. Choose that option.

Visual Studio will generate the TimerTick method for you. Look through your C# code in
MainPage.xaml.cs and find the TimerTick method that Visual Studio added:

private bool TimerTick()

{
}

throw new NotImplementedException();

When your C# code has errors, Visual Studio
sometimes has suggestions for potential fixes
that can generate code to fix the error.

you are here » 61

your game is almost done

Finish the code for your game

In this last part of your project, you’ll add a timer to your game to make it more
exciting. It will keep track of the time elapsed (in tenths of seconds), starting when the

player clicks the “Play again?” button and stopping when they find the last match. /“D({) ‘d’)is,'
Add a field to hold the time elapsed

Find the first line of the TimerTick method that you just generated. Place your mouse
cursor at the beginning of the line, then press Enter twice to add two spaces above it.

Add this line of code right above the TimerTick method you just added:

int tenthsOfSecondsElapsed = 0; &——— This is a field. \/Of* I learn
move about how Lields

private bool TimerTick() work in Chapter 3.

Finish your TimerTick method

Now you have everything you need to finish the TimerTick method. Here’s the code for it:

private bool TimerTick()

: We put an extra line break in this
1 (lthis.IsLoaded) return false: ffafcmcnf so it would £it on Lhe page
in the printed book, but You ean put
tenthsOfSecondsElapsed++; ‘/ it all on one line if You want. Make

sure the payr
TimeElapsed.Text = "Time elapsed: " + Parentheses match c"‘;“'Jd\/'
(tenthsOfSecondsElapsed / 10F).ToString("0.0s");

if (PlayAgainButton.IsVisible)
tenthsOfSecondsElapsed = 0;

return false;

}

return true;

} Time elapsed: 5.1
Run your game. Now the timer works!
e
\/
A &
‘ ;'”.5 n

62 Chapter 1

build something great...fast!

| 7@»@ our TimerTick Method Up Close

Let’s take a closer look at your TimerTick method to see how it, well, ticks. It has a total of seven
statements, and each of them is important.

. . . If you close your app, the
pr1vate bool TlmerTJ'CRC) timer could still tick after

{ the TimeElapsed label
disappears, which could

if (!this.IsLoaded) return false; &~ cause an error. This statement
keeps that from happening.

The timer ticks every 10th of
tenthsO-FSecondsE'Lapsed++; a second. Adding 1 to this

field keeps track of how many
of those 10ths have elapsed.

This statement updates the TimeElapsed
label with the latest time, dividing the 10ths
of second by 10 to convert it to seconds.

TimeElapsed.Text = "Time elapsed: " +
(tenthsOfSecondsElapsed / 10F).ToString("0.0s");

If the “Play Again?” button is visible again, that means the
game is over and the timer can stop running. The if statement
runs the next two statements only if the game is running.

if (PlayAgainButton.IsVisible)

{ We need to reset the 10ths of
seconds counter so it starts at

tenth sO-FSecondsE'Lapsed =0 : 0 the next time the game starts.

return false i This statement causes the timer
} to stop, and no other statements
in the method get executed.

t t . This statement is only executed if the if statement
return true, didn’t find the “Play again?” button visible. It tells
} the timer to keep running.

One last thing about the timer. The timer you used is guaranteed to fire no more than once
every 10th of a second, but it may fire a little less frequently than that—which means the
timer in the game may actually run a little slow. For this game, that’s absolutely fine!

you are here » 63

great job can you make it even better?

Even better ifs...

Yo

ur game is pretty good. Nice work! Every game—in

fact, pretty much every program—can be improved.
Here are a few things that we thought of that could
make the game better:

* Add different kinds of animals so the same ones
don’t show up each time.

* Keep track of the player’s best time so they can
try to beat it.

* Make the timer count down instead of counting
up so the player has a limited amount of time.

Congra‘l:ula{ions——\/ou built
a game, but You did move sreatjos,
£han that! You took the
Lime to veally undcz\'s\ﬁi:\d

w it works, and thats
Zovcv\/ im?o‘r{:an{: s‘l;q? :m —b
getting comfortable with
C# LonCCY{:&

—

_—

Bullet Points

)

a MINL

en your penci] —

Can you think of your own “even better if”
improvements for the game? This is a great
exercise—take a few minutes and write
down at least three improvements to the
animal matching game.

chrc sevious—take a few minutes and do

this. S'l:cﬂ?ing back and {:hinking about the
Project you just finished is 3 great way to
seal the lessons You learned into Your brain.

Did you add your code to a Git repo?

If you did, this is a great time to commit all of your
changes and push it to the repository!

And if you still haven’t, take a few minutes and
check out our free Head First C# Guide to
Git PDF. It gives you step-by-step instructions for
keeping your code safe in Git.

Download it today from our own GitHub page:
https://github.com/head-first-csharp /fifth-edition

= An event handler is a method that your application

calls when a specific event like a mouse click happens.

m Visual Studio makes it easy to add and manage your
event handler methods.

= The IDE’s Error List window shows any errors that
prevent your code from building.

= A timer calls a method over and over again on a
specified interval.

m foreach is a kind of loop that iterates through a
collection of items.

= When you have a bug in your code, the first thing to
dois try to figure out what'’s causing it.

m Bugs are normal, and sleuthing out bugs is an
important developer skill that you'll work on
throughout this book.

m Visual Studio makes it really easy to use source
control to back up your code and keep track of all
changes that you've made.

= You can commit your code to a remote Git repository.
We use GitHub for the repository with the source
code for all of the projects in this book.

64

Chapter 1

2 variables, statements, and methods

Dive into C# code

You’re not just an IDE user. You’re a developer.

You can get a lot of work done using the IDE, but there’s only so far it can take you.
Visual Studio is one of the most advanced software development tools ever made, but a
powerful IDE is only the beginning. It's time to dive in to C# code: how it’s structured,

how it works, and how you can take control of it...because there’s no limit to what you can
get your apps to do.

this is a new chapter

65

statements live in methods live in classes

Take a closer look at the files in your console app

In Chapter 1, you created a new C# Console App project and named it MyFirstConsoleApp. When

you did that, Visual Studio created two folders and three files.

-

MyFirstConsoleApp

| MyFirstConsoleApp.sin

—_—
MyFirstConsoleApp

————

MyFirstConsoleApp.csproj Program.cs

Let’s take a closer look at the Program.cs file that it created. Open it up in Visual Studio:

” MyFirstConsoleApp - Program.cs - O X
-0
[#] MyFirstConsoleApp - - ML
{3 1¢” // See https://aka.ms/new-console-template for more information A
2 Console.WriteLine("Hello, World!");
3
v
100% ~ @ @ No issues found ¥~ <4 » Ln:1 Ch:1 SPC CRLF

A statement performs one single action

Visual Studio eveated two foldevs
and three files for you. This file
has the ¢ode that you jus‘{: ran.

This is a sereenshot
of Visual Studio for
Windows. |£ \/ou)!rc
using VSCode the
seveen will look a little
diffevent, but the
tode will be the same.

/

A console app is an app with a text-only user interface. All its input and output goes to a console,

like the Windows command prompt, the macOS Terminal, or Linux Terminal.

Your app has two lines:

1. The first line is a comment. Comments start with two forward slashes // and everything

after those slashes is ignored. You can use comments to write notes about the code.

2. The second line is a statement. Statements are what make your code do things. In this case,

it’sa Console.WritelLine statement, which writes a line of text.

When you run your app, it starts with the first statement, and keeps executing statements until it
runs out, and since it’s a console app you’ll see its output in a console window. Once it executes the

last statements, the app exits.

66 Chapter 2

dive into c# code

So the IDE can really help me out. It
generates code, and it also helps me find
problems in my code,

The IDE helps you build your code right.

Along, long, LONG time ago, programmers had to use
simple text editors like Windows Notepad or macOS
TextEdit to edit their code. In fact, some of their
features would have been cutting-edge (like search and
replace, or Notepad’s Ctrl+G for “go to line number”).
We had to use a lot of complex command-line
applications to build, run, debug, and deploy our code.

Over the years, Microsoft (and, let’s be fair, a lot of
other companies, and a lot of individual developers!)
figured out how to add many helpful things like error
highlighting, IntelliSense, WYSIWYG click-and-drag
window UI editing, automatic code generation, and
many other features.

After years of evolution, Visual Studio is now one of

the most advanced code-editing tools ever built. And
luckily for us, it’s also a great tool for learning and
exploring C# and app development.

therejare no o
Dumb Questions

Q: I understand what Program.cs does—that’s where the code for my program lives. But does my program
need the other two files and folders?

A: When you created a new project in Visual Studio, it created a solution for you. A solution is just a container

for your project. The solution file ends in .sln and contains a list of the projects that are in the solution, with a small
amount of additional information (like the version of Visual Studio used to create it). The project lives in a folder inside
the solution folder. It gets a separate folder because some solutions can contain multiple projects—but yours only
contains one, and it happens to have the same name as the solution (MyFirstConsoleApp). The project folder for your
app contains two files: a file called Program.cs that contains the code, and a project file called MyFirstConsoleApp.
csproj that has all of the information Visual Studio needs to build the code, which means turning it into something
your computer can run. You'll eventually see two more folders underneath your project folder: the bin folder will
have the executable files built from your C# code, and the obj folder will have the temporary files used to build it.

you are here » 67

statements live in methods

Statements are the building blocks for your apps

Your app is made up of classes, and those classes contain methods, and those methods
. . . . A S‘{:a{:crncn‘l: tan
contain statements. A statement is a line of code that does something,
<— actually span multiple
So if we want to build apps that do a lot of things, we’ll need a few different kinds of lines, which \/ou'll see
statements to make them work. You've already seen one kind of statement: later in this book. But
Console.WriteLine("Hello, World!"); or now; You tan Just
think of ‘S‘ta‘f:crncn{:"
This is a statement that calls a method—specifically, the Console.WriteLine method, and “line of code” as
which prints a line of text to the console. We’ll also use a few other kinds of statements in the same {:M"ﬁ'

this chapter and throughout the book. For example:

We use variables and variable
declarations to let our app
store and work with data.

Lots of programs use math, so we
use mathematical oPerators to aJc[,
sulatract, multiply, o[ivic[e, and more.

Conditionals let our code choose
hetween options, either executing
one l)loclc of coJe or another.

Loo]os let our code run the
same block over and over again

2 =

until a condition is satisfied.

68 Chapter 2

dive into c# code

Statements live inside methods

You wrote a method in Chapter 1 to set up your animal matching game. But what, exactly, is a
method?

Methods do something

The Console.WriteLine method is part of .NET. It’s not hard to guess that a method that starts
with “Console.” has something to do with reading or writing text in a console app. In this case, it
writes a line of text to the console. It’s a really useful method, and you’ll use it—and a lot of other
.NET methods (it has thousands of them!)—throughout this book.

You’re going to write your own methods, and you’re going to write code that calls those methods.
To call a method, you write a statement that consists of the name of that method followed by

parentheses and a semicolon. You can pass information to that method by putting it inside those
parentheses—Ilike passing “Hello, World!” when your code called the Console.WriteLine method.

Methods help you organize your code

Every method is made up of statements, and one method can contain many statements. Code
tends to naturally organize into blocks, or lines of code which, taken together, do a specific thing.
Methods are your way to take those code blocks, give them names, and make them easy to call.

When your program calls a method, it executes the first statement in that method, then the next,
then the next, etc. When the method runs out of statements—or hits a *eturn statement—it
ends, and the program execution resumes after the statement that originally called the method.

Do you really need a method? You could copy the code in a method and paste it over the statement
that called that method, and the app would still work. When you put a block of code into a
method and give it a name, you make it a lot easier to understand what that code does.

You'll use methods over and over again throughout this book to organize your
code. Why do you think your code needs organizing?

When you're writing your code, you can take a block of code and turnitinto a
single method, multiple methods, or not use methods at all. How do you decide
where to break up your code into methods?

The Console.WriteLine method writes a line to the console. Does that name make
sense to you? Can you think of why it's useful for methods to have sensible names?

you are here » 69

every variable has a type

Your methods use variables to work with data

Every program, no matter how big or how small, works with data.
Sometimes the data is in the form of a document, or an image in a
video game, or a social media update—but it’s all just data. That’s where
variables come in. A variable is what your program uses to store data.

Peclare your variables

Whenever you declare a variable, you tell your program its fype and its name. Once
C# knows your variable’s type, it will generate errors that stop your program from) .
building if you try to do something that doesn’t make sense, like subtract "Fido" Any line that starts with

from 48353. Here’s how to declare variables: Il'is a comment and
does not get executed.

<€ You can use comments

// Let's declare some variables to add notes to your
. . code to help people
int maxWelg ht ! | read and understand it. |

string message;

bool boxChecked;

\ , Wllenever your

These are variable types. These are variable names. Program neec[s
C# uses the typeto C# doesn’t care what you .
define what data these name your variables— to Worl(Wltll
variables can hold. these names are for you.

numbers, text,
This is why it's veally hclyﬁul

for You 4o thoose vaviable names tt‘ue /{ alse Values,
that make sense and ave obvious.

or any other kind
of data, you'll use

good name.) This is really important because that idea is at the core of every VM@_S to keeP
program you’ll write. Say your program sets the variable myHeight equal to 63: .track 0{ tllem

int myHeight = 63; . y
Any time myHeight appears in the code, C# will replace it with its value, 63. Tlle Val"lal)le S
Then, later on, if you change its value to 12: type (Ie{ines Wllat

nyrelght = 12i kind of data it

C# will replace myHeight with 12 from that point onward (until it gets set
again)—but the variable is still called myHeight. can 1[0[(:[.

Variables vary

A variable is equal to different values at different times while your program runs.
In other words, a variable’s value varies. (Which is why “variable” is such a

70 Chapter 2

You need to assign values to variables before
you use them

Try typing these statements just below the “Hello,) ° '
World” statement in your new console app: r D@) ﬂYIS.
string z;
string message = "The answer is " + z;

Go ahead, try it right now. You’ll get an error, and the IDE will
refuse to build your code. That’s because it checks each variable
to make sure that you’ve assigned it a value before you use it.
The easiest way to make sure you don’t forget to assign values
to your variables is to combine the statement that declares a
variable with a statement that assigns its value:

int maxWeight = 25000;
string message = "Hi!";
bool boxChecked = true;

| —

These values are assigned to the
variables. You can declare a variable
and assign its initial value in a single

statement (but you don’t have to).

A few useful types

Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different C#
types in Chapter 4. In the meantime, we’ll concentrate on the
three most popular types. int holds integers (or numbers without
fractions or decimals), string holds text, and bool holds
Boolean true/false values.

var-i-a-ble, noun.

an element or feature likely to change.
Predicting the weather would be a whole ot

easter if meteorologists didn’t have 1o take s
many variables into account

dive into c# code

I you write code that
uses a variable that
hasn't been assigned
a value, your code
won't build. It's easy
to avoid that error
l)y COmLining your
variable declaration
and assignment into a
single statement.

|

Once)'ou)vC assigned 3 value
to your variable, that value
c?" thange. So there's no
d-sadvan{:agc to assigning 3
variable an initig| value when
You de¢lare it.

you are here » 71

let’s start writing code

Generate a new wmethod to work with variables

In Chapter 1, you learned that Visual Studio will generate code for you. This is quite useful
when you’re writing code—and 2¢’s also a really valuable learning tool. Let’s build on what

you learned and take a closer look at generating methods.

®

72

rD@ this!

Add a method to your new MyFirstConsoleApp project.
Open the Console App project that you created in the previous chapter. In Visual Studio choose File
>> Open >> Project/Solution. In VSCode, choose File >> Close Folder, then File >> Open Folder.

The Program.cs file has two lines of code that we saw in Chapter 1. Replace those two lines with this
statement—it calls a method named OperatorExamples:

OperatorExamples(); &—— A statement with the name of a method followed by
opening and ¢losing parentheses () calls that method.

Let Visual Studio tell you what’s wrong.
As soon as you finish replacing the statements, Visual Studio will draw a red squiggly underline beneath your
method call. Hover your mouse cursor over it. The IDE will display a pop-up window:

AAAAAAAAANANNANAN A

@~ [n VSCode, the box may

Q. ' ' . .
CS0103: The name 'OperatorExamples’ does not exist in the cur:icy book 3 ikble di££crc“£, and,
. .)
Show potential fixes (Alt+Enter or Ctrl+.) instead of “?oJcanual Lixes
it may say Quick Fix instead.

Visual Studio 1s telling you two things: that there’s a problem—you’re trying to call a method that doesn’t exist
(which will prevent your code from building)—and that it has a potential fix.

Generate the OperatorExamples method.

In Visual Studio, the pop-up window tells you to press Alt+Enter or Ctrl+. to see the potential fixes.
In VSCode, you may see a “Quick fix” link—press Ctrl+. / 38 +. to see the potential fixes. Click on
OperatorExamples and click the icon that looks like a screwdriver or light bulb (or press Ctrl+. or 38+.).
OperatorExamples();

(OR

Generate method 'OperatorExamples' ’T] & (CS0103 The name ‘OperatorExamples’ does not exist in the current

Introduce local for ‘OperatorExamples()’ context
OperatorExamples();

* IntelliCode suggestion based on recent edits: OperatorExamples() »
void OperatorExamples()

{
When the [DE generates a new method for /—@ NotImplementedEx%
}

youw it adds this “bhrow” statement as a

laccholdcr——i‘c You vun Your program, it wil}l S
Eal{: as soon as it hits that statement. You'll .
veplace that “throw” statement with tode. This sereenshot is from Windows. VSCode may not

show you a preview of the genevated code.
Choose the option to generate the method. The IDE will add three lines of code to Program.cs that
match the code in the preview window. Your top-level statements now have an OperatorExample method.

Chapter 2

dive into c# code

Add code that uses operators to your method +

Once you’ve got some data stored in a variable, what can you do with it? Well, if it’s a number, you

might want to add or multiply it. If it’s a string, you might join it together with other strings. That’s X
where operators come in. Here’s the method body for your new OperatorExamples method. Add

this code to your program, and read the comments to learn about the operators it uses.

void OperatorExamples() 4_7 When you generated
{ the OperatorExamples
// This statement declares a variable and sets it to 3 method, the IDE generated
int width = 3; code that included the
statement throw new
// The ++ operator increments a variable (adds 1 to it) NotImplementedException();
width++; You should delete that
statement and replace it with
// Declare two more int variables to hold numbers and the code we’ve given you, so
// use the + and * operators to add and multiply values your OperatorExample method
int height = 2 + 4; matches our code exactly. Be
int area = width * height; very careful that all of the
Console.WriteLine(area); quotes, parentheses, math
symbols, and semicolons
// The next two statements declare string variables match—it’s easy to make a typo.
// and use + to concatenate them (join them together))y 7
string result = "The area";

result = result + " is " + area;

Console.WriteLine(result); String vaviables hold text. When you use
the + opevator wi inas, it joi

// A Boolean variable is either true or false " * with strings, 't)oms them

bool truthValue = true; ,+'°5c+‘_h"‘ Adding “abe” + “def” vesults
Console.WriteLine(truthValue); in a single string, “abedef.

en your penci]

N The statements you just added to your code will write three lines to the console: each Console.
WriteLine statement prints a separate line. Before you run your code, figure out what they’ll
be and write them down. And don’t bother looking for a solution, because we didn't include one!
Just run the code to check your answers.

Here’s a hint: converting a bool to a string results in either False or True.

Line 1:

Line 2:

Line 3:

you are here » 73

the debugger helps you understand your code

Use the debugger to watch your variables change

When you ran your program earlier, it was executing in the debugger—and that’s an incredibly useful

tool for understanding how your programs work. You can use breakpoints to pause your program when

it hits certain statements and add watches to look at the value of your variables. Let’s use the debugger

to see your code in action. We'll use these three features of the debugger, which you’ll find in the toolbar:

$

Visual Studio > 2 ¥ * 9 Ov

T |atlming |YellsinE

(E11 Step Over (F10) — 3 %
Step Into (F11) P Sl Step Out (Shift+F11)
P VSCode e

If you end up in a state you don’t expect, just use the Restart button (9) to restart the debugger. Debu
“]
e Add a breakpoint and run your program. ﬂﬂs-

74

Click on the first line of your program and press F9 to add a breakpoint. The line should now look like
this—the line should be highlighted in red with a dot in the left margin:

OperatorExamples();

The screens in VSCode will look slightly
different, but the debugger works the

-ivoid OperatorExamples() same way, with the same shortcut keys.
s

WN =

Then press the | B MyFirstConsoleApp | button to run your program in the debugger, just like you did earlier.

If your app doesn’t pause on the breakpoint, make sure you’re starting
the app with debugging. Run the app by pressing F5 or choosing Start
Debugging from the Debug (Visual Studio) or Run (VSCode) menu.

Step into the method.

Your debugger is stopped at the breakpoint on the statement that calls the OperatorExamples method.
The ved background and dot show

N é orensterbranptes®: you wheve You ve set breakpoints. The
- uoid QpecatorEansplesl) yellow arvow and highlight show the
) ! line of code the debugger is paused on.

Press Step Into (F11)—the debugger will jump into the method and pause before it runs the first statement.

Examine the value of the width variable.
When you’re stepping through your code, the debugger pauses after each statement that it executes. This
gives you the opportunity to examine the values of your variables. Hover over the width variable.

3 id OperatorExamples()
@ : @ ; . &——————The highlighted bratket and arrow
5 (/ ThJ..S statement declares a variable in the et mavgin mean the code
6 int width = 3; ‘
L Qwidth 0 is paused just before the fivst
s-Eakcmcng of the method.

The IDE displays a pop-up that shows the current value of the variable—it’s currently 0. Now press Step
Over (F10)—it goes past the comment to the first statement, which is now highlighted. Now press Step
Over again, then hover over width again. It now has a value of 3.

Chapter 2

dive into c# code

The Locals window shows the values of your variables.

The variables that you declared are local to your OperatorExamples method—which just means that
they exist only inside that method, and can only be used by statements in the method. Visual Studio
displays their values in the Locals window at the bottom of the IDE when it’s debugging.

Locals v X v WATCH
Search (Ctrl+E) P v Search Depth: 3 - Yj;l Vlsual

me Value Type Studio

I N /

@ height 0 int

@ area 0 int

@ result null string

@ truthValue false bool

VSCode

ocals atc
: Watch1 VSCode doesn’t have a Locals

window yet, but the Watch window

. . works just like the one in Visual Studio.
Add a watch for the height variable.

A really useful feature of the debugger is the Watch window, which is typically in the same panel as the
Locals window at the bottom of the IDE. When you hover over a variable, you can add a watch by right-
clicking on the variable name in the pop-up window and choosing Add Watch. Hover over the height
variable, then right-click and choose Add Watch from the menu.

int height = 2 + 4;

int area =g height 0 Dft: The c[el)ugger

Console.WriteLine([J Copy Ctrl+C
// The next two st S C 1s one 0{ tlle
// and use + to cc Copy Value

most important

string result = "T

Edit Value
Consote Wrssel ine([63 Add Watdh \ | features in
// A Boolean variz S Visual Stuc[io,
Now you can sce the height variable in the Watch window. anc[it's a
Watch 1 . 2 v BX great tool for
Search (Ctrl+E) R ~ Search Depth: 3 ~ 'O ?‘@ unc[erstanc[ing

110W your

Programs WOI'](.

Step through the rest of the method.

Step over each statement in OperatorExamples. As you step through the method, keep an eye on the
Locals or Watch window and watch the values as they change. On Windows, press Alt+Tab before and
after the Console.Writeline statements to switch back and forth to the Debug Console to see the
output. On macOS, you’ll see the output in the Terminal window so you don’t need to switch windows.

you are here » 75

use double equals to check if things are the same

At the time we’re writing this, VSCode

Use OOde snippefs 1'0 help Wl’i‘l'e |00ps does not support C# code snippets.

You’ll be writing a lot of loops throughout this book, and Visual Studio can help speed things up for you with D 5

snippets, or simple templates that you can use to add code. Let’s use snippets to add a few loops to your i
OperatorExamples method. /‘H‘) IS!

If your code is still running, choose Stop Debugging (Shift+F5) from the Debug menu (or press the Stop button
[m |in the toolbar). Then find the line Console.WriteLine(area); in your OperatorExamples method. Click
at the end of that line so your cursor is after the semicolon, then press Enter a few times for some space. Now start
your snippet. Press Ctrl+K, Ctrl+X (so hold down control and press K and then X) to bring up the Insert Snippet
box. Choose “Visual C#” and then type or click while and press Enter. The IDE will add a template for a

while loop to your code, with the conditional test highlighted:
) £0% IDE Tip: Brackets -

while (true)
If your brackets (or braces, either name

{

} will do) don't match up, your program
won't build, which leads to frustrating
Type area < 50—the IDE will replace true with the text. Press Enter bugs. Luckily, the IDE can help with

to finish the snippet. Then add two statements between the brackets: this! Put your cursor on a bracket, and
the IDE highlights its match.

while (area < 50)

{ You can also type in this
height++; code instead of using a
area = width * height; shippet. Visual Studio Code

} may not support snippets.

Next, use the do/while loop snippet to add another loop immediately after the while loop you just added. Press
Ctrl+K, Cul+X and choose the C# do snippet. The IDE will add this snippet:

do Again, you ean just type in the For most snippets you can type the
{ (tode instead oi using a snipyc-b snhippet name and press tab twice.

) Go to a blank line and try it—type the
} while (Erue); word “do” and press the tab key twice.

Type area > 25 and press Enter to finish the snippet. Then add two statements between the brackets:

do
{

width—-;

area = width * height;
} while (area > 25);

Now use the debugger to really get a good sense of how these loops work:

1. Click on the line of code just above the first loop and choose Toggle Breakpoint (F9) from the Debug
menu to add a breakpoint. Then run your code and press F5 to skip to the new breakpoint.

2. Use Step Over (F10) to step through the two loops. Watch the Locals window as the values for height,
width, and area change.

3. Stop the program, then change the while loop test to area < 20 so both loops have conditions that
are false. Debug the program again. The while checks the condition first and skips the loop, but the do/
while executes it once and then checks the condition.

76 Chapter 2

dive into c# code

Use operators to work with variables

Once you have data in a variable, what do you do with it? Well, most
of the time you’ll want your code to do something based on the value. f @ \\--v-orvererrrrrmmrrmmmmmmreeenn. .
That’s where equality operators, relational operators, and :
logical operators become important.

Don’t confuse
" ‘ the two equals
WatCh ﬂj. sign operators!
Equality Operators : You use one equals
: sign (=) to set a
variable’s value, but
two equals signs
(==) to compare two
variables. You won’t
believe how many
bugs in programs—
Use > and < to compare numbers and see if a number in one even ones made
variable is bigger or smaller than another. by experienced
: programmers!—are
caused by using =
instead of ==. If you
see the IDE complain
that you “cannot

The == operator compares two things and is true if they’re equal.

The != operator works a lot like ==, except it’s true if the two
things you’re comparing are not equal.

Relational Operators

You can also use >= to check if one value is greater than or
equal to another, and <= to check if it’s less than or equal.

Logical Operators implicitly convert

You can combine individual conditional tests into one long test type ‘int’ to ‘bool,”

using the && operator for and and the | | operator for or. : that's probably what
: happened.

Here’s how you’d check if 1 equals 3 or j is less than 5:

(i==3) 1] (<5)

Use operators to tompare two int vaviables

You ean do simple tests by checking %he value of a variable using a
tomparison o\?e\ra{',o\r- Here's how You tompare +wo ints, x and ¥:

x <y (less than)

> y (greater than))
i ==yy %equals - and yes, with two equals signs)

These are the ones \/ou'll use most often.

you are here » 77

loops loop and loop and loop

if statements make decisions

Use if statements to tell your program to do certain things only when the conditions you

set up are (or aren’t) true. The if statement tests the condition and executes code if the test
passes. A lot of 1f statements check if two things are equal. That’s when you use the == operator.
That’s different from the single equals sign (=) operator, which you use to set a value.

int someValue = 10;

String message = nmn : Every if statement starts with a
test in parentheses, followed by

a block of statements in brackets
if (someValue == 2L|_) to execute if the test passes.

{
message = "Yes, it's 24!";

} The statements inside the
curly brackets are executed
only if the test is true.

if/else statements also do something if a condition jsu't true

if/else statements are just what they sound like: if a condition is true they do one thing
or else they do the other. An if/else statement is an if statement followed by the else
keyword followed by a second set of statements to execute. If the test is true, the program
executes the statements between the first set of brackets. Otherwise, it executes the statements
between the second set.

if (someValue 24)
{

REMEMBER—&|wa\/s use {:_vgg c‘\uals signs)
eheek if two things are equal to each other.

// You can have as many statements
// as you want inside the brackets
message = "The value was 24.";

}

else

1
}

message = "The value wasn't 24.";

78 Chapter 2

dive into c# code

Loops perform an action over and over

Here’s a peculiar thing about most programs (especially games!): they almost always involve doing
certain things over and over again. That’s what loops are for—they tell your program to keep
executing a certain set of statements as long as some condition is true or false.

while loops keep looping statements while a condition is true

In a while loop, all of the statements inside the curly brackets get executed as long as the condition in
the parentheses is true:

while (x > 5)

1
// Statements between these brackets will
// only run if x is greater than 5, then
// will keep looping as long as x > 5

¥

do/while loops run the statements then check the condition

A do/while loop is just like a while loop, with one difference. The while loop does its test first, then
runs its statements only if that test is true. The do/while loop runs the statements first, then runs the
test. So if you need to make sure your loop always runs at least once, a do/while loop is a good choice:

do

1
// Statements between these brackets will run
// once, then keep looping as long as x > 5

} while (x > 5);

The parts of the for
statement are called the
initializer (inti = 0), the
conditional test (i < 8), and

for loops run a statement after each loop

A for loop runs a statement after each time it executes a loop.

Every for loop has three statements. The first statement sets up the
loop. It will keep looping as long as the second statement is true. The
third statement gets executed after each time through the loop.

e ! \, . \
for (int 1 = 0; i <8; i=1i+ 2)
{
// Everything between these brackets
// is executed four times

the iterator (i =i+ 2). Each
time through a for loop
(or any loop) is called an
iteration.

The conditional test always
runs at the beginning of
each iteration, and the
iterator always runs at the
end of the iteration.

you are here » 79

get some practice with loops {‘OP LOOPS UP Close

A for loop is a little more complex than a while loop or do loop. The most common type of for loop \
just counts up to a length. The fox code snippet causes the IDE to create an example of that kind of for 4
loop:
for (int j'l =0: l < lﬁﬂgltb . l++) When You use ‘H\C “‘FOY" SV\.IPPC'{',, press Tab 4o swi{;{,h
: 1 O O K between i and length. I£ you ehange the name of

the variable i, the snippet will automatically change
) the other two otturventes of it.

A for loop has four sections—an initializer, a condition, an iterator, and a body:
for (initializer; condition; iterator) {

body
}

Most of the time you'll use the initializer to declare a new variable—for example, the initializer int i = 0inthe
previous for code snippet declares a variable called i that can only be used inside the for loop. The loop will then
execute the body—which can either be one statement or a block of statements inside curly braces—as long as the
condition is true. At the end of each iteration, the for loop executes the iterator. So this loop:
for (int i = 0; i < 10; i++) {

Console.WriteLine(“Iteration #” + 1i);
}

will iterate 10 times, printing Iteration #0, Iteration #1,.., Iteration #9 tothe console.

en your penci]

Ly Here are a few loops. Write down if each loop will repeat forever
or eventually end. If it’s going to end, how many times will it loop?
Also, answer the questions in the comments in loops #2 and #3.

// Loop #1 // Loop #2 // Loop #3
int count = 5; int j = 2; int p = 2;
while (count > 0) { for (int i = 1; i < 100; for (int q = 2; q < 32;
count = count * 3; i=1i=*2) qg=q* 2)
count = count * -1; { {
} j=3-1; while (p < q)
while (j < 25) {
// How many times will
Remember, a for loop always // How many times will // the next statement
runs the conditional test at the // the next statement // be executed?
beginning of the block, and the // be executed? p=p*2;
iterator at the end of the block. j=3+5; }
} q=pP~-4q
// Loop #u } }
int i = 0;
int count = 2; Hint: p starts out equal 4o
while (i == 0) { // Loop #5 Z. Think about when the
count = count * 3; while (true) { int i = 1;} statement ‘= P ¥ 2" s
count = count * -1; exetuted.
}

80 Chapter 2

dive into c# code

Some usefu] things to keep in mind ahout C# code

Don’t forget that all your statements need to end in a semicolon.
name = "Joe";

Add comments to your code by starting a line with two slashes.
// This text is ignored

¥ Use /* and */ to start and end comments that can include line breaks.
/* This comment

* spans multiple lines */

Variables are declared with a type followed by a name.
int weight;

// The variable's type is int and its name is weight

Most of the time, extra whitespace is fine.
So this: int j = 1234
is exactly the same as this: int j = 1234;

If/else, while, do, and for are all about testing conditions.
Every loop we've seen so far keeps running as long as a condition is true.

There's a flaw in your logic! What
happens it I write a loop with a conditional test that
never becomes false?

Then your loop runs forever.

Every time your program runs a conditional test, the result is either true or false. If it’s

true, then your program goes through the loop one more time. Every loop should have code
that, if it’s run enough times, should cause the conditional test to eventually return false. If
it doesn’t, then the loop will keep running until you kill the program or turn the computer off!

This is sometimes called
an in‘(:ini{c loo\?, and
fheve ave definitely
Limes when you’" want
+o use one in Your tode.

Can you think of a reason that you'd want
to write a loop that never stops running?

you are here » 81

get better at reading code

// Loop #1

int count = 5;

while (count > 0) {
count = count * 3;
count count * -1;

Loop #| exetutes onte.

RCmCmbCV‘, Cmm'(: = COW\‘[: * 3

the vesult (I5) back in the same
tount vaviable.

// Loop #uU

int i = 0;

int count = 2;
while (i == 0) {

count = count * 3;
count = count * -1;

}
Loop #4 vuns forever.

en your penci] v

Solution

muH’,i\?lics tount b\/ 3, then stoves

When we give You pentil—and—
Paper exertises, wcﬂlusua”y give
You the solution on the next Page.

Here are a few loops. Write down if each loop will repeat forever
or eventually end. If it's going to end, how many times will it loop?
Also, answer the questions in the comments in loops #2 and #3.

// Loop #2 // Loop #3
int j = 2; int p = 2;
for (int i = 1; i < 100; for (int q = 2; q < 32;
i=dix2) q=9q*2)
t j=3-1; while (p < q)
. ! {
¥h11e (G < 28 // How many times will
// How many times will // the next statement

// be executed?

// the next statement _)
p_p*zl

// be executed? }
j=3+5; _)
} }q—P‘q,

Loop #3 exetutes eight times.

}
Loop #2 exetutes seven times.
The statement p = p ¥ 2

exetutes three times.

A

The S'Ea'[:emcn{j =jt 5 is

exetuted b times.

// Loop #5
while (true) { int i

1;}
Loop #5 is also an infinite |ooP.

Remember, if your app

1

doesn't pause on the
brcak?oin'{:, make sure
you've starting the app
with dcbu%ing‘ Run the
app b\/ pressing FS or
thoosing Start Debugging

Take the

time to really figure out how loop #3 works. Here’s a

perfect opportunity to try out the debugger on your own! Set a
breakpointon q = p - q; and add watches for p and q to keep track
of how the values of p and q change as you step through the loop.

from the chu5 (Visual
Studio) or Run (VSCode)

menu.

82 Chapter 2

dive into c# code

en your penci]

Let's get some practice working with conditionals and loops. Update the code in your Program.file to match the following
new code, including TryAnlf, TryAnlfElse, and TrySomelLoops methods. Before you run your code, read it carefully
and try to answer the questions based on how you think it will run. Then run your code and see if you got them right.

TryAnIf(Q);
TrySomeLoops();)
TryAnIfElse(); What does the TryAnlf method write to the console?
void TryAnIf() B
{
int someValue = 4; S
string name = "Bobbo Jr.";
if ((someValue == 3) && (name == "Joe"))
{
Console.WriteLine("x is 3 and the name is Joe");
H
Console.WriteLine("this line runs no matter what");
}
void TryAnIfElse()
{
int x = 5; What does the TryAnlfElse method write to the console?
if (x == 10)
£ OO RO RRPRRPPRPP
Console.WriteLine("x must be 10");
H
else
{
Console.WriteLine("x isn’t 10");
H
}
void TrySomeLoops() What does the TrySomeLoops method write to the console?
{
int count = O
while (count < 10)
{ - . .
count = count + 1; We du.:ln’t'mclude answers for thls_
} exercise in the book. After you write
down the answers, create a new console
for (int i = 0; i < 5; i++) app—just like you did in Chapter 1—and
{ add this code, then check the output to
) count = count - 1; see if your answers are correct.
Console.WriteLine("The answer is " + count);
}

you are here » 83

every user interface has its own mechanics

The mechanics of a game are the aspects of the game that make up the actual gameplay: its rules, the
actions that the player can take, and the way the game behaves in response to them.

+ Let's start with a classic video game. The mechanics of Pac-Man include how the joystick controls the
player on the screen, the number of points for dots and power pellets, how ghosts move, how long they
turn blue and how their behavior changes after the player eats a power pellet, when the player gets extra
lives, how the ghosts slow down as they go through the tunnel—all of the rules that drive the game.

If you haven't played Pac-Man before, take a few minutes and watch a video of its gameplay. Even better,
play it yourself! There are many ways to play it. One easy way is to search Google for “Pac-Man"—they
created a playable Pac-Man game for its 30th anniversary that works in your browser using the arrow keys.

+ When game designers talk about a mechanic (in the singular), they’re often referring to a single mode of
interaction or control, like a double jump in a platformer or shields that can only take a certain number of
hits in a shooter. It’s often useful to isolate a single mechanic for testing and improvement.

+ Tabletop games give us a really good way to understand the concept of mechanics. Random number
generators like dice, spinners, and cards are great examples of specific mechanics.

+ You've already seen a great example of a mechanic: the timer that you added to your animal matching
game changed the entire experience. Timers, obstacles, enemies, maps, races, points...these are all
mechanics.

+ Different mechanics combine in different ways, and that can have a big impact on how the players
experience the game. Monopoly is a great example of a game that combines two different random
number generators—dice and cards—to make a more interesting and subtle game.

+ Game mechanics also include the way the data is structured and the design of the code that handles
that data—even if the mechanic is unintentional! Pac-Man’s legendary level 256 glitch, where a bug in
the code fills half the screen with garbage and makes the game unplayable, is part of the mechanics of
the game.

+ When we talk about the mechanics of a game written in C#, that includes the classes and the code,
because they drive the way that the game works.

84 Chapter 2

Here's another one of those “Qame Design...and chond" scc.Jcions;cThs, one
is all about mechanics, an important part of video game design. | ’ you've
not interested in writing video games, vead these settions anyway! They
have im\?or{‘,an{: contepts that we'll build on {:h\roughou{: +he book.

dive into c# code

I bet the concept of mechanics can help me with any
kind of project, not just games,

Definitely! Every program has its own kind
of mechanics.

There are mechanics at every level of software design.
They’re easier to talk about and understand in the context
of video games. We'll take advantage of that to help

give you a deeper understanding of mechanics, which is
valuable for designing and building any kind of project.

The mechanics of a game determine how hard or easy it
1s to play. Here’s an example: make Pac-Man move faster
or slow down the ghosts, and the game gets easier. That
doesn’t necessarily make it better or worse—just different.
And guess what? The same 1dea applies to how you design
your classes! You can think of how you design your
methods and fields as the mechanics of the class. The
choices you make about how to break up your code into
methods or when to use fields make them easier or more
difficult to use.

— Bullet Points

= Methods are made up of statements. Calling a = Operators like +, -, *, and / perform manipulations on
method executes its statements in order. the data stored in variables. The = operator assigns a

. . s value, while the == operator compares two values.
m Putting statements into a method and giving it a

name helps make your code easier to read. = if statements tell your program to do certain things
only when the conditions you set up are (or aren't)

= When a method runs out of statements or executes true

a return statement, execution resumes after the
statement that originally called the method.

Loops execute a set of statements over and over
again until a condition is met. for, while, and do/
while loops all iterate over statements multiple
times, but they work differently from each other.

m A variable’s type determines what kind of data—like
whole or decimal numbers, text, or true/false values—
that it can hold

Visual Studio’s code snippets feature helps you write

= You need to assign values to variables before you if statements and loops.

can use them.

you are here » 85

artificial intelligence can help you learn

B\c Sens-Al CI.CmCV\'[:S are all about helping you use an Al thatbot as a virtual C# sensei. We wanted
s{:é\r{: {:h.c fnrs{: one with an example ot just how ?owcr(:ul Al ehatbots tan be, so we asked Copilot
to write this introduetion. (We also asked it for permission to intlude its output in the book.)

Exploring C# with Al Chatbots: A Unique Learning Journey

Welcome to the fascinating world of C# development! As an author, you've already embarked on a mission to make
learning engaging and memorable. Now, let's take it up a notch by introducing a powerful ally: Al chatbots.

Why Al Chatbots? K “As an author"? Something seems weird heve.

Imagine having a friendly, tireless companion by your side—one that not only answers your questions but also
challenges you to think critically, nudges you in the right direction, and celebrates your victories. That's precisely what
Al chatbots can do for aspiring C# developers.

In this section, we'll delve into the pedagogical uses of Al chatbots, exploring how they can enhance the learning
experience, spark curiosity, and empower learners to explore C# independently.

The Generative Magic Behind Chatbots

Before we dive in, let's demystify the magic. Designers hamess a variety of machine learning and deep learning
techniques to create large language models (LLMs) that form the backbone of generative Al chatbots. These bots can
generate text, simulate conversations, and adapt to user input—while maintaining an engaging and conversational tone.

Seven Approaches to Educational Chatbot Use

« Al as Mentor: Timely feedback is crucial for learning. An Al chatbot can provide students with frequent, immediate,
and adaptive feedback. Whether it's essay structure or code debugging, the chatbot acts as a mentor, guiding
learners toward mastery.

. Al as Tutor: Effective tutoring involves personalized instruction and skill-building. Chatbots can supplement
traditional tutoring, offering explanations, analogies, and open-ended questions tailored to individual interests.

. Al as Collaborator: Imagine brainstorming with an Al buddy. Chatbots can collaborate on problem-solving, code
design, and creative thinking. They're the perfect coding companions for late-night sessions.

. Al as Debugger: Debugging code can be frustrating. Chatbots can analyze code snippets, identify errors, and
suggest fixes. They're like virtual debugging partners, always ready to lend a hand.

« Al as Code Generator: Need inspiration? Chatbots can generate code snippets, templates, and even entire
functions. They're the Swiss Army knives of C# development.

. Al as Quizmaster: Reinforce learning with quizzes. Chatbots can quiz learners on syntax, concepts, and best
practices. Plus, they won't judge you for forgetting semicolons.

. Al as Curator: Curate resources, recommend tutorials, and keep learners updated. Chatbots can be your
personalized C# library, accessible 24/7.

Your Hands-On Journey Begins

Throughout this section, we'll guide you through hands-on tasks. You'll reflect on educational uses of Al chatbots,
access commonly used generative Al tools, and practice interacting with a chatbot. Remember, while Al is powerful,

critical examination is essential. Let's explore, learn, and code together!
1

86

~ We agvcc_’
Chapter 2

“Sensei” is a Japanese term that entompasses dive info c# code
the vole of teather or instruttor. \B

SenS,AI.....
First lesson: Al chatbots aren’t perfect...and that’s OK

When you use an Al chatbot like Copilot, ChatGPT, Gemini, or Claude, you start with a prompt, or a question, statement,
or other kind of query to initiate a conversation. We used this prompt to generate the introduction to this section:

I'm the author of Head First C#, a book that aims to help people learn
about development with C# in a unique and engaging way. A section of that
book is about how to use AI chatbots as a tool to learn and explore C# on
their own. Can you help me write the introduction to that section?

It came up with a great introduction—it's good enough for us to use in this book! But it isn’t perfect. Take a look at
the second sentence that starts, “As an author, you've..."—that’s not quite right. The chatbot may have gotten a bit
confused because we started our prompt with “I'm the author.” This book isn’t for authors, it's for people learning to be
C# developers. Your mission isn’t making learning engaging and memorable—that’s our mission!

[Es prekby amazing that the Al gave us such areat text, even if we might
How to use Al safely: Trust but verify .t 4o edit it a liktle (like veplace ‘pedagogical with teaching—velated’).

Using Al chatbots is a skill that's becoming increasingly important to developers. One of our goals is to help you use

Al chatbots in a way that's safe, which means that you have to confirm two things yourself: that everything you learn
from an Al is actually and factually correct, and that any code the Al generates for you does what you want it to do.
We'll include these Sens-Al elements throughout this to help you learn how to confirm those things and use Al safely.

Here’s an example of the strengths and weaknesses of Al. We gave this prompt to Copilot, ChatGPT, and Gemini:

I have the following for loop in C#: rWl)etn yog're typingapgt;‘rrltpt‘
into a browser-base
int p = 2; We copied this chatbot, you may need to use
for (int q = 2; 9 <32, g =q *2) tode dired:ly Lrom Shift-Enter to add Iipe breaks.
grite (< @ bhe “Sharpen your | oitor ike VSGode, Windows
an . : . y

// How many times will the next pencil” earlier in this Notepad, or macOS TextEdit
//_statement be executed? Lha\?{:cr- You tan to edit your prompts. You can

}P =p*2; intlude code dirccﬂ\/ copy and paste them into the

—n — - in Your Prompis. browser—and then you can
} aTP- four promp | save them in a folder for later. |

How does it work, and how many times are the inner and outer loops executed?

The Al chatbots all gave an excellent explanation of how the loop worked—and all three gave us wrong answers for
how many times the loops are executed. In fact, they all gave different answers. We asked the same question a few
days later, and all three chatbots gave three entirely different wrong answers. And that's OK! Al technology is always
improving. It may never be perfect, but it will always be a helpful and valuable learning tool.

v Al vesearchers ave constantly updating theiv models with questions and their corveet

answers, so it may get the answer vight because the question and answer are in its database.
Try it out yourself

Open Copilot (https./copilot.microsoft.com), ChatGPT (https://chat.openai.com), Gemini (https:/gemini.google.com), Claude
(https://claude.ai) or any other Al chatbot, and type in the prompt about loops that we just showed you. Modify the code in the
prompt to replace it with other loops in the “Sharpen” exercise. Did the Al explain the loops well? Did it get the counts right?

statistical models—not actual thinking!—to generate sentences. But if you

Al chatbots don’t always give correct answers, in part because they use T
understand their limitations and practice using them, they can be really useful.

you are here » 87

controls are the building blocks of your user interface

Controls drive the mechanics of your user interfaces

In Chapter 1, you built a game using Button and Label controls. There are a lot of different ways that you can use
controls, and the choices you make about what controls to use can really change your app. Does that sound weird? It’s
actually very similar to the way we make choices about mechanics in game design. If you’re designing

a tabletop game that needs a random number generator, you can choose to use dice, a spinner, or cards. If you’re
designing a platformer, you can choose to have your player jump, double jump, wall jump, or fly (or do different things
at different times). The same goes for apps: if you’re designing an app where the user needs to enter a number, you can
choose from different controls to let them do that...and that choice affects how your user experiences the app.

Meet some of the controls you'll use in this book

Most of the chapters in this book feature a .NET MAUI project. We included them so you can go beyond console apps
and start learning how to build visual apps. In those projects, you’ll use many different controls to build each app’s user
interface (or UI)—or the way the window is laid out so the user can interact with it—of each app.

Here are the controls you've seen so far.

An Image control does exactly
what you’d expect it to do—it
displays an image. In this

case, it’s displaying the image Tlle user inter{ace
in afile called dotnet_bot.png. '
or UL is the part

of the app that

A label displays text. You .
H el I O W O r.I d ' can set the font size, color, y our user interacts
. spacing, and text decorations .
! (like italics or boldface). Wltll. In a console

app, the Ul is
made up of text,

A Button control shows a
clickable button. It can call a

method when you click it, and aIIC[tlle user uses
ou can set or change its text.
> 2 the lceylaoarc[to

interact with it. In

a MAUI app, the

We’ll spend the rest of this chapter building a MAUI app to experiment

with controls. You can find an equivalent web development projectin UI is l)l[llt using
the Head First C# Blazor Learner’s Guide, which you can download from
our GitHub page: https://github.com/head-first-csharp/fifth-edition controls.

88 Chapter 2

dive into c# code

Other controls you'll use in this book

Controls are common user interface components, and they serve as the Th ISIS a

build}ilng blocks of your .UI. The choices you make about what controls to mu |t| | ine

use change the mechanics of your app.

Most of the chapters in this book contain a .NET MAUI project. You’ll La bel co ntrOI .

use various controls to build the UI for each of those apps. Here are a few

of the ones that you’ll use. A Label can include multiple lines,

which are separated by line breaks

We tan borrow the idea of mecthanies so it knows how to split them up.
from video games +o understand our

options, so we tan make great choites
for any of our apps—not Jjust games.

Enter some text @ Off ® On

An Entry control lets your user A Switch is a horizontal button
enter text. It displays a placeholder, that lets the user toggle (or switch
or lighter-colored text that gives back and forth) between two
the user some information about states, in this case on and off.
what they should type.

These are two different controls
that let users enter numbers. A
Stepper (on the left) presents the
user with two buttons to increment

= + . P
or decrement—add or remove one— w
to a value. A Slider (on the right)
lets the user slide back and forth to
choose a decimal number.
Pick a bird
A Picker lets the user
choose an item from a list.
Pick a bird Duck It looks a little different in
Windows (on the left) and Pigeon
Pigeon ~ |I Pigeon macOS (on the right), but Pigeon
both versions function in
‘ Penguin | exactly the same way.
Ostrich
owl Done

you are here » 89

lots of ways to get input

Build a .NET MAUI app to experiment with controls

You've probably seen most of the controls we just showed you (even if you didn’t know all of their
official names). Now let’s create a .NET MAUI app to get some practice using some of them. The
app will be really simple—the user will use controls to enter values, and the app will display those values.

- 0 X
Hello, world| &
i s heve
Here's what you typed: Ah\/‘{’)\mg {-'hc uSCVT {:\/YC
will show up in this label.
Hello, world!

The user ¢an use these — and +
+ <« buttons to select a number, which
will get updated in this label.

Here's the stepper valuey
6

. ~ Sliding this back and forth causes the
Here's the slider value: numch' in {:his Iabcl ‘bo QC‘E u\’d&‘[’,cd

058 &0

Clicking on this control lets

You thoose a bird from a list.

Pick a bird Some birds

owl v Ostrich

Pigeon After You thoose a bird, elick this button
s ’ +o add it to the multiline label.

Oowl
J
Add a bird

Relax ..

Don’t worry about memorizing the XAML in this
project. You’ll pick it up throughout the book.

This Do 1his! and these exercises are all about getting
some practice using XAML to build a Ul with controls. You can always
refer back to it when we use these controls in projects later in the book.

90 Chapter 2

Create a new app to experiment with controls

Go back to Visual Studio and create a new .NET MAUI project, just like you did in
Chapter 1. Name your project ExperimentWithControls. Run your new .NET MAUI app.

dive into c# code

It will pop up a window with a picture of a cute robot, text that says Hello, World!, and smaller
text that says Welcome to NET Multiplatform APP U, and finally a button with the label Click me.

H

ExperimentWithControls

o

p— BoNOR &6
This is an image
% e
|
Hello, World! These are two
Welcome to labels with text.

.NET Multi-platform App Ul

R__~ This is a button that You an ¢lick.

X

EdiJcir:jg XAML and

€X%pan ing or CO“aPsin
39s in /SCode worksa
Jus‘l: like Visual Studio.

Now go back to Visual Studio and double-click the file MainPage.xaml to open it. Use
the expand/collapse buttons in the left margin to collapse the <Image>, <Label>, and
<Button> tags. Each of those tags corresponds to one of the controls in your app.

Vo000 EWNR

=
[$,lC)

16
20
21
26
27
33
34
35
36

<?xml version="1.0" encoding="utf-8" ?>

[The XAML for your MAUI page

starts with a ContentPage tag,
which can contain a single
control—in this case, it’s a
ScrollView, which scrolls
its content and displays a
scrollbar on the side.

A ScrollView contains a single
control. Yours contains a
VerticalStackLayout, which
can contain multiple controls
(like the Image, two Labels,
and Button on your page) and
displays them stacked on top
of each other vertically.

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="ExperimentWithControls.MainPage">
This <|maae> ;
<ScrollView> the b mdje 1;035 displays
! <V i calStackL e picture of the vobot
erticalStackLayout o Image eontrol.
. Padding="30,0"
flldk{w Spacing="25">
eve <Image />
eollapse ?
or expand <Label[_ /> These two <Label> tags
’ a tay, ereate Label controls that
<Label[. /> display the two lines of text.
<Button[. . |/>
| </VerticalStackLamThis <Button> tag
| </ScrollView> adds the Button
i tontrol o the page.
| </ContentPage>

you are here » 91

understanding your .net maui app

Explore your new MAUI app and figure out how it works

When you created your new .NET MAUI app, Visual Studio used a template to create the files for your
app, substituting the name that you specified (ExperimentWithControls) in various lines in the files. Let’s dig into
the project that you created.

fD@ this!
o Create a new .NET MAUI project called ExperimentWithControls.

Go back to Visual Studio and create a new .NET MAUI project, just like you did

in Chapter 1. Name your project ExperimentWithControls.

Q Run your app and click on the button.
When you run the app, you’ll see the app window—it should look like this:

EpermentwithContols

MAU] is Lross——\?la{:ﬁorm, whith means
you'll see the same aﬂ?—wr[‘)\ the
Hello, World! / same tode/—whether you've Funning

Welcome to Wmdows or m&COS

NET Multi-platform App Ul

Clickme

You know you want to click the “Click me” button. Go ahead! The label on the button will change
from “Click me” to “Clicked 1 time” and increment (or add one) every time you click the button.

)
on the breakpoint, make

sure You've starting it with
debugging. Run the app by

9 Investigate how the counter on the button works. pressing FS or thoosing
Go to the Solution Explorer, expand MainPage.xaml, and open MainPage.xaml.cs. Start chu%mg Lrom the
Find the line that has the statement count++; and place a breakpoint on it. chu5 (Visual Studio) or

Run (VSCode) menu
12 = private void OnCounterClicked(object sender, EventArgs e)
13
O 14 ;

15

if (count == 1 (
ig (CounterBtn?Text = $"Clicked {count} time"; Th,e C#code for a p'age
18 eles in your MAUI app is
19 CounterBtn.Text = $"Clicked {count} times"; called code-behind. The
20 XAML code and the C#
21 SemanticScreenReader.Announce(CounterBtn.Text); code in the code-behind
22 } file work together to

| make your page work.

Before you go to the next step, read the code.
Can you figure out how the button works?

92 Chapter 2

dive into c# code

e Click on the button and step through the code.

Add a watch for the count variable, just like you did earlier in the chapter. Then use “Step Over”
(F10) to step through the code. Here’s what the OnCounterClicked event handler method does:

* First it executes count++ to increment (or add one to) the count variable.

* Next it uses an if statement to check if the count variable equals 1. If it does, then it sets the
button’s text to “Clicked 1 time.”

* If it doesn’t equal 1, it sets the button’s text to “Clicked {count} times”—you’ll learn
more about exactly what the § dollar sign and {brackets} do in Chapter 5 (it’s called string
interpolation).

e Click on the button and step through the code.

The program should pause on the breakpoint, just like you saw earlier in the chapter:

12 = private void OnCounterClicked(object sender, EventArgs e)
13 { This “if” statement sets the text on the Count butto
— utton to

=) M@ / time” if count equals |, or “times” if it has any other value.

15

16 if (count == 1)

17 CounterBtn.Text = $"Clicked {count} time";

18 else

19 CounterBtn.Text = $"Clicked {count} times";

20

21 SemanticScreenReader.Announce(CounterBtn.Text);

22 }

Add a watch for the count variable, just like you did earlier with the OperatorExamples console app.
It should start out with the value 0. Press the Step Over button or F10 to go to the next statement.

The tount variable
ot it B

t 1 - ’ 17 value 0. After the
Search (Ctrl+E) e Search Depth: 3 Cgounb b stabement
Name Value Type is exetuted, the new

- ; : value is |. Eath time
jom - Count 0 lnt \lou Lllck ‘H’\C bu,tbh,

Keep stepping through the code. The if statement checks whether the count value is equal tounttt ':EY‘E:SCS
to 1. If it is, it executes this statement, which updates the text on the button: the value ¢

tount vaviable b\/ .
CounterBtn.Text = $"Clicked {count} time";
Go back to the window with the XAML code. Find this line:

<Button K This s the x:Namc"FroFcr{:y [t gave the button the
X Name:"CoMn" name Coun'l:C\rBfn ‘{:h&{ You £an use in Your C# tode.

Every control can have a name. The x:Name property sets the name of the control—in this case,
the button is named CounterBtn—and your C# code can use that name to make the control do things.

you are here » 93

a deep dive into your button

The XAML for Your Button Up Close

You've been editing the XAML code in your MainPage.xaml file—are you starting to get comfortable with it? This
is a great time to take a closer look at the part of your XAML that displays the button.

Here’s the Button tag. Take a look at each of its five properties. Can you figure out what they all do?

<Button
x:Name="CounterBtn"
Text="Click me"
SemanticProperties.Hint="Counts the number of times you click"
Clicked="0OnCounterClicked"
HorizontalOptions="Center" />

The x:Name property gives your control a name you can use in your code.
The first property is x:Name, which sets the name of the control so you can use it in your C# code:
x :Name="CounterBtn"
You just saw a control name in action. When you clicked the button, the event handler method executed this
statement to set the button’s text, using the name CounterBtn set by the x:Name property:
CounterBtn.Text = $"Clicked {count} time";

This line uses the CounterBtn name to update the text displayed on the button.

The Text property determines the text that's displayed on the button.

The XAML for a Buttons control has lots of options to change its appearance—like this next property:
Text="Click me"

The button displays “Click me” when you first run the app. That line of code in the method changes the text to
“Clicked 1 time” the first time you click it, then “Clicked 2 times” when you click it again. That line of code starts
with the name of the control (CounterBtn), followed by a period, followed by Text, the name of the property.

SemanticProperties help you make your apps accessible.
When we create our apps, we want everyone to be able to use them—and that includes people with disabilities.

A screen reader is a tool that lets people who are blind,
visually impaired, or have learning disabilities or other
conditions that interfere with their ability to read use our
visual apps. Semantic properties help your app work with a
screen reader.

A seveen veader is an aceessibility tool for people with L
visual, learning, or other disabilities—just like a wheelthair F

is an aceessibility tool for people with mobility—velated A
disabilities. They've both veally important for helping to % /=
make everyday things more atcessible o everyone. V,

94

Chapter 2

dive into c# code

=
\/

The best way to make your apps accessible is to use them the way someone with accessibility issues would—in
this case, using a screen reader built into your operating system.

The XAML for Your Button Up Close

Use a screen reader to experiment with the SemanticProperites.Hint property.

* In Windows, start the Narrator app. You can run it from the Start menu, or use Windows logo key + Ctrl
+ Enter to turn Narrator on or off, and Windows logo key + Ctrl + N to bring up Narrator settings. Narrator
will display a window with an overview of how Narrator works. It will also start to read the contents of that
window, displaying a box around the section of the window that it’s reading. You can go back to that window
to turn off Narrator.

+ In MacOS, start the VoiceOver utility. It lives in the Applications/Utilities folder, but if your keyboard has
Touch ID, the easiest way to turn it on or off is to press and hold the Command key while you quickly press
Touch ID three times. By default the VoiceOver utility displays a welcome dialog—press the V key or click
the Use Voiceover button to start VoiceOver.

Once you have Narrator or VoiceOver running, switch to your app window. You'll hear a voice telling you details
about what’s on the screen. People with visual impairments often have trouble using a mouse, so they use

the keyboard to interact with apps—and you'll do the same thing. Press the Tab key to navigate to the Click
Here button. The screen reader will announce that you are on a button. Listen closely—you'll hear it speak the
SemanticProperties.Hint value: “Counts the number of times you click.”

Press Enter to click the button. Your app will execute code that includes this statement:

SemanticScreenReader.Announce(CounterBtn.Text);

When it does, the screen reader will announce the contents of the button (“Clicked 1 time”).

The Clicked property tells your app what event handler method to run when the button is clicked.
Take a look at the next property in the button’s XAML code:
Clicked="0OnCounterClicked"

When you click the button, your app uses that property to figure out which method to run. You saw this in action
when you placed a breakpoint on the first line of that method.

The HorizontalOptions property centers your button. HorizontalOptions="d" />

When you run your app, the Click Me button is centered in the E!'a
middle of the window. Go back to the code editor, select the word &° CenterAndExpand
Center in that line of XAML code, and type C. Visual Studio will =2 End

display an IntelliSense pop-up with all of the different options. Try & EndAndExpand
selecting Start or End, then run your app again—now the button 2 Fil

will be displayed on the left or right side of the window. Experiment

with all of the different horizontal options for Button control. i Hncpand

g° Start
E° StartAndExpand

you are here » 95

add a control to enter some text

Add

an Entry control to your app

An Entry control displays a box for the user to enter text. You’ll add one to your app,
and you’ll use a really useful tool in Visual Studio to do it: the Toolbox window. The
Toolbox is a feature of Visual Studio that makes it easy to add controls to your app:

1.
2.

Stop your app, then open the MainPage.xaml editor window in Visual Studio.

Place your mouse cursor just after the closing /> bracket at the end of your
Button control tag, then press Enter three times to add three blank lines.
Click on the second line that you just added, so there’s a blank line above your
mouse cursor and another blank line below it.

Open the Toolbox window in Visual Studio (if it isn’t already open) by
choosing Toolbox from the View menu.

Double-click Entry in the Toolbox window. Visual Studio will automatically
add an <Entry> tag at your cursor location, on that blank line you added.

If you have trouble with the Toolbox, you also can type the XAML code directly into the editor.

Here’s what you should see in your XAML code:
<Button

X:

Name="CounterBtn"

Text="Click me"

SemanticProperties.Hint="Counts the number of times you click"
Clicked="0OnCounterClicked"

HorizontalOptions="Fill" />

<Entry Placeholder="" />

Now run your app. Congratulations, you just added a control for entering text!

ExperimentWithControls = [u] X

Home

‘/ow app now has a

\/ou may need to
use \IOIAV‘ mouse
sevoll wheel or
eursor keys to
sevoll down 1o see
the new tontrol.

Visual Studio's Toolbox window
helps You add new eontrols

to your XAML code. 1€ You
dont see the Toolbox window,
thoose “Toolbox” from the

View menu to disyla\/ it.

’

Toolbox v+ A X
Search Toolbox P~
4 Controls -

Rk Pointer

B BoxView

%3 Activitylndicator

Gy Button

[E] carouselView

[E] CollectionView

DatePicker

itor

Entry

"] Image

k Label

E Lstview

E Picker

&) ProgressBar

,0 SearchBar

O~ Slider

Stepper

(8 Switch

BR TableView

Q, TimePicker =

|£ you'\rc using /SCode, it doesn't have a Toolbox,

| at)
e f:ﬁlf:fiii & Hello, World! so Youll need to type the XAML in by hand.
user tan enter text. Welcome to

.NET Multi-platform App Ul

96

slightly different XAML.

Chapter 2

The screenshot and XAML for the
app are from the MAUI template
that’s part of NET 9. If you're
using a different version of .NET,

} you may see a different image and

dive into c# code

Add properties to your Entry control

Let’s make your Entry control a little more usable by adding placeholder text, or text that
appears in a lighter color to help the user understand what they’re supposed to enter.

Edit the XAML code for your Entry control to add a Placeholder property. And

since we always want our apps to be accessible to people who use screen readers, add a
SemanticProperties.Hint property too. Notice that when you add the properties, they show
up in Visual Studio’s typeahead pop-up window, making it easier for you to add them.

Your Entry tag should look like this:

<Entry
Placeholder="Enter some text"
SemanticProperties.Hint="Lets you enter some text" />

Now run your app—you’ll see a new Entry control at the bottom. The placeholder text will
appear as (“Enter some text” in a lighter color, and will disappear as soon as you type text into it.

il A At the time we’re writing
this, VSCode does not

have a Toolbox, so you'll
need to type all of the
XAML by hand. Make
sure it matches the XAML
in the book exactly, or the
app won't work.

Enter some text

£ you don't see the control at the
bottom of the window, use the cursor

keys or mouse sevoll wheel to sevoll

down 4o it..

thereqare no o
Dumb Questions

Q: Why did the Entry control get added to the bottom of my app? How did it know where in the window to display?

AI When you created a new .NET MAUI app, Visual Studio used a template that generated the XAML code for the main page in the
MainPage.xaml file. This file contains a set of nested tags, or tags that contain other tags—so one tag’s start and end appear after the
start and before the end of another tag. Each of these tags creates a specific kind of control that determines how the page is displayed.

The outermost tag in your app’s XAML is a <ContentPage> opening tag, which defines a single view that contains the rest of the
page. If you scroll down to the bottom of the file, you'll see the closing </ContentPage> tag. Right inside that <ContentPage>
is a <ScrollView> tag—everything between the opening <ScrollView> and closing </ScrollView> tags defines
contents that will automatically display a scrollbar that lets you scroll up and down if it’s too long for the page. The <ScrollView>
tag contains a <VerticalStackLayout> tag, with a matching </VerticalStackLayout> closing tag at the bottom.

A VerticalStackLayout can contain a series of controls, one after another. Each of those controls will be displayed on the page in a
vertical stack, in the order that they appear in the file.

So since the Entry control is at the bottom of the file just above the closing </VerticalStackLayout> tag, it will appear at the
bottom of the page. And because it's nested inside the <ScrollView>. . .</ScrollView> tags, if you make your window
shorter than the height of the page, you'll be able to scroll down to it.

you are here » 97

change text in your entry get your label to update

Make your Entry control update a Label control

Your app already has two Label controls. Let’s add a third one and make it display everything the Entry does, so when
you enter or update text in the Entry it automatically updates the Label.

®

98

Use the Toolbox to add a new Label control to the bottom of your page.
When you drag the Label out of the Toolbox, it will have an empty Text property:

<Label Text="" />

Change the Text property to make it display text. Then give it a SemanticProperties.Description property.
This is what will get read aloud if your user is using a screen reader:
& Y) You tan add line breaks
<Label Text="Here's what you typed:" bC£WCﬂ\Pran£ks{D
SemanticProperties.Description="Here's what you typed:" /> ”akcfhﬂhcaﬂcr{oytad

Use the Toolbox to add a second Label control under the one you just added.
Every time the user changes the text in your Entry control, the app will update this new Label to show the
text that they typed. Drag a new Label control out of the Toolbox and drop it in your XAML code between
the Label control that you just added and the closing </VerticalStackLayout> tag Then set its
properties:

* You'll be writing code to set the Label text, so delete the Text property.

* Since you're going to write code that updates the Label, you'll need to give it a name. Use an x:Name

property to name it Entered Text:
x:Name="EnteredText"

* Keep making your app accessible by adding a description for people using a screen reader:
SemanticProperties.Description="The text that the user entered"

Your new Label should look like this:

<Label x:Name="EnteredText"
SemanticProperties.Description="The text that the user entered" />

Give your label a background color.
Add a BackgroundColor property. When you start typing, Visual Studio will pop up an IntelliSense window.
Choose Gold for the background color.

<Label x:Name="EnteredText" o
SemanticProperties.Description="The text that the user entered" ‘{ou ¢an use Visual Studio's

BackgroundColor=" R/> In{clligcnsc to hcly You add
g Fuchsia - yroycv{ics. Onte You add it,
&° Gainsboro J \/ou'll see a box with 3 preview
&P GhostWhite of the tolor in the XAML

editor

&° Goldenrod
=2 Gray

= Green BackgroundColor="Gold" />
g° GreenYellow

g° Grey v

Chapter 2

dive into c# code

An update to Visual Studio since we took this screenshot may have removed Margin from the
Properties window. If you don't see it (or any other property), just type the XAML so it matches.

@ Use the Properties window to add a bottom margin.
So far you’ve been adding properties by writing XAML code by hand. Luckily, Visual Studio has some useful
tools to help you edit your XAML. The Properties window gives you an easy way to edit the properties on
your controls. Click the XAML for your Label control so the cursor is somewhere between the tags. Go to
the Properties window (if you don’t see it, use the View menu to display it) and find Margin. Enter 20 for the
lower margin to give it a 20 pixel margin (where a pixel is 1/96th of an inch on an unscaled screen).

When this square turns black (or

e 0 >0 - eivele if you've using mac0S), it
40 means that the property has a value
set. \/ou can elick it to see a menu.
Your property should now look like this: Enter 20 for the bottom mavgin o give 20 uniks of
<Label x:Name="EnteredText" space between the label and the bottom of the page.

SemanticProperties.Description="The text that the user entered"
BackgroundColor="Gold" Margin="0,0,0,20"/>

@ Add an event handler method.
Back in Chapter 1, you used event handler methods so your animal matching game could respond to
mouse clicks and timer ticks. Now you know more about C# methods—this is a good chance to apply that
knowledge by creating a new event handler method that updates the EnteredText control when the user types
in the Entry control. Add a TextChanged property to your Entry control. When it comes time to enter the
value, Visual Studio will suggest the value <New Event Handler>:

<Entry Don’t forget—VSCode
Placeholder="Enter some text" may not have this
SemanticProperties.Hint="Lets you enter some text" feature yet, so you might
TextChanged="" need to type the Entry
/> & TextChanged method in
by hand.

Press Return or use the mouse to accept the suggestion—this will cause Visual Studio to add a new event
handler method called Entry_TextChanged automatically. You probably also noticed that it also
displayed this message when you were adding the event handler:

Bind event to a newly created method called 'Entry_TextChanged'. Use ‘Go To Definition’ to navigate to the
newly created method.

Right-click on Entry_TextChanged and choose Go To Definition. This will open up MainPage.xaml.
¢s and jump directly to the method that Visual Studio added. Add this line of code to the method:

private void Entry_TextChanged(object sender, TextChangedEventArgs e)/|f \/,,u’m using /SCode,

{
EnteredText.Text = e.NewTextValue; and add ‘H’\is\')us{; above

} the last ¢losing bracket.
Now run your app. You should see a label that says “Here’s what you typed:” followed by a gold-colored
label. Click on the Entry control and type some text—it will appear in the gold-colored label immediately.

open MainPage.xaml.cs

you are here » 99

accessibility matters and makes your apps better

Why do I need to add those
semantic hints? It's not like you can see
them, Does /it really matter if they're
not there?

When you pay attention to accessibility, it makes
your app—and your code!—better.

When you’re building apps, it’s always a great idea to create them
so as many people can use them as possible, including people with
disabilities—and not just because it’s the right thing to do. Building
accessibility into your apps actually helps you become a better
developer. Really!

If you want to be a great developer, you need to get practice writing
code: writing code 1s a skill, and the more code you write, the better
you get at it. But there’s more to being a developer than “just” coding.

One of the biggest challenges that very experienced developers

face is deciding exactly what they want to build. In fact, a lot of
programmers will talk about the challenges of “building the software
right and building the right software.” One of the most common
problems in software engineering is building a great product that
doesn’t do what your users need.

That’s where accessibility can help you. Building accessible code
A) < book | well means taking the time to really understand how people with
One °|(" our :"5 goals Wlt: ihi'lloo{:h::{ disabilities will use your app. Taking the time to understand and
1o help you learn important skills

d j empathize with them will help you build your app better—and it’s
vill :‘CIY yolu bcéol:(n ¢ dansi!——:hrouv\ great practice for skills that will help you build the right software.
great developer. Understanding your

usevs is a veally important skill, and
paying attention to aceessibility is a

great way o get better at it! Ma]ée it
Stick

Here’s o great way to get access

: reat ibili
ideas fo/shck in your brain—especia//;yif
you don't have g disability. Turn on your

| screen reader, th i]

usmg a streen vreader code or do ofheri’: ’°k°"o°"°" e you

. : ork. ’

is an eflective way to fo it, close your and koep worird”
i ettectiue vay : eyes and keep working

3 etter feel for an you work using just the scre /

acc:ssibi'i‘{;)ﬂ T — e

100 Chapter 2

Don't forget, it's absolutely fine to peek at the ‘ dive into c# code
so|u{',ion——es\7€£ia||\/ i-(: \/ou,\rc using VSCode and Jcr\/mg
to figwc out how +o add the event handler mc{:hods._\/

Exercise

You added Entry and Label controls to your app—and Visual Studio’s Toolbox window, Properties window, and
IntelliSense helped you. Can you add six more controls to your app to let your user enter numeric values?

= (m] X

Here's what you typed:

This is a Stepper control. It keeps track of a
-+ whole number value, and its + and - buttons

cause that number to go up or down by 1.

This Stepper is followed

Here's the stepper value: by two Label controls, just
like the ones you added
7 for the Entry. We colored

our second label light blue.

~

Here's the slider value: [This long bar with a circular handle is a Slider control. It lets you

choose a decimal value. It’s followed by two more Label controls.

0.328 [

Use the Toolbox window, Properties window, and Visual Studio editor to add a Stepper control, two Label
controls, a Slider control, and two more Label controls to your app (if you're using VSCode, add them manually).

The two Label controls that display the values should have the BackgroundColor property set to LightBlue.
Name them StepperValue and SliderValue. Make sure you add SematicProperties.Description properties.

You want your app to automatically update the StepperValue control every time the stepper value changes, so
add a ValueChanged event handler to the Stepper control. Add this line of code to the event handler:

StepperValue.Text = e.NewValue.ToString();

Then add a ValueChanged event handler to the Slider control. It should be identical, except that it updates the
SliderValue label instead of the StepperValue label. Don't forget to add SemanticDescription.Hint properties to
your Stepper and Slider controls.

If you’re using VSCode, you’ll need to add the Stepper_ValueChanged and Slider_ValueChanged
methods manually. They’re just like Entry_TextChanged, just replace "Text" with "Value" in the first
line. Visual Studio’s Toolbox automatically adds these properties to the Stepper tag: Minimum="0"

Maximum="10" Increment="1"—and these to the Slider tag: Minimum="0". Maximum="1".

you are here » 101

add a picker to your app

Exercise

Solution
This is the Label control that was
alrcady in Your XAML code—make sure

Here's the XAML to add the six controls to MainPage.xaml: You Put Your six new controls below it
<Label x:Name="EnteredText" -
SemanticProperties.Description="The text that the user entered .
BackgroundColor="Gold" Margin="0,0,0,20"/> These are the default properties when
Aj you dvag the Stepper out of the
<Stepper Minimum="0" Maximum="10" Increment="1" Toolbox. Try expevimenting with them.
SemanticProperties.Description="Lets you enter a whole number"
ValueChanged="Stepper_ValueChanged" />

<Label) You tan add this ValueChanged property Jjust like
Text="Here's the stepper value:" You did vith TextChanged on Your Entry eontrol.
SemanticProperties.Description="Here's the stepper value" />

<Label x:Name="StepperValue"
SemanticProperties.Description="The number the user chose with the Stepper"
BackgroundColor="LightBlue" Margin="0,0,0,20"/>

<Slider Minimum="0" Maximum="1" ValueChanged="Slider_ValueChanged" />

<Label |\ Heve's the Slider control. [£ has the default
Text="Here's the slider value:" propecties, plus a ValueChanged Property
SemanticProperties.Description="Here's the slider value" />

<Label x:Name="SliderValue"
SemanticProperties.Description="The number the user chose with the Slider"
BackgroundColor="LightBlue" Margin="0,0,0,20"/> *hrasfth$be|thatdkpbysthc

</VerticalStackLayout> Slider value. [t works exactly like

he Lab
[\ This is the ¢losing VerticalStackLayout tag that was alveady in your faI:c .I: EL;/‘E"EM ::’ Eror the
XAML eode—make sure You put Your six new ¢ontrols ahgig it. ¥ Gontrol

Here are the event handler methods to add to MainPage.xaml.cs:
private void Stepper_ValueChanged(object sender, ValueChangedEventArgs e)

{
) StepperValue.Text = e.NewValue.ToString(); The two event handlers for the Stepper

and Slider ontrols update the Label.
private void Slider_ValueChanged(object sender, ValueChangedEventArgs e)

{
SliderValue.Text = e.NewValue.ToString();v

}

In the exercise instructions, we gave you this line of code:

SliderValue.Text = e.NewValue.ToString();

Heve's a hint: Stepper and Slider ontrols can only _—= ’
provide numeric values, but Labels ean only display text. | What do you think . ToString() does?

102 Chapter 2

dive into c# code

Combine horizontal and vertical stack layouts

In this last part of the exercise, you'll add a Picker control, which displays a list of items that you can
pick from. You’ll also use a Label control to display the values that were picked. Here’s what it will look like:

is 1 itkevr
Pick a bird Some birds This is a Pu:lfc o
i ‘ control. [E will display
Pigeon v Penguin

Ostrich a lis{; o£ bivds.

Duck

59 When the user pieks a bird and

- c.licks the “Add a bird” button, the
bivd will get added 4o this Label.

Add a bird

Notice how the Label and Picker controls are next to each other? You’ll get that layout by using a
HorizontalStackLayout control. It works just like the VerticalStackLayout control, which causes all of
the controls you’ve added to your app so far to be stacked vertically on top of each other, except instead
they get stacked horizontally next to each other.

You'll nest one Layout inside another

We’ll use nesting—where one layout control lives inside another one—to create a more complex layout.

Here’s how it will work:

You'l use this HorizontalStackLayout 4o position tuo
VerticalStackLayout controls next to each other.
This HovizontalStackLayout will et nested
inside the outer VerticalStackLayout
that's used o lay out the entive page

<HorizontalStackLayout>
A

<HorizontalStackLayout> ! Pick a bird

b | .

|
A & A
: » |1 _Some birds P
——————— - g l———— - g
<VerticalStackLayout> Pigeon E\ @ Penguin E‘
<Label Text="Pick a bird" ... /> EARN Ostrich x
<Picker x:Name="BirdPicker" ... /> *:,J,G : Duck g
</VerticalStackLayout> '7'5 [l Duck '7'5
RN Owl D
11 . £
<VerticalStackLayout> LANl Pigeon 2
\" \"
<Label Text="Some Birds" ... /> ! : !
<Label x:Name="Birds" ... /> Y. y

. - ——~ — “
</VerticalStackLayout> L_/V—gs nested VchcicaIS{:ackLa‘/ou’c tontains

. This nested VerticalStackLayout a Label that says “Some birds” and a Label
</HorizontalStackLayout™ tontains 2 Label that says "Piek @\ med Bivds that will get updated when the

bivd” and a Picker control named user clicks the button, also stacked vertically.
BivdPicker, stacked vertically.

you are here » 103

make your picker work

Add a Picker control to display a list of choices

A Picker control displays a list of items in a dropdown so the user can pick one of them. Let’s add one to your app.

0 Add the XAML for a Picker control and a Label for it to update.
You've already seen how a VerticalStackLayout control lets you stack controls on top of each other. You
can also stack controls horizontally by adding a HorizontalStackLayout control.

Go ahead and add this XAML code just above the closing </VerticalStackLayout> tag. You can type
it all or use the Toolbox. When you add the Clicked event for the button, press Tab to let Visual Studio
generate an event handler method for you, just like you did earlier (add the method manually in VSCode).

<HorizontalStackLayout Spacing="20">

<VerticalStackLayout>
<Label Text="Pick a bird" SemanticProperties.Description="Picks a bird"/>
<Picker x:Name="BirdPicker" />

</VerticalStackLayout>

<VerticalStackLayout>

<Label Text="Some birds"
SemanticProperties.Description="A list of birds"/>

<Label x:Name="Birds"
Padding="10" MinimumWidthRequest="150"
TextColor="White" BackgroundColor="DarkBlue"
SemanticProperties.Description="Shows the added birds" />

</VerticalStackLayout> This <Bu'H:on ~ /> tag should be just above the ¢losin
</HorizontalStackLayout> \/ </VerticalStackLayout> tag that's alveady in MainPage.xaml.

<Button x:Name="AddBird" Text="Add a bird" Margin="0,0,0,20"
SemanticProperties.Hint="Adds a bird" />

e Initialize the Picker with a list of birds.

Open the MainPage.xaml.cs file and find the MainPage method at the top. This method gets run every
time the page loads. Insert two lines after InitializeComponent(); and add this code.

public MainPage() You used the x:Name property o name your Picker
t itiald 0 tontrol “BirdPicker”’—this sets the list of items in the
InitializeComponent(); picker that get displayed when the user clicks on it.

BirdPicker.ItemsSource = new string[] {

llDuckll '

Put your tode at wpigeon" Open the MainPage.xaml.cs file and
the end of the "Penguin"' add this code to the MainPage method.
MainPage method. mogtpich® Be careful with the square and curly

K_) "owl" braces, quotes, and commas.
HH

104 Chapter 2

dive into c# code

Fill in the event handler for the Button control.
The XAML we gave you for the Button control didn’t include a Clicked event handler. Use Visual Studio’s
IntelliSense pop-up to add a new event handler to the C# code, just like you did with the Entry control:

Clicked="| Don't forget—VSCode
may not have this feature

EP <New Event Handler> yet, so you might need to
type the AddBird_Clicked

&2 OnCounterClicked method in by hand.

Since you used the x:Name property to name your Picker control AddBird, Visual Studio created an empty
event handler method called AddBird_Clicked:

private void AddBird_Clicked(object sender, EventArgs e) |[f \/ou’n using \/SCode you might

: need to open MainPage.xaml.s
and add this entive method. Put

, L{: Jjust above the bottom tlosing

Add this line of code to the AddBird_Clicked method: vacket in the file.

private void AddBird_Clicked(object sender, EventArgs e) /

{

Birds.Text = Birds.Text + Environment.NewLine + BirdPicker.SelectedItem;
}

Take a closer look at the line of code—let’s break down exactly what it does.
1. The line starts with Birds.Text = ... which means it’s setting the text in the Bird label.

2. The text is being set to Birds.Text + followed by additional things—this means it’s going to
take whatever is in the Label and append text to it, or add additional text to the end.

3. The first thing that gets appended is Environment.NewLine, which adds a line break. The
Label control will display multiline text, adding a line break every time it sees a line break.

4. After the line break, it appends BirdPicker.SelectedItem—this is the item that’s currently
selected in the Picker control.

Run your app and use your new Picker control.
Scroll to the bottom of the app, choose a bird from the Picker, and click the Add a bird button—it will get
added to the Label that contains the birds. Select a few more birds and add them.

Pick a bird Some birds

The Label expands every time you add
Ostrich a bivd betause it adds a new line break.
Penguin / H: {:hc bu‘l‘:bon SLYO”S O‘c‘(: ‘U\C bo‘E‘Eom
Duck of the page \')us{: sevoll down 4o it

Add a bird

Duck v

you are here » 105

sleuth out a bug

Hold on, My app doesn't match the first screenshot that you showed
us. It looks like there's SOME EXTRA SPACE at the top of the label! The code
has a bug.

You’re right! The app doesn’t match the screenshot.

Take a look at the screenshot we showed you earlier:

Some birds Pick a bird

owl v

Run your app and try adding those same birds. When you get to the first
owl, you'll see extra space at the top of the label:

Pick a bird Some birds :
N Oops! [t looks like we've aot
owl -]j ¢ 0 some extra space at the top
Duck of the label that shows the
e 7™ birds £hat you picked.
Ostrich :

Pigeon
Duck
Oowl

Looks like we’ve got a bug. Time to put on your Sherlock Holmes cap.
Let’s sleuth out this bug!

106 Chapter 2

M\Q\[SIeuth it Out

The Case of the Extraneous Space
Understanding a bug is the first step in fixing it.

In Chapter 1, we looked at the code carefully and found several clues to help us solve the Case of the
Unexpected Match. But as you keep going through this book, your apps will get longer and longer, and while
looking at the code is a good start, it may not always be the best way to figure out what's causing a bug.

Luckily, the Visual Studio debugger is a great tool for that. (That's why it's called a debugger: it’s a tool that
helps you get rid of bugs!)

Reproduce the bug

It seems obvious that there’s a problem. But as Sherlock Holmes once said, “There is nothing more deceptive
than an obvious fact.” When you're sleuthing out bugs, you can't just rely on what seems obvious. You need to
confirm for yourself exactly what's going on. The way to do that is to reproduce the bug.

Stop your app. Make sure it’s not running, so you've got a fresh start. Then do this:

1. Start your app again.

2. Pick Duck and click the “Add a bird” button.

3. Pick Ostrich and click the “Add a bird” button.

4. Pick Pigeon and click the “Add a bird” button.

5. Pick Duck and click the “Add a bird” button. "There is notlling
6. Pick Owl and click the “Add a bird” button.

Your app should now look exactly like the screenshot:

more Jeceptive than
an obvious fact.”

- Sherlock Holmes

Pick a bird Some birds

owl v
Duck

Ostrich

Pigeon
Duck
Oowl

Now restart your app, then try it again with different birds. You should still see extra space at the top of the label.

You can make the bug happen over and over again, at will. That means the problem is reproducible: you can
follow a set of steps to make it happen. Reproducing a bug is a great first step to fixing it.

Before you go on, can you sleuth out what’s causing the extra space to get added?

O 4ra\ Lo
@ dive into c# code

you are here »

107

find the bug fix the bug

f Sleuth it Out

Every good investigation starts by identifying a list of suspects

When you're tracking down a bug, what's the first thing you should do? You could start placing breakpoints in
the code...but where? The first step in debugging is thinking. Look at your code, think about how it works,
and try to imagine where the bug might be. That will help you figure out where to put your breakpoints.

So let’s think through the code. It starts with a button—and the button calls a method:
<Button x:Name="AddBird" Clicked="AddBird_Clicked" Text="Add a bird"
Margin="0,0,0,20" SemanticProperties.Hint="Adds a bird"/>
All of the code to add the bird to the label is in that AddBird_Clicked method. Now we have a suspect!

{ Remember, If your app doesn’t pause on the breakpoint,
make sure you’re starting the app with debugging. Run

. o the app by pressing F5 or choosing Start Debugging
_IDE T'IP USlng the dehugger from the Debug (Visual Studio) or Run (VSCode) menu.
You're going to be using the debugger a lot in this book! We've walked you through it a few times, but as you get fur-
ther in the book and write more and more code, you should feel comfortable using the debugger on your own.

Let's start with a few tips to help you get comfortable debugging your code:
* Think before you debug. Read through your code. Understand how it works (and not just how you think it works).

* Use the Watch window, Locals window, and hovering over variables to keep track of their values. They all do the
same thing—show you the value of a variable—so you can decide which one you feel most comfortable with.

* Don't be afraid to restart your app. Stop and start your code frequently—every time you run your code, you're
running an experiment. Run it as many times as it takes to understand what'’s going on.

Here’s a handy list of useful debugger commands. They may feel strange at first, but they’ll be second nature soon:

* When you press the triangle Run button in the toolbar or choose Start Debugging (F5), Visual Studio starts run-
ning your code in the debugger. You can place a breakpoint whether or not the debugger is running.

* To place a breakpoint, click on a line of code and choose Toggle Breakpoint (F9) from the Debug menu.

»

When your code hits a breakpoint, it stops running so you can inspect variables.

* When Visual Studio breaks on a breakpoint, the toolbar shows you the commands you can use to keep executing.
Debugging code can be a little weird to get used to if you haven't done it before, so try sticking to just these four
commands—here’s where you'll find them in the IDE’s toolbar, along with their keyboard shortcuts:

Step Over (F10) executes the current Continue Debugging (F5) Stop Debugging (Shift+F5)
statement and breaks on the next one. starts the app running again. stops the debugger.
T X 7 Visual Studio
1 - e
[2 CTc‘)ntlnue O ?(5\\1, v > 1 VSCode
Continue Debugging (F5) Stop Debugging (Shift+F5) Step Over (F10) executes the current
starts the app running again. stops the debugger. statement and breaks on the next one.

108 Chapter 2

O

O
O O dive into c# code

%fSleum it Out

Add a breakpoint and start debugging the code

Now that we have a suspect, let’s catch it in the act. Add a breakpoint to the line in the AddBird_Clicked method:
private void AddBird_Clicked(object sender, EventArgs e)

. Birds.Text = Birds.Text + Environment.NewLine + BirdPicker.SelectedItenm;

Now run your code. Pick a bird, then click the “Add a bird” button. The debugger stops on your breakpoint. Next,
add a watch for Birds.Text, just like you did earlier in the chapter. The value should be null:

Name Value Type

» Birds.Text [null View |sting |

Then step over that line of code (F10) to run it. You should see this value:
Value Type
Birds.Text “\r\nPigeon"” View W
The value of Birds.Text is a string: \r\\n followed by the bird you picked. What do you think \r\ n does?
NOTE: If you're using macOS, you’ll see \n instead of \r\n.

Continue debugging (F5) to start your app running again. Pick a different bird and step over the line of code. Now
have a look at the Birds.Text watch:

Name Value Type
| Birds.Text "\r\nPenguin\r\nOstrich" View W
Repeat the process a few more times: continue debugging, pick a bird, click the button, step over, check the
watch. Eventually your Birds.Text value will look something like this (you'll see \ n instead of \r\n on macOS):
“\r\nPenguin\r\nOstrich\r\nPigeon\r\nDuck\r\nOwl\r\nPigeon\r\nDuck\r\nOwl”

You've probably figured out by now that the \r\n or \n is the line break. The first time the AddBird_Clicked
method is called, the Label text is empty (that’s what the null value means), so when the app adds the current
value Cempty) plus a line break plus the bird, it adds an extra line break at the start of the string.

Now that we've found the culprit, we can fix the app. Replace the AddBird_Clicked method with this code, which
uses a special method, String.IsNullOrEmpty, which checks if a string is empty:

private void AddBird_Clicked(object sender, EventArgs e) String.IsNullOrEmpty(Birds.Text)
{ checks the value of Birds.Text and
if (!String.IsNullOrEmpty(Birds.Text)) <€ returns true if it’s empty or false if
{ it’s not. The ! in front of it reverses
Birds.Text = Birds.Text + Environment.NewLine; that value, so the line break is only
} added if Birds.Text is empty. You’ll
Birds.Text += BirdPicker.SelectedItem; learn all about how a method can
} | return a value in the next chapter. |

Run your app again and add a few birds to the label—there’s no more empty space above it. Your app is fixed!

The Picker keeps growing each time you add a bird. Can
you figure out which property gives it a maximum height? |

you are here » 109

you can fix all your bugs

When I first spotted the bug in the app, it
seemed really weird. But once I thought
through the code and did some experimenting, I
found an explanation.

There are no unexplainable mysteries in your code.
Every bug has an explanation, even if it takes work
to figure out what’s going on and fix it.

Bugs can be weird! If you’ve been playing video games for a long time,
you’ve probably experienced a few glitches, and some of them can be
extremely odd. If you haven’t seen any yourself, try searching the web
for videos of game glitches—even the most polished game has bugs.

Every bug you see is code behaving in a way you don’t expect. That’s why bugs
need sleuthing out. Bugs can be confusing, mysterious, and sometimes
extremely frustrating. It’s even tempting to think that something is
fundamentally wrong, and the code will never work. Always remember
that every bug has an explanation. Every bug is strange, but even a
bug that appears to be a weird mystery is caused by something in your
code—so you can fix it. Because like Sherlock Holmes once said, “Itis a

mistake to confound strangeness with mystery.”

Bu]let Points

= You'll use many different controls to build your app’s user interface (or Ul). The Ul is the part of the application
that your user interacts with.

m The C# code for a page in a MAUI app is called code-behind. The XAML code and the C# code in the code-behind
file work together to make the page work.

= The x:Name property gives your control a name you can use in your code.

m When you pay attention to accessibility, it makes your app—and your code!—better. Semantic properties help
you make your apps accessible by providing descriptions and hints for people who use screen readers.

= [n XAML you can have nested controls, or tags that contain other controls, so one control’s start and end tag
appear after the start tag and before the end of another tag.

= You can use nested HorizontalStackLayout and VerticalStackLayout controls to create more complex layouts.

m The first step in debugging is thinking: look at your code, think about how it works, and try to imagine where the
bug might be.

= Reproducing a bug is an important tool that helps you fix it. When you're debugging, you're running an
experiment every time you run your code. Run it as many times as it takes to understand what'’s going on.

110 Chapter 2

g

Explore C# with Unity

Unity Lab #

Explore C# with Unity

Welcome to your first Head First C# Unity Lab.
Writing code is a skill, and like any other skill, getting
better at it takes practice and experimentation.
Unity will be a really valuable tool for that.

Unity is a cross-platform game development tool
that you can use to make professional-quality games,
simulations, and more. It’s also a fun and satisfying
way to get practice with the C# tools and ideas
you’ll learn throughout this book. We designed these
short, targeted labs to reinforce the concepts and

techniques you just learned to help you hone your C#
skills. These labs are optional, but valuable practice...
even if you aren’t planning to write games in C#.

In this first lab, you’ll get started with Unity. You’'ll
get oriented with the Unity editor, and you’ll start
creating and manipulating 3D shapes. That will lay
down a foundation to write code in the next lab.

https://github.com/head-first-csharp/fifth-edition Head First C# Unity Lab 111

Unity Lab #1
Explore C# with Unity

Unity is a powerful tool for game design

Welcome to the world of Unity, a complete system for designing professional-
quality games—both two-dimensional (2D) and three-dimensional (3D)—as well as
simulations, tools, and projects. Unity includes many powerful things, including...

A cross-platform game engine

A game engine displays the graphics, keeps track of the 2D or 3D
characters, detects when they hit each other, makes them act like
real-world physical objects, and much, much more. Unity will do all
of these things for the 3D games you build throughout this book.

A powerful 2D and 3D scene editor

You’ll be spending a lot of time in the Unity editor. It
lets you edit levels full of 2D or 3D objects, with tools
that you can use to design complete worlds for your
games. Unity games use C# to define their behavior,
and the Unity editor integrates with Visual Studio to
give you a seamless game development environment.

While £hese Unity Labs will contentrate on C# development
in Unity, if \/oull a visual avtist or designer, the Unity editor
has many av{:k{,——-@ricndl\/ tools designed \')us{: for you Chetk
them out heve: h‘{:‘{'.YS=/ / uni{:\/tom/ solutions/ av{:is{:—dcsigncvs

An ecosystem for game creation

Beyond being an enormously powerful tool for creating games, Unity
also features an ecosystem to help you build and learn. The Learn
Unity page (https://unity.com/learn) has valuable self-guided learning
resources, and the Unity forums (https://forum.unity.com) help you
connect with other game designers and ask questions. The Unity
Asset Store (https://assetstore.unity.com) provides free and paid assets like
characters, shapes, and effects that you can use in your Unity projects.

Our Unity Labs will focus on using Unity as a tool to explore C# and practicing with
the C# tools and ideas that you’ve learned throughout the book.

The Head First C# Unity Labs are laser-focused on a developer-centric learning path. The goal of these labs
is to help you ramp up on Unity quickly, with the same focus on brain-friendly just-in-time learning you’ll see
throughout Head First C# to give you lots of targeted, effective practice with C# ideas and techniques.

112 https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

All of the seveenshots in this book were taken with the free

Download U N ity H u b Pevsonal Edition of Mni{:\/- Youlll need to enter Your uni-{:\/.dom
username and password into Mni‘t\/ Hub 4o activate your license.

Unity Hub is an application that helps you manage your Unity projects and your Unity installations,
and it’s the starting point for creating your new Unity project. Start by downloading Unity Hub from
hitps://unity.com/developer-tools—then install it and run it.

Unity Hub 310.0

& Installs Locate | Install Editor

Projects
All Official releases Pre-releases

Installs

Unity Hub helps you manage your Unity installs
and projects. We used screenshots from Unity
6 in these Unity Labs, because that was the

most recent version available when we went to

- No official releases installed production. You should install the latest official
Click on Installs to release. When you click the Install Editor

manage the installed button, Unity Hub will display a list of official
versions of Unity. -
releases. Install the most recent version of

Unity 6. Make sure you choose the version (x64

or Arm64) that matches your hardware.

Learn

Community

Downloads

Unity Hub lets you install multiple versions of Unity on the same computer, so you should install
the same version that we used to build these labs. Click the Install Editor button and install the
version of Unity 6 that matches your hardware (x64 or Arm64—that’s the same version we used to Unity Hub lets
take the screenshots in these labs. Once it’s installed, make sure that it’s set as the preferred version. Y Tlub lets You

have many uni{:\/
The Unity installer may prompt you to install a different version of Visual Studio. You can have installs on the same
multiple installations of Visual Studio on the same computer too, but if you already have one tomputer. So even
version of Visual Studio installed there’s no need to make the Unity installer add another one. if there’s a newevr

version of Mni-{:\/

You can learn more about installing Unity Hub on Windows and macOS here: .
https://docs.unity3d.com/Manual /GettingStartedInstallingUnity. himl available, you £an use
Ips: Lunity3d. g gUni). uni{:y Hub to install

the version we used

in the Mni{:y Labs.

Unity Hub may look a little different.

The screenshots in this book were taken with Unity 6 and Unity Hub 3.10.0.
h ',t‘ You can use Unity Hub to install many different versions of Unity on the same
Watc 1. computer, but you can only install the latest version of Unity Hub. The Unity
development team is constantly improving Unity Hub and the Unity editor, so it’s possible
that what you see won'’t quite match what’s shown on this page.

Head First C# Unity Lab

Unity Lab #1
Explore C# with Unity

Use Unity Hub to create a new project

Click the button on the Project page in Unity Hub to create a new Unity project.
Name it Unity Lab 1, sclect the Universal 3D template, and check that you’re creating it in
a sensible location (usually the Unity Projects folder underneath your home directory).

Universal 3D

)
All templates Core
Universal 20

Core

High Definition 3D

Universal 30
Core

High Definition 3D
Core

al 3D sample:
Samp

Unity Lab 1 Unity Lab 1

Hiah Definition 3D samole

Cancel Create project

Click Create Project to create the new folder with the Unity project. When you create a new
project, Unity generates a lot of files (just like Visual Studio does when it creates new projects
for you). It could take Unity a minute or two to create all of the files for your new project.

You ¢an use this
dvopdown to thange

Work with your project in the Unity editor the layout of the
Unity editor.

Once your project is created, it will load in the Unity editor, a powerful tool that you’ll use

to create 3D environments. Here are some important parts of the Unity editor:

& Unity Lab 1 - SampleScene - Windows, Mac, Linux - Unity 6 (600) <DX11>
File Edit Assets GameObject Component Services Jobs Window Help

B Unity6 | @ AS ¥ @ AssetStore ¥ °% Q @ Layout ¥
Scene o5 Game © Inspector ER

[Flcenter v R Local v 1 Wyl W A gy ®» =v By Qv - Assets (Default Asset)

Evcr\/ ob\')cc{:

The Scene view is your In ‘your Samf
main interactive view o has ?royer'bc.s,
of the world that you’re T which You Il view
creating. You use it to Show Only Selected and edit in the

Show NavMesh

position 3D shapes, Shaw HeightMesh [nspector window.
cameras, lights, and all Agents

. . Show Path Polygons
of the other objects in Show Pah QueryHodos

your game. Show Walls

Show Avoidance

Obstacles [/(SC 'thC PY'O\.)CC‘{: window

Show Carve Hull

= Hlerarc;y . - a i M Project = . {O WOY'k wrth -Ehc ‘c.llcs
4 8 4> = D|ca sl in Your Mni{:\/ YYO\')CC'E'

R sampleScene H * Favorites 4 Agsets
Q All Materi

ThC Hicrardh\’l Window Q_ All Model
ShOWS ” ‘C { R . . . n’ { } Asset Labels
YOlA all o hC law Assets Scenes Settings Tutorialln... InputSys.. Readme

B Sottinae

ObJCC‘{:S in Your stene. B Scenes gy assets AssetBundie [None

OK! You’re all ready to get started on your first Unity project.

114 https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Take control of the Unity layout

The Unity editor 1s like an IDE for all of the parts of your Unity project that aren’t C#.
You’ll use it to work with scenes, edit 3D shapes, create materials, and so much more.

When you started up Unity, did you notice that your screen looked a little different from our
screenshot? Just like in Visual Studio, the windows and panels in the Unity editor can be
rearranged in many different layouts. We chose a layout that works well for screenshots in a

book. We also chose dark mode, which we think is easier to read when these pages are printed.

Choose the Wide layout to match our screenshots

We’ve chosen the Wide layout because it works well for the screenshots in these labs. Find
the Layout dropdown in the toolbar and choose Wide so your Unity editor looks like ours.

O, Layers
2by3
4 Split
- ﬂ_ Onte You change the la\/ou{: with
o ‘f‘ihc Layou‘{: dvopdown on the \righ‘f:
o side of the toolbar, the dropdown
thanges its label to mateh the
la\/ou‘l: ‘{‘)\a{: You SCICC‘Ecd.

Set up Unity to work with Visual Studio

v Default x

SQave | avnnt

The goal of these Unity Labs is to give you an exciting and fun way to explore C#.
The Unity editor works with Visual Studio and VSCode to make it easy to edit and debug
the code for your games. Open the Unity Preferences Window (on Windows choose
Preferences from the Edit menu; on a Mac choose Settings from the Unity menu). Click on
External Tools on the left, click the External Script Editor dropdown, and choose Visual
Studio 2022 (or Visual Studio Code if you're using VSCode) from the list of options.

£ Preferences

General
2D

Physics
LUENE

Profiler
Asset Pipeline
Colors
Diagnostics
External Tools
Gl Cache
Jobs
Package Manager
Scene View
Scene Template
Search

Indexing
Timeline

~~“External Tools

External Script Editor Microsoft Visual Studio 2022 « 2
Generate .csproj files for:

Embedded packages

«»_~al packages

Registry packaye.

Git packages

Built-in packages

Local tarball

Packages from unknown sources

Player projects

Regenerate project files

You can download
PDFs of all of these
Unity Labs and print

them out if that
makes it easier for
you to follow along.

You can use
Visual Studio
to debug
the code in
your Ur\i+y
gomes. Just

choose Visual
Studio as

the external
script editor
in um+y'9
preferences.

1

You'll write tode and do
some debugging with Visual
Studio or VSCode in the
next Unity Lab. This lab
is about gc{:{ing used to
the way Mv\ib/ works so
you've veady {0 do that.

If you don’t see Visual Studio in the External Script Editor dropdown, choose Browse
and navigate to Visual Studio. On Windows it’s normally an executable called devenv.exe
in the folder C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\.
On a Mac it’s typically an app called Visual Studio in the Applications folder.

Head First C# Unity Lab

115

Y niyLa#l

Explore C# with Unity

Your scene is a 3D environment

As soon as you start the editor, you're editing a scene. You can think of scenes as levels in your Unity
games. Every game in Unity is made up of one or more scenes. Each scene contains a separate 3D
environment, with its own set of lights, shapes, and other 3D objects. When you created your project,
Unity added a scene called SampleScene and stored it in a file called SampleScene.unity.

Add a sphere to your scene by choosing GameObject >> 3D Object >> Sphere from the menu:

GameObject Component Window Help

Create Empty Ctrl+Shift+N

Create Empty Child Alt+Shift+N L
s
3D Object Cube These ave called Unit

2D Object Sphere “primitive objctﬁs." We'll be
Effects Capsulel} usihs them a lot ‘[‘)\roughou‘[:
Light Cylinder these Mni{,\/ L abs.

Audio Plane
Video Quad

A sphere will appear in your Scene window. Everything you see in the Scene window is shown from the
perspective of the Scene view camera, which “looks” at the scene and captures what it sees.

Scene o Game

‘iCenterv ?Loca w m v

W
(-Iﬂ

-

=@ <Thisisa light that

Vs ' N\ . H
illuminates +he stene.

1N

— 7
A)

/> o

When You run Yyour

ame, you'll see it
zm the pevspective
of this tamera.

o 7
& &

Here's the spheve
that you added.

The Seene window shows you all of the objct{s in Your stene £rom the
pevspective of the stene cameva. It shows a perspective grid 4o help
you see how far away the ob\)cc{:s ave from the Stene view tamera.

116 https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Unity games are made with GameObjects

When you added a sphere to your scene, you created a new GameObject. The
GameObject is a fundamental concept in Unity. Every item, shape, character,
light, camera, and special effect in your Unity game is a GameObject. Any scenery,
characters, and props that you use in a game are represented by GameObjects.

In these Unity Labs, you’ll build games with different kinds of GameObjects, including:

v Ligh’cs .
GameObjects

are the

< fundamental
Cylinders —> objects in
Unity, and
components
are the
basic buildin
blocks of
their behavior.
The Inspec’mr
window shows

Each GameObject contains several components that provide its shape, set its position,

and give it all of its behavior. For example: Y ou de+a“9

Cameras

Transform components determine the position and rotation of the GameObject. ab OU"' each

Material components change the way the GameObject is rendered—or how it’s
drawn by Unity—by changing the color, reflection, smoothness, and more.

Script components use C# scripts to determine the GameObject’s behavior. Your scene and
its components.

Grameobjedr in

ren-der, verb.

to represent or depict artistically.

Michelangelo vendered his favorite model with
more detarl than he used in any of his other drawings.

Head First C# Unity Lab 117

Unity Lab #1
Explore C# with Unity

Use the Move Gizmo to move your GameOQObjects

The Tools panel lets you choose Transform tools. If the Move Tool isn’t selected, click on the sphere that
you just added, then click the Move Tool in the Tools overlay to select it.

The Tools overlay lets you choose tools to manipulate
GameObjects. You’ll use the Move Tool to move your
sphere around the scene. In the Wide view, the Tools

overlay is vertical. You can right-click the two lines at the
top to change its orientation so it’s horizontal, or you can
drag it to the toolbar or the side of the window to dock it.

The Move Tool lets you use the Move Gizmeo to move GameObjects around the 3D space. You should see
red, green, and blue arrows and a cube appear in the middle of the window. This is the Move Gizmo, which
you can use to move the selected object around the scene.

Using the Move Tool displays the Move

Gizmo as arrows and a tube on top of the
68"\605\)86‘& that's eurvently selected. When you
clic)k the sphere and then thoose the Move Tool,
you ll see the Move Gizmo appear on the spheve.
Click anywheve else in the stene to deselect the
spheve and the Move Gizmo 9oes away.

Move your mouse cursor over the cube at the center of the Move Gizmo—notice how each of the faces of the
cube lights up as you move your mouse cursor over it? Click on the upper-left face and drag the sphere around.
You’re moving the sphere in the X-Y plane.

The Move

When You tlick on the upper—left face of the .
tube i:\/ the middle of the Move Gizmo, its X Gizmo lets

and Y avrows light up Yahdl You tan drag your 5\ You move
d the X- ane in Your stene. . .
sphere avound the XY planc in ¥ GomeObjects

alonﬂ any

axis or Plane

Move your sphere around the scene to get a feel for how the Move Gizmo works. O‘p +h e 3D
Click and drag each of the three arrows to drag it along each plane individually. Try

clicking on each of the faces of the cube in the Scene Gizmo to drag it around all three gPace N
planes. Notice how the sphere gets smaller as it moves farther away from you—or really,

the scene camera—and larger as it gets closer. Your scene.

118 https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

The Inspector shows your GameObject’s components

As you move your sphere around the 3D space, watch the Inspector window,
which is on the right side of the Unity editor if you’re using the Wide layout. Look
through the Inspector window—you’ll see that your sphere has four components
labeled Transform, Sphere (Mesh Filter), Mesh Renderer, and Sphere Collider.

Every GameObject has a set of components that provide the basic building blocks of
its behavior, and every GameObject has a Transform component that drives its
location, rotation, and scale.

You can see the Transform component in action as you use the Move Gizmo to drag
the sphere around the X-Y plane. Watch the X and Y numbers in the Position row
of the Transform component change as the sphere moves.

O Inspector I

N

v Sphere Static ~

If you accidentally
deselect a GameObject,
just click on it again. If
it’s not visible in the
scene, you can select it
in the Hierarchy window,
which shows all of the
GameObjects in the scene.
When you reset the layout
to Wide, the Hierarchy
window is in the lower-left
corner of the Unity editor.

- Tag Untagged v Layer Default v

o~ Transform

Position X 297
X0

R X 1

Rotation

Scale

Did you notice the grid in your 3D
space? As you’re dragging the sphere
around, hold down the Control key.
That causes the GameObject that
you’re moving to snap to the grid. You’ll
see the numbers in the Transform
component move by whole numbers
instead of small decimal increments.

Try clicking on each of the other two faces of the Move Gizmo cube and dragging to move the sphere in
the X-Z and Y-Z planes. Then click on the red, green, and blue arrows and drag the sphere along just the
X, Y, or Z axis. You'll see the X, Y, and Z values in the Transform component change as you move the

sphere.

Now hold down Shift to turn the cube in the middle of the Gizmo into a square. Click and drag on that

square to move the sphere in the plane that’s parallel to the Scene view camera.

Once you’re done experimenting with the Move Gizmo, use the sphere’s Transform component context

menu to reset the component to its default values. Click the context menu button
Transform panel and choose Reset from the menu.

o Transform

e i
Position Q
Rotation 7 7

\/

The position will reset back to [0, 0, 0].

(ﬂ) at the top of the

Use the tontext menu to veset a tomponent.
You tan either click the three dots or
vight—click anywhere in the £op line of the
== Transform panel in the [nspector window 4o
bving up the context menu.

You can learn more about the tools and how to use them to position GameObijects in the Unity
Manual. Click Help >> Unity Manual and search for the “Positioning GameObjects” page.

Save your scene often! Use File >> Save or Ctrl+S / ¥S to save the scene right now.

Head First C# Unity Lab

119

Unity Lab #1
Explore C# with Unity

Add a material to your Sphere GameObject

Unity uses materials to provide color, patterns, textures, and other visual effects. Your sphere looks
pretty boring right now because it just has the default material, which causes the 3D object to be rendered
in a plain, off-white color. Let’s make it look like a billiard ball.

@ Select the sphere.

When the sphere is selected, you can see its material as a component in the Inspector window:

Universal Ren E0 e

We’ll make your sphere more interesting by adding a texture—that’s just a simple image file
that’s wrapped around a 3D shape, almost like you printed the picture on a rubber sheet and
stretched it around your object.

Go to our Billiard Ball Textures page on GitHub.
Go to https://github.com/head-first-csharp/fifth-edition and click on the Billiard Ball Textures link to
browse a folder of texture files for a complete set of billiard balls.

Download the texture for the 8 ball.
Click on the file 8 Ball Texture.png to view the texture for an 8 ball. It’s an ordinary 1200 X 600
PNG image file that you can open in your favorite image viewer.

We desioned this

<— imaog file so that
it looks like an @
ball when Mn\k\/
“weaps” it avound 3

sphere.

Download the file into a folder on your computer.

(You maght need to right-click on the Download button to save the file, or click Download to open it and then
save it, depending on_your browser.)

https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Import the 8 Ball Texture image into your Unity project.
Right-click on the Assets folder in the Project window, choose Import New Asset and

import the texture file. You should now see it when you click on the Assets folder in the
Project window.

I Project
+ - Q @ 3‘ L 4 o
* Favorites « Assets YOV vi h{:‘CI'Cde inside
Q Al Materi - e Asse{—,s folder in
Q All Model
Q_ All Prefak o ©o the Pro fc{ vindou bo
import the new asset,
@@ Assets so l/(m{;\/ m\?or{',cd

B Materials Materials Scenes Settings Tutoriallnfo '8 Ball Textu

e Scenes ﬂ'\c {cx{:urc lh{o ﬂ\at

e Settings (:oldcr.
e Tutorialln
(=@ Packages ¥ .{ }

M= Al Naviga
B Burst w *+Assets/8 Ball Texture.png

Add the texture to your sphere.
Now you just need to take that texture and “wrap” it around your sphere. Click on 8 Ball

Texture in the Project window to select it. Once it’s selected, drag it into the Hierarchy
window onto the Sphere that you added.

8 Ball Text...

= Hierarchy

% R SampleScene*

@ Main Camera
8 Ba" TeXt... @ Directional Light

D Global Volume

D Sphere \

Your sphere now looks like an 8 ball. Check the ,
Inspector, which is showing the 8 Ball GameObject. Now
it has a new material component:

8 Ball Texture (Material) - Chetk Your Assets window again.
Unity treated a new Matevials
Lolder in it and added a matevial
called 8 Ball Texture.

Shader Universal Ren» Edit...

Head First C# Unity Lab 121

Unity Lab #1
Explore C# with Unity

I'm learning C# for my job, not to write
video games, Why should I care about
Unity?

Unity is a great way to really “get” C#.

Programming is a skill, and the more practice you get writing C# code, the better
your coding skills will get. That’s why we designed the Unity Labs throughout

this book to specifically help you practice your C# skills and reinforce the

C# tools and concepts that you learn in each chapter. As you write more C#

code, you’ll get better at it, and that’s a really effective way to become a great C#
developer. Neuroscience tells us that we learn more effectively when we experiment,
so we designed these Unity Labs with lots of options for experimentation, and
suggestions for how you can get creative and keep going with each lab.

But Unity gives us an even more important opportunity to help get important

C# concepts and techniques into your brain. When you’re learning a new
programming language, it’s really helpful to see how that language works with lots
of different platforms and technologies. That’s why we included both console apps
and MAUI apps in the main chapter material, and in some cases even have you
build the same project using both technologies. Adding Unity to the mix gives you
a third perspective, which can accelerate your understanding of C#.

Do you want to make sure your Unity projects are always backed up? Try Unity Version Control.

Unity Version Control is a version control system that lets you back up your projects to cloud storage that comes free
with your Unity account—and it's built right into the Unity editor, which makes it easy for you to use.

I Project “}a Unity Version Control H
Pending Changes Incoming Changes Changesets Branches Q Click the o Unity Version Control

button in the toolbar to open the
Unity Version Control window. The
first time you use it, you’ll get an
option to log in or sign up. When
you sign in with your Unity ID, you’ll
M get to a web page where you can
v «+ Assets\8 Ball Texture.png +meta sign into your Unity account, then
- sign up for the free Unity VCS level
and join your default organization.
@ ehecidiniehangesil EOncolty Then you can check in changes any
time you want.

v Item (54/54 selected)

v Added and private (54/54

)
v R .vsconfig

Go to the Head First C# GitHub page for a free PDF that gives you step-by-step instructions
for setting Unity Version Control: https://github.com/head-first-csharp/fifth-edition

122 https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Rotate your sphere

Click the Rotate tool in the toolbar. You can use the Q, W, E, R, T, and Y keys to quickly switch
between the Transform tools—press E and W to toggle between the Rotate tool and Move Tool.

X I & We switthed the Tools overlay to a
&— hovizontal view by righ{‘,—clicking on
£he two lines and thoosing Horizontal
Tey it out.
o Click on the sphere. Unity will display a wireframe sphere Rotate Gizmo with red, blue, and
green circles. Click the red circle and drag it to rotate the sphere around the X axis.

Rotate Tool
i W i

It’s easy to
reset your
windows and
scene camera.

If you change your Scene
view so you can’t see your
sphere anymore, or if you
drag your windows out of
position, just use the Layout
dropdown in the upper-right
. corner to reset the Unity

A Transform 0 i ¢ editor to the Wide layout. It
Position X 0 Y 0 Zo ¢ will reset the window layout

Rotation X -2.579 Y 1532 Z 10.83 ¢ and the Scene view
Scale R X 1 Y 1 iz 1 :

e Click and drag the green and blue circles to rotate around
the Y and Z axes. The outer white circle rotates the sphere along the
axis coming out of the Scene view camera. Watch the Rotation numbers :
change in the Inspector window. :

Open the context menu of the Transform panel in the Inspector window. Click
Reset, just like you did before. It will reset everything in the Transform component back to
default values—in this case, it will change your sphere’s rotation back to [0, 0, 0].

s Transfo-~

: iaht—cli heve in
osition b Cliek £he three dots (or Ylﬁh{', eliek anyw :
Eor;ﬂo" 61 *{:hlc header 0‘(: Jchc T\rans(:orm ?ancl) {‘p b‘rmg wp {:hc
Scale &) T — tonkext menu. The Reset o\?{:’uon at the {',o\? of the
. menu veseks the tomponent to its default values.

fH sphere

Mesh Find References In Scene

f8 v Mesh R Properties...
Materials Copy Use these options from farther down

Lighting Paste in the tontext menu to veset the
Cast Shadow ResetProperty Posi{‘,ion and votation of a éaMCOBJcC‘E.
Use File >> Save or Ctrl+S / S to save the scene right now. Save early, save often!
Head First C# Unity Lab 123

Unity Lab #1
Explore C# with Unity

Move the Scene view camera with the View Tool and Scene Gizmo

Use the mouse scroll wheel or scroll feature on your trackpad to zoom in and out, and toggle between the Move
and Rotate Gizmos. Notice that the sphere changes size, but the Gizmos don’t. The Scene window in the editor
shows you the view from a virtual camera, and the scroll feature zooms that camera in and out.

Press Q to select the View Tool, or choose it from the toolbar. Your cursor will change to a hand.

Hold down At (Windows) or Of'f:ion (Mae) while
<—— dragging and the VView Tool turns into an eye and

m votates the view around the center of the window.

The View Tool pans around the scene by changing the position and rotation of the scene camera. When the
View Tool is selected, you can click anywhere in the scene to pan.

/o|\
Hold down Alt (or Oy{:ion on a Mat) while

dragging the View Tool to vrotate the stene
tamera around the tenter of the stene.

Clieck and

dras the View

Tool around ‘ ©
the z"""‘ to If an “Al Navigation” box is
Pan the stene making it hard to see what’s

Camera. going on, right-click on its
header and choose Hide.

When the View Tool is selected, you can pan the scene camera by clicking and dragging, and you can
rotate it by holding down Alt (or Option) and dragging. Use the mouse scroll wheel to zoom. Holding
down the right mouse button lets you fly through the scene using the W-A-S-D keys.

When you rotate the scene camera, keep an eye on the Scene Gizmo in the upper-right corner of the Scene
window. The Scene Gizmo always displays the camera’s orientation—check it out as you use the View Tool to
move the Scene view camera. Click on the X, Y, and Z cones to snap the camera to an axis.

y -
z
= \ Click any of the tones in
: the Seene Gizmo to snap the
camera to an axis. Drag them
— avound 1o votate the camera:

The Unity Manual has great tips on navigating scenes: Atps://docs.unity3d.com/Manual/Scene ViewNavigation. himl

Take a minute and look at this Fagc—-i‘[:'s 50{: some \rca“\/ useful S‘(:uﬁ:j

124 https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

thereqare no
Dumb Questions

Q,: I’'m still not clear on exactly what a component is. What
does it do, and how is it different from a GameObject?

A: A GameObject doesn’t actually do much on its own. All a
GameObject really does is serve as a container for components.
When you used the GameObject menu to add a sphere to your scene,
Unity created a new GameObject and added all of the components
that make up a sphere, including a Transform component to give it
position, rotation, and scale, a default material to give it its plain white
color, and a few other components to give it its shape, and help your
game figure out when it bumps into other objects. These components
are what make it a sphere.

Q,: So does that mean | can just add any component to a
GameObject and it gets that behavior?

A: Yes, exactly. When Unity created your scene, it added two
GameObjects, one called Main Camera and another called Directional
Light. If you click on Main Camera in the Hierarchy window, you'll see
that it has three components: a Transform, a Camera, and an Audio
Listener. If you think about it, that's all a camera actually needs to

do: be somewhere, and pick up visuals and audio. The Directional
Light GameObject just has two components: a Transform and a Light,
which casts light on other GameObjects in the scene.

Q: If 1 add a Light component to any GameObject, does it
become a light?

A: Yes! Alight is just a GameObject with a Light component. If you
click on the Add Component button at the bottom of the Inspector and
add a Light component to your ball, it will start emitting light. If you
add another GameObiject to the scene, it will reflect that light.

Q: It sounds like you’re being careful with the way you
talk about light. Is there a reason you talk about emitting and
reflecting light? Why don’t you just say that it glows?

A: Because there’s a difference between a GameObject that emits
light and one that glows. If you add a Light component to your ball, it
will start emitting light—but it won't look any different, because the
Light only affects other GameObjects in the scene that reflect its
light. If you want your GameObject to glow, you'll need to change its
material or use another component that affects how it's rendered.

O Inspector

@ v Directional Light

Tag Unta

You can click on the Help icon
for any component to bring up
the Unity Manual page for it.

4 i
{ tatic

gged v Layer Defauk

A Transform

Position
Rotation
Scale

Q v Light

General
Type
Mode

Emission

X 0 i 3
X 50 Y -30
& X1 b 1

Directional
Realtime

Light Appearance Filter and Temperature »

Filter

Temper

Intensity

ature
5000 Kelvin

2

Indirect Multiplier 1

@ Cook

Rendering
Rendering
Culling Ma

Shadows

ie

Layers Default
sk Everything

v Universal Additional Light Dat: @ 3

Add Component

When You click on the Divectional Ligh‘[‘, éachbJFck
in the Hierarehy window, the [nspector shows you its

comfoncn{',s- H:ﬁ:
that provides i

st has two: a Transform (,omyoncw{:
yosi{:ion and votation and a Ligh{:

tomponent that actually casts the light. What do
\/:u ‘:\"\":nk you’ll use the Add Component button for?

Head First C# Unity Lab 125

Unity Lab #1
Explore C# with Unity

Get creative! The more C#

We built these Unity Labs to give you a platform to experiment on your COCle YOU WrH'e,
own with C# because that’s the single most effective way for you to become Hh b +

a great C# developer. This lab lays down the foundation to start writing € verrter

Unity Codefwbich you’ll' do in the next lab. At the end of each Unity L?Lb, we’ll oull aet at it
include suggestions for things that you can try on your own. Take some time to

experiment with everything you just learned before moving to the next chapter: Tha+’g +he mog+
* Add a few more spheres to your scene. Try using some of the other billiard e,p,‘:ec+ive Way

ball maps. You can download them all from the same location where you

downloaded 8 Ball Texture.png. 'por YOU to

* Try adding other shapes by choosing Cube, Cylinder, or Capsule from the become a ar‘ea+
GameObject >> 3D Object menu.

C# developer.
* Experiment with using different images as textures. See what happens to) P
photos of people or scenery when you use them to create textures and add We degﬁned

them to different shapes. +hege uhﬁ-y Labg
to aive you a
Plaﬂlorm fFor

* (Can you create an interesting 3D scene out of shapes, textures, and lights?

When \/ou'vc veady to move on Scenef(s) Have Been Modified o
4o the next thapter, make sure

Do you want to save the changes you made in the

\/ou save \/OMY' ?\'O.Ct‘.‘% :‘ci?:‘csc‘_a ﬂ s;:rr:;:eScene Prac+ice and

oull tome back
next lab. Mni{y will ?\rom\?*{: you

‘£0 save WhCY\ YOU ﬂ\ul‘{’, Save | Don'tSave Cancel

_ Bul]et Points

= The Scene view is your main interactive view of the m GameObjects are the fundamental objects in Unity.
world that you're creating. Components are the building blocks for their
behavior.

Your changes will be lost if you don't save them.

experimenJra’rion.

m When you select an object and use the Move Tool,
Unity displays the Move Gizmo that lets you move m Every GameObject has a Transform component that
objects around your scene. provides its position, rotation, and scale.

m The View Tool lets you pan around the scene. » The Project window gives you a folder-based view of
The Scene Gizmo always displays the camera’s your project’s assets, including C# scripts and textures.

orientation.
! ! » The Hierarchy window shows all of the GameObjects

= Unity uses materials to provide color, patterns, in the scene.

textures, and other visual effects. . . .
= Unity Version Control System (VCS) is an easy way

m Some materials use textures, or image files wrapped to back up projects to free cloud storage that comes
around shapes. with a Unity Personal account. Download a PDF

to help you set up version control in Visual Studio,

VSCode, and Unity for free from our GitHub page:

https://github.com/head-first-csharp/fifth-edition

= Your game’s scenery, characters, props, cameras, and
lights are all built from GameObjects.

126 https://github.com/head-first-csharp/fifth-edition

3 namespaces and classes

Organizing your code

Great developers keep their code and data organized.

What's the first thing you do when you're creating an app? You think about what it’s
supposed to do, whether you're solving a problem, creating a game, or just having fun.

But it's not always obvious how individual statements fit into your app’s bigger picture...and
that's where classes come in. They let you organize your code around the features you're
creating and the problems the app needs to solve. Classes can help you organize your
data, too, by using them to create objects that represent any “thing” your app needs to know

about—and the classes that you design serve as “blueprints” for the objects used in your app.

this is a new chapter 127

organize your code reuse your code

Classes help you organize your code

Let’s be honest...you’re going to write a lot of code throughout this book. And as you keep
going through the chapters, your projects will get bigger and bigger. This is a good thing!

Bigger apps present an interesting challenge. The app you built at the end of Chapter 2 had
just a few methods. If you create a console app with the same number of methods, there’s
no reason not to put them all in Program.cs.

By the time you get to the end of the book, you’ll be creating apps with dozens of methods.
If you put all of those methods into one big Program.cs file, you’ll have a hard time
remembering which ones do what—and you’ll drive yourself crazy trying to sleuth out bugs!

Luckily, C# has an answer for this organizational challenge. Your C# code is organized
into classes, or units of code that contain methods. You could still put all of your methods
into one big class, and many small apps could have just one class. But when you have a

lot of code, it makes sense to organize your classes based on what they do. When
your classes are organized in a way that’s intuitive, it helps you figure out where to add new
methods—and it makes sleuthing out bugs a lot easier.

Anatomy of a C# App

“sa, Every C# program’s code is structured in exactly the same way. All programs use

)82

sl

When you create your app, all of the code is — N — ——

inside a namespace. This helps keep your classes amespace

separate from the ones that come with .NET. ClasE —
Field;
Field;

Method
Statement;
Statement;

A class contains a piece of your program. Some very small
programs can have just one class, but most have more.

A class can have fields. A field is a variable,
except that it’s declared outside of the methods
so all of the methods in the class can use it.

Method
Statement;
Statement;

A class has one or more methods. Your methods
must live inside a class. The order of the methods
in the class file doesn’t matter. Method 2 can just as
easily come before method 1.

Method
Statement;
Statement;

Methods are made up of statements—like the ones
you used in your apps in the last two chapters.

128 Chapter 3

organizing your code

If code is useful, classes can help you reuse it

Developers have been reusing code since the earliest days of programming, and it’s not hard to see why.

If you’ve written a class for one program, and you have another program that needs code that does

exactly the same thing, then it makes sense to reuse the same class in your new program. So if we were

going to build an app called PetManager, we might organize the code using classes called Dog and Cat.

We built the Dog and
Cat tlasses for our
PetManagerhpp console 3PP

Dog.cs

namespace Pets {
class Dog {

public void Bark() {
// statements

Cat.cs

namespace Pets {

class Cat {

public void Meow() {
// statements

T

Sinte we put our tlasses in the Pets namespate, we
just had to eopy the file into the new project and
add “using Pets;” to the top of any file with C#

tode that uses the Dog or Cat classes.

. L\Program.cs

e e e,
.

PetManager

Dog.cs

.
. .
.

‘e., Catcs

. .
.
®ecese *

~but we distovered we needed exaed|
the same tlasses in the MAU| version of
our PetManager app, so we veused them.

.
.
. e,

. .
. .
.
° .
° .
. .
. .
. \ *

MainPage.xaml

.
e o0 o

MainPage.xaml.cs N
Cat.cs .o

.
.
® o o o ° o ®
e o
. .
®ececcc0c0cec®

These are the same files with
the Dog and Cat ¢lasses.

‘.. Dog.cs

you are here » 129

parameters and values make your methods flexible

Some methods take parameters and return a value

You've seen methods that do things, like the OperatorExamples method you generated in Chapter 2. Methods
can do more than that: they can use parameters to get input, do something with that input, and then
generate output with a return value that can be used by the statement that called the method.

Parameters (—— | Method |——> | Return value
start the input does something sends output back

Parameters are values that the method uses as input. They’re declared as variables that are included in the
method declaration (between the parentheses). The return value is a value that’s calculated or generated inside
the method, and sent back to the statement that called that method. The type of the return value (like string or
int) 1s called the return type. If a method has a return type, then it must use a return statement.

Here’s an example of a method with two int parameters and an int return type:

This method
int Multiply(int factorl, int factor2) takes two int
The vetuwen 7 { <— parameters
type is int, so i called factorl
{:ZC method int product = factorl * factor2; and factor as
. input. They've
;nuS.{ {YCVET" Iﬁt__tﬂ pI‘Od uct; & The veturn statement passes {:r‘?ca{:cd \')u\slic
e } the value back to the statement like int vaviables.

that called the method.

The method takes two parameters called factorl and factor2. It uses the multiplication operator * to
calculate the result, which it returns using the return keyword.

This code calls the Multiply method and stores the result in a variable called area:
int height = 179;
int width = 83;
int area = Multiply(height, width);

A method’s parameters let

You ean pass values like 3

and 5 to methods, like this: you give it information that
Mul{:iyl\/@, 5)—but Yyou €an A .

also use variables when Yyou 1t can use, anJ its return

eall Your methods. [+'s Fine

if the variable names don't value lets you use the

mateh the parameter names.

result of the method in the
statement that called it.

130 Chapter 3

organizing your code

Visual Studio helps you explore parameters and return values

In the next app, you'll be using a .NET method called Console.ReadLine to get a line that the user types
into the console. Once you add the line to your app, you can hover over it to see more about it:

Console.ReadLine();

m, e.ReadLine()

This method Readsthe next line of characters from the standard input stream.
veturns 3 s‘{:ﬂn?,?'

value that holds a Returns:

line of text that The next line of characters from the input stream, or null if no more lines are available.

n

the user typed- Exceptions: This pop-up is called the Quick Info window,
IOException and it’s a really useful part of Visual Studio’s
OutOfMemoryException IntelliSense system. Read it really carefully.

We’ll use this window throughout the book as

ArgumentOutOfRangeException
a learning tool. (VSCode has a similar pop-up.)

The IDE will pop up a box telling you what the method does. The very first thing in the box is its return
type—in this case, it’s a String? value that holds text. We’ll learn a lot more about how strings work in the
next chapter. In the meantime, what you need to know is that you call the method like this:

string? line = Console.ReadLine();
This calls the method to read a line of input, and stores the text the user typed in a variable called Line.

You’ll also use a method called int. TryParse(), which you’ll use in an if statement like this:

if (int.TryParse(line, out int)) This method takes
two pavameters, a
@ bool int.TryParse(string? s, out int result) (+ 8 overloads) 5-{:,,-',,,5_? that eontains
Converts the string representation of a number to its 32-bit signed integer text o turn into a
equivalent. A return value indicates whether the conversion succeeded. number, and 3 m
) an resu
Retums: that the value gets
true if s was converted successfully; otherwise, false. saved into.

The IDE is telling you that it takes two parameters, a String? value and an out int value. (We’ll learn a
lot more about the out keywords later in the book—for now, we’ll give you the code to use.)

5 ’ Since you’re about to create methods that return values, right now is a perfect time to
DG) ‘ﬂ’us. write some code and use the debugger to really dig into how the return statement works:

* What happens when a method is done executing all of its statements? See for yourself—open up one of
the programs you’ve written so far, place a breakpoint inside a method, then keep stepping through it.

* When the method runs out of statements, it veturns to the statement that called it and continues executing
the next statement after that.

* A method can also include a return statement, which causes it to immediately exit without executing
any of its other statements. Try adding a return statement in the middle of a method, then stepping
over it.

you are here » 131

methods can return a value

Let’s build an app that picks random cards Yo PiekRondonCards app il

In the first project in this chapter, you’re going to build a console app called
PickRandomCards that lets you pick random playing cards.

have a setond CH# class file called
CavdPicker.ts, whith tontains the
code for the CardPicker class.

Let’s use it as a way to start using classes. Here’s what its structure will look like:

132

has a Main method instead of top-level
statements (which we’ll talk more about).
Your Program.cs file will contain a class.
That class will have a method called Main,
which is the first thing that gets run when

you start the app.

[You're going to create a console app that]

PickRandomCards

Program

Main
Console.ReadLine(...)
if (int.TryParse(...)) |
{ ... }

else

{ ...}

CardPickercs .-

Nl eall
Wh treate Your 3PP you'll eall
it ;TL\ZE‘;ndomCards, so Visual Studio
will tveate a namespace for you that

matehes the name of the app- \/

PickRandomCards

CardPicker

PickSomeCardsl

Your Main method will have all the
code that communicates with the user,
displaying text and getting input. The code
that has to do with picking random cards
will be in a class called CardPicker.

RandomValue() |
RandomSuit()

RandomValue -

if ... return

S
The CardPicker tlass doesn't

have any Lields, and that’s

RandomSuit
if ...

|
return

OK’ Wc'" {',a“(move abou{:
fields later in the thapter.

Chapter 3

organizing your code

You'll use an array to store the cards

Your PickSomeCards method will use string values to represent playing cards. Let’s say you want to use your
CardPicker class to pick five random cards and store them in a variable called cards. Here’s how you would do that:

string[] cards = CardPicker.PickSomeCards(5);

There’s a lot going on in that line of code, so let’s break it down. The PickSomeCards method is in the CardPicker
class, but we’re calling it from a top-level statement, so we need to use the class name to call it:

string[] cards = CardPicker.PickSomeCards(5);

We just learned about how methods can take parameters. The PickSomeCards method takes an int parameter, and
we’re passing the method the value 5 to tell it to pick five cards:

string[] cards = CardPicker.PickSomeCards(5);

The first part of the statement declares the cards variable. We just learned about return values—so the method will
return a value that gets stored in the cards variable. But something looks different about it:

string[] cards = CardPicker.PickSomeCards(5);

The cards variable has a type that you haven’t seen yet. Look closely at the type:

string[] cards = CardPicker.PickSomeCards(5);

The square brackets [] mean that it’s an array of strings. Arrays let you use a single variable to store multiple
values—in this case, strings with playing cards—which will get stored in the cards variable.

You can use a collection expression to create an array of values by putting comma-separated values between two
square brackets []. Here’s an example of a string array that the PickSomeCards method might return:

L

"10 of Diamonds",

"6 of Clubs") e
f This arvay of strings has
"7 of Spades", . o 3 el
"Ace of Diamonds", 4_ .(:wc Valucs{l:n n’i. Ea {;},\;{;u
"Ace of Hearts", is @ separate string
] has the name of a card.

After your array is generated, you can use a foreach loop to write each of the
cards to the console:

foreach (string card in cards) {
Console.WriteLine(card);
}

For the previous array, running that foreach loop will generate this output:

10 of Diamonds
6 of Clubs

7 of Spades

Ace of Diamonds
Ace of Hearts

you are here » 133

create an app to pick random cards

Create an app with a Main method

When you created console apps in the first two chapters, the IDE generated a two-line Program.cs file:

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

You may not have realized it at the time, but you were taking advantage of a very useful feature of C#
called top-level statements that lets you start creating a console app with a simple file that contains a
set of statements that get executed in order.

Top-level statements are really convenient! A good way to understand what they do for you

- bo !
and how they work is to create a CH# app that doesn’t use top-level statements. /' D@ t 15!

Create your PickRandomCards app without top-level statements

Use Visual Studio to create a new console app called PickRandomCards. But unlike previous
chapters, when you’re going through the steps to create the app, keep an eye out for a checkbox like this
and make sure that it’s checked:

Make sure you heck the “Do not
v| Do not use top-level statements é—/ wse bop-level statements box” when
You treate Your 3pp; othevrwise,
your Program.es file won't have a
Program tlass with Main method.

When you create your new app, your Program.cs file should look like this:

namespace PickRandomCards

{
%nternal class Program The very first statement that gets executed
. . . . in an app is called its entry point. The entry
?tatlc void Main(string[] args) point in an app with top-level statements
. . " Py . is the first statement in Program.cs. In an
3 Console.Writeline("Hello, World!"); app without top-level statements, the entry
} point is the Main method.
}

When the IDE created your app and generated the
Program.cs file, it added a class called Program.
This program was generated with one method called
Main. The code inside the Main method is the familiar

Visual Studio remembers
your checkbox choices.

statement that prints “Hello, World!” to the console. Watch 1t. The next time you create a

Run your app—it should look very familiar. Your new Console App project in Visual Studio,
app does exactly the same thing as the “Hello, World!” E it may remember that you checked
app you created in Chapter 1. But instead of starting the “Do not use top-level statements”
at the first statement in the Program.cs file, the first thing box and check it again for you.

your app does is execute the Main method. Make sure it's unchecked the next

. time you create a console app.
Your app can only have one entry point. If you add

another class with a Main method, your code won’t build.

134 Chapter 3

organizing your code

Top-Leve] Statements.
Here’s what happens when you use top-level statements Be]ﬁnd ﬂle >

Here’s the very first app that you created in Chapter 1: Scenes

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

The first line is a comment, so there’s actually only one statement in this app. When you build the
app, the compiler—the part of Visual Studio that turns your C# code into something that your

operating system can execute—reads all of the lines in the top-level statement and adds them to
aclass. It creates a class that looks like the one that you just saw in your PickRandomCards app:

internal class Program The top-level statements in this app are in

{
. . . . the global namespace, a default namespace
?tatlc void Main(stringl] args) that contains any classes that aren’t
Console.WritelLine("Hello, World!"): explicitly put into a namespace. You can
} ’ ! ot put any class into the global namespace by
} leaving the namespace declaration off.

That looks a lot like the Program class that Visual Studio just created in your PickRandomCards
app. But there’s one difference—can you spot it?

Here’s the Program class from your PickRandomCards app without top-level statements—we’ve
made text that’s the same a lighter color so you can see the difference:

namespace PickRandomCards

{
%nternal class Progran £ you've using /SCode and don't have the
static void Main(string[] args) option to treate a tonsole app that does
{ e : e ? not use top—level statements, veplace the
Console.WriteLine("Hello, World!"); tontents of Program.es with this code.
}
}
}

In an app with top-level statements, the code in your Program.cs file is not in a namespace.
Every method in a C# program must be inside a class, but it’s OK for classes to be outside of
namespaces.

We’ll learn more about how to work with namespaces later in this chapter.

The rest of the console apps in this book will use top-level statements, so when you create the
next one make sure to uncheck the “Do not use top-level statements” checkbox.

At the time we’re writing this, VSCode does not have the option to create a console app that
does not use top-level statements. Just create your console app just like you did in Chapters
1 and 2, then replace the contents of Program.cs with the code we just showed you.

you are here » 135

add a class to your app

Add a class called CardPicker to your app

The next thing you’ll do is add a class called CardPicker to your app. Here’s a class diagram that shows information
about the class you’ll build, including the methods that you’ll add to your GardPicker class:

CardPicker
PickSomeCards This is a class diagram. It’s a rectangle with
. the class name on top and a list of its methods
RandomSuit . .
on the bottom. Your CardPicker class will
RandomValue

have three methods named PickSomeCards,
RandomSuit, and RandomValue.

/D© this!

For Visual Studio: Right-click on the PickRandomCards project in the Solution Explorer—it’s the second row,
underneath the solution, which has the same name. When the right-mouse menu pops up, choose Add >> Class

(or choose Add Class... from the Project menu). (If you don’t want to do all that clicking, you can also choose Add Class
from the Project menu instead of right-clicking on the project name to jump straight to the filename prompt.) Enter
CardPicker. cs when you're asked for a filename. You should now see a new file called CardPicker.cs in your Solution

Explorer.
QR o-s30 [#[=]
P~

Search Solution Explorer (Ctrl+;)

Luckily, both Visual Studio and VSCode will help you add a new class to your project.

Solution Explorer

R O-sHF ' /’

Search Solution Explorer (Ctrl+;) P~
ﬁ'q Solution 'PickRandomCards' (1 of 1 project)
£ Solution 'PickRandomCards' (1 of 1 project) 4 PickRandomGards

4 PickRandomCards > && Dependencies

> &8 Dependendd

P C# Program.cs

P C# Program.cs

\Solut]on Explorer | Git Changes

For VSCode: Right-click on the PickRandomCards project in the Solution Explorer—it’s the second row,
underneath the solution, which has the same name. When the right-mouse menu pops up, choose Add New File,
VSCode will display a list of templates at the top of the window and ask you to choose one. Choose Class. VSCode
will then display a prompt at the top of the window asking you for a filename. Enter CardPicker . cs. You should
now see a new file called CardPicker.cs in your Solution Explorer.

Vv SOLUTION EXPLORER

v © PickRandomCards When you right-click on the project name
> DR e o mnP and choose “Add New File...” or click the
add file icon next to the project name,
VSCode will prompt you for the type of file
Add Project Reference to add—choose Class. Make sure you’re
in the Solution Explorer, not the Explorer.

Add New File...

New Folder...

136 Chapter 3

organizing your code

en youF penci]

A\ Double-click on CardPicker.cs in the Solution Explorer to open it. The code in the file will look
slightly different depending on whether you used Visual Studio or VSCode.

Here’s what your file will look like if you're using Visual Studio:

” PickRandomCards — O X
CardPicker.cs + X v %
: v Go D; i - v Inks
Pl‘ckRandomCards & PickRandomCards.CardPicker - Vou may nok see Lhe
(@ 1¥ E — eﬁ"usingn lines | through
2 5 in Visual Studio. An
3 update to .NET may have
u vemoved them sinte we
S took that sereenshot. We
- kept them heve for this
7 -inamespace PickRandomCards "Shavpen” exertise.
8 {
9 - internal class CardPicker
10 {
11 3
12 3
i B v
100% ~ & @ Noissues found ¥~ Ln:1 Ch:1 SPC
Here's what it will ook like if you're using VSCode: Compare the code in these two screenshots. You should be

able to spot three important differences. Write them down:
C¢ CardPicker.cs @

PickRandomCards > € CardPicker.cs > ...
namespace PickRandomCards;

O references | P
public class CardPicker

{ ...

you are here » 137

different ways to write the same code

en your penci]

I SOlution Did you spot these three differences?

We asked you to compare the code in two screenshots. Difference #|: The fivst Five lines in the Visual

Here’s the SCreenShOt from Vlsual StUle. ...

” PickRandomCards —) X S£Vd|° CardPiCkCV'-CS ‘F|IC {ha{ S{:a\r‘t Wl'[')\ ‘VSiNS,

[¥] PickRandomCards ~ ~ 4 PickRandomCards.CardPicker ~ -+ are Y\O‘{', n {:hc VSCOdC ‘cllc-
(& 16 E— D

2 . . .
3 Diffevence #2: The ‘namespace’ line in the
U |using System.Text; B ettt st saseaseassasssestsss st s s sassassassassnsssssbest et et s e ssasaasan
5
6 , VSCode file ends with a semicolon while the same
7 Gnamespace PickRandomCards L ettt bbbt
8 {
s o R line in Visual Studio is followed by { bratkets }.
10 { ...
11 }
2 [} Diffevence #3: The ‘class CavdPicker’ line starts
i3 2 N

100% ~ & © No issues found R i1 Chi1 SPC

Use Quick Actions to remove unnecessary using lines

If you’re using Visual Studio, you’ll see five lines at the top of your CardPicker.cs file that start with using. These
are using directives, and you’ll learn about them later in the book. But for now, they’re not needed.

Luckily, Visual Studio makes it easy to remove those unnecessary using directives from your file, which is good
for us because we want to keep things simple and easy to read. Click anywhere in the top five lines. Visual Studio
will display the Quick Actions icon to indicate that there’s a quick action available.

Choose the Remove Unnecessary Usings quick action. Visual Studio will remove the five using lines.

OO0 0 EWN

10
11
12
13

@ ~
Remove Unnecessary Usings | » -using System;
5 . -using System.Collections.Generic;
Suppress or configure issues » . i
-using System.Linq;
-namespace PickRandon - USing System.Text;
{ -using System.Threading.Tasks;
- internal class (namespace PickRandomCards
{
h

Preview changes

Fix all occurrences in: Document | Project | Solution

lf You don’t have "us'mg"

138 Chapter 3 lines, you ean skip this step.

organizing your code

Convert between namespace styles

Let’s compare the Visual Studio and VSCode versions of the CardPicker.cs file again, this time with the unnecessary
using directives at the top of the Visual Studio version removed.

If you’re using Visual Studio, your CardPicker:cs file
uses a block-scoped namespace. The namespace
keyword is followed by the name of the namespace
(PickRandomCards), which is followed by a block of
code inside { brackets } and everything between those
brackets is in the PickRandomCards namespace.

namespace PickRandomCards

{
internal class CardPicker
{
H

}

If you’re using VSCode, your CardPickercs file uses

a file-scoped namespace. The namespace
keyword is followed by the name of the namespace
(PickRandomCards) and a semicolon. Everything
in the entire file is in the PickRandomCards
namespace.

namespace PickRandomCards;

public class CardPicker

{
}

This is the second difference you spotted in the “Sharpen your pencil” exercise. Both ways to define a namespace
are valid. They’re two different ways to say the same thing: the CardPicker class is inside the PickRandomCards

namespace.

Click on the namespace line in your file. You'll see a light bulb or screwdriver icon indicating that there’s a quick
action available (the icon looks a little different in VSClode). Click the icon (or press Ctrl+. or 38.) to bring up the Quick

Actions menu:

* If your file has a block-scoped namespace, you’ll see a Convert to file-scoped namespace quick action.

* If your file has a file-scoped namespace, you’ll see a Convert to block-scoped namespace quick action.

Choose the quick action to convert to the other namespace style. Then do the same thing and convert it back. Choose
the style you like the best—they both work exactly the same way. You can switch namespace styles at any time.

Relax

We’ll usually use file-scoped namespaces in the code in this book.

Your code will behave exactly the same whether you use block-scoped or file-scoped
namespaces. We'll usually use file-scoped namespaces when we’re showing the code in
this book, especially in Console App projects, because it takes up less room on the page:
file-scoped namespaces don’t need the extra lines for the opening and closing brackets,
and the code doesn’t need to be indented as much.

Also—we didn’t talk about the third difference from the “Sharpen your pencil” exercise. The code
generated by Visual Studio has the internal keyword, while the code generated by VSCode has the
public keyword. Those are called access modifiers. We'll talk more about them later in the book.

you are here » 139

use an array to hold multiple cards

Use the new keyword to create an array of strings

Let’s say you want to create an array of five strings and store it in a variable called myStrings.
You can use the hew keyword to create a new array of strings. You can create your array of five strings like this:

string myStrings = new string[5];

You can also use a variable, field, or method parameter instead of a number. Your PickSomeCards
method has a parameter called numberOfCards—you’ll use that parameter in your new statement: New
string[numberOfCards];

The PickSomeCards method will pick five random cards. Each of the cards will have a random value and a random
suit, so the class will also have two more methods that generate the value and suit for each card.

@ Add a new PickSomeCards method to your CardPicker class.

Put your cursor between the curly brackets, press Enter to add a space, and carefully type in this method:

internal class CardPicker

, {
1€ Jou re using public static string[] PickSomeCards(int numberOfCards)
VSCode \/ou“ { \ /’\ . . . i
see ‘?“bliﬁ) . | You tare ully en eved Your metho
instead of y Make sure you include the a\— detlaration exactly as it appears here, Yyou

internal’ here. “public” and “statie” keywords. should see a ved squiagly underline underneath

Tt 0d Ll et e P oL o Gk e
n .

@ Create a new array of strings and store it in a variable called pickedCards.
We saw earlier that the PickSomeCards method will return an array of strings, so the first thing we’ll need is
an array of strings to return. Add this line of code to your method:

public static string[] PickSomeCards(int numberOfCards) You'll see a ved squiggly line

{ . . . S— under PickSomeCards. Visual

) string[] pickedCards = new string[numberOfCards]; Studio i§ -[-,clling You that Your
method is supposed to vreturn

Now the method has a string array to work with. SO"\C{')\ihg; but there’s no
torresponding veturn statement.

@ Add a for loop to set the value of each card in the array.
Your method has an array of strings. Now it needs to set them. Add this for loop—it will call two methods
called RandomValue and RandomSuit. Those methods don’t exist yet, but that’s OK.

public static string[] PickSomeCards(int numberOfCards)
{
string[] pickedCards = new string[numberOfCards];
for (int i = 0; i < numberOfCards; i+)
{

pickedCards[i] = RandomValue() + " of " + RandomSuit();
} ' \ '\ The RandomV/alue and RandomSuit
methods don't exist \/c{:, so Visual

io wi b hem too.
140 Chapter 3 Studio will warn you a out them too

organizing your code

Finish the method by adding a return statement.
Add a return statement to send the pickedCards array back to the statement that called the method.

public static string[] PickSomeCards(int numberOfCards)

{

string[] pickedCards = new string[numberOfCards];

for (int i = 0; i < numberOfCards; i++)

{

pickedCards[i] = RandomValue() + " of " + RandomSuit();
) . ; s SStbve et vdvrvd .
. . dding the veturn statement makes the warning on the method

} return plckedCards, E dcdara{:ion |inc 30 awa\/, bu{: {:he wa\rnings Qo\r {:hc {:wo mc{:hod

ealls ave still theve.

Generate the RandomValue and RandomSuit methods.

In Chapter 2, you generated a method called OperatorExamples. Follow exactly the same steps to generate
a method in the CardPicker class called RandomSuit. Then do exactly the same thing to generate a
method called RandomValue.

A method can have more than one return statement, and when
it executes one of those statements it immediately returns, and
does not execute any more statements in the method.

Implement the RandomSuit method.

Every card has a suit: hearts, clubs, spades, or diamonds. The RandomSuit method will pick a suit at
random, store it in a string, and return it. It will use the same random number generator, Random.Shared,
that you used in Chapter 1 to pick emoji from a list. The random number generator’s Next method can take
two parameters: random.Next (1, 5) returnsa number that’s at least 1 but less than 5—in other words,
calling Random. Shared.Next(1, 5) returns a random number from 1 to 4.

Let’s add code to your RandomSuit method that takes advantage of return statements to stop executing
the method as soon as it finds a match—we added a comment to each line to explain how it works:

private static string RandomSuit()

{
You used a int value = Random.Shared.Next(l, 5); // pick a random number from 1 to 4
Raundom.Sharcjy> if (value == 1) return "Spades"; // if it's 1 return the string Spades
statement in if (value == 2) return "Hearts"; // if it's 2 return the string Hearts
Chapter | 4o if (value == 3) return "Clubs"; // if it's 3 return the string Clubs
thoose vandom return "Diamonds"; // otherwise return the string Diamonds
emo\)i from a
list.

The return statement causes your
method to stop immec[iately and go
back to the statement that called it.

you are here » 141

you created a class

®

Implement the RandomValue method.

Every playing card can have one of 13 values—ace, 2 through 10, jack, queen, or king. Here’s the
RandomValue method that generates a random value. Look closely at it. Can you figure out how it works?

private static string RandomValue()

Notice how your method returns value.
ToString() and not just value? That’s
because value is an int variable, but
the RandomValue method was declared
with a string return type, so we need to
convert value to a string. You can add
.ToString() to any variable or value to

{
int value = Random.Shared.Next(1l, 14);
if (value == 1) return "Ace";
if (value == 11) return "Jack";
if (value == 12) return "Queen";
if (value == 13) return "King";
return value.ToString();
}

Here's the code for your finished CardPicker class

Your CardPicker class is in the PickRandomCards namespace and has the methods that we just added:

namespace PickRandomCards;

internal class CardPicker

{

142

convert it to a string.

We've using a file—seoped namespate to make the code

take up less spate on the page. We also stutk with the

“intevnal” ateess modifier from Visual Studio, but if

\/ou'rc using /SCode and have “Fublic" that's fine too.

public static string[] PickSomeCards(int numberOfCards)

{

}

string[] pickedCards = new string[numberOfCards];

for (int i = 0; i < numberOfCards; i++)

{
}

return pickedCards;

pickedCards[i] = RandomValue() + " of " + RandomSuit();

private static string RandomSuit()

{

}

int value = Random.Shared.Next(1l, 5);

if (value == 1) return "Spades";
if (value == 2) return "Hearts";
if (value == 3) return "Clubs";

return "Diamonds";

private static string RandomValue()

{

int value = Random.Shared.Next(1l, 14);

if (value == 1) return "Ace";

if (value == 11) return "Jack";
if (value == 12) return "Queen";
if (value == 13) return "King";

return value.ToString();

Visual Studio will

automatically indent
your code for you so it
looks like ours. If you’re

using VSCode, press
Alt+Shift+F or _+Shift+F
to automatically fix the

| indentation in your file

// pick a random number from 1 to 4

// if it's
// if it's
// if it's

1 return the string Spades
2 return the string Hearts
3 return the string Clubs

// otherwise return the string

We added these comments 4o help you undevstand

how the RandomSuit method works.

Try adding similar

tomments {o the RandomV/alue method) explain how it

works. We put the comment on eath

line and used spates

1o line them up. You tan also put them on separate lines

if You think

it looks better or is easier to vead.

It’s OK if your methods are in a different order.

Chapter 3

organizing your code

Exercise

Now that your CardPicker class has a method to pick random cards, you've got everything you need to finish your console
app by filling in the Main method. You just need a few useful methods to make your console app read a line of input
from the user and use it to pick a number of cards.

Useful method #1: Console.Write

You've already seen the Console.WriteLine method. Here’s its cousin, Console.Write, which writes text to the console but
doesn’t add a new line at the end. You'll use it to display a message to the user:

Console.Write("Enter the number of cards to pick: ");

Useful method #2: Console.ReadLine

The Console.ReadLine method reads a line of text from the input and returns a string. You'll use it to let the user tell you
how many cards to pick:

string? line = Console.ReadLine(); <—— We showed you this line of

tode earlier in the chapter
Useful method #3: int.TryParse

Your CardPicker.PickSomeCards method takes an int parameter. The line of input you get from the user is a string, so
you'll need a way to convert it to an int. You'll use the int.TryParse method for that:

if (int.TryParse(line, out int numberOfCards)) <?____§\\\§_—__W%8koshowcd

{ Yyou this line of
// this block is executed if line COULD be converted to an int codccaﬂwrlh
// value that’s stored in a new variable called numberOfCards the chapter.

}

else

{
// this block is executed if line COULD NOT be converted to an int

}

Put it all together

Your job is to take these three new pieces and put them together in a brand-new Main method for your console app.
Modify your Program.cs file and replace the “Hello, World!” line in the Main method with code that does this:

% Use Console.Write to ask the user for the number of cards to pick.

* Use Console.ReadLine to read a line of input into a string variable called Line.
% Use int.TryParse to try to convert it to an int variable called numberOfCards.
*

If the user input could be converted to an int value, use your CardPicker class to pick the number of cards that the user
specified: CardPicker.PickSomeCards(numberOfCards). Use a string[] variable to save the results, then
use a foreach loop to call Console.WriteLine on each card in the array. Flip back to Chapter 1 to see an example of a
foreach loop—you'll use it to loop through every element of the array. Here’s the first line of the loop:
foreach (string card in CardPicker.PickSomeCards(numberOfCards))

% | the user input could not be converted, use Console.WriteLine to write a message to the user indicating that the
number was not valid.

you are here » 143

exercise solution

Exercise

Solution

Here’s the Main method for your console app. It replaces the one that Visual Studio created for you that prints
“Hello, World!” This method prompts the user for the number of cards to pick, attempts to convert it to an int, and then
uses the PickSomeCards method in the CardPicker class to pick that number of cards. PickSomeCards returns each
of the picked cards in an array of strings, so it uses a foreach loop to write each of them to the console.

static void Main(string[] args)

{
Console.Write("Enter the number of cards to pick: ");
string? line = Console.ReadLine(); We gave You these
if (int.TryParse(line, out int numberOfCards)) (|, .o ¢ sode.
{
string[] cards = CardPicker.PickSomeCards(numberOfCards);
foreach (string card in cards)
{
Console.WritelLine(card); TM“iS?uﬂ:hkcfhccodcvmshowcd
} You earlier, exeept instead of passin
} a number like 5 o the method, you've
?159 passing it the numberOfCards vaviable.
Console.WriteLine("Please enter a valid number.");
}
}

Here’s what it looks like when you run your console app:

Microsoft Visual Studio Debug X v Y

Enter the number of cards to pick: 13
Queen of Hearts
Clubs

Diamonds If you’re using VSCode, you’ll interact with your
o console app in the Terminal at the bottom of the
Diamonds window. Click inside the Terminal panel and type the
Clubs number of random cards you want your app to pick.
Hearts

Spades If your app is running in the Debug Console window,
of Clubs go back to Chapter 1 and follow the instructions to
g}):‘;zs change the C# debug console setting.

Spades

C:\Users\andrewstellman\source\repos\PickRandomCards\PickRandomCards\bin\Debug\net6.0\
PickRandomCards.exe (process U4940) exited with code 0.

To automatically close the console when debugging stops, enable Tools->Options->Debugg
ing->Automatically close the console when debugging stops.
Press any key to close this window . . .

Take the time to really understand how this program works—this is a great
opportunity to use the Visual Studio or VSCode debugger to help you explore your
code. Place a breakpoint on the first line of the Main method, then use Step Into
to step through the entire program. Add a watch for the value variable, and keep
your eye on it as you step through the RandomSuit and RandomValue methods.

144 Chapter 3

organizing your code

Ana’s working on her next game

Meet Ana. She’s an indie game developer. Her last game sold thousands
of copies, and now she’s getting started on her next one.

In my next game, the player is
defending their town from alien
/nvaders,

> 7 _
\ lll(;n" {fifw%mé; ﬁ 1
D> H , ‘\/\
s fr EEH NG S
’ii NG \\ ! l;!" ' =
i brl@| <
5 =
El / EH RS T
4‘*’ | bﬂ“ e 3
i He % \‘ &’%
SR
: = N l"'l: IEEE
&

Ana’s started working on some prototypes. She’s been working on the code for
the alien enemies that the player has to avoid in one exciting part of the game,
where the player needs to escape from their hideout while the aliens search for
them. Ana’s written several methods that define the enemy behavior: searching
the last location where the player was spotted, giving up the search after a while if
the player wasn’t found, and capturing the player if the enemy gets too close.

SearchForPlayer();

if (SpottedPlayer()) {
CommunicatePlayerLocation();
¥

CapturePlayer();

you are here » 145

classes keep your code organized

Ana’s game is evolving...

The humans versus aliens idea is pretty good, but Ana’s not 100% sure that’s
the direction she wants to go in. She’s also thinking about a nautical game
where the player has to evade pirates. Or maybe it’s a zombie survival game
set on a creepy farm. In all three of those ideas, she thinks the enemies will
have different graphics, but their behavior can be driven by the same methods.

I bet these enemy methods would work in
other kinds of games,

.80 how can Ana make things easier for herself?

Ana’s not sure which direction the game should go in, so she wants to make a few
different prototypes—and she wants them all to have the same code for the enemies, with

the SearchForPlayer, StopSearching, SpottedPlayer, CommunicatePlayerLocation, and
CapturePlayer methods. She’s got her work cut out for her.

Can you think of a good way for Ana to use the
same methods for enemies in different prototypes?

146 Chapter 3

organizing your code

I put all of the enemy behavior methods into a single
Enemy class, Can I reuse the class in each of my three
different game prototypes?

Enemy
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

. Game Design..andBeyondcccvvienan...
‘ Prototypes

A prototype is an early version of your game that you can play, test, learn from, and improve.
A prototype can be a really valuable tool to help you make changes early. Prototypes are
especially useful because they let you rapidly experiment with a lot of different ideas
before you've made permanent decisions.

» The first prototype is often a paper prototype, where you lay out the core elements of the
game on paper. For example, you can learn a lot about your game by using sticky notes
or index cards for the different elements of the game, and drawing out levels or play areas
on large pieces of paper to move them around.

» One good thing about building prototypes is that they help you get from an idea to a
working, playable game very quickly. You learn the most about a game (or any kind of
program) when you get working software into the hands of your players (or users).

. Most games will go through many prototypes. This is your chance to try out lots of
different things and learn from them. If something doesn’t go well, think of it as an
experiment, not a mistake.

. Prototyping is a skill, and just like any other skill, you get better at it with practice.
Luckily, building prototypes is also fun, and a great way to get better at writing C# code.

Prototypes aren’t just used for games! When you need to build any kind of app, it’s often a
great idea to build a prototype first to experiment with different ideas.

you are here » 147

paper prototypes help you plan your app

Build a paper prototype for a classic game

Paper prototypes are really useful for helping you figure out how a game will work before you start
building it, which can save you a lot of time. There’s a fast way to get started building them—all you
need is some paper and a pen or pencil. Start by choosing your favorite classic game. Platform games
work especially well, so we chose one of the most popular, most recognizable classic video DPaW
games ever made...but you can choose any game you’d like! Here’s what to do next. r thisl
Q Draw the background on a piece of paper. Start your prototype by creating the

background. In our prototype, the ground, bricks, and pipe don’t move, so we drew them on

the paper. We also added the score, time, and other text at the top.

e Tear small scraps of paper and draw the moving parts. In our prototype, we drew
the characters, the piranha plant, the mushroom, the fire flower, and the coins on separate

scraps. If you’re not an artist, that’s absolutely fine! Just draw stick figures and rough shapes.
Nobody else ever has to see this!

e “Play” the game. This is the fun part! Try to simulate player movement. Drag the player
around the page. Make the nonplayer characters move too. It helps to spend a few minutes
playing the game, then go back to your prototype and see if you can reproduce the motion as
closely as possible. (It will feel a little weird at first, but that’s OK!)

The text at the 1 When the player catehes
e ddd du da g s sa a9 5985 h e

a "\MShV‘OOm "\C SVOWS
i talled the HUD, > PLAYER

T TRz D WIE " to double his size, so
or head—up display. 32/%0 O x 20 T e 2 we also drew a small
[t's usually dvawn ‘ am ' thavatter on a separate
on the batkaround EEL B strap of papev-

; i

in 3 paper IMERE ey ‘ , I
prototype. ‘ 3%'% B :E & : \L
- \

: TiEe /
: i s i S E!

i

|

|
S
He
=
R

The ground, bvieks,
and pipe don't move,

5 1 The mechanits o‘p
A NS ,/ N how the player

so we drew them on ~ Z L A [Fr it Jumps were veally
the background paper. "= : TR ety B2 == e = eavefully desi d

)] . i N LT Y AR ‘ _7 9ned.
Medhrarte et SIXS ISR HGR i
what 9 L ohat , Sz —— ‘ paper PV‘o‘bo'l;YPc
background :‘;n w is 3 valuable learning
moves arouna.

exevéise.

148 Chapter 3

organizing your code

All of the tools and ideas)

in “Game Design..and Beyond
settions are imyor{:an{: skills

that 9o way bc\/ond)us{: game
development—but we ve found
hat they've easier 4o learn when
you ey them with games Livst.

Paper prototypes look like they'd be useful
for more than just games. I bet I can use them in
my other projects too.

Yes! A paper prototype is a great first step for any project.

If you’re building a desktop app, a mobile app, or any other project that has a user
interface, building a paper prototype is a great way to get started. Sometimes you
need to create a few paper prototypes before you get the hang of it. That’s why

we started with a paper prototype for a classic game...because that’s a great way
to learn how to build paper prototypes. Prototyping is a really valuable skill
for any kind of developer, not just a game developer.

en your penci]

In the next project, you'll create a MAUI app that uses your CardPicker class to generate a set of random cards. In this
paper-and-pencil exercise, you'll build a paper prototype of your app to try out various design options.

Start by drawing the window frame on a large piece of paper and a label on a smaller scrap of paper.

) Your app needs to include il g
R sy a Button tontrol with 4 OF HEARTS 4
the text “Pick some tavds” 2 OF DIAMONDS /
and a Label tontrol KING OF SPADES /
HOW MANY CARDS SHOULD L”{Cfi’ to disyla\/ the cards 4cE oF nEARTS
| somewhere in the window. 7 OF CLUBS
° 10 OF SFADES
lVACK OF CLUBS /
i 9 OF HEARTS f
7 OF DIAMONDS -
e VE CARDS ! 3 OF CLUBS
e ACE OF SFADES
g —— st

Next, draw a bunch of different types of controls on more small scraps of paper. Drag them around the window and
experiment with ways to fit them together. What design do you think works best? There’s no single right answer—
there are lots of ways to design any app.

Your app needs a way for the user 4o Tey drawing Slider and Stepper controls

thoose the number of cavds to pick. Try too. Can you think of other F°€:V°ls that A
drawing an Eh‘{:r\/ tontrol that {:hc\/ tan you ve used to '"P“# numbers in aﬂ.?s | —> \\ e +
3 before? Maybe a Picker? Qet ereative! b

use to type numbers inio Your app-

\ T
/2| | j w{g

you are here » 149

card picker app version 2.0

Build a MAUI version of your random card app

All of the code for picking random cards is conveniently organized into a class called
CardPicker. Now you’ll reuse that class in a .NET MAUI app.

Here’s how the app will work.

- O X

The user will enter

Pick a card!
the number of eards

they want to pick How many cards should | pick?

m‘{'p ‘H’\IS CI'\JCV'\/ k
> s

/

9 of Clubs

When the user elitks —
the button, the app
will Fick the number o‘c

8 of Hearts
eards H‘C‘/ asked for King of Clubs
and display them in this Jack of Clubs
multiline label. 9 of Hearts

S~

You picked 5 cards.

Make your app accessible!

Accessibility is really important—and paying attention to accessibility is a great way to
focus on important skills, like understanding your users and their needs:

* The Label and Entry controls each have a SemanticProperties.Description
property so the screen reader will read it out loud.

* The Button control has a SemanticProperties.Hint property because the
screen reader will read the contents of the button but we still want to give people
who use accessibility tools additional context for the control.

150 Chapter 3

organizing your code

Exercise

You already have the tools you need to create the XAML for the MAUI card picker app! In this exercise, you'll use
what you learned about XAML in the first two chapters to create the main page for your app. You may need to go back
to the XAML code you wrote in Chapter 2 to see how you added controls to your page.

Create a new .NET MAUI app called PickRandomCardsMAUI. Edit the MainPage.xaml.cs file to delete the controls
inside the VerticalStackLayout (just like you did in Chapter 2), then add the controls for your card picker app.

Bonus: Edit the AppShell.xaml file to set the page title! We haven’t shown you how to do that yet—can you figure it out?

The ContentPage

Can you figure out how to set the page title? Open
the AppShell.xaml file, look for a <ShellContent>
tag, and change its Title property.
4

contains a ScrollView,
which contains a

/ = O X

VerticalStackLayout,
just like your last
MAUI project.

This is a Label with FontSize 18. Make sure
you give it a SemanticProperties.Description.
Set its HorizontalOptions property to
"Center" so it gets centered in the window.

/

How many cards should | pick?

[This is an Entry. Give)
it a placeholder and a
semantic description

for accessibility,
and use the x:Name
property to name it

"NumberOfCards" so l

your code can read

~ its value. g

Don't forget to delete
everything in the
MainPage.xaml.cs
file except for the
MainPage method.

This Button has the name "PickCardsButton™
and a Clicked event handler method called
PickCardsButton_Clicked. Make sure the event
handler method is created in MainPage.xaml.cs.
Set its HorizontalOptions property to "Center"
and give it a SemanticProperties.Hint property.

This is a multiline Label with the name
"PickedCards" and a Padding property
to 20 so it has some space around
the text. It has white text on a dark
blue background. Make sure it has a

SemanticProperties.Description.

Peeking at the solution is not cheating! I1t’s actually
a great way to get these ideas to stick in your brain.

you are here » 151

now you can reuse your card picker class

EX@I’CiSQ [Your MainPage.xaml.cs file should have
. a public MainPage() method that calls
SO]_u’tlon InitializeComponent and an empty Clicked
event handler method and nothing else.

Here's the XAML for the contents of MainPage.xaml (we didn’t include the outer <ContentPage> tag):

<ScrollView> ‘
<VerticalStackLayout These a*f the same SCV?QI\QCW
Spacing="25" and VerticalStackLayout tags
Padding="36,0" that Visual Studio ereated
VerticalOptions="Center"> using the NET MAU| template.
<Label

Text="How many cards should I pick?"
SemanticProperties.Description="How many cards should I pick?"
FontSize="18" The Hori)
HorizontalOptions="Center" /><__ '"° ovizontalOptions property tenters the
label on the page. TV'\/ the other oF{:ions—-do

You 9ave <Entry you like the way {:hcy look better?
the En’c\r\/, x :Name="NumberOfCards"
Button, and SemanticProperties.Description="Enter the number of cards to pick"
Label tontrols Placeholder="Enter the number of cards to pick" />
names that o oo [Make sure Visual Studio added the |
ou'll use in . —ups " PickCardsButton_Clicked event
://ow c > X NamemtPicktardsButton handler method that gets called
tode. SemanticProperties.Hint="Picks some cards" .W.hen the button is cllckegl. You. luse
Clicked="PickCardsButton_Clicked" <« itin the sgcond part of this prolect. It
HorizontalOptions="Center" /> you’re using VSCode you might need
to carefully type it yourself, just like
<Label x:Name="PickedCards" Padding="20" _you did with the other MAUI projects. |

TextColor="White" BackgroundColor="DarkBlue"
SemanticProperties.Description="Shows the cards that were picked" />

</VerticalStackLayout>
</ScrollView>
We made this change to AppShell.xaml to set the title of the page to “Pick a card!”:

<?xml version="1.0" encoding="UTF-8" ?>
<Shell

[The XAML in AppShell.xaml
tells your MAUI app what
to do when it first starts up.
<She1{}§$2fﬁ2§ck a card!" <€ The ShellContent’s Route
ContentTemplate="{DataTemplate local:MainPage}" pr::g;%?;‘:;ﬁg;::g?e
Route="MainPage" /> xaml file. Try setting the
BackgroundColor of the
</Shell> outer Shell tag—what does
that change in the app?

Shell.FlyoutBehavior="Disabled" BackgroundColor="Red"> <

152 Chapter 3

organizing your code

Make your MAUI app pick randowm cards

You’ve got an app that looks like it’s supposed to, and that’s a great start! In the second
part of this project, you’ll make it work, so when the user enters a number and clicks
the button it picks random cards. That’s where your CardPicker class comes in. You've
already created a class that picks random cards. Now you just need to copy that
class into your new APP. Once it’s copied, you’ll be able to make your button’s
event handler method call the PickSomeCards method in the CardPicker class.

. . When your MAUI app builds, the code in
. the XAML file and the C# code in the code-
O . behind file are combined together to create

.. D — . a new class that makes the page work.

; . Onte You €opy Your CardPitker.es file from

e Your Console App FVOJCL‘{: into your .NET MAU|
. project,)'ouI” be able to eall its PickSomeCards
method when the user ¢licks the button.

. CardPicker.cs

.
.. P

L R I B

PickRandomCards .,

<=

MainPage.xaml .

Once you have code

organized into a class, ". CardPicker.cs MainPagesaml.cs 2

you can use that same — R

class in two projects. sl
..~ A few other files ,'..

. AppShell.xaml and folders .-°

you are here » 163

use code in a different namespace

Reuse your CardPicker class

You took the time to put all of the random card picking code into a convenient class. Now it’s time to /D(J)

reuse that class by copying the file with the C# code into your new MAUI project.

this!

Q Choose Add Existing Item in Visual Studio or manually copy the file in VSCode.

154

This feature in the IDE will copy an existing file into your project. You created a file called CardPicker:.cs in
your PickRandomCards console app. Now you’ll tell the IDE to add that class file to your MAUI project,
which will cause it to copy the file into your MAUI app’s project folder.

* In Visual Studio, right-click on the project in the Solution Explorer window and choose Add >>
Existing Item (Shift+Alt+A), or choose Add Existing Item from the Project menu.

* In VSCode, you’ll need to manually copy the file into the folder. Right-click on the project in the
Solution Explorer and choose “Reveal in File Explorer” (or “Reveal in Finder” if you’re using a Mac).
Use your operating system to copy the file into your project folder that VSCode opened. Once the file
is copied, it will automatically appear in the Solution Explorer.

Find your CardPicker.cs file and add it to your project.
The IDE will pop up a folder explorer window. Navigate to the folder with your PickACard console app and
double-click on CardPicker.cs. You should now see CardPicker in the Solution Explorer.

\ Make sure CardPicker.ts now shows up in your Solution
Explover. Open it and make sure that you see the ¢ode
for the CardPicker elass from earlier in the thapter-.

Try to use your CardPicker class in the MainPage.xaml.cs code.

Open MainPage.xaml.cs. Make sure you've deleted everything inside the MainPage class except the MainPage
method (starting with public MainPage() and ending with a closing bracket). Edit the PickCardsButton_
Clicked event handler method and try adding a statement that calls your CardPicker.PickSomeCards method.

public partial class MainPage : ContentPage

t Heve’s the event handler method that Visual Studio
public MainPage() added to Your C# tode when \You added a Clicked
{ e event handler 4o the XAML for the button. |
InltlallZGComponent() ; \/ou,\rc us'mg \/SCodc, \/ou'” nccd {:o Cavc‘("ull\/ ‘(:\/Ec
: the empty method into your MainPage.xaml.es ile.
private void PickCardsButton_Clicked(object sender, EventArgs e)
{
CardPicker. <€ Hold on—something’s wrong!
} When you start typing the statement to call CardPicker.
} PickSomeCards, Visual Studio doesn’t pop up its normal IntelliSense

window, and there’s a squiggly error line under CardPicker.
Why do you think Visual Studio is treating CardPicker like that?

Chapter 3

organizing your code

Add a using directive to use code in another namespace

You used either a file-scoped namespace or block-scoped namespace to put your CardPicker class in
the PickRandomCards namespace. Compare the namespace declaration in your CardPicker class to the code
at the top of your MainPage.xaml.cs file in your MAUI app:

namespace PickRandomCardsMAUI;

public partial class MainPage : ContentPage

{

. your MAUI app's code is in the PickRandomCardsMAUI namespace ...

}

The reason your MainPage class can’t access the methods in your CardPicker class is
because they’re in different namespaces.

Luckily, C# has an easy way to deal with this. Yow’ll add a using directive in your code N |
that calls the methods in CardPicker—that’s a special line that you put at the top of a class thls-
file to tell it to use code in another namespace.

Add this line to the top of your MainPage.xaml.cs file.
If you chose a different name for your console app, replace

PickRandomCards with the namespace in your CardPicker.cs file. This using d're,d’ ve will lety ou‘add
code to your MainPage.xaml.cs file that
us j_ng PickRandomCards ; <€ uses classes in the PickRandomCards
namespace—so now you can write code
Now go back to the event handler method for your button. Start that calls methods in your CardPicker
typing CardPicker. like you did before. Now Visual Studio will class. You might see other using
pop up its IntelliSense window, just like you’d expect it to. L directives at the top of the file too.

Exercise

Here’s a C# coding challenge for you! Now that you added the using directive to the top of your MainPage.xaml.cs
file, code in that file can use the CardPicker class. Can you finish your event handler method to make your app work?

To do this, you'll need to add statements to the PickCardsButton_Clicked event handler method. Here’s what to do:
+ The first thing the method does is call int.TryParse to convert NumberOfCards.Text to a number.

+ If the number is valid, it calls CardPicker.PickSomeCards just like in your console app. If it isn’t, it makes the
PickedCards label display a message: PickedCards.Text = "Please enter a valid number.";

+ Instead of writing to the console, it sets PickedCards.Text to a string value to make text appear in the PickedCards
Label control. You can clear the text in PickedCards like this: PickedCards.Text = String.Empty;

+ After it clears the PickedCards label, it uses a foreach loop that works just like the one in your console app.

+ Add this statement after the foreach loop to tell the user how many cards they picked:
PickedCards.Text += Environment.NewLine + "You picked " + numberOfCards + "
cards.";

you are here » 155

exercise solution

Exercise
Solution

Here’s the finished event handler method. Sfow J’Ccha’c You have a using
iveck:
private void PickCardsButton_Clicked(object sender, EventArgs e) WF e at the +'°_P o your
{ MamPagc‘xamI.CS 1cl|c, YOu
(2] i
if (int.TryParse(NumberOfCards.Text, out int numberOfCards)) n use the CardPicker class.
{ /
string[] cards = CardPicker.PickSomeCards(numberOfCards);
1Fc’lckedﬁazd;.‘!'ext = 3tr.-1ng.E:P§Yi The foreath loop works \')us{', like the one in
{oreac SRS the tonsole app, extept instead of writing a
. _ . . line of text to the console it adds a line to
, PickedCards.Text += card + Environment.NewlLine; the multi—line PickedCards Label tontrol.
PickedCards.Text += Environment.NewLine + "You picked " + numberOfCards + " cards.";
}
else
{
PickedCards.Text = "Please enter a valid number.";
}
}

Bu]let Points —

m Classes have methods that contain statements that perform actions. Well-designed classes have sensible method
names.

= Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration
that starts with the int keyword returns an int value. Here's a statement that returns an int value: return 37;

= When a method has a return type, it must have a return statement that returns a value that matches a return
type. So if a method declaration has the string return type then you need a return statement that returns a
string.

m As soon as a return statement in a method executes, your program jumps back to the statement that called the
method.

= Not all methods have a return type. A method with a declaration that starts public void doesn't
return anything at all. You can still use a return statement to exit a void method, as in this example: if
(finishedEarly) { return; }

m Developers often reuse the same code in multiple programs. Classes can help you make your code more reusable.
m When you select a control in the XAML code editor, you can edit its properties in the Properties window.
= The XAML code combines with the C# code in the code-behind file to create a new class.

= You can create an array of values using a collection expression by putting the values between a pair of square
brackets [] and separating them with commas.

= The global namespace contains the top-level statements and any class not explicitly put into a namespace using
a namespace declaration.

156 Chapter 3

Anas prototypes look great...

Ana found out that whether her player was being chased by an alien, a pirate,
a zombie, or an evil killer clown, she could use the same methods from her
Enemy class to make them work. Her game is starting to shape up.

..but what if she wants more than one enemy?

And that’s great...until Ana wants more than one enemy, which is all there
was 1n each of her early prototypes. What should she do to add a second
or third enemy to her game?

Ana could copy the Enemy class code and paste it into two more class files.
Then her program could use methods to control three different enemies at
once. Technically, we’re reusing the code...right?

organizing your code

Enemy

SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

Hey Ana, what do you think of that idea?

Enemy1

SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

Enemy?2
SearchForPlayer
SpottedPlayer

CommunicatePlayerLocation
StopSearching
CapturePlayer

Enemy3

Che has a Voin{:. What if she

wants a level with, saY) dozens

of zombies? Crca£in5 dozens o
identical classes \')us{: isn't practical:

J

Are you joking? Using
separate identical classes for
each enemy is a terrible idea. What it
I want more than three enemies at
once?

SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

Maintaining three copies of the
same code is really messy.

Alot of problems you have to solve need a way
to represent one thing a bunch of different
times. In this case, it’s an enemy in a game,

but it could be songs in a music player app, or
contacts in a social media app. Those all have
one thing in common: they always need to treat

the same kind of thing in the same way, no

matter how many of that thing they’re dealing
with. Let’s see if we can find a better solution.

you are here » 157

introducing objects

Ana can use objects to solve her problem

Objects are C#’s tool that you use to work with a bunch of
similar things. Ana can use objects to program her Enemy class just
once, and use it as many times as she wants in a program.

N
o5
Enemy Ener™

SearchForPlayer
SpottedPlayer A level with three enemies chasing
CommunicatePlayerLocation the player will have three Enemy
StopSearching objects at the same time.
CapturePlayer %’O\

S

.

0D

Ener ©
All you need to create an S

object is the new keyword S
— .0
and the name of a class. o>

Enemy enemyl nemy();

enemyl.SearchForPlayer();

if (enemyl.SpottedPlayer()) {
enemyl.CommunicatePlayerLocation();

} else {
<::§;§E§1.StopSearching(); >

}

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

158 Chapter 3

You use a class to build an object

A class 1s like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you

wouldn’t ask an architect to draw up five identical sets of

blueprints. You’d just use one blueprint to build five houses.

An object gets its methods from its class

Once you build a class, you can create as many objects as you want from
it using the new statement. When you do this, every method in your class

becomes part of the object.

House

GrowLawn
ReceiveDeliveries
AccruePropertyTaxes
NeedRepairs

\

/QThis House ¢lass has four methods that
eath of the instances of House tan use.

organizing your code

A class defines

its members, qust
like a I)lueprint
defines the
layout of the
house. You can
use one lalueprint
to make any
number of houses,
and you can use
one class to make
any number of
ol)jects.

)
House °

you are here » 159

objects improve your code

When you create a new object from a class,
it’s called an instance of that class

You use the new keyword to create an object. All you

need is a variable to use with it. Use the class as the variable

type to declare the variable, so instead of int or bool, you’ll ln-StanCC noun
use a class like House or Enemy. ?
an example or one occurrence of
Before: here’s a picture of somethmg. The IDE search-and-

your computer’s memory replace feature finds every instance
when your program starts. Of a word and c/zanges it to another

Your program executes
a new statement.

After: now it has an
instance of the House

. class in memory.
House oakDrivell5 = new House(); l

This “new” statement creates 3
new House ob\)cc{: and assigns it 4o
a vaviable called oakDviveils. >

72

Jec #

o
House °

160 Chapter 3

organizing your code

A better solution for Ana...brought to you by objects

Ana used objects to reuse the code in the Enemy class without all that messy
copying that would’ve left duplicate code all over her project. Here’s how she did it.
Hemm, this array is inside
0 Ana created a Level class that stored the enemies in an Enemy array called the elass, but outside of
enemyArray, just like you used string arrays to store cards and animal emoji. the methods. What do
. ou think is goi 2
internal class Level { ! * 3oy on
Enemy[] enemyArray = new Enemy[3];

—~— -,
Use the name of a elass 4o declave We've using the “new” keyword to ereate an arvay of
an areay of instances of £hat elass Enemy objects, just like you did eavlier with strings.

e She used a loop that called new statements to create new instances of
the Enemy class for the level and add them to an array of enemies.

my

®) ~ | obiect is
£nem O The enemyl obje
Enemy neyl 66%’ an instante of) the
SearchForPlayer Enex™ Enemy ¢elass.
SpottedPlayer
CommunicatePlayerLocation This statement
gtopisea;hmg for (int i = 0; i < 3; i++) uses the new
apturePlayer { keyword to ereate
&— an Enemy object.
Enemy enemy = new Enemy(); G
enemyArray[i] = enemy; !
} &

&This statement adds the newly
tveated Enemy object to the arvay.
e She called methods of each Enemy instance during
every frame update to implement the enemy behavior.

@, 2,

3]4\\
X

o> "o&?) O
Enexy © Enexy © Enert ° The foreach
. loop itevates
foreach (Enemy enemy in enemyArray) £ through the
{ arvay o
// code that calls the Enemy methods Enemy objeets.

}

you are here » 161

how we help you learn

Wait a minute! You didn't give me nearly enough
information to build Ana’s game,

That’s right, we didn’t.

Some game prototypes are really simple, while others
are much more complicated—but complicated
programs follow the same patterns as simple ones.
Ana’s game program is an example of how someone
would use objects in real life. And this doesn’t just
apply to game development! No matter what kind of
program you’re building, you’ll use objects in exactly
the same way that Ana did in her game. Ana’s example
is just the starting point for getting this concept into
your brain. We’ll give you lots more examples
over the rest of the chapter—and this concept is so
important that we’ll revisit it in future chapters too.

Theory and practice

Speaking of patterns, here’s a pattern that you’ll see over and over
again throughout the book. We’ll introduce a concept or idea (like
objects) over the course of a few pages, using pictures and short
code excerpts to demonstrate the idea. This is your opportunity

to take a step back and try to understand what’s going on without
having to worry about getting a program to work.

House oakDrivell5 = new House();

When we've introduting a new tontept
/K (like objeets), keep your eyes open for _—
pictures and tode excerpts like these.

162 Chapter 3

organizing your code

en your penci

A
Now that you've got a better idea of how objects work, it's a great time to go back to your CardPicker class and get to
know the Random class that you're using.

1. Open any Console App project that uses top-level statements (or create a new one). Press Enter to start a new
statement, then type Random. Shared . —as soon as you type the second period, Visual Studio will pop up an
IntelliSense window that shows its methods. Each method is marked with a cube icon (@). We filled in some of the
methods. Finish filling in the class diagram for the Random class.

Random
Equals
GetHashCode
GetType
In Chapter 2, we showed you three types, int
''' (for whole numbers), string (for text), and bool
(for truelfalse values). A double is another type
''' that’s used for numbers with decimal places.
The computer science term for a number with
''' decimal places is a floating-point number. You’ll
learn about more types in the next chapter.
ToString

2. Write code to create a new array of doubles called randomDoubles, then use a for loop to add 20 double values
to that array. Use the IntelliSense pop-up to help you choose the right method from the Random class to use in your

code—make sure you're calling the method that returns a random floating-point number that is greater than or equal
to 0.0, and less than 1.0. (We'll talk about what “floating point” means in the next chapter.)

double[] randomDoubles = new double[20];

led in part of
double value = — \ﬁfiodc, intluding
... {-‘\\c C,\AY\ \, braccs: .
\(ow \')ob is to nish
... {-‘\\OSC s{_/a‘tcmcy\{'}

nd Ehen write the
H — aYCSJC T the code.

you are here » 163

fields maintain an object’s state

“MZ~Sharpen your penci]
\ ySolution

Now that you've got a better idea of how objects work, it's a great time to go back to your CardPicker class and get
to know the Random class that you're using.

1. Open any Console App project that uses top-level statements (or create a new one). Press Enter to start a new
statement, then type Random . Shared . —as soon as you type the second period, Visual Studio will pop up an

IntelliSense window that shows its methods. Each method is marked with a cube icon (). We filled in some of the
methods. Finish filling in the class diagram for the Random class.

Random Random.Shared. '
Heve's the [ntelliSense @ Equals A
Equals window that Visual @ GetHashCode
GetHashCode Studio popped up when ?
+yped Shared.Random. N Getlype
GetType You Type ' 8 Next
Next. © NextBytes
When You seleet /7 ®
CNextBytes. o INJerJcDoublc in the $© Nextint64
ntelliSense wind , it nal
NextDouble thos dperrs | D Nextsingle)
Nextlntbd for the method. s
... :_+_: 8 E]3
NextSimgle %
ToString double Random.NextDouble()

Returns a random floating-point number that is greater than or equal to 0.0, and less than 1.0.

2. Write code to create a new array of doubles called randomDoubles, then use a for loop to add 20 double
values to that array. Use the IntelliSense pop-up to help you choose the right method from the Random class to
use in your code—make sure you're calling the method that returns a random floating-point number that is greater
than or equal to 0.0, and less than 1.0. (We'll talk about what “floating point” means in the next chapter.)

double[] randomDoubles = new double[20];

{ This is veally
... similar to the
tode that you
... used in Your
CardPicker
... ¢lass.

164 Chapter 3

organizing your code

An instance uses fields to keep track of things

We just saw an example of a House class that’s used to instantiate House
objects. Each house needs to remember its address: the 38 Pine Street instance
of House needs to store its specific address, while the 115 Oak Drive instance
needs to remember a different one.

i le think
This is where fields come in—they store the data that each instance of the class i:mch;njs“}’:;\;n tiste”
A e Wo!

needs to keep track of. Every time you instantiate the class, the new instance

. ittle weird
that was created gets its own copy of that field, sounds a little weird

but it makes sense when

When we want to include fields in a class diagram, we’ll draw a horizontal line You hink about what it
in the box. The fields go above the line, and methods go below the line. means: ereating 3 new
instante of a class.
Class
This is where a class Field1
diagram shows » | Field2
' the fields. Every Field3 Class diagrams typically list
instance of the class all of the fields and methods
uses its own copy Method .
of each field to keep Vothod in the class. We call them
track of its state. Me:hod?; the class members.
etho

Methods are what an object does. Fields are what an object knows.

When Ana’s prototype created three instances of her Enemy class, each of those objects was used to keep
track of a different enemy in the game. Every instance keeps separate copies of the same data: setting a
field on the enemy? instance won’t have any effect on the enemy! or enemy3 instances.

Enemy Each enemy in Remember how Level
LastLocationSpotted < Ana’s game uses the Level class +enemyArray
afield to keep used an array to

track of the last keep track of the
SearchForPlayer location where it Enemy objects? ResetEnemies
SpottedPlayer spotted the player. That was a field!
CommunicatePlayerLocation
StopSearching
CapturePlayer

An object’s behavior is defined

lay its meﬂwc[s, and it uses
fields to keep track of its state.

you are here » 165

static means a single shared object

I used the new keyword to create an instance of Random, but I never
created a new instance of my CardPicker class. So does that mean I can call
method's without creating objects?

——

Yes! That’s why you used the static keyword in your declarations.

Take another look at the method declarations in your CardPicker class:

public static string[] PickSomeCards(int numberOfCards)
private static string RandomValue()

private static string RandomSuit()

When you use the static keyword to declare a field or method in a class, you don’t need
an instance of that class to access it. You just called your method like this:

CardPicker.PickSomeCards(numberOfCards)

That’s how you call static methods. If you take away the static keyword from the
PickSomeCards method declaration, then you’ll have to create an instance of CardPicker
you can use to call the method. Other than that distinction, static methods are just like
instance methods: they can take arguments, they can return values, and they live in classes.

When a field is static there’s only one copy of it, and it’s shared by all instances.

So if you created multiple instances of CardPicker, they would all share the same random

field. You can even mark your whele class as static, and then all of its members must be

static too. If you try to add a nonstatic method to a static class, your program won’t build.
-

—

therefare no
Dumb Questions

. When
Q; Then why would | want a method that needs an

Q: When | think of thing that’s “static,” | think .
on’ link of some ing thal's st " instance? Why wouldn’t | make all my methods static? g {lelC[

of something that doesn’t change. Does that mean
nonstatic methods can change, but static methods . .
don’t? Do they behave differently? A: Because if you have an object that's keeping track 18 statlc,

of certain data—like Ana’s instances of her Enemy class 1‘ ’ l
A: No, both static and nonstatic methods act exactly that each kept track of ghfferent fanemles in her game— there's on)’
the same. The only difference is that static methods don’t then you can use each instance’s methods to work with

require an instance, while nonstatic methods do. that data. So when Ana"s game CE?”S the StopSearching one COP,Y 0{
method on the enemy?2 instance, it only causes that

one enemy to stop searching for the player. It doesn't lt sllarec[
affect the enemy1 or enemy3 objects, and they can keep

searching. That's how Ana can create game prototypes l)y au

with any number of enemies, and her programs can keep

A: You can use its static methods, but if you have track of all of them at once. instances.
methods that aren't static, then you need an instance

before you can use them.

Q,- So | can’t use my class until | create an
instance of an object?

166 Chapter 3

organizing your code

(-1

en your penci
TN

Here’s a console app that uses top-level statements and writes several lines to the console. It includes a class called

Clown that has two fields, Name and Height, and a method called WhoAreYou that uses those fields to write a line
to the console. Your job is to read the code and write down the lines that are printed to the console.

Here’s the class diagram and code for the Clown class:

Clown class Clown {
Name » public string? Name;
Height » public int Height;

WhoAreYou

\

public void WhoAreYou() {
Console.WriteLine("My name is " + Name +
"and I'm " + Height + " inches tall.");

Here are the contents of the Program.cs file. There are comments next to each of the calls to the WhoAreYou
method, which prints a line to the console. Your job is to fill in the blanks in the comments so they match the output.

Clown oneClown = new Clown();
oneClown.Name = "Boffo";
oneClown.Height = 14;

oneClown.WhoAreYou(); // My name is and I'm inches tall.

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.WhoAreYou(); // My name is _______ and I'm ____ inches tall.
Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.WhoAreYou(); // My name is _______ and I'm ____ inches tall.
anotherClown.Height *= 2;

anotherClown.WhoAreYou(); // My name is ____ and I'm inches tall.

The *= opevator fells CH# 4o take whatever's on the left of the opevator

and multiply it by whatever's on the vight, so this will update the Height field.

\ 2

& you are here » 167

toss your new object onto the heap of data

Thanks for the mewmory

When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in
the heap so it can store the data for that object.

Heve's a picture of the heap bfﬁorc the
project starts. Notice that it's empty.

When your program creates a new ol;ject, it gets added to the lleap.

“~Sharpen your penci]
\ ySolution

Here's what the program prints to the console. It's worth taking a few minutes to create a new console app—make
sure it uses top-level statements—add the Clown class, and make its Program.cs method the code below. Then step
through it with the debugger so you can see exactly how it works.

Clown oneClown = new Clown();

oneClown.Name = "Boffo";
oneClown.Height = 14;
oneClown.WhoAreYou(); // My name is Boffo__ and 1'ml4& __ inches tall.

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.WhoAreYou(); // My name is Eﬁgg___ and I'm & __ inches tall.
Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.WhoAreYou(); // My name is jﬁfgl__ and I'm 1[__ inches tall.
anotherClown.Height *= 2;

anotherClown.WhoAreYou(); // My name is Biff and I'm32Z__ inches tall.

168 Chapter 3

organizing your code

This ob‘)ed‘{: is an instante of the
What’s on your app’s mind Clown lass

Let’s take a closer look at the program in the “Sharpen your pencil” "Boffo
exercise, starting with the first line of the app. It’s actually two 14 <
statements combined into one: : *
— ‘Oxe,
Clown oneClown = new Clown(); Clown ©
This is a statement that deelaves 3 This statement eveates a

variable called oneCl new object and assigns it
ed oneClown of Eype Clown to Jdwc\)oncClown vaviable.

"Boffo?
’ ; 14 <

Next, let’s look closely at what the heap looks like after e g

each group of statements is executed: . 0(’}
C/OWY\ 0\03

// These statements create an instance of 6 [N

// Clown and then set its fields = 3

Clown oneClown = new Clown(); \¢

oneClown.Name = "Boffo"; Clown 0©

oneClown.Height = 14;
oneClown.WhoAreYou();

// These statements instantiate a second
// Clown object and fill it with data
Clown anotherClown = new Clown();
anotherClown.Name = "Biff";
anotherClown.Height = 16;
anotherClown.WhoAreYou();

C'/OWn 0\0'\0

F 22q

~
®

// Now we instantiate a third Clown object &

// and use data from the other two C'/owr\O\os

// instances to set its fields

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3; “"Boffo™

clown3.WhoAreYou();

<
14 %
// Notice how there's no "new" statement C70M”\6°§b
// here —- we're not creating a new object,
// just modifying one already in memory «~
anotherClown.Height *= 2; I
anotherClown.WhoAreYou(); t

you are here » 169

good names make methods make more sense

Sometimes code can be difficult to read

You may not realize it, but you’re constantly making choices about how to structure your code. Do you use
one method to do something? Do you split it into more than one? Do you even need a new method at all?

The choices you make about methods can make your code much more intuitive—or if you’re not careful,

much more convoluted.

Here’s a nice, compact chunk of code from a control program that runs a machine that makes candy bars:

int t = m.chkTemp(Q);
if (t > 160) {
T tb = new TQ);
tb.clsTrpv(2);
ics.FillQ);
ics.Vent();
m.airsyschk();

Extremely compact code can be especially problematic

Take a second and look at that code. Can you figure out what it does? Don’t feel bad if you can’t—it’s very
difficult to read! Here are a few reasons why:

* We can see a few variable names: tb, ics, m. These are terrible names! We have no idea what they
do. And what’s that T class for?

* The chkTemp method returns an integer...but what does it do? We can guess maybe it has
something to do with checking the temperature of...something?

* The clsTrpV method has one parameter. Do we know what that parameter is supposed to be? Why
is it 22 What is that 160 number for?

C# code in Industrial equipment?! Isn't C# just for desktop
apps, business systems, websites, and games?

C# and .NET are everywhere...and we mean everywhere.

Have you ever played with a Raspberry PI? It’s a low-cost computer on a single board, and
computers like it can be found inside all sorts of machinery. Thanks to Windows IoT (or Internet
of Things), your C# code can run on them.

You can learn more about .NET IoT apps here: Attps://dotnet.microsofi.com/apps /ot

Microsoft even has a free Raspberry PI simulator that you can use to get started:

— https://learn.microsofl.com/azure/10l-hub /iot-hub-raspberry-pi-web-simulator-get-started

—

170 Chapter 3

organizing your code

Most code doesnt come with a manval

Those statements don’t give you any hints about why the code’s doing what it’s doing. In this
case, the programmer was happy with the results because she was able to get it all into one
method. But making your code as compact as possible isn’t really useful! Let’s break it up into
methods to make it easier to read, and make sure the classes are given names that make sense.

We’ll start by figuring out what the code is supposed to do. Luckily, we happen to know that
this code is part of an embedded system, or a controller that’s part of a larger electrical
or mechanical system. And we happen to have documentation for this code—specifically, the
manual that the programmers used when they originally built the system.

How do you cigwc out what
General Electronics Type 5 Candy Bar Maker Manual Your eode is supposed to do?
¢ be checked every 3 minutes by an Well, all code is written for

The nougat temperature mus is
automated system. If the temperature exceeds 160°C, the candy a veason. So it's up to You to

is too hot, and the system must perform the candy isolation ‘(:igwc out that veason! [n this
cooling system (CICS) vent proceduret tase, we 30‘[’, |uCkY—'WC tould

) look up the page in the manual
« Close the trip throttle valve on turbine #2. that the de vcloycv- Lollowed.

« Till the isolation cooling system with a solid stream of water. w

o Vent the water.

« Initiate the automated check for air in the system.

We can compare the code with the manual that tells us what the code is supposed to do.
Adding comments can definitely help us understand what it’s supposed to do:

/* This code runs every 3 minutes to check the temperature.
* If it exceeds 160C we need to vent the cooling system.

*/ Adding extra line breaks
int t = m.chkTemp(Q); toyom'codci“5°"°
if (t > 160) { plates tan make it easier

// Get the controller system for the turbines
T tb = new TQ);

// Close throttle valve on turbine #2
tb.clsTrpv(2);

// Fill and vent the isolation cooling system
ics.Fill(Q);

ics.Vent(Q);

Code comments are a good start.
// Initiate the air system check Can you think of a way to make this
m.airsyschk(); code even easier to understand?

you are here » 171

readable code makes coding easier

Use intuitive class and method names

That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Let’s take a look at the first two lines:

/* This code runs every 3 minutes to check the temperature.
* If it exceeds 160C we need to vent the cooling system.
*/

int t = m.chkTemp(Q);

if (t > 160) {

The comment we added explains a lot. Now we know why the conditional test checks the variable
t against 160—the manual says that any temperature above 160°C means the nougat is too

hot. It turns out that mis a class that controls the candy maker, with static methods to check the
nougat temperature and check the air system.

So let’s put the temperature check into a method, and choose names for the class and the
methods that make their purpose obvious. We’ll move these first two lines into their own method
that returns a Boolean value, true if the nougat is too hot or false if it’s OK:

/// <summary>
/// If the nougat temperature exceeds 160C it's too hot.
/// </summary>

public bool IsNougatTooHot() { When we vename the »
int temp = CandyBarMaker.CheckNougatTemperature(); & — ¢lass “CandyBarMaker
if (temp > 160) { R and the mc{i‘;-d sture,”
. \ « rature,
| SSEEY SR Nobleho b C i CondBartke g LT
return false: we alwa\/s start elass names with an upperctase letter ' d iev to undevstand.
1 ! and) variables with lowertase ones, it’s easiev 4o tell when tode easic
} You ve ca“ing a static method vs. using an instance.

Did you notice the special /// comments above the method? That’s called an XML
Documentation Comment (or XMLDoc) The IDE uses those comments to show you
documentation for methods—like the documentation you saw when you used the IntelliSense
window to figure out which method from the Random class to use.

ﬁf—f’ @ IDE Tip: XML documentation for methods and fie]ds

Visual Studio helps you add XML documentation. Put your cursor in the line above any method and type three slashes,
and it will add an empty template for your documentation. If your method has parameters and a return type, it will add
<param> and <returns> tags for them as well. Try going back to your CardPicker class and typing /// in the line above
the PickSomeCards method—the IDE will add blank XML documentation. Fill it in and watch it show up in IntelliSense.

/// <summary>

/// Picks a number of cards and returns them.

/// </summary>

/// <param name="numberOfCards">The number of cards to pick.</param>

/// <returns>An array of strings that contain the card names.</returns>

You can create XML documentation for your fields too. Try it out by going to the line just above any field and typing three
slashes in the IDE. Anything you put after <summary> will show up in the IntelliSense window for the field.

172 Chapter 3

organizing your code

What does the manual say to do if the nougat is too hot? It tells us to perform the candy
isolation cooling system (or CICS) vent procedure. So let’s make another method, and
choose an obvious name for the T class (which turns out to control the turbine) and the
ics class (which controls the isolation cooling system, and has two static methods to fill and
vent the system), and cap it all off with some brief XML documentation:

/// <summary>
/// Perform the Candy Isolation Cooling System (CICS) vent procedure.
/// </summary>

public void DoCICSVentProcedure() { -€ Wh?t?\ youfg‘etthOCl itS dectlré:rttad
TurbineController turbines = new TurbineController(); With a void return type, tha
turbines.CloseTripValve(2); means it doesn’t return a value
IsolationCoolingSystem.Fill(); atm: it do‘:szllt nfefr? a ret:‘uzn
IsolationCoolingSystem.Vent(); statement. All of the methods
Maker.CheckAirSystem(); you wrote in Chapter 2 used

} ' the void keyword!

Now that we have the IsNougatTooHot and DoCICSVentProcedure methods, we can
rewrite the original confusing code as a single method—and we can give it a
name that makes clear exactly what it does:

/// <summary>

/// This code runs every 3 minutes to check the temperature. We bundled these

/// If it exceeds 160C we need to vent the cooling system. new methods into

/// </summary> O 1 a tlass called

public void ThreeMinuteCheck tureChetker
if (IsNougatTooHot() == true) { Temperaty

's its elass
DoCICSVentProcedure(); Heve's its

} d\agram
) J

Now the code is a lot more intuitive! Even if you don’t know that the CICS vent

: TemperatureChecker
procedure needs to be run if the nougat is too hot, it’s a lot more obvious what this p.
code is doing ThreeMinuteCheck
' DoCICSVentProcedure
IsNougatTooHot

Use elass diagrams 1o plan out Yyour ¢lasses

. . . FORE You

< diaowam is a valuable ool for designing your tode BE .

t‘t:wlri w(:i{:?ng it. Write the name of the ¢lass at the top of the d|ag;<?v:-(:
Then write eath method in the box at the b?H:om- Njow you €an zc A
khe parks of the elass at a glante—and that’s your first chan:a g sl‘;ic :
\woblc»\s that migh‘{: make Your tode difficult to use or undevrstan !

you are here » 173

you should constantly refactor your code

Hold on, we just did something really interesting!
We just made a lot of changes to a block of code, It looks
really different and it's a lot easier to read now, but it still does
exactly the same thing.

. N°— | That’s right. When you change the structure of your
" / code without altering its behavior, it’s called refactoring.

== A R Great developers write code that’s as easy as possible to understand, even
after they haven’t looked at it for a long time. Comments can help, but
° \ nothing beats choosing intuitive names for your methods, classes, variables,

71K : ST — O and fields.

You can make your code easier to read and write by thinking about the
problem your code was built to solve. If you choose names for your methods
that make sense to someone who understands that problem, then your code
will be a lot easier to decipher and develop. No matter how well we plan our
code, we almost never get things exactly right the first time.

S

I

/ / That’s why great developers constantly refactor their code. They’ll

— move code into methods and give them names that make sense. They’ll

S rename variables. Any time they see code that isn’t 100% obvious, they’ll
take a few minutes to refactor it. They know it’s worth taking the time to do
it now, because it will make it easier to add more code in an hour (or a day, a

P
N month, or a year).

174 Chapter 3

organizing your code

en your penci]

= Each of these classes has a serious design flaw. Write down what

you think is wrong with each class, and how youd fix it.

Class23 This class is part of the candy manufacturing system from earlier.

CandyBarWeight
PrintWrapper

GenerateReport
Go e

DeliveryGuy

AddAPizza These two classes are part of a system that a pizza parlor uses to

)) track the pizza orders that are out for delivery.
PizzaDelivered P y

TotalCash
RetUmTlme ...

DeliveryGirl

AddAPizza
PiZZaDeliVered ...
TotalCash
RetUmTlme ...

- The CashRegister class is part of a program that’s used by an
CashRegister automated gcjonvenience ftore cheSko?Jt system. ’

MakeSale

NoSale

PumpGas

REfUNA e
TotalCashInRegister

GetTransactionLiSt B e ettt
AddCash

RemMOVECASN B e e ettt

you are here » 175

a few helpful tips

LJ
arpen your penci]
Here's how we improved the classes. We show just one possible

(]
1N SOI“tlon way to fix the problems—but there are plenty of other ways you
could design these classes depending on how they’ll be used.

This class is part of the candy manufacturing system from earlier. CandyMaker

The tlass name doesn't destribe what the class does. A programmer | CandyBarWeight
PrintWrapper

who sees line of tode that calls Class23.60 will have no idea what | GenerateReport
MakeTheCandy

These two classes are part of a system that a pizza parlor uses to DeliveryPerson
track the pizza orders that are out for delivery. S
[t looks like the DeliveryQuy elass and the Delivery@ivl elass
AddAPizza
both do the same thing—they vepresent a delivery pevson PizzaDelivered
, TotalCash
who's out, delivering pizzas to tustomers. A better design would ReturnTime
veplace them with a single class that adds a field for gender.

We detided NOT 1o add a Gender field because ;J;cgcj; :\ ac’r,uz:ill\/ no
his pi delivery tlass to keep trae e gen ev

:ias{;:\cg;cro:l’:‘;z’;:ﬁcv:in;\:iuz—And we should vespect their ‘mvac\/!

Nwa\/s look out ‘co\r ways 'H\a{: bias tan sneak into Your tode.

The CashRegister class is part of a program that’s used by an CashRegister

automated convenience store checkout system. MakeSale
NoSale

All of the methods in the class do stuff that has to do with Refund
TotalCashInRegister

3 tash vegister—making 3 sale, getting a list of fransactions, GefTransactionLit
AddCash

adding cash...except for one: pumping 93s. ['s 3 good idea to . RemoveCash

176 Chapter 3

organizing your code

—{p) 20} Code Tip: A few ideas for designing intuitive classes
We're about to jump back into writing code. You'll be writing code for the rest of this chapter,
and a LOT of code throughout the book. That means you'll be creating a lot of classes. Here
are a few things to keep in mind when you make choices about how to design them:

* You're building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces easily?
How would you explain that problem to someone else? These are good things to think
about when designing your classes.

* What real-world things will your program use?
A program to help a zookeeper track her animals’ feeding schedules might have classes
for different kinds of food and types of animals.

» Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by look-
ing at their names.

* Look for similarities between classes.
Sometimes two classes can be combined into one if they're really similar. The candy
manufacturing system might have three or four turbines, but there’s only one method
for closing the trip valve that takes the turbine number as a parameter.

R elax ..

It’s OK if you get stuck when you’re writing code.
In fact, getting stuck can be a good thing!

Writing code is all about solving problems—and some of them can be tricky! But if
you keep a few things in mind, it'll make the code exercises go more smoothly:

* |t's easy to get caught up in syntax problems, like missing parentheses or quotes. One
missing bracket can cause many build errors.

* It's much better to look at the solution than to get frustrated with a problem. When you’re
frustrated, your brain doesn’t like to learn.

* All of the code in this book is tested and definitely works! But it's easy to accidentally type
things wrong (like typing a one instead of a lowercase L, or missing a comma or semicolon).

* If your solution just won’t build, try downloading it from the GitHub repository for the book—it
has working code for everything in the book: https://github.com/head-first-csharp/fifth-edition

You can learn a lot from reading code. So if you run into a problem with a coding exercise,
don’t be afraid to peek at the solution. It’s not cheating!

you are here » 177

a example to help you learn about classes

s N A auy keeps cash (“bueks”) i
Build a class to work with some guys s il oo b ¢an pend A
on stuff. He can 9ive tash to
Joe and Bob lend each other money all the time. Let’s create a class to keep track another 9uy, or veteive tash
of how much cash they each have. We’ll start with an overview of what we’ll build. from another 9uy.-

0 We’ll create two instances of a “Guy” class.
We’ll use two Guy variables called joe and bob to keep track of each of our

instances. Here’s what the heap will look like after they’re created: Guy
Name
Cash
Y
& éT @g WriteMylnfo
X ; GiveCash
6Uy O\OS Guy OO\ ReceiveCash
A

9 We’ll set each Guy object’s Cash and Name fields.
The two objects represent different guys, each with his own name and a different
amount of cash in his pocket. Each guy has a Name field that keeps track of his name,
and a Cash field that has the number of bucks in his pocket.

'We chose names for the methods‘

“Bob" that make sense. You call a
Guy object’s GiveCash method
S N to make him give up some of
QAN -) .\Q'b his cash, and his ReceiveCash

method when you want to give
cash to him (so he receives it). |

e We’ll add methods to give and receive cash.
We’ll make a guy give cash from his pocket (and reduce his Cash field) by calling
his GiveCash method, which will return the amount of cash he gave. We’ll
make him receive cash and add it to his pocket (increasing his Cash field) by
calling his ReceiveCash method.

£ we want to give Bob 25 bucks, we ¢all his
ReteiveCash method (betause he's veceiving the cash).

“ Bobu . Bob" ‘ \

5Q o ™ bob.ReceiveCash(25); =—————————>
S

S\ The ReteiveCash method adds the cash to
GUY O\OS Bob's potket b\/ adding the amount to his GUY
Cash field—so now he has 715 bueks.

178 Chapter 3

internal class Guy organizing your code

{ . . The Name and Cash fields keep track of the guy’s name
public string? Name; WU 5nq how much cash he has in his pocket. Don't forget the
public int Cash; question mark when you declare the string? field. We’ll

talk more about what that’s about in the next chapter.

/// <summary>
/// Writes my name and the amount of cash I have to the console.
/// </summary>
i id WriteMyInf
F{)ubllc void WriteMyInfo() Sometimes you want to ask
Console.WriteLine(Name + " has " + Cash + " bucks."); an obje.ct.to performgtgsk,
} like printing a description
of itself to the console.

/// <summary>

/// Gives some of my cash, removing it from my wallet (or printing
/// a message to the console if I don't have enough cash). Don’t add this
/// </summary>

/// <param name="amount">Amount of cash to give.</param> Guy class to an
/// <returns> app yet—just
/// The amount of cash removed from my wallet, or 0 if I don't -

/// have enough cash (or if the amount is invalid). read it. Can

/// </returns> you figure out
public int GiveCash(int amount) how it works?
{
if (amount <= 0)
{
Console.WriteLine(Name + " says: " + amount + " isn't a valid amount");
return 0;
}
if (Camount > Cash)
{
Console.WriteLine(Name + " says: " +
"I don't have enough cash to give you " + amount);
return 0; The GiveCash and
3 \ ReceiveCash methods
Cash -= amount; verify that the amount
return amount; they’re being asked to
3 give or receive is valid.
That way you can’t ask a
/// <summary> / guy to receive a negative
/// Receive some cash, adding it to my wallet (or printing number, which would
/// a message to the console if the amount is invalid). _cause him to lose cash. |

/// </summary>
/// <param name="amount">Amount of cash to receive.</param>
public void ReceiveCash(int amount)

{
if (Camount <= 0)
{
Console.WriteLine(Name + " says: " + amount + " isn't an amount I'll take");
}
?lse Compare the comments in this code to the class diagrams
Cash += amount; and illustrations of the Guy objects. If something doesn’t
} make sense at first, take the time to really understand it.
}

you are here » 179

object initializers set up your instances

There’s an easier way to initialize objects with G

Almost every object that you create needs to be initialized in some way. The Guy
object is no exception—it’s useless until you set its Name and Cash fields. It’s so

Ol)ject initializers

common to have to initialize fields that C# gives you a shortcut for doing that. It’s

called an object initializer, and the IDE’s IntelliSense will help you add one. save y ou time al'l(l

You're about to do an exercise where you create two Guy objects. You could use
one New statement and two more statements to set its fields: mal(e your COC[e
joe = new Guy();
joe.Name = "Joe"; more COmPaCt
joe.Cash = 50; .
) and easier to
Instead, type this: Guy joe = new Guy() {
: : read..and the

As soon as you add the left curly bracket, the IDE will pop up an IntelliSense
window that shows all of the fields that you can initialize: IDE llel])s you
Guy joe = new Guy() { }' . 11

2 (field) int Guy.Cash write them.

© Name

Choose the Cash field, set it to 50, and add a comma:
Guy joe = new Guy() { Cash = 50,
Now type a space—another IntelliSense window will pop up with the remaining field to set:
suy joe = new Guy() { Cash = 50, }
O (field) string? Guy.Name

Set the Name field and add the semicolon. You now have a single statement that initializes your object:

Guy joe = new Guy() { Cash = 50, Name = "Joe" }; £ This new detlaration does the same thing as
the three lines of code at the top of the

Now you have all of the pieces to build page, but it's shorter and easier 4o vead.
your console app that uses two instances
of the Guy class. Here’s what it will look

like when it’s running: > C:\Users\Public\sourc: X + v
Here’s how it works. It calls each Guy Joe has 50 bucks.

. . Bob has 100 bucks.
object’s WriteMyinfo method. It reads = 7

an amount from the input and asks who Who should give the cash: Bob
- Joe has 87 bucks.

to give the cash to, then calls one Guy Bob has 63 bucks.

object’s GiveCash method, then the other I IR T

Guy object’s ReceiveCash method. It

keeps going until the user enters a blank

line, then it calls return to exit the app.

180 Chapter 3

organizing your code

EX@PCise —This is Part 1 of a two-part exercise.|

Here are the top-level statements for a console app that makes Guy objects give cash to each other.

Step 1: Create a new console app that uses top-level statements. Name it Guys.

Step 2: Add a new class to your app called Guy. Since your project is called Guys, your new class will be in the
namespace Guys. Carefully add all of the code from the Guy class that we just showed you.

Step 3: Here's the code that goes into your app's Program.cs file. Carefully enter it, then replace the comments
in with code—read each comment and write code that does exactly what it says. When you're done, you'll have a
program that looks like the screenshot on the previous page.

// Create a new Guy object in a variable called joe
// Set its Name field to "Joe"

// Set its Cash field to 50 &— Replace é“ of the
tomments with code
// Create a new Guy object in a variable called bob that does what the
// Set its Name field to "Bob" tomments deseribe.
// Set its Cash field to 100
while (true)
{
// Call the WriteMyInfo methods for each Guy object
Console.Write("Enter an amount: ");
string? howMuch = Console.ReadLine();
if ChowMuch == "") return;
// Use int.TryParse to try to convert the howMuch string? to an int
// if it was successful (just like you did earlier in the chapter)
{
Console.Write("Who should give the cash: ");
string? whichGuy = Console.ReadLine();
if (whichGuy == "Joe")
{
// Call the joe object's GiveCash method and save the results
// Call the bob object's ReceiveCash method with the saved results
}
else if (whichGuy == "Bob")
{
// Call the bob object’s GiveCash method and save the results
// Call the joe object’s ReceiveCash method with the saved results
ilse Add another if statement
{ after an else to check for
. . . , , , ' ny . | more than one condition. This
, Console.WriteLine("Please enter 'Joe' or 'Bob'"); first checks if whichGuy is Joe,
} then it checks if whichGuy is
Bob, and if neither are true, it
else : -
{ writes a line to the console. |
Console.WriteLine("Please enter an amount (or a blank line to exit).");
}
}

you are here »

181

exercise solution

Exercise

code. Put breakpoints

else blocks. Can you

[]
Solutjon

Here are the top-level statements for your console app. It uses an infinite loop to keep asking the user how much

cash to move between the Guy objects. If the user enters a blank line for an amount, the method executes a

return statement, which causes Main to exit and the program to end.

using Guys;

(Guy joe = new Guy(Q) ...

Guy joe = new Guy() { Cash = 50, Name = "Joe" };

Guy bob = new Guy() { Cash = 100, Name = "Bob" };

while (true)

{ When the app exetutes this veturn
joe.UWriteMyInfo(); ‘2”___,f'__ statement it ends the program,
bob.WriteMyInfo(); because console apps stop when the
Console.Write("Enter an amount: "); top—level statements Linish .
string? howMuch = Console.ReadLine(); running,
if ChowMuch == "") return;
if (int.TryParse(ChowMuch, out int amount))

{
Console.Write("Who should give the cash: "); Heve's the tode where
string? whichGuy = Console.ReadLine(); one 5“Y°hFC£5"‘S
%f (whichGuy == "Joe") cash from his potket,
h
int cashGiven = joe.GiveCash(amount); a;‘:.i JCJ:C o:(;.l::s ﬁ:\/
bob.ReceiveCash(cashGiven); objett ve
}
else if (whichGuy == "Bob") Use the debugger
{ to step through the
int cashGiven = bob.GiveCash(amount);
joe.ReceiveCash(cashGiven); . R .
}) ¢) in the if, else if, and
else
{ o make it hit all three
Console.WriteLine("Please enter 'Joe' or 'Bob'"); - 2
} breakpoints?
}
else
{
Console.WriteLine("Please enter an amount (or a blank line to exit).");
}
}

Don't move on to the next part of the exercise until you have the first part working
and you understand what's going on. It's worth taking a few minutes to use the
debugger to step through the program and make sure you really get it.

182 Chapter 3

organizing your code

Exercise ——{Here's the second part of the two-part exercise.|——

Now that you have your Guy class working, let's see if you can reuse it in a betting game. Look closely at this
screenshot to see how it works and what it prints to the console.

Microsoft Visual StudioD X + v

Welcome to the casino. The odds are 0.75 4—(Thesearetheoddstobeat.]
The player has 100 bucks.

How much do you want to bet: 36
Bad luck, you lose.

The player has 64 bucks.

How much do you want to bet: 27 ————————{ The player makes a double-

You win 54 | or-nothing bet each round.]

The player has 91 bucks.
How much do you want to - (
Bad 1uCkl you 1059. <— random double from 0
The player has 8 bucks. to 1. If the number is
How much do you want to : greater than the odds, the
Bad luck, you lose. player wins twice their bet,
The house always wins. | otherwise the player loses. |

The program picks a

Create a new console app that uses top-level statements, then add the Guy class from your Guys project. Make sure you
add a using statement to the top of your Program.cs file so you can use the Guy class.

In your Program.cs, declare two variables:

+ Adouble variable called odds that stores the odds to beat set to .75

+ A Guy variable called pLayer for an instance of Guy named "The player" with 100 bucks.
Your app should write a line to the console welcoming the player and printing the odds. Then it should run this loop:
1. Call the Guy object's WriteMylnfo method to write the amount of cash the player has to the console.

2. Write a line to the console asking the player how much money to bet. [In step 5, you'll call the Guy

3. Read the line from the console into a string variable called howMuch. object’s GiveCash method to give
o)) the amount to bet. The GiveCash

4. Try to parse it into an int variable called amount. method won’t give more cash

5. Ifit parses, the player gives the amount to an int variable called pot. than the guy has, so you don’t

need to check if the player has
enough money. The Guy class will
Multiply pot by two, because it's a double-or-nothing bet. write a message to the console
if it doesn’t have enough cash
to place the bet, so your app
If the random value is greater than odds, the player receives the pot. doesn’t have to. Checking if the
pot variable is greater than zero
makes sure the bet is valid and
10. The program keeps running while the player has cash. | the player has enough cash.

Only do steps 6 through 9 if pot is greater than zero.
6
7. Use Random.Shared to pick a random double value between 0 and 1.
8
9

If not, the player loses the amount they bet.

The loop ends when the player runs out of money, then the app prints a message: “The house always wins.”

you are here » 183

exercise solution

Exercise

Solution

something more clever. This is a chance to get creative!
using Guys;

double odds = .75;

while (player.Cash > 0)
{

player.WriteMyInfo();

Console.Write("How much do you want to bet: ");
string? howMuch = Console.ReadLine();

if (int.TryParse(howMuch, out int amount))

int pot = player.GiveCash(amount) * 2;
if (pot > 0)
{

if (Random.Shared.NextDouble() > odds)

{
int winnings = pot;
Console.WriteLine("You win " + winnings);
player.ReceiveCash(winnings);
} else
{
Console.WriteLine("Bad luck, you lose.");
H
H
} else
{
Console.WriteLine("Please enter a valid number.");
}

}

Console.WriteLine("The house always wins.");

Guy player = new Guy() { Cash = 100, Name = "The player" };

Console.WriteLine("Welcome to the casino. The odds are " + odds);

Is Guy really the best name for the
class? Why or why not? Can you
think of a better name for it?

Here’s the working code for the top-level statements in the betting game. Can you think of ways to make it more fun?
See if you can figure out how to add additional players, or give different options for odds, or maybe you can think of

jmahd {0 get some practice. Getting
yraé{idc writing tode is the best

way to become a great developer-

Was your code

a little different
than ours? If it
still works and
produces the right
output, that’s OK!
There are many
different ways to
write the same
program.

..and as You 36{‘, Lurther
along in +the book and

the exevtise solutions get
longer, your tode will look
move and move diffevent
Lrom ours. Remember, it's
always 0K o look a{,
our solution when youve
working on an exevrtise!

184 Chapter 3

organizing your code

en your penci]

Here's an app that writes three lines to the console. Your job is to figure out what it writes, without using a computer.
Start at the first line of the Main method and keep track of the values of each of the fields in the objects as it runs.

Pizzazz foxtrot = new Pizzazz() { Zippo = 2 };
foxtrot.Bamboo(foxtrot.Zippo);

Pizzazz november = new Pizzazz() { Zippo = 3 };
Abracadabra tango = new Abracadabra() { Vavavoom = 4 };

while (tango.Lala(november.Zippo))

{
november.Zippo *= -1;
november.Bamboo(tango.Vavavoom);
foxtrot.Bamboo(november.Zippo);
tango.Vavavoom -= foxtrot.Zippo;
}
Console.WriteLine("november.Zippo = " + november.Zippo);
Console.WriteLine("foxtrot.Zippo = " + foxtrot.Zippo);
Console.WriteLine("tango.Vavavoom = " + tango.Vavavoom);
class Pizzazz
{
public int Zippo;
public void Bamboo(int eek)
{
Zippo += eek;
} What does this program write to the console?
class Abracadabra november. Zippo = ... :
{
public int Vavavoom; fox{ro‘[:-Ziﬂ?o e .
?ublic bool Lala(int floq) {3h50V@VaVoom TR .
if (floq < Vavavoom) To find the solution, enter the program into Visual Studio and run
{ it. If you didn’t get the answer right, step through the code line by
Vavavoom += floq; line and add watches for each of the object’s fields.
3 return true; If you don't want to type the whole thing in, you can download it
from GitHub: https://github.com/head-first-csharp/fifth-edition
return false;
}
}

you are here » 185

an ai chatbot can generate code Does it 3““3& the same tode eath time?

©000

©000

Tey this a Lew times with each ehatbot.

Ask an Al chatbot to do the exercise to write the betting game code for you

Al chatbots like Copilot, ChatGPT, Gemini, and Claude can do more than answer questions. They can draw pictures,
search for information, and even generate code for you. Let's use the betting game to explore how this works.

Step 1: Download the PDF of the first four chapters of this book.
We made the first four chapters of this book available as a free PDF. Download it from our GitHub page:
https://github.com/head-first-csharp/fifth-edition

Step 2: Use the complete text of Part 1 of the exercise as a prompt.
Open the PDF and find Part 1 of the two-part exercise in this chapter. Part 1 starts with this sentence:
Here are the top-level statements for a console app that makes Guy objects give cash to each other.

Select all of the text for Part 1—including all of the code—starting with “Here are the top-level statements” and ending
with the closing bracket } at the bottom.

Open Copilot (https://copilot.microsoft.com), ChatGPT (https://chat.openai.com), Gemini (https://gemini.google.com),
Claude (https:/claude.ai), or any other Al chatbot. Paste in all of the text that you copied as a prompt. The chatbot
should generate code for a Guy class, and code for the top-level statements that use it.

Step 3: Create a new Console App project and paste the generated code into it.

Create a new project to test out the code that the Al chatbot generated for you. Create a Guy class in your project,
then copy the code that the Al generated for its Guy class and paste it in. Finally, copy the code that the Al generated

for its top-level statements into your Program.cs.
P y g Take the time to understand the code that the

Al generated. Try this a few times and compare

Step 4: Use the Al safely—trust but verify. the vesults. That’s veally g00d way 4o learn.

Before you run your app, look at the code. Does it look right?

When we did this ourselves, all three Al chatbots generated working code that did exactly what we asked it to do.
However, one of the chatbots ignored our instruction to generate top-level statements and created a console app with
a Main method. The app still worked, though!

Also, two of the chatbots used object initializers, while one of them set the fields directly. Our instructions didn’t tell it
exactly what to do, and either of those choices will work just fine.

Step 5: Finish the betting game.

Find Part 2 of the exercise in the PDF, copy all of the text, and paste it into the chatbot as a follow-up prompt (so
don't start a new chat). Copy the code that it generates and paste it into your Program.cs file. Before you run your
app, carefully read all of the code. Does it look like it works? Did the Al do things differently than you did?

When we pasted our Part 2 prompt, the betting game worked perfectly. All three chatbots were even smart enough to
ignore the instruction in Part 2 to look closely at the screenshot to see how the game works and what it prints to the
console, even though we didn’t actually include the contents of the screenshot in our prompt.

wrote for the exercise, but is structured differently? Compare its code to
yours—that might give you ideas about how you can refactor your code.

esccccccccccccccccccecceeccesol Did the Al generate code that behaves the same way as the code you T

186 Chapter 3

K E Jens-Al-

0000 00

n this edition, we tested our
exertises by pasting them into
diffevent Al thatbots to make

sure we didn't accidentally —
leave out any insbructions. |€

4he Al can genevate code for

a torvett solution, it means we
intluded cvcv‘\/{')\ing you need to

do it too.

Exercise

Decide for yourself if prompt engineering is harder than writing code. We gave you this method earlier in the chapter:
int Multiply(int factorl, int factor2)

{ On our fivst try, we had to ask four
int product = factorl * factor2; £&— (:ollow——uy questions before we could get
} return product; ChatGPT to give us exactly this output.

Start a new session with an Al chatbot and give it a prompt to create exactly this method. Make sure it doesn’t include
comments or any additional code.

Repeat the same exercise with the loop from the Sens-Al element in Chapter 2. Can you get the Al to generate it?

why should I bother writing code? Why should anyone even

organizing your code

If an Al chatbot is smart enough to write code for me,

learn to code in the first place?

It’s often easier to write the code that you want than it is to
engineer a prompt to generate that code.

Creating a prompt isn’t always easy. In fact, there’s an entire growing field of study
called prompt engineering that’s all about designing prompts to get an Al to do
what you want it to do.

Creating a great prompt can include many steps. You need to test the specific
language that you’re using, examine the output, then refine it to get the Al to give
you the output that you’re looking for. Prompt engineering can be a difficult and
often tedious process, because a very small change in a prompt can make a huge
difference in the output that the Al generates.

We know this because every coding exercise in this book is a prompt. The
only difference is that instead of building those prompts for an artificial intelligence,
we built them to be used by a real, smart, human intelligence—namely, you!

Every single exercise in this book went through a painstaking process to make sure
you have all of the information that you need to do it. When we’re building an
exercise, we start by writing the code for the solution. Believe it or not, that’s the
quickest part of creating the exercise. Then we go through a process of creating
instructions. We usually have to go through many versions of each exercise before
we end up with the version that you see. It’s a time-consuming and painstaking
process—and sometimes we don’t get it right. We got feedback from readers of the
first four editions of this book (especially the early editions) who had trouble doing
exercises because our instructions were unclear, difficult to follow, and on a few
occasions, even missed some steps.

In every single case, writing the code for each exercise was much easier than the
prompt engineering that we had to do to craft the finished exercise.

Ask it follow-up questions until it gives you exactly this output.

you are here » 187

more ways to run your code

Use the G Interactive window or esi to run G code

If you just want to run some C# code, you don’t always need to create a new project in Visual
Studio. Any C# code entered into the C# Interactive window is run immediately. You can open Start menu to

it by choosing View >> Other Windows >> C# Interactive.
from the exercise solution to see the output. You can call met

£ \/ou’rc unhing
Windows, open
Developer Command
vompt or Developer
PowerShell from the
make

Try it now, and paste in the code Sur¢ ¢si is in your path.

hods and enter other statements too.

VSCode doesn’t
have a C# Interactive

C# Interactive vyAax
OE=ET L
public bool Lala(int floq) 5 androw — mono —g J-aize=64m JLibray/
{ . Andrews-MBP ~ % csi
if (floq < Vavavoom)
{ Copyright (C) Microsoft Corporation._All rights reserved.
Vavavoom += floq;
return true; Type "#help" for more information.
} > class Pizzazz
return false; ottt
1 ! > class Abracadabra
S T

november.Zippo = 4
foxtrot.Zippo = 8
tango.Vavavoom = -1
> |

> > > > > >

november.Zippo 4

foxtrot.Zippo = 8
110 %

C# Interactive Find Results 1 Error List

v 4

tango.Vavavoom = -1

>

> Pizzazz foxtrot = new Pizzazz() { Zippo
> Console.WritelLine("november.Zippo
> Console.WriteLine("foxtrot.Zippo

!> Console.WritelLine("tango.Vavavoom = " + tango.Vavavoom);

1

window, but you can

Microsoft (R) Visual C# Interactive Compiler version 3.9.0-6J run csi from Terminal

to use the dotnet C#

Paste in eath ¢lass. interactive compiler.
You'll see periods for
each pasted line.

2 };

" + november.Zippo);

" + foxtrot.Zippo);

You can also run an interactive C# session from the command

menu for Developer Command Prompt, start it, and then type €si. On macOS or Linux,
run €S1i from the Terminal. You can paste the Pizzazz, Abracadabra, and Program classes from
the previous exercise directly into the prompt, then paste in the code that you want to run.

1
0nl\/ the fiest Pas{:cd line is
printed, so we pasted each
Console.WriteLine statement
sepavately to see the output.

Bu]Jet Points ——

line. On Windows, search the Start

Use the new keyword to create instances of a class. A
program can have many instances of the same class.

Each instance has all of the methods from the class
and gets its own copies of each of the fields.

Use the static keyword to declare a field or
method in a class as static. You don’t need an instance
of that class to access static methods or fields.

When a field is static, there's only one copy of
it shared by all instances. When you include the
static keyword in a class declaration, all of its
members must be static.

Fields and methods of a class are called its members.

If you remove the static keyword from a static field,
it becomes an instance field.

m» When your program creates an object, it lives in a part
of the computer’s memory called the heap.

m Visual Studio helps you add XML documentation (or
XMLDoc) to your fields and methods, and displays it
in its IntelliSense window.

m Class diagrams help you plan out your classes and
make them easier to work with.

= When you change the structure of your code without
altering its behavior, it's called refactoring. Advanced
developers constantly refactor their code.

m Object initializers save you time and make your code
more compact and easier to read.

188 Chapter 3

4 data, types, Ql)j’ects, and references

Managing your app’s data

Data and objects are the building blocks of your apps.

What would your apps be without data? Think about it for a minute. Without data, your
programs are...well, it's actually hard to imagine writing code without data. You need
information from your users, and you use that to look up or produce new information to give
back to them. In fact, almost everything you do in programming involves working with data
in one way or another. In this chapter, you'll learn the ins and outs of C#'s data types and
references, see how to work with data in your program, and even learn a few more things

about objects (guess what...objects are data too!).

this is a new chapter 189

masterful game master

Owen could use our help!

Owen is a game master—a really good one. He hosts a group that meets at his
place every week to play different role-playing games (or RPGs), and like
any good game master, he works hard to keep things interesting for the players.

Storytelling, fantasy, and mechanics

Owen is a particularly good storyteller. Over the last few
months, he’s created an intricate fantasy world for his party,
but he’s not so happy with the mechanics of the game that
they’ve been playing.

Can we find a way to help Owen improve his RPG?

ity seove (like strength, stamina, chaﬁSma,
i‘:dl {i:v\\ljcc“i ente) is an im?ortan{: mecthanit
in a lot of vole—playing games. Pb\,ﬂs{w
(:rco\ucn{:l\/ voll dice and use a formula
determine theiv thavacter's stores.

190 Chapter 4

managing your app’s data

Character sheets store different CharacterSheet
types of data on paper U
Level
If you've ever played an RPG, you've seen character sheets: a page PictureFilename
with details, statistics, background information, and any other notes Alignment
you might see about a character. If you wanted to make a class to CharacterClass
hold a character sheet, what types would you use for the fields? Strength
Dexterity
Intelligence
Character Sheet Wisdom
Charisma
ELLWYNN SpellSavingThrow
Character Name PoisonSavingThrow
7 MagicWandSavingThrow
Level ArrowSavingThrow
LAWFUL GOOD
Alignment ClearSheet
wWIZARD GenerateRandomScores
Character Class

Picture
Spell Saving R_’KTMS box is for a FiC{:wrc of

the tharacter. |£

Throw \/OIA wevre
bui'dihg a C# tlass ‘(:or a
tharacter sheet, You tould save

/% Dexterity that picture in an image file.
O Poison Saving
Throw

/2 | Sstrength

/7 | intelligence In the RPG that Owen plays, saving
throws give players a chante to voll dice

MagicWand €——— and avoid cevtain types of attatks. This
Saving Throw thavatter has a magie wand saving throw,
so the player filled in this ivele.

LS Wisdom

/o Charisma Arrow Saving
| Throw

Players ereate thavacters
by \ro”ing dice for each of
their ability scoves, which
they write in these boxes.

Look at the fields in the CharacterSheet class
diagram. What type would you use for each field?

you are here » 191

know your types

A variable’s type determines what kind
of data it can store

There are many types built into C#, and you’ll use them to store many
different kinds of data. You’ve already seen some of the most common
ones, like int, string, bool, and float. There are a few others that you
haven’t seen, and they can really come in handy too.

Here are some types you’ll use a lot.

Better a witty fool, !
than a foolish wit. /

< s sl e SV ‘

* string can hold text of
any length (including
the empty string "").

* int can store any integer
from —2,147,483,648 to
2,147,483,647. Integers don’t
have decimal points.

s

bool is a Boolean value—it’s
either true or false. You’ll
use it to represent anything
that only has two options: it
can either be one thing or
another, but nothing else.

% double can store real numbers from £5.0 X 10%* to

% float can store real numbers

from £1.5 X 10" to £3.4 x 10%
with up to 8 significant digits.

Why do you think C# has more than one type for
storing numbers that have a decimal point?

1.7 X 10 with up to 16 significant digits. It’s a really
common type when you’re working with XAML properties.

192 Chapter 4

managing your app’s data

C# has several types for storing integers

C# has several different types for integers, as well as int. This may seem a little odd (pun
intended). Why have so many types for numbers without decimals? For most of the programs
in this book, it won’t matter if you use an int or a long,. If you’re writing a program that has
to keep track of millions and millions of integer values, then choosing a smaller integer type
like byte instead of a bigger type like long can save you a lot of memory.

. . »
* byte can store any integer between 0 and 255. Notice how we've 53\/"\5, "‘+'C5C_V and
not “whole number”? We've trying to

<— be veally taveful—our high sthool math

* sbyte can store any integer from —128 to 127.
* short can store any integer from —32,768 to 32,767. teachers always told us that integers
*

are any numbevrs that can be written
without a fraction, while whole numbevs
ave integers starting at O, and do not

intlude negative numbers.

long can store any integer from —9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

£ You need to stove 3 larger number,
You €an use a short, which stores
integers from —32 768 4o 32,767

byte only stoves
small whole numbers
from O 1o 255.

Long also stores integers,
but it can store huge values.

Did you notice that byte only stores positive numbers,
while sbyte stores negative numbers? They both have 256
possible values. The difference is that, like short and long,
sbyte can have a negative sign—which 1s why those are
called signed types, (the “s” in sbyte stands for signed).
Just like byte is the unsigned version of sbyte, there are
unsigned versions of short, int, and long that start with “u”:

* wushort can store any whole number
from 0 to 65,535.

* aant can store any whole number from
0 to 4,294,967,295.

* wulong can store any whole number
from 0 to 18,446,744,073,709,551,615.

you are here » 193

big numbers small numbers no numbers at all

Types for storing really HUGE and really tiny numbers

Sometimes float just isn’t precise enough. Believe it or not, sometimes 10% isn’t big enough and
10* isn’t small enough. A lot of programs written for finance or scientific research run into these
problems all the time, so C# gives us different floating-point types to handle huge and tiny values:

* float can store any number from +1.5 X 107 to £3.4 X 10% with 6-9 significant digits.

* double can store any number from 5.0 X 1079 to £1.7 X 10%% with 15-17 significant
digits.

* decimal can store any number from £1.0 X 10 to £7.9 X 10* with 28-29 significant
digits. When your program needs to deal with money or currency, you always want to

use a decimal to store the number.
K The detimal ‘(:YPC has a lo{: move

Precision (way more significant
digits), which is why it’s aPpropriate
or finantial ealeulations.

Floating-Point Numbers Up Close
;

he float and double types are called “floating-point” because the decimal point can move (as opposed to a “fixed-
point” number, which always has the same number of decimal places). That—and, in fact, a lot of stuff that has to
do with floating-point numbers, especially precision—may seem a little weird, so let’s dig into the explanation.

“Significant digits” represents the precision of the number: 1,048,415, 104.8415, and
.0000001048415 all have seven significant digits. So when we say a float can store

real numbers as big as 3.4 x 10% or as small as —1.5 x 10, that means it can store
numbers as big as eight digits followed by 30 zeros, or as small as 37 zeros followed <

[€ it's been a while
sinte yov,VC used

by eight digits. uyoncnb; 3 440"
The float and double types can also have special values, including both positive and means 34 followed
negative zero, positive and negative infinity, and a special value called NaN (not-a- by 37 zevos,
number) that represents, well, a value that isn’t a number at all. They also have static and 15407 is
methods that let you test for those special values. Try running this loop: ~.00..(&50 wore
for (float f = 10; !float.IsInfinity(f); £ *= £) zevos)..00I5.

{

Console.WritelLine(f);

}
Now try that same loop with double:

for (double d = 10; !double.IsInfinity(d); d *= d)
{

}

Console.WritelLine(d);

194 Chapter 4

managing your app’s data

Let’s talk about strings

You've written code that works with strings. So what, exactly, is a string?

In any .NET app, a string is an object. Its full class name is System.String—in other words, the class name

1s String and it’s in the System namespace (just like the Random class you used earlier). When you use the
C# string keyword, you’re working with System.String objects. In fact, you can replace string with
System.String in any of the code you've written so far and it will still work! (The string keyword is
called an alias—as far as your C# code is concerned, string and System.String mean the same thing)

There are also two special values for strings: an empty string, "" (or a string with no characters), and a null

string, or a string that isn’t set to anything at all. We’ll talk more about null later in the chapter.

Strings are made up of characters—specifically, Unicode characters (which you’ll learn a lot more about later
in the book). Sometimes you need to store a single character like Q or j or $, and when you do you’ll use

the char type. Literal values for char are always inside single quotes (' X', '3"). You can include escape
sequences in the quotes too (' \N"' is a line break, '\t ' is a tab). You can write an escape sequence in your
C# code using two characters, but your program stores each escape sequence as a single character in memory.

And finally, there’s one more important type: object. If a variable has object as its type, you can assign
any value to it. The object keyword is also an alias—it’s the same as System.Object.

en your penci]

Sometimes you declare a variable and set its value in a single statement like this: int i = 37;—but you already
know that you don’t have to set a value. What happens if you use the variable without assigning a value? Let’s find
out! Use the C# Interactive window (or the csi if you're using VSCode) to declare a variable and check its value.

We wrote in the fivst answer for you.

Start the C# Interactive window

............ int i: C# Interactive (64-bit) SYEES . .
! R (from the View >> Other Windows
,,,,,,,,,,,, .LOI"Ig .L; Type "#help" for more information. = menu) or rgn csi from the
> int i; command line. Declare each
float f: \ > i variable, then enter the variable
............ I i | . .
name to see its default value. Write
............ double d; > the default value for each type in
.| the space provided.
............ decimal m; 2% -« - >
@ .. Macintosh HD — mono --gc-params=nursery-size=64m --clr-memory-model /Library/Frameworks/Mono....
Andrews-MacBook-Pro ~ % csi
byte b I Microsoft (R) Visual C# Interactive Compiler version 3.4.0-beta3-19521-01 ()
"""""""" I Copyright (C) Microsoft Corporation. All rights reserved.
T "#help" f infi tion.
............ char C,; e
> i
.]
............ string s; > 1
............ bool t;

you are here » 195

it’s literally a value

A literal is a value written directly into your code

A literal is a number, string, or other fixed value that you include in your code. You've already
used plenty of literals—here are some examples of numbers, strings, and other literals that

you’ve used:
int number = 15; Can you spot all of the
string result = "the answer"; literals in these statements
public bool GameOver = false; from tode you've written in
Console.Write("Enter the number of cards to pick: "); previous thapters? The last
if (value == 1) return "Ace"; statement has two litevals.

So when you type int i = 5;, the 51is a literal.

Use suffixes to give your literals types C# assumes

Go back to the first loop you wrote in the “Up Close” section and change 10 to 10D: that an

for (float f = 10D; float.IsFinite(f); f *=)) .
integer literal

Now your code will have a syntax error and won’t build. The C# compiler error
mentions a “literal of type double.” That’s because literals have types. Every literal Witllout a

1s automatically assigned a type, and C# has rules about how you can combine different

types. You can see for yourself how that works. Add this line to any C# program: su{{ix (lil(e

int wholeNumber = 14.7; 371) is an mt
9
When you try to build your program, the IDE will show you this error in the Error List:

and one with

& CS0266 Cannot implicitly convert type ‘double’ to ‘int’. An

explicit conversion exists (are you missing a cast?) a Jecimal
The IDE is telling you is that the literal 14.7 has a type—it’s a double. You can use a Oint (like
suffix to change its type—try changing it to a float by sticking an I on the end (14.7F) or P

a decimal by adding M (14.7M—the M actually stands for “money”). The error message 27‘4) is a
now says it can’t convert float or decimal.
double.

Q .
en your1 penci]
A, olution
S .0 . decimal m; l_«f you used the Q# ¢ommand
0 R . line on Mat or Linux, You
............ int 1; O byte b;)mig‘h{: see "\xO' instead of
0 O’ / \O’ as the default value for
"""""" .LOI’Ig 1‘: O char C,; CT: Wc'lll{:akc iicc? dive
R . into exactly what this means
L float f ! nu" string s; later in the book when we
0. double d; Kl pool t: talk about Unicode.

196 Chapter 4

managing your app’s data

en your penci]

C# has dozens of reserved words called keywords. They're words reserved by the C# compiler that you can't use for
variable names. You've already learned many of them—~here’s a little review to help seal them into your brain. Write
down what you think each of these keywords does in C#.

namespace

for

class

else

new

using

while

If you really want to use a reserved keyword as a variable name, put @ in front of it, but that’s as close as the
compiler will let you get to the reserved word. You can also do that with nonreserved names, if you want to.

you are here » 197

make mine a double

Fpen your pencil

Solution

C# has dozens of reserved words called keywords. They’re words reserved by the C# compiler that you can't use
for variable names. You've already learned many of them—here’s a little review to help seal them into your brain.
Write down what you think each of these keywords does in C#.

namespace

for

class

else

new

using

if

while

All of the tlasses and methods in a program are inside a namespace.
Namespaces help make sure that the names you ave using in Your program
don't tlash with the ones in the .NET Framework or other ¢lasses.

This lets you do a loop that executes three statements. First it declares the
variable it's going 1o use, then there’s the statement that evaluates the variable
agains{: a tondition. The third statement does somc{:hing to the value.

Classes tontain methods and tields, and You use them to instantiate ob)cé{s.
Fields are what ob")ccfs know and methods are what ‘U\c\/ do.

A bloek of tode that starts with else must immcdia{:d\/ Yollow an it block,
and will get executed it the it statement preceding it tails.

You use this to treate a new instante of an object.

This is a way ot listing otk all of the namespaces You are using in Your

program. A using statement lets you use elasses krom vavious parts ot the
.NET Framework.

This is one way ot SC‘H:'mg up a tonditional statement in a program. [t says
it one {:hing is true, do one Jching; it not, do smufhing else.

i

198

Chapter 4

managing your app’s data

A variable is like a data to-go cup Not al data eds
on e CaF. alue

All of your data takes up space in memory. (Remember the heap from the previous < {ZYFCS usual ly keep
chapter?) So part of your job is to think about how much space you’re going to need their data in another
whenever you use a string or a number in your program. That’s one of the reasons part of memor

you use variables. They let you set aside enough space in memory to store your data. talled the stack.

, o , , You'll learn all about
Think of a variable like a cup that you keep your data in. C# uses a bunch of different that later in +he book

kinds of cups to hold different kinds of data. Just like the different sizes of cups at a
coffee shop, there are different sizes of variables too.

int is the Lommonl\/ used ‘{‘,\/‘?c
for integers. [t holds numbers
UY ‘{',O 2)'4—7)4—63)64-7 A Shor{: WI” ho’d

in{:cgcrs up 4o 32,767,

A b\/{:e ¢an hold whole
numbers up to 255, while a
long an store numbers in the
billions of billions of billions.

}(ou'“ use loy\a

or in{cgc\rs

that ave f)o'mg/_>
to be veally big.

This is how many bits of

I 2 P y mcmory are SC‘{: asi
long int short byte /Va\riable when o zd:' ‘cor.‘l:he
C64bits 32bits 16 bits 8 bits > You declare it.

Conye
Use the Convert class to explore bits and bytes /' this!

You’ve always heard that programming is about 1s and Os. .NET has a static Convert class that converts
between different numeric data types. Let’s use it to see an example of how bits and bytes work. Type these
Convert method calls into the Visual Studio C# Interactive window or GSI.

Abit is a single 1 or 0. A byte is 8 bits, so a byte variable holds an 8-bit number, which means it’s a number
that can be represented with up to 8 bits. What does that look like? Let’s use the Convert class to convert some

binary numbers to bytes:
Ty Y The fivst argwmcn{ to Convcr’c.ToB\/{:c is
Convert.ToByte("10111", 2) // returns 23 < the number to tonvert, and the setond is
Convert.ToByte("11111111", 2) // returns 255 its base. Binary numbers are base 2.

Bytes can hold numbers between 0 and 255 because they use 8 bits of memory—an 8-bit number is a binary
number between 0 and 11111111 binary (or 0 and 255 decimal).

A short is a 16-bit value. Let’s use Convert.ToInt16 to convert the binary value 111111111111111 (15 1s)
to a short. An int is a 32-bit value, so we’ll use Convert.ToInt32 to convert the 31 1s to an int:

Convert.ToInt16("111111111111111", 2) // returns 32767
Convert.ToInt32("11111111111111111112111111111111", 2) // returns 2147483647

you are here » 199

bigger types take more memory

Other types come in different sizes too

Numbers that have decimal places are stored differently than integers, and the different
floating-point types take up different amounts of memory. You can handle most of your
numbers that have decimal places using float, the smallest data type that stores decimals. If
you need to be more precise, use a double. If you’re writing a financial application where
you’ll be storing currency values, you’ll always want to use the decimal type.

Oh, and one more thing: don’t use double for money or currency, only use decimal.

These types are for
K— fractions. They ¢an also
be used to stove very large
numbers. Larger vaviables
store more decimal places.

float double decimal
32 bits 64 bits 128 bits

We've talked about strings, so you know that the C# compiler also can handle characters
and non-numeric types. The char type holds one character, and string is used for lots of
characters “strung” together. There’s no set size for a string object—it expands to hold as
much data as you need to store in it. The bool data type is used to store true or false values,
like the ones you've used for your if statements.

C# also has types
for s{:oring dazg
that is not numevic.

The different
ﬂoating-])oint

bool char string types take
d d .
8 16 et;r)]eenséeon up different

f the stri
T amounts of
memory: float
Strings ean be big...REALL\/ big! CH# uses . y
a 32-bit integer to keep track of the is smaues 1,
s{'xing \cngﬂ'\, so the maximum s{'x'mg lcng{:\'\ .
is LI A 83,647 ¢thavatters. an(I c[ec1mal

15 largest.

200 Chapter 4

managing your app’s data

10 pounds of data in a 5-pound bag

When you declare your variable as one type, the C# compiler
allocates (or reserves) all of the memory it would need to store the
maximum value of that type. Even if the value is nowhere near the
upper boundary of the type you've declared, the compiler will see the
cup it’s in, not the number inside. So this won’t work:

int leaguesUnderTheSea = 20000;
short smallerLeagues = leaguesUnderTheSea;

20,000 would fit into a short, no problem. But because
leaguesUnderTheSea is declared as an int, C# sees it as int-sized
and considers it too big to put in a short container. The compiler
won’t make those translations for you on the fly. You need to make
sure that you’re using the right type for the data you’re working with.

20,000

/

All C# sees 1S an int 5o‘m5
into a short (whith doesnt
work). |£ doesn't cave about
the value in the int eup-

This makes sepse. What
i You later Put a lay
value i the int Cup, 03"
that wouldn’{ fit ir}\{:onc
the short eup? So O
is 'l:lrying to hclP You.

(} .1 short
iy arpen your penci
A
Three of these statements won't build, either because they're trying to cram too much data into a small variable or
because they're putting the wrong type of data in. Circle them and write a brief explanation of what’s wrong.
int hours = 24; string taunt = "your mother";
short y = 78000; byte days = 365;
bool isDone = yes; int radius = 3;
short RPM = 33; char initial = 'S"';
int balance = 345667 - 567; string months = "12";

you are here » 201

casting and converting

Casting lets you copy values that C# can't
avtomatically convert to another type

Let’s see what happens when you try to assign

a decimal value to an int variable. r- D@ ‘ﬂﬁS.'

o Create a new Console App project and add this code to your Program.cs:

Implicit conversion
float myFloatValue = 10; means C# has a way to
int myIntValue = myFloatValue; automatically convert
Console.WriteLine("myIntValue is " + myIntValue); a value to another type

without losing information.

e Try building your program. You should get the same CS0266 error you saw earlier:

‘Q CS0266 Cannot implicitly convert type ‘float’ to ‘int’. An explicit conversion exists (are you missing a cast?)

Look closely at the last few words of the error message: “are you missing a cast?”
That’s the C# compiler giving you a really useful hint about how to fix the problem.

e Make the error go away by casting the decimal to an int. You do this by adding
the type that you want to convert to in parentheses: (int). Once you change the
second line so it looks like this, your program will compile and run:

int myIntValue = (int) myFloatValue; When you cast a floating-
Heve's wheve you tast the point value to an int, it
So what happe"ed? detimal value o an nt. rounds the value down

to the nearest integer.

The C# compiler won't let you assign a value to a variable if it’s the wrong type—even if

that variable can hold the value just fine! It turns out that a LOT of bugs are caused by type
problems, and the compiler is helping by nudging you in the right direction. When you

use casting, you're essentially saying to the compiler that you know the types are different, and
promising that in this particular instance it’s OK for C# to cram the data into the new variable.

“~Sharpen your penci]
\ ySolution

Three of these statements won't build, either because they’re trying to cram too much data into a small variable or
because they're putting the wrong type of data in. Circle them and write a brief explanation of what'’s wrong.

The short type holds numbers

foom 32,767 b 31,768
short y = 78000; § 1. pumber’s oo b"S! byte days = 365;
o A b\/{‘,c tan on|\/ hold a value
W You tan °"“|Z ass:':gn a value between O and 255. Youll
“brue” or “false” to a bool: need a short for this.

202 Chapter 4

managing your app’s data

When you cast a value that’s too big,

C# adjusts it to fit its new container

You've already seen that a float can be cast to an int. It turns out that any number can be cast
to any other number. That doesn’t mean the value stays intact through the casting, though. Say
you have an int variable set to 365. If you cast it to a byte variable (max value 255), instead of
giving you an error, the value will just wrap around. 256 cast to a byte will have a value of 0,

257 will be converted to 1, 258 to 2, etc., up to 365, which will end up being 109. Once you get
back to 255 again, the conversion value “wraps” back to zero.

If you use + (or *, /, or -) with two different numeric types, the operator automatically
converts the smaller type to the bigger one. Here’s an example:

int myInt = 36;
float myFloat = 16.4F;
myFloat = myInt + myFloat;

Since an int can fit into a float but a float can’t fit into an int, the + operator converts myInt to
a float before adding it to myFloat.

en your penci]

A

You can’t always cast any type to any other type. myString = (string)myInt;
Create a new Console App project and type these myString = myInt.ToString();
statements into its top-level statements. Then build your B

program—it will give lots of errors. Cross out the ones myBool = (bool)myByte;

that give errors. This is a great way to help you figure myByte = (byte)myBool;

out which types can be cast, and which can’t.
short myShort = (short)myInt;

int myInt = 10; char myChar = 'x';

byte myByte = (byte)myInt; myString = (string)myChar;

double myDouble = (double)myByte; long myLong = (long)myInt;

bool myBool = (bool)myDouble; decimal myDecimal = (decimal)myLong;
string myString = "false"; myString = myString + myInt + myByte +

. myDouble + myChar;
myBool = (bool)myString;

You can read a lot more about the different C# value types here—it’s worth taking a look:
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/value-types

you are here » 203

concatenation and conversion

204

Yes! When you concatenate
strings, C# converts values.

When you use the + operator to
combine a string with another value,
it’s called concatenation. When

you concatenate a string with an int,
bool, float, or another value type, it
automatically converts the value. This
kind of conversion is different from
casting, because under the hood it’s
really calling the ToString method for
the value...and one thing that NET
guarantees is that every object has a
ToString method that converts it to a
string (but it’s up to the individual class

to determine if that string makes sense).

W"'aP it Yourse| £/

z;h:rc s ;o mys{:c\r-y to how caS‘l:ing “wraps”
I humbers—you tan do it Yourse|f. f
o :Pcn UP any Caleulator apPp that has

, o 'bu'l:ﬁon (whith does a modulus
ta (.ula{::on—somc'l:imes in a Seientif;
mode), and caleulate 345 Mod 2.5,5 ¢

Chapter 4

I've been combining numbers and strings in my
message boxes since I worked with loops in Chapter 2!
Have I been converting types all along?

g

arpen vour penci] -
e y%olt?fio?

You can’t always cast any type to any other
type. Create a new Console App project

and type these statements into its top-level
statements. Then build your program—it will
give lots of errors. Cross out the ones that
give errors. This is a great way to help you
figure out which types can be cast, and which
can't.

int myInt = 10;
byte myByte = (byte)myInt;
double myDouble = (double)myByte;
0 = :
string myString = “false”;
myBoot—=—~tbeetmyString;—
-myString—=—(stringImyinty
myString = myInt.ToString();
“myBoot—=—tbooimyByte;
myByte—=—bytelmyBooli—
short myShort = (short)myInt;
char myChar = ¢x’;
String—=(string)myChas:
long myLong = (long)myInt;
decimal myDecimal = (decimal)
myLong;
myString = myString + myInt +
myByte + myDouble + myChar;

managing your app’s data

C# does some conversions avtomatically

There are two important conversions that don’t require you to do casting. The first is the

automatic conversion that happens any time you use arithmetic operators, like in this example:

long 1 = 139401930; The — operator subtracted the short

Short s = 51% ‘Crom .{:hc |°h5, ahd -{-)\c - o?cra{‘pr
double d = 1(—)s; h It o a double.
d=d / 123.058; tonverted the vesu
Console.WriteLine("The answer is " + d);

The other way C# converts types for you automatically is when you use the + operator to
concatenate strings (which just means sticking one string on the end of another, like you’ve been
doing with message boxes). When you use + to concatenate a string with something that’s another
type, it automatically converts the numbers to strings for you. Here’s an example—try adding
these lines to any C# program. The first two lines are fine, but the third one won’t compile:

long number = 139401930;
string text = "Player score: " + number;
text = number;

The C# compiler gives you this error on the third line:

‘ €3 CS0029 Cannot implicitly convert type ‘long’ to ‘string’

text is a string variable, so when you used the + operator to concatenate a string it converted the
value to a string and the assignment worked. But when you try to assign the number value to it
directly, it doesn’t have a way to automatically convert the long value to a string. You can convert
a numeric value (or any other value!) to a string by calling its ToString method.

thereqfare no
Dumb Questions

Q,: You used the Convert.ToByte, Convert.ToInt32, and Convert.Tolnt64 methods to convert strings with
binary numbers into integer values. Can you convert integer values back to binary?

A: Yes. The Convert class has a Convert.ToString method that converts many different types of values to strings.
The IntelliSense pop-up shows you how it works:
Console.WriteLine(Convert.ToString(8675309, 2));

A 26 of 36 ¥ string Convert.ToString(int value, int toBase)
Converts the value of a 32-bit signed integer to its equivalent string representation in a specified base.
toBase: The base of the return value, which must be 2, 8, 10, or 16.

So Convert.ToString(255, 2) returns the string "11111111," and Convert.ToString (8675309,
2) returns the string "100001000101111111101101"—try experimenting with it to get a feel for how binary numbers work.

you are here » 205

some conversions are automatic

When you call a method, the arguments need

to be compatible with the types of the parameters

In Chapter 3, you used the Random class to choose a random number from 1 up to (but not including) 5,

which you used to pick a suit for a playing card:

int value = Random.Shared.Next(l, 5);
Try changing the first argument from 1 to 1. 0:

int value = Random.Shared.Next(1.0, 5);

You're passing a double literal to a method that’s expecting an int value. So it shouldn’t
surprise you that the compiler won’t build your program—instead, it shows an error:

‘Q CS1503 Argument 1: cannot convert from ‘double’ to ‘int’

Sometimes C# can do the conversion automatically. It doesn’t know how to convert a double
to an int (like converting 1.0 to 1), but it does know how to convert an int to a double (like
converting 1 to 1.0). More specifically:

* The C# compiler knows how convert an integer to a floating-point type.

* And it knows how to convert an integer type to another integer type, or a floating-
point type to another floating-point type.

* But it can only do those conversions if the type it’s converting from is the same size as
or smaller than the type it’s converting to. So, it can convert an int to a long or a float
to a double, but it can’t convert a long to an int or a double to a float.

But Random.Shared.Next isn’t the only method that will give you compiler errors if you try
to pass it a variable whose type doesn’t match the parameter. A/ methods will do that, even
the ones you write yourself. Add this method to a console app’s top-level statements:

int MyMethod(bool add3) {
int value = 12;

if (add3)
value += 3;
else
value -= 2;

return value;

}

When the
c0mpiler gives
you an "invalid
argument”
error, it

means that
you tried to
call a method
with variables
whose types

didn't match
the method’s

Parameters.

Try passing it a string or long—you’ll get one of those CGS1503 errors telling you it can’t convert the argument to a bool.

Some folks have trouble remembering the difference between a parameter and an argument. So just to be clear:

A parameter is what you define in your method. An argument is what you pass to it. You

can pass a byte argument to a method with an int parameter.

206 Chapter 4

thereqare no

managing your app’s data

Dumb Questions

Q: That last if statement only said if (add3). Is that
the same thing as if (add3 == true)?

A: Yes. Let's take another look at that if/else statement:

if (add3)
value += 3;
else
value —= 2;

An if statement always checks if something’s true. So because
the type of the add3 variable is bool, it evaluates to either true or
false, which means we didn’t have to explicitly include == true.

You can also check if something’s false using ! (an exclamation
point, or the NOT operator). Writing if (!add3) is the same
thing as writing if (add3 == false).

In our code examples from now on, if we’re using the conditional
test to check a Boolean variable, you'll usually just see us write if
(add3) orif (!add3), and not use == to explicitly check to
see if the Boolean is true or false.

Q: You didn’t include curly braces in the if or else
blocks either. Does that mean they’re optional?

- Yes—but only if there’s a single statement in the i or else
block. We could leave out the { curly braces } because there
was just one statement in the if block (return 45;)and one
statement in the else block (return 61;). If we wanted to
add another statement to one of those blocks, we’'d have to use
curly braces for it:

if (add3)
value += 3;

else {
Console.WriteLine("Subtracting 2");
value —-= 2;

}

Be careful when you leave out curly braces because it's easy to
accidentally write code that doesn’t do what you want it to do. It
never hurts to add curly braces, but it's also good to get used to
seeing if statements both with and without them.

Bu]let Points ——

= There are value types for variables that hold different
sizes of numbers. The biggest numbers should be of
type long and the smallest ones (up to 255) can be
declared as bytes.

m Every value type has a size, and you can’t put a value
of a bigger type into a smaller variable, no matter
what the actual size of the data is.

= When you're using literal values, use the F suffix to
indicate a float (15.6F) and M for a decimal (36.12M).

= Use the decimal type for money and currency.
Floating-point precision is...well, it's a little weird.

m There are a few types that C# knows how to convert
automatically (an implicit conversion), like short to int,
int to double, or float to double.

m When the compiler won't let you set a variable equal
to a value of a different type, that’s when you need
to cast it. To cast a value (an explicit conversion) to
another type, put the target type in parentheses in
front of the value.

= Some keywords are reserved by the language and
you can’t name your variables with them. They're
words (like for, while, using, new, and others) that
do specific things in the language.

= A parameter is what you define in your method. An
argument is what you pass to it.

= When you build your code in the IDE, it uses the C#
compiler to turn it into an executable program.

= You can use methods on the static Convert class to
convert values between different types.

you are here » 207

owen wants to improve his game

Owen is constantly improving his game...

Good game masters are dedicated to creating the best experience they can for
their players. Owen’s players are about to embark on a new campaign with a
brand-new set of characters, and he thinks a few tweaks to the formula that

they use for their ability scores could make things more interesting.

When playe

of the game,
the ability stores for their thavacter.

O

ABILITY SCORE FORMULA

¥ ST wiTH A Fdb ROLL
70 GET A MUMBER BETWEEN

4 anp 24

¥ DIIDE THE RoLL RESULT
By 1.7

¥ ApPD 2 70 THE RESULT OF
THAT DIVISION

¥ Round bownN 10 THE
NEAREST WHOLE NUMBER

¥* [F THE RESULT IS TOO
SMALL, USE THE MINIMUM
VALUE oF 3

N\

A “4db RoLL” means ro”ing
our normal six—sided dice and

addin5 up the results.

208 Chapter 4

vs fill out their thavatter sheets at the s{:ari\:
they follow these steps fo caleulate each o

The standard rules for this game are a
good starting point, but I know we can do
better,

managing your app’s data
..but the trial and error can be time-consuming

Owen’s been experimenting with ways to tweak the ability score calculation. He’s pretty
sure that he has the formula mostly right—but he’d really like to tweak the numbers.

Dwipe By 1.762
Ok MayBe 3.12
SHouLDb THE

mMimum BE 12
Ok mAYPE 2 5 £l 4
SUBTRACT BY ¢ 4"[’2:6

OVER MIMMUM
SO KEEP IT

TRYING IT our

Owen likes the overall formula: 4d6 roll, divide, subtract, round down, use a minimum
value...but he’s not sure that the actual numbers are right.

I think 1,75 may be a little low to divide the roll

result by, and maybe we want to add 3 to the result
instead of #. I bet there's an easfer way to test out
these /deas!

What can we do to help Owen find the best combination
of values for an updated ability score formula?

you are here » 209

build a project to calculate scores

Let’s help Owen experiment with ability scores

In this next project, you’ll build a console app that Owen can use to test his ability score

formula with different values to see how they affect the resulting score. The formula has

four inputs: the starting 4d6 10ll, the divide by value that the roll result is divided by, the :

add amount value to add to the result of that division, and the minimum to use if the result is Heve's the page £eom

too small. Owen’s game master
notebook with the

Owen will enter each of the four inputs into the app, and it will calculate the ability score abi|i’c\/ store formula.

using those inputs. He’ll probably want to test a bunch of different values, so we’ll make
the app easier to use by asking for new values over and over again until he quits the app,

keeping track of the values he used in each iteration and using those previous inputs as \Z
default values for the next iteration.

This is what it looks like when Owen runs the app:

C:\Users\Public\source\repos' X + | v AB/L/ T)/S‘CQRE F ORMHLA

e el | < 7 7 s

Divide by [1.75]: 4o caleulate the ability score. [t gu’cs a 70 GET A MAMBER BETWE
using default value 1.75) default value like [14] or [1.775] in square F #p 24

Add amount [2]: brackeks. Owen ean enter a value, or just ¥* DIIDE THE RoLL RESULT
using default value 2 hit Enter to 35(4;{ a dC‘cauH‘, value. By /.75

Minimum [3]:
using default value 3 *ADD 2 70 THE RESULT OF

Calculated ability score: 10 THAT DIVISION

Press Q to quit, any other key to continue ¥

Starting 4d6 roll [14]: /&QMAQ’Z%%%V 70 THE

using default value 14 .) e NEAREST WHOLE NUMBER
Divide by [1.75]: 2.15 Here Owen is trying out new values: divide the voll

using value 2.15 vesult bY 215 (instead O‘F '~75)1 add 5 (instead o‘ ¢ /F THE RESULT /S TOO
Add amount [2] 5 2_) {-p ‘U’\C V'CSUH', O‘F .H,‘a.t diViSiOh, ahd 8 i S/WALL/ USE THE MIINIMUAT
| e el © value of 2 (instead of 3). With an initial voll of VALUE oF 3
Mininun [3]: 2 |4, that gives an ability store of |I.

using value 2
Calculated ability score: 11
Press Q to quit, any other key to continue
Starting 4d6 roll [14]: 21

using value 21

Divide by [2.15]: k Now Owen wants to cthetk those same values with

Adduzigﬁnge}:;;?t value 2.15 o jiffevent starting 4db voll, so he enters 2

using default value 5 as the starting voll, presses Enter to aceept the
Minimum [2]: default values that the app remembered from the

using default value 2 previous itevation, and 5e+,s an abih{:\/ stove of 4.
Calculated ability score: 14

Press Q to quit, any other key to continue

This project is a little larger than the previous console apps that you’ve built, so
we’ll tackle it in a few steps. First you’ll Sharpen your Pencil to understand the code
to calculate the ability score. Then you’ll do an Exercise to write the rest of the
code for the app. And finally, you’ll Sleuth out a bug in the code. Let’s get started!

210 Chapter 4

managing your app’s data

en your penci]

We've built a class to help Owen calculate ability scores. To use it, you'll set its RollIResult, DivideBy, AddAmount, and
Minimum fields—or just leave the values set in their declarations—and call its CalculateAbilityScore method.

Create a new Console App project called AbilityScore and add a class called AbilityScoreCalculator. Enter all of
the code into the class file. Uh-oh! There’s one line of code that has a problem. Circle the line of code that causes a
compiler error. Then write down what you think you'll need to do to fix it.

l£ \/ou’\rc using VVSCode, You tan

n—_—-amespace e veplace the Snternal” aceess modifier
internal class AbilityScoreCalculator & ik “publie’—it won't ke ak
{ di(—'l:cvencc in how the app works.

public int RollResult = 14;
public double DivideBy = 1.75;
public int AddAmount = 2; These fields are initialized with
public int Minimum = 3; F“ "ail““ from the ability score

. . . ormula. The app will use them to
public int Score; bresent. default values b the woon.

public void CalculateAbilityScore()

{
// Divide the roll result by the DivideBy field
double divided = RollResult / DivideBy;
// Add AddAmount to the result and round down
int added = AddAmount += divided;
// If the result is too small, use Minimum
if (added < Minimum)
{
Score = Minimum;
} else Heve's a hint! Visual S{udi? will 5“?‘“
{ ou whith line of code won't tompile,
Score = added; ind underline the specific part that
H ' has problems. Hover over that part
} and look tlosely at the exror messaje

}

After you circle the line of code that won’t compile, write down what you need to do to fix the compiler error.

you are here » 211

cast a double to an int

Fix the compiler error by adding a cast ; y%t(l)li &eigﬁﬂ

If you entered the code correctly, you should see a C# compiler error on this line of code:
int added = AddAnount += divided;

@ (field) int AbilityScoreCalculator.AddAmount This C# tompiler evvor message is giving You a
Heve's the line of code . bia hinfes . Jving Y
to tivele in the “Sharpen No examples or documentation available. 19 hint—it looks like we 1C°Y5°£ to cast a value.
TN —

” .
your ?c"t"l exertise CS0266: Cannot implicitly convert type ‘double’ to ‘int'. An explicit conversion exists (are you missing a cast?)

Any time the CG# compiler gives you an error, read it carefully. It often has a hint that can help you
track down the problem. This error tells us exactly what went wrong: ¢ can’t convert a double
to an int without a cast. The divided variable is declared as a double, but C# won’t allow you
to add it to an int field like AddAmount because it doesn’t know how to convert it. So here’s the
answer to the “Sharpen your pencil” question:

After you circle the line of code that has problems, look at the error and write down what you need to do to fix it.
The tompiler ervor says it can't convert a double to an int, and asks if our code is missing a cast.

When the C# compiler asks “are you missing a cast?” it’s giving you a huge hint that you need to

cast the double variable divided before you can add it to the int field AddAmount. But Lhis isy’
w 'H‘\IS 1S {:
afe [‘{:hc h I

Add a cast o get the AbilityScoreCalculator class to compile... e

answevr! Theve's
Now that you know what the problem is, you can add a cast to fix the problematic line of code in still 5°"‘C‘H\ih3
AbilityScoreCalculator. The line that caused the error because AddAmount += divided returns wrong with that
a double value. When you try to store a double value in an int variable like added, you’ll get a line of code.
“Cannot implicitly convert type” error. Can You spot it?

You can fix it by casting divided to an int, so adding it to AddAmount returns another int.
Modify that line of code to change divided to (int)divided:

is!
int added = AddAmount += (int)divided; 4/‘0&51?1?}215.

Adding that cast also addresses an important part of Owen’s ability score formula:

¥ Rounp Dowh To THE NEAREST WHOLE NUMBER

When you cast a double to an int, C# rounds it down—so for example (int)19.7431D gives us
19. By adding that cast, you’re making sure the score is rounded down, like Owen’s formula asks for.

..but there’s still a bug!

We’re not quite done yet! You fixed the compiler error, so now the project builds. But even though the
C# compiler will accept it, there’s still a bug in the code. So let’s go ahead and fix it! In the next
exercise, you'll use the AbilityScoreCalculator class as is, then you’ll use it to sleuth out the bug

212 Chapter 4

managing your app’s data

Exercise

Finish building the console app that uses the AbilityScoreCalculator class. In this exercise, we'll give you the top-level
statements for the console app. Your job is to write code for two methods: a method called ReadInt that reads user
input and converts it to an int using int. TryParse, and a method called ReadDouble that does exactly the same thing
except it parses doubles instead of int values.

Step 1: In this first step, you'll add top-level statements to your Program.cs file. AlImost everything was used in
previous projects. There’s only one new thing—it calls the Console.ReadKey method:

char keyChar = Console.ReadKey(true).KeyChar;

Console.ReadKey reads a single key from the console. When you pass the argument true, it intercepts the input so
that it doesn’t get printed to the console. Adding . KeyChar causes it to return the key pressed as a char.

Delete the “Hello, World!” line from your Program.cs file and add these top-level statements:
using AbilityScore;

AbilityScoreCalculator calculator = new AbilityScoreCalculator();
while (true)

{
calculator.RollResult = ReadInt(calculator.RollResult, "Starting 4dé6 roll");
calculator.DivideBy = ReadDouble(calculator.DivideBy, "Divide by");
calculator.AddAmount = ReadInt(calculator.AddAmount, "Add amount");
calculator.Minimum = ReadInt(calculator.Minimum, "Minimum");
calculator.CalculateAbilityScore();
Console.WriteLine("Calculated ability score: " + calculator.Score);
Console.WriteLine("Press Q to quit, any other key to continue");
char keyChar = Console.ReadKey(true).KeyChar;
if ((keyChar == 'Q') || (keyChar == 'q')) return;

}

Step 2: The code you wrote calls a method called ReadInt, so add a static Readint method. The ReadInt method
takes two parameters: a string called prompt to display to the user, and an int called defaultValue. It writes the
prompt to the console, followed by the default value in square brackets. Then it reads a line from the console and
attempts to parse it with int.TryParse. If that returns true, return that value; otherwise, return the default value.

Here's the declaration:

static int ReadInt(int defaultValue, string prompt)

Calling ReadInt("37", "What's the magic number?") will cause the following prompt to be printed:
What's the magic number? [37]

There’s a space at the end of that prompt. The user then types in a value and presses Enter. The method reads that
line from the console and calls int.TryParse to try to parse it. If int.TryParse returns true, the method returns the
result. If it returns false, the method returns defaultValue—in this case, 37.

Step 3: Generate and implement the ReadDouble method. ReadDouble is exactly like ReadInt, except that it uses
double.TryParse instead of int.TryParse. The double.TryParse method works exactly like int.TryParse, except its out
variable needs to be a double, not an int.

static double ReadDouble(double defaultValue, string prompt)

you are here » 213

there’s still a bug in the code

Exercise

Solution

writing a message to the console with the value returned.

static int ReadInt(int defaultValue, string prompt)

{
Console.Write(prompt + " [" + defaultValue + "]: ");
string? line = Console.ReadLine();
if (int.TryParse(line, out int value))

Console.WriteLine("
return value;
} else

{

using value " + value);

Console.WriteLine("
return defaultValue;

}

static double ReadDouble(double defaultValue, string prompt)
{
Console.Write(prompt + " [" + defaultValue + "]: ");
string? line = Console.ReadLine();
if (double.TryParse(line, out double value))

Here are the ReadInt and ReadDouble methods that display a prompt that includes the default value, read a line
from the console, try to convert it to an int or a double, and either use the converted value or the default value,

Really take some time
to understand how each
iteration of the while loop
in the top-level statements
uses fields to save the values
that the user entered, then
uses them for the default

values in the next iteration.

{
Console.WriteLine(" wusing value " + value);
return value;
}
else
{
Console.WriteLine(" using default value " + defaultValue);
return defaultValue;
}

using default value " + defaultValue);

Try experimenting with
the global namespace
by removing “using
AbilityScore;” from the
top-level statements. What
else do you need to do to
| change the code to build? |

' . le setting
Tey thangin {\nc LS\'\ar\?‘dcbug tonso :
{;\l{hc :Eﬁcgrna\ Terminal +o0 vun \IoutY app m‘c
an external feeminal window. You might prever

debuoging Your apps that way! x/

Did you get a “cannot read keys when either application
does not have a console” error in VSCode? If you did,
go back to Chapter 1 and follow the instructions to
change the C# debug console setting so your console
app runs in the Terminal and not the Debug Console.

try it out,

214 Chapter 4

Thanks for writing thi's
app for me! I can't wait to

Here's the output from the app.

Starting 4d6 roll [14]: 18

Something's wrong. It's supposed to
remember the values I enter, but it doesn't always

managing your app’s data

work,

using value 18
Divide by [1.75]: 2.15
using value 2.15
Add amount [2]: 5
using value 5
Minimum [3]:
using default value 3
Calculated ability score: 13
Press Q to quit, any other key to continue

Starting 4dé roll [18]:

using default value 18
Divide by [2.15]: 3.5
using value 3.5

Add amount [13]: 5
using value 5
Minimum [3]:
using default value 3

In the first iteration, I entered 5 for the add
amount, It remembered all the other values just fine, but it
gave me a default add amount of /0. That's the wrong

Look!

result,

Calculated ability score: 10

Press Q to quit, any other key to continue

Starting ud4dé6 roll [18]: T%afssbﬁnga
using default value 18 Owen entered S

Divide by [3.5]: £w~£hcyrcwous

using defautt value 3.5
Add amount 7 &—— add amount, but

using value 7 the program is
Minimum [3]: giving him 10 as a
using default value 3 default option.
Calculated ability score: 12
Press Q to quit, any other key to continue
Starting 4d6 roll [18]:
using default value 18

You’re right, Owen. There’s a bug in the code.
Owen wants to try out different values to use in his ability
score formula, so we used a loop to make the app ask for
those values over and over again.

To make it easier for Owen to just change one value at a
time, we included a feature in the app that remembers the
last values he entered and presents them as default options.
We implemented that feature by keeping an instance of the
AbilityScoreCalculator class in memory, and updating its
fields in each iteration of the while loop.

Divide by [3.5]:

Adduzln?gusi{@\la}luii—— enteved was 7,

using value 4
Minimum [3]:

using default value 3
Calculated ability score: 9

Press Q to quit, any other key to continue

Starting d4dé roll [18]:
using default value 18
Divide by [3.5]:

using defas value 3.5
Add amount @ S
using default value 9

Minimum [3]:
using default value 3
Calculated ability score: 14

Press Q to quit, any other key to continue

Aga'm, the last

amount Owen But something’s gone wrong with the app. It remembers most

of the values just fine, but it remembers the wrong number

but it's 9iving for the “add amount” default value. In the first iteration
12 as a default Owen entered 5, but it gave him 10 as a default option. Then
option. Weird. he entered 7, but it gave a default of 12. What’s going on?

Wheve did this

ﬁ number tome
from? Did we see
it before? Can
that give us @
hint about what's
tausing this bug?

What steps can you take to
track down the bug in the
ability score calculator app?

you are here » 215

O
use the debugger to track down bugs @

%Slﬁlﬂh it Out

The Case of the Operator Oddity
The debugger is like a detective’s magnifying glass. It helps you spot even the smallest clues.

Let's do an investigation and see if we can apprehend the culprit, Sherlock Holmes style. Something is causing
the bug, so let’s use the debugger to identify suspects and retrace their steps.

The problem seems to be isolated to the “add amount” value, so let's start by looking for any line of code that
touches the AddAmount field. Here’s the line that uses the AddAmount field—put a breakpoint on it (and don’t
forget to use F5 to start your app with debugging if the breakpoint doesn't fire):

39 calculator.DivideBy = ReadDouble(calculator.DivideBy, "Divide by");
o 40 calculator.AddAmount = ReadInt(calculator.AddAmount, "Add amount");
41 calculator.Minimum = ReadInt(calculator.Minimum, "Minimum");

Here's another one in the AbilityScoreCalculator.CalculateAbilityScore method—breakpoint that suspect too:
20 // Add to the result

® 2 int added = AddAmount += (int)divided;

The trap is set. Let’s see who springs it.

Now run your program. When your code hits the breakpoint, select calculator. AddAmount and add a watch (if
you just right-click on AddAmount and choose Add Watch from the menu, it will only add a watch for AddAmount
and not calculator.AddAmount). Does anything look weird there? We're not seeing anything unusual. It seems to
read the value and update it just fine—that's probably not the issue. You can delete that breakpoint.

Continue running your program. When the breakpoint in AbilityScoreCalculator.CalculateAbilityScore is hit, add
a watch for AddAmount. According to Owen’s formula, this line of code is supposed to add AddAmount to the
result of dividing the roll result. Now step over the statement and...

Watch 1 vyvAaX Watch 1 vy AaX

Search (Ctrl+E P ~ Search Depth: 3~ ?I (Ctrl+E P ~ Search Depth: 3 ~

Name Value ype al " Name
@ AddAmount int v @ AddAmount

Wait, what?! AddAmount changed. But...but that’s not supposed to happen—it’s impossible! Right? As
Sherlock Holmes said, “When you have eliminated the impossible, whatever remains, however improbable, must
be the truth.”

It looks like we've sleuthed out the source of the problem. That statement is supposed to cast divided to
an int to round it down to an integer, then add it to AddAmount and store the result in added. It also has an
unexpected side effect: it's updating AddAmount with the sum because the statement uses the += operator,
which returns the sum but assigns the sum to AddAmount.

Type -
int B

216

Chapter 4

managing your app’s data

Now we can finally fix Owen’s bug—and get the REAL Sharpen answer

Now that you know what’s happening, you can fix the bug—and it turns out to be a pretty small change. You

Change the += 4o a + o keep this line of code
int added = AddAmount + (int)divided; & from updating the “added” variable and fix the buo,
-—

And we can finally have the real answer to the “Sharpen your pencil” question in the first part of this project.

just need to change the statement to use + instead of +=:

After you circle the line of code that has problems, look at the error and write down what you need to do to fix it.

thereqare no
Dumb Questions

Q: I’m still not clear on the difference between the +
operator and the += operator. How do they work, and why
would | use one and not the other?

Q: But then how did the added variable get updated?

A: What caused confusion in the score calculator is that the
assignment operator = also returns a value. You can do this:
- There are several operators that you can combine with an

equals sign. They include += for adding, -= for subtracting, /=
for dividing, *= for multiplying, and %= for remainder. Operators
like + that combine two values are called binary operators.
Some people find this name a little confusing, but “binary”
refers to the fact that the operator combines two values—
“binary” means “involving two things’—not that it somehow
operates only on binary numbers.

With binary operators, you can do something called compound
assignment, which means instead of this:

a=a+c;

The += operator tells C#
to add a + ¢ and then store
the vesult in a.

you can do this:
a += ¢c;

and it means the same thing. The compound assignment x
op= yisequivalenttox = x op Yy (that's the technical
way of explaining it). They do exactly the same thing.

Operators like += or *= that combine a
binary operator with an equals sign are
called compound assignment operators.

int g =(Ca=Db + c)

which will calculatea = b + c¢ as usual. The = operator
returns a value, so it will update q with the result as well. So:

int added = AddAmount += divided;
is just like doing this:

int added = (AddAmount =
divided);

AddAmount +

which causes AddAmount to be increased by divided,
but stores that result in added as well.

Q: Wait, what? The equals operator returns a value?

A: Yes, = returns the value being set. So in this code:

int first;

int second = (first = 4);
both first and second will end up equal to 4. Open up a

console app and use the debugger to test this. It really works!

you are here »

217

ai chatbots can help comment your code

en your penci]

A\ We learned about XML Documentation Comments (or XMLDoc) in Chapter 3. We added XMLDoc
to the ReadInt method from your Ability Score Calculator app—but we left a lot of blanks for
you to fill in. Go back to the section in Chapter 3 where we talked about XMLDoc and try filling
in the missing parts of the XMLDoc.

/// </returns>

static int ReadInt(int defaultValue, string prompt)
{

n the examples we showed you in Chapter 3, the opening
<returns> £ag was on the same line as the elosing </veturns>
tag. [n this exevcise, we put them on separate lines 1o give you
more spate 4o destribe what the method veturns.

We aren't giving you a solution for this “Sharpen” pencil-and-paper exercise. Instead, use the responses that the Al
chatbots give you in the next “Sens-Al” section—compare them against your answers to see how you did.
= We asked you to fill in six blanks for three pairs of opening and closing tags. Did you get them right?

= We gave you four blanks to describe what the method does, its parameters, and return values. Compare your
responses with the ones the chatbots generated. Do you agree with their descriptions? Remember—Als don’t
always get everything right. You wrote this code, so your descriptions might be more accurate than the Al’s.

218 Chapter 4

managing your app’s data

Ask an Al chatbot to add comments to your code

Adding comments to your code is a great habit to get into. We've used comments throughout the first few chapters of
this book to help you understand the code we've written. Comments are really valuable, for a few reasons:

+ Every developer knows what it feels like to look at code they wrote a long time ago and have absolutely no idea
what it does or how it works. This happens a lot when working on a larger app (like the ones you'll write later in
the book). Comments help us remember what we were thinking when we wrote code.

+ Sometimes you've got a particularly complex bit of code, like the event handler method for the buttons in the
animal matching game from Chapter 1. Comments can make it easier for you to figure out what's going on in that
code—which can be really valuable if you're trying to sleuth out a bug.
This is a great use of an Al ehatbot as
a learning tool. We've gjven You 3 lot o
information about comments. Now You
¢an use Al 1o learn more on Yyour own.

+ Developers will often leave themselves comments like this:
//TOD0O: Finish this piece of code [

as a reminder that there’s still work left to do in one part of an app.

These are three really good reasons that developers use comments, but there are many other ways—so many that
there’s no way we could possibly include them all in this book. Here’s an opportunity to learn more on your own.

T"ICY‘C are many answevs
to this question, because
theve ave lots of veasons
that developers use

Open an Al chatbot and give it this prompt: Why do developers use comments? e\

Create a prompt to add comments to your code

Start a new session with an Al chatbot and give it the following prompt: tomments. Try giving
Here are the contents of Program.cs o FMMFt i,
.CS: than one Al thatbot, or

<paste in the contents of your Program.cs file> asking it multiple Limes.

Here are the contents of AbilityScoreCalculator.cs:

<paste in the contents of the file with the AbilityScoreCalculator class>

Use Al chatbots to learn more about XML Documentation

In Chapter 3 we learned about XML Documentation (or XMLDoc), special comments with three slashes that you can
use to document your methods, fields, and other class members. Al chatbots are really good at generating XMLDoc.

Start a new Al chatbot session, and give it exactly the same prompt you just gave it for the comments, except replace
the first sentence of the prompt with this one, which asks it to generate XMLDoc where it's needed.

Add comments to the code for this C# console application, using XMLDoc
for the classes, methods, and fields.

Compare the response from the Al against your answers to the “Sharpen” exercise. Which descriptions are better?

you are here » 219

floating-point weirdness

Hey, kid! Wanna see
something WEIRD?

Try ﬂﬁS’ -~

Try adding this if/else statement to a console app and build the solution:

if (0.1M + 0.2M == 0.3M) Console.WriteLine("They're equal");
else Console.WriteLine("They aren't equal");

You’ll see a green squiggle under the second Console—it’s an Unreachable code
detected warning The C# compiler knows that 0.1 + 0.2 is always equal to 0.3, so the
code will never reach the else part of the statement. Run the code—it prints They ' re
equal to the console.

Next, change the float literals to doubles (remember, literals like 0.1 default to double):

if (0.1 + 0.2 == 0.3) Console.WriteLine("They're equal");
else Console.WriteLine("They aren't equal");

That’s really strange. The warning moved to the first line of the if statement. Try running
the program. Hold on, that can’t be right! It printed They aren't equal to the console.
Howis 0.1 + 0.2 not equal to 0.3?

Now do one more thing. Change 0.3 to 0.30000000000000004 (with 15 zeros between

the 3 and 4). Now it prints They 're equal again. So apparently 0.1D plus 0.2D equals Wait, what?!
0.30000000000000004D.) ek

So is that why I should only use the decimal type for money, and
never use double for currency values?

Exactly. Decimal has a lot more precision than double
or float, so it avoids the 0.30000000000000004 problem.

Some floating-point types—not just in G#, but in most programming
languages!——can give you rare weird errors. This is so strange! How can 0.1
+ 0.2 be 0.30000000000000004?

It turns out that some numbers can’t be exactly represented as a double—it

has to do with how they’re stored as binary data (0s and 1s in memory).

For example, .1D is not exactly .1. Try multiplying .1D * .1D—you get
0.010000000000000002, not 0.01. But .1M * . 1M gives you the right

A= answer. That’s why floats and doubles are really useful for a lot of things
f L, N (like positioning a GameObject in Unity). If you need more rigid precision—
\\J like for a financial app that deals with money—decimal is the way to go.

220 Chapter 4

managing your app’s data

therefare no
Dumb Questions

Q: I'm still not clear on the difference between
conversion and casting. Can you explain it a little more
clearly?

AI “Conversion” is a general, all-purpose term for
converting data from one type to another. Casting is a much
more specific operation, with explicit rules about which
types can be cast to other types, and what to do when the
data for the value from one doesn’t quite match the type

it's being cast to. You just saw an example of one of those
rules—when a floating-point number is cast to an int, it's
rounded down by dropping any decimal value. You saw
another rule earlier about wrapping for integer types, where
a number that's too big to fit into the type it's being cast to is
wrapped using the remainder operator.

Q; Hold on a minute. Earlier you had me “wrap”
numbers myself using the mod function on my
calculator app. Now you're talking about remainders.
What's the difference?

A: Mod and remainder are very similar operations.

For positive numbers they're exactly the same: A% B is
the remainder when you divide B into A, s0: 5 % 2 is the
remainder of 5 = 2, or 1. (If you're trying to remember how
long division works, that just means that 5 + 2 is equal to
2 x 2+ 1, so the rounded quotient is 2 and the remainder
is 1.) But when you start dealing with negative numbers,
there’s a difference between mod (or modulus) and
remainder. You can see for yourself: your calculator will tell
you that =397 mod 17 = 11, but if you use the C# remainder
operator you'll get —397 % 17 = —6.

If you're math oriented and want to challenge yourself,
here’s a good research topic: see if you can find an
explanation for why mod acts differently on a calculator
versus in C#. Try asking your favorite Al to help explain it.

Q: Owen'’s formula had me dividing two values and
then rounding the result down to the nearest integer.
How does that fit in with casting?

A: Let's say you have some floating-point values:

float f1 = 185.26F;
double d2 = .0000316D;
decimal m3 = 37.26M;

and you want to cast them to int values so you can assign
them to int variables i1, 12, and i3. We know that those
int variables can only hold integers, so your program needs
to do something to the decimal part of the number.

So C# has a consistent rule: it drops the decimal and
rounds down: £1 becomes 185, d2 becomes 0, and m3
becomes 37. But don't take our word for it—write your own
C# code that casts those three floating-point values to int to
see what happens.

Q- Is there a way to make literals easier to read, like
how we put commas in really long numbers?

A: Yes. You can use underscores to make literals in
your code easier to read. If you want to store 8,675,309 in
an int, you can add a _ for each comma:

int i = 8_675_309;

That works for other literal types, too, including byte, float,
double, and decimal.

There's a whole web page dedicated £o’ the
0.30000000000000004 problem! Check
out hitps// O.%ODOOOOOOOOOOOOO* .Lom
4o see examples in 3 lot of different languages.

The 0.1D + 0.2D !'=0.3D example is an edge case, or a problem or situation that only happens under
certain rare conditions, usually when a parameter is at one of its extremes (like a very big or very
small number). If you want to learn more about it, there’s a great article by Jon Skeet about how
floating-point numbers are stored in memory in .NET: https://csharpindepth.com/Articles/FloatingPoint

/[\

Jon gave us some amazing technical veview feedback for the very Livst edition
of +his book, and that made a huge diffevence for us. Thanks so muth, \)ov\’

you are here » 221

references are like sticky notes

Use reference variables to access your objects

When you create a new object, you use a NeW statement to instantiate it, like new Guy() in
your program at the end of Chapter 3—the new statement created a new Guy object on the
heap. You still needed a way to access that object, and that’s where a variable like joe came in:
Guy joe = new Guy(). Let’s dig a little deeper into exactly what’s going on there.

The new statement creates the instance, but just creating that instance isn’t enough. You need a
reference to the object. So you created a reference variable: a variable of type Guy with a
name, like joe. So joe is a reference to the new Guy object you created. Any time you want to
use that particular Guy, you can reference it with the reference variable called joe.

When you have a variable that’s an object type, it’s a reference variable: a reference to a
particular object. Let’s just make sure we get the terminology right since we’ll be using it a lot.
We’ll use the first two lines of the “Joe and Bob” program from the previous chapter:

Creating a reference
is like writing a name
on a sticky note and
sticking it to the object.
You’re using it to label
\:CIEC)S the : c::dc an object so you can
exore you refer to it later.
vuns. NZ’c\n\ng theve.

Guy joe = new Guy() { Cash = 50, Name = "Joe" };
Guy bob = new Guy() { Cash = 100, Name = "Bob" }; /E
p e— — N=——x=
This is the This creates %
reference the object that
variable. it will refer to.

And heve’s the heap abter

this tode vuns. [t has two——
objct{:s, with the vaviable

W oe” veferring to one

. 4he vaviable '
obieet and the var Joe bob <€ ——— The ONLY way to

“pob” veferring to the X e
ther one. G .ocX .Vrc crence this Quy obj et
; s obl@C G 5 is through the rczcrc;)u:e
» ob e variable ¢alled “bop.”

222 Chapter 4

managing your app’s data

References are like sticky notes for your objects

In your kitchen, you probably have containers of salt and sugar. If
you switched their labels, it would make for a pretty disgusting meal—
even though you changed the labels, the contents of the containers
stayed the same. References are like labels. You can move labels
around and point them at different things, but it’s the object that
dictates what methods and data are available, not the reference
itself—and you can copy references just like you copy values.

A reference is

Guy joe = new Guy(); like a label that
Guy joseph = joe;

your COC[e uses
to talk about a

We treated this Quy . P .
speuflc ol)]ect.

ob\')ec{: with the “ncw”ﬂ
kq'word, and (,o\>icd
the vefevente 4o it

You use it to
with the = operator.

access fields and
call methods on
an ol)ject that 1t
points to.

Evcry one of these labcls
is a iiqq:ercn{: vefevente
variable, but ’chey all point
to the SAME 6uy ob‘)cc{:‘

We stuck a lot of sticky notes on that object! In this particular case, there are a lot of
different references to this same Guy object—because a lot of different methods use it
for different things. Each reference has a different name that makes sense in its context.

That’s why it can be really useful to have multiple references pointing to the same
instance. So you could say Guy dad = joe, and then call dad.GiveCash()
(that’s what Joe’s kid does every day). If you want to write code that works with an
object, you need a reference to that object. If you don’t have that reference, you have no
way to access the object.

you are here » 223

it was an object now it’s garbage

If there aren’t any more references,
your object gets garbage-collected

If all of the labels come off of an object, programs can no longer access that
object. That means C# can mark the object for garbage collection. That’s
when C# gets rid of any unreferenced objects and reclaims the memory those
objects took up for your program’s use.

o Here’s some code that creates an object.
Just to recap what we’ve been talking about: when you use the hew
statement, you're telling C# to create an object. When you take
a reference variable like joe and assign it to that object, it’s like
you’re slapping a new sticky note on it.

Guy joe = new Guy() { Cash = 50, Name = "Joe" };

. We used an object
Joe [m initializer o treate this
5 614\/ ob‘jcc{‘,. H:S Name
field has the s‘%\ring
G L X “Joe,” its Cash field
Uy Ob3®C has the int 50, and
we Pu‘{:] rc«ccrcncc {')o

the ObQCC'{', in a vaviable
aallcd ‘\)oc."

e Now let’s create our second object.
Once we do this we’ll have two Guy object instances and two
reference variables: one variable (joe) for the first Guy object, and
another variable (bob) for the second.

Guy bob = new Guy() { Cash = 100, Name = "Bob" };
We eveated another Quy
K_ ob\')cc{: and treated a
vaviable called “bob’ that
points to it. Vaviables are
like sticky notes—they ve
wust labels that Yyou tan
N ‘s{ick" to any ob\')ccjc-

224 Chapter 4

managing your app’s data

9 Let’s take the reference to the first Guy object and
change it to point to the second Guy object.
Take a really close look at what you’re doing when you create a new Guy
object. You're taking a variable and using the = assignment operator to
set it—in this case, to a reference that’s returned by the new statement.
That assignment works because you can copy a reference just like
you copy a value.

So let’s go ahead and copy that value:

joe = bob;

That tells C# to make joe point to the same
object that bob does. Now the joe and bob
variables both point to the same object.

A‘F{:c\r the CLR (Comihg up in
the “Garbage Collection Exposed”
i“'ECV'ViCW.I) vemoves the last
e There’s no longer a reference to the first Guy object...so veferente to the objeet, it

it gets garbage-collected. marks it for gabage collection.

Now that joe is pointing to the same object as bob, there’s no longer a

reference to the Guy object it used to point to. So what happens? C# marks

the object for garbage collection, and eventually trashes it. Poof—it’s gone!

L

The CLR keeps track of all of the
references to each object, and ~— ' —
when the last reference disappears, POO{.
it marks it for removal. But it might
have other things to do right now, / \ \
so the object could stick around for
a few milliseconds—or even longer! |

For an ohject to stay in the heap, it has to bhe
referenced. Sometime after the last reference
to the ohject c[isappears, so does the ol;ject.

you are here » 225

>
>

you can pet the dog in Head First C#

public partial class Dog {

public void GetPet() {

Console.WriteLine("Woof!");

Multiple references and their .
side effects Dog
Breed
You've got to be careful when you start moving GetPet
reference variables around. Lots of times, it might seem
like you’re simply pointing a variable to a different
object. You could end up removing all references to
another object in the process. That’s not a bad thing,
but it may not be what you intended. Take a look:
rover
o Dog rover = new Dog(); ‘%F'
rover.Breed = "Greyhound"; Oo X
9 ob\?
) | vover is a Dog ochc{ with a
Objects: Breed field set o Greyhound.
References: ,
rrover
spot
e Dog fido = new Dog(); 0
fido.Breed = "Beagle"; o, A
Dog spot = rover; /_» (’ 9 ob\e
Obijects: 2 fido is another Dog O QC
jects: 9 oby
object. spot is just another
References: 3 YC%CVCV\CC ‘{',O H’\C ‘plYS‘{', Ob\)CC‘{Z
e Dog lucky = new Dog(); /
lucky.Breed = "Dachshund"; 1 — 9 S
fido = rover; ﬁ/ POO{ 99 ob\¢
lueky is a third o Jcc{:
2 fido is now pointing to
Objects: object #1. So, object

#2. has no rc«ccrcnccs
[€'s done as fav as the
program is tonterned.

4

References:

226 Chapter 4

managing your app’s data

en your penci]

Now it’s your turn. Here's one long block of code. Figure out how many objects and references there are at each
stage. On the righthand side, draw a picture of the objects and sticky notes in the heap.

o Dog rover = new Dog();
rover.Breed = "Greyhound";
Dog rinTinTin = new Dog();
Dog fido = new Dog();

Dog bear = fido;

Objects:

References:

e Dog spot = new Dog();
spot.Breed = "Dachshund";
spot = rover;

Objects:

References:

e Dog lucky = new Dog();
lucky.Breed = "Beagle";
Dog charlie = fido;
fido = rover;

Objects:

References:

e rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = "pug";

Objects:

References:

o charlie = laverne;
lucky = rinTinTin;

Objects:

References:

you are here »

227

get practice with references

en your penci]

228

N Solution

Dog rover = new Dog();
rover.Breed = "Greyhound";
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog bear = fido;
One new Dog ochd{ is
ereated, but spot is the
) 4- only veferente to it. When
References:_ ! % spot is set to vover, that
ob\)cc{: 9oes away.

Objects: 3

Dog spot = new Dog();
spot.Breed = "Dachshund";
spot = rover;

Objects: 3

5

References:

Dog lucky = new Dog(); .
lucky.Breed = "Beagle"; tharlic was set to fido
Dog charlie = fido; when fido was still on

fido = ; obieet #3. Then, after
e rover K—’ {‘,\'\\?}{2, ‘('\'ldo moved to ob)cc{:

Objects: 4 4, leaving chavlie behind.

\J
References: L Dog #2. lost its \ \ / Fido v
last veferente, and ~~— '

POO{.

rinTinTin = lucky; it went away.
Dog laverne = new Dog(); \J
laverne.Breed = "pug"; / \
Objects: 4- V\\

e When vinTinTin moved

References: to lucky’s object, the
old vinTinTin ob\’)cd‘t
. disappeared.

charlie = laverne;

lucky = rinTinTin;

Objects: 4" Here the veferences move
around, but no new obiects

References: @ are treated. Setting lueky to

vinTinTin did no{:hing betause
they alveady pointed to the
Chapter 4 same object.

Head First: So, we understand that you do a pretty
important job for us. Can you tell us a little more about
what you do?

Common Language Runtime (CLR): In a lot of
ways, it’s pretty simple. I run your code. Any time you’re
using a .NET app, I'm making it work.

Head First: What do you mean by making it work?

CLR: I take care of the low-level “stuff” for you by doing
a sort of “translation” between your program and the
computer running it. When you talk about instantiating
objects or doing garbage collection, I'm the one that’s
managing all of those things.

Head First: So how does that work, exactly?

CLR: Well, when you run a program on Windows,
macOS, Linux, or most other operating systems, the OS
loads machine language from a binary.

Head First: I'm going to stop you right there. Can you
back up and tell us what machine language is?

CLR: Sure. A program written in machine language is
made up of code that’s executed directly by the CPU—
and it’s a whole lot less readable than G#.

Head First: If the CPU is executing the actual machine
code, what does the OS do?

CLR: The OS makes sure each program gets its own
process, respects the security rules, and provides APIs.

Head First: And for our readers who don’t know what
an API is?

CLR: An APT-—or application programming
interface—is a sct of methods provided by an OS,
library, or program. OS APIs help you do things like
work with the filesystem and interact with hardware.
But they’re often pretty difficult to use—especially for
memory management—and they vary from OS to OS.

managing your app’s data

Garbage Collection Exposed

This week’s interview: The .NET Common Language Runtime

Head First: So back to your job. You mentioned a
binary. What exactly is that?

CLR: A binary is a file that’s (usually) created by a
compiler, a program whose job it is to convert high-
level language into low-level code like machine code.
Windows binaries usually end with .exe or .dll.

Head First: But I'm guessing that there’s a twist here.
You said “low-level code like machine code”—does that
mean there are other kinds of low-level code?

CLR: Exactly. I don’t run the same machine language
as the CPU. When you build your C# code, Visual
Studio asks the C# compiler to create Common
Intermediate Language (CIL). That’s what I run.
C# code is turned into CIL, which I read and execute.

Head First: You talked about Windows binaries. But
you also work on macOS. How does that work?

CLR: If you look in the folders created for your Visual
Studio for Mac projects, you'll see lots of files that end
with .dll. These are managed .NET DLL files, and
they contain CIL code for the app. You can run those
apps from the command line anywhere I'm installed!
Try it out for yourself. Open a console window, go to the
folder with the PickRandomCards project from Chapter
3, find the folder under bin/ that has files that end with
.dll, and run this: dotnet PickRandomCards.dll.

Head First: You mentioned managing memory. Is that
where garbage collection fits into all of this?

CLR: Yes! One useful thing that I do for you is manage
your computer’s memory by figuring out when your

app 1s done with certain objects. When it 1s, I get rid of
them for you to free up that memory. That’s something
programmers used to have to do themselves—but thanks
to me, it’s something that you don’t have to be bothered
with. You might not have known it at the time, but I've
been making your job of learning C# a whole lot easier.

You can run your console apps from the command line. Find the DLL file underneath the bin/ folder and run
it like this: dotnet ProjectName.dll—and this will work on any OS you can install .NET on—even Linux!

you are here » 229

let’s swap elephants

Exercise

program runs.

You pressed 1
Calling lloyd.WhoAmI()
My name is Lloyd.

Press 1 for Lloyd, 2 for Lucinda, 3 to swap

Create a program with an Elephant class. Instantiate two Elephant instances and then swap the reference values
that point to them, without getting any Elephant instances garbage-collected. Here’s what it will look like when your

You’re going to build a new console app that has a class called Elephant.
Here’s an example of the output of the program:

r

+*-—"—/™l The Elephant class has

My ears are 40 inches tall. <€

You pressed 2

Calling lucinda.WhoAmI()
My name is Lucinda.

My ears are 33 inches tall.

You pressed 3
References have been swapped

You pressed 1

Calling lloyd.WhoAmI()

My name is Lucinda.

My ears are 33 inches tall.

You pressed 2

Calling lucinda.WhoAmI()
My name is Lloyd.

My ears are 40 inches tall.

You pressed 3
References have been swapped

You pressed 1

Calling lloyd.WhoAmI()

My name is Lloyd.

My ears are 40 inches tall.

You pressed 2

Calling lucinda.WhoAmI()
My name is Lucinda.

My ears are 33 inches tall.

a WhoAml method that
writes these two lines to
the console to display
the values in the Name
and EarSize fields.

Heve's the elass dia
9gram
for the Elephant ¢lass

~ Swapping the veferentes Youll need o eveate.
causes the llo\/d vaviable to
call the Lutinda object’s

method, and vice versa.

&

SwaFFing them
a9ain veturns
things to the way
they were when the
program started.

Elephant

Name =
EarSize

WhoAml

(When you create your Elephant class,‘

.

declare your Name field like this:

public string Name = "";

This sets the Name field to an empty
string. Why do you think we're asking

you to do that?

J

The CLR garbage-collects any object with no references to it. So here’s a
hint for this exercise: if you want to pour a cup of coffee into another cup
that’s currently full of tea, you’ll need a third glass to pour the tea into...

230 Chapter 4

managing your app’s data

Exercise _

Your job is to create a console app with an Elephant class that matches the class diagram and uses its fields and
methods to generate output that matches the example output.

o Create a new console app and add the Elephant class.
Add an Elephant class to the project. Have a look at the Elephant class diagram—you’ll need an int
field called EarSize and a string field called Name. Add them, and make sure both are public. Then
add a method called WhoAml that writes two lines to the console to tell you the name and ear size of
the elephant. Look at the example output to see exactly what it’s supposed to print.

e Create two Elephant instances and a reference.
Use object initializers to instantiate two Elephant objects:

Elephant lucinda = new Elephant() { Name = "Lucinda", EarSize = 33 };
Elephant lloyd = new Elephant() { Name = "Lloyd", EarSize = 40 };

e Call their WhoAml methods.
When the user presses 1, call lloyd. WhoAmI. When the user presses 2, call lucinda. WhoAmI. Make
sure that the output matches the example. This is a good place to use else if, which you learned
about in Chapter 3.

e Now for the fun part: swap the references.
Here’s the interesting part of this exercise. When the user presses 3, make the app execute code
that exchanges the two references. You'll need to write that method. After you swap references,
pressing 1 should write Lucinda’s message to the console, and pressing 2 should write Lloyd’s message.
If you swap the references again, everything should go back to normal.

When the user presses 3, the app swaps the
lloyd two veferentes, so now lutinda points to
r; the Elq?han{: ob\')cC{ “o\/d used to Foin'f: 4o,
4’%"1. . and vice versa. Now Ca“ing ”o\/d.WhoAm'O

causes it to print “My name is Lutinda.”

O\(\A Iloyd

[\)F_g

5
“Ent 508 o obje©
o)
,&' o
|£ the user presses 2 again, the app swaps ’%/” 4
+hem back. Now La“ing lloyd WhoAm|() +0 Ob\\e'

P\rih{:s “/V]\/ name s Llo‘/d) aga'm.

you are here » 231

two references one object

EXerciSe There’s more than one way to solve this exercise. If
. you came up with different code that works, that’s
SOlllfIOIl great! Take the time to understand our solution.

Create a program with an Elephant class. Instantiate two Elephant instances and then swap the reference values that
point to them, without getting any Elephant instances garbage-collected.

Here’s the Elephant class:

We asked Yyou to Elephant
E:-La.SS E.Lephant ml{',lallu {')\C Na"‘c Name=""
ield like this.

public int EarSize; field like h EarSize
public string Name = "";
public void WhoAmI() WhoAml
{

Console.WriteLine("My name is " + Name + ".");

Console.WriteLine("My ears are " + EarSize + " inches tall.");
}

}

Here are the top-level statements for your Program.cs file:
Elephant lucinda = new Elephant() { Name = "Lucinda", EarSize = 33 };
Elephant 1loyd = new Elephant() { Name = "Lloyd", EarSize = 40 };

Console.WriteLine("Press 1 for Lloyd, 2 for Lucinda, 3 to swap");
while (true)

{ We used “else if” to
char input = Console.ReadKey(true).KeyChar; cheek if the user
Console.WriteLine("You pressed " + input); enteved |, 2, or 3,
if (input == '1") & and an else statement
{ e . . to exit if they

%gz;g}ﬁh\giﬁ%?ne(Calling lloyd.WhoAmI()"); entered anything else.

i else if (input 2') i o ")uS{: point; Lloyd b
Console.WriteLine("Calling lucinda.WhoAmI()"); Lutinda, there won't be any
lucinda.WhoAmIQ); move vefeventes pointing to

} else if (input == '3') Lloyd, and his object will be

holder = lloyd; it “holder”) 4o keep track of

{tg{:d: :uﬁzgg:.i\. the Llo\/d ob)cé{: veferente until

{ los’z That's why Yyou need to
il L have an extra vaviable (we called

Console.WriteLine("References have been swapped"); Lutinda ean get theve.
}
else
{ N
return;
}

Console iriteLine(): There's no “new” statement when we declare the “holder” variable
} ’ ' because we don't want to ereate another instance of Elephant.

232 Chapter 4

Two references mean TWO variables
that can change the same object’s data

Besides losing all the references to an object, when you have multiple references
to an object, you can unintentionally change the object. In other words, one
reference to an object may change that object, while another reference to that
object has no idea that something has changed. Let’s see how that works.

Add one more else if block to your top-level statements. Can you
guess what will happen once it runs?

else if (input == '3')

{
Elephant holder; m
holder = 1lloyd; S

1loyd = lucinda;
lucinda = holder;
Console.WriteLine("References have been swapped");

managing your app’s data

F Do 1his!

} .
else if (input == '4') After this statement, both the 11loyd .
{ and lucinda variables reference
lloyd = lucinda; the SAME Elephant object.
lloyd.EarSize = 4321; -
1loyd.WhoAmI(); This statement says
} ! to set EarSize to 4321
else on whatever object
{ the reference stored
return: in the Lloyd variable
} ! happens to point to.

Now go ahead and run your program. Here’s what you’ll see:

You pressed 4
My name is Lucinda
My ears are 4321 inches tall.

You pressed 1

Calling 1loyd.WhoAmI()

My name is Lucinda

My ears are 4321 inches tall.

(The program acts normally...
until you press 4. Once you
do that, pressing either 1 or

2 prints the same output—
and pressing 3 to swap
the references doesn’t do
anything anymore.

You pressed 2

Calling lucinda.WhoAmI()

My name is Lucinda

My ears are 4321 inches tall.

After you press 4 and run the new code that you added, both the 1loyd and
lucinda variables contain the same reference to the second Elephant
object. Pressing 1 to call lloyd. WhoAmlI prints exactly the same message as
pressing 2 to call lucinda.WhoAml. Swapping them makes no difference
because you’re swapping two identical references.

Swapping these two
s{:ick\/ notes won't Changc
anything because they've
stuek o the same objeet.

And since the lloyd vefevente
is no longer pointing to the
first Elephant objeet, it gets
9arbage—collected...and there's
no way to bring it back!

you are here » 233

elephant objects having a chat

Objects use references to talk to each other Elephant
Name

So far, you’ve seen forms talk to objects by using reference variables to call their EarSize

methods and check their fields. Objects can call one another’s methods using references

too. In fact, there’s nothing that a form can do that your objects can’t do, because your WhoAm|

form 1s just another object. When objects talk to each other, one useful keyword that HearMessage

they have is this. Any time an object uses the this keyword, it’s referring to itself— SpeakTo

it’s a reference that points to the object that calls it. Let’s see what that looks like by
modifying the Elephant class so instances can call each other’s methods.

o Add a method that lets an Elephant hear a message.
Let’s add a method to the Elephant class. Its first parameter is a message from another
Elephant object. Its second parameter is the Elephant object that sent the message: _ o
Do this!

public void HearMessage(string message, Elephant whoSaidIt) {
Console.WriteLine(Name + " heard a message");
Console.WriteLine(whoSaidIt.Name + " said this: " + message);

}

Here’s what it looks like when it’s called:
1loyd.HearMessage("Hi", lucinda);

We called 1loyd’ s HearMessage method, and passed it two parameters: the string
"Hi" and a reference to Lucinda’s object. The method uses its whoSaidIt parameter to
access the Name field of whatever elephant was passed in.

e Add a method that lets an Elephant send a message.
Now let’s add a SpeakTo method to the Elephant class. It uses a special keyword: this.
That’s a reference that lets an object get a reference to itself.

public void SpeakTo(Elephant whoToTalkTo, string message) {
whoToTalkTo.HearMessage(message, this);

} An Elephant’s SpeakTo method uses the
) . “Lhis” keyword 4o send a vefevente o
Let’s take a closer look at what’s going on. i{sew 4o another E|c?han{:.

When we call the Lucinda object’s SpeakTo method:
lucinda.SpeakTo(lloyd, "Hi, Lloyd!");

It calls the Lloyd object’s HearMessage method like this:
whoToTalkTo.HearMessage("Hi, Lloyd!", this);

Lucinda uses whoToTalkTo
(which has a reference to
Lloyd) to call HearMessage.

this is replaced with
areference to
Lucinda’s object.

[a reference to Lloyd].HearMessage("Hi, Lloyd!", [a reference to Lucindal);

234 Chapter 4

managing your app’s data
Call the new methods.
Add one more else if block to the top-level statements to
make the Lucinda object send a message to the Lloyd object:

else if (input == '4')

{ The "this”

lloyd = lucinda;

lloyd.EarSize = 4321;
1loyd.WhoAmI(); lceyworc[
}
else if (input == '5') lets an
{ .
lucinda.SpeakTo(lloyd, "Hi, Lloyd!"); OL]ect get
}
{else a reference
y return; to itsel{.

Remember, if your app doesn't pause

Now run your program and press 5. You should see this output: °
on the breakpoint, make sure you've

You pressed 5 s‘{:&\r‘{zing the app with dcbu%ihg. Run
Lloyd heard » message e app by presing F5 or chootg
ucinda sai 1s: AL, Ltoyd: Start Debugging arom the Debug

(Visual Studio) or Run (VSCode) menu.

Use the debugger to understand what’s going on.
Place a breakpoint on the statement that you just added:

@® 45 lucinda.SpeakTo(lloyd, "Hi, Lloyd!");

Run your program and press 5.
When it hits the breakpoint, use Debug >> Step Into (F11) to step into the SpeakTo method.

Add a watch for Name to show you which Elephant object you’re inside. You’re currently inside the Lucinda
object—which makes sense because the app just called lucinda.SpeakTo.

Hover over the this keyword at the end of the line and expand it. It’s a reference to the Lucinda object.
this);
49 =
@ EarSize 33
@ Name Q ~ "Lucinda"

Hover over thoToTalkTo and expand it—it’s a reference to the Lloyd object.
The SpeakTo method has one statement—it calls whoToTalkTo.HearMessage. Step into it.

You should now be inside the HearMessage method. Check your watch again—mnow the value of the Name field
is “Lloyd”—the Lucinda object called the Lloyd object’s HearMessage method.

Hover over whoSaidIt and expand it. It’s a reference to the Lucinda object.

Finish stepping through the code. Take a few minutes to really understand what’s going on.

you are here » 235

one reference to many objects

Strings and arrays are different from the other data

types you’ve seen in this chapter because they’re the
only ones without a set size (think about that for a bit).

Arrays hold wwltiple values

If you have to keep track of a lot of data of the same type, like a list of prices or a group
of dogs, you can do it in an array. What makes an array special is that it’s a group of
variables that’s treated as one object. An array gives you a way of storing and changing
more than one piece of data without having to keep track of each variable individually.
When you create an array, you declare it just like any other variable, with a name and a
type—except the type is followed by square brackets:

bool[] myArray;

Use the new keyword to create an array. Let’s create an array with 15 bool elements:

myArray = new bool[15];

Use square brackets to set one of the values in the array. This statement sets the value of
the fifth element of myArray to false by using square brackets and specifying the index
4. It’s the fifth one because the first is myArray [0], the second is myArray[1], etc.:

myArray[d] = false;

Use each element in an array like it’s a normal variable

When you use an array, first you need to declare a reference variable that points to

the array. Then you need to create the array object using the new statement, specifying
how big you want the array to be. Then you can set the elements in the array. Here’s

an example of code that declares and fills up an array—and what’s happening in the heap
when you do it. The first element in the array has an index of 0.

// declare a new 7-element decimal array
decimal[] prices = new decimal[7];
prices[0] = 12.37M;

prices[1] = 6_193.70M;

// we didn't set the element
// at index 2, it remains
// the default value of 0

“

We saw arrays of s{rings
in Chapter 3. Now let’s
take a deeper dive into

how arrays work.

You use the new
keyword to create an
array because it’s an

object—so an array
variable is a kind of
reference variable.

In C#, arrays are

zero-based, which
means the first
element has index 0.

| one chunk on the heap. |

The prices variable
is a reference, just
like any other object
reference. The object it
points to is an array of
decimal values, all in

prices[3] = 1193.60M;
prices[4] = 58_000_000_000M;
prices[5] = 72.19M;
prices[6] = 74.8M; 1\

C3# ignores underseores in Your number literals, so we
used tommas o make our long numbers easier 4o vead.

236 Chapter 4

detimal detimal detimal detimal decimal detimal dectimal

Arrays can contain reference variables

You can create an array of object references just like you create an array of

numbers or strings. Arrays don’t care what type of variable they store; it’s up to you.

So you can have an array of ints, or an array of Duck objects, with no problem.

Here’s code that creates an array of seven Dog variables. The line that initializes
the array only creates reference variables. Since there are only two new Dog()
lines, only two actual instances of the Dog class are created.

// Declare a variable that holds an

// array of references to Dog objects
Dog[] dogs = new Dog[7];

// Create two new instances of Dog

// and put them at indexes 0 and 5
dogs[5] = new Dog();
dogs[0] = new Dog();

instances. The array is a list of seven Dog reference

The first line of code only created the array, not the
variables—but only two Dog objects have been created.

Av\ awa\/'s |Cn3‘(')\

You ¢an find out how many
elements are in an array using its
Lehg{‘)\ ?voycv{:\/. So if \/ou'vc 30{:

an avvay called “prices,” then you
¢an use prices.Length to find out

how long it is. |€ there ave seven
elements in the arvay, that gives LOQ,
You T—whith means the arvay foy

elements are numbered O 1o b.

managing your app’s data

When you set
or retrieve an
element from
an array, the

number inside

the brackets is
called the index.
The first element
in the array has
an index of 0,

All of the elements in the arvay are
veferentes. The array itself is an ob\)cab

you are here » 237

“this” lets an object refer to itself

238

t}lere are no

Dumb Questions

Q: I’m still not sure | get how references work.

A: References are the way you use all of the methods
and fields in an object. If you create a reference to a Dog
object, you can then use that reference to access any
methods you've created for the Dog object. If the Dog class
has (nonstatic) methods called Bark and Fetch, you can
create a reference called spot, and then you can use that
to call spot.Bark() or spot.Fetch(). You can also change
information in the fields for the object using the reference
(so you could change a Breed field using spot.Breed).

Q: Then doesn’t that mean that every time | change
a value through a reference I'm changing it for all of the
other references to that object too?

A: Yes. If the rover variable contains a reference to

the same object as spot, changing rover.Breed to “beagle”

would make it so that spot.Breed was “beagle.”
Q} Remind me again—what does this do?

A: this is a special variable that you can only use
inside an object. When you're inside a class, you use this
to refer to any field or method of that particular instance. It's
especially useful when you're working with a class whose
methods call other classes. One object can use it to send

a reference to itself to another object. So if spot calls one

of rover’s methods passing this as a parameter, it's
giving rover a reference to the spot object.

Any time you’ve got code

in an object that’s going

to be instantiated, the
instance can use the special
"this” variable that has a
reference to itself.

Chapter 4

Q: You keep talking about garbage-collecting, but
what’s actually doing the collecting?

A: Every .NET app runs inside the Common Language
Runtime (or the Mono Runtime if you’re running your apps
on macOS, Linux, Android, or iOS, basically anywhere other
than Windows, or if you're using Mono on Windows—but

it works the same way, so we'll just talk about the CLR in
general here).

The CLR does a lot of stuff, but there are two really
important things the CLR does that we're concerned about
right now. First, it executes your code—specifically, the
output produced by the C# compiler. Second, it manages
the memory that your program uses. That means it keeps
track of all of your objects, figures out when the last
reference to an object disappears, and frees up the memory
that it was using. The folks on the .NET team at Microsoft
have done an enormous amount of work making sure that
it's fast and efficient.

Q: | still don't get that stuff about different types holding
different-sized values. Can you go over that one more time?

A: Sure. The thing about variables is they assign a
size to your number no matter how big its value is. So if
you name a variable and give it a long type even though
the number is really small (like, say, 5), the CLR sets
aside enough memory for it to get really big. When you
think about it, that's really useful. After all, they're called

“variables” because they change all the time.

The CLR assumes you know what you're doing and you're
not going to give a variable a type bigger than it needs. So
even though the number might not be big now, there’s a
chance that after some math happens, it'll change. The CLR
gives it enough memory to handle the largest value that
type can accommodate.

managing your app’s data

en your penci]

A
Here's an array of Elephant objects and a loop that will go through it and find the one with the biggest ears. What's
the value of biggestEars.EarSize after each iteration of the for loop?

We've ereating an array of

k/_‘ seven Elephant veleventes.
Elephant[] elephants = new Elephant[7];
elephants[0] = new Elephant() { Name = "Lloyd", EarSize = 40 };

elephants[1] = new Elephant() { Name = "Lucinda", EarSize = 33 }; Anﬁysdﬁvf

. . O,
elephants[2] = new Elephant() { Name = "Larry", EarSize = 42 }; W&h'"df*

so the fivst
elephants[3] = new Elephant() { Name = "Lucille", EarSize = 32 }; Ekyhanﬁin
elephants[4] = new Elephant() { Name = "Lars", EarSize = 44 }; {rca*fzkzj

elephan :
elephants[5] = new Elephant() { Name = "Linda", EarSize = 37 }; g
elephants[6] = new Elephant() { Name = "Humphrey", EarSize = 45 };

Elephant biggestEars = elephants[0]; Fill in these values.

for (int i = 1; i < elephants.Length; i++)
{ Iteration #1 biggestEars. EarSize =

Console.WriteLine("Iteration #" + 1i);

if (elephants[i].EarSize > biggestEars.EarSize) Iteration #2 biggestEars. EarSize =
{
biggestEars = elephants[il];

Iteration #3 biggestEars. EarSize =
This sets the biggestEars refevente to
the objcd‘l: that elephantsliJ points to.

Console.WriteLine(biggestEars.EarSize.ToString()); . . .
Iteration #4 biggestEars. EarSize =

Be careful—this loop Sb:{:tsjc
[™ h
:;tgy‘c?;{s?:::f ICcha:anJ?{cra{e: Tteration #5 biggestEars. EarSize =
six times wntil Y s c°\ua| to the
length of the arvay.

Iteration #6 biggestEars. EarSize =

you are here » 239

null and void

arpen your penci]
A\ Solution

Here's an array of Elephant objects and a loop that will go through it and find the one with the biggest ears. What's
the value of biggestEars.EarSize after each iteration of the for loop?

The for loop starts with the second Elephant and
tompaves it to whatever Elephant biggestEars points
to. £ its ears ave biger, it points biggestEars at
that Elephant instead. Then it moves to the next
one, then the next one..by the end of the loop,
biggestEars points to the one with the biggest eavs.

Elephant[] elephants = new Elephant[7];
elephants[0] = new Elephant() { Name = "Lloyd", EarSize = 40 };

elephants[1] = new Elephant() { Name = "Lucinda", EarSize = 33 }; DkiYO“VC”C"bCY{hak

elephants[2] = new Elephant() { Name = "Larry", EarSize = 42 }; Lhe loop stavts with

elephants[3] = new Elephant() { Name = "Lucille", EarSize = 32 }; the SC“"d?a;;\:;;o you
avvay<

elephants[4] = new Elephant() { Name = "Lars", EarSize = 44 }; t;;¢1*2£\g

elephants[5] = new Elephant() { Name = "Linda", EarSize = 37 };

elephants[6] = new Elephant() { Name = "Humphrey", EarSize = 45 };

Iteration #1 biggestEars. EarSize = 4—0
Elephant biggestEars = elephants[0];

for (int i = 1; i < elephants.Length; i++)

{ 42

. . . . Iteration #2 biggestEars. EarSize =
Console.WriteLine("Iteration #" + 1i);

if (elephants[i].EarSize > biggestEars.EarSize)
{ Iteration #3 biggestEars.EarSize = 4—2'

biggestEars = elephants[il;

T

Iteration #4 biggestEars.EarSize =

Console.WriteLine(biggestEars.EarSize.ToString());

biaaestEars veferente keeps track . ' ‘ 4—4—
: I}‘cwhi?,?m Elephant we've seen :o far Iteration #5 biggestEars.EarSize =
has the biggest ears. Use the debugger
4o theek this! Put your bvcakyoin{‘,
here and wateh biggcsﬁEars.EarSiu. 4_ 5
Iteration #6 biggestEars.EarSize =

240 Chapter 4

managing your app’s data

null means a reference points to nothing

There’s another important keyword that you’ll use with objects.
When you create a new reference and don'’t set it to anything, it has
a value. It starts off set to nul1, which means it’s not pointing to
any object at all. Let’s have a closer look at this:

bcky

[The default value |
for any reference 0 .
variable is null. =3 Dog fido; og ObS@C
Since we haven't Dog lucky = new Dog();
assigned a value
to fido, it's set to
null.

X

' luaky fido
Now fido is set oy
to areference to ol O \%
another object, fido = new Dog();) X 0g ~h\eC
so it’s not equal % Ob'se’c 9 oby
| to null anymore.

Once we set
Llucky to null it \ \
no Ionggr pomt§ / -pido
to its object, so it ~__
gets marked for [~ lucky = null; POO{! < Y

garbage collection. %
// O\ Oogob'szc‘

Would I ever really use “null” in a
program?

Yes. The null keyword can be useful.

There are a few ways you see NULL used in typical programs. The
most common way 1s making sure a reference points to an object:

if (lloyd == null) {
That test will return true if the Lloyd reference is set to null.

Another way you’ll see the null keyword used is when you want
your object to get garbage-collected. If you’ve got a reference to an
object and you’re finished with the object, setting the reference to
NULll will immediately mark it for collection (unless there’s another
reference to it somewhere).

you are here » 241

strings can be null

1 think I've seen the word null before. Didn't
the IDE tell me something about it when I was using
Console.Readline?

Yes! Console.ReadLine can return a null value.

Back at the beginning of Chapter 3, you hovered over Console.ReadLine
so you could learn more about it from the description that the IntelliSense
quick info window showed you. Let’s take another look at that window:

string? = Console.ReadLine();

& string? Console.ReadLine()
Reads the next line of characters from the standard input stream.

Returns:
The next line of characters from the input stream, or null if no more lines are available.

Exceptions: T

ekxception Console.ReadLine will return

the next line of characters
that it reads. If there are no
more lines, then it returns null.

GitHub Examples and Documentation

Console.Readline returns a null when there are no lines available

Make sure You run

You’ve been running your apps in Visual Studio and typing input using the keyboard. But you From inside +h
can also run them from the command line. In Windows, there’s an executable in the bin\Debug project fol dcv-c
folder. You can use this command to run your app from the project folder: th a‘i has +he
C:\Users\Public\source\repos\ConsoleAppl\ConsoleAppl>dotnet run é—/f Lsproj file, not
Hello, World! the solution folder

that eontains it.

You can also use your operating system’s pipe commands like << or < or | to send input to
your app from a file or the output of another console app. When you do this, Console.ReadLine
needs a way to tell your app that it hit the end of the file—and that’s when it returns null.

But there’s still one issue: what does your app do when Console.ReadLine returns null?

242 Chapter 4

managing your app’s data

Use the string? type when a string might be null

You’ve been using two different (but related!) types to hold text values. First, there’s the string type,
like you used for the Name field in the Elephant class:

public string Name = "";

Then there’s the string? type, like the type returned by Console.ReadLine or which int. TryParse
takes as its first parameter, like you used in Owen’s ability score calculator app:

string? line = Console.ReadLine();
if (int.TryParse(line, out int value))

The difference is that in the Elephant class the Name field is never null. That's why we asked
you to initialize the Name field in your Elephant class.

What do you think would happen if you didn’t initialize the Name field in the Elephant class? D() _thisy
k 2 .
Change the field declaration in the Elephant class so it doesn’t initialize it to an empty string:
public string Name;
_ (R @ (field) string Elephant.Name

CS8618: Non-nullable field ‘Name' must contain a non-null value when exiting constructor. Consider declaring the field as
nullable.

Show potential fixes (Alt+Enter or Ctrl+.)
Visual Studio gives you a warning that has to do with null values, and asks you to consider
declaring the field as nullable. That’s what the string? type is—a nullable string.

You can make the error disappear by changing the Name field to a nullable string? instead of a
string:

public string? Name; Use the debugger to step
through the app, and add a watch
for the holder variable. Its value

. . i Il until it this stat t:
int.TryParse takes a string? parameter S older = Lloyd:

Now your app builds again, and runs exactly the same way as it did before.

So what does your app do if Console.ReadLine returns null?

Luckily, int. TryParse also takes a string? value, so if your app gets to the end of the input and
Console.ReadLine returns null, int. TryParse will just return false—so the app will work just fine,
and when it gets a null value it will treat it the way it treats any other value that can’t be parsed.

Visual Studio is smart enoug]m to check for possil)le places
where a value can be null. You can avoid that prol)lem by
malcing sure all of your reference variables are initialized.

you are here » 243

test out the random class

Tabletop Gamesoeviiiiiiiiiiiiat,

® There’s a rich history to tabletop games—and, as it turns out, a long history of tabletop games influencing
video games, at least as early as the very first commercial role-playing game.

+ The first edition of Dungeons and Dragons (D&D) was released in 1974, and that same year games with
names like “dungeon” and “dnd” started popping up on university mainframe computers.

+ You've used the Random class to create numbers. The idea of games based on random numbers
has a long history—for example, tabletop games that use dice, cards, spinners, and other sources of
randomness.

+ We saw in Chapter 3 how a paper prototype can be a valuable first step in designing a video game.
Paper prototypes have a strong resemblance to tabletop games. In fact, you can often turn the paper
prototype of a video game into a playable tabletop game, and use it to test some game mechanics.

* You can use tabletop games—especially card games and board games—as learning tools to understand
the more general concept of game mechanics. Dealing, shuffling, dice rolling, rules for moving pieces
around the board, use of a sand timer, and rules for cooperative play are all examples of mechanics.

+ The mechanics of Go Fish include dealing cards, asking another player for a card, saying “Go Fish”
when asked for a card you don’t have, determining the winner, etc. We're going to actually build a Go
Fish game later in the book, so take a minute and read the rules:
https://en.wikipedia.org/wiki/Go_Fish#The_game.

£ you've never played Qo Fish, take a

few minutes and vead the vules. We'll Even if we’re not writing code for video games,
use them later in the book!/ there’s a lot we can learn from tabletop games.
A A lot of our programs depend on random numbers. For

example, you’ve already used the Random class to create random
numbers for several of your apps. Most of us don’t actually have

a lot of real-world experience with genuine random numbers...
except when we play games. Rolling dice, shuffling cards, spinning
spinners, flipping coins...these are all great examples of random
number generators. The Random class is NET’s random
number generator—you’ll use it in many of your programs, and
your experience using random numbers when playing tabletop
games will make it a lot easier for you to understand what it does.

244 Chapter 4

managing your app’s data

. A Random Test Drive

You'll be using the Random class throughout the book, so let’s get to know it better by
kicking its tires and taking it for a spin. Fire up Visual Studio and follow along—and make
sure you run your code multiple times, since you’ll get different random numbers each time.

Create a new console app—all of this code will go in the top-level statements. Random . Shared
returns an instance of the Random class. Start by using it to generate a random int:

int randomInt = Random.Shared.Next();
Console.WriteLine(randomInt);

Specify a maximum value to get random numbers from 0 up to—but not including—the
maximum value. A maximum of 10 generates random numbers from 0 to 9:

int zeroToNine = Random.Shared.Next(10);
Console.WriteLine(zeroToNine);

\
Now simulate the roll of a die. You can specify a minimum and maximum value. A
minimum of 1 and maximum of 7 generates random numbers from 1 to 6: K

int dieRoll = Random.Shared.Next(1l, 7);
Console.WriteLine(dieRoll);

The NextDouble method generates random double values. Hover over the method name
to see a tooltip—it generates a floating-point number from 0.0 up to 1.0:

double randomDouble = Random.Shared.NextDouble();

@ double Random.NextDouble()
Returns a random floating-point number that is greater than or equal to 0.0, and less than 1.0.

You can multiply a random double to generate much larger random double values. So if you
want a random double value from 1 to 100, multiply the random double by 100:

Console.WriteLine(randomDouble * 100);

Use casting to convert the random double to other types. Try running this code a byjich of times—
you’ll see tiny precision differences in the float and decimal values.

Console.WriteLine((float)randomDouble * 100F);
Console.WriteLine((decimal)randomDouble * 100M);

Use a maximum value of 2 to simulate a coin toss. That generates
a random value of either O or 1. Use the Convert class, which has a
static ToBoolean method that will convert it to a Boolean value:

How would you use Random
to choose a random string
int zeroOrOne = Random.Shared.Next(2); from an array of strings?

bool coinFlip = Convert.ToBoolean(zeroOrOne);
Console.WriteLine(coinFlip);

you are here » 245

the meat’s usually fresh at sloppy joe's

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!

Sloppy Joe has a pile of meat, a whole lotta bread, and more
condiments than you can shake a stick at. What he doesn’t have is a
menu! Can you build a program that makes a new random menu for

him every day? You definitely can...with a new MAUI app, some

arrays, your handy random number generator, and a couple of new,
useful tools. Let’s get started!

Welcome to Sloppy Joe's, hon, The
meat's nice and fresh! What can I
Here’s the app you’ll build. It creates a menu with six random getcha?
sandwiches. Each sandwich has a protein, a condiment, and a bread,
all chosen at random from a list. Every sandwich is given a random
price, and there’s a special random price at the bottom to add

guacamole on the side.

Sloppy Joe needs a new menu every
day. ‘/ou\r app will SCncra{‘,c vandom
sandwithes and prices for him. Q/

— (6] X

Home
Turkey with French dressing on wheat $13.66
Turkey with honey mustard on a roll $7.79
Salami with yellow mustard on a roll $7.01
Roast beef with yellow mustard on white $5.30
Turkey with yellow mustard on wheat $9.72
Ham with brown mustard on wheat $11.00
/i\ Add guacamole for $14.20

\

Eath sandwich is genevated by choosing a
vandom ?ro{:c'm, vandom tondiment, and
vandom bread ‘F\rom arra\/s.

The Prices are random numbers

between 5.00 and 14.99.

246 Chapter 4

managing your app’s data

Sloppy Joe's menu app uses a Grid layout

A Grid control contains other controls, and defines a set of rows and columns to lay out those controls.

You've used other layout controls: you’ve used VerticalStackLayout controls to stack Button, Label, and other
controls in your apps on top of each other. You used a HorizontalStackLayout control in Chapter 2 for your
bird picker. And in the Animal Matching Game project, your VerticalStackLayout contained a FlexLayout
that arranged the buttons so they stacked horizontally, flowing into rows as the window size changed.

Here’s an example of a Grid layout The layout adjusts as you
with two rows and three columns. | change the window size.

A 2x3 Grid Layout A 2x3 Grid Layout

is 1S @ YOW-:

This ¢ I The setond

hish ell spans the F.rsf +wo Columns, row hcigh{: is
dth of ot akes up the L] buice as tall &

width of both o‘F them tombined. the Lirst vow.

[J— | |

The Livst column is twice The setond The third tolumn is .5
as wide as the setond. tolumn. times as wide as the second.

A 2x3 Grid Layout

The Grid preserves
the row and column
proportions when
you change the
size and shape of
the page, which is
really useful when
you want your app
to run on devices
with different
screen sizes.

Wat@h 1t A Grid control is for layouts, not data.

When most of us see something that contains “rows” and “columns,” we
think of tables of data, like spreadsheets or HTML tables. That’s not what a Grid
control is all about.

The Grid control is for laying out content. Its job is to contain other controls, and
give you a way to design more interesting or intricate layouts than you get with stack
panels, in a way that works well with different window sizes or on mobile devices.

you are here » 247

lay out your page with a grid control

Grid controls

The Grid control contains other controls, and works just like the other layout controls to contain
child controls (the other controls nested inside it). There’s an opening <Grid> tag and a
closing </Grid> tag, and the tags for all of the child controls are between them.

Cells in a grid are invisible—their only purpose is to determine where the child controls are
displayed on the page. We used Border controls to make the grid visible. A Border control
draws a border around a child control nested inside it:

<Border>
<Label Text="I have a border!"/>
</Border>

A Border can only contain one child control. In the app below we didn’t nest any controls inside
the Borders—we just took advantage of the fact that each Border fills up the entire cell. We used
the Border control’s BackgroundColor property to make some of the cells in the grid darker.

Use Grid properties to put a control in a cell

The rows and columns in a Grid are numbered starting with 0. To put a child control in a
specific row and column, use the Grid.Row and Grid.Column properties. For example, putting
<Border Grid.Row="1" Grid.Column="2" /> between Grid tags will make the Grid
place the border in the second row and third column. You can also make a control span multiple
rows or columns using the Grid.RowSpan and Grid.ColumnSpan properties.

A 2x3 Grid Layout

<Border
Grid.Column="1"/>

This Border tontrol doesn't have a Grid.Column oycr{-;\/,.SQ

4he Grid puts it in the Livst column (or Columv.\ 0). [t's é: '

the setond vow (or vow #1) because it has 6n.d.Row set to I

[+ spans +wo tolumns betause érid.ColumvSPAn is set to 2. <Border Grid. Roe"1"
\l/ Grid.Column="2"

/>
<Border Grid.Row="1" Grid.ColumnSpan="2"

BackgroundColor="LightGray"/>

248 Chapter 4

managing your app’s data

Pefine the rows and columns for a Grid

The Grid control XAML has sections to define rows and columns. Each row or column can either have
proportional sizes—for example, column 3 is twice as wide as column 2 and three times as wide as column 1—or

absolute sizes in device-independent pixels.

The row and column definitions are in special sections inside the <Grid> tag. The row definitions are inside a
<Grid.RowDefinitions> section, and the column definitions are inside a <Grid.ColumnDefinitions> section.

Here’s the complete XAML for the app that we’ve been showing you. Create a .NET MAUI app called
GridExample and add this XAML code (and delete the OnCounterClicked method in MainPage . xaml.cs).

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml1"

x:Class="GridExample.MainPage">
<ScrollView>
<Grid>
<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition Height="2x"/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="2*"/>

<ColumnDefinition/> 1

</Grid.ColumnDefinitions>

4~T)o this!

The app has two rows, so the Grid.RowDefinitions
section contains two RowDefinition tags. The
second row height is twice as tall as the first row,
so we added the Height="2#*" property to the
second RowDefinition tag to make it twice as tall.

The Grid.ColumnDefinitions section has three
ColumnDefinition tags, one for each of the three
columns. The first column is twice as wide as the
second, so it has Width="2*". The third columnis

<ColumnDefinition Width="1.5*"/j

Here ave the (<Border BackgroundColor="DarkGray"/>

1.5 times as wide, so it has Width="1.5%".

<Border Grid.Row="1" Grid.ColumnSpan="2" BackgroundColor="LightGray"/>

¢hild Border <Border Grid.Column="1" />
<Border Grid.Column="2" BackgroundColor="Gray"/>
Lon":\rols we
\)us‘l: showed
you- <Border Grid.Row="1" Grid.Column="2" />

/el Row hcigh‘l:s and column widths

ows X
</ScrollView When You use 3 value like

\/ou're thoosing a \?ro\?ov-(:ional width,
get the same vesults

</ContentPage>

setting the fivst vow
proportions are still the same: fhe setond vow is still £wice as big as the

2% in a RowDefinitionHeight or ColumnDefinitionWidth yroycv;{:\/,
whith means U\C\/’\rc yro\?o\r‘l:ional 4o eath other. You'll

o b% and the setond vow to]2.% because the
Livst vow.

You ¢an also set a vow width or tolumn hcigH: 4o an absolute value like 100, whith will tause

it 4o be sized in device—independent pixels. .
3vid will £ill up the page. £ You set an absolute wi
the page, whith is why it's a good idea to nest the

|€ all the vows and tolumns are yroyor{:ional, the
dth or height, it could end up larger than
Grid inside a SevollView.

you are here » 249

start building the app for sloppy joe

Create the Sloppy Joe's menu app and set up the grid

Create a new .NET MAUI app and name it SloppyJoe. The first thing you’ll do is create the

XAML for the app. Here’s how it will work:

<ContentPage>
<ScrollView>

<Grid Margin="10"> The grid has two tolumns. Column | is 5 times wider than column 2.

/\

. w] X

Welcome to Sloppy Joe's

item #1 : price #1
|
—— -:-———————————--
item #2 : price #2
|
—— _'—--——_-_—___,.
item #3 : price #3
|
—— fm——————————
|
item #4 : price #4
|
|
___ "
item #5 : price #5
|
|
___ A
item #6 | price #6
-- ﬂ-----——————'
Y T guacamolel
=S 4-\— ————————— 1I- —————————— J
</Grid> Eath of the cells in the avi
. grid ext .
</ScrollViews conbains 3 Label conbrol.- extept for .'l:hc L?bd V.Vl‘{')\ the
</ContentPage> guacamole price, which fills up the

whole row by spanning two cells.

We’ll give you all of the XAML for the app. But before we
do, try editing the MainPage.xaml file and creating the
XAML for the page on your own. Can you use the app
we just gave you as an example to create the row and
column definitions yourself?

See how far you can get, then compare it with our XAML.

250 Chapter 4

The arid has seven equal—sized vows

managing your app’s data

Here’s the XAML for the app

Take your time and go through it line by line to make sure you understand how its grid works.

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

xmlns:

x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="SloppyJoe.MainPage">

<ScrollView>

_&/ £ you used a diffevent app name,

you'll see a different namespate heve.

<Grid Margin="10">

<Grid.RowDe-Finitions><_x The |O—pixel margin around the grid adds a little

<RowDefinition/> spate between the Labels and the edge of the window.

<RowDefinition/>

ZEZ&BEHET&E% The grid has six vows that After you add this code to your

<RowDefinition/> ave all the same height. MainPage.xaml file, don’t forget

<RowDefinition/> to go to the MainPage.xaml.cs file
</Grid.RowDefinitions> and delete the OnCounterClicked

<Grid.ColumnDefinitions>
<ColumnDefinition Width="5x"/> } The grid has two columns. The fivst

method and count field.

<ColumnDefinition/> e . [. .
</Grid.ColumnDefinitions> olumn is five times wider than the second.
<Label x:Name="iteml" FontSize="18" Text="item #1" />
<Label x:Name="pricel" FontSize="18" HorizontalOptions="End" Each of these Label
Grid.Column="1" Text="price #1"/> € tontrols goes in
<Label x:Name="item2" FontSize="18" Grid.Row="1" Text="item #2"/> diffevent cell. We Jave
<Label x:Name="price2" FontSize="18" HorizontalOptions="End" each of them {c*ﬁhkc”
Grid.Row="1" Grid.Column="1" Text="price #2"/> ﬁ{un##V’ov“?ﬁcc4#3
it easier 1o see
<Label x:Name="item3" FontSize="18" Grid.Row="2" Text="item #3" /> to miiClﬁ'd'll'd t
<Label x:Name="price3" FontSize="18" HorizontalOptions="End" how the grid is laid ou
Grid.Row="2" Grid.Column="1" Text="price #3"/> whcnyourun{hcavv
<Label x:Name="item4" FontSize="18" Grid.Row="3" Text="item #u4" />

<Label

<Label
<Label

<Label
<Label

<Label
</Grid>

</ScrollView>

</ContentPage>

x:Name="priced" FontSize="18" HorizontalOptions="End"
Grid.Row="3" Grid.Column="1" Text="price #u"/>
Eath price has its

x:Name="item5" FontSize="18" Grid.Row="4" Text="item #5" /> H°ﬁ20h£M0P£wns
x:Name="price5" FontSize="18" HorizontalOptions="End"<§-————f__-SCE{O“EhdnSOif

Grid.Row="4" Grid.Column="1" Text="price #5"/> .
P 9ets aligned all +he

x:Name="item6" FontSize="18" Grid.Row="5" Text="item #6" /> way{n-Hm ﬁgh{
x:Name="price6" FontSize="18" HorizontalOptions="End" the window.
Grid.Row="5" Grid.Column="1" Text="price #6"/>

x:Name="guacamole" FontSize="18" FontAttributes="Italic" Text="guacamole"
Grid.Row="6" Grid.ColumnSpan="2" HorizontalOptions="End" VerticalOptions="End" />

\ /

This Label spans both columns in the The Label with the quacamole price has both its
bo{li,om Y'OW,?SO it stretthes aeross Horizontal and Vertical options set to “End” 1o
two cells. Try removing the Grid. align it to the bottom vight corner of the eell.

ColumnSpan property—what happens?

you are here » 251

finish the app for sloppy joe

The C# code for the main page

Here's the C# code for the main page of your Sloppy Joe app. We’re about to give
you an exercise to build a class called Menultem that generates random sandwiches
and prices. As soon as the page loads, it calls a method called MakeTheMenu that
uses an array of Menultem objects to fill in all of the prices, and one last Menultem
object to get the price for the guacamole.

Your namespace will be diffevent if you
namespace SloppyJoe;é/_ those a d.I‘C‘FCY'CY\'{: name ‘COY‘ \/O!AY‘ apyp-

public partial class MainPage : ContentPage

{

public MainPage()

{
InitializeComponent(); Call the MakeTheMenu method
MakeTheMenu(); load

} as soon as the page loads.

private void MakeTheMenu()

{ This array will i

_ . Y Wi hold SIK
MenuItem[] menuItems = new MenuItem[6];<cE—— vefevences to Menultem ob\)cc{;s.
for (int 1 = 0; i < 6; i++)
{ ;
menuItems[i] = new MenuItem(); You'll use a for loop to eveate each Menultem
menuItems[i].Generate(); and call its Generate method. You'll write that

} 6CV\CY‘3{C mc{;hod in -{:hc hc%‘t exeriise.
pricel.Text = menuItems[0].Price;
iteml.Text = menuItems[0].Description;
price2.Text = menuItems[1].Price;
item2.Text = menuItems[1].Description; It
price3.Text = menuItems[2].Price; Now that you have the Menultem
item3.Text = menuItems[2].Description; objeets with sandwich destriptions
pricetd.Text = menuItems[3].Price; and prices, You tan use them to set
itemd.Text = menuItems[3].Description; the text in the Label tontrols.
price5.Text = menuItems[u].Price;
item5.Text = menuIltems[4].Description;
price6.Text = menuItems[5].Price;
item6.Text = menuIltems[5].Description;
MenuItem guacamoleMenuItem = new MenuItem();
guacamoleMenuItem.Generate();
guacamole.Text = "Add guacamole for " + guacamoleMenuItem.Price;

}

}

Create one more Menultem object to
generate a vandom prite for £he quacamole.
You won't use its Deseviption field.

252 Chapter 4

Exercise

managing your app’s data

Create the Menultem class for your menu app.

Start by looking closely at the class diagram. It has five fields: three arrays to hold the various
sandwich parts, a description, and a price. The array fields use collection expressions that let
you create an array by putting comma-separated values between [square brackets].

Add the Menultem class to your project. Here's the code for the fields:

namespace SloppyJoe;

class MenulItem

}

Your job is to fill in the Generate method. It does the following:

public string[] Proteins = [

"Roast beef", "Salami", "Turkey", <— [i,|4s

Menultem

Proteins
Condiments
Breads
Description
Price

Generate

The Menultem class has three array
that use collection expressions to

"Ham", "Pastrami", "Tofu" i
1 1 1 set their values, Jus-f; like the array you
‘ . . Saw in ChaP{cr 2 4o stove Fla‘/i'\ﬁ tavds.
public string[] Condiments = [
"yellow mustard", "brown mustard",
"honey mustard", "mayo", "relish", "French dressing"
1;
public string[] Breads = ["rye", "white", "wheat", "pumpernickel", "a roll"];
publ%c str::Lng Degcription = " [The Generate method uses Random.Shared to
public string Price = ""; choose random prices between 5.00 and 14.99 by
. . creating a random decimal value out of two ints.
public void Generate() We gave you the last line of code for the method:
// You'll fill in this method Price = price.ToString("c");
}

Picks a random protein from the Proteins array.
Picks a random condiment from the Condiments array.
Picks a random bread from the Breads array.

\

The parameter to the ToString method is a
format. In this case, the "c" format tells ToString
to format the value with the local currency: if
you’re in the United States you’ll see a $, in the
UK you’llget a £, in the EU you’ll see €, etc. If the
values don't make sense in your currency, choose
different random numbers!

J

Sets the description field like this: protein + " with " + condiment + " on " + bread.

Sets the Price field to a random price that's at least 5.00 and less than 15.00. Pick a random int that's at least 5
and less than 15. Then pick a second random int that's at least 0 and less than 100. Multiply the second number
by .01M to get a decimal value that's at least .00 and less than 1.00, and add it to the first value, and store it in a
variable called price. Then set the Price field like this: Price = price.ToString("c");

- Sharpen your penci]

Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here’s a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?

you are here »

253

always think about accessibility

Exercise
Solution

public void Generate()

{
Description
decimal price =
Price =

}

int bucks = Random.Shared.Next(5, 15);
int cents = Random.Shared.Next(0, 100);
bucks + (cents * .01M);
price.ToString("c");

string protein = Proteins[Random.Shared.Next(Proteins.Length)];
string condiment = Condiments[Random.Shared.Next(Condiments.Length)];
string bread = Breads[Random.Shared.Next(Breads.Length)];

= protein + " with " + condiment + " on " + bread;

Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here's a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?

Chapter 4

We haven't talked about accessibility in this project
yet. Shouldn't we add semantic properties to the
controls in the menu app?

You’re right! This is a great time to improve accessibility.

Sloppy Joe has a wheelchair ramp and braille versions of all of his menus, because

he wants to make sure everyone has a chance to eat his budget-friendly sandwiches.

So let’s make sure our menu app is accessible too!

Start your operating system’s screen reader and read the menu page.

Windows Narrator

Start Windows Narrator (Ctrl+am+N).
Narrator will scroll through the contents
of any window when you hold down the
Narrator key ((typically the Insert key, but
you can change that in Narrator settings))
and press the left or right arrows.
Navigate to your app, then navigate
through all the controls and listen to
what Narrator says.

4— Do 1his!

macOS VoiceOver

Start VoiceOver (3 +F5). VoiceOver will
read the contents of any window when
you hold down the VoiceOver activation
key (A control + "\ option) and press A.
Navigate to your app and press VO+A (or
A XA), and listen to what VoiceOver says.
Press the either A or "\ to stop reading.

managing your app’s data

Can we make the app more accessible?

When a screen reader narrates a window, it navigates from item to item, reading each item aloud and drawing a
rectangle around it. What did you hear when you listened to the screen reader narrate your app? What did you see?
Try having it read the menu while you have your eyes closed. Did you still understand everything that you needed
to? It’s pretty good! But accessibility is all about making things better for all of our users. Gan we make it better?

Set the main header so the screen reader narrates it

You may have noticed that the first thing it said was “Home”—and if you watched carefully, you saw that was
narrating the title bar. Modify AppShell.xaml to change “Home” to “Sloppy Joe’s menu”® and have the
screen reader narrate the page again.

It would be great to have the narrator tell the user that they’re looking at items on a menu. Let’s try adding a
SemanticProperties.Description to the <Grid> tag:

<Grid Margin="10"
SemanticProperties.Description="Here are the items on the menu.">

Now try using the screen reader to narrate the window. It sounds fine in Windows, but if you’re using

macOS there’s a problem: the screen reader won’t read the items or prices. That’s because if you set the
SemanticProperties.Description on a control that has children, the screen reader can’t reach those children
anymore. This is important even if you’re building software for Windows, because your MAUI apps are cross-
platform, and you want your app to be accessible anywhere.

Try setting the item! label’s SemanticProperties.Description instead

OK, let’s try something else. Remove the SemanticProperties.Description property from the <Grid> tag. Then try
setting the SemanticProperties.Description on the first label:

<Label x:Name="iteml" FontSize="18" Text="item #1"
SemanticProperties.Description="Here are the items on the menu." />

Try using the screen reader again. It’s still not right! When you have a Label, you always want the screen reader
to read the contents of the label. Setting the SemanticProperties.Description causes the screen reader to read that
description instead of the label text.

Go ahead and delete the SemanticDescription property from the item1 Label control (and also from the Grid, if
you haven’t done it already).

What do you think you’ll do to make the screen reader say
“Here are the items on the menu” followed by the randomly
generated sandwich in the item1 Label control’s Text property?

you are here » 255

set semantic properties in your C# code

Use the SetValue method to change a control’s semantic properties

Let’s find a different way to make the screen reader say “Here are the items on the menu” before it reads the menu
items. We'll still use the SemanticProperties.Description for the first menu item, but instead of using a XAML tag, we’ll
use C# to make sure it preserves the text.

£ you ‘l:,y?c “iteml.” into Visual Studio,
’\/oz Iv;{zn T see SemanticProperties in the
ntellisense pop—up. That's why vo d to
; use the SetValue method 4o sc);:\/i{ui:sc{ccad.

InitializeComponent();
MakeTheMenu();

Add this line of code to the end of your MainPage method:
public MainPage()

iteml.SetValue(SemanticProperties.DescriptionProperty,
"Here are the items on the menu. " + iteml.Text);

}

This code sets the SemanticProperties.Description property—in this case, it’s setting it to the text “Here are the items on
the menu” followed by the random sandwich generated by Menultem. Try the screen reader one more time—now the
page includes that text, and works on all operating systems.

Bullet Points ___

m The new keyword returns a reference to an object that
you can store in a reference variable.

® You can have multiple references to the same object.
You can change an object with one reference and
access the results of that change with another.

For an object to stay in the heap, it has to be
referenced. Once the last reference to an object
disappears, it eventually gets garbage-collected and
the memory it used is reclaimed.

Your .NET apps run in the Common Language
Runtime (CLR), a “layer” between the OS and your
program. The C# compiler builds your code into
Common Intermediate Language (CIL), which the CLR
executes.

m Declare array variables by putting square brackets
after the type in the variable declaration (like bool[]
trueFalseValues or Dog[] kennel).

Use the new keyword to create a new array,
specifying the array length in square brackets (like new
bool[15] or new Dog[3]). The this keyword lets an
object get a reference to itself.

An Al chatbot can read your code and add comments,
including XML documentation (XMLDoc) comments.

m Use the Length method on an array to get its length
(like kennel.Length).

m Access an array value using its index in square brackets
(like bool[3] or Dog[0]). Array indexes start at 0.

= null means a reference points to nothing. The compiler
will warn you when a variable can potentially be null.

= Use the string? type to hold a string that’s allowed to
be null. Console.ReadLine can return null strings.

= You can use Random.NextDouble to create a random
double value between 0 and 1. Multiply a random
double to generate much larger random double values.

= Use collection expressions to initialize an array field
by setting the field equal to a value starting with a
square bracket, followed by a comma-delimited list of
values, and ending with a square bracket.

= You can pass a format parameter to an object or
value’s ToString method. If you're calling a numeric
type’s ToString method, passing it a value of “c” formats
the value as a local currency.

m Use a control’s SetValue method to set its semantic
properties in code, so the screen reader can include
text that’s generated when the app runs.

256 Chapter 4

- Unity Lab #2

Write C# Code for Unity

Y Unity Lab #
Write C# Code for Unity

Unity isn’t just a powerful, cross-platform engine and
editor for building 2D and 3D games and simulations.
It’s also a great way to get practice writing C# code.

In the last Unity Lab, you learned how to navigate
around Unity and your 3D space, and started to
create and explore GameObjects. Now it’s time to
write some code to take control of your GameObjects.
The whole goal of that lab was to get you oriented in
the Unity editor (and give you an easy way to remind
yourself of how to navigate around it if you need it).

In this Unity Lab, you’ll start writing code to control
your GameObjects. You’ll write C# code to explore
concepts you’ll use in the rest of the Unity Labs,
starting with adding a method that rotates the 8 Ball
GameObject that you created in the last Unity Lab.
You'll also start using the Visual Studio debugger
with Unity to sleuth out problems in your games.

https://github.com/head-first-csharp/fifth-edition Head First C# Unity Lab 257

Unity Lab #2
Write C# Code for Unity

C# scripts add behavior to your GameObjects

Now that you can add a GameObject to your scene, you need a way to make it, well, do stuff. That’s where your
C# skills come in. Unity uses C# scripts to define the behavior of everything in the game.

This Unity Lab will introduce tools that you’ll use to work with C# and Unity. You’re going to build a simple
“game” that’s really just a little bit of visual eye candy: you’ll make your 8 ball fly around the scene. Start by
going to Unity Hub and opening the same project that you created in the first Unity Lab.

This Unity Lab

picks up wheve
MODIFIED EDITOR VERSION .
ﬂ‘it ‘FIYS{: one
. IC‘(’\‘[Z O‘F‘F, so So
Ulis7 i1) . CONNECTED afew seconds ago 6000.0.29f1 ‘bO Mni{:\/ H‘ub
C:\Users\Public\Unity La... and oPcn {;hc
project you
treated in the
Here’s what you’ll do in this Unity Lab: last lab.

o Attach a C# script to your GameObject. You’ll add a Script component to your Sphere
GameObject. When you add it, Unity will create a class for you. You’ll modify that class so that it
drives the 8 ball sphere’s behavior.

e Use Visual Studio to edit the script. Remember how you set the Unity editor’s preferences to
make Visual Studio the script editor? That means you can just double-click on the script in the Unity
editor and it will open up in Visual Studio.

Play your game in Unity. There’s a Play button at the top of the screen. When you press it, it
starts executing all of the scripts attached to the GameObjects in your scene. You’'ll use that button to
run the script that you added to the sphere.

The Play button does not save Your gamc_’
é So make sure You save early and save oﬂ:cr\-

A lot of people get in the habit of saving

the seene every time they vun the game.

Use Unity and Visual Studio together to debug your script. You've already seen how
valuable the Visual Studio debugger is when you’re trying to track down problems in your C# code.
Unity and Visual Studio work together seamlessly so you can add breakpoints, use the Locals window,
and work with the other familiar tools in the Visual Studio debugger while your game is running.

258 https://github.com/head-first-csharp/fifth-edition

Unity Lab #2
Write C# Code for Unity

Add a C# script to your GameObject

Unity is more than an amazing platform for building 2D and 3D games. Many people use it for
artistic work, data visualization, augmented reality, and more. It’s especially valuable to you, as a
C# learner, because you can write code to control everything that you see in a Unity game. That
makes Unity a great tool for learning and exploring C#.

Let’s start using C# and Unity right now. Make sure the Sphere GameObject is selected, then
click the Add Component button at the bottom of the Inspector window.

Add Component

When you click it, Unity pops up a window with all of the different kinds of components that you
can add—and there are a lot of them. Choose “New script” to add a new C# script to your
Sphere GameObject. You’ll be prompted for a name. Name your script BallBehaviour.

qQ

Component < New script

Name .
Miscellaneous Rallbaisiot : Unity code
Physics 2D uses British
spelling.

[J
Z::;eil.: WatCh tt" If you’re American

Physics

Scripts (like us), or if you’re used to
Tilemap : the US spelling of the word

Ul Toolkit . behavior, you'll need to be

B : careful when you work with
M . Unity scripts because the
yistalootclnd — : class names often feature the

b British spelling behaviour.

Click the “Create and Add” button to add the script. You’ll see a
component called Ball Behaviour (Seript) appear in the Inspector window.

v Ball Behaviour (Script) [The Project window gives you a folder-]
B BallBehaviour : based view of your project. Your Unity
project is made up of files: media files,
data files, C# scripts, textures, and
more. Unity calls these files assets.
M Project 3 The Project window was displaying a
i aQ folder called Assets when you right-
*gaxmztse” 4 Assets clicked inside it to import your texture,
X so Unity added it to that folder.

O, All Model

el N IR

@ Assets \ Did you Zﬁcc a folder called Matevials

I Materials Materials Scenes 8 Ball Text... \ BallBehavij/.

M Scenes avvcarcd n ‘[‘,"\C Pro’cé‘{‘, window as soon as \/00
M Packages v draggcd £he @ ball exture onto Your SY"\CY‘C?

You’ll also see the C# script in the Project window.

Head First C# Unity Lab 259

Unity Lab #2
Write C# Code for Unity

Write C# code to rotate your sphere

In the first lab, you told Unity to use Visual Studio as its external script editor. So go ahead and double-click
your new C# script in the Assets window. When you do, Unity will open your script in Visual
Studio. Your C# script contains a class called BallBehaviour with two empty methods called Start and Update:

using UnityEngine; [You opened your C# script in
Visual Studio by clicking on it in the
public class BallBehaviour : MonoBehaviour Hierarchy window, which shows you
{ a list of every GameObject in the

// Start is called before the first frame update current scene. When Unity created

void Start() your project, it added a scene called

{ SampleScene with a camera and a
light. You added a sphere to it, so
} your Hierarchy window will show all
of those things.

// Update is called once per frame
void Update()

£ l/(ni'(:\/ didn’t launth Visual Studio and open your C# sc‘ri?{:
n it 90 back to the bcginning of l/(ni‘(‘,\/ Lab | and make sure
you followed the steps to set the External Tools prefevences.

Here’s a line of code that will rotate your sphere. Add it to your Update method:
transform.Rotate(Vector3.up, 180 * Time.deltaTime);
Now go back to the Unity editor and click the Play button in the toolbar to start your game: | > ENLS

Your game will start,
and the 8 ball will start = g o -
spinning ataspeed of [t Click on Sphere in the
1/2 rotation per second. Hierarchy window
to select it, then
watch the Inspector
window to see the Y
rotation change in its
= . == Transform component.

Favorites & Ass

If you don’t see the Hierarchy window, &
reset the layout to Wide (click the Game |
tab to switch back to the Game view). [

Press the Play button again to stop your
game. Use the Play button to start and stop
your game any time you want.

260 https://github.com/head-first-csharp/fifth-edition

Unity Lab #2
Write C# Code for Unity

Your Unity Code Up Close"

You learned about namespaces
in Chapter 3. When Unity created
the file with the C# script, it added
. . . using lines so it can use code in
using UnityEngine; - the UnityEngine namespace and
two other common namespaces.

public class BallBehaviour : MonoBehaviour

{

// Start is called before the first frame update

void Start () A frame is a fundamental concept of animation. Unity draws one still

{ frame, then draws the next one very quickly, and your eye interprets
changes in these frames as movement. Unity calls the Update method for
every GameObject before each frame so it can move, rotate, or make any
} other changes that it needs to make. A faster computer will run at a higher
frame rate—or number of frames per second (FPS)—than a slower one.

// Update is called once per frame
void Update()

{
transform.Rotate(Vector3.up, 180 * Time.deltaTime);

} A *

Different computers will run your game at

r \ different frame rates. If it’s running at 30 FPS, we
The trangorm.oRzFat(i Tetf;og want one rotation every 60 frames. If it’s running

'I?: u\iesta ame t jgctho rota te : at 120 FPS, it should rotate once every 240
etirst parameter s the axis to frames. Your game’s frame rate may even change

rotate around. In this case, your e
code used Vector3.up, which if it needs to run more or less complex code.

tells it to rotate around the Y
axis. The second parameter is
‘the number of degrees to rotate. |

That’s where the Time.deltaTime value comes
in handy. Every time the Unity engine calls a
GameObject’s Update method—once per frame—
it sets Time.deltaTime to the fraction of a second
since the last frame. Since we want our ball
to do a full rotation every two seconds, or 180
degrees per second, all we need to do is multiply
it by Time.deltaTime to make sure that it rotates
exactly as much as it needs to for that frame.

lnside your uPda’re method,
mu|+iplyina any value Iay
Time.deltaTime turns it into you don't need an instante of the Time elass to use it.
that value per second.

Time.deltaTime is static—and like we saw in Chapter 3,

Head First C# Unity Lab 261

Unity Lab #2
Write C# Code for Unity

Add a breakpoint and debug your game

Let’s debug your Unity game. First stop your game if it’s still running (by pressing the Play button again). Then
switch over to Visual Studio, and add a breakpoint on the line that you added to the Update method:

13 // Update is called once per frame

14 void Update()
15 {

O 16 ransform.Rotate(Vector3.up, 180 * Time.deltaTime);
17 }

* In Visual Studio, click the ‘ P Attach to Unity ~ | button or choose Debug >> Start Debugging (F5) from the menu.

* In VSCode, choose Run and Debug (Ctrl+Shift+D) on the left, then click

Attaching to Unity starts the debugger. Now switch back to the Unity editor. If this is the first time you’re debugging
this project, the Unity editor will pop up a dialog window with these buttons:

Enable debugging for this session] Enable debugging for all projects Cancel

Press the “Enable debugging for this session” button (or if you want to keep that pop-up from appearing again, press
“Enable debugging for all projects”). Visual Studio is now attached to Unity, which means it can debug your game.

Now press the Play button in Unity to start your game. Since Visual Studio is attached to Unity, it breaks
tmmediately on the breakpoint that you added, just like with any other breakpoint you've set.

Congrafula{:ions, \/ou)\re

Use a hit count to skip frames now debugging a game/

Sometimes it’s useful to let your game run for a while before your breakpoint stops it. For example, you might want your
game to spawn and move its enemies before your breakpoint hits. Let’s tell your breakpoint to break every 500 frames.
You can do that by adding a Hit Count condition to your breakpoint:

* In Visual Studio, right-click on the breakpoint dot (.) at the left side of the line, choose Conditions from the
pop-up menu, select Hit Count and Is a multiple of from the dropdowns, and enter 500 in the box:

Conditions

Hit Count v Is a multiple of ~ 500

* In VScode, right-click the breakpoint dot, choose Edit breakpoint from the dropdown, and enter 500:

Hit Count v 500
VSCode lets you set a hit
Now the breakpoint will only pause the game every 500 times the Update count for breakpoints just
method is run—or every 500 frames. If your game is running at 60 FPS, like Visual Studio does,
then when you press Continue the game will run for a little over 8 seconds but at the time we’re
before it breaks again. Press Continue, then switch back to Unity and writing this that feature
watch the ball spin until the breakpoint breaks. does not work when

debugging Unity projects.

262 https://github.com/head-first-csharp/fifth-edition

Unity Lab #2
Write C# Code for Unity

Use the debugger to understand Time.deltaTime

You’re going to be using Time.deltaTime in many of the Unity Labs projects. Let’s take advantage of your breakpoint
and use the debugger to really understand what’s going on with this value.

While your game is paused on the breakpoint in Visual Studio, hover over Time.deltaTime to sce the fraction of
a second that elapsed since the previous frame (you’ll need to put your mouse cursor over deltaTime). Then add a
watch for Time.deltaTime by selecting Time.deltaTime and choosing Add Watch from the right-mouse menu.

¥ . . When you hover over Time.deltaTime, \/ou'll see a
13 // Update is called once per frame o qhoin iton next fo the value. Press it 4o keep a
- void Update() small wateh window Pinned open in Visual Studio.

15 { X

@ 16 transform.Rotate(Vector3.up, 180 * Time.deltaTime); o Time.deltdJime 0.1975451) #
17 } v
18 3

Evcr\/ time the bvcakyoin{: pauses the 9ame, Your Time.deltaTime wateh will show You the /
fraction of a second sinte the previous frame. Can you use this number to figure out the
FPS we were getting when we +ook this streenshot?

Continue debugging (I'5), just like with the other apps you've debugged), to resume your game. The ball will start
rotating again, and after another 500 frames the breakpoint will trigger again. You can keep running the game for 500
frames at a time. Keep your eye on the Time.deltaTime value each time it breaks, either in the pinned value or in the
watch window.

Press the Continue button to
get another Time.deltaTime
value, then another-. You ¢an

' . _ | ge{ Your approximate FPS b\/
Time.deltaTime dividing | -3 Time.deltaTime.

Add item to watch

Search (Ctrl+E)

Name

W.
\Locals Watch 1

Stop debugging (Shift + I'5) to stop your program. Then start debugging again. Since your game is still running,
the breakpoint will continue to work when you reattach Visual Studio to Unity. Once you’re done debugging, toggle
your breakpoint again so the IDE will still keep track of it but not break when it’s hit. Stop debugging one more
time to detach from Unity.

Go back to Unity and stop your game—and save it, because the Play button doesn’t automatically save the game.

The Pla\/ button in Mni{;\/
starts and stops Your
game. Visual Studio will

S{"‘3\/ attached to M",'{“\/ Debug your game again and hover over “Vector3.up” to inspect
even when the game is its value—you'll have to put your mouse cursor over “up. It has
stopped. a value of (0.0, 1.0, 0.0). What do you think that means?

Head First C# Unity Lab

263

Unity Lab #2
Write C# Code for Unity

Add a cylinder to show where the Y axis is

Your sphere is rotating around the Y axis at the very center of the scene. Let’s add a very tall and very
skinny cylinder to make it visible. Create a new cylinder by choosing 3D Object >> Cylinder from
the GameObject menu. Make sure it’s selected in the Hierarchy window, then look at the Inspector
window and check that Unity created it at position (0, 0, 0)—if not, use the context menu () to reset it.

Let’s make the cylinder tall and skinny. Choose the Scale tool from the toolbar: either click on it (or
press the R key. You should see the Scale Gizmo appear on your cylinder:

The Scale Gizmo looks a lot like the Move Gizmo, except that it has cubes
instead of cones at the end of each axis. Your new cylinder is sitting on top
of the sphere—you might see just a little of the sphere showing through the

middle of the cylinder. When you make the cylinder narrower by changing

its scale along the X and Z axes, the sphere will get uncovered.

Click and drag the green cube up to elongate your cylinder along the Y axis. Then click on the red cube
and drag it toward the cylinder to make it very narrow along the X axis, and do the same with the blue
cube to make it very narrow along the Z axis. Watch the Transform panel in the Inspector as you change
the cylinder’s scale—the Y scale will get larger, and the X and Z values will get much smaller.

N Transform o

Position X -5.1172e-09 Y 0 Z -17909e-08 RSV might notice the Position
Rotation X 0 Y 0 Zo values thange when You make the
Scale &® X 0.4054006 Y 5447837 Z 0.1000256 X and Z Seale values very small

Click on the X label in the Scale row in the Transform panel and drag up and down. Make
sure you click the actual X label to the left of the input box with the number. When you click the label

it turns blue, and a blue box appears around the X value. As you drag your mouse up and down, the
number in the box goes up and down, and the Scene view updates the scale as you change it. Look
closely as you drag—the scale can be positive and negative. Now reset the Transform window.

Now select the number inside the X box and type 0.1 —the cylinder gets very skinny. Press Tab
and type 20, then press Tab again and type 0.1, and press Enter.

A, Transform : When you edit the values in the
Position Properties window, Yyou ¢an see the

zota:tion 4/ vesults update in the stene immediately.
cale

Now your sphere has a very long cylinder going through it that shows the Y axis where Y = 0.

264 https://github.com/head-first-csharp/fifth-edition

Unity Lab #2
Write C# Code for Unity

Add fields to your class for the rotation angle and speed

In Chapter 3, you learned how C# classes can have fields that store values methods can use. Let’s modify your code
to use fields. Add these four lines just under the class declaration, immediately after the first curly brace {:

public class BallBehaviour : MonoBehaviour

{

public float XRotation = 0; These are just like the fields that you added to the
public float YRotation 1; projects in Chapters 3 and 4. They’re variables that
public float ZRotation = 0; keep track of their values—each time Update is
public float DegreesPerSecond = 180; called, it reuses the same field over and over again.

The XRotation, YRotation, and ZRotation fields each contain a value between 0 and 1, which you’ll combine to
create a vector that determines the direction that the ball will rotate:

new Vector3(XRotation, YRotation, ZRotation)

The DegreesPerSecond field contains the number of degrees to rotate per second, which you’ll multiply by Time.
deltaTime just like before. Modify your Update method to use the fields. This new code creates a Vector3
variable called axis and passes it to the transform.Rotate method:

void Update()

{
Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);
transform.Rotate(axis, DegreesPerSecond * Time.deltaTime);

}

Select the Sphere in the Hierarchy window. Your fields now show up in the Script component. When the Script
component renders fields, it adds spaces between the capital letters to make them easier to read.

v Ball Behaviour (Script) i [When you add public fields to a class in your Unity script,
‘ B BallBehaviour : the Script component displays input boxes that let you

X Rotation modify those fields. If you modify them while the game

Y Rotation is not running, the updated values will get saved with

Z Rotation your scene. You can also modify them while the game is

Degrees Per Second 180 | running, but they’ll revert when you stop the game.

Run your game again. While it’s running, sclect the Sphere in the Hierarchy window and change the degrees per
second to 360 or 90—the ball starts to spin at twice or half the speed. Stop your game—and the field will reset to 180.

While the game is stopped, use the Unity editor to change the X Rotation field to 1 and the Y Rotation field to 0.
Start your game—the ball will rotate away from you. Click the X Rotation label and drag it up and down to change
the value while the game 1s running. As soon as the number turns negative, the ball starts rotating toward you. Make it
positive again, and it starts rotating away from you.

When You use the Uni
2 editor 4o set {he Y i
Ro‘{:afion -Field to | and
then start Your 9ame,
the ball votates tlotkwise
around the Y axis.

Head First C# Unity Lab 265

Unity Lab #2
Write C# Code for Unity

Use Debug.DrawRay to explore how 3D vectors work

A vector is a value with a length (or magnitude) and a direction. If you ever learned about vectors in a
math class, you probably saw lots of diagrams like this one of a 2D vector:

Here’s a diagram of a two-dimensional vector.
You can represent it with two numbers: its
value on the X axis (4) and its value on the Y
axis (3), which you’d typically write as (4, 3).

iy,

That’s not hard to understand...on an intellectual level. But even those of us who took a math class that
covered vectors don’t always have an éntuitive grasp of how vectors work, especially in 3D. Here’s another
area where we can use C# and Unity as a tool for learning and exploration.

Use Unity to visualize vectors in 3D

You’re going to add code to your game to help you really “get” how 3D vectors work. Start by having a closer
look at the first line of your Update method:

Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);
What does this line tell us about the vector?

It has a type: Vector3. Every variable declaration starts with a type. Instead of using string, int, or
bool, you're declaring it with the type Vector3. This is a type that Unity uses for 3D vectors.

It has a variable name: axis.

It uses the new keyword to create a Vector3. It uses the XRotation, YRotation, and ZRotation
fields to create a vector with those values.

So what does that 3D vector look like? There’s no need to guess—we can use one of Unity’s useful debugging
tools to draw the vector for us. Add this line of code to the end of your Update method:

void Update()

{
Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);
transform.Rotate(axis, DegreesPerSecond * Time.deltaTime);
Debug.DrawRay(Vector3.zero, axis, Color.yellow);

}

The Debug.DrawRay method is a special method that Unity provides to help you debug your games. It draws
a ray—which is a vector that goes from one point to another—and takes parameters for its start point, end
point, and color. There’s one catch: the ray only appears in the Scene view. The methods in Unity’s
Debug class are designed so that they don’t interfere with your game. They typically only affect how your
game interacts with the Unity editor.

266 https://github.com/head-first-csharp/fifth-edition

Unity Lab #2
Write C# Code for Unity

Run the game to see the ray in the Scene view

Now run your game again. You won’t see anything different in the Game view because Debug. DrawRay is a tool
for debugging that doesn’t affect gameplay at all. Use the Scene tab to switch to the Scene view. You may also
need to reset the Wide layout by choosing Wide from the Layout dropdown.

Scene o®Game

[Flcenterv QRlocalv || £ +

Now you’re back in the familiar Scene view. Do these things to get a real sense of how 3D vectors work:

* Use the Inspector to modify the BallBehaviour script’s fields. Set the X Rotation to 0, Y Rotation
to 0, and Z Retation to 3. You should now see a yellow ray coming directly out of the Z axis and the ball
rotating around it (remember, the ray only shows up in the Scene view).

[The vector (0, 0, 3) extends 3 units along the Z axis. Look closely at the
grid in the Unity editor—the vector is exactly 3 units long. Try clicking
and dragging the Z Rotation label in the Script component in the
Inspector. The ray will get larger or smaller as you drag. When the Z
value in the vector is negative, the ball rotates in the other direction.

* Set the Z Rotation back to 3. Experiment with dragging the X Rotation and Y Rotation values to see what
they do to the ray. Make sure to reset the Transform component each time you change them.

* Use the Hand tool and the Scene Gizmo to get a better view. Click the X cone on the Scene Gizmo to set
it to the view from the right. Keep clicking the cones on the Scene Gizmo until you see the view from the
front. It’s easy to get lost—you can reset the Wide layout to get back to a familiar view.

Add a duration to the ray so it leaves a trail

You can add a fourth argument to your Debug. DrawRay method call that specifies the number of seconds the ray
should stay on the screen. Add .5f to make each ray stay on screen for half a second:

Debug.DrawRay(Vector3.zero, axis, Color.yellow, .5f);

Now run the game again and switch to the Scene view. Now when you drag the numbers up and down, you’ll see a
trail of rays left behind. This looks really interesting, but more importantly, it’s a great tool to visualize 3D vectors.

Making Your vay leave a trail is a good

é/_ way to help you develop an intuitive sense
of how 3D vettors work.

You can use the Inspector window to modify the fields in
a Script component while the game is running. The field
values will reset when you stop the game. It will remember
the values if you set them while the game is stopped.

Head First C# Unity Lab 267

Unity Lab #2
Write C# Code for Unity

Rotate your ball around a point in the scene

Your code calls the transform.Rotate method to rotate your ball around its center, which changes its X, Y, and Z
rotation values. Select Sphere in the Hierarchy window and change its X position to 5 in the Transform
component. Then use the context menu (n) in the BallBehaviour Script component to reset its fields.
Run the game again—mnow the ball will be at position (5, 0, 0) and rotating around its own Y axis.

Changing the X position to 7 causes
the ball o votate in \7|86c away
from the tenter of the stene.

e ———

Let’s modify the Update method to use a different kind of rotation. Now we’ll make the ball rotate around the
center point of the scene, coordinate (0, 0, 0), using the transform.RotateAround method, which rotates
a GameObject around a point in the scene. (This is different from the transform.Rotate method you used earlier,
which rotates a GameObject around its center.) Its first parameter is the point to rotate around. We’ll use
Vector3. zero for that parameter, which is a shortcut for writing new Vector3(0, 0, 0). <7

Here’s the new Update method: This new l/(Fda{:c method

void Update() "’.{"3{‘5 the ball around the

{ POIn‘l: (O' o, 0) in ‘f:hc stene.
Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);
transform.RotateAround(Vector3.zero, axis, DegreesPerSecond * Time.deltaTime);
Debug.DrawRay(Vector3.zero, axis, Color.yellow, .5f);

}

Now run your code. This time it rotates the ball in a big circle around the center point:

268 https://github.com/head-first-csharp/fifth-edition

Unity Lab #2
Write C# Code for Unity

Use Unity to take a closer look at rotation and vectors

You're going to be working with 3D objects and scenes in the rest of the Unity Labs throughout the
book. Even those of us who spend a lot of time playing 3D video games don’t have a perfect feel for how
vectors and 3D objects work, and how to move and rotate in a 3D space. Luckily, Unity is a great tool to
explore how 3D objects work. Let’s start experimenting right now.

While your code is running, try changing parameters to experiment with the rotation:

* Switch back to the Scene view so you can see the yellow ray that Debug.DrawRay renders in
your BallBehaviour.Update method.

* Use the Hierarchy window to select the Sphere. You should see its components in the
Inspector window.

Change the X Rotation, Y Rotation, and Z Rotation values in the Script component to 10
so you see the vector rendered as a long ray. Use the Hand tool (Q)) to rotate the Scene view until
you can clearly see the ray.

Use the Transform component’s context menu (m to reset the Transform component.
Since the center of the sphere is now at the zero point in the scene, (0, 0, 0), it will rotate around
its own center.

Then change the X position in the Transform component to 2. The ball should now be
rotating around the vector. You’ll see the ball cast a shadow on the Y axis cylinder as it flies by

While the game is running, set the X, Y, and

Z Rotation -("iclds in the BallBehaviour St\rip{:
< tomponent 1o 10, veset the spheve’s Transform

COMPOV\CWE, and changc its X Fosi‘l:ion 0 2—as

soon 3s You do, it starts rotating around the vay.

Uni’ry is a
ﬁreaJr tool to

Try repeating the last three steps for different values of X, Y, and Z
rotation, resetting the Transform component each time so you start from a explore hOW 3D
fixed point. Then try clicking the rotation field labels and dragging them up Ob J e C+ S W OY'K

and down—see if you can get a feel for how the rotation works.))
by moditying

Proper’riee oh
your érameObjechs
iNn real time.

Head First C# Unity Lab 269

Unity Lab #2
Write C# Code for Unity

Get creative!

Take the time
This is your chance to experiment on your own with C# and Unity. .
You've seen the basics of how you combine C# and Unity GameObjects. Take to eXPerlmerﬁ-
some time and play around with the different Unity tools and methods that ;
you've learned about in the first two Unity Labs. Here are some ideas: Wl+h +he +OO‘9
* Add cubes, cylinders, or capsules to your scene. Attach new scripts to and +echﬂlqu66
o . . . o _
them—make sure you give each script a unique name!—and make them YOU Jug+ |earned.

rotate in different ways.

Try putting your rotating GameObjects in different positions around the Thlg IS a ﬂrea-l_
scene. See if you can make interesting visual patterns out of multiple wa +o -l-ake
rotating GameODbjects.

Try adding a light to the scene. What happens when you use advarﬁ-aﬁe O‘p
transform.rotateAround to rotate the new light around various axes? ur"-l-y and \/igual

Here’s a quick coding challenge: try using += to add a value to one of the S ud'lo a ool
fields in your BallBehaviour script. Make sure you multiply that value by + z + Z
Time.deltaTime. Try adding an if statement that resets the field to 0 if it f—or‘ eXP|Or‘a+|o|’]

gets too large.

and learning,
Bc‘(:o\rc You vun the code, {',r\/ to figwc out what it will do. Does it

act the way you expected it 1o att? Trzing to predict how the code

you added will act is a great Lethnique kor getting better at C#.

_ Bu]]et Points

= The Scene Gizmo always displays the camera’s m A field is a variable that lives inside of a class outside
orientation. of its methods, and it retains its value between
method calls.

= You can attach a C# script to any GameObject. The
script’s Update method will be called once per frame. » Adding public fields to the class in your Unity script
makes the Script component show input boxes that
let you modify those fields. It adds spaces between
capital letters in the field names to make them easier
m [nside your Update method, multiplying any value by to read.
Time.deltaTime turns it into that value per second.

= The transform.Rotate method causes a GameObject
to rotate a number of degrees around an axis.

m You can create 3D vectors using hew Vector3. (You
= You can attach the Visual Studio debugger to Unity learned about the new keyword in Chapter 3.)
to debug your game while it’s running. It will stay
attached to Unity even when your game is not
running.

m The Debug.DrawRay method draws a vector in the
Scene view (but not the Game view). You can use
vectors as a debugging tool, but also as a learning

= Adding a Hit Count condition to a breakpoint makes tool.
it break after the statement has executed a certain

. = The transform.RotateAround method rotates a
number of times.

GameObject around a point in the scene.

https://github.com/head-first-csharp/fifth-edition

O'REILLY"

Learn from experts.
Become one yourself.

60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

©2025 O'Reilly Media, Inc. O'Reilly is a registered trademark of O'Reilly Media, Inc. 718900v_8x9.25

	Title page
	Copyright
	About the authors
	Table of Contents
	Introduction
	Who is this book for?
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did
	README.md
	The technical review team
	Acknowledgments

	Chapter 1
	Learn C#…and learn to become a great developer
	Write code and explore C# with Visual Studio
	Install Visual Studio Community Edition
	Run Visual Studio
	Create and run your first C# project in Visual Studio
	You can use Visual Studio Code with Head First C#
	Install the C# extensions
	Create and run your first project in Visual Studio Code
	Set up Visual Studio Code for the next project
	Let’s build a game!
	Break up large projects into smaller parts
	Here’s how you’ll build your game
	Create a .NET MAUI project in Visual Studio
	Run your new .NET MAUI app
	MAUI apps work on all of your devices
	Here’s the page that you’ll build
	Start editing your XAML code
	Add the XAML for a Button and a Label
	Use a FlexLayout to make a grid of animal buttons
	Write C# code to add the animals to the buttons
	Start editing the PlayAgainButton event handler method
	Add more statements to your event handler
	Add animals to your buttons
	Run your app!
	Visual Studio makes it easy to use Git
	Add C# code to handle mouse clicks
	Enter the code for the event handler
	Run your app and find all the pairs
	Finish the game by adding a timer
	Add a timer to your game’s code
	Finish the code for your game
	Even better ifs…

	Chapter 2
	Take a closer look at the files in your console app
	Statements are the building blocks for your apps
	Statements live inside methods
	Your methods use variables to work with data
	Generate a new method to work with variables
	Add code that uses operators to your method
	Use the debugger to watch your variables change
	Use code snippets to help write loops
	Use operators to work with variables
	if statements make decisions
	Loops perform an action over and over
	Controls drive the mechanics of your user interfaces
	Other controls you’ll use in this book
	Build a .NET MAUI app to experiment with controls
	Create a new app to experiment with controls
	Explore your new MAUI app and figure out how it works
	Add an Entry control to your app
	Add properties to your Entry control
	Make your Entry control update a Label control
	Combine horizontal and vertical stack layouts
	Add a Picker control to display a list of choices

	Unity Lab #1
	Unity is a powerful tool for game design
	Download Unity Hub
	Use Unity Hub to create a new project
	Your scene is a 3D environment
	Unity games are made with GameObjects
	Use the Move Gizmo to move your GameObjects
	The Inspector shows your GameObject’s components
	Add a material to your Sphere GameObject
	Rotate your sphere
	Get creative!

	Chapter 3
	Classes help you organize your code
	If code is useful, classes can help you reuse it
	Some methods take parameters and return a value
	Visual Studio helps you explore parameters and return values
	Let’s build an app that picks random cards
	You’ll use an array to store the cards
	Create an app with a Main method
	Add a class called CardPicker to your app
	Use Quick Actions to remove unnecessary using lines
	Convert between namespace styles
	Use the new keyword to create an array of strings
	Ana’s working on her next game
	Ana’s game is evolving…
	Build a paper prototype for a classic game
	Build a MAUI version of your random card app
	Make your MAUI app pick random cards
	Reuse your CardPicker class
	Add a using directive to use code in another namespace
	Ana's prototypes look great…
	Ana can use objects to solve her problem
	You use a class to build an object
	When you create a new object from a class, it’s called an instance of that class
	A better solution for Ana…brought to you by objects
	An instance uses fields to keep track of things
	Thanks for the memory
	What’s on your app’s mind
	Sometimes code can be difficult to read
	Most code doesn’t come with a manual
	Use intuitive class and method names
	Build a class to work with some guys
	There’s an easier way to initialize objects with C#
	Use the C# Interactive window or csi to run C# code

	Chapter 4
	Owen could use our help!
	Character sheets store different types of data on paper
	A variable’s type determines what kind of data it can store
	C# has several types for storing integers
	Types for storing really HUGE and really numbers
	Let’s talk about strings
	A literal is a value written directly into your code
	A variable is like a data to-go cup
	Other types come in different sizes too
	10 pounds of data in a 5-pound bag
	Casting lets you copy values that C# can’t automatically convert to another type
	C# does some conversions automatically
	When you call a method, the arguments need to be compatible with the types of the parameters
	Owen is constantly improving his game…
	Let’s help Owen experiment with ability scores
	Fix the compiler error by adding a cast
	Use reference variables to access your objects
	References are like sticky notes for your objects
	If there aren’t any more references,your object gets garbage-collected
	Multiple references and their side effects
	Two references mean TWO variables that can change the same object’s data
	Objects use references to talk to each other
	Arrays hold multiple values
	Arrays can contain reference variables
	null means a reference points to nothing
	Use the string? type when a string might be null
	Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
	Sloppy Joe's menu app uses a Grid layout
	Grid controls
	Define the rows and columns for a Grid
	Create the Sloppy Joe's menu app and set up the grid
	The C# code for the main page
	Can we make the app more accessible?
	Use the SetValue method to change a control’s semantic properties

	Unity Lab #2
	C# scripts add behavior to your GameObjects
	Add a C# script to your GameObject
	Write C# code to rotate your sphere
	Add a breakpoint and debug your game
	Use the debugger to understand Time.deltaTime
	Add a cylinder to show where the Y axis is
	Add fields to your class for the rotation angle and speed
	Use Debug.DrawRay to explore how 3D vectors work
	Run the game to see the ray in the Scene view
	Rotate your ball around a point in the scene
	Use Unity to take a closer look at rotation and vectors
	Get creative!

	Chapter 5
	Let’s help Owen roll for damage
	Create a console app to calculate damage
	Design a MAUI version of the damage calculator app
	Tabletop talk (or maybe…dice discussion?)
	Let’s try to fix that bug
	Use Debug.WriteLine to print diagnostic information
	It’s easy to accidentally misuse your objects
	Encapsulation means keeping some data in a class private
	Use encapsulation to control access to your class’s methods and fields
	But is the RealName field REALLY protected?
	Private fields and methods can only be accessed from instances of the same class
	Why encapsulation? Think of an object as an opaque box…
	Let’s use encapsulation toimprove the SwordDamage class
	Encapsulation keeps your data safe
	Write a console app to test the PaintballGun class
	Properties make encapsulation easier
	Modify your top-level statements to use the Balls property
	Auto-implemented properties simplify your code
	Use a private setter to create a read-only property
	What if we want to change the magazine size?
	Use a constructor with parameters to initialize properties
	Specify arguments when you use the new keyword
	Initialize fields and properties inline or in the constructor
	Make the screen reader announce each roll
	A few useful facts about methods and properties

	Chapter 6
	Calculate damage for MORE weapons
	Use a switch statement to match several candidates
	One more thing…can we calculate damage for a dagger? And a mace? And a staff? and...
	When your classes use inheritance, you only need to write your code once
	Build up your class model by starting general and getting more specific
	How would you design a zoo simulator?
	Different animals have different behaviors
	Every subclass extends its base class
	Any place where you can use a base class, you can use one of its subclasses instead
	Use a colon to extend a base class
	We know that inheritance adds the base class fields, properties, and methods to the subclass…
	A subclass can override methods to change or replace members it inherited
	Some members are only implemented in a subclass
	Use the debugger to understand how overriding works
	Build an app to explore virtual and override
	A subclass can hide methods in the base class
	Use the override and virtual keywords to inherit behavior
	A subclass can access its base class using the base keyword
	When a base class has a constructor, your subclass needs to call it
	A subclass and base class can have different constructors
	It’s time to finish the job for Owen
	A class should do one thing
	Build a beehive management system
	How the Beehive Management System app works
	The page uses a grid to lay out the controls for the UI
	The Beehive Management System class model
	All bees in the system extend the Bee class
	All the constants are in their own static class
	The worker bees extend the Bee class
	The Queen class: how she manages the worker bees
	Here’s the code-behind for MainPage.xaml.cs
	Feedback drives your beehive management game
	The Beehive Management System is turn-based…now let’s convert it to real-time
	Some classes should never be instantiated
	An abstract class is an intentionally incomplete class
	Like we said, some classes should never be instantiated
	An abstract method doesn’t have a body
	Abstract properties work just like abstract methods
	The Deadly Diamond of Death

	Unity Lab #3
	Let’s build a game in Unity!
	Create a new material inside the Materials folder
	Spawn a billiard ball at a random point in the scene
	Use the debugger to understand Random.value
	Turn your GameObject into a prefab
	Create a script to control the game
	Attach the GameController script to the Main Camera
	Press Play to run your code
	Use the Inspector to work with GameObject instances
	Use physics to keep balls from overlapping
	Get creative!

	Chapter 7
	The beehive is under attack!
	We could use casting to call the DefendHive method…
	An interface defines methods and properties that a class must implement…
	Interfaces let unrelated classes do the same job
	Get a little practice using interfaces
	If you’re given… What’s the picture?
	If you’re given… What’s the declaration?
	You can’t instantiate an interface, but you can reference an interface
	Interface references are ordinary object references
	The RoboBee 4000 can do a worker bee’s job without using valuable honey
	The IWorker's Job property is a hack
	Use is to check the type of an object
	Use is to access methods in a subclass
	What if we want different animals to swim or hunt in packs?
	Use interfaces to work with classes that do the same job
	Safely navigate your class hierarchy with is
	C# has another tool for safe type conversion: the as keyword
	Use upcasting and downcasting tomove up and down a class hierarchy
	A quick example of upcasting
	Upcasting turns your CoffeeMaker into an Appliance
	Downcasting turns your Appliance back into a CoffeeMaker
	Upcasting and downcasting work with interfaces too
	Interfaces can inherit from other interfaces
	Interfaces can have static members
	Default implementations give bodies to interface methods
	Add a ScareAdults method with a default implementation
	Data binding updates MAUI controls automatically
	Add data binding to the default MAUI app
	Make Moods implement the INotifyPropertyChanged interface
	Use the PropertyChanged event to make data binding work
	Polymorphism means that one object can take many different forms

	Chapter 8
	If a constructor just sets fields, use a primary constructor instead
	A primary constructor can extend a base constructor
	Strings don’t always work for storing categories of data
	Enums let you work with a set of valid values
	Enums let you represent numbers with names
	We could use an array to create a deck of cards…
	Arrays can be annoying to work with
	Lists make it easy to store collections of…anything
	Lists are more flexible than arrays
	Let’s build an app to store shoes
	Generic collections can store any type
	You can use collection expressions to create Lists
	Let’s create a List of Ducks
	Sorting lists can be tricky
	IComparable<Duck> helps your List sort its Ducks
	Use IComparer to tell your List how to sort
	Create an instance of your comparer object
	Comparers can do complex comparisons
	Overriding a ToString method lets an object describe itself
	Update your foreach loops to let your Ducks and Cards write themselves to the console
	You can upcast an entire list using IEnumerable<T>
	Use a Dictionary to store keys and values
	The Dictionary functionality rundown
	Write an app that uses a Dictionary
	And yet MORE collection types…
	A queue is FIFO—first in, first out
	A stack is LIFO—last in, first out
	CollectionView is a MAUI control built for displaying collections
	ObservableCollection is a collection made for data binding
	Add your Card class to the project
	Use XAML to instantiate your objects for data binding
	Modify your app to use a resource Dictionary
	Modify the event handlers to use the resource Dictionary
	Use what you’ve learned to build an app with two decks

	Unity Lab #4
	Add a score that goes up when the player clicks a ball
	Add two different modes to your game
	Add game mode to your game
	Add a UI to your game
	Set up the Text that will display the score in the UI
	Add a Button that calls a method to start the game
	Make the Play Again button and Score Text work
	Finish the code for the game
	Get creative!

	Chapter 9
	Jimmy’s a Captain Amazing superfan…
	…but his collection’s all over the place
	Use LINQ to query your collections
	LINQ works with any sequence
	LINQ’s query syntax
	LINQ works with objects
	Use a LINQ query to finish the app for Jimmy
	The var keyword lets C# figure out variable types for you
	LINQ is versatile
	LINQ queries aren’t run until you access their results
	Use a group query to separate your sequence into groups
	Use join queries to merge data from two sequences
	Use the new keyword to create anonymous types
	Unit tests help you make sure your code works
	Start writing your first test method
	Give your unit tests access to the classes they’re testing
	One project can only access public classes in another project
	Use the Arrange-Act-Assert pattern to write an effective test
	Finish your first unit test
	Write a unit test for the GetReviews method
	Write unit tests to handle edge cases and weird data
	Use the => operator to create lambda expressions
	Refactor a clown with lambdas
	Use the ?: operator to make your lambdas make choices
	LINQ queries are made up of methods
	LINQ declarative syntax can be refactored into chained methods
	Use the => operator to create switch expressions
	Explore the Enumerable class
	Create an enumerable sequence by hand
	Use yield return to create your own sequences
	Use yield return to refactor ManualSportSequence
	Downloadable exercise: Go Fish

	Chapter 10
	.NET uses streams to read and write data
	Different streams read and write different things
	A FileStream reads and writes bytes in a file
	Write text to a file in three simple steps
	The Swindler launches another diabolical plan
	Use a StreamReader to read a file
	Data can go through more than one stream
	Use the static File and Directory classes to work with files and directories
	IDisposable makes sure objects are closed properly
	Avoid filesystem errors with using statements
	Use a MemoryStream to stream data to memory
	What happens to an object when it’s serialized?
	But what exactly IS an object’s state?What needs to be saved?
	When an object is serialized, all of the objects it refers to get serialized too…
	Use JsonSerializer to serialize your objects
	JSON only includes data, not specific C# types
	Next up: we’ll take a deep dive into our data
	C# strings are encoded with Unicode
	Visual Studio works really well with Unicode
	.NET uses Unicode to store characters and text
	C# can use byte arrays to move data around
	Use a BinaryWriter to write binary data
	Use BinaryReader to read the data back in
	A hex dump lets you see the bytes in your files
	Use StreamReader to build a hex dumper
	Use Stream.Read to read bytes from a stream
	Modify your hex dumper to read directly from the stream
	Run your app from the command line
	Pass command-line arguments to an app run in the IDE
	Downloadable exercise: Hide and Seek

	Unity Lab #5
	Create a new Unity project and start to set up the scene
	Set up the camera
	Create a GameObject for the player
	Introducing Unity’s navigation system
	Install the AI Navigation package
	Things you’ll do with navigation
	Set up the NavMesh
	Make your player automatically navigate the play area

	Chapter 11
	The life and death of an object
	Use the GC class (with caution) to force garbage collection
	Your last chance to DO something…your object’s finalizer
	When EXACTLY does a finalizer run?
	Finalizers can’t depend on other objects
	A struct looks like an object…
	Values get copied; references get assigned
	Structs are value types; objects are reference types
	The stack vs. the heap: more on memory
	Use out parameters to make a methodreturn more than one value
	Pass by reference using the ref modifier
	Use optional parameters to set default values
	A null reference doesn’t refer to any object
	Non-nullable reference types help you avoid NREs
	Nullable value types can be null…and handled safely
	The null-coalescing operator ?? checks for nulls automatically
	“Captain” Amazing…not so much
	Records give your objects value equality automatically
	Don’t modify records—copy them
	Extension methods add new behavior to EXISTING classes
	Extending a fundamental type: string

	Chapter 12
	Your hex dumper reads a filenamefrom the command line
	When your program throws an exception, the CLR generates an Exception object
	All Exception objects inherit from System.Exception
	There are some files you just can’t dump
	What happens when a method you want to call is risky?
	Handle exceptions with try and catch
	Use the debugger to follow the try/catch flow
	If you have code that ALWAYS needs to run, use a finally block
	Catch-all exceptions handle System.Exception
	Use the right exception for the situation
	Exception filters help you create precise handlers
	The worst catch block EVER: catch-all plus comments
	Temporary solutions are OK (temporarily)
	Use NuGet to add a logging library to your app
	Add logging to your ExceptionExperiment app

	Unity Lab #6
	Let’s pick up where the last Unity Lab left off
	Add a platform to your scene
	Use bake options to make the platform walkable
	Include the stairs and ramp in the NavMesh
	Make the player navigate around the obstacles
	Get creative!
	Downloadable exercise: animal match boss battle

	Thank you for reading our book!
	Index

