
https://github.com/head-first-csharp/fifth-edition

Andrew Stellman
Free PDF of chapters 1 to 4

Andrew Stellman

Andrew Stellman
This PDF has everything in the first 300+ pages of the book.

Andrew Stellman

Andrew Stellman
Check out our GitHub page for videos, downloads, and more!

Andrew Stellman

Andrew Stellman

Andrew Stellman

Praise for Head First C#

“In a sea of dry technical manuals, Head First C# stands out as a beacon of brilliance. Its unique teaching style
not only imparts essential knowledge but also sparks curiosity and fuels passion for coding. An indispensable
resource for beginners!”

—Gerald Versluis, Senior Software Engineer at Microsoft

“Head First C# started my career as a software engineer and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books have helped me to launch my career.”

—Ryan White, Game Developer

“If you’re a new C# developer (welcome to the party!), I highly recommend Head First C#. Andrew and Jennifer
have written a concise, authoritative, and most of all, fun introduction to C# development. I wish I’d had this
book when I was first learning C#!”

—Jon Galloway, Senior Program Manager on the .NET Community Team, Microsoft

“Not only does Head First C# cover all the nuances it took me a long time to understand, it has that Head First
magic going on where it is just a super fun read.”

—Jeff Counts, Senior C# Developer

“Head First C# is a great book with fun examples that keep learning interesting.”

—Lindsey Bieda, Lead Software Engineer

“Head First C# is a great book, both for brand-new developers and developers like myself coming from a Java
background. No assumptions are made as to the reader’s proficiency, yet the material builds up quickly enough
for those who are not complete newbies—a hard balance to strike. This book got me up to speed in no time for
my first large-scale C# development project at work—I highly recommend it.”

—Shalewa Odusanya, Principal

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I’ve ever
seen—the samples are clear, the topics are concise and well written. The mini-games that guide you through the
different programming challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”

—Johnny Halife, Partner

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The many
coding challenges keep it fun, even when the concepts are tough.”

—Rebeca Dunn-Krahn, Founding Partner, Sempahore Solutions

Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want
to learn C# in depth and have fun doing it, this is THE book for you.”

—Andy Parker, fledgling C# Programmer

“It’s hard to really learn a programming language without good, engaging examples, and this book is full of them! Head
First C# will guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

—Chris Burrows, Software Engineer

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable
while covering a great amount of detail in a unique style. If you’ve been turned off by more conventional books on C#,
you’ll love this one.”

—Jay Hilyard, Director and Software Security Architect, and author of
 C# 6.0 Cookbook

“I’d recommend this book to anyone looking for a great introduction into the world of programming and C#. From the
first page onward, the authors walk the reader through some of the more challenging concepts of C# in a simple, easy-
to-follow way. At the end of some of the larger projects/labs, the reader can look back at their programs and stand in
awe of what they’ve accomplished.”

—David Sterling, Principal Software Developer

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style is
sure to captivate readers—from the humorously annotated examples to the Fireside Chats, where the abstract class and
interface butt heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

— Joseph Albahari, inventor of LINQPad, and coauthor of C# 12 in a Nutshell and
C# 12 Pocket Reference

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to
jump into the C# waters. I will recommend it to the advanced developer that wants to understand better what is
happening with their code. [I will recommend it to developers who] want to find a better way to explain how C# works
to their less-seasoned developer friends.”

—Giuseppe Turitto, Director of Engineering

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and
enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Advanced Systems Analyst

“Going through this Head First C# book was a great experience. I have not come across a book series which actually
teaches you so well.…This is a book I would definitely recommend to people wanting to learn C#.”

—Krishna Pala, MCP

Praise for the Head First Approach

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

—Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, former VP of Design, Twitter, and founder of Newsvine

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of

pragmatism and wit.”

— Ken Goldstein, Executive VP & Managing Director, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Related books from O’Reilly
C# 12 in a Nutshell by Joseph Albahari
Unity Game Development Cookbook, 2nd Edition
	 by	Paris	Buttfield-Addison,	Jon	Manning,	and	Tim	Nugent
Programming C# 12 by	Ian	Griffiths
Functional Programming with C# by	Simon	J.	Painter
C# 12 Pocket Reference by	Joseph	Albahari	and	Ben	Albahari
Learning Blazor	by	David	Pine

We love this book so much!

Other books in O’Reilly’s Head First series
Head First Android Development
Head First Design Patterns
Head First Git
Head First Python
Head First Go
Head First HTML and CSS
Head First iPhone and iPad Development
Head First Java
Head First JavaScript Programming
Head First Learn to Code
Head First Object-Oriented Analysis and Design
Head First Programming
Head First Python
Head First Software Architecture
Head First SQL
Head First Swift
Head First Web Design

Beijing		•		Boston		•		Farnham		•			Sebastopol			•		Tokyo

Head First C#

Wouldn’t it be dreamy if
there was a C# book that’s

more fun than memorizing
a dictionary? It’s probably
nothing but a fantasy...

Andrew Stellman
Jennifer Greene

Head First C#
by Andrew Stellman and Jennifer Greene

Copyright © 2024 Andrew Stellman and Jennifer Greene. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Series Creators: Kathy Sierra and Bert Bates

Series Advisors: Eric Freeman and Elisabeth Robson

Acquisitions Editor: Brian Guerin

Development Editor: Michele Cronin

Production Editor: Katherine Tozer

Proofreader: Piper Editorial Consulting, LLC

Indexer: Potomac Indexing, LLC

Cover Design: Susan Thompson, based on a series design by Ellie Volckhausen

Cover and Interior
Illustrations: José Marzan Jr.

Page Viewers: Samosa the Pomeranian and Rosalie the Australian Labradoodle

Printing History:
November 2007: First Edition
May 2010: Second Edition
August 2013: Third Edition
December 2020: Fourth Edition
July 2024: Fifth Edition

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

No pigeons, ducks, ostriches, elephants, dogs, hippos, chameleons, bees, clowns, aliens, game masters, jewel thieves, or
superheroes were harmed in the making of this book.

ISBN: 978-1-098-14178-3

[LSI] [2024-12-19]

This	book	is	dedicated	to	the	loving	memory	of	Sludgie	the	Whale,
who	swam	to	Brooklyn	on	April	17,	2007.

You	were	only	in	our	canal	for	a	day,
but	you’ll	be	in	our	hearts	forever.

viii

the authors

Jennifer Greene studied philosophy in
college but, like everyone else in the field,
couldn’t find a job doing it. Luckily, she’s a
great software engineer, so she started out
working at an online service, and that’s the
first time she really got a good sense of what
good software development looked like.

She moved to New York in 1998 to work
on software quality at a financial software
company. She’s managed teams of
developers, testers, and PMs on software
projects in media and finance since then.

Jenny has traveled all over the world to work
with different software teams and build all
kinds of cool projects.

She loves traveling, watching Bollywood
movies, reading the occasional comic book,
playing video games, and hanging out with
her Australian Labradoodle.

Andrew Stellman, despite being raised a New Yorker,
has lived in Minneapolis, Geneva, and Pittsburgh…twice,
first in the early ’90s when he graduated from Carnegie
Mellon’s School of Computer Science, and then again
in the early 2000s while he and Jenny were starting their
consulting business and writing their first book for O’Reilly.

Andrew’s first job after college was building software at a
record company, EMI-Capitol Records—which actually
made sense, as he went to LaGuardia High School of
Music & Art and the Performing Arts to study cello and
jazz bass guitar. He and Jenny first worked together at
a company on Wall Street that built financial software,
where he was managing a team of programmers. Over the
years he’s architected large-scale real-time backend systems,
managed large international software teams, been a senior
vice president at a major financial firm, and consulted for
companies, schools, and organizations, including Microsoft,
the National Bureau of Economic Research, and MIT.
He’s had the privilege of working with some pretty
amazing developers during that time, and likes to think
that he’s learned a few things from them.

When he’s not writing books, Andrew keeps himself busy
writing useless (but fun) software, playing (and making)
both music and video games, practicing krav maga, tai chi,
and aikido, and owning a crazy Pomeranian.

Jenny and Andrew have been building software and writing about software engineering together since they first
met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly in 2005. Other
Stellman and Greene books published by O’Reilly include Beautiful Teams (2009), Learning Agile (2014), Head First
Agile (2017), and their first book in the Head First series, Head First PMP (2007), now in its fourth edition.
They founded Stellman & Greene Consulting in 2003 to build a really fascinating software project for scientists
studying herbicide exposure in Vietnam veterans. In addition to building software and writing books, they’ve consulted
for companies and spoken at conferences and meetings of software engineers, architects, and project managers.
Learn more about them on their website, Building Better Software (https://www.stellman-greene.com).
 Jenny and Andrew

Jenny

Andrew

Thanks for reading our book! We really
love writing about this stuff, and we hope you

get a lot out of it...
...because we know you’re
going to have a great

time learning C#.

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on C#. Here you are trying to learn something,
while here your brain is doing you a favor by making sure the learning doesn’t stick.

Your brain’s thinking, “Better leave room for more important things, like which wild

animals to avoid and whether naked snowboarding is a bad idea.” So how do you

trick your brain into thinking that your life depends on knowing C#?

Intro

Who is this book for? xxx

We know what you’re thinking xxxi

Metacognition xxxiii

Bend your brain into submission xxxv

Read me xxxvi

The technical review team xxxviii

Acknowledgments xl

 Intro xxix

1 Start building apps with C#: Build something great...fast! 1

2 Variables, statements, and methods: Dive into C# code 65

 Unity Lab 1: Explore C# with Unity 111

3 Namespaces and classes: Organizing your code 127

4 Data, types, objects, and references: Managing your app’s data 189

 Unity Lab 2: Write C# Code for Unity 257

5 Encapsulation: How objects keep their secrets 271

6 Inheritance: Your object’s family tree 325

 Unity Lab 3: GameObject Instances 403

7 Interfaces, casting, and is: Making classes keep their promises 415

8 Enums and collections: Organizing your data 473

 Unity Lab 4: User Interfaces 539

9 LINQ and lambdas: Get control of your data 553

10 Reading and writing files: Save the last byte for me 621

 Unity Lab 5: Raycasting 673

11 Captain Amazing: The Death of the Object 687

12 Exception handling: Putting out fires gets old 731

 Unity Lab 6: Scene Navigation 763

table of contents

x

Learn C#…and learn to become a great developer 2

Write code and explore C# with Visual Studio 3

Install Visual Studio Community Edition 4

Run Visual Studio 5

Create and run your first C# project in Visual Studio 6

You can use Visual Studio Code with Head First C# 12

Create and run your first project in Visual Studio Code 14

Set up Visual Studio Code for the next project 17

Let’s build a game! 18

Create a .NET MAUI project in Visual Studio 22

Run your new .NET MAUI app 24

MAUI apps work on all of your devices 25

Start editing your XAML code 27

Use a FlexLayout to make a grid of animal buttons 34

Write C# code to add the animals to the buttons 38

Run your app! 46

Visual Studio makes it easy to use Git 51

Add C# code to handle mouse clicks 52

Add a timer to your game’s code 60

Finish the code for your game 62

Build something great…fast!1
start building apps with C#

Want to build great apps…right now?
With C#, you’ve got a modern programming language and a valuable tool at your

fingertips. And with Visual Studio, you’ve got an amazing development environment

with highly intuitive features that make coding as easy as possible. Not only is Visual

Studio a great tool for writing code, it’s also a really effective learning tool for

exploring C#. Sound appealing? Let’s get coding!

CREATE THE CREATE THE
PROJECTPROJECT

DESIGN THE PAGEDESIGN THE PAGE WRITE C# WRITE C#
CODECODE

HANDLE MOUSE HANDLE MOUSE
CLICKSCLICKS

ADD A GAME ADD A GAME
TIMERTIMER

table of contents

xi

Dive into C# code
You’re not just an IDE user. You’re a developer.
You can get a lot of work done using the IDE, but there’s only so far it can take you.

Visual Studio is one of the most advanced software development tools ever made, but a

powerful IDE is only the beginning. It’s time to dive in to C# code: how it’s structured,

how it works, and how you can take control of it…because there’s no limit to what you

can get your apps to do.

variables, statements, and methods

2
Take a closer look at the files in your console app 66

Statements are the building blocks for your apps 68

Statements live inside methods 69

Your methods use variables to work with data 70

Generate a new method to work with variables 72

Add code that uses operators to your method 73

Use the debugger to watch your variables change 74

Use code snippets to help write loops 76

Use operators to work with variables 77

if statements make decisions 78

Loops perform an action over and over 79

Controls drive the mechanics of your user interfaces 88

Other controls you’ll use in this book 89

Create a new app to experiment with controls 91

Explore your new MAUI app and figure out how it works 92

Add an Entry control to your app 96

Add properties to your Entry control 97

Make your Entry control update a Label control 98

Combine horizontal and vertical stack layouts 103

Add a Picker control to display a list of choices 104

table of contents

xii

Welcome to your first Head First C# Unity Lab. Writing code
is a skill, and like any other skill, getting better at it takes
practice and experimentation. Unity will be a really valuable
tool for that. In this lab, you can begin practicing what you’ve
learned about C# in Chapters 1 and 2.

Unity Lab 1
Explore C# with Unity

Unity is a powerful tool for game design 112

Download Unity Hub 113

Use Unity Hub to create a new project 114

Your scene is a 3D environment 116

Unity games are made with GameObjects 117

Use the Move Gizmo to move your GameObjects 118

The Inspector shows your GameObject’s components 119

Add a material to your Sphere GameObject 120

Rotate your sphere 123

Get creative! 126

table of contents

xiii

Organizing your code3
namespaces and classes

Great developers keep their code and data organized.
What’s the first thing you do when you’re creating an app? You think about what it’s

supposed to do, whether you’re solving a problem, creating a game, or just having fun.

But it’s not always obvious how individual statements fit into your app’s bigger picture…and

that’s where classes come in. They let you organize your code around the features you’re

creating and the problems the app needs to solve. Classes can help you organize your

data too, by using them to create objects that represent any “thing” your app needs to know

about—and the classes that you design serve as “blueprints” for the objects used in your app.

Classes help you organize your code 128

Some methods take parameters and return a value 130

Let’s build an app that picks random cards 132

Create an app with a Main method 134

Use Quick Actions to remove unnecessary using lines 138

Convert between namespace styles 139

Use the new keyword to create an array of strings 140

Build a paper prototype for a classic game 148

Build a MAUI version of your random card app 150

Reuse your CardPicker class 154

Add a using directive to use code in another namespace 155

You use a class to build an object 159

A better solution for Ana…brought to you by objects 161

An instance uses fields to keep track of things 165

Use intuitive class and method names 172

Build a class to work with some guys 178

Use the C# Interactive window or csi to run C# code 188

table of contents

xiv

Managing your app’s data
Data and objects are the building blocks of your apps.
What would your apps be without data? Think about it for a minute. Without data, your

programs are…well, it’s actually hard to imagine writing code without data. You need

information from your users, and you use that to look up or produce new information to give

back to them. In fact, almost everything you do in programming involves working with data

in one way or another. In this chapter, you’ll learn the ins and outs of C#’s data types and

references, see how to work with data in your program, and even learn a few more things

about objects (guess what…objects are data, too!).

data, types, objects, and references

4
Game Masters Guide

Guy object #
1

“Joe”
50

joe

Guy object #
2

“Bob”
100

bob

A variable’s type determines what kind of data it can store 192

C# has several types for storing integers 193

Let’s talk about strings 195

A literal is a value written directly into your code 196

Casting lets you copy values that C# can’t
automatically convert to another type 202

C# does some conversions automatically 205

Use reference variables to access your objects 222

References are like sticky notes for your objects 223

Multiple references and their side effects 226

Two references mean TWO variables that
can change the same object’s data 233

Objects use references to talk to each other 234

Arrays hold multiple values 236

null means a reference points to nothing 241

Use the string? type when a string might be null 243

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches! 246

Grid controls 248

Create the Sloppy Joe’s menu app and set up the grid 250

Use the SetValue method to change a control’s semantic properties 256

table of contents

xv

Unity isn’t just a powerful, cross-platform engine and editor
for building 2D and 3D games and simulations. It’s also a great
way to get practice writing C# code. In this lab, you’ll get
more practice writing C# code for a project in Unity.

Unity Lab 2
Write C# Code for Unity

C# scripts add behavior to your GameObjects 258

Add a C# script to your GameObject 259

Write C# code to rotate your sphere 260

Add a breakpoint and debug your game 262

Use the debugger to understand Time.deltaTime 263

Add a cylinder to show where the Y axis is 264

Add fields to your class for the rotation angle and speed 265

Use Debug.DrawRay to explore how 3D vectors work 266

Run the game to see the ray in the Scene view 267

Rotate your ball around a point in the scene 268

Use Unity to take a closer look at rotation and vectors 269

Get creative! 270

table of contents

xvi

 !TO FIND THE NUMBER OF HIT
POINTS (HP) OF DAMAGE FOR
A SWORD ATTACK, ROLL 3D6
(THREE 6-SIDED DICE) AND
ADD “BASE DAMAGE” OF 3HP.
 ! SOME SWORDS ARE FLAMING,
WHICH CAUSES AN EXTRA 2HP
OF DAMAGE.
 ! SOME SWORDS ARE MAGIC. FOR
MAGIC SWORDS, THE 3D6 ROLL
IS MULTIPLIED BY 1.75 AND
ROUNDED DOWN, AND THE
BASE DAMAGE AND FLAMING
DAMAGE ARE ADDED TO THE
RESULT.

How objects keep their secrets5
encapsulation

Ever wished for a little more privacy?
Sometimes your objects feel the same way. Just like you don’t want anybody you don’t

trust reading your journal or paging through your bank statements, good objects don’t let

other objects go poking around their fields. In this chapter, you’re going to learn about

the power of encapsulation, a way of programming that helps you make code that’s

flexible, easy to use, and difficult to misuse. You’ll make your objects’ data private,

and add properties to protect how that data is accessed—and you’ll keep your objects’

important data from leaking out to other objects so they don’t accidentally misuse it.

 SecretAgen
t

Let’s help Owen roll for damage 272

Create a console app to calculate damage 273

Design a MAUI version of the damage calculator app 275

Use Debug.WriteLine to print diagnostic information 281

Use encapsulation to control access to your class’s
methods and fields 286

Private fields and methods can only be accessed
from instances of the same class 288

Why encapsulation? Think of an object as an opaque box… 293

Let’s use encapsulation to
improve the SwordDamage class 297

Write a console app to test the PaintballGun class 299

Auto-implemented properties simplify your code 302

Use a private setter to create a read-only property 303

Use a constructor with parameters to initialize properties 305

Specify arguments when you use the new keyword 306

Initialize fields and properties inline or in the constructor 313

table of contents

xvii

Your object’s family tree
Sometimes you DO want to be just like your parents.
Ever run across a class that almost does exactly what you want your class to do?

Found yourself thinking that if you could just change a few things, that class would be

perfect? With inheritance, you can extend an existing class so your new class gets all

of its behavior—with the flexibility to make changes to that behavior so you can tailor

it however you want. Inheritance is one of the most powerful concepts and techniques

in the C# language: with it, you can avoid duplicate code, model the real world more

closely, and end up with apps that are easier to maintain and less prone to bugs.

inheritance

6
Use a switch statement to match several candidates 327

When your classes use inheritance, you only need to write
your code once 330

How would you design a zoo simulator? 332

Any place where you can use a base class,
you can use one of its subclasses instead 338

A subclass can override methods to change or
replace members it inherited 344

Build an app to explore virtual and override 352

A subclass can hide methods in the base class 354

Use the override and virtual keywords to inherit behavior 356

A class should do one thing 366

Build a Beehive Management System 370

Feedback drives your beehive management game 388

The Beehive Management System is turn-based…
now let’s convert it to real-time 390

An abstract class is an intentionally incomplete class 394

Abstract properties work just like abstract methods 398

The Deadly Diamond of Death 401

table of contents

xviii

C# is an object-oriented language, and since these Head
First C# Unity Labs are all about getting practice
writing C# code, it makes sense that these labs will focus
on creating objects.

Unity Lab 3
GameObject Instances

Let’s build a game in Unity! 404

Create a new material inside the Materials folder 405

Spawn a billiard ball at a random point in the scene 406

Use the debugger to understand Random.value 407

Turn your GameObject into a prefab 408

Create a script to control the game 409

Attach the GameController script to the Main Camera 410

Press Play to run your code 411

Use the Inspector to work with GameObject instances 412

Use physics to keep balls from overlapping 413

Get creative! 414

table of contents

xix

7 Making classes keep their promises
interfaces, casting, and is

Need an object to do a specific job? Use an interface.
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from—and that’s where interfaces come

in. You can use an interface to define a specific job. Any instance of a class that

implements the interface is guaranteed	to	do	that	job, no matter what other classes

it’s related to. To make it all work, any class that implements an interface must

promise to fulfill all of its obligations…or the compiler will break its kneecaps, see?

Queen object
H

iveDefender o

bj
ec

t

Defend
the hive at all costs. Yes,

ma’am!

The beehive is under attack! 416

We could use casting to call the DefendHive method… 417

An interface defines methods and properties
that a class must implement… 418

Interfaces let unrelated classes do the same job 419

Get a little practice using interfaces 420

You can’t instantiate an interface, but you
can reference an interface 426

Interface references are ordinary object references 429

The RoboBee 4000 can do a worker bee’s job
without using valuable honey 430

What if we want different animals to swim or hunt in packs? 438

Use interfaces to work with classes that do the same job 439

Safely navigate your class hierarchy with is 440

C# has another tool for safe type conversion: the as keyword 441

Use upcasting and downcasting to
move up and down a class hierarchy 442

Upcasting and downcasting work with interfaces too 446

Default implementations give bodies to interface methods 456

Data binding updates MAUI controls automatically 459

Polymorphism means that one object can take many different forms 469

table of contents

xx

8 Organizing your data
Data isn’t always as neat and tidy as you’d like it to be.
In the real world, you don’t receive your data in tidy little bits and pieces. No, your data’s

going to come at you in loads, piles, and bunches. You’ll need some pretty powerful tools

to organize all of it—and lucky for us, C# has just the tools we need. Enums are types that

let you define valid values to categorize your data. Collections are special objects that

store many values, letting you store, sort, and manage all the data that your apps need

to pore through. That way, you can spend your time thinking about writing apps to work

with your data, and let the collections worry about keeping track of it for you.

enums and collections

The rarely played
Duke of Oxen card.

Sorted by kind of duck…

If a constructor just sets fields, use a primary constructor instead 474

A primary constructor can extend a base constructor 475

Enums let you work with a set of valid values 477

Enums let you represent numbers with names 478

Lists make it easy to store collections of…anything 483

Let’s build an app to store shoes 487

Generic collections can store any type 490

You can use collection expressions to create Lists 496

IComparable<Duck> helps your List sort its Ducks 499

Create an instance of your comparer object 501

Comparers can do complex comparisons 502

You can upcast an entire list using IEnumerable<T> 510

The Dictionary functionality rundown 513

CollectionView is a MAUI control built for displaying collections 524

ObservableCollection is a collection made for data binding 525

Use XAML to instantiate your objects for data binding 529

Modify your app to use a resource Dictionary 530

Modify the event handlers to use the resource Dictionary 532

Use what you’ve learned to build an app with two decks 533

table of contents

xxi

In the last Unity Lab you started to build a game, using a
prefab to create GameObject instances that appear at random
points in 3D space and fly in circles. This Unity Lab picks up
where the last one left off, allowing you to apply what you’ve
learned about interfaces in C# and more.

Unity Lab 4
User Interfaces

Add a score that goes up when the player clicks a ball 540

Add two different modes to your game 541

Add game mode to your game 542

Add a UI to your game 544

Set up the Text that will display the score in the UI 545

Add a button that calls a method to start the game 546

Make the Play Again buton and Score Text work 547

Finish the code for the game 548

Get creative! 552

This screenshot shows the
game in its running mode. Balls
are added and the player can

click on them to score.

When the last ball is added, the
game switches to its Game Over

mode. The Play Again button pops
up and no more balls get added.

table of contents

xxii

Get control of your data9
LINQ and lambdas

It’s a data-driven world…we all need to know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with loads of data.

Today, everything is about data, and that’s where LINQ comes in. LINQ is a feature of C# and .NET

that not only lets you query data in your .NET collections in an intuitive way, but lets you group data

and merge data from different data sources. You’ll use anonymous objects to manage your data

in new and interesting ways. You’ll add unit tests to make sure your code is working the way you

want. Once you’ve got the hang of wrangling your data into manageable chunks, you can use lambda

expressions to refactor your C# code to make it easier to work with and more expressive.

Jimmy’s a Captain Amazing super-fan… 554

Use LINQ to query your collections 556

Use a LINQ query to finish the app for Jimmy 564

The var keyword lets C# figure out variable types for you 566

LINQ is versatile 572

Use a group query to separate your sequence into groups 574

Use join queries to merge data from two sequences 577

Use the new keyword to create anonymous types 578

Unit tests help you make sure your code works 587

Start writing your first test method 588

One project can only access public classes in another project 590

Use the Arrange-Act-Assert pattern to write an effective test 591

Write a unit test for the GetReviews method 594

Use the => operator to create lambda expressions 598

Use the ?: operator to make your lambdas make choices 603

LINQ queries are made up of methods 604

LINQ declarative syntax can be refactored into chained methods 606

Use the => operator to create switch expressions 609

Explore the Enumerable class 613

Use yield return to create your own sequences 615

table of contents

xxiii

Save the last byte for me
Sometimes it pays to be persistent.
So far, all of your programs have been pretty short-lived. They fire up, run for a while,

and shut down. But that’s not always enough, especially when you’re dealing with

important information. You need to be able to save your work. In this chapter, we’ll look

at how to write data to a file, and then how to read that information back in from a

file. You’ll learn about streams, and how to store your objects in files with serialization,

and get down to the actual bits and bytes of hexadecimal, Unicode, and binary data.

reading and writing files

10

001
001

01

width

010
001

10

height

00100101

01000110

file.dat

This object
has two byte
fields, width
and height.

0000: 45 6c 65 6d 65 6e 74 61 Elementa
0005: 72 79 2c 20 6d 79 20 64 ry, my d
0010: 65 61 72 20 57 61 74 73 ear Wats
0015: 6f 6e 21 on!

.NET uses streams to read and write data 622

Different streams read and write different things 623

Use a StreamReader to read a file 629

Use the static File and Directory classes to work with
files and directories 634

IDisposable makes sure objects are closed properly 637

Avoid filesystem errors with using statements 638

Use a MemoryStream to stream data to memory 639

What happens to an object when it’s serialized? 645

Use JsonSerializer to serialize your objects 648

JSON only includes data, not specific C# types 651

C# strings are encoded with Unicode 655

.NET uses Unicode to store characters and text 658

C# can use byte arrays to move data around 660

Use a BinaryWriter to write binary data 661

Use BinaryReader to read the data back in 662

Use StreamReader to build a hex dumper 665

Use Stream.Read to read bytes from a stream 666

Modify your hex dumper to read directly from the stream 667

Run your app from the command line 668

table of contents

xxiv

When you set up a scene in Unity, you’re creating a virtual 3D
world for the characters in your game to move around in. But
in most games, things aren’t directly controlled by the player.
So how do these objects find their way around a scene? In this
lab, we’ll look at how C# can help.

Unity Lab 5
Raycasting

Create a new Unity project and start to set up the scene 674

Set up the camera 675

Create a GameObject for the player 676

Introducing Unity’s navigation system 677

Install the AI Navigation package 678

Things you’ll do with navigation 679

Set up the NavMesh 680

Make your player automatically navigate the play area 683

The camera is pointing down, so
this box is the viewport. The
X shows the location where the
user clicked on the screen.

The method casts a ray up to
100 units long that starts at
the camera and passes through
the point that the user clicked.

The ray hits the floor here.

table of contents

xxv

CAPTAIN AMAZINGCAPTAIN AMAZING
THE DEATH THE DEATH

OF THE OBJECTOF THE OBJECT
Head First C#

Chapter
11

Four
bucks

Just...need to do...
- gasp -

one...last...thing...one...last...thing...

The life and death of an object 690

Use the GC class (with caution) to force garbage collection 691

Your last chance to DO something…
your object’s finalizer 692

When EXACTLY does a finalizer run? 693

Finalizers can’t depend on other objects 695

A struct looks like an object… 699

Values get copied; references get assigned 700

Structs are value types; objects are reference types 701

The stack versus the heap: more on memory 703

Use out parameters to make a method
return more than one value 706

Pass by reference using the ref modifier 707

Use optional parameters to set default values 708

A null reference doesn’t refer to any object 709

Non-nullable reference types help you avoid NREs 710

Nullable value types can be null…and handled safely 713

The null-coalescing operator ?? checks for nulls automatically 714

“Captain” Amazing…not so much 715

Records give your objects value equality automatically 717

Don’t modify records—copy them 718

Extension methods add new behavior to EXISTING classes 723

Extending a fundamental type: string 724

table of contents

xxvi

Putting out fires gets old
When you have to deal with error after error, it’s called “putting out fires.”
Imagine: it’s a few years from now. You spent all that time working on your C# skills and continuing

to learn and improve, and now you’re one of the most senior developers at a big tech company. Now

you’re getting panicked phone calls in the middle of the night from your support team because your app

crashes, or doesn’t behave like it’s supposed to. You want to spend your time writing code, not putting

out fires! Because nothing pulls you out of the programming groove like having to fix a strange bug you

don’t recognize. Luckily, C# has exception handling, which lets you write code to deal with problems

that come up. Better yet, you can even plan for those problems, and keep things running when they

happen.

exception handling

12

public class Data {
 public void
 Process(Input i) {
 if (i.IsBad()) {
 explode();
 }
 }
}

My Process method
will blow up if it gets

bad input data.

I wonder
what happens if

I click here...

LoanShark object

Exception objec
t

int[] anArray = {3, 4, 1, 11};
int aValue = anArray[15];

Your hex dumper reads a filename
from the command line 732

When your program throws an exception, the CLR generates
an Exception object 736

All Exception objects inherit from System.Exception 737

There are some files you just can’t dump 740

What happens when a method you want to call is risky? 741

Handle exceptions with try and catch 742

Use the debugger to follow the try/catch flow 743

Catch-all exceptions handle System.Exception 745

Use the right exception for the situation 750

Exception filters help you create precise handlers 754

The worst catch block EVER: catch-all plus comments 756

Temporary solutions are OK (temporarily) 757

Use NuGet to add a logging library to your app 759

Add logging to your ExceptionExperiment app 760

table of contents

xxvii

In the last Unity Lab, you created a scene with a floor (a plane)
and a player (a sphere nested under a cylinder), and you used
a NavMesh, a NavMesh Agent, and raycasting to get your
player to follow your mouse clicks around the scene. In this
lab, you’ll add to the scene with the help of C#.

Unity Lab 6
Scene Navigation

Let’s pick up where the last Unity Lab left off 764

Add a platform to your scene 765

Use bake options to make the platform walkable 766

Include the stairs and ramp in the NavMesh 767

Make the player navigate around the obstacles 769

Get creative! 770

This NavMesh Obstacle carves a moving hole in the NavMesh that
prevents the player going up the ramp. You’ll add a script that lets

the user drag it up and down to block and unblock the ramp.

Are you ready?

xxix

how to use this book
Intro

In this section, we answer the burning question:
“So why DID they put that in a book on learning C#?”

I can’t believe they
put thatthat in a book
on learning C#.

xxx intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

This book is for you.

you might consider trying another book first.

Do you prefer interesting and stimulating conversation
to dry, dull, academic lectures?

3

Do you like to tinker? Do you learn by doing, rather than
just reading?

2

Does the idea of doing projects and writing code make you
bored and a little twitchy?2

Do you want to learn C# (and pick up some knowledge of
game development and Unity along the way)?

1

Are you more interested in theory than practice? 1

Are you afraid to try something different? Do you think
a book about a serious topic like development needs to be
serious all the time?

3

A lot of people learn C# as a second (or third, or sixteenth) language,
but you don’t need to have written a lot of code to get started.
If you’ve written programs (even small ones!) in any programming language, taken an
introductory programming class at school or online, done some scripting, used a database query
language, done some web page design, or worked with Excel functions, then you’ve definitely
got the background for this book, and you’ll feel right at home.

What if you have less experience? That’s OK! You can go at your own pace, which is why
thousands of beginners have used our book to learn C# as their first programming language.

Do I need to know another
programming language to

use this book?

Still not sure if this book is right for you? Try doing the first few chapters—you can download a free PDF of the first four chapters from https://github.com/head-first-csharp/fifth-edition. If you’re still comfortable after doing all of the exercises, then this book will work well for you.

you are here 4 xxxi

“How can this be a serious C# programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you
encounter? Everything it can to stop them from interfering with the brain’s real
job—recording things that matter. It doesn’t bother saving the boring things;
they never make it past the “this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps out in front of you. What happens inside your head
and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously unimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things. Like
tigers. Like the danger of fire. Like how you should never have posted
those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey
brain, thank you very much, but no matter how dull
this book is, and how little I’m registering on the
emotional Richter scale right now, I really do want
you to keep this stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.
Great. Only 800 800

moremore dull, dry,
boring pages.

xxxii intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First you have to get it, then

make sure you don’t forget it. It’s not about pushing facts into your head.

Based on the latest research in cognitive science, neurobiology, and

educational psychology, learning takes a lot more than text on a page.

We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than

words alone, and make learning much more effective (up

to 89% improvement in recall and transfer studies). They

also make things more understandable.

Put the words within or near the graphics they relate to, rather than at

the bottom or on another page, and learners will be up to twice as likely to be able to

solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40%

better on postlearning tests if the content spoke directly to the reader, using a first-person, conversational

style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take

yourself too seriously. Which would you pay more attention to: a stimulating dinner party companion, or a

lecture?

Get the learner to think more deeply. Unless you actively flex your neurons, nothing much

happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems,

draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-

provoking questions, and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this

but I can’t stay awake past page one” experience. Your brain pays attention to things that are out

of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical

topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re

talking emotions like surprise, curiosity, fun, “what the…?” and the amazing “Aha! I got this!”

feeling that comes when you solve a puzzle, learn something everybody else thinks is hard—or

maybe just realize you’ve learned so much great new stuff and it feels so good to be able to use it.

Even scary emotions can help
ideas stick in your brain.

Dog obje
ct

you are here 4 xxxiii

Metacognition: thinking about thinking

I wonder how I can trick
my brain into remembering

this stuff...

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you
think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when
we were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn
how to build programs in C#. And you probably don’t want to spend
a lot of time on it. If you want to use what you read in this book, you
need to remember what you read. And for that, you’ve got to understand it.
To get the most from this book, or any book or learning experience, take
responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat C# like it was a
hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow way
is about sheer repetition. You obviously know that you are able to learn and
remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important, but
they keep looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially
different types of brain activity. The things on the previous page are a big part of
the solution, and they’re all things that have been proven to help your brain work
in your favor. For example, studies show that putting words within the pictures they
describe (as opposed to somewhere else on the page, like in a caption or in the
body text) causes your brain to try to make sense of how the words and pictures
relate, and this causes more neurons to fire. More neurons firing = more chances
for your brain to get that this is something worth paying attention to, and possibly
recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and
hold up their end. The amazing thing is, your brain doesn’t necessarily care that
the “conversation” is between you and a book! On the other hand, if the writing
style is formal and dry, your brain perceives it the same way you experience being
lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxxiv intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As
far as your brain’s concerned, a picture really is worth a thousand words.
And when text and pictures work together, we embedded the text in the
pictures because your brain works more effectively when the text is within
the thing the text refers to, as opposed to in a caption or buried in the text
somewhere.

We used redundancy, saying the same thing in different ways and with
different media types, and multiple senses, to increase the chance that the
content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty, and we used
pictures and ideas with at least some emotional content, because your brain is tuned to pay attention to the
biochemistry of emotions. That which causes you to feel something is more likely to be remembered, even
if that feeling is nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay
more attention when it believes you’re in a conversation than if it thinks you’re passively
listening to a presentation. Your brain does this even when you’re reading.

We included dozens of activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the paper
puzzles and code exercises challenging yet doable, because that’s what most people
prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while someone else
wants to understand the big picture first, and someone else just wants to see an example. But regardless of
your own learning preference, everyone benefits from seeing the same content represented in multiple ways.

We included content for both sides of your brain, because the more of your brain you engage, the
more likely you are to learn and remember, and the longer you can stay focused. Since working one side of
the brain often means giving the other side a chance to rest, you can be more productive at learning for a
longer period of time.

And we included stories and exercises that present more than one point
of view, because your brain is tuned to learn more deeply when it’s forced
to make evaluations and judgments.

We included challenges, with exercises, and asked questions that don’t
always have a straight answer, because your brain is tuned to learn and
remember when it has to work at something. Think about it—you can’t
get your body in shape just by watching people at the gym. But we did our
best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-
understand example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because
you’re a person. And your brain pays more attention to people than it does to things.

you are here 4 xxxv

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

1

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Write a lot of code!
There’s only one way to really learn C# so it sticks:
write a lot of code. And that’s what you’re going
to do throughout this book. Coding is a skill, and the
only way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when you
solve the exercises. If you get stuck, don’t be afraid
to peek at the solution! We included a solution to
each exercise for a reason: it’s easy to get snagged on
something small. But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

Listen to your brain.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are no Dumb Questions”
sections.
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

xxxvi intro

how to use this book

README.md
This is a learning experience, not a reference book. We deliberately stripped out everything that
might get in the way of learning whatever it is we’re working on at that point in the book. And the
first time through, you need to begin at the beginning, because the book makes assumptions about
what you’ve already seen and learned.

The activities are NOT optional.
The puzzles and activities are not add-ons; they’re part of the core content of the book. Some of
them are to help with memory, some for understanding, and some to help you apply what you’ve
learned. Don’t skip the written problems. The pool puzzles are the only things you don’t have
to do, but they’re good for giving your brain a chance to think about twisty little logic puzzles—and
they’re definitely a great way to really speed up the learning process.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we want you to
finish the book remembering what you’ve learned. Most reference books don’t have retention and
recall as a goal, but this book is about learning, so you’ll see some of the same concepts come up
more than once.

Do all the exercises!
The one big assumption that we made when we wrote this book is that you want to learn how to
program in C#. So we know you want to get your hands dirty right away, and dig right into the
code. We gave you a lot of opportunities to sharpen your skills by putting exercises in every chapter.
We’ve labeled some of them “Do this!”—when you see that, it means that we’ll walk you through
all of the steps to solve a particular problem. But when you see the Exercise logo with the running
shoes, then we’ve left a big portion of the problem up to you to solve, and we gave you the solution
that we came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll learn
the most if you try to solve the problem first.

We’ve also included all the exercise solutions’ source code with the rest of the code from this book.

You can find all of it on our GitHub page: https://github.com/head-first-csharp/fifth-edition

The “Brain Power” questions don’t have answers.
For some of them, there is no right answer, and for others, part of the learning experience is for you
to decide if and when your answers are right. In some of the Brain Power questions you will find
hints to point you in the right direction.

you are here 4 xxxvii

We’re targeting C# 12, Visual Studio 2022, and Visual Studio Code.
This book is all about helping you learn C#. The team at Microsoft that develops and maintains C# releases
updates to the language. C# 12 is the current version at the time this book is going into production. We also
lean very heavily on Visual Studio, Microsoft’s integrated development environment (IDE), as a tool for learning,
teaching, and exploring C#. The screenshots in this book were taken with the latest versions of Visual
Studio 2022 and Visual Studio Code available at the time of production. We included instructions for
installing Visual Studio and Visual Studio Code in Chapter 1.

C# is constantly evolving, and new versions will have great new features! But don’t worry—the features of C#
that are part of the core learning in this book will be unchanged, so you will be able to use this book with future
versions of C#. The Microsoft teams that maintain Visual Studio and Visual Studio for Mac routinely release
updates, and very rarely those changes will affect screenshots in this book.

The Unity Lab sections in this book target Unity 6, the latest version of Unity available with long-term support
when this book went into production. We included instructions for installing Unity in the first Unity Lab.

You can watch full video walkthroughs of Visual Studio, Visual Studio Code, and Unity installation on our
YouTube channel: https://www.youtube.com/@headfirstcsharp

All of the code in this book is released under an open source license
that lets you use it for your own projects. You can download it from
our GitHub page (https://github.com/head-first-csharp/fifth-edition).

How we use games in this book

You’re going to be writing code for lots of projects throughout this book, and many of those projects
are games. We didn’t do this just because we love games. Games can be effective tools for
learning and teaching C#. Here’s why:

• Games are familiar. You’re about to immerse yourself in a lot of new concepts and ideas. Giving you
something familiar to grab onto can make the learning process go more smoothly.

• Games make it easier to explain projects. When you do any of the projects in this book, the first thing you
need to do is understand what we’re asking you to build—and that can be surprisingly difficult. When we
use games for our projects, that makes it easier for you to quickly figure out what we’re asking and dive
right into the code.

• Games are fun to write! Your brain is much more receptive to new information when you’re having fun, so
including coding projects where you’ll build games is, well, a no-brainer (excuse the pun).

We use games throughout this book to help you learn broader C# and programming concepts. They’re
an important part of the book. You should do all of the game-related projects in the book, even if you’re

not interested in game development. (The Unity Labs are optional, but strongly recommended.)

Game Design...and Beyond

xxxviii intro

the review teamthe review team

The technical review team

Charlotte M. Ellett

“If I have seen further, it is by standing on the shoulders of giants.”
–Isaac Newton

The book you’re reading has very few errors in it, and we give a TON of credit for its high quality to our
amazing team of technical reviewers—the giants who kindly lent us their shoulders.

To the review team: we’re so incredibly grateful for the work that you all did for this book. Thank you so
much!

Charlotte M. Ellett is a game developer and programmer, electronics enthusiast and maker, and has been a
TED Resident, Red Hat developer relations expert, and Space Camp Crew Trainer. She enjoys making DIY
projects and conducting experiments with (not on) her family, and teaching the next generation of engineers
and scientists. You can find her at CharlotteMEllett.com.

Layla Porter is an experienced software engineer and developer advocate specialising in .NET technologies.
Layla has been awarded the Microsoft MVP award for the past five years and the GitHub Star award for the
past three. She has spoken at developer conferences all over Europe and North America and is a YouTube
content creator. She enjoys hiking, reading urban fantasy novels, playing video games with her husband, and
doting on her two miniature pinschers, Cookie and Lily.

Gerald Versluis is a senior software engineer at Microsoft on the .NET MAUI team. Besides his day job he
is also passionate about sharing his knowledge and learning with others. Gerald regularly speaks at conferences,
writes blogs and articles, post videos on his YouTube channel, and contributes to open source projects. You can
find Gerald on every major social media platform under @jfversluis or on his website: https://jfversluis.dev

We also want to give special thanks to Joe Albahari and Jon Skeet for their incredible technical guidance and
really careful and thoughtful review of the first edition, which truly set us up for the success we’ve had with this
book over the years. We benefited so much from your input—even more, in fact, than we realized at the time.

Gerald Versluis

Ph
ot

o
cr

ed
it:

 R
ya

n
La

sh
/T

ED

Layla Porter

Layla actually used the third edition of this book to learn
C# in 2015 before applying for her first developer job!

you are here 4 xxxix

“Shoulders of giants”

Ashley Godbold Tatiana MacLindsey Bieda

This is the fifth edition of Head First C#, which means a lot of what you’ll read in this book was also
in an earlier edition. Some of it even dates back to the very first edition from 2008! So it’s important
to us that we acknowledge the amazing contributions of our fourth edition tech review team:

David Sterling
Johnny Halife

Chris BurrowsRebeca Dunn-Krahn
Nick Paladino

Lisa Kellner
Lisa was also
on the team
for the third,
second, and
first editions.
Thank you!

And our third edition tech review team:

Chris and David helped us with both the third and second editions. Thank you!

And our second edition team:

And finally, our first edition team:

Folks from the first edition
team who aren’t pictured,
but just as amazing: Wayne
Bradney, Dave Murdoch,
and especially Bridgette
Julie Landers.

And super special thanks to our wonderful readers—especially Alan Ouellette, Jeff Counts, Terry Graham, Sergei Kulagin,
Willian Piva, Jim Cupec, Mike Olgren, David Horvitz, and Greg Combow—who let us know about issues they found while
reading our book, and professor Joe Varrasso at Mohawk College for being an early adopter of our book for his course.
Thank you all so much!!

xl intro

Acknowledgments
Our editor:

First and foremost, we want to thank our amazing editor, Michele Cronin, for
everything you’ve done for this book. It was such a pleasure working with you!

The O’Reilly team:

...and a few more folks who have been so incredibly supportive over the years
Thank you so much to Cathy Vice for her amazing piece on epilepsy that we used in Chapter 10, and for all her
epilepsy advocacy work. Thank you to Jesse Liberty for some great advice and all of his books over the years. And we
really, really want to thank Jeremy Sinclair for his advice on characters, and for being a pillar of the .NET community.

And an enormous thank you to our friends at Microsoft who helped us so much with this book—your support
through this project was amazing. Thank you so much to Maddy Montaquila, Shane Neuville, and Gerald
Versluis from the MAUI team—especially Shane’s feedback on our code and Gerald’s unbeliavably valuable tech review.
We’re grateful for Jen Gentleman for teaching us about some great Windows features (like the emoji panel!)

We’re also so grateful to Dominic Nahous, Jordan Matthiesen, and John Miller from the Visual Studio for Mac
team, and to Cody Beyer, who was instrumental in getting our whole partnership with that team started. Thank you to
David Sterling for an awesome review of previous editions, and Immo Landwerth for helping us nail down topics
we should cover in the fourth edition. Extra special thanks to Mads Torgersen, program manager for the C#
language, for all the wonderful guidance and advice he’s given us over the years. You all are fantastic!

And finally, we’re especially grateful to Jon Galloway, who provided so much amazing code for the Blazor projects in
the Blazor downloadable PDF—collaborating with you was a truly wonderful experience. Thank you so much!

There are so many people at O’Reilly we want to thank that we hope we don’t forget
anyone! First, last, and always, we we want to thank Mary Treseler, who’s been with
us on our journey with O’Reilly from the very beginning. Special thanks to production
editor Katherine Tozer, indexer Joanne Sprott, and Elizabeth Oliver for her sharp
proofread—all of whom helped get this book from production to press in record time. A
huge and heartfelt thanks to Amanda Quinn, Zan McQuade, Olivia MacDonald,
Melissa Duffield, and Brian Guerin for getting this project on track from the
beginning, and being so supportive of our books and training courses over the years.
And a big shout-out to our other friends at O’Reilly: Mike Hendrickson, Lindsay
Ventimiglia, David Michelson, Jeff Bleiel, and, of course, Tim O’Reilly. If you’re
reading this book right now, then you can thank the best publicity team in the industry:
Marsee Henon, Kathryn Barrett, and the rest of the wonderful folks at Sebastopol.

We also want to give a shout-out to some of our favorite O’Reilly authors:

• Dr. Paris Buttfield-Addison, Jon Manning, and Tim Nugent, whose book
Unity Game Development Cookbook is just simply amazing, and whose other O’Reilly
books, including Head First Swift, are also fantastic.

• Joseph Albahari, who wrote the thoroughly indispensable C# 12 in a Nutshell.

• David Pine, whose Learning Blazor: Build Single-Page Apps with WebAssembly and C# is
perfect for anyone who wants to build modern web apps in C#.

Katherine Tozer

Michele CroninThese people are amazing and
it’s been such a privilege working
with them.Thank you all!

acknowledgments

start building apps with C#1

Build something great…fast!

Want to build great apps…right now?
With C#, you’ve got a modern programming language and a valuable tool at your

fingertips. And with Visual Studio, you’ve got an amazing development environment with

highly intuitive features that make coding as easy as possible. Not only is Visual Studio

a great tool for writing code, it’s also a really effective learning tool for exploring C#.

Sound appealing? Let’s get coding!

Get ready for a wild ridewild ride!

this is a new chapter 1

Learn C#…and learn to become a great developer
Do you want to become a great developer? Yes? Then you came to the right book! You can become a
great developer, and C# is the perfect language to help you get there. Here’s why:

 " C# is a powerful, modern language that lets you do incredible things. You can use it to build
everything from games to websites to serious business applications. You name it, C# can do it.

 " C# skills are in demand. Are you looking to land a programming job? C# is one of the most
in-demand programming languages around because companies all over the world use C# to
build their desktop applications and websites.

 " C# is cross-platform. You can write apps that run on Windows, macOS, Linux, and even on
your Android and iPhone devices.

...with a learning system that’s effective and fun
When you learn C#—when you learn to really be effective with it—you’re learning more than just a
language. You’re learning a whole new way of thinking… and that’s where we come in. We’ve
spent more than 15 years developing, experimenting with, and testing out new and different ways
to help you get C# ideas into your brain. You’ll use powerful programming environments to
build real projects and write lots of code. You’ll learn and practice important
development ideas and patterns that help you write great code. You’ll
learn how to use modern AI tools to superpower your code and level up your
learning skills. By the time you’re done, you’ll have the foundation for successful
and satisfying software development.

Welcome to the world of C#. Let’s dive in!

C# sounds greatgreat! How do I
get started?

“Head First C# started my career as a software engineer
and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

Many people who used previous editions of this book have reached out to us over the years to tell us how our book helped them start their development careers. We’re looking forward to hearing from you too!

“Thank you so much! Your books
have helped me to launch my career.”

—Ryan White, Game Developer

2 Chapter 1

start your C# journey

Write code and explore C# with Visual Studio
The best way to get started with C# is to write lots of code.

This book uses pictures, puzzles, quizzes, stories, and games to help you
learn C# in a way that suits your brain. Every one of those elements is built to help
you with a single goal: to keep things interesting while we help you get C# concepts,
ideas, and skills into your brain.

This book is also full of C# projects that are specifically designed to give you
lots of different ways to explore C# and learn about important ideas and concepts
that will help you become a great developer. We designed those projects to be
engaging, fun, and interactive to give you lots of opportunities to put those concepts,
ideas, and skills into practice.

Visual Studio is your free gateway to C#
Learning C# is all about exploring and growing your skills at your own pace, and
that’s where Visual Studio comes in. It’s an amazing tool built by Microsoft. At its
heart, it’s an editor for your C# code and projects, but it’s much more than that. It’s
a creative tool that helps you with every aspect of C# development. We’ll use Visual
Studio throughout this book as an important tool to help you learn and explore C#.

Visual Studio is an IDE—that’s short for integrated development
environment—a text editor, visual designer, file manager, and debugger…it’s like a
multitool for everything you need to write code.

Here are just a few of the things that Visual Studio helps you do:

 " It’s a file and project manager. C# projects are often made up of a lot of
files. Visual Studio makes it easy to see exactly where they are, and integrates
with version control systems like Git to make sure you never lose a line of code.

 " It helps you edit and manage your code. Visual Studio has many
intuitive features to help you edit your code and C# projects, including
powerful AI-driven tools like IntelliSense pop-ups and IntelliCode code
completion that give you great suggestions to help keep you in the flow.

 " It’s a debugger that lets you see your code in action. When you debug
your apps in Visual Studio, you can see exactly what your code is doing while
it runs—which is a great way to really understand how C# code works.

Visual Studio
is a powerful
development
environment,
and it’s an
amazing
learning tool
to help you
explore C#.

We’ll often refer to Visual Studio as
“the IDE” throughout this book. Keep
an eye out for handy IDE tips that help
you become a more efficient coder.

IDE Tips

If you decide to use Visual Studio Code instead of Visual Studio, that’s your IDE. They’re both IDEs!

Visual Studio is only
available for Windows.

Luckily, you can also use
Visual Studio Code to do
all of the projects in this
book. If you’re using a
Mac or Linux, or if you

want to use Visual Studio
Code instead of Visual

Studio, skip ahead to the
next section, where we’ll
show you how to set it up
and use it to create your

first C# project.

you are here 4 3

build something great…fast!

Install Visual Studio Community Edition
Open https://visualstudio.microsoft.com and download Visual Studio Community Edition. It’s
available for both Windows and macOS. The installers look a little different depending on which
platform you’re using. Make sure you install the .NET desktop development tools and .NET Multi-
platform App UI (or .NET MAUI) development tools. We’ll be doing 3D game development with
Unity, so make sure you check that option too.

When you run the Visual Studio installer, select the “.NET desktop development,” “.NET Multi-
platform App UI development (MAUI),” and “Game development with Unity” options to install the
Visual Studio tools you’ll use in this book. You should also select “ASP.NET and web development”
if you plan to download the Head First C# Blazor Learner’s Guide and learn about web
development with C#.

You can use Visual Studio for Mac, but it’s no longer supported by Microsoft.

Visual	Studio	for	Mac	was	a	great	tool	for	learning	C#	on	a	Mac!	But	while	we	were	finishing	up	
this	edition	of	Head	First	C#,	Microsoft	announced	that	they	would	stop	development	on	it	and	
end	support	in	2024.	If	you’re	using	a	Mac	or	Linux,	the	folks	at	Microsoft	recommend	running	
Windows	virtual	machine	(VM)	using	software	like	VirtualBox	or	Parallels	Desktop.	

An	easy	way	to	get	started	is	to	download	VirtualBox	for	free	from	https://www.virtualbox.org	and	
then	download	a	Windows	virtual	machine	from	Microsoft	that	contains	an	evaluation	version	of	
Windows	from	https://developer.microsoft.com/en-us/windows/downloads/virtual-machines.

We’ll	also	show	you	how	to	use	Visual Studio Code	later	in	the	chapter.

All	of	the	projects	in	this	book	can	be	done	in	Visual	Studio	Code	on	Windows	or	macOS.

Watch it!
This book was written on a Mac. All of the Visual Studio and Unity screenshots
in this book were taken running Windows 11 in a Parallels Desktop virtual machine.

If you forget to select one of these options, just wait until the installation finishes and run the Visual Studio Installer again.

4 Chapter 1

install visual studio

Keep an eye out for these “relax” boxes—they point out some common issues that a lot of readers run into, so you know they’re coming and don’t have to worry about them.

Run Visual Studio
We’re going to jump right into code! Once the installer finishes, run Visual Studio.

Grab a cup of coffee—it can take some time for Visual Studio to install.

Don’t worry if it takes a few minutes (or more!) to finish installing Visual Studio. And while
we’re on the subject, here’s something else that you don’t have to worry about.

All of the screenshots in this book were taken with Visual Studio 2022 Community Edition, the latest
version available while we were writing it. If Microsoft released a newer version of Visual Studio since
we took these screenshots, feel free to try it! The code and ideas that we teach should still work just fine.
But if you want the screenshots to match, Microsoft makes older versions of Visual Studio available for
download—and you can always install different versions of Visual Studio on the same computer:
https://visualstudio.microsoft.com/vs/older-downloads

If you run into trouble installing Visual Studio or running your first project, head to our YouTube
channel (https://www.youtube.com/@headfirstcsharp) to see videos of the entire installation process.

Relax

The first time you start Visual
Studio, it may ask you to sign

in to your Microsoft account. If
you don’t have an account, you
can create one by clicking the

“Create an account” button. This
is how Microsoft activates your
free license for the Community

Edition of Visual Studio.

You’ll also be prompted to choose a
color theme. We used Light for the
screenshots in this book because
they’re easier to see in print, but

many users prefer the Dark theme.

you are here 4 5

build something great…fast!

Create and run your f irst C# project in Visual Studio
The best way to learn C# is to start writing code, so you’re going to write a lot of code—and create a lot of
apps!—throughout this book. Each app will get its own project, or a folder that Visual Studio creates with
special files to organize all of the code.

Tell Visual Studio to create a new project.
When you launch Visual Studio, the first thing you’ll see is a Get Started window with four options.
Click “Create a new project” to create a new project.

When you first start Visual Studio, it will
show you this “Get Started” window.

Click Create a new project to tell Visual
Studio to create a new project folder and

generate initial code files for you.
If you already have a project open (or if

you close a project, or click the “Continue
without code” link on the “Get Started”
page), you can create a new project by

choosing New Project from the File menu.

When you create a new project, Visual Studio will ask you which of its project templates you
want to use. Every C# project consists of a set of folders and files. Visual Studio has many built-in
templates that it can use to generate different kinds of projects. In this book, you’ll use Visual Studio’s
templates to create three kinds of projects: Console App projects, .NET MAUI projects, and MSTest
unit test projects. (You’ll also create Unity projects, but you won’t use Visual Studio to create them.)

1

You’ll be writing a lot of code throughout this book, which means you’ll be creating a lot of projects. Most of those
projects will be Console App projects, just like the one you’re creating now—so you can follow these directions any
time you need to create a new Console App project. Just make sure you choose a different project name each time so
that Visual Studio creates the project in a new folder (don’t worry—it will warn you if that name already exists).

Geek NoteLet’s write some code!

6 Chapter 1

dive right into visual studio

Choose a project template for Visual Studio to use.
Visual Studio creates new projects using a template that determines what
files to create. Choose the Console App template and click Next.

2 Enter “Console App” in the
search box or scroll down to
the Console App template.

Enter a name for your project and click Next.
Your project’s name is important—it determines file and folder names, and you’ll see it inside
some of the code that Visual Studio generates for you. If we ask you to pick a specific name,
make sure you do; otherwise, the code in your project may not match screenshots in the book.

3

Enter your project name here.

Visual Studio will create a new folder matching your project name in this location. Feel free to pick a different location.

Make sure you choose C# and
not a different language.

Make sure you’re using the current version of .NET.
The current version of .NET at the time we’re writing this is 9.0—make sure the version that
you’re using is 9.0 (or higher). Then click the Create button to create your project.

Once Visual Studio creates your project, it will open a file called Program.cs with this code:

4

The code for your app is in a
file called Program.cs. You
can edit it in this window.

you are here 4 7

build something great…fast!

Run your app.
The app Visual Studio created for you is ready to run. At the top of the Visual Studio IDE, find the button
with a green triangle and your app’s name and click it:

Look at your app’s output.
When you run your program, the Microsoft Visual Studio Debug Console window will pop up and
show you the output of the program:

At the top of the window is the output of the program:

Hello, World!
Then there’s a line break, followed by some additional text:

C:\path-to-your-project-folder\MyFirstConsoleApp\MyFirstConsoleApp\bin\Debug\
net9.0\MyFirstConsoleApp.exe (process ####) exited with code 0.
To automatically close the console when debugging stops, enable Tools-> Options-
>Debugging->Automatically close the console when debugging stops.
Press any key to close this window . . .

You’ll see the same message at the bottom of every Debug Console window. Your program printed a single
line of text (Hello, World!) and then exited. Visual Studio is keeping the output window open until you
press a key to close it so you can see the output before the window disappears.

Press a key to close the window. Then run your program again.

This is how you’ll run all of the Console App projects that you’ll build throughout the book.

5

6

When Visual Studio created your Console App project, it
created folders with files in them. It’s displaying one of
those files, Program.cs, which has all of the C# code in

your app. Compare the contents of the file with what you
see when you run the app. Can you figure out what it does?

8 Chapter 1

run your new C# project

Visual Studio is a great tool to help you learn and explore C#. You’re going to be writing a lot of
code throughout this book, so this is a great time to get familiar with it.

Visual Studio is an IDE, or integrated development environment. If you haven’t used an IDE before it may look very
busy, so this is a great time to get used to it. One of the most important ways to get new ideas, information, skills, and
tools to stick in your brain is to write them down. So take a close look at the different parts of Visual Studio and write
down what you think they do. It’s OK if you aren’t 100% sure—just take your best guess!

Sharpen your pencil

When you created your app, it contained a file with two lines. Write down what you think each line does.
// See https://aka.ms/new-console-template for more information.

Console.WriteLine("Hello, World!");

you are here 4 9

build something great…fast!

Solution
Sharpen your pencil

This is the editor window. It lets you edit
the contents of any of the files in the
solution. It used colors to make the code
easier to read the code in Program.cs.

The Solution Explorer
shows all of the files and
folders in the project
and lets you open them in
the editor.

When you created your app, it contained a file with two lines. Write down what you think each line does.
// See https://aka.ms/new-console-template for more information.

Console.WriteLine("Hello, World!");

This line of code causes the app to print the text “Hello, World!” (without the quotation marks).

This is a comment, it doesn’t do anything. It just provides information to the person reading it.

The Search button opens a window that
lets you search the code in your project
and find features in Visual Studio.

You can open multiple files at the same time and use
these tabs to switch between them. Visual Studio
displayed the “What’s New?” tab when you opened it.

Try moving the panels in Visual Studio around. Click the pushpin button () to collapse
the Solution Explorer window into the side panel. Reset the layout by choosing Reset
Window Layout from the Window menu, then use the View menu to open other windows.

10 Chapter 1

get familiar with your tools

Q: So if Visual Studio writes code for me, is
learning C# just a matter of learning how to use it?

A: No. The IDE is great at automatically generating
some code for you, but it can only do so much. There
are some things it’s really good at, like setting up good
starting points for you, and automatically changing
properties of controls in your UI. It did all of that by
taking the information you gave it and feeding it into a
template that generated files. The most important part
of programming—figuring out what your program needs
to do and making it do it—is something that no IDE can
do for you. Even though the Visual Studio IDE is one
of the most advanced development environments out
there, it can only go so far. It’s you—not the IDE—who
write the code that actually does the work.

Q: What if the IDE creates code I don’t want in
my project?

A: You can change or delete it. The IDE is set up to
create code based on the way the element you dragged
or added is most commonly used, but sometimes that’s
not exactly what you wanted. Everything the IDE does
for you—every line of code it creates, every file it adds—
can be changed, either manually by editing the files
directly or through an easy-to-use interface in the IDE.

Q: Why did you ask me to install Visual Studio
Community Edition? Are you sure that I don’t need
to use one of the versions of Visual Studio that isn’t
free to do everything in this book?

A: There’s nothing in this book that you can’t do
with the free version of Visual Studio (which you
can download from Microsoft’s website). The main
differences between Community and the other editions
aren’t going to stop you from writing C# and creating
fully functional, complete applications. (The paid
editions have additional features that are useful for
professional software organizations and teams.)

Q: My screen doesn’t look like yours! It’s
missing some of the windows, and others are in the
wrong place. Did I do something wrong? How can I
reset it?

A: If you click on the Reset Window Layout
command under the Window menu, the IDE will restore
the default window layout for you. Then use the View
menu to open any windows that are missing. You can
find some of the windows you’ll see later in this chapter
in its Other Windows submenu. That will make your
screen look like the ones in this chapter and throughout
the book.

Visual Studio will generate code you can
use as a starting point for your applications.
Making sure the app does what it’s
supposed to do is entirely up to you.

Keep an eye out for these Q&A sections. They often answer your most pressing
questions, and point out questions other readers are thinking of. In fact, a lot
of them are real questions from readers of previous editions of this book!

Some windows collapse by default. Use the pushpin button in the upper-right corner of the window to make it stay open.

there are no Dumb Questions

you are here 4 11

build something great…fast!

install visual studio code

You can use Visual Studio Code with Head First C#
If you’re using Visual Studio (and not VSCode), you can skip ahead to “Let’s Build a Game!”

If you’ve been around the development world at all over the last few years, you’ve probably heard a lot of buzz and
excitement about Visual Studio Code (often called VSCode). It’s a powerful code editor that runs on Windows,
Mac, and Linux, and it’s gotten very popular among developers because it’s easy to use, versatile, fast, and intuitive.

If you’re using Windows, we recommend that you consider using Visual Studio (not VSCode) because it’s
specifically built for C# and has some built-in tools that VSCode currently lacks. However, all of the projects in
this book can be done with VSCode. Most of the screenshots in this book will show Visual Studio, but we’ll
also tell you how to do the same thing in VSCode where it differs from Visual Studio.

To use this book with Visual Studio Code, start by downloading it from https://code.visualstudio.com. Run the installer,
and choose all of the default options. After the installer finishes, open VSCode. It will prompt you to choose a color
theme. We chose Dark Modern for our screenshots because we used a light theme for Visual Studio, so choosing a
dark theme for VSCode will help make it easier to tell the screenshots apart.

Using Visual Studio Code is optional. You can use VSCode to do all of the projects in this book on
Windows or macOS. (Linux readers may need to run an Android emulator to do the .NET MAUI—we’ll
talk about that later.)

If you have trouble installing VS Code or running your first project,
head to our YouTube channel (https://www.youtube.com/@headfirstcsharp)
to see videos of the entire Windows or macOS installation process.

The first time you
run VSCode, it
shows you a Welcome
tab with a bunch
of settings you can
choose, including
color theme. You can
go through those
settings, or you can
just close the tab.

12 Chapter 1

Install the C# extensions
Click the Extensions button on the left side of the
VSCode window to open the Extensions panel. At the top of
the panel is a search box with the text “Search Extensions in
the Marketplace.” Search for each of these extensions:

 " C# Dev Kit: This extension has the tools you need to
create, edit, and debug C# and .NET projects.

 " .NET MAUI: Most chapters in this book have a
project that uses .NET MAUI, a framework for
creating desktop and mobile apps in C#.

 " Unity: The Unity Labs give you a chance to practice
your C# skills by building 3D games and simulations.

Make sure each extension is the official one from Microsoft.
Click the Install button on each extension to install it.

VSCode may prompt you
to restart after installing
extensions. It may also display
Getting Started tabs that
have useful information.

Change the C# debug console setting
Once you have your extensions set up, click
the gear icon in the lower-left corner of the
VSCode window and choose Settings (or press
Ctrl comma or ⌘ comma). Search for the
setting csharp.debug.console—you should
see a dropdown with several options. Change
the setting to integratedTerminal.

Now you’re ready to write some C# code!

This setting tells VSCode where to show
the output of your app. Set it to use the
Terminal window; otherwise, some apps you
build later in the book won’t work.

you are here 4 13

build something great…fast!

Create and run your f irst project in Visual Studio Code
Visual Studio Code is first and foremost an editor, which means its features are specialized for
opening and editing many different kinds of files. A VSCode window is typically used to edit files in a
folder and its subfolders. When you open VSCode, it remembers the most recent folder you opened.
But when you first open it, you’ll need to select a folder. We’ll walk you through the steps for creating a
folder with a new .NET project in it.

Click this button to
open and close the
lefthand panel. If
VSCode does not

currently have a folder
open, the panel will

have buttons to open
a folder and create a

new .NET project.

On Windows, the menu is at the top of the window (if you make the
window very narrow, click the menu button to display it). On macOS,

you’ll see the menu in the menu bar at the top of the screen.

Click the Create .NET Project button.
A box will appear at the top of the VSCode window with a list of project types, and a search box with
the prompt “Select a template to create a new .NET Project.” Type Console into the search
box, then choose Console App from the list of templates to create a new .NET Console App project.

1

If you don’t see the
Create .NET Project
button, you can open
the Command Palette

(Ctrl+Shift+P or ⇪⌘ P)
and choose .NET: New
Project from the menu

that’s displayed.

14 Chapter 1

create a project in visual studio code

Select a folder for your new project.
VSCode will display a folder browser window. Choose a location for your new project. The folder
browser window has a “New folder” button. You’ll be creating a lot of projects throughout this book, so we
suggest creating a folder called “Projects” underneath your home folder or Documents folder to hold them.

Create a new folder inside the folder where you keep your projects and name it MyFirstConsoleApp.
Then navigate to the MyFirstConsoleApp folder that you just created and click Select Folder.

Give your project a name.
Every C# project has a name. You’ll usually give the project folder the same name as the project. After you
select your folder, VSCode will prompt you for a project name:

Type MyFirstConsoleApp into the box, then press the Enter key to create the project. VSCode may
ask you if you trust the authors of the folder. This is a really useful security feature, because it prevents you
from accidentally opening malicious code. Click the “Yes, I trust the authors” button. You have the
option of checking a box to always trust everything in your projects folder.

Install the .NET Core SDK. (You only need to do this once!)
Before you can create and run C# and .NET apps, you need to install the .NET Core SDK. The easiest
way to do this on Windows is to install Visual Studio 2022. If you don’t have the SDK installed, VSCode
will display a window prompting you to get it. Click the “Get the SDK” button—this opens a browser
window with the page https://dot.net/core-sdk-vscode. Follow the instructions to download the latest version of
your SDK for your operating system. Be careful to choose the architecture that matches your computer. For
Mac users: if your Mac was made after 2019, choose Arm64; if you’re using an older Intel Mac, choose Intel.

2

3

4

Visual Studio Code is
really popular with a lot
of developers because it’s
lightweight, open source,
and has a huge ecosystem
of extensions and tools.
But using it will require you
to do a little more manual
work like this, which is why
we recommend using Visual
Studio instead.

you are here 4 15

build something great…fast!

Expand the Solution Explorer and open Program.cs.
After VSCode creates your C# project, the Explorer panel on the left will contain several collapsible
sections. VSCode is file- and folder-based, and the Explorer is used to browse those files and open them
for editing.

Expand the Solution Explorer section at the bottom of the Explorer. The Solution Explorer is part
of the C# Dev Kit, which lets VSCode work with C# projects. It shows you all of the files and subfolders
that VSCode created for your project—in this case, your app has one file with C# code called Program.cs.
Click Program.cs in the Solution Explorer to open the file.

Run your app.
When you have a C# code file (a file that ends with .cs) open in the Solution Explorer, you’ll see a Run
button () in the upper-right corner of the window. Click that button to run the app.

You can also press F5 and choose “Start Debugging” from the Run menu to run your app. VSCode
may prompt you to select a debugger. If it does, choose C#. If it asks for a launch configuration, choose
the one that matches the project name. You can press F5 any time you want to run your app.Your app
will start running, and Visual Studio will open the Debug Console panel to show you the output and
let you interact with it. This is how you’ll run all of the Console App projects that you’ll build
throughout the book.

5

6

Expand the Solution Explorer, which
is typically at the bottom of the

Explorer panel. You can collapse the
other sections to make it bigger. Click

on Program.cs to see the code that
Visual Studio created for you. This
file contains all of the code in your

app—in this case, two lines of code.

Click this button to run
your C# app. You’ll see
it when you’re editing
a file that ends with

“.cs” and has C# code.

Here’s the line of
text your app wrote.

Make sure that your app’s output is
in the Terminal panel. If you see the

“Hello, World!” text in the Debug
Console, you need to go back and
follow the instructions to change

the C# debug console setting.

16 Chapter 1

run your app in visual studio code

Set up Visual Studio Code for the next project
VSCode is a great code editor! But unlike Visual Studio, it’s not designed specifically for C# and .NET projects. It
does a great job with C#, but you need to do a little extra work to get it up and running.

First open a folder, then add a project
VSCode is extremely flexible, and there are many ways to use it. If you’re new to VSCode, we recommend that you
create a new folder for every project in the book. When you start a new project, choose Close Folder from
the File menu to close the current folder, then create a new folder and open it.

The Command Palette
All of the actions that you need to do to create and run projects can be run from the Command Palette, the
centralized hub for all of the VSCode features. Press Ctrl+Shift+P (or ⇪⌘P on a Mac) to display the Command
Palette. Use the .NET: New Project to create a new project in the current folder. There are also commands to open
and close .NET solutions. You’ll learn more about solutions throughout this chapter.

When you have a .NET app’s project folder open, you can run it by choosing Debug: Start Debugging from the
Command Palette. Choose the C# option to start running your Console App project.

Install .NET MAUI before reading the rest of this chapter
In the rest of this chapter, you’ll build a game using .NET MAUI (Multi-platform App UI), a powerful cross-platform
framework that lets you create visual apps in .NET and C# that can run on Windows, macOS, Android, and iOS.

Before you can install and run your .NET MAUI apps, you’ll need to install the .NET MAUI workload for .NET.
The easiest way to do this on Windows is to install Visual Studio 2022 and choose the .NET MAUI option.

You can also install .NET MAUI from the command line. Typically it looks like this:

dotnet workload install maui or sudo dotnet workload install maui

If you’re using a Mac or Linux, you may need to use sudo to run with elevated privileges. If you’re on a Mac, you’ll
also need to install XCode. You can install the Android SDK as well (but it’s optional). See this page for more
details: https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=visual-studio-code

If you’re using Linux, you’ll need an Android device for the .NET MAUI projects
.NET MAUI does not run natively on Linux. If you have an Android device, you can debug directly on it. This page
shows you how to set up an Android device so you can connect it to your computer and run your MAUI apps on it:
https://learn.microsoft.com/dotnet/maui/android/device/setup

As an alternative, every MAUI project in this book has a Blazor alternative, where you’ll build a web app version
that runs in a browser. Download the Head First C# Blazor Learner’s Guide from our GitHub page for more
information—you can get it as a free PDF: https://github.com/head-first-csharp/fifth-edition

You’ll need to install .NET
MAUI before you move on
to the rest of the chapter.
If you’re using Visual Studio
2022 you already installed
it, but if you’re using VSCode
you’ll need to do it manually.

This is how you reset VSCode
so you can start a new project.

Choose this option to run a Console App project.

you are here 4 17

build something great…fast!

Let’s build a game!
You’ve built your first C# app, and that’s great! Now that you’ve done
that, let’s build something a little more complex. We’re going to build
an animal matching game, where a player is shown eight pairs of
animals and needs to click on them in pairs to make them disappear.

To make things more
exciting, the game
starts a timer as
soon as you start
the game. Can you
beat your best time?

You can change the size of the
window and the animal buttons
will rearrange themselves out to
fill up the new width.

When you click the first button, it
changes color. If you click on its match,
then both animals disappear. If you click
any other animal, the color of the first
button changes back and you have to
start over with a new pair.

The game displays 16 buttons
with eight pairs of matching
animals in a random order.
You play by clicking animals in
pairs: first click one animal,
then click its match. Match
all eight animals and you win
the game!

When you click a matched pair
of animals, they both disappear.

The rest of this chapter is dedicated to walking you through creating the Animal Matching Game
project. This project is built with .NET MAUI, a cross-platform framework for building desktop and
mobile apps. There are several MAUI projects scattered throughout this book. You also have the

option of using these projects to learn about web development using Blazor, Microsoft’s powerful web
development framework. Download the Head First C# Blazor Learner’s Guide—it’s a free PDF with
web versions of every MAUI project in this book (https://github.com/head-first-csharp/fifth-edition).

18 Chapter 1

dive right into a fun C# project

Keep an eye out for these “Game Design…and Beyond” elements scattered throughout
the book. We’ll use game design principles as a way to learn and explore important
programming concepts and ideas that apply to any kind of project, not just video games.

When you’ve found all eight pairs of animals, the
game displays a big “Play again?” button, with
your final time underneath it. Click the button
to reset the game and start over again!

What is a game?

It may seem obvious what a game is. But think about it for a minute--it’s not as simple as it
seems.

* Do all games have a winner? Do they always end? Not necessarily. What about a flight
simulator? A game where you design an amusement park? Or a farming simulator? What
about a game like The Sims?

* Are games always fun? Not for everyone. Some players like a “grind” where they do the
same thing over and over again; others find that miserable.

* Is there always decision making, conflict, or problem solving? Not in all games. Walking
simulators are games where the player just explores in an environment, and there are often
no puzzles or conflicts at all.

* It’s actually pretty hard to pin down exactly what a game is. If you read textbooks on game
design, you’ll find all sorts of compelling definitions. So for our purposes, let’s define the
meaning of “game” like this:

A game is a program that lets you play with it in a way that (hopefully) is as entertaining
to play as it is to make.

Game Design...and Beyond

you are here 4 19

build something great…fast!

The goal of this project is to help get you used to writing C# and using
the IDE. If you run into any trouble with this project, you can watch a full
video walkthrough on our YouTube channel: https://www.youtube.com/@
headfirstcsharp

You can download all of the code and a PDF of this chapter from our GitHub
page: https://github.com/head-first-csharp/fifth-edition

Break up large projects into smaller parts
Our goal in this book is to help you to learn C#, but we also help you become a great developer,
and one of the most important skills great developers work on is tackling large projects. You’ll build a
lot of projects throughout this book. They’ll be smaller starting with the next chapter, but they’ll get
bigger as you go further. As the projects get bigger, we’ll show you how to break them up into smaller
parts that you can work on one after another. This project is no exception—it’s a larger project, like
the ones you’ll do later in the book—so you’ll do it in five parts.

This chapter is all about learning the basics, getting used to creating
projects, editing code, and building your game.

Don’t worry if there are things that you don’t understand yet. By the end of the book, you’ll
understand everything that’s going on in this game. For now, just follow the step-by-step

instructions to get your game up and running. This will give you a solid foundation to build on later.

Relax

MainPage.xaml.cs

CREATE THE CREATE THE
PROJECTPROJECT

DESIGN THE PAGEDESIGN THE PAGE WRITE C# WRITE C#
CODECODE

HANDLE MOUSE HANDLE MOUSE
CLICKSCLICKS

ADD A GAME ADD A GAME
TIMERTIMER

1 2 43 5

class MyClass{
 public Xyz() {
 // ...
 }
}

<window>
 <grid>
 ...
 </grid>
</window>

MainPage.xamlMainPage.xaml

20 Chapter 1

how you’ll do this project

This project can take anywhere from 20
minutes to over an hour, depending on how
quickly you type. We learn better when we don’t feel rushed, so give yourself plenty of time.

Here’s how you’ll build your game
You’ll build your animal matching game using .NET MAUI
(which stands for .NET Multi-platform App UI, or just MAUI).
MAUI is a technology that you can use to create apps in C#
that run natively as desktop apps on Windows and macOS, or as
mobile apps on your Android or iOS mobile devices.

The rest of this chapter will walk you through building the
game. You’ll be doing it in a series of separate parts:

First you’ll create a new .NET MAUI
project in Visual Studio.
You just created a new console application. Now
you’ll create a new MAUI app.

Then you’ll use XAML to design the page.
Individual screens in MAUI apps are called pages.
You’ll design them using XAML, a design language
you’ll use to define how those pages work.

You’ll write C# code to add random
animal emoji to the page.
When your app first loads, it will run that code to
display 16 buttons with eight pairs of animal emoji in
a random order.

You’ll make the gameplay work.
The game needs to detect when the user clicks on
pairs of emoji, keep track of the pairs, and end the
game when they’ve found all of the matches. You’ll
write that code too.

Finally, you’ll make the game more
exciting by adding a timer.
Your timer will start when the player starts the game,
and keep track of how long it takes the player to find
all eight pairs of animals.

1

2

3

4

5

MainPage.xaml.csMainPage.xaml

<FlexLayout>
 <Button/>
 ...
 <Button/>
</FlexLayout>

class MyClass {
 void Xyz() {
 // ...
 }
}

you are here 4 21

build something great…fast!

Finally, Visual Studio will ask you to choose a version of .NET—choose the latest
version, just like you did when you created the Console App project. Then click the
Create button to create your new .NET MAUI project.

Choose the .NET MAUI App project template and click Next. Visual Studio will
prompt you for a project name, just like it did when you created a Console App project.

Enter AnimalMatchingGame as the project name and click Next.

Create a .NET MAUI project in Visual Studio
You can create a .NET MAUI app in Visual Studio just like you did with the console app at the beginning of the
chapter, using the “Create a new project” button displayed when you first open Visual Studio. If it’s already open,
choose New >> Project (Ctrl+Shift+N) from the File menu to bring up the “Create a new project” window.

Use the search box to search
for “MAUI,” then choose

the .NET MAUI App project
template from the list.

You’ll see You’ll see
the Console the Console
App template App template
in the list in the list
of recent of recent
templates templates
because you because you
created one created one
earlier.earlier.

Make sure you enter
AnimalMatchingGame as the project

name; otherwise, your code won’t
match the screenshots in the book.

22 Chapter 1

create a new maui app

Create a .NET MAUI project in Visual Studio Code
If you’re using Visual Studio Code, creating a .NET MAUI project is really similar to creating the Console App project,
just like you did at the beginning of the chapter. First, close your current app by choosing File >> Close Folder
(Ctrl+K F or ⌘K F). It’s really important to close your folder; otherwise, you’ll add a new project to the same solution.

Next, create the .NET MAUI App project. Use Ctrl+Shift+P or ⇧⌘P to open the Command Palette. Choose the
command .NET: NEW Project to create a new project. VSCode will prompt for the project type.

Choose the .NET MAUI App project type. You can type “MAUI” to filter the options.

VSCode will ask you to give the project a name. Name your project AnimalMatchingGame. VSCode will
prompt you for a directory. Choose the default directory. You should now see your project in the Solution Explorer
at the bottom of the Explorer panel.

When it comes time to run your project, do the following—this is different from
running a Console App:

1. Expand the Solution Explorer in the Explorer panel.

2. Expand the file MainPage.xaml to reveal MainPage.xaml.cs (it may be
expanded already).

3. Click on MainPage.xaml.cs to select it.

4. Open the Command Palette (Ctrl+Shift+P or ⇧⌘P) and choose
Debug: Start Debugging. You can also open MainPage.xaml
and either press F5 or choose Start Debugging fom the Run menu.

5. VSCode may prompt you to select a debugger. Select .NET MAUI.
Once you do that, your app should start running in a new window.

There’s another way to run your
MAUI app. Choose Debug
project associated with this
file from the dropdown next to
the Run button at the upper right
corner of the VSCode window.

Make sure you enter
AnimalMatchingGame as

the project name; otherwise,
your code won’t match the
screenshots in the book.

The Solution Explorer section may be at
the very bottom of the Explorer window.

Expand the Solution
Explorer and collapse

all of the other sections
of the Explorer window.

you are here 4 23

build something great…fast!

Run your new .NET MAUI app
In Visual Studio: click in the toolbar or choose Start Debugging (F5) from the
Debug menu.

In Visual Studio Code: open MainPage.xaml and choose Start Debugging (F5) from the Run
menu. If it prompts you to select a debugger, choose .NET MAUI from the list. On macOS you may see a
prompt warning that AnimalMatchingGame is from an unidentified developer,
and asking if you’re sure you want to open it. Click Open Anyway.

The IDE will build your code, which means converting it to an executable
program that your operating system can run. Then it will start your app:



 �

Do this!

When you see Do this! (or Now do
this!, or Debug this!, etc.), go to

Visual Studio and follow along. We’ll
tell you exactly what to do, and point
out what to look for to get the most

out of the example we show you.

Stop your MAUI app
You can stop your app by closing the app window. You can also choose Stop Debugging (Shift+F5) from the
Debug menu in Visual Studio or Run menu in VSCode, or click the square Stop button in the IDE’s toolbar.

You can start or stop your app at any time. If there are syntax errors (like typos or invalid keywords) in the
C# or XAML code, the IDE won’t be able to run the app.

For tips on running your app, see https://github.com/head-first-csharp/fifth-edition.

If you’re using
Windows and get
a pop-up about

setting your device
to developer mode,

click the link to
go to settings
for developers
and toggle the

“Developer mode”
setting.

In macOS, If the VSCode
.NET MAUI extension displays

the message “Debugging
cancelled: Xcode not found,”
it means you need to install
or update Xcode, a suite of
development tools built by
Apple. If you didn’t install
it when you set up Visual
Studio Code and the C#

extensions, you can install
it from the App Store. Make

sure you actually open it and
accept the Xcode license

agreement; otherwise, you
may get an error when you
try to debug a MAUI app in

Visual Studio Code.

These screenshots were made with
.NET 9. If you’re using a different
version of .NET, the default MAUI
app may look a little different.

24 Chapter 1

maui apps can run anywhere

MAUI apps work on all of your devices
MAUI is a cross-platform framework for building visual apps, which means the apps
that you build can run on your Android and iOS devices. Many of the chapters in this book
include .NET MAUI projects so you can learn to build more visual apps.

You can run MAUI apps on an Android device directly from Visual Studio. This page shows
you how to set up an Android device so you can connect it to your computer and run your
MAUI apps on it: https://learn.microsoft.com/dotnet/maui/android/device/setup

You can also run MAUI apps on your iOS device, but it requires a little more setup—and it
costs money because you need to join the Apple Developer Program. This page walks you
through the process: https://learn.microsoft.com/dotnet/maui/ios/device-provisioning

Are you seeing errors or having problems in Visual Studio Code?
If	you	see	an	error	window	when	you	try	to	run	your	code—it	may	have	a	message	like	“Android	SDK:	Install	
required”	or	a	warning	about	licenses—then	there	are	some	installation	steps	that	you	still	need	to	do:

https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=visual-studio-code

Follow	all	of	the	steps	on	that	page.	Make	sure	you’ve	installed	all	of	the	VSCode	extensions,	the	.NET	and	.NET	
MAUI	workloads,	the	Android	SDK,	and	the	latest	XCode	if	you’re	using	a	Mac.	If	you’re	still	running	into	problems,	
create	a	new	.NET	MAUI	project	and	watch	the	Terminal	window	for	error	messages	as	soon	as	the	project	opens,	
and	look	for	instructions	on	how	to	accept	a	license.	Follow	those	instructions	exactly.	You	may	need	to	install	the	
most	recent	version	of	OpenJDK	first:	https://learn.microsoft.com/java/openjdk/download

If	you	keep	getting	license	errors	on	Windows,	open	the	Command	Palette	and	choose	.NET	MAUI:	Configure	
Android	and	then	Review	Android	Licenses	to	accept	the	licenses.	You	may	need	to	do	this	while	running	VSCode	
as	administrator.	You	can	also	choose	“How	to	Configure	Android”	to	see	a	web	page	with	complete	instructions.

If	you’re	using	a	Mac,	are	you	getting	any of the following errors when	you	run	your	app:	“No	debug	target	available,	
skipping	debugging,”	an	error	about	Android	or	iOS,	or	an	error	about	prelaunch	tasks	terminating?	Press	⇧⌘P to
open	the	command	palette,	choose	.NET MAUI: Pick macOS Device,	and	select	your	computer	from	the	list,	then	
open MainPage.xaml	and	press F5	to	run	your	app	again.

MAUI apps are designed with XAML
XAML (the X is pronounced like Z, and it rhymes with “camel”) is a markup languagemarkup language that you’ll use to
build the user interfaces for your MAUI apps. XAML is based on XML (so if you’ve ever worked with
HTML, you have a head start). Here’s an example of a XAML tag for a button:
<Button Text="Click" Clicked="Button_Click" />

This book is about learning C#, so we'll give you just enoughjust enough XAML so you can build great-looking
MAUI apps—and we'll make sure that you have a solid foundation for learning more.

If MAUI is still giving you problems, Microsoft has a page to help
troubleshoot it: https://learn.microsoft.com/dotnet/maui/troubleshooting you are here 4 25

build something great…fast!

We’ll include a “map” like this at the start
of each of the sections of this project to
help you keep track of the big picture.

Here’s the page that you’ll build
When you start a project, the first thing you always want to do is take
a few minutes to understand the big picture. What are you going to
create? How will it work? Let’s take a look at the page you’re about to
build.

When you open an app built with .NET MAUI, the first thing it shows
you is a page that you interact with. That page uses controls, or
visual widgets like buttons and labels, to create a user interface (or UI)
that you can interact with. Here’s the page that you’re going to design:

The page has a
group of Button
controls that the
user can click on.
You’ll write C#
code later to
make them display
animal emoji in a
random order.

This label displays the number of seconds elapsed
since the player clicked the first animal.

This button has the text
“Play again?” and starts
the game. Later you’ll
write C# code to make
it invisible while the game
is running.

YOU ARE HEREYOU ARE HERE

You’ll use XAML to lay out your
page. A lot of C# developers
consider XAML a core skill, and
many C# jobs require you to
know at least some XAML, so we
wanted to make sure to include
enough of it in this book to give
you a good grounding in it.

MainPage.xaml.cs

CREATE THE CREATE THE
PROJECTPROJECT

DESIGN THE PAGEDESIGN THE PAGE WRITE C# WRITE C#
CODECODE

HANDLE MOUSE HANDLE MOUSE
CLICKSCLICKS

ADD A GAME ADD A GAME
TIMERTIMER

class MyClass{
 public Xyz() {
 // ...
 }
}

<window>
 <grid>
 ...
 </grid>
</window>

MainPage.xamlMainPage.xaml

26 Chapter 1

think before you code

Start editing your XAML code
The Solution Explorer lets you edit code files by double-clicking on them (or single-clicking in
VSCode). We’ll work with two files: MainPage.xaml (which contains your XAML code) and
MainPage.xaml.cs (which has the C# code for your game). This is what it looks like in Visual Studio:

Here are the two
files you’ll edit in
this project.

If you close any of
the files, you can

open them again by
double-clicking on

them in the Solution
Explorer. If you

don’t see it, you can
open it by choosing
Solution Explorer

from the View menu.

Make sure you expand MainPage.xaml
in the Solution Explorer—that’s the
only way to see MainPage.xaml.cs.

You can use these tabs to switch between files in your project.

You can always edit your XAML by hand instead of using the Toolbox
or Properties windows.

When	you	use	Visual	Studio	Code	to	edit	the	XAML	code	in	MainPage.xaml,	you	may	
notice	that	it’s	missing	some	of	the	features	we	show	in	Visual	Studio.	At	the	time	

we’re	writing	this,	VSCode’s	.NET	MAUI	editor	doesn’t	have	a	Toolbox	or	a	Properties	window.

Even	if	you’re	using	Visual	Studio,	you	might	find	that	an	element	you	need	isn’t	in	the	Toolbox,	
or	a	property	isn’t	in	the	Properties	window.	That’s	okay—the	only	thing	those	windows	do	is add
or change tags in your XAML code.	You	get	exactly	the	same	XAML	code	whether	you	type	it	
in	or	use	the	IDE’s	built-in	tools.

In	fact,	it’s	often	faster	to	edit	your	XAML	by	hand	than	to	search	the	Toolbox	or	Properties	
windows.	So	even	if	we	tell	you	to	use	the	Toolbox	or	Properties	window,	you can always type
in the XAML code instead.

Watch it!

VSCode looks a
little different; the

tabs work the same
way. Just make

sure you expand
Solution Explorer in
the Explorer panel.
It helps to collapse

the top section.

you are here 4 27

build something great…fast!

Add the XAML for a Button and a Label
The first thing we’ll do is design the page for the game. It will have 16 buttons
to display the animal emoji, plus a “Play again?” button to restart the game
when the player wins.

Delete everything between the opening and closing VerticalStackLayout tags.
XAML is a tag-based markup language. That means your XAML code uses tags to define everything
that appears in your app. Here’s an example of a tag—you can find it near the top of MainPage.xaml:

<ScrollView>

That’s an opening tag. You can find its matching closing tag near the end of the file:
</ScrollView>.

These tags add a ScrollView control to the page. If your app is in a window that’s smaller than its
contents, everything between the opening and closing tag can be scrolled up and down.

Find the opening VerticalStackLayout tag. It’s on the next few lines of the file, and it looks like this:

 <VerticalStackLayout
 Padding="30,0"
 Spacing="25">

Next, find the closing VerticalStackLayout tag:

 </VerticalStackLayout>

Now carefully delete all of the lines between those two tags. The XAML code in your
MainPage.xaml file should now look like this:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="AnimalMatchingGame.MainPage">

 <ScrollView>

 <VerticalStackLayout
 Padding="30,0"
 Spacing="25">

 </VerticalStackLayout>
 </ScrollView>

</ContentPage>

1

In the next step, you’ll
put your new XAML code
right here, where you
deleted the old code.

Do this!

At the time we’re writing this, the .NET MAUI extension for Visual Studio
Code does not have a Toolbox. If you’re using Visual Studio Code, you
may not be able to do all of the fancy drag-and-drop XAML editing you

get with Visual Studio, so you’ll need to carefully type in all of the XAML
line by line. But don’t worry, your app will still work the same way.

If you’re using a different version of .NET
than we did, the XAML in the page may

start out a little different. That’s OK—you
just need to get the XAML for your page to

exactly match the XAML code below.

28 Chapter 1

start writing xaml code

Go back to MainPage.xaml and use the Toolbox to add the “Play Again?” button.
You’ll be editing the XAML code again, so switch back to the MainPage.xaml tab. If you don’t
see the Toolbox panel, expand it by clicking the tab on the side of the window. Add a few extra blank
lines where you deleted the code between the opening and closing VerticalStackLayout tags. Then
drag the Button out of the Toolbox and drop it onto one of the lines that you added.

Drag the Button out of
the Toolbox and onto a
blank line between the

opening and closing
VerticalStackLayout tags.

You should now see a new Button tag between the VerticalStackLayout tags—it’s OK if the
spacing or indenting is a little different, because extra spaces or lines don’t matter in XAML:

 <VerticalStackLayout
 Padding="30,0"
 Spacing="25">

 <Button Text="" />

 </VerticalStackLayout>

3

Click on the
Toolbox tab
on the side of
the window
to expand it.
If you don’t
see it, choose
Toolbox from
the View menu.
Click the pin
button in the
upper-right
corner to
keep it from
collapsing.

Delete the C# code that goes with the XAML that you just deleted.
If you try to run your app right now, Visual Studio will give you an error message and refuse to run it,
because the C# code depends on things you just deleted. Expand MainPage.xaml in the Solution
Explorer and open MainPage.xaml.cs and find this code:

 private void OnCounterClicked(object sender, EventArgs e)

Delete it, and the next 10 lines of code, up to and including the closing curly brace }. Be careful not to delete
the final closing } at the end of the file. Then delete this line of code: int count = 0;

Your C# code should now look like this:

namespace AnimalMatchingGame;
{
 public partial class MainPage : ContentPage
 {
 public MainPage()
 {
 InitializeComponent();
 }
 }
}

2

When you dragged the Button out of the
toolbox and into your code, Visual Studio
added this Button tag. If you’re using
VSCode, you may not have a Toolbox, so
type this in exactly like it appears here.

Make sure you go back to the
Solution Explorer and open
MainPage.xaml.cs to edit the
C# code. You may need to
expand MainPage.xaml to see it.

You'll learn about classes and namespaces in Chapter 3.

you are here 4 29

build something great…fast!

Add properties to the XAML tag for the “Play again?” button.
XAML tags have properties that let you set options to customize how they're displayed on the
page. The Properties window in Visual Studio makes it easier to edit them.

Click on the code for the Button tag in MainPage.xaml, so your cursor is somewhere between the
opening < and closing > angle brackets. Then look at the Properties window—it’s usually
docked in the lower-right corner of Visual Studio. If you don’t see it, choose Properties or
Properties Window from the View menu. Make sure it says “Type Button” at the top, so you know
that you’re editing the button.

Find the Text property and set it to “Play again?”

Then find the FontSize property and set it to “Large.”

When you’re done editing the button, the XAML for it should look like this:

<Button Text="Play again?" FontSize="Large" //

The Button tag now has Text and FontSize properties.

Edit the XAML code by hand for your button to give it a name.
You can also edit XAML code by hand—for example, if you run into trouble with the Properties
window, you could type the XAML directly into the editor. You need to make sure that you
copy all of the brackets, quotes, etc. exactly, otherwise your code won't run!

In the next part of the project, you’ll write C# code to make your “Play again?” button visible
when the game is over, and invisible while the game is running. You’ll give it a name that the C#
code can use to tell it to show or hide itself.

Use the editor to add an x:Name property to give your button a name. It should look like this:

<Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large" //

4

5

Make sure you’re editing the Button.

XAML tags have properties that let you set options
to customize how they're displayed on the page.

If	you’re	using	Visual	Studio	Code,	you	may	not	have	a	Toolbox	panel	or	Properties	window.	
You’ll	need	to	type	the	XAML	into	the	MainPage.xaml	file	so	it	exactly	matches	our	code.

30 Chapter 1

add a button then add a label

Add an event handler so your button does something.
When you click a button, it executes C# code called an event handler. Visual Studio makes it easy to add
one. Place your mouse cursor just before the /> at the end of the Button tag and start typing Clicked.
Visual Studio will pop up an IntelliSense window:

Choose Clicked from the list and either click on it or press Enter. Visual Studio will then show you this:

Press Enter to add a new event handler. Your XAML tag should now look like this:

<Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large"
 Clicked="PlayAgainButton_Clicked" //

Switch to the MainPage.xaml.cs tab. You can see the code that Visual Studio added, which looks like this:

private void PlayAgainButton_Clicked(object sender, EventArgs e)
{

}

6

A XAML tag can be on a single line or split across multiple lines. Make sure you put the break in a space (not the space in “Play again”).

Add a Label control to your XAML page.
Go back to the screenshot of the game that shows the “Play again?” button. Notice how it also has text above
the button that displays the time elapsed? That’s a Label. It’s up to you to add a tag for it. Here’s what you’ll do:
1. Switch to the MainPage.xaml tab.
2. Open the Toolbox and drag a Label into your XAML code. Make sure it gets added directly below the

Button, just like you did in Step 3 when you were adding the Button.
3. Use the Properties window to set the Text property to “Time Elapsed: 0.0 seconds” and the FontSize

to “Large” just like you did in Step 4 when you were adding the Button.
4. Edit the XAML code by hand and set the x:Name to “TimeElapsed” just like you did in Step 5 when you

were adding the Button.

Exercise

When you see an exercise, that’s your chance to get some practice on
your own. Make sure you do every exercise—they’re an important part
of the book. If an exercise is part of a project, then the project won’t
work until you get it right. But don’t worry—we’ll always give you the
solution. And if you get stuck, it’s always OK to peek at the solution!

If	you	use	IntelliSense	to	complete	your	line,	it	may	not	add	the	C#	code—you’ll	need	to	open	
MainPage.xaml.cs	and	add	this	code	to	by	hand.	Your	app	will	still	work	just	fine.

If you’re using VSCode and don’t have a Toolbox, skip straight to
the Exercise Solution and carefully add the <Label ... /> tag.

you are here 4 31

build something great…fast!

Add a Label control to your XAML page.
If you followed the steps in the exercise correctly, your XAML code in MainPage.xaml should now look like this:
<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="AnimalMatchingGame.MainPage">

 <ScrollView>
 <VerticalStackLayout
 Padding="30,0"
 Spacing="25">

 <Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large"
 Clicked="PlayAgainButton_Clicked" />

 <Label x:Name="TimeElapsed" Text="Time Elapsed: 0.0 seconds"
 FontSize="Large" />

 </VerticalStackLayout>
 </ScrollView>

</ContentPage>

The C# code in MainPage.xaml.cs didn’t get modified as part of the exercise, so it should still look like this—if you’re
using Visual Studio Code, you had to carefully type in the PlayAgainButton_Clicked method by hand:
namespace AnimalMatchingGame;

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();
 }

 private void PlayAgainButton_Clicked(object sender, EventArgs e)
 {

 }
}

If you run your app now, it should look like this.

Exercise
Solution

It's OK if there are line breaks
between the properties in a tag, or if
the properties are in a different order.

Here's the Label that you added in the exercise.
We added a line break between the Text and
FontSize properties, but you don’t have to.

Before you move on, make sure that
your XAML and C# code matches
ours exactly, and that your app looks
like our screenshot when you run it.

Press F5 to run your app again. In VSCode
you need to switch back to the XAML code
in MainPage.xaml and then press F5.

32 Chapter 1

here’s some more q & a

Q: What exactly is a “page” in a MAUI app?

A: A .NET MAUI app is usually built out of one
or more pages, or individual screens that have
different layouts and contain controls like labels
and buttons. Some MAUI apps have multiple pages
that let you navigate between them. Your Animal
Matching Game app will just have a single page
with 16 animal buttons, a “Play again?” button, and
a label to show the elapsed time.

Q: So those buttons and labels are controls?

A: Yes. Everything you see on a MAUI page
is a control—including the page itself, which is a
ContentPage control. Some controls are dedicated
to making your page look a certain way, like the
VerticalStackLayout control that causes other
controls to be stacked one on top of another.
Others, like the Button and Label controls, are
there to display some kind of widget that the user
can see and interact with. We’ll talk more about
controls in the next chapter.

Q: It looks like some controls contain others,
like the VerticalStackLayout in my app contains
Button and a Label. What’s going on there?

A: When you include layout control like
VerticalStackLayout on your page, you can’t
actually see it. Its whole purpose is to cause
the other controls on the page to be displayed a
certain way—in this case, to be stacked on top
of each other. You need a way to tell MAUI which
other controls on the page you want it to stack. To
do that, you nest those other controls inside the
VerticalStackLayout by including their tags between
its opening <VerticalStackLayout> tag and its
closing </VerticalStackLayout> tag.

Q: Why do some tags like <ScrollView>
have a closing </ScrollView> tag, but
others like <Button> don’t have one?

A: A Button control doesn’t need to have any
other controls nested inside of it, so there’s no
need for it to have a closing tag—instead, you can
just end the tag with /> to make it self-closing.

Your app is looking good so far, but now you need to add some buttons. How
do you think you’ll do that? What do you think you’ll have to add to the XAML to
get 16 buttons to be displayed in a layout with four rows of four buttons?

Brain
Power

These Brain Power boxes are here to give you something
to think about. When you see one, don’t just go on to
the next section. Take a few minutes and actually think
about what you’re being asked. That will really help you
get this material into your brain faster!

there are no Dumb Questions

you are here 4 33

build something great…fast!

Use a FlexLayout to make a grid of animal buttons
The XAML for your page currently has three tags that determine its layout: there’s a ContentPage
tag on the outside that displays the whole view. It contains a ScrollView—everything nested between
its start and end tags will scroll if it goes off the bottom of the page. Inside it is a VerticalStackLayout,
which causes everything between its start and end tags to be stacked on top of each other in the order
that they appear. Inside all of those tags are self-closing Button and Label tags.

The next thing you’ll do is add a FlexLayout, which arranges anything inside of it in rows,
wrapping them to the next row so they all fit inside its total width. You’ll add 16 Button tags inside
the FlexLayout. You’ll get them to display in a 4x4 grid by setting the width of each button to 100
and the width of the FlexLayout to 400, so exactly four buttons will fit on each row.

</ContentPage>

<ScrollView>
<VerticalStackLayout>

<FlexLayout>

<ContentPage>

</ScrollView>
</VerticalStackLayout>

</FlexLayout>

The Button
controls are in
a FlexLayout,

which arranges
its contents in a
horizontal stack,
wrapping them

to a new line
when there are
too many to fit

on a single row.

<Label />

<Button /><Button />

<Button /> <Button /> <Button /> <Button />

<Button /> <Button /> <Button /> <Button />

<Button /> <Button /> <Button /> <Button />

<Button /> <Button /> <Button /> <Button />

You’ll set the width of each button to 100 and
the width of the FlexLayout to 400, which will

cause it to put at most four buttons on each row.

<FlexLayout>

</FlexLayout>

34 Chapter 1

add more xaml on your own

It’s time to finish designing your page. In this exercise, you’ll add a FlexLayout underneath the Label that you added in the
last exercise. Next, you’ll set its properties. Then you’ll add a button. And finally, you’ll copy the XAML for that button and
paste it 15 more times, so you have a total of 16 buttons on your page. If you’re using VSCode and don’t have a Toolbox, just
type the XAML exactly how it appears in the instructions instead of dragging it out of the Toolbox.

Add extra space for your FlexLayout control
Take a careful look at the screenshot that we just showed you. It shows you how the whole page works. Now go back to
Visual Studio and look at the XAML for your page, and figure out exactly where the FlexLayout should go—just below the
<Label ... /> tag.
Now put your cursor at that location and press Enter a few times to give yourself space to drag the FlexLayout.

Add the FlexLayout control just below the Label
1. Open the Toolbox and drag a FlexLayout into your XAML code. Make sure it gets added directly below the Label,

into the extra space you just added. It will look like this: <FlexLayout></FlexLayout>.
2. Position your cursor between the > and < in the middle of the XAML you just added and add several blank lines

between the opening and closing tags (you’ll drag a button into that space later in the exercise).
3. Place your cursor directly on the opening <FlexLayout> tag. Make sure the Properties window shows that the

type is FlexLayout.
4. Use the Properties window to set the Wrap property to “Wrap” and the MaximumWidthRequest property to “400.”
5. Edit the XAML code by hand and set the x:Name to "AnimalButtons" just like you did in the last exercise.

Add the first Button inside the FlexLayout
1. Open the Toolbox and drag a Button into your XAML code. Make sure it gets added in the space that you added

between the opening and closing tags of the FlexLayout. It will look like this: <Button Text="" />.
2. Place your cursor inside the Button tag. Make sure the Properties window shows that the type is Button.
3. Use the Properties window to set the Button’s HeightRequest property to “100,” the WidthRequest property to

“100,” and the FontSize property to “60.” The dropdown in the Properties window won’t have numbers—you can
either type “60” into the window or choose Caption from the dropdown list to set the font size.

4. Edit the XAML for the button and delete the Text property by selecting it in the code editor and pressing Delete.
Your cursor should now be inside the Button control.

5. Keep the cursor where it is and edit the XAML code by hand to set the BackgroundColor property to “LightBlue,”
the BorderColor property to “Black,” and the BorderWidth property to “1.” Visual Studio's IntelliSense pop-up will
help you match the colors (but if you’re using Visual Studio Code, you may not get a nice pop-up).

6. Add a Clicked event handler, just like you did with PlayAgainButton. Choose <New Event Handler> from the
dropdown, so it creates a new event handler method in the C# code. Use the default name Button_Clicked.

Add the rest of the Buttons
Copy the <Button ... /> tag that you just added. Then paste 15 identical tags below it. You should now have a
total of 16 identical Button tags inside a FlexLayout just below the Label. Run your app—it should match our screenshot.

Exercise
This looks like a big exercise! But don’t worry, just take it step by step.
We know you can do it! And remember, it’s not cheating to look at the
solution…in fact, seeing the solution is a great way to help you learn.

If you’re using VSCode, you might need to enter it by hand into MainPage.xaml.cs. It
will be just like PlayAgainButton_Clicked, except without “PlayAgain” in the name.

you are here 4 35

build something great…fast!

It’s time to finish designing your page. In this exercise, you’ll add a FlexLayout underneath the Label that you added in the
last exercise. Next, you’ll set its properties. Then you’ll add a button. And finally, you’ll copy the XAML for that button and
paste it 15 more times, so you have a total of 16 buttons on your page.
If you followed the steps in the exercise correctly, your XAML code in MainPage.xaml should now look like this:
<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="AnimalMatchingGame.MainPage">

 <ScrollView>
 <VerticalStackLayout
 Padding="30,0"
 Spacing="25">

 <Button x:Name="PlayAgainButton" Text="Play again?" FontSize="Large"
 Clicked="PlayAgainButton_Clicked" />

 <Label x:Name="TimeElapsed" Text="Time Elapsed: 0.0 seconds" FontSize="Large" />

 <FlexLayout x:Name="AnimalButtons" Wrap="Wrap" MaximumWidthRequest="400">

 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"

Exercise
Solution

Make sure the
opening tag of
your FlexLayout
is right below the
Label, and that its
properties match
ours. Be careful
to add a Maximum
and not Minimum
width request or
your buttons won’t
be in a 4x4 grid.

This looks like a lot of XAML code, but
most of it is just the 16 identical Button
tags that you copied and pasted.

It looks like there is a lot of XAML code here! But most of the XAML that you
added is the same <Button ... /> tag copied and pasted 16 times.

If you chose a different name for your project, you’ll see that name here.

36 Chapter 1

exercise solution

 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 <Button BackgroundColor="LightBlue" BorderColor="Black" BorderWidth="1"
 HeightRequest="100" WidthRequest="100" FontSize="60" Clicked="Button_Clicked"/>
 </FlexLayout>

 </VerticalStackLayout>
 </ScrollView>

</ContentPage>

Here’s the Button_Clicked event handler method in your MainPage.xaml.cs file:

private void Button_Clicked(object sender, EventArgs e)
{

}

Exercise
Solution

I can check if my solution is right by
comparing it with the screenshotcomparing it with the screenshot. That makes

it easier!

The 16 Button tags should be identical. It's OK if the properties are in a different order.

That's right!
If your app looks like this screenshot
when you run it, you got things
right. There's just one more thing
you need to check: make sure that
the x:Name properties match the
ones in our solution exactly—the
C# code you write will use them.

Make sure every buttonevery button has the Clicked="Button_Clicked" property.
If the Clicked event handler has a different name, your C# code won’t

match ours. You can delete the Clicked property from all of the buttons,
then re-add it with the correct name. Once you add the event handler, it

will show up in the dropdown when you change the other buttons.

If you’re using VSCode, you’ll need to open MainPage.xaml.cs and add
this event handler method by hand. Make sure it matches exactly!

you are here 4 37

build something great…fast!

YOU ARE HEREYOU ARE HERE

Write C# code to add the animals to the buttons
You started this book to learn C#. You’ve done all the preparation: creating the project, and
designing the page for your app. Now it’s time to get started writing C# code.

We’ll give you all of the code for this project, and show you exactly where it goes. But the goal
is to get you started learning C#, so we’ll also work with you to help you understand how it
all works—and that will provide you with a solid foundation to start writing code on your own.

You’ll add code that’s run every time the “Play again?” button is clicked. Here’s what it will do:

Make the animal buttons visible

Make the "Play again?" button invisible

Create a list of 16 pairs of animal emoji

For each of the 16 buttons:

 Pick a random animal from the list

 Add that random animal to the button

 Remove the animal from the list

 Keep going until it runs out of buttons

MainPage.xaml.cs

CREATE THE CREATE THE
PROJECTPROJECT

DESIGN THE PAGEDESIGN THE PAGE WRITE C# WRITE C#
CODECODE

HANDLE MOUSE HANDLE MOUSE
CLICKSCLICKS

ADD A GAME ADD A GAME
TIMERTIMER

class MyClass{
 public Xyz() {
 // ...
 }
}

<window>
 <grid>
 ...
 </grid>
</window>

MainPage.xamlMainPage.xaml

38 Chapter 1

start writing C# code

Start editing the PlayAgainButton event handler method
When you were writing the XAML code for the “Play again?” button, you added an event handler:

When you did this, Visual Studio added Clicked="PlayAgainButton_Clicked" to the XAML tag for
the button. It also added this C# code to MainPage.xaml.cs:

 private void PlayAgainButton_Clicked(object sender, EventArgs e)
 {

 }

That’s a method. C# code is made up of statements, or specific tasks that you’re
telling your app to execute. Those statements are bundled into methods. Methods
have a name—this method is named PlayAgainButton_Clicked.

Visual Studio generated that method for you automatically when you added
the Clicked event handler to your XAML code to give you a place to add the
statements that will tell it what to do when the “Play again?” button is clicked.

Add a C# statement to the event handler method
Place your cursor on the line between the opening { curly bracket and closing } curly bracket of the method.
Then start typing the following line of code to make the animal buttons visible:

 AnimalButtons.IsVisible = true;

As you’re typing, you’ll see some of Visual Studio’s really powerful tools that help you write code:

Do this!

Your C# Code

Methods

Statements

Every statement
in C# ends with a

semicolon (;).

This is an IntelliSense
window. Visual Studio

displays it as soon
as you press the

period key. It shows
you options that you

can use to add to
the code you just

wrote. If you choose
IsVisible, it will auto-
complete that part of
the statement for you.

When you’re typing code,
you may see Visual Studio

giving you suggestions
to complete the entire

statement. This is a really
powerful feature called
IntelliCode. It uses an
artificial intelligence

system trained on millions
of lines of code to give you

suggestions—and more
often than not, it seems to
be able to read your mind!

VSCode may not show you suggestions like
this. It's a feature of Visual Studio.

you are here 4 39

build something great…fast!

Add more statements to your event handler
When the player clicks the “Play again?” button, the app will display the animal buttons, hide the
“Play again?” button, and then fill the animal buttons with eight pairs of animal emoji in a random
order. You’re going to add statements to the PlayAgainButton_Clicked event handler method to do all
that.

Add a statement to make the “Play again?” button invisible.
Do you remember how you used the x:Name property in your XAML code to give names
to the “Play again?” button and the FlexLayout that contains the 16 animal buttons?
Take a minute and go back to that XAML code—you gave the FlexLayout the name
“AnimalButtons,” and you just added a line of code that used that name.

You also used an x:Name to give the “Play again?” button the name “PlayAgainButton.”
Now add a second line of code to your event handler method:

private void PlayAgainButton_Clicked(object sender, EventArgs e)
{
 AnimalButtons.IsVisible = true;
 PlayAgainButton.IsVisible = false;
}

That statement turns the “Play again?” button invisible.

Make the animal buttons invisible when the app starts.
Take a closer look at the first statement that you added to your event handler method. It
makes the FlexLayout that contains the animal buttons visible. But wait a minute—it’s
already visible! You saw it when you ran your app. Let’s do something about that.

Go back to the XAML code in MainPage.xaml and set the IsVisible property to "false":

<FlexLayout x:Name="AnimalButtons" Wrap="Wrap"
 MaximumWidthRequest="400" IsVisible="false">

Did you notice that you’re setting the same IsVisible property in both the C# code
and XAML? When the app starts, the IsVisible="false" in the XAML causes the
page to display without the FlexLayout and its buttons. When you click the “Play Again?”
button, the first line of code in its Clicked event handler method sets that property to true,
causing the FlexLayout and its buttons to appear on the page.

Now your app will make the animal buttons invisible when it starts up. As soon as the player
clicks the “Play again?” button to start the game, it will show the animal buttons and hide
the “Play again?” button.

1

2

Do this!

Add this line of code right
below the one you just added.

We made the code that’s
already in your files a lighter color to make it easier for
you to see what to add.

The properties on controls can be set in both XAML and C# code.

40 Chapter 1

add code to hide and show the buttons

When you enter your C# code, even tiny errors can make a big difference.

Some	people	say	that	you	truly	become	a	developer	after	the	first	time	you’ve	spent	hours	tracking	
down	a	misplaced	period.	Case	matters:	AnimalButtons	is	different	from	animalButtons.	Extra	
commas,	semicolons,	parentheses,	etc.	can	break	your	code—or,	worse,	change	your	code	so	
that	it	still	builds	but	does	something	different	than	what	you	want	it	to	do.	The	IDE’s	AI-assisted
IntelliSense and IntelliCode features	can	help	you	avoid	those	problems…but	it	can’t	do	everything	
for	you.	It’s	up	to	you	to	make	sure	your	code	is	right—and	that	it	does	what	you	expect	it	to	do.

Watch it!

Run your app and make sure it works so far.
When you’re writing code, you don’t just write a complete app from beginning to end, and then run
it to see if it works. That’s not how it works at all! Writing code is a creative process. There are
many, many ways to make your code do a specific thing, and in a lot of cases, the only way you can
really be sure you’re happy with it is to try writing it one way—and if you don’t like it, change it.

Plus, it’s easy to make syntax errors in your code. A syntax error means that you wrote something
that isn’t valid C# code, like using a keyword or symbol incorrectly or using a name that doesn’t exist.
For example, if you enter an extra } closing curly brace at the end of a method and then try to run it,
Visual Studio will give you an error telling you that it can’t build your code (which is what it does to
turn your C# code into something that your computer can actually execute).

What does all that mean?

It means that you’ll run your apps all the time, over and over again. And that’s perfectly fine!
It’s absolutely OK to run your app after even a tiny change, just to see what that change did. The
more comfortable you are running your app, the more you’ll feel like you can experiment and make
changes—and the more fun you’ll have with it.

So go ahead and run your app now. Make sure it starts out with the “Play again?” button visible
and the animal buttons invisible. Click the “Play again?” button and make sure it hides itself and
shows the animal buttons. When you’re done, close the app (or stop it from inside Visual Studio).

3

Click the “Play again?” button to cause it to disappear and the animal buttons to appear.
When you start the app, you’ll see the “Play
again?” button but no animal buttons.

you are here 4 41

build something great…fast!

Add animals to your buttons
This game won’t be much fun without animals to click on. Let’s update the “Play again?” button’s event handler method
to set up the buttons with eight pairs of emoji positioned randomly on the buttons.

Start creating a List of animal emoji.
Your event handler method needs to start with eight pairs of emoji, so you’re going to write a statement that
creates them and stores them in something called a List (you’ll learn a lot more about that in Chapter 8).

Switch back to MainPage.xaml.cs and start typing this line of code right after the statements that
you just added—but don’t end it with a semicolon, because that’s not the end of the statement yet:

 List<string> animalEmoji = [

While you’re typing, you’ll see IntelliSense windows pop up to help you enter that code. The text that you type
will be in a bold color, followed by a suggestion generated by IntelliCode:

As soon as you typed the opening square bracket], Visual Studio added a matching one, placing your mouse
cursor between the two brackets.:

 List<string> animalEmoji = []

Press Enter, then add a semicolon to the end. Your PlayAgainButton_Clicked method should now look like this:

 private void PlayAgainButton_Clicked(object sender, EventArgs e)
 {
 AnimalButtons.IsVisible = true;
 PlayAgainButton.IsVisible = false;

 List<string> animalEmoji = [

];

1

We took this screenshot just after we typed the
word “List.” The rest of the line is in a lighter
color to indicate that it’s an IntelliCode suggestion.

The IntelliSense pop-up
shows different valid words
that complete what you
started typing. It looks a
little different in VSCode,
but has the same options.

The mouse cursor should now be between the [brackets].

Make sure you add the semicolon after the closing] bracket.
42 Chapter 1

each button gets an emoji

How to enter emoji
If you’re using a Mac, use the Character Viewer panel,
by pressing Ctrl + ⌘ + space. Use the search box to search
for a specific animal. When you find the emoji you want to
enter, click on it to enter it as if you’d typed it.

Add a pair of animal emoji to your list.
Your C# statement isn’t done yet. Make sure your cursor is placed on the blank line you added between
the brackets. Now let’s add eight pairs of animal emoji. You can find emoji by going to your
favorite emoji website (for example, https://emojipedia.org/nature) and copying individual emoji characters.
Alternately…

If you’re using Windows, use the Windows emoji panel (press Windows logo key + period). If you’re
using a Mac, use the Character Viewer panel (press the fn key, or Ctrl+⌘+Space on older Macs).

Go back to your code and add a double quote " then paste the character—we used an octopus—
followed by another " and a comma, a space, another ", the same character again, and one more "
and comma. You might notice Visual Studio helping you enter this list—for example, when you enter a
double quote, it adds the closing quote.

Here’s what your list should look like now:

2

Some people think the plural emoji is
emoji, others think it’s emojis. We went
with emoji—but both ways are fine!

If you’re using Windows, use the emoji panel
by pressing Windows logo key  + period.
Use the search box to search for a specific
animal. When you find the emoji you want to
enter, click on it to enter it as if you’d typed it.

You can also bring up the macOS
Character Viewer using the Input
menu in the menu bar. If you
don’t see the Input menu, open
System Settings and search for
“input menu”—there’s an option
that you can turn on to show
the input menu in the menu bar.

Press  + period to bring
up the Windows emoji panel,
a really useful tool that
lets you enter emoji easily.

you are here 4 43

build something great…fast!

Add the rest of the animal emoji pairs to your list.
Then do the same thing for seven more emoji so you end up with eight pairs of animal
emoji between the brackets. We added a blowfish, elephant, whale, camel, brontosaurus,
kangaroo, and porcupine—but you can add whatever animals (or other emoji!) that you want.

Add a ; after the closing curly bracket. This is what your statement should look like now:

A List is a collection that stores a
set of values in order. You’ll learn all
about collections in Chapters 8 and 9.

When you use [brackets] to specify a List, you’re using a collection expression. Each animal in quotes is a separate string value, and values are separated by commas. You’ll learn more about expressions in Chapter 8.

Finish the method.
Add the rest of the code to add random animal emoji to the buttons—this code goes after the
closing]; at the end of the collection expression and before the } at the end of the method:

foreach (var button in AnimalButtons.Children.OfType<Button>())
{
 int index = Random.Shared.Next(animalEmoji.Count);
 string nextEmoji = animalEmoji[index];
 button.Text = nextEmoji;
 animalEmoji.RemoveAt(index);
}

Before you run your app, read through the code that you just added. It’s OK if you don’t
understand everything that’s going on with it yet. An important part of learning C# is
starting to make the code make sense, and reading through it is a great way to do that.

3

4

Reading through C# code—even if you don’t understand all
of it yet—is a great way to make it all start to make sense.

Be really careful with
the quotes and commas.

If you miss one, your
code won’t build.

This is a foreach
loop. It goes through
a collection (like
your list of emoji)
and executes a set of
statements for each
item it finds.

You’ll learn more about
loops in the next chapter.

Double-check that you’re adding this
code inside the { brackets } after the
PlayAgainButton_Clicked method, and
not the Button_Clicked method.

44 Chapter 1

finish the first part of the code

Make sure your code matches ours.
Here’s all of the C# code that you’ve added so far. We gave the parts that Visual Studio generated
for you automatically a lighter color so you can see the code that you entered yourself.

namespace AnimalMatchingGame;

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();
 }

 private void PlayAgainButton_Clicked(object sender, EventArgs e)
 {
 AnimalButtons.IsVisible = true;
 PlayAgainButton.IsVisible = false;

 List<string> animalEmoji = [
 " ", " ",
 " ", " ",
 " ", " ",
 " ", " ",
 " ", " ",
 " ", " ",
 " ", " ",
 " ", " ",
];

 foreach (var button in AnimalButtons.Children.OfType<Button>())
 {
 int index = Random.Shared.Next(animalEmoji.Count);
 string nextEmoji = animalEmoji[index];
 button.Text = nextEmoji;
 animalEmoji.RemoveAt(index);
 }
 }

 private void Button_Clicked(object sender, EventArgs e)
 {

 }
}

5

If you chose a different name for your
project, this line will match that name.

You added this line to make
the animal buttons invisible
when the app first starts up.

Make sure there are exactly eight
matching pairs of emoji. That’s part
of what makes the game work.

You just added this code to add the emoji to the buttons.

Visual Studio will
automatically indent

your code for you so it
looks like ours. If you’re

using VSCode, press
Alt-Shift-F or ⌥-Shift-F
to automatically fix the
indentation in your file.

Visual Studio added this empty Button_Clicked event handler method
when you added a Clicked property to the button that you copied and

pasted. Make sure it’s there! If you’re using VSCode, you might need to
carefully type it by hand if it didn’t get added automatically.

you are here 4 45

build something great…fast!

Run your app!
Run your app again. The first thing you’ll see is the “Play again?” button. Click
the button—you should now see eight pairs of animals in random positions:

Stop it and run it again a few times. The animals should get reshuffled in a
different order every time you click the “Play again?” button.

Wow, this game is already starting
to look good!

You’ve set the stage for the next part
that you’ll add.
When you build a new game, you’re not just
writing code. You’re also running a project. A really
effective way to run a project is to build it in small
increments, taking stock along the way to make
sure things are going in a good direction. That way
you have plenty of opportunities to change course.

If you’re using Visual Studio, you
might see the in-app toolbar

hovering at the top of the window:

We hid the in-app toolbar in our
screenshots. You can keep yours

visible or use the arrow at the right
to collapse it.

You can also turn it off if you want
(but you don't have to!). Click the
first button in the runtime tools to

bring up the Live Visual Tree panel
in the IDE:

Then click the first button in the
Live Visual Tree to enable or

disable the in-app toolbar.

46 Chapter 1

you created it and it works

Who Does What
C# statement What it does

This is a pencil-and-paper exercise. We included a lot of games and
puzzles like this throughout the book. You should do all of them,
because there’s neuroscience evidence that writing things down is an
effective way to get important concepts into your brain faster.

Find every button in the FlexLayout and repeat the
statements between the { curly brackets } for each of them

Pick a random number between 0 and the number
of emoji left in the list and call it “index”

Create a list of eight pairs of emoji

Make the FlexLayout with the emoji buttons visible

Use the random number called “index”
to get a random emoji from the list

Make the button display the selected emoji

Make the “Play again?” button invisible

Remove the chosen emoji from the list

you are here 4 47

build something great…fast!

Who Does What
Solution

C# statement What it does

Find every button in the FlexLayout and repeat the
statements between the { curly brackets } for each of them

Pick a random number between 0 and the number
of emoji left in the list and call it “index”

Create a list of eight pairs of emoji

Make the FlexLayout with the emoji buttons visible

Use the random number called “index”
to get a random emoji from the list

Make the button display the selected emoji

Make the “Play again?” button invisible

Remove the chosen emoji from the list

Here’s another pencil-and-paper exercise. Take a few minutes to do it!

Here’s a pencil-and-paper exercise that will help you really start to understand your C# code.

1. Take a piece of paper and turn it on its side so it’s in landscape orientation, and draw a
vertical line down the middle.

2. Write out the entire PlayAgainButton_Clicked method by hand on the left side of the paper,
leaving space between each statement. (You don’t need to be accurate with the emoji.)

3. On the right side of the paper, write each of the “what it does” answers above next to the
statement that it’s connected to. Read down both sides—it should all start to make sense.

Sharpen your pencil
MINIMINI

48 Chapter 1

do all of the pencil and paper exercise

I’m not sure about these “Sharpen your pencil” and matching
exercises. Isn’t it better to just give me the codejust give me the code to type into

the IDE?

Working on your code comprehension skills
will make you a better developer.
The pencil-and-paper exercises are not optional. They
give your brain a different way to absorb the information.
But they do something even more important: they give you
opportunities to make mistakes. Making mistakes is a
part of learning, and we’ve all made plenty of mistakes (you
may even find one or two typos in this book!). Nobody writes
perfect code the first time—really good programmers always
assume that the code that they write today will probably
need to change tomorrow. In fact, later in the book you’ll
learn about refactoring, a name for programming techniques
that are all about improving your code after you’ve written it.

We’ll add bullet points like this to give a quick summary of many of the ideas and tools that you’ve seen so far.

 ◾ Visual Studio is Microsoft’s IDE—or integrated
development environment—that simplifies and assists
in editing and managing your C# code files.

 ◾ .Console apps are cross-platform apps that use text
for input and output.

 ◾ .NET MAUI (or .NET Multi-platform App UI) is a cross-
platform framework for building visual apps in C#.

 ◾ MAUI user interfaces are designed in XAML
(eXtensible Application Markup Language), an XML-
based markup language that uses tags and properties
to define controls in a user interface.

 ◾ MAUI apps are made up of pages that show controls.

 ◾ The FlexLayout control contains other controls and
wraps them so they display on the page.

 ◾ The IDE’s Properties window makes it easy to edit the
properties of your controls like the text or font size.

 ◾ C# is made up of statements grouped into methods.

 ◾ An event handler method gets executed when
specific events—like button clicks—happen.

 ◾ Visual Studio’s AI-assisted IntelliSense and
IntelliCode help you enter code more quickly.

Bullet Points

We’re serious—take
the time to do the
pencil-and-paper
exercises. They’re
carefully designed to
reinforce important
concepts, and they’re
the fastest way to
get the ideas in this
book into your brain.

you are here 4 49

build something great…fast!

My project has a lot of code already! Wouldn’t it be
dreamy if there was an easy way for me to save everything

I’ve done someplace where I can save my codesave my code, share itshare it, and
always find italways find it any time I want?

You can use Git to save all of your code,
and Visual Studio will help make it easy.
You’re going to write a lot of code in this book! Wouldn’t it
be great if there was a convenient place to put that code so
you can always go back to it?

We bet that you’ll write some apps that you really like, and
you’ll want to share them with your friends so they can see
the great things you’ve built.

Do you have a desktop and a laptop? A computer at home
and at an office? Wouldn’t it be great if you could start a
project on one computer, then finish it on another one?

Imagine you’re working on a project. You’ve spent hours
getting the code right, and you’re really happy with it.
Then you make a few changes, and...oh no! Something
went completely wrong, your code is broken, and you don’t
remember exactly what you changed. It would be great if
you could see a history of all the changes you made, right?

Git can help you do all of those things!

Here are just a few things Git can do for you
 " It can save your files somewhere that you can access them from anywhere, any time.

 " It lets you save snapshots of your work so you can go back and see exactly what changed.

 " It lets you share your code with anyone (or keep it private!).

 " It lets a group of people collaborate on a project together—so if you’re learning C# with
your friends, you can all work on code together.

50 Chapter 1

save your code with git

Visual Studio makes it easy to use Git
Git is a really powerful and flexible tool that can help you save, manage, and share
the code and files for all of your projects. It can also be complex and confusing
at times! Luckily, Visual Studio has built-in Git support that takes care of the
complexity. It helps you with Git, so you can concentrate on your code.

We’ll give you everything you need to use Visual Studio to save and share
your projects. But there is a lot more that you can do with Git, especially if
you’re working with large teams! If you’re fascinated by what you see and
want to do a deep dive into Git, check out Head First Git by Raju Gandhi.

Visual Studio can help you create a new Git repository on GitHub, the popular platform for source code hosting and collaboration.

Visual Studio’s Git features help you
easily add your code to any Git and
push changes as often as you want.

We recommend that you create a GitHub account and use it to
save the code for each of the projects in this book. That will
make it easy for you to go back and revisit past projects any time!

Our free Head First C# Guide to Git PDF gives you a simple,
step-by-step guide to saving your code in Git with Visual Studio.
Download it from https://github.com/head-first-csharp/fifth-edition.

you are here 4 51

build something great…fast!

YOU ARE HEREYOU ARE HERE

MainPage.xaml.cs

CREATE THE CREATE THE
PROJECTPROJECT

DESIGN THE PAGEDESIGN THE PAGE WRITE C# WRITE C#
CODECODE

HANDLE MOUSE HANDLE MOUSE
CLICKSCLICKS

ADD A GAME ADD A GAME
TIMERTIMER

class MyClass{
 public Xyz() {
 // ...
 }
}

<window>
 <grid>
 ...
 </grid>
</window>

MainPage.xamlMainPage.xaml

52 Chapter 1

how mouse clicks will work

Add C# code to handle mouse clicks
You’ve got buttons with random animal emoji. Now you need them to do
something when the player clicks them. Here’s how it will work:

The player clicks the first button.

The player clicks buttons in pairs. When they click the
first button, the game keeps track of that particular
button’s animal. The button that the player clicked
changes color, so they can see what animal they
clicked on.

The player clicks the second button.

The game looks at the animal on the second button
and compares it against the first one they clicked on.
The game compares its animal against the animal
on the button that it kept track of from the first click.

The game checks for a match.

If the animals match, the game goes through all of the
emoji in its list of shuffled animal emoji. It finds any emoji
in the list that match the animal pair the player found and
replaces them with blanks.

If the animals don’t match, the game doesn’t do anything.

In either case, it resets its last animal found so it can do
the whole thing over for the next click.

The game
repeats this

until all eight
pairs of

animals are
matched.

you are here 4 53

build something great…fast!

When you added the Clicked event handler to your animal button, Visual Studio automatically
added a method called Button_Clicked to MainPage.xaml.cs. Here’s the code that will go into that method. Before
you add this code to your app, read through it and try to figure out what it does.
We’ve asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.
Button lastClicked;
bool findingMatch = false;
int matchesFound;

private void Button_Clicked(object sender, EventArgs e)
{
 if (sender is Button buttonClicked)
 {
 if (!string.IsNullOrWhiteSpace(buttonClicked.Text) && (findingMatch == false))
 {
 buttonClicked.BackgroundColor = Colors.Red;
 lastClicked = buttonClicked;
 findingMatch = true;
 }
 else
 {
 if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text))
 {
 matchesFound++;
 lastClicked.Text = " ";
 buttonClicked.Text = " ";
 }
 lastClicked.BackgroundColor = Colors.LightBlue;
 buttonClicked.BackgroundColor = Colors.LightBlue;
 findingMatch = false;
 }
 }

 if (matchesFound == 8)
 {
 matchesFound = 0;
 AnimalButtons.IsVisible = false;
 PlayAgainButton.IsVisible = true;
 }
}

4. What do the last six lines of the method starting with if (matchesFound == 8) and going to the end do?

Sharpen your pencil

1. What does matchesFound do?

2. What do these three lines of code do?

3. What does this block of code do?

That’s a double quote
followed by a space and
another double quote.

this code runs when the user clicks

We’ve asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.
Button lastClicked;
bool findingMatch = false;
int matchesFound;

private void Button_Clicked(object sender, EventArgs e)
{
 if (sender is Button buttonClicked)
 {
 if (!string.IsNullOrWhiteSpace(buttonClicked.Text) && (findingMatch == false))
 {
 buttonClicked.BackgroundColor = Colors.Red;
 lastClicked = buttonClicked;
 findingMatch = true;
 }
 else
 {
 if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text))
 {
 matchesFound++;
 lastClicked.Text = " ";
 buttonClicked.Text = " ";
 }
 lastClicked.BackgroundColor = Colors.LightBlue;
 buttonClicked.BackgroundColor = Colors.LightBlue;
 findingMatch = false;
 }
 }

 if (matchesFound == 8)
 {
 matchesFound = 0;
 AnimalButtons.IsVisible = false;
 PlayAgainButton.IsVisible = true;
 }
}

4. What do the last six lines of the method starting with if (matchesFound == 8) and going to the end do?

Solution
Sharpen your pencil

1. What does matchesFound do?

2. What do these three lines of code do?

3. What does this block of code do?

It keeps track of the number
of pairs of animals the player
found, so the game can end
when they found all 8 pairs.

These lines are run when the player clicks the
first button of a potential match to change
its color to red and keep track of it.

This block of code is run when the
player clicks on the second button
in the pair. If the animals match,
it adds one to matchesFound and
blanks out the animals on both
buttons. It also resets the color of
the first button back and gets set
for the player to click the first
button in a pair again.

If matchesFound equals 8, the player found all 8 pairs of animals. When that happens, these lines
reset the game by setting matchesFound back to zero, hiding the animal buttons, and showing the
“Play again?” button so the player can start a new game by clicking the “Play again?” button.

Do you see a warning in the Error List window about a non-nullable field? Your code will still run even when you
see green warnings (unlike red errors, which mean your code can’t run). But you should still pay attention to
warnings! Don’t worry about this warning for now—you’ll learn about what it is and how to fix it in Chapter 11.

54 Chapter 1

An operating system like Windows, macOS, Android, or iOS can’t run C# code. That’s why Visual Studio has to build your
code, or turn it into a binary (a file that the operating system can run). Let’s do an experiment and break your code.

Go to the first line of code in your Button_Clicked method. Press Enter twice, then add this on its own line: Xyz

Check the bottom of the code editor again—you’ll see an icon that looks like this: or . If you don’t see the
icon, choose Build Solution from the Build menu to tell Visual Studio to try to build your code.

Click the icon (or choose Error List from the View menu) to open the Error List window. You’ll see two errors in the window
(if you’re using a Mac it’s called Errors and not Error List, and it looks a little different, but it displays the same information):

Visual Studio displayed these errors because Xyz is not valid C# code, and the errors prevent it from building your app.
Your code won’t run with those errors, so go ahead and delete the Xyz line that you added and build your app again.

If there are no other errors in your code, the Error List should be empty, and you’ll see an icon that looks like this at the
bottom of the Visual Studio window: or —that tells you that your app builds.

IDE Tip: The Error List

Enter the code for the event handler
Did you do the “Sharpen your pencil” exercise? If not, take a few minutes and do it—you may not understand 100% of
the code in the Button_Clicked event handler method yet, but you should at least have a basic sense of what’s going on.
And, more importantly, you’ve had a chance to look at it closely enough so that it should be familiar.

That familiarity will make it easier to use the IDE to type the code into the method. Stop your app if it’s
running—close the window or choose Stop Debugging (Shift+F5) from the Debug or Run menu—then edit MainPage.
xaml.cs, find the Button_Clicked event handler method that Visual Studio added for you, and click on the line between
its opening { and closing } curly brackets.

Now start typing the code from the “Sharpen” solution line by line. If you haven’t used an IDE like Visual
Studio or VSCode to write code, it may be a little weird seeing its IntelliSense and IntelliCode suggestions pop up. Use
them if you can—the more you get used to them, the faster and easier it will be to write code later on in the book.

You need to be really careful when you’re entering code, because if your opening parentheses or brackets don’t have
matches, or if you miss a semicolon at the end of a statement, your code won’t build. Luckily, Visual Studio has a lot of
features to help you write code that builds:

 " When you enter if it automatically adds the opening and closing parentheses () so you don’t accidentally leave
them out.

 " If you put your cursor in front of an opening parenthesis or bracket, it will highlight the closing one so you can
easily see its match.

 " A lot of the time, when you enter code that has problems—like writing matchesFnd instead of
matchesFound, for example—it will often point out the error by drawing a red squiggly line underneath it.

you are here 4 55

build something great…fast!

56 Chapter 1

now your game does more

Run your app and f ind all the pairs
Try running your app. If you entered all of the code correctly, it should start up and
show you the “Play again?” button. Click the button to see a random list of animals.
Then click each pair of animals one by one—each pair will disappear after you click
it. Once you click the last pair of animals, the buttons will disappear and you’ll see
the “Play again?” button again.

Try experimenting with your app. Click mismatched pairs. Click in the window but
outside the buttons. Click on the “Time elapsed” label. Click an empty button. Is
your app working?

Uh-oh—there’s a bug in your code
If you typed in all of the code correctly, you may have noticed a problem. Start
your app, click the “Play again?” button to show the random animals, and click on a
pair to make the animals disappear from their buttons. Now click the one of the
blank buttons, then the other—and repeat that seven times. Wait, what
happened? Did the animal buttons disappear and the “Play again?” button appear,
as if you’d won the game? That’s not supposed to happen! Your game has a bug.

Don’t worry, this bug is not your fault!

We left that bug in your code on purpose. You’re going to be writing a lot of code
throughout this book. Every chapter has several projects for you to work on…and
there are opportunities for bugs in every one of those projects. Finding and fixing
bugs is a normal and healthy part of writing code—and a really valuable skill for you
to practice.

When you f ind a bug , you need to sleuth it out
Every bug is different. Code can break in many different ways. But there’s one
thing all bugs have common: every one of them is caused by a problem in the
code. So when there’s a bug, your job is to figure out what’s causing it, because
you can’t fix the problem until you know why it’s happening.

If you’ve ever read a mystery novel or watched a detective show, you know that to
solve a mystery, you need to find the culprit. So let’s do that right now. It’s time
to put on your Sherlock Holmes cap, grab your magnifying glass, and sleuth out
what’s causing the bug.

If your game doesn’t work
the way it should or you
don’t see the bug on this
page, go back and check

the code you entered
against the code in the
book. It’s really easy to
overlook a typo. Finding
those issues is a good

use of your time, because
spotting errors in your
code is a really good

developer skill to work on.

Every bug is
caused by a
problem in
the code, so
the first step
in fixing a
bug is figuring
out what’s
causing it.

you are here 4 57

build something great…fast!

The Case of the Unexpected Match
You’ve probably heard the word “bug” before.
You might have even said something like this to your friends at some point in the past: “That game is really
buggy, it has so many glitches.” Every bug has an explanation, and everything in your program happens for a
reason…but not every bug is easy to track down. That’s why we’ll include tips for sleuthing out bugs throughout
the book, starting with this “Sleuth it Out” section.

Every bug has a culprit.
Bugs are weird. They’re what happens when your code does something you didn’t expect it to do.
But bugs are also normal. Every developer spends time finding and fixing bugs. It’s a
normal part of writing code. You’re going to write code that doesn’t do what you expect it
to. And when you do, the first thing you need to do is figure out what’s causing the bug.

The first step in finding a bug is thinking about what might have caused it.
Sherlock Holmes once said, “Crime is common. Logic is rare. Therefore it is upon the
logic rather than upon the crime that you should dwell.” That’s great advice for figuring out what caused a bug.
Don’t get frustrated because your app doesn’t do what you want (that’s dwelling on the crime!). Instead, think
about the logic of the situation. So let’s look at the code and figure out what’s going on.

Read the code carefully and search for clues.
We know that all of the code for handling mouse clicks is in the Button_Clicked event handler that you just
added. So let’s go back to the code and see if we can find clues about what went wrong.
Luckily, you did that “Sharpen your pencil” exercise. You looked closely at the code in the Button_Clicked
event handler method to understand it. (If you haven’t done that exercise yet, go back and do it now!)
Based on what we found in the “Sharpen your pencil” exercise, we already know a few things about the code:
• The event handler uses matchesFound to keep track of the number of pairs of animals the player found, so

the game can end when they find all eight pairs.
• There’s a part of the event handler that checks if the animals on the two buttons that the player clicked on

match each other. If they do match, it adds one to matchesFound and blanks out both buttons.
• If matchesFound equals 8, the player found all 8 pairs of animals. There’s code at the end of the event

handler that checks to see if matchesFound is equal to 8, and if that’s true it resets the game.

Those are the important clues that will help us find and fix the bug. Before you go on, can you sleuth out
what’s causing the game to end early if you keep clicking a button that’s already been cleared?

Sleuth it Out

Finding and fixing bugs is one part typing, nine parts thinking...
and 100% guaranteed to make you a better developer. That’s
what these “Sleuth it Out” sections are all about.

58 Chapter 1

find the bug and fix it

Why did the bug happen?
Let’s think about those three clues for a minute. Here’s what we know:
• The game uses matchesFound to keep track of the number of pairs of animals the player found.
• If the player clicks on a pair, the game increases matchesFound by 1 and blanks out the buttons the player

clicked on.
• When matchesFound reaches 8, the game resets itself.

So what are these clues telling us? There’s one conclusion that we can draw from these clues:
Somehow matchesFound is being increased by 1 when the player clicks on a button that’s already blanked out.
Which means we have a starting point: the code that increases matchesFound by 1.

Go back to the scene of the crime
Here’s the part of the code that increases matchesFound – the specific line that does that is in boldface:
if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text))
{
 matchesFound++;
 lastClicked.Text = " ";
 buttonClicked.Text = " ";
}

The first line of code in the statements that we just showed you is an if statement, checks if something is true, and
if it is then it executes statements. In this case, if the player clicked a different button than the first one in the pair
(that’s what “buttonClicked != lastClicked” checks for) and if the animals on those two buttons match (“buttonClicked.
Text == lastClicked.Text”), it increases matchesFound by 1 and blanks out both buttons.
This is where things went wrong—which means it’s also where we can fix the bug. We just need to find a way to keep
matchesFound from getting increased by 1 if the player clicked a button that’s already blank.

We found the culprit, so now we can fix the bug.
Position your cursor between the last two closing parentheses)) in the if statement and press Enter to add a line.
Then enter the following code: && (!String.IsNullOrWhiteSpace(buttonClicked.Text))
Here’s what your code should now look like:
if ((buttonClicked != lastClicked) && (buttonClicked.Text == lastClicked.Text)
 && (!String.IsNullOrWhiteSpace(buttonClicked.Text)))
{
 matchesFound++;
 lastClicked.Text = " ";
 buttonClicked.Text = " ";
}

Once you’ve edited the if statement, run your app again. Now the bug should be fixed.

Sleuth it Out

This statement uses the ++ operator to increase
the value of matchesFound by 1. You’ll learn about
++ and other operators in the next chapter.

Adding this code to your “if” statement causes it to make sure the button that the player clicked on is not blank before adding 1 to matchesFound.

YOU ARE HEREYOU ARE HERE

MainPage.xaml.cs

CREATE THE CREATE THE
PROJECTPROJECT

DESIGN THE PAGEDESIGN THE PAGE WRITE C# WRITE C#
CODECODE

HANDLE MOUSE HANDLE MOUSE
CLICKSCLICKS

ADD A GAME ADD A GAME
TIMERTIMER

class MyClass{
 public Xyz() {
 // ...
 }
}

<window>
 <grid>
 ...
 </grid>
</window>

MainPage.xamlMainPage.xaml

you are here 4 59

build something great…fast!

TickTic
k
Tick

Timers “tick” every
time interval by
calling methods
over and over
again. You’ll use a
timer that starts
when the player
starts the game and
ends when the last
animal is matched.

Finish the game by adding a timer
Our animal match game will be more exciting if players can try to
beat their best time. We’ll add a timer that “ticks” after a fixed
interval by repeatedly calling a method.

Let’s add some excitement to the game! The time
elapsed since the game started will appear at the
bottom of the window, constantly going up, and
only stopping after the last animal is matched.

60 Chapter 1

make your timer tick

Add a timer to your game’s code
In this last part of your project, you’ll add a timer to your game to make it more exciting. It
will keep track of the time elapsed (in tenths of seconds), starting when the player clicks the
“Play again?” button and stopping when they find the last match.

Add a line of code to the end of the PlayAgainButton_Clicked event
handler to start a timer.
Go to the very end of the PlayAgainButton_Clicked event handler. There are two closing curly
brackets } at the end of the method on separate lines. Add three lines between the brackets, then
add the following line of code into that space that you created:

 foreach (var button in AnimalButtons.Children.OfType<Button>())
 {
 int index = Random.Shared.Next(animalEmoji.Count);
 string nextEmoji = animalEmoji[index];
 button.Text = nextEmoji;
 animalEmoji.RemoveAt(index);
 }

 Dispatcher.StartTimer(TimeSpan.FromSeconds(.1), TimerTick);
}

The line of code that you just added causes your app to start a timer that executes a
method called TimerTick every 0.1 of a second.

Examine the error and click on “TimerTick” in the code you just added.
You just added a line of code to start a timer that “ticks” every 10th of a second. Every time it
ticks, it calls a method called TimerTick. But hold on—your C# code doesn’t have a TimerTick
method. If you try to build your code, you’ll see an error in the Error List window:

And there will be a red squiggly line underneath TimerTick in the line of code that you added.
Click on TimerTick in the C# code—when you click on it, Visual Studio will display an icon
shaped like a light bulb or screwdriver in the left margin.

1

2

Do this!

When you click on TimerTick in the C# code, Visual Studio displays either a light bulb or screwdriver icon. It looks slightly different in Visual Studio Code, but works the same way.

The red squiggly line tells you under
TimerTick that there’s an error here.

you are here 4 61

build something great…fast!

Use Visual Studio to generate a new TimerTick method.
The code that you added has an error because it refers to a method called TimerTick that doesn’t
exist. When you click on it, a light bulb or screwdriver icon shows up in the lefthand margin. If you
hover over it, you can see an error message and icon directly underneath it as well:

Clicking the icon brings up the Quick Actions menu, which gives you some suggested potential
fixes for the error. You can also click on TimerTick and press Alt+Enter or Ctrl+. on Windows or
⌘+. on a Mac—that’s a Control or ⌘ plus period—to on a Mac to bring up the menu:

The first option in the Quick Actions menu should be “Generate method 'TimerTick'”—and if you
select that option, you’ll see a preview to the right. Choose that option.

Visual Studio will generate the TimerTick method for you. Look through your C# code in
MainPage.xaml.cs and find the TimerTick method that Visual Studio added:

private bool TimerTick()
{
 throw new NotImplementedException();
}

3

When your C# code has errors, Visual Studio
sometimes has suggestions for potential fixes
that can generate code to fix the error.

In VSCode, the Quick
Actions icon looks like
a light bulb, not a
screwdriver.

We put an extra line break in this statement so it would fit on the page in the printed book, but you can put it all on one line if you want. Make sure the parentheses match exactly.

62 Chapter 1

Finish the code for your game
In this last part of your project, you’ll add a timer to your game to make it more
exciting. It will keep track of the time elapsed (in tenths of seconds), starting when the
player clicks the “Play again?” button and stopping when they find the last match.

Add a f ield to hold the time elapsed
Find the first line of the TimerTick method that you just generated. Place your mouse
cursor at the beginning of the line, then press Enter twice to add two spaces above it.

Add this line of code right above the TimerTick method you just added:

int tenthsOfSecondsElapsed = 0;

private bool TimerTick()

Finish your TimerTick method
Now you have everything you need to finish the TimerTick method. Here’s the code for it:

private bool TimerTick()
{
 if (!this.IsLoaded) return false;

 tenthsOfSecondsElapsed++;

 TimeElapsed.Text = "Time elapsed: " +
 (tenthsOfSecondsElapsed / 10F).ToString("0.0s");

 if (PlayAgainButton.IsVisible)
 {
 tenthsOfSecondsElapsed = 0;
 return false;
 }

 return true;
}

Run your game. Now the timer works!

your game is almost done

Do this!

This is a field. You'll learn
more about how fields
work in Chapter 3.

Let’s take a closer look at your TimerTick method to see how it, well, ticks. It has a total of seven
statements, and each of them is important.

private bool TimerTick()
{

 if (!this.IsLoaded) return false;

 tenthsOfSecondsElapsed++;

 TimeElapsed.Text = "Time elapsed: " +
 (tenthsOfSecondsElapsed / 10F).ToString("0.0s");

 if (PlayAgainButton.IsVisible)
 {
 tenthsOfSecondsElapsed = 0;
 return false;
 }

 return true;
}

Your TimerTick Method Up Close

you are here 4 63

build something great…fast!

One last thing about the timer. The timer you used is guaranteed to fire no more than once
every 10th of a second, but it may fire a little less frequently than that—which means the

timer in the game may actually run a little slow. For this game, that’s absolutely fine!

This statement is only executed if the if statement
didn’t find the “Play again?” button visible. It tells

the timer to keep running.

This statement causes the timer
to stop, and no other statements

in the method get executed.

We need to reset the 10ths of
seconds counter so it starts at
0 the next time the game starts.

If the “Play Again?” button is visible again, that means the
game is over and the timer can stop running. The if statement

runs the next two statements only if the game is running.

This statement updates the TimeElapsed
label with the latest time, dividing the 10ths

of second by 10 to convert it to seconds.

The timer ticks every 10th of
a second. Adding 1 to this

field keeps track of how many
of those 10ths have elapsed.

If you close your app, the
timer could still tick after

the TimeElapsed label
disappears, which could

cause an error. This statement
keeps that from happening.

Can you think of your own “even better if”
improvements for the game? This is a great
exercise—take a few minutes and write
down at least three improvements to the
animal matching game.

Sharpen your pencil
MINIMINI

Did you add your code to a Git repo?
If you did, this is a great time to commit all of your
changes and push it to the repository!

And if you still haven’t, take a few minutes and
check out our free Head First C# Guide to
Git PDF. It gives you step-by-step instructions for
keeping your code safe in Git.

Download it today from our own GitHub page:
https://github.com/head-first-csharp/fifth-edition

64 Chapter 1

great job can you make it even better?

Even better ifs…
Your game is pretty good. Nice work! Every game—in
fact, pretty much every program—can be improved.
Here are a few things that we thought of that could
make the game better:

 " Add different kinds of animals so the same ones
don’t show up each time.

 " Keep track of the player’s best time so they can
try to beat it.

 " Make the timer count down instead of counting
up so the player has a limited amount of time.

Great job!

We’re serious—take a few minutes and do this. Stepping back and thinking about the project you just finished is a great way to seal the lessons you learned into your brain.

 ◾ An event handler is a method that your application
calls when a specific event like a mouse click happens.

 ◾ Visual Studio makes it easy to add and manage your
event handler methods.

 ◾ The IDE’s Error List window shows any errors that
prevent your code from building.

 ◾ A timer calls a method over and over again on a
specified interval.

 ◾ foreach is a kind of loop that iterates through a
collection of items.

 ◾ When you have a bug in your code, the first thing to
do is try to figure out what’s causing it.

 ◾ Bugs are normal, and sleuthing out bugs is an
important developer skill that you’ll work on
throughout this book.

 ◾ Visual Studio makes it really easy to use source
control to back up your code and keep track of all
changes that you’ve made.

 ◾ You can commit your code to a remote Git repository.
We use GitHub for the repository with the source
code for all of the projects in this book.

Bullet Points

Congratulations—you built
a game, but you did more
than that! You took the
time to really understand
how it works, and that’s
a very important step in
getting comfortable with
C# concepts.

variables, statements, and methods2

Dive into C# code

You’re not just an IDE user. You’re a developer.
You can get a lot of work done using the IDE, but there’s only so far it can take you.

Visual Studio is one of the most advanced software development tools ever made, but a

powerful IDE is only the beginning. It’s time to dive in to C# code: how it’s structured,

how it works, and how you can take control of it…because there’s no limit to what you can

get your apps to do.

this is a new chapter 65

Take a closer look at the f iles in your console app
In Chapter 1, you created a new C# Console App project and named it MyFirstConsoleApp. When
you did that, Visual Studio created two folders and three files.

MyFirstConsoleApp.sln

MyFirstConsoleApp.csproj Program.cs

MyFirstConsoleApp

MyFirstConsoleApp

Let’s take a closer look at the Program.cs file that it created. Open it up in Visual Studio:

A statement performs one single action
A console app is an app with a text-only user interface. All its input and output goes to a console,
like the Windows command prompt, the macOS Terminal, or Linux Terminal.

Your app has two lines:

1. The first line is a comment. Comments start with two forward slashes // and everything
after those slashes is ignored. You can use comments to write notes about the code.

2. The second line is a statement. Statements are what make your code do things. In this case,
it’s a Console.WriteLine statement, which writes a line of text.

When you run your app, it starts with the first statement, and keeps executing statements until it
runs out, and since it’s a console app you’ll see its output in a console window. Once it executes the
last statements, the app exits.

Visual Studio created two folders
and three files for you. This file
has the code that you just ran.

This is a screenshot
of Visual Studio for
Windows. If you’re
using VSCode the
screen will look a little
different, but the
code will be the same.

66 Chapter 2

statements live in methods live in classes

The IDE helps you build your code right.
A long, long, LONG time ago, programmers had to use
simple text editors like Windows Notepad or macOS
TextEdit to edit their code. In fact, some of their
features would have been cutting-edge (like search and
replace, or Notepad’s Ctrl+G for “go to line number”).
We had to use a lot of complex command-line
applications to build, run, debug, and deploy our code.

Over the years, Microsoft (and, let’s be fair, a lot of
other companies, and a lot of individual developers!)
figured out how to add many helpful things like error
highlighting, IntelliSense, WYSIWYG click-and-drag
window UI editing, automatic code generation, and
many other features.

After years of evolution, Visual Studio is now one of
the most advanced code-editing tools ever built. And
luckily for us, it’s also a great tool for learning and
exploring C# and app development.

So the IDE can really help me out. It
generates codegenerates code, and it also helps me find find

problemsproblems in my code.

Q: I understand what Program.cs does—that’s where the code for my program lives. But does my program
need the other two files and folders?

A: When you created a new project in Visual Studio, it created a solution for you. A solution is just a container
for your project. The solution file ends in .sln and contains a list of the projects that are in the solution, with a small
amount of additional information (like the version of Visual Studio used to create it). The project lives in a folder inside
the solution folder. It gets a separate folder because some solutions can contain multiple projects—but yours only
contains one, and it happens to have the same name as the solution (MyFirstConsoleApp). The project folder for your
app contains two files: a file called Program.cs that contains the code, and a project file called MyFirstConsoleApp.
csproj that has all of the information Visual Studio needs to build the code, which means turning it into something
your computer can run. You’ll eventually see two more folders underneath your project folder: the bin folder will
have the executable files built from your C# code, and the obj folder will have the temporary files used to build it.

there are no Dumb Questions

you are here 4 67

dive into c# code

We use variables and variable
declarations to let our app
store and work with data.

Lots of programs use math, so we
use mathematical operators to add,
subtract, multiply, divide, and more.

Conditionals let our code choose
between options, either executing
one block of code or another.

Loops let our code run the
same block over and over again
until a condition is satisfied.

Statements are the building blocks for your apps
Your app is made up of classes, and those classes contain methods, and those methods
contain statements. A statement is a line of code that does something.

So if we want to build apps that do a lot of things, we’ll need a few different kinds of
statements to make them work. You’ve already seen one kind of statement:

 Console.WriteLine("Hello, World!");

This is a statement that calls a method—specifically, the Console.WriteLine method,
which prints a line of text to the console. We’ll also use a few other kinds of statements in
this chapter and throughout the book. For example:

A statement can
actually span multiple
lines, which you’ll see
later in this book. But for now, you can just
think of “statement”
and “line of code” as
the same thing.

68 Chapter 2

statements live in methods

Statements live inside methods
You wrote a method in Chapter 1 to set up your animal matching game. But what, exactly, is a
method?

Methods do something
The Console.WriteLine method is part of .NET. It’s not hard to guess that a method that starts
with “Console.” has something to do with reading or writing text in a console app. In this case, it
writes a line of text to the console. It’s a really useful method, and you’ll use it—and a lot of other
.NET methods (it has thousands of them!)—throughout this book.

You’re going to write your own methods, and you’re going to write code that calls those methods.
To call a method, you write a statement that consists of the name of that method followed by
parentheses and a semicolon. You can pass information to that method by putting it inside those
parentheses—like passing “Hello, World!” when your code called the Console.WriteLine method.

Methods help you organize your code
Every method is made up of statements, and one method can contain many statements. Code
tends to naturally organize into blocks, or lines of code which, taken together, do a specific thing.
Methods are your way to take those code blocks, give them names, and make them easy to call.

When your program calls a method, it executes the first statement in that method, then the next,
then the next, etc. When the method runs out of statements—or hits a return statement—it
ends, and the program execution resumes after the statement that originally called the method.

Do you really need a method? You could copy the code in a method and paste it over the statement
that called that method, and the app would still work. When you put a block of code into a
method and give it a name, you make it a lot easier to understand what that code does.

You’ll use methods over and over again throughout this book to organize your
code. Why do you think your code needs organizing?

When you’re writing your code, you can take a block of code and turn it into a
single method, multiple methods, or not use methods at all. How do you decide
where to break up your code into methods?

The Console.WriteLine method writes a line to the console. Does that name make
sense to you? Can you think of why it’s useful for methods to have sensible names?

Brain
Power

you are here 4 69

dive into c# code

Declare your variables
Whenever you declare a variable, you tell your program its type and its name. Once
C# knows your variable’s type, it will generate errors that stop your program from
building if you try to do something that doesn’t make sense, like subtract "Fido"
from 48353. Here’s how to declare variables:

 // Let's declare some variables
 int maxWeight;
 string message;
 bool boxChecked;

Your methods use variables to work with data
Every program, no matter how big or how small, works with data.
Sometimes the data is in the form of a document, or an image in a
video game, or a social media update—but it’s all just data. That’s where
variables come in. A variable is what your program uses to store data.

Variables vary
A variable is equal to different values at different times while your program runs.
In other words, a variable’s value varies. (Which is why “variable” is such a
good name.) This is really important because that idea is at the core of every
program you’ll write. Say your program sets the variable myHeight equal to 63:

 int myHeight = 63;

Any time myHeight appears in the code, C# will replace it with its value, 63.
Then, later on, if you change its value to 12:

 myHeight = 12;

C# will replace myHeight with 12 from that point onward (until it gets set
again)—but the variable is still called myHeight.

Whenever your
program needs
to work with
numbers, text,
true/false values,
or any other kind
of data, you’ll use
variables to keep
track of them.
The variable’s
type defines what
kind of data it
can hold.

These are variable types.
C# uses the type to

define what data these
variables can hold.

These are variable names.
C# doesn’t care what you

name your variables—
these names are for you.

This is why it’s really helpful
for you to choose variable names
that make sense and are obvious.

Any line that starts with
// is a comment and

does not get executed.
You can use comments

to add notes to your
code to help people

read and understand it.

70 Chapter 2

every variable has a type

var-i-a-ble, noun.
an element or feature likely to change.
Predicting the weather would be a whole lot
easier if meteorologists didn’t have to take so
many variables into account.

If you write code that
uses a variable that
hasn’t been assigned
a value, your code
won’t build. It’s easy
to avoid that error
by combining your
variable declaration
and assignment into a
single statement.

You need to assign values to variables before
you use them
Try typing these statements just below the “Hello,
World” statement in your new console app:

 string z;
 string message = "The answer is " + z;

Go ahead, try it right now. You’ll get an error, and the IDE will
refuse to build your code. That’s because it checks each variable
to make sure that you’ve assigned it a value before you use it.
The easiest way to make sure you don’t forget to assign values
to your variables is to combine the statement that declares a
variable with a statement that assigns its value:

 int maxWeight = 25000;
 string message = "Hi!";
 bool boxChecked = true;

Once you’ve assigned a value to your variable, that value can change. So there’s no disadvantage to assigning a variable an initial value when you declare it.

A few useful types
Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different C#
types in Chapter 4. In the meantime, we’ll concentrate on the
three most popular types. int holds integers (or numbers without
fractions or decimals), string holds text, and bool holds
Boolean true/false values.

These values are assigned to the
variables. You can declare a variable
and assign its initial value in a single

statement (but you don’t have to).

Do this!

you are here 4 71

dive into c# code

Generate a new method to work with variables
In Chapter 1, you learned that Visual Studio will generate code for you. This is quite useful
when you’re writing code—and it’s also a really valuable learning tool. Let’s build on what
you learned and take a closer look at generating methods.

Add a method to your new MyFirstConsoleApp project.
Open the Console App project that you created in the previous chapter. In Visual Studio choose File
>> Open >> Project/Solution. In VSCode, choose File >> Close Folder, then File >> Open Folder.

The Program.cs file has two lines of code that we saw in Chapter 1. Replace those two lines with this
statement—it calls a method named OperatorExamples:

OperatorExamples();

Let Visual Studio tell you what’s wrong.
As soon as you finish replacing the statements, Visual Studio will draw a red squiggly underline beneath your
method call. Hover your mouse cursor over it. The IDE will display a pop-up window:

Visual Studio is telling you two things: that there’s a problem—you’re trying to call a method that doesn’t exist
(which will prevent your code from building)—and that it has a potential fix.

Generate the OperatorExamples method.
In Visual Studio, the pop-up window tells you to press Alt+Enter or Ctrl+. to see the potential fixes.
In VSCode, you may see a “Quick fix” link—press Ctrl+. / ⌘+. to see the potential fixes. Click on
OperatorExamples and click the icon that looks like a screwdriver or light bulb (or press Ctrl+. or ⌘+.).

Choose the option to generate the method. The IDE will add three lines of code to Program.cs that
match the code in the preview window. Your top-level statements now have an OperatorExample method.

1

2

3

Do this!

When the IDE generates a new method for
you, it adds this “throw” statement as a
placeholder—if you run your program, it will
halt as soon as it hits that statement. You’ll
replace that “throw” statement with code. This screenshot is from Windows. VSCode may not show you a preview of the generated code.

In VSCode, the box may
look a little different, and
instead of “potential fixes”
it may say Quick Fix instead.

A statement with the name of a method followed by
opening and closing parentheses () calls that method.

72 Chapter 2

let’s start writing code

void OperatorExamples()
{
 // This statement declares a variable and sets it to 3
 int width = 3;

 // The ++ operator increments a variable (adds 1 to it)
 width++;

 // Declare two more int variables to hold numbers and
 // use the + and * operators to add and multiply values
 int height = 2 + 4;
 int area = width * height;
 Console.WriteLine(area);

 // The next two statements declare string variables
 // and use + to concatenate them (join them together)
 string result = "The area";
 result = result + " is " + area;
 Console.WriteLine(result);

 // A Boolean variable is either true or false
 bool truthValue = true;
 Console.WriteLine(truthValue);
}

Add code that uses operators to your method
Once you’ve got some data stored in a variable, what can you do with it? Well, if it’s a number, you
might want to add or multiply it. If it’s a string, you might join it together with other strings. That’s
where operators come in. Here’s the method body for your new OperatorExamples method. Add
this code to your program, and read the comments to learn about the operators it uses.

String variables hold text. When you use the + operator with strings, it joins them together. Adding “abc” + “def” results in a single string, “abcdef.”

The statements you just added to your code will write three lines to the console: each Console.
WriteLine statement prints a separate line. Before you run your code, figure out what they’ll
be and write them down. And don’t bother looking for a solution, because we didn’t include one!
Just run the code to check your answers.

Here’s a hint: converting a bool to a string results in either False or True.

Line 1:

Line 2:

Line 3:

Sharpen your pencil

When you generated
the OperatorExamples

method, the IDE generated
code that included the
statement throw new

NotImplementedException();
You should delete that

statement and replace it with
the code we’ve given you, so

your OperatorExample method
matches our code exactly. Be

very careful that all of the
quotes, parentheses, math
symbols, and semicolons

match—it’s easy to make a typo.

you are here 4 73

dive into c# code

Use the debugger to watch your variables change
When you ran your program earlier, it was executing in the debugger—and that’s an incredibly useful
tool for understanding how your programs work. You can use breakpoints to pause your program when
it hits certain statements and add watches to look at the value of your variables. Let’s use the debugger
to see your code in action. We’ll use these three features of the debugger, which you’ll find in the toolbar:

Visual Studio

VSCode
If you end up in a state you don’t expect, just use the Restart button () to restart the debugger.

Add a breakpoint and run your program.
Click on the first line of your program and press F9 to add a breakpoint. The line should now look like
this—the line should be highlighted in red with a dot in the left margin:

Then press the button to run your program in the debugger, just like you did earlier.

Step into the method.
Your debugger is stopped at the breakpoint on the statement that calls the OperatorExamples method.

Press Step Into (F11)—the debugger will jump into the method and pause before it runs the first statement.

Examine the value of the width variable.
When you’re stepping through your code, the debugger pauses after each statement that it executes. This
gives you the opportunity to examine the values of your variables. Hover over the width variable.

The IDE displays a pop-up that shows the current value of the variable—it’s currently 0. Now press Step
Over (F10)—it goes past the comment to the first statement, which is now highlighted. Now press Step
Over again, then hover over width again. It now has a value of 3.

1

2

3

The highlighted bracket and arrow
in the left margin mean the code
is paused just before the first
statement of the method.

Debug
this!

The screens in VSCode will look slightly
different, but the debugger works the

same way, with the same shortcut keys.

The red background and dot show
you where you’ve set breakpoints. The
yellow arrow and highlight show the
line of code the debugger is paused on.

If your app doesn’t pause on the breakpoint, make sure you’re starting
the app with debugging. Run the app by pressing F5 or choosing Start

Debugging from the Debug (Visual Studio) or Run (VSCode) menu.

74 Chapter 2

the debugger helps you understand your code

The Locals window shows the values of your variables.
The variables that you declared are local to your OperatorExamples method—which just means that
they exist only inside that method, and can only be used by statements in the method. Visual Studio
displays their values in the Locals window at the bottom of the IDE when it’s debugging.

Add a watch for the height variable.
A really useful feature of the debugger is the Watch window, which is typically in the same panel as the
Locals window at the bottom of the IDE. When you hover over a variable, you can add a watch by right-
clicking on the variable name in the pop-up window and choosing Add Watch. Hover over the height
variable, then right-click and choose Add Watch from the menu.

Now you can see the height variable in the Watch window.

Step through the rest of the method.
Step over each statement in OperatorExamples. As you step through the method, keep an eye on the
Locals or Watch window and watch the values as they change. On Windows, press Alt+Tab before and
after the Console.WriteLine statements to switch back and forth to the Debug Console to see the
output. On macOS, you’ll see the output in the Terminal window so you don’t need to switch windows.

4

5

6

The debugger
is one of the
most important
features in
Visual Studio,
and it’s a
great tool for
understanding
how your
programs work.

Visual
Studio

VSCode	doesn’t	have	a	Locals	
window	yet,	but	the	Watch	window	
works	just	like	the	one	in	Visual	Studio.

VSCode

you are here 4 75

dive into c# code

Use code snippets to help write loops
You’ll be writing a lot of loops throughout this book, and Visual Studio can help speed things up for you with
snippets, or simple templates that you can use to add code. Let’s use snippets to add a few loops to your
OperatorExamples method.

If your code is still running, choose Stop Debugging (Shift+F5) from the Debug menu (or press the Stop button
 in the toolbar). Then find the line Console.WriteLine(area); in your OperatorExamples method. Click

at the end of that line so your cursor is after the semicolon, then press Enter a few times for some space. Now start
your snippet. Press Ctrl+K, Ctrl+X (so hold down control and press K and then X) to bring up the Insert Snippet
box. Choose “Visual C#” and then type or click while and press Enter. The IDE will add a template for a
while loop to your code, with the conditional test highlighted:

Type area < 50—the IDE will replace true with the text. Press Enter
to finish the snippet. Then add two statements between the brackets:

 while (area < 50)
 {
 height++;
 area = width * height;
 }

Next, use the do/while loop snippet to add another loop immediately after the while loop you just added. Press
Ctrl+K, Ctrl+X and choose the C# do snippet. The IDE will add this snippet:

Type area > 25 and press Enter to finish the snippet. Then add two statements between the brackets:

 do
 {
 width--;
 area = width * height;
 } while (area > 25);

Now use the debugger to really get a good sense of how these loops work:

1. Click on the line of code just above the first loop and choose Toggle Breakpoint (F9) from the Debug
menu to add a breakpoint. Then run your code and press F5 to skip to the new breakpoint.

2. Use Step Over (F10) to step through the two loops. Watch the Locals window as the values for height,
width, and area change.

3. Stop the program, then change the while loop test to area < 20 so both loops have conditions that
are false. Debug the program again. The while checks the condition first and skips the loop, but the do/
while executes it once and then checks the condition.

Do
this!

If your brackets (or braces, either name
will do) don’t match up, your program
won’t build, which leads to frustrating
bugs. Luckily, the IDE can help with
this! Put your cursor on a bracket, and
the IDE highlights its match.

IDE Tip: Brackets

At	the	time	we’re	writing	this,	VSCode	
does	not	support	C#	code	snippets.

You can also type in this
code instead of using a

snippet. Visual Studio Code
may not support snippets.

Again, you can just type in the
code instead of using a snippet.

For most snippets you can type the
snippet name and press tab twice.

Go to a blank line and try it—type the
word “do” and press the tab key twice.

76 Chapter 2

use double equals to check if things are the same

Use operators to work with variables
Once you have data in a variable, what do you do with it? Well, most
of the time you’ll want your code to do something based on the value.
That’s where equality operators, relational operators, and
logical operators become important.

Use operators to compare two int variables
You can do simple tests by checking the value of a variable using a
comparison operator. Here’s how you compare two ints, x and y:

 x < y (less than)
 x > y (greater than)
 x == y (equals - and yes, with two eq

uals signs)

These are the ones you’ll use most often.

Logical Operators
You can combine individual conditional tests into one long test
using the && operator for and and the || operator for or.

Here’s how you’d check if i equals 3 or j is less than 5:
(i == 3) || (j < 5)

Relational Operators
Use > and < to compare numbers and see if a number in one
variable is bigger or smaller than another.

You can also use >= to check if one value is greater than or
equal to another, and <= to check if it’s less than or equal.

Equality Operators
The == operator compares two things and is true if they’re equal.

The != operator works a lot like ==, except it’s true if the two
things you’re comparing are not equal.

Don’t confuse
the two equals
sign operators!

You	use	one	equals	
sign	(=)	to	set	a	
variable’s	value,	but	
two	equals	signs	
(==)	to	compare	two	
variables.	You	won’t	
believe	how	many	
bugs	in	programs—
even	ones	made	
by	experienced	
programmers!—are	
caused	by	using	=	
instead	of	==.	If	you	
see	the	IDE	complain	
that	you	“cannot	
implicitly	convert	
type	‘int’	to	‘bool,’”	
that’s probably what
happened.

Watch it!

you are here 4 77

dive into c# code

if statements make decisions
Use if statements to tell your program to do certain things only when the conditions you
set up are (or aren’t) true. The if statement tests the condition and executes code if the test
passes. A lot of if statements check if two things are equal. That’s when you use the == operator.
That’s different from the single equals sign (=) operator, which you use to set a value.

 int someValue = 10;
 string message = "";

 if (someValue == 24)
 {
 message = "Yes, it's 24!";
 }

if/else statements also do something if a condition isn’t true
if/else statements are just what they sound like: if a condition is true they do one thing
or else they do the other. An if/else statement is an if statement followed by the else
keyword followed by a second set of statements to execute. If the test is true, the program
executes the statements between the first set of brackets. Otherwise, it executes the statements
between the second set.

 if (someValue == 24)
 {
 // You can have as many statements
 // as you want inside the brackets
 message = "The value was 24.";
 }
 else
 {
 message = "The value wasn't 24.";
 }

Every if statement starts with a
test in parentheses, followed by

a block of statements in brackets
to execute if the test passes.

The statements inside the
curly brackets are executed

only if the test is true.

REMEMBER—always use two equals signs to
check if two things are equal to each other.

78 Chapter 2

loops loop and loop and loop

Here’s a peculiar thing about most programs (especially games!): they almost always involve doing
certain things over and over again. That’s what loops are for—they tell your program to keep
executing a certain set of statements as long as some condition is true or false.

while loops keep looping statements while a condition is true
In a while loop, all of the statements inside the curly brackets get executed as long as the condition in
the parentheses is true:

 while (x > 5)
 {
 // Statements between these brackets will
 // only run if x is greater than 5, then
 // will keep looping as long as x > 5
 }

do/while loops run the statements then check the condition
A do/while loop is just like a while loop, with one difference. The while loop does its test first, then
runs its statements only if that test is true. The do/while loop runs the statements first, then runs the
test. So if you need to make sure your loop always runs at least once, a do/while loop is a good choice:

 do
 {
 // Statements between these brackets will run
 // once, then keep looping as long as x > 5
 } while (x > 5);

for loops run a statement after each loop
A for loop runs a statement after each time it executes a loop.

 for (int i = 0; i < 8; i = i + 2)
 {
 // Everything between these brackets
 // is executed four times
 }

Loops perform an action over and over

The parts of the for
statement are called the
initializer (int i = 0), the

conditional test (i < 8), and
the iterator (i = i + 2). Each

time through a for loop
(or any loop) is called an

iteration.
The conditional test always

runs at the beginning of
each iteration, and the

iterator always runs at the
end of the iteration.

Every for loop has three statements. The first statement sets up the
loop. It will keep looping as long as the second statement is true. The

third statement gets executed after each time through the loop.

you are here 4 79

dive into c# code

Sharpen your pencil
Here are a few loops. Write down if each loop will repeat forever
or eventually end. If it’s going to end, how many times will it loop?
Also, answer the questions in the comments in loops #2 and #3.

// Loop #1
int count = 5;
while (count > 0) {
 count = count * 3;
 count = count * -1;
}

// Loop #4
int i = 0;
int count = 2;
while (i == 0) {
 count = count * 3;
 count = count * -1;
}

// Loop #2
int j = 2;
for (int i = 1; i < 100;
 i = i * 2)
{
 j = j - 1;
 while (j < 25)
 {
 // How many times will
 // the next statement
 // be executed?
 j = j + 5;
 }
}

// Loop #3
int p = 2;
for (int q = 2; q < 32;
 q = q * 2)
{
 while (p < q)
 {
 // How many times will
 // the next statement
 // be executed?
 p = p * 2;
 }
 q = p - q;
}

// Loop #5
while (true) { int i = 1;}

Remember, a for loop always
runs the conditional test at the
beginning of the block, and the
iterator at the end of the block.

Hint: p starts out equal to 2. Think about when the statement “p = p * 2” is executed.

A for loop is a little more complex than a while loop or do loop. The most common type of for loop
just counts up to a length. The for code snippet causes the IDE to create an example of that kind of for
loop:

A for loop has four sections—an initializer, a condition, an iterator, and a body:
for (initializer; condition; iterator) {
 body
}

Most of the time you’ll use the initializer to declare a new variable—for example, the initializer int i = 0 in the
previous for code snippet declares a variable called i that can only be used inside the for loop. The loop will then
execute the body—which can either be one statement or a block of statements inside curly braces—as long as the
condition is true. At the end of each iteration, the for loop executes the iterator. So this loop:
for (int i = 0; i < 10; i++) {
 Console.WriteLine(“Iteration #” + i);
}

will iterate 10 times, printing Iteration #0, Iteration #1, ..., Iteration #9 to the console.

for Loops Up Close

When you use the “for” snippet, press Tab to switch between i and length. If you change the name of the variable i, the snippet will automatically change the other two occurrences of it.

80 Chapter 2

get some practice with loops

Can you think of a reason that you’d want
to write a loop that never stops running?

Brain
Power

Then your loop runs forever.
Every time your program runs a conditional test, the result is either true or false. If it’s
true, then your program goes through the loop one more time. Every loop should have code
that, if it’s run enough times, should cause the conditional test to eventually return false. If
it doesn’t, then the loop will keep running until you kill the program or turn the computer off !

This is sometimes called
an infinite loop, and
there are definitely
times when you’ll want
to use one in your code.

Some useful things to keep in mind about C# code
± Don’t forget that all your statements need to end in a semicolon.

name = "Joe";

± Add comments to your code by starting a line with two slashes.
// This text is ignored

± Use /* and */ to start and end comments that can include line breaks.
// This comment
 * spans multiple lines */

± Variables are declared with a type followed by a name.
int weight;
// The variable's type is int and its name is weight

± Most of the time, extra whitespace is !ne.
So this: int j = 1234 ;
is exactly the same as this: int j = 1234;

± If/else, while, do, and for are all about testing conditions.
Every loop we’ve seen so far keeps running as long as a condition is true.

There’s a flaw in your logicflaw in your logic! What
happens if I write a loop with a conditional test that

never becomes falsenever becomes false?

you are here 4 81

dive into c# code

Solution
Sharpen your pencil

Here are a few loops. Write down if each loop will repeat forever
or eventually end. If it’s going to end, how many times will it loop?
Also, answer the questions in the comments in loops #2 and #3.

// Loop #1
int count = 5;
while (count > 0) {
 count = count * 3;
 count = count * -1;
}

Loop #1 executes once.
Remember, count = count * 3
multiplies count by 3, then stores
the result (15) back in the same
count variable.

// Loop #4
int i = 0;
int count = 2;
while (i == 0) {
 count = count * 3;
 count = count * -1;
}

Loop #4 runs forever.

// Loop #2
int j = 2;
for (int i = 1; i < 100;
 i = i * 2)
{
 j = j - 1;
 while (j < 25)
 {
 // How many times will
 // the next statement
 // be executed?
 j = j + 5;
 }
}

Loop #2 executes seven times.
The statement j = j + 5 is
executed 6 times.

// Loop #3
int p = 2;
for (int q = 2; q < 32;
 q = q * 2)
{
 while (p < q)
 {
 // How many times will
 // the next statement
 // be executed?
 p = p * 2;
 }
 q = p - q;
}

Loop #3 executes eight times.
The statement p = p * 2
executes three times.

// Loop #5
while (true) { int i = 1;}

Loop #5 is also an infinite loop.

Take the time to really figure out how loop #3 works. Here’s a
perfect opportunity to try out the debugger on your own! Set a
breakpoint on q = p – q; and add watches for p and q to keep track
of how the values of p and q change as you step through the loop.

When we give you pencil-and-paper exercises, we’ll usually give you the solution on the next page.

Remember, if your app
doesn’t pause on the
breakpoint, make sure
you’re starting the app
with debugging. Run the
app by pressing F5 or
choosing Start Debugging
from the Debug (Visual
Studio) or Run (VSCode)
menu.

82 Chapter 2

get better at reading code

Let’s get some practice working with conditionals and loops. Update the code in your Program.file to match the following
new code, including TryAnIf, TryAnIfElse, and TrySomeLoops methods. Before you run your code, read it carefully
and try to answer the questions based on how you think it will run. Then run your code and see if you got them right.
TryAnIf();
TrySomeLoops();
TryAnIfElse();

void TryAnIf()
{
 int someValue = 4;
 string name = "Bobbo Jr.";
 if ((someValue == 3) && (name == "Joe"))
 {
 Console.WriteLine("x is 3 and the name is Joe");
 }
 Console.WriteLine("this line runs no matter what");
}

void TryAnIfElse()
{
 int x = 5;
 if (x == 10)
 {
 Console.WriteLine("x must be 10");
 }
 else
 {
 Console.WriteLine("x isn’t 10");
 }
}

void TrySomeLoops()
{
 int count = 0;

 while (count < 10)
 {
 count = count + 1;
 }

 for (int i = 0; i < 5; i++)
 {
 count = count - 1;
 }

 Console.WriteLine("The answer is " + count);
}

Sharpen your pencil

What does the TrySomeLoops method write to the console?

What does the TryAnIfElse method write to the console?

What does the TryAnIf method write to the console?

We didn’t include answers for this
exercise in the book. After you write
down the answers, create a new console
app—just like you did in Chapter 1—and
add this code, then check the output to
see if your answers are correct.

you are here 4 83

dive into c# code

Here's another one of those “Game Design...and Beyond” sections. This one
is all about mechanics, an important part of video game design. If you’re
not interested in writing video games, read these sections anyway! They
have important concepts that we’ll build on throughout the book.

Mechanics

The mechanics of a game are the aspects of the game that make up the actual gameplay: its rules, the
actions that the player can take, and the way the game behaves in response to them.

• Let’s start with a classic video game. The mechanics of Pac-Man include how the joystick controls the
player on the screen, the number of points for dots and power pellets, how ghosts move, how long they
turn blue and how their behavior changes after the player eats a power pellet, when the player gets extra
lives, how the ghosts slow down as they go through the tunnel—all of the rules that drive the game.

If you haven’t played Pac-Man before, take a few minutes and watch a video of its gameplay. Even better,
play it yourself! There are many ways to play it. One easy way is to search Google for “Pac-Man”—they
created a playable Pac-Man game for its 30th anniversary that works in your browser using the arrow keys.

• When game designers talk about a mechanic (in the singular), they’re often referring to a single mode of
interaction or control, like a double jump in a platformer or shields that can only take a certain number of
hits in a shooter. It’s often useful to isolate a single mechanic for testing and improvement.

• Tabletop games give us a really good way to understand the concept of mechanics. Random number
generators like dice, spinners, and cards are great examples of specific mechanics.

• You’ve already seen a great example of a mechanic: the timer that you added to your animal matching
game changed the entire experience. Timers, obstacles, enemies, maps, races, points…these are all
mechanics.

• Different mechanics combine in different ways, and that can have a big impact on how the players
experience the game. Monopoly is a great example of a game that combines two different random
number generators—dice and cards—to make a more interesting and subtle game.

• Game mechanics also include the way the data is structured and the design of the code that handles
that data—even if the mechanic is unintentional! Pac-Man’s legendary level 256 glitch, where a bug in
the code fills half the screen with garbage and makes the game unplayable, is part of the mechanics of
the game.

• When we talk about the mechanics of a game written in C#, that includes the classes and the code,
because they drive the way that the game works.

Game Design...and Beyond

84 Chapter 2

every user interface has its own mechanics

I bet the concept of mechanics can help me with any any
kind of projectkind of project, not just games.

Definitely! Every program has its own kind
of mechanics.
There are mechanics at every level of software design.
They’re easier to talk about and understand in the context
of video games. We’ll take advantage of that to help
give you a deeper understanding of mechanics, which is
valuable for designing and building any kind of project.

The mechanics of a game determine how hard or easy it
is to play. Here’s an example: make Pac-Man move faster
or slow down the ghosts, and the game gets easier. That
doesn’t necessarily make it better or worse—just different.
And guess what? The same idea applies to how you design
your classes! You can think of how you design your
methods and fields as the mechanics of the class. The
choices you make about how to break up your code into
methods or when to use fields make them easier or more
difficult to use.

 ◾ Methods are made up of statements. Calling a
method executes its statements in order.

 ◾ Putting statements into a method and giving it a
name helps make your code easier to read.

 ◾ When a method runs out of statements or executes
a return statement, execution resumes after the
statement that originally called the method.

 ◾ A variable’s type determines what kind of data—like
whole or decimal numbers, text, or true/false values—
that it can hold

 ◾ You need to assign values to variables before you
can use them.

 ◾ Operators like +, -, *, and / perform manipulations on
the data stored in variables. The = operator assigns a
value, while the == operator compares two values.

 ◾ if statements tell your program to do certain things
only when the conditions you set up are (or aren’t)
true.

 ◾ Loops execute a set of statements over and over
again until a condition is met. for, while, and do/
while loops all iterate over statements multiple
times, but they work differently from each other.

 ◾ Visual Studio’s code snippets feature helps you write
if statements and loops.

Bullet Points

you are here 4 85

dive into c# code

Exploring C# with AI Chatbots: A Unique Learning Journey

Welcome to the fascinating world of C# development! As an author, you’ve already embarked on a mission to make

learning engaging and memorable. Now, let’s take it up a notch by introducing a powerful ally: AI chatbots.

Why AI Chatbots?

Imagine having a friendly, tireless companion by your side—one that not only answers your questions but also

challenges you to think critically, nudges you in the right direction, and celebrates your victories. That’s precisely what

AI chatbots can do for aspiring C# developers.

In this section, we’ll delve into the pedagogical uses of AI chatbots, exploring how they can enhance the learning

experience, spark curiosity, and empower learners to explore C# independently.

The Generative Magic Behind Chatbots

Before we dive in, let’s demystify the magic. Designers harness a variety of machine learning and deep learning

techniques to create large language models (LLMs) that form the backbone of generative AI chatbots. These bots can

generate text, simulate conversations, and adapt to user input—while maintaining an engaging and conversational tone.

Seven Approaches to Educational Chatbot Use

• AI as Mentor: Timely feedback is crucial for learning. An AI chatbot can provide students with frequent, immediate,

and adaptive feedback. Whether it’s essay structure or code debugging, the chatbot acts as a mentor, guiding

learners toward mastery.

• AI as Tutor: Effective tutoring involves personalized instruction and skill-building. Chatbots can supplement

traditional tutoring, offering explanations, analogies, and open-ended questions tailored to individual interests.

• AI as Collaborator: Imagine brainstorming with an AI buddy. Chatbots can collaborate on problem-solving, code

design, and creative thinking. They’re the perfect coding companions for late-night sessions.

• AI as Debugger: Debugging code can be frustrating. Chatbots can analyze code snippets, identify errors, and

suggest fixes. They’re like virtual debugging partners, always ready to lend a hand.

• AI as Code Generator: Need inspiration? Chatbots can generate code snippets, templates, and even entire

functions. They’re the Swiss Army knives of C# development.

• AI as Quizmaster: Reinforce learning with quizzes. Chatbots can quiz learners on syntax, concepts, and best

practices. Plus, they won’t judge you for forgetting semicolons.

• AI as Curator: Curate resources, recommend tutorials, and keep learners updated. Chatbots can be your

personalized C# library, accessible 24/7.

Your Hands-On Journey Begins

Throughout this section, we’ll guide you through hands-on tasks. You’ll reflect on educational uses of AI chatbots,

access commonly used generative AI tools, and practice interacting with a chatbot. Remember, while AI is powerful,

critical examination is essential. Let’s explore, learn, and code together!

“As an author”? Something seems weird here.

The Sens-AI elements are all about helping you use an AI chatbot as a virtual C# sensei. We wanted
to start the first one with an example of just how powerful AI chatbots can be, so we asked Copilot
to write this introduction. (We also asked it for permission to include its output in the book.)

We agree!
86 Chapter 2

artificial intelligence can help you learn

First lesson: AI chatbots aren’t perfect…and that’s OK
When you use an AI chatbot like Copilot, ChatGPT, Gemini, or Claude, you start with a prompt, or a question, statement,
or other kind of query to initiate a conversation. We used this prompt to generate the introduction to this section:

I'm the author of Head First C#, a book that aims to help people learn
about development with C# in a unique and engaging way. A section of that
book is about how to use AI chatbots as a tool to learn and explore C# on
their own. Can you help me write the introduction to that section?

It came up with a great introduction—it’s good enough for us to use in this book! But it isn’t perfect. Take a look at
the second sentence that starts, “As an author, you’ve...”—that’s not quite right. The chatbot may have gotten a bit
confused because we started our prompt with “I’m the author.” This book isn’t for authors, it’s for people learning to be
C# developers. Your mission isn’t making learning engaging and memorable—that’s our mission!

How to use AI safely: Trust but verify
Using AI chatbots is a skill that’s becoming increasingly important to developers. One of our goals is to help you use
AI chatbots in a way that’s safe, which means that you have to confirm two things yourself: that everything you learn
from an AI is actually and factually correct, and that any code the AI generates for you does what you want it to do.
We’ll include these Sens-AI elements throughout this to help you learn how to confirm those things and use AI safely.
Here’s an example of the strengths and weaknesses of AI. We gave this prompt to Copilot, ChatGPT, and Gemini:

I have the following for loop in C#:

int p = 2;
for (int q = 2; q < 32; q = q * 2)
{
 while (p < q)
 {
 // How many times will the next
 // statement be executed?
 p = p * 2;
 }
 q = p - q;
}

How does it work, and how many times are the inner and outer loops executed?

The AI chatbots all gave an excellent explanation of how the loop worked—and all three gave us wrong answers for
how many times the loops are executed. In fact, they all gave different answers. We asked the same question a few
days later, and all three chatbots gave three entirely different wrong answers. And that’s OK! AI technology is always
improving. It may never be perfect, but it will always be a helpful and valuable learning tool.

Try it out yourself
Open Copilot (https://copilot.microsoft.com), ChatGPT (https://chat.openai.com), Gemini (https://gemini.google.com), Claude
(https://claude.ai) or any other AI chatbot, and type in the prompt about loops that we just showed you. Modify the code in the
prompt to replace it with other loops in the “Sharpen” exercise. Did the AI explain the loops well? Did it get the counts right?

Sens-AI

We copied this
code directly from
the “Sharpen your
pencil” earlier in this
chapter. You can
include code directly
in your prompts.

“Sensei” is a Japanese term that encompasses
the role of teacher or instructor.

It’s pretty amazing that the AI gave us such great text, even if we might
want to edit it a little (like replace ‘pedagogical’ with ‘teaching-related’).

When you're typing a prompt
into a browser-based AI

chatbot, you may need to use
Shift-Enter to add line breaks.
We recommend using a text

editor like VSCode, Windows
Notepad, or macOS TextEdit
to edit your prompts. You can
copy and paste them into the
browser—and then you can

save them in a folder for later.

AI chatbots don’t always give correct answers, in part because they use
statistical models—not actual thinking!—to generate sentences. But if you

understand their limitations and practice using them, they can be really useful.

AI researchers are constantly updating their models with questions and their correct
answers, so it may get the answer right because the question and answer are in its database.

you are here 4 87

dive into c# code

Controls drive the mechanics of your user interfaces
In Chapter 1, you built a game using Button and Label controls. There are a lot of different ways that you can use
controls, and the choices you make about what controls to use can really change your app. Does that sound weird? It’s
actually very similar to the way we make choices about mechanics in game design. If you’re designing
a tabletop game that needs a random number generator, you can choose to use dice, a spinner, or cards. If you’re
designing a platformer, you can choose to have your player jump, double jump, wall jump, or fly (or do different things
at different times). The same goes for apps: if you’re designing an app where the user needs to enter a number, you can
choose from different controls to let them do that…and that choice affects how your user experiences the app.

Meet some of the controls you’ll use in this book
Most of the chapters in this book feature a .NET MAUI project. We included them so you can go beyond console apps
and start learning how to build visual apps. In those projects, you’ll use many different controls to build each app’s user
interface (or UI)—or the way the window is laid out so the user can interact with it—of each app.

Here are the controls you’ve seen so far.

The user interface,
or UI, is the part
of the app that
your user interacts
with. In a console
app, the UI is
made up of text,
and the user uses
the keyboard to
interact with it. In
a MAUI app, the
UI is built using
controls.

An Image control does exactly
what you’d expect it to do—it

displays an image. In this
case, it’s displaying the image
in a file called dotnet_bot.png.

A label displays text. You
can set the font size, color,

spacing, and text decorations
(like italics or boldface).

A Button control shows a
clickable button. It can call a
method when you click it, and
you can set or change its text.

We’ll spend the rest of this chapter building a MAUI app to experiment
with controls. You can find an equivalent web development project in

the Head First C# Blazor Learner’s Guide, which you can download from
our GitHub page: https://github.com/head-first-csharp/fifth-edition

88 Chapter 2

controls are the building blocks of your user interface

We can borrow the idea of mechanics from video games to understand our options, so we can make great choices for any of our apps—not just games.

Other controls you’ll use in this book
Controls are common user interface components, and they serve as the
building blocks of your UI. The choices you make about what controls to
use change the mechanics of your app.

Most of the chapters in this book contain a .NET MAUI project. You’ll
use various controls to build the UI for each of those apps. Here are a few
of the ones that you’ll use.

An Entry control lets your user
enter text. It displays a placeholder,

or lighter-colored text that gives
the user some information about

what they should type.

A Label can include multiple lines,
which are separated by line breaks

so it knows how to split them up.

A Switch is a horizontal button
that lets the user toggle (or switch

back and forth) between two
states, in this case on and off.

These are two different controls
that let users enter numbers. A

Stepper (on the left) presents the
user with two buttons to increment

or decrement—add or remove one—
to a value. A Slider (on the right)

lets the user slide back and forth to
choose a decimal number.

A Picker lets the user
choose an item from a list.
It looks a little different in
Windows (on the left) and
macOS (on the right), but
both versions function in

exactly the same way.

you are here 4 89

dive into c# code

Build a .NET MAUI app to experiment with controls
You’ve probably seen most of the controls we just showed you (even if you didn’t know all of their
official names). Now let’s create a .NET MAUI app to get some practice using some of them. The
app will be really simple—the user will use controls to enter values, and the app will display those values.

Don’t worry about memorizing the XAML in this
project. You’ll pick it up throughout the book.

This	Do this!	and	these	exercises	are	all	about	getting	
some	practice	using	XAML	to	build	a	UI	with	controls.	You	can	always	
refer	back	to	it	when	we	use	these	controls	in	projects	later	in	the	book.

Relax

Anything the user types here
will show up in this label.

The user can use these - and + buttons to select a number, which will get updated in this label.

Sliding this back and forth causes the
number in this label to get updated.

Clicking on this control lets
you choose a bird from a list.

After you choose a bird, click this button
to add it to the multiline label.

90 Chapter 2

lots of ways to get input

Create a new app to experiment with controls
Go back to Visual Studio and create a new .NET MAUI project, just like you did in
Chapter 1. Name your project ExperimentWithControls. Run your new .NET MAUI app.
It will pop up a window with a picture of a cute robot, text that says Hello, World!, and smaller
text that says Welcome to .NET Multiplatform APP UI, and finally a button with the label Click me.

Now go back to Visual Studio and double-click the file MainPage.xaml to open it. Use
the expand/collapse buttons in the left margin to collapse the <Image>, <Label>, and
<Button> tags. Each of those tags corresponds to one of the controls in your app.

This <Image> tag displays
the picture of the robot
in an Image control.

These two <Label> tags
create Label controls that
display the two lines of text.

This <Button> tag
adds the Button
control to the page.

This is an image
of a cute robot.

These are two
labels with text.

This is a button that you can click.

The XAML for your MAUI page
starts with a ContentPage tag,

which can contain a single
control—in this case, it’s a
ScrollView, which scrolls
its content and displays a

scrollbar on the side.

A ScrollView contains a single
control. Yours contains a

VerticalStackLayout, which
can contain multiple controls

(like the Image, two Labels,
and Button on your page) and
displays them stacked on top

of each other vertically.

Click
here to
collapse
or expand
a tag.

Do this!

Editing XAML and expanding or collapsing tags in VSCode works just like Visual Studio.

you are here 4 91

dive into c# code

Explore your new MAUI app and f igure out how it works
When you created your new .NET MAUI app, Visual Studio used a template to create the files for your
app, substituting the name that you specified (ExperimentWithControls) in various lines in the files. Let’s dig into
the project that you created.

Create a new .NET MAUI project called ExperimentWithControls.
Go back to Visual Studio and create a new .NET MAUI project, just like you did
in Chapter 1. Name your project ExperimentWithControls.

Run your app and click on the button.
When you run the app, you’ll see the app window—it should look like this:

You know you want to click the “Click me” button. Go ahead! The label on the button will change
from “Click me” to “Clicked 1 time” and increment (or add one) every time you click the button.

. . .

Investigate how the counter on the button works.
Go to the Solution Explorer, expand MainPage.xaml, and open MainPage.xaml.cs.
Find the line that has the statement count++; and place a breakpoint on it.

Before you go to the next step, read the code.
Can you figure out how the button works?

1

2

3

Do this!

MAUI is cross-platform, which means you'll see the same app—with the
same code!—whether you're running Windows or macOS.

The C# code for a page
in your MAUI app is

called code-behind. The
XAML code and the C#

code in the code-behind
file work together to

make your page work.

If your app doesn’t pause
on the breakpoint, make
sure you’re starting it with
debugging. Run the app by
pressing F5 or choosing
Start Debugging from the
Debug (Visual Studio) or
Run (VSCode) menu

92 Chapter 2

understanding your .net maui app

Click on the button and step through the code.
Add a watch for the count variable, just like you did earlier in the chapter. Then use “Step Over”
(F10) to step through the code. Here’s what the OnCounterClicked event handler method does:

 " First it executes count++ to increment (or add one to) the count variable.

 " Next it uses an if statement to check if the count variable equals 1. If it does, then it sets the
button’s text to “Clicked 1 time.”

 " If it doesn’t equal 1, it sets the button’s text to “Clicked {count} times”—you’ll learn
more about exactly what the $ dollar sign and {brackets} do in Chapter 5 (it’s called string
interpolation).

Click on the button and step through the code.
The program should pause on the breakpoint, just like you saw earlier in the chapter:

Add a watch for the count variable, just like you did earlier with the OperatorExamples console app.
It should start out with the value 0. Press the Step Over button or F10 to go to the next statement.

Keep stepping through the code. The if statement checks whether the count value is equal
to 1. If it is, it executes this statement, which updates the text on the button:

CounterBtn.Text = $"Clicked {count} time";

Go back to the window with the XAML code. Find this line:

<Button
 x:Name="CounterBtn"

Every control can have a name. The x:Name property sets the name of the control—in this case,
the button is named CounterBtn—and your C# code can use that name to make the control do things.

4

5

The count variable
starts with the
value 0. After the
“count++” statement
is executed, the new
value is 1. Each time
you click the button,
count++ increases
the value of the
count variable by 1.

This “if” statement sets the text on the Count button to “time” if count equals 1, or “times” if it has any other value.

This is the x:Name property. It gave the button the name “CounterBtn” that you can use in your C# code.

you are here 4 93

dive into c# code

You’ve been editing the XAML code in your MainPage.xaml file—are you starting to get comfortable with it? This
is a great time to take a closer look at the part of your XAML that displays the button.
Here’s the Button tag. Take a look at each of its five properties. Can you figure out what they all do?
<Button
 x:Name="CounterBtn"
 Text="Click me"
 SemanticProperties.Hint="Counts the number of times you click"
 Clicked="OnCounterClicked"
 HorizontalOptions="Center" />

The x:Name property gives your control a name you can use in your code.
The first property is x:Name, which sets the name of the control so you can use it in your C# code:
 x:Name="CounterBtn"

You just saw a control name in action. When you clicked the button, the event handler method executed this
statement to set the button’s text, using the name CounterBtn set by the x:Name property:
 CounterBtn.Text = $"Clicked {count} time";

This line uses the CounterBtn name to update the text displayed on the button.

The Text property determines the text that's displayed on the button.
The XAML for a Buttons control has lots of options to change its appearance—like this next property:
 Text="Click me"

The button displays “Click me” when you first run the app. That line of code in the method changes the text to
“Clicked 1 time” the first time you click it, then “Clicked 2 times” when you click it again. That line of code starts
with the name of the control (CounterBtn), followed by a period, followed by Text, the name of the property.

SemanticProperties help you make your apps accessible.
When we create our apps, we want everyone to be able to use them—and that includes people with disabilities.
A screen reader is a tool that lets people who are blind,
visually impaired, or have learning disabilities or other
conditions that interfere with their ability to read use our
visual apps. Semantic properties help your app work with a
screen reader.

The XAML for Your Button Up Close

A screen reader is an accessibility tool for people with
visual, learning, or other disabilities—just like a wheelchair
is an accessibility tool for people with mobility-related
disabilities. They’re both really important for helping to
make everyday things more accessible to everyone.

94 Chapter 2

a deep dive into your button

Use a screen reader to experiment with the SemanticProperites.Hint property.
The best way to make your apps accessible is to use them the way someone with accessibility issues would—in
this case, using a screen reader built into your operating system.
• In Windows, start the Narrator app. You can run it from the Start menu, or use Windows logo key + Ctrl

+ Enter to turn Narrator on or off, and Windows logo key + Ctrl + N to bring up Narrator settings. Narrator
will display a window with an overview of how Narrator works. It will also start to read the contents of that
window, displaying a box around the section of the window that it’s reading. You can go back to that window
to turn off Narrator.

• In MacOS, start the VoiceOver utility. It lives in the Applications/Utilities folder, but if your keyboard has
Touch ID, the easiest way to turn it on or off is to press and hold the Command key while you quickly press
Touch ID three times. By default the VoiceOver utility displays a welcome dialog—press the V key or click
the Use Voiceover button to start VoiceOver.

Once you have Narrator or VoiceOver running, switch to your app window. You’ll hear a voice telling you details
about what’s on the screen. People with visual impairments often have trouble using a mouse, so they use
the keyboard to interact with apps—and you’ll do the same thing. Press the Tab key to navigate to the Click
Here button. The screen reader will announce that you are on a button. Listen closely—you’ll hear it speak the
SemanticProperties.Hint value: “Counts the number of times you click.”
Press Enter to click the button. Your app will execute code that includes this statement:
 SemanticScreenReader.Announce(CounterBtn.Text);

When it does, the screen reader will announce the contents of the button (“Clicked 1 time”).

The Clicked property tells your app what event handler method to run when the button is clicked.
Take a look at the next property in the button’s XAML code:
 Clicked="OnCounterClicked"

When you click the button, your app uses that property to figure out which method to run. You saw this in action
when you placed a breakpoint on the first line of that method.

The HorizontalOptions property centers your button.
When you run your app, the Click Me button is centered in the
middle of the window. Go back to the code editor, select the word
Center in that line of XAML code, and type C. Visual Studio will
display an IntelliSense pop-up with all of the different options. Try
selecting Start or End, then run your app again—now the button
will be displayed on the left or right side of the window. Experiment
with all of the different horizontal options for Button control.

The XAML for Your Button Up Close

you are here 4 95

dive into c# code

Add an Entry control to your app
An Entry control displays a box for the user to enter text. You’ll add one to your app,
and you’ll use a really useful tool in Visual Studio to do it: the Toolbox window. The
Toolbox is a feature of Visual Studio that makes it easy to add controls to your app:

1. Stop your app, then open the MainPage.xaml editor window in Visual Studio.

2. Place your mouse cursor just after the closing /> bracket at the end of your
Button control tag, then press Enter three times to add three blank lines.
Click on the second line that you just added, so there’s a blank line above your
mouse cursor and another blank line below it.

3. Open the Toolbox window in Visual Studio (if it isn’t already open) by
choosing Toolbox from the View menu.

4. Double-click Entry in the Toolbox window. Visual Studio will automatically
add an <Entry> tag at your cursor location, on that blank line you added.

If you have trouble with the Toolbox, you also can type the XAML code directly into the editor.

Here’s what you should see in your XAML code:

Now run your app. Congratulations, you just added a control for entering text!

Visual Studio’s Toolbox window
helps you add new controls
to your XAML code. If you
don’t see the Toolbox window,
choose “Toolbox” from the
View menu to display it.

Your app now has a
new Entry control at
the bottom where the
user can enter text.

If you’re using VSCode, it doesn’t have a Toolbox,
so you’ll need to type the XAML in by hand.

The	screenshot	and	XAML	for	the	
app	are	from	the	MAUI	template	
that’s	part	of	.NET	9.	If	you’re	
using	a	different	version	of	.NET,	
you	may	see	a	different	image	and	
slightly	different	XAML.

You may need to
use your mouse
scroll wheel or
cursor keys to
scroll down to see
the new control.

96 Chapter 2

add a control to enter some text

Add properties to your Entry control
Let’s make your Entry control a little more usable by adding placeholder text, or text that
appears in a lighter color to help the user understand what they’re supposed to enter.

Edit the XAML code for your Entry control to add a Placeholder property. And
since we always want our apps to be accessible to people who use screen readers, add a
SemanticProperties.Hint property too. Notice that when you add the properties, they show
up in Visual Studio’s typeahead pop-up window, making it easier for you to add them.

Your Entry tag should look like this:

<Entry
 Placeholder="Enter some text"
 SemanticProperties.Hint="Lets you enter some text" />

Now run your app—you’ll see a new Entry control at the bottom. The placeholder text will
appear as (“Enter some text” in a lighter color, and will disappear as soon as you type text into it.

Q: Why did the Entry control get added to the bottom of my app? How did it know where in the window to display?

A: When you created a new .NET MAUI app, Visual Studio used a template that generated the XAML code for the main page in the
MainPage.xaml file. This file contains a set of nested tags, or tags that contain other tags—so one tag’s start and end appear after the
start and before the end of another tag. Each of these tags creates a specific kind of control that determines how the page is displayed.

The outermost tag in your app’s XAML is a <ContentPage> opening tag, which defines a single view that contains the rest of the
page. If you scroll down to the bottom of the file, you’ll see the closing </ContentPage> tag. Right inside that <ContentPage>
is a <ScrollView> tag—everything between the opening <ScrollView> and closing </ScrollView> tags defines
contents that will automatically display a scrollbar that lets you scroll up and down if it’s too long for the page. The <ScrollView>
tag contains a <VerticalStackLayout> tag, with a matching </VerticalStackLayout> closing tag at the bottom.
A VerticalStackLayout can contain a series of controls, one after another. Each of those controls will be displayed on the page in a
vertical stack, in the order that they appear in the file.

So since the Entry control is at the bottom of the file just above the closing </VerticalStackLayout> tag, it will appear at the
bottom of the page. And because it’s nested inside the <ScrollView>...</ScrollView> tags, if you make your window
shorter than the height of the page, you’ll be able to scroll down to it.

there are no Dumb Questions

At	the	time	we’re	writing	
this,	VSCode	does	not	
have	a	Toolbox,	so	you’ll	
need	to	type	all	of	the	
XAML	by	hand.	Make	
sure	it	matches	the	XAML	
in	the	book	exactly,	or	the	
app	won’t	work.

If you don't see the control at the
bottom of the window, use the cursor
keys or mouse scroll wheel to scroll
down to it..

you are here 4 97

dive into c# code

Make your Entry control update a Label control
Your app already has two Label controls. Let’s add a third one and make it display everything the Entry does, so when
you enter or update text in the Entry it automatically updates the Label.

Use the Toolbox to add a new Label control to the bottom of your page.
When you drag the Label out of the Toolbox, it will have an empty Text property:

<Label Text="" />

Change the Text property to make it display text. Then give it a SemanticProperties.Description property.
This is what will get read aloud if your user is using a screen reader:

<Label Text="Here's what you typed:"
 SemanticProperties.Description="Here's what you typed:" />

Use the Toolbox to add a second Label control under the one you just added.
Every time the user changes the text in your Entry control, the app will update this new Label to show the
text that they typed. Drag a new Label control out of the Toolbox and drop it in your XAML code between
the Label control that you just added and the closing </VerticalStackLayout> tag. Then set its
properties:

 " You’ll be writing code to set the Label text, so delete the Text property.

 " Since you’re going to write code that updates the Label, you’ll need to give it a name. Use an x:Name
property to name it EnteredText:
x:Name="EnteredText"

 " Keep making your app accessible by adding a description for people using a screen reader:
SemanticProperties.Description="The text that the user entered"

Your new Label should look like this:

<Label x:Name="EnteredText"
 SemanticProperties.Description="The text that the user entered" />

Give your label a background color.
Add a BackgroundColor property. When you start typing, Visual Studio will pop up an IntelliSense window.
Choose Gold for the background color.

1

2

3

You can add line breaks between properties to make them easier to read.

You can use Visual Studio’s
IntelliSense to help you add
properties. Once you add it,
you’ll see a box with a preview
of the color in the XAML
editor.

98 Chapter 2

change text in your entry get your label to update

Use the Properties window to add a bottom margin.
So far you’ve been adding properties by writing XAML code by hand. Luckily, Visual Studio has some useful
tools to help you edit your XAML. The Properties window gives you an easy way to edit the properties on
your controls. Click the XAML for your Label control so the cursor is somewhere between the tags. Go to
the Properties window (if you don’t see it, use the View menu to display it) and find Margin. Enter 20 for the
lower margin to give it a 20 pixel margin (where a pixel is 1/96th of an inch on an unscaled screen).

Your property should now look like this:

<Label x:Name="EnteredText"
 SemanticProperties.Description="The text that the user entered"
 BackgroundColor="Gold" Margin="0,0,0,20"/>

Add an event handler method.
Back in Chapter 1, you used event handler methods so your animal matching game could respond to
mouse clicks and timer ticks. Now you know more about C# methods—this is a good chance to apply that
knowledge by creating a new event handler method that updates the EnteredText control when the user types
in the Entry control. Add a TextChanged property to your Entry control. When it comes time to enter the
value, Visual Studio will suggest the value <New Event Handler>:

Press Return or use the mouse to accept the suggestion—this will cause Visual Studio to add a new event
handler method called Entry_TextChanged automatically. You probably also noticed that it also
displayed this message when you were adding the event handler:

Right-click on Entry_TextChanged and choose Go To Definition. This will open up MainPage.xaml.
cs and jump directly to the method that Visual Studio added. Add this line of code to the method:

private void Entry_TextChanged(object sender, TextChangedEventArgs e)
{
 EnteredText.Text = e.NewTextValue;
}

Now run your app. You should see a label that says “Here’s what you typed:” followed by a gold-colored
label. Click on the Entry control and type some text—it will appear in the gold-colored label immediately.

4

5

When this square turns black (or
circle if you’re using macOS), it
means that the property has a value
set. You can click it to see a menu.

Enter 20 for the bottom margin to give 20 units of
space between the label and the bottom of the page.

Don’t	forget—VSCode	
may	not	have	this	
feature	yet,	so	you	might	
need	to	type	the	Entry_
TextChanged	method	in	
by	hand.

If you’re using VSCode,
open MainPage.xaml.cs
and add this just above
the last closing bracket.

An	update	to	Visual	Studio	since	we	took	this	screenshot	may	have	removed	Margin	from	the	
Properties	window.	If	you	don’t	see	it	(or	any	other	property),	just	type	the	XAML	so	it	matches.

you are here 4 99

dive into c# code

Using a screen reader
is an effective way to
get a better feel for
accessibility.

Why do I need to add those
semantic hints? It’s not like you can see

them. Does it really matterreally matter if they’re
not there?

When you pay attention to accessibility, it makes
your app—and your code!—better.
When you’re building apps, it’s always a great idea to create them
so as many people can use them as possible, including people with
disabilities—and not just because it’s the right thing to do. Building
accessibility into your apps actually helps you become a better
developer. Really!

If you want to be a great developer, you need to get practice writing
code: writing code is a skill, and the more code you write, the better
you get at it. But there’s more to being a developer than “just” coding.

One of the biggest challenges that very experienced developers
face is deciding exactly what they want to build. In fact, a lot of
programmers will talk about the challenges of “building the software
right and building the right software.” One of the most common
problems in software engineering is building a great product that
doesn’t do what your users need.

That’s where accessibility can help you. Building accessible code
well means taking the time to really understand how people with
disabilities will use your app. Taking the time to understand and
empathize with them will help you build your app better—and it’s
great practice for skills that will help you build the right software.

One of our big goals with this book is
to help you learn important skills that
will help you become an all-around
great developer. Understanding your
users is a really important skill, and
paying attention to accessibility is a
great way to get better at it!

Here’s a great way to get accessibility ideas to stick in your brain—especially if you don’t have a disability. Turn on your screen reader, then leave it onleave it on while you code or do other work. Once you’re used to it, close your eyesclose your eyes and keep working. Can you work using just the screen reader?

Make it
Stick

100 Chapter 2

accessibility matters and makes your apps better

You added Entry and Label controls to your app—and Visual Studio’s Toolbox window, Properties window, and
IntelliSense helped you. Can you add six more controls to your app to let your user enter numeric values?

Use the Toolbox window, Properties window, and Visual Studio editor to add a Stepper control, two Label
controls, a Slider control, and two more Label controls to your app (if you’re using VSCode, add them manually).
The two Label controls that display the values should have the BackgroundColor property set to LightBlue.
Name them StepperValue and SliderValue. Make sure you add SematicProperties.Description properties.
You want your app to automatically update the StepperValue control every time the stepper value changes, so
add a ValueChanged event handler to the Stepper control. Add this line of code to the event handler:
 StepperValue.Text = e.NewValue.ToString();

Then add a ValueChanged event handler to the Slider control. It should be identical, except that it updates the
SliderValue label instead of the StepperValue label. Don’t forget to add SemanticDescription.Hint properties to
your Stepper and Slider controls.

Exercise

This is a Stepper control. It keeps track of a
whole number value, and its + and - buttons

cause that number to go up or down by 1.
This Stepper is followed

by two Label controls, just
like the ones you added

for the Entry. We colored
our second label light blue.

This long bar with a circular handle is a Slider control. It lets you
choose a decimal value. It’s followed by two more Label controls.

If you’re using VSCode, you’ll need to add the Stepper_ValueChanged and Slider_ValueChanged
methods manually. They’re just like Entry_TextChanged, just replace "Text" with "Value" in the first
line. Visual Studio’s Toolbox automatically adds these properties to the Stepper tag: Minimum="0"

Maximum="10" Increment="1"—and these to the Slider tag: Minimum="0". Maximum=”1”.

Don’t forget, it’s absolutely fine to peek at the
solution—especially if you’re using VSCode and trying
to figure out how to add the event handler methods.

you are here 4 101

dive into c# code

Here’s the XAML to add the six controls to MainPage.xaml:
 <Label x:Name="EnteredText"
 SemanticProperties.Description="The text that the user entered"
 BackgroundColor="Gold" Margin="0,0,0,20"/>

 <Stepper Minimum="0" Maximum="10" Increment="1"
 SemanticProperties.Description="Lets you enter a whole number"
 ValueChanged="Stepper_ValueChanged" />

 <Label
 Text="Here's the stepper value:"
 SemanticProperties.Description="Here's the stepper value" />

 <Label x:Name="StepperValue"
 SemanticProperties.Description="The number the user chose with the Stepper"
 BackgroundColor="LightBlue" Margin="0,0,0,20"/>

 <Slider Minimum="0" Maximum="1" ValueChanged="Slider_ValueChanged" />

 <Label
 Text="Here's the slider value:"
 SemanticProperties.Description="Here's the slider value" />

 <Label x:Name="SliderValue"
 SemanticProperties.Description="The number the user chose with the Slider"
 BackgroundColor="LightBlue" Margin="0,0,0,20"/>

</VerticalStackLayout>

Here are the event handler methods to add to MainPage.xaml.cs:
private void Stepper_ValueChanged(object sender, ValueChangedEventArgs e)
{
 StepperValue.Text = e.NewValue.ToString();
}

private void Slider_ValueChanged(object sender, ValueChangedEventArgs e)
{
 SliderValue.Text = e.NewValue.ToString();v
}

Exercise
Solution

This is the Label control that was already in your XAML code—make sure you put your six new controls below it.

These are the default properties when
you drag the Stepper out of the
Toolbox. Try experimenting with them.

You can add this ValueChanged property just like you did with TextChanged on your Entry control.

Here’s the Slider control. It has the default
properties, plus a ValueChanged property.

Here’s the Label that displays the
Slider value. It works exactly like
the Label you used to show the
value in the Entry control.

The two event handlers for the Stepper
and Slider controls update the Label.

This is the closing VerticalStackLayout tag that was already in your
XAML code—make sure you put your six new controls above it.

In the exercise instructions, we gave you this line of code:

 SliderValue.Text = e.NewValue.ToString();

What do you think .ToString() does?
Here’s a hint: Stepper and Slider controls can only
provide numeric values, but Labels can only display text.

102 Chapter 2

add a picker to your app

Combine horizontal and vertical stack layouts
In this last part of the exercise, you’ll add a Picker control, which displays a list of items that you can
pick from. You’ll also use a Label control to display the values that were picked. Here’s what it will look like:

Notice how the Label and Picker controls are next to each other? You’ll get that layout by using a
HorizontalStackLayout control. It works just like the VerticalStackLayout control, which causes all of
the controls you’ve added to your app so far to be stacked vertically on top of each other, except instead
they get stacked horizontally next to each other.

You’ll nest one Layout inside another
We’ll use nesting—where one layout control lives inside another one—to create a more complex layout.

Here’s how it will work:

This is a Picker
control. It will display
a list of birds.

When the user picks a bird and clicks the “Add a bird” button, the bird will get added to this Label.

<HorizontalStackLayout>

 <VerticalStackLayout>
 <Label Text="Pick a bird" ... />
 <Picker x:Name="BirdPicker" ... />
 </VerticalStackLayout>

 <VerticalStackLayout>
 <Label Text="Some Birds" ... />
 <Label x:Name="Birds" ... />
 </VerticalStackLayout>

</HorizontalStackLayout>

<V
er

ti
ca

lS
ta

ck
La

yo
ut

>

<V
er

ti
ca

lS
ta

ck
La

yo
ut

>

<HorizontalStackLayout>

This nested VerticalStackLayout contains
a Label that says “Some birds” and a Label
named Birds that will get updated when the
user clicks the button, also stacked vertically.

This HorizontalStackLayout will get nested
inside the outer VerticalStackLayout
that’s used to lay out the entire page.

You'll use this HorizontalStackLayout to position two VerticalStackLayout controls next to each other.

This nested VerticalStackLayout
contains a Label that says "Pick a
bird" and a Picker control named
BirdPicker, stacked vertically.

you are here 4 103

dive into c# code

Add a Picker control to display a list of choices
A Picker control displays a list of items in a dropdown so the user can pick one of them. Let’s add one to your app.

Add the XAML for a Picker control and a Label for it to update.
You’ve already seen how a VerticalStackLayout control lets you stack controls on top of each other. You
can also stack controls horizontally by adding a HorizontalStackLayout control.

Go ahead and add this XAML code just above the closing </VerticalStackLayout> tag. You can type
it all or use the Toolbox. When you add the Clicked event for the button, press Tab to let Visual Studio
generate an event handler method for you, just like you did earlier (add the method manually in VSCode).

<HorizontalStackLayout Spacing="20">

 <VerticalStackLayout>
 <Label Text="Pick a bird" SemanticProperties.Description="Picks a bird"//
 <Picker x:Name="BirdPicker" //
 </VerticalStackLayout>

 <VerticalStackLayout>

 <Label Text="Some birds"
 SemanticProperties.Description="A list of birds"//

 <Label x:Name="Birds"
 Padding="10" MinimumWidthRequest="150"
 TextColor="White" BackgroundColor="DarkBlue"
 SemanticProperties.Description="Shows the added birds" //

 </VerticalStackLayout>

</HorizontalStackLayout>

<Button x:Name="AddBird" Text="Add a bird" Margin="0,0,0,20"
 SemanticProperties.Hint="Adds a bird"//

Initialize the Picker with a list of birds.
Open the MainPage.xaml.cs file and find the MainPage method at the top. This method gets run every
time the page loads. Insert two lines after InitializeComponent(); and add this code.

public MainPage()
{
 InitializeComponent();

 BirdPicker.ItemsSource = new string[] {
 "Duck",
 "Pigeon",
 "Penguin",
 "Ostrich",
 "Owl"
 };
}

1

2

This <Button ... /> tag should be just above the closing </VerticalStackLayout> tag that’s already in MainPage.xaml.

Open the MainPage.xaml.cs file and
add this code to the MainPage method.

Be careful with the square and curly
braces, quotes, and commas.

You used the x:Name property to name your Picker
control “BirdPicker”—this sets the list of items in the
picker that get displayed when the user clicks on it.

Put your code at
the end of the
MainPage method.

make your picker work

104 Chapter 2

Fill in the event handler for the Button control.
The XAML we gave you for the Button control didn’t include a Clicked event handler. Use Visual Studio’s
IntelliSense pop-up to add a new event handler to the C# code, just like you did with the Entry control:

Since you used the x:Name property to name your Picker control AddBird, Visual Studio created an empty
event handler method called AddBird_Clicked:

private void AddBird_Clicked(object sender, EventArgs e)
{

}

Add this line of code to the AddBird_Clicked method:

private void AddBird_Clicked(object sender, EventArgs e)
{
 Birds.Text = Birds.Text + Environment.NewLine + BirdPicker.SelectedItem;
}

Take a closer look at the line of code—let’s break down exactly what it does.

1. The line starts with Birds.Text = ... which means it’s setting the text in the Bird label.

2. The text is being set to Birds.Text + followed by additional things—this means it’s going to
take whatever is in the Label and append text to it, or add additional text to the end.

3. The first thing that gets appended is Environment.NewLine, which adds a line break. The
Label control will display multiline text, adding a line break every time it sees a line break.

4. After the line break, it appends BirdPicker.SelectedItem—this is the item that’s currently
selected in the Picker control.

Run your app and use your new Picker control.
Scroll to the bottom of the app, choose a bird from the Picker, and click the Add a bird button—it will get
added to the Label that contains the birds. Select a few more birds and add them.

3

4

The Label expands every time you add
a bird because it adds a new line break.
If the button scrolls off the bottom
of the page, just scroll down to it.

Don’t	forget—VSCode	
may	not	have	this	feature	
yet,	so	you	might	need	to	
type	the	AddBird_Clicked	
method	in	by	hand.

If you’re using VSCode, you might need to open MainPage.xaml.cs and add this entire method. Put it just above the bottom closing bracket in the file.

you are here 4 105

dive into c# code

Hold on. My app doesn’t match the first screenshot that you showed
us. It looks like there’s SOME EXTRA SPACE there’s SOME EXTRA SPACE at the top of the label! The code

has a bug.

You’re right! The app doesn’t match the screenshot.
Take a look at the screenshot we showed you earlier:

Run your app and try adding those same birds. When you get to the first
owl, you’ll see extra space at the top of the label:

Looks like we’ve got a bug. Time to put on your Sherlock Holmes cap.
Let’s sleuth out this bug!

Oops! It looks like we’ve got
some extra space at the top
of the label that shows the
birds that you picked.

106 Chapter 2

sleuth out a bug

The Case of the Extraneous Space
Understanding a bug is the first step in fixing it.
In Chapter 1, we looked at the code carefully and found several clues to help us solve the Case of the
Unexpected Match. But as you keep going through this book, your apps will get longer and longer, and while
looking at the code is a good start, it may not always be the best way to figure out what’s causing a bug.
Luckily, the Visual Studio debugger is a great tool for that. (That’s why it’s called a debugger: it’s a tool that
helps you get rid of bugs!)

Reproduce the bug
It seems obvious that there’s a problem. But as Sherlock Holmes once said, “There is nothing more deceptive
than an obvious fact.” When you’re sleuthing out bugs, you can’t just rely on what seems obvious. You need to
confirm for yourself exactly what’s going on. The way to do that is to reproduce the bug.
Stop your app. Make sure it’s not running, so you’ve got a fresh start. Then do this:
1. Start your app again.
2. Pick Duck and click the “Add a bird” button.
3. Pick Ostrich and click the “Add a bird” button.
4. Pick Pigeon and click the “Add a bird” button.
5. Pick Duck and click the “Add a bird” button.
6. Pick Owl and click the “Add a bird” button.
Your app should now look exactly like the screenshot:

Now restart your app, then try it again with different birds. You should still see extra space at the top of the label.
You can make the bug happen over and over again, at will. That means the problem is reproducible: you can
follow a set of steps to make it happen. Reproducing a bug is a great first step to fixing it.
Before you go on, can you sleuth out what’s causing the extra space to get added?

Sleuth it Out

“There is nothing
more deceptive than
an obvious fact.”
— Sherlock Holmes

you are here 4 107

dive into c# code

Every good investigation starts by identifying a list of suspects
When you’re tracking down a bug, what’s the first thing you should do? You could start placing breakpoints in
the code…but where? The first step in debugging is thinking. Look at your code, think about how it works,
and try to imagine where the bug might be. That will help you figure out where to put your breakpoints.
So let’s think through the code. It starts with a button—and the button calls a method:
 <Button x:Name="AddBird" Clicked="AddBird_Clicked" Text="Add a bird"
 Margin="0,0,0,20" SemanticProperties.Hint="Adds a bird"/>

All of the code to add the bird to the label is in that AddBird_Clicked method. Now we have a suspect!

Sleuth it Out

You’re going to be using the debugger a lot in this book! We’ve walked you through it a few times, but as you get fur-
ther in the book and write more and more code, you should feel comfortable using the debugger on your own.

Let’s start with a few tips to help you get comfortable debugging your code:

 " Think before you debug. Read through your code. Understand how it works (and not just how you think it works).

 " Use the Watch window, Locals window, and hovering over variables to keep track of their values. They all do the
same thing—show you the value of a variable—so you can decide which one you feel most comfortable with.

 " Don’t be afraid to restart your app. Stop and start your code frequently—every time you run your code, you’re
running an experiment. Run it as many times as it takes to understand what’s going on.

Here’s a handy list of useful debugger commands. They may feel strange at first, but they’ll be second nature soon:

 " When you press the triangle Run button in the toolbar or choose Start Debugging (F5), Visual Studio starts run-
ning your code in the debugger. You can place a breakpoint whether or not the debugger is running.

 " To place a breakpoint, click on a line of code and choose Toggle Breakpoint (F9) from the Debug menu.

 " When your code hits a breakpoint, it stops running so you can inspect variables.

 " When Visual Studio breaks on a breakpoint, the toolbar shows you the commands you can use to keep executing.
Debugging code can be a little weird to get used to if you haven’t done it before, so try sticking to just these four
commands—here’s where you’ll find them in the IDE’s toolbar, along with their keyboard shortcuts:

IDE Tip: Using the debugger

Continue Debugging (F5)
starts the app running again.

Continue Debugging (F5)
starts the app running again.

Step Over (F10) executes the current
statement and breaks on the next one.

Step Over (F10) executes the current
statement and breaks on the next one.

Stop Debugging (Shift+F5)
stops the debugger.

Stop Debugging (Shift+F5)
stops the debugger.

VSCode
Visual Studio

Remember, If your app doesn’t pause on the breakpoint,
make sure you’re starting the app with debugging. Run

the app by pressing F5 or choosing Start Debugging
from the Debug (Visual Studio) or Run (VSCode) menu.

108 Chapter 2

find the bug fix the bug

Add a breakpoint and start debugging the code
Now that we have a suspect, let’s catch it in the act. Add a breakpoint to the line in the AddBird_Clicked method:

Now run your code. Pick a bird, then click the “Add a bird” button. The debugger stops on your breakpoint. Next,
add a watch for Birds.Text, just like you did earlier in the chapter. The value should be null:

Then step over that line of code (F10) to run it. You should see this value:

The value of Birds.Text is a string: \r\n followed by the bird you picked. What do you think \r\n does?
NOTE: If you’re using macOS, you’ll see \n instead of \r\n.
Continue debugging (F5) to start your app running again. Pick a different bird and step over the line of code. Now
have a look at the Birds.Text watch:

Repeat the process a few more times: continue debugging, pick a bird, click the button, step over, check the
watch. Eventually your Birds.Text value will look something like this (you’ll see \n instead of \r\n on macOS):
“\r\nPenguin\r\nOstrich\r\nPigeon\r\nDuck\r\nOwl\r\nPigeon\r\nDuck\r\nOwl”

You’ve probably figured out by now that the \r\n or \n is the line break. The first time the AddBird_Clicked
method is called, the Label text is empty (that’s what the null value means), so when the app adds the current
value (empty) plus a line break plus the bird, it adds an extra line break at the start of the string.
Now that we’ve found the culprit, we can fix the app. Replace the AddBird_Clicked method with this code, which
uses a special method, String.IsNullOrEmpty, which checks if a string is empty:
private void AddBird_Clicked(object sender, EventArgs e)
{
 if (!String.IsNullOrEmpty(Birds.Text))
 {
 Birds.Text = Birds.Text + Environment.NewLine;
 }
 Birds.Text += BirdPicker.SelectedItem;
}

Run your app again and add a few birds to the label—there’s no more empty space above it. Your app is fixed!

Sleuth it Out

String.IsNullOrEmpty(Birds.Text)
checks the value of Birds.Text and
returns true if it’s empty or false if
it’s not. The ! in front of it reverses
that value, so the line break is only
added if Birds.Text is empty. You’ll
learn all about how a method can
return a value in the next chapter.

The Picker keeps growing each time you add a bird. Can
you figure out which property gives it a maximum height? you are here 4 109

dive into c# code

 ◾ You’ll use many different controls to build your app’s user interface (or UI). The UI is the part of the application
that your user interacts with.

 ◾ The C# code for a page in a MAUI app is called code-behind. The XAML code and the C# code in the code-behind
file work together to make the page work.

 ◾ The x:Name property gives your control a name you can use in your code.

 ◾ When you pay attention to accessibility, it makes your app—and your code!—better. Semantic properties help
you make your apps accessible by providing descriptions and hints for people who use screen readers.

 ◾ In XAML you can have nested controls, or tags that contain other controls, so one control’s start and end tag
appear after the start tag and before the end of another tag.

 ◾ You can use nested HorizontalStackLayout and VerticalStackLayout controls to create more complex layouts.

 ◾ The first step in debugging is thinking: look at your code, think about how it works, and try to imagine where the
bug might be.

 ◾ Reproducing a bug is an important tool that helps you fix it. When you’re debugging, you’re running an
experiment every time you run your code. Run it as many times as it takes to understand what’s going on.

Bullet Points

There are no unexplainable mysteries in your code.
Every bug has an explanation, even if it takes work
to figure out what’s going on and fix it.
Bugs can be weird! If you’ve been playing video games for a long time,
you’ve probably experienced a few glitches, and some of them can be
extremely odd. If you haven’t seen any yourself, try searching the web
for videos of game glitches—even the most polished game has bugs.

Every bug you see is code behaving in a way you don’t expect. That’s why bugs
need sleuthing out. Bugs can be confusing, mysterious, and sometimes
extremely frustrating. It’s even tempting to think that something is
fundamentally wrong, and the code will never work. Always remember
that every bug has an explanation. Every bug is strange, but even a
bug that appears to be a weird mystery is caused by something in your
code—so you can fix it. Because like Sherlock Holmes once said, “It is a
mistake to confound strangeness with mystery.”

When I first spotted the bug in the app, it
seemed really weirdseemed really weird. But once I thought

through the code and did some experimenting, I
found an explanationfound an explanation.

110 Chapter 2

you can fix all your bugs

C# Lab 111Head First C# Unity Lab 111https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Unity Lab #1
Explore C# with Unity
Welcome to your first Head First C# Unity Lab.
Writing code is a skill, and like any other skill, getting
better at it takes practice and experimentation.
Unity will be a really valuable tool for that.

Unity is a cross-platform game development tool
that you can use to make professional-quality games,
simulations, and more. It’s also a fun and satisfying
way to get practice with the C# tools and ideas
you’ll learn throughout this book. We designed these
short, targeted labs to reinforce the concepts and
techniques you just learned to help you hone your C#
skills. These labs are optional, but valuable practice…
even if you aren’t planning to write games in C#.

In this first lab, you’ll get started with Unity. You’ll
get oriented with the Unity editor, and you’ll start
creating and manipulating 3D shapes. That will lay
down a foundation to write code in the next lab.

Unity Lab #1
Explore C# with Unity

112 	 https://github.com/head-first-csharp/fifth-edition

Unity is a powerful tool for game design
Welcome to the world of Unity, a complete system for designing professional-
quality games—both two-dimensional (2D) and three-dimensional (3D)—as well as
simulations, tools, and projects. Unity includes many powerful things, including...

Our Unity Labs will focus on using Unity as a tool to explore C# and practicing with
the C# tools and ideas that you’ve learned throughout the book.
The Head First C# Unity Labs are laser-focused on a developer-centric learning path. The goal of these labs
is to help you ramp up on Unity quickly, with the same focus on brain-friendly just-in-time learning you’ll see
throughout Head First C# to give you lots of targeted, effective practice with C# ideas and techniques.

A cross-platform game engine
A game engine displays the graphics, keeps track of the 2D or 3D
characters, detects when they hit each other, makes them act like
real-world physical objects, and much, much more. Unity will do all
of these things for the 3D games you build throughout this book.

An ecosystem for game creation
Beyond being an enormously powerful tool for creating games, Unity
also features an ecosystem to help you build and learn. The Learn
Unity page (https://unity.com/learn) has valuable self-guided learning
resources, and the Unity forums (https://forum.unity.com) help you
connect with other game designers and ask questions. The Unity
Asset Store (https://assetstore.unity.com) provides free and paid assets like
characters, shapes, and effects that you can use in your Unity projects.

A powerful 2D and 3D scene editor
You’ll be spending a lot of time in the Unity editor. It
lets you edit levels full of 2D or 3D objects, with tools
that you can use to design complete worlds for your
games. Unity games use C# to define their behavior,
and the Unity editor integrates with Visual Studio to
give you a seamless game development environment.

While these Unity Labs will concentrate on C# development
in Unity, if you’re a visual artist or designer, the Unity editor
has many artist-friendly tools designed just for you. Check
them out here: https://unity.com/solutions/artist-designers

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 113

Unity Hub may look a little different.

The	screenshots	in	this	book	were	taken	with	Unity 6	and	Unity Hub 3.10.0.	
You	can	use	Unity	Hub	to	install	many	different	versions	of	Unity	on	the	same	
computer,	but	you	can	only	install	the	latest	version	of	Unity	Hub.	The	Unity	

development	team	is	constantly	improving	Unity	Hub	and	the	Unity	editor,	so	it’s	possible	
that	what	you	see	won’t	quite	match	what’s	shown	on	this	page.	

Watch it!

Download Unity Hub
Unity Hub is an application that helps you manage your Unity projects and your Unity installations,
and it’s the starting point for creating your new Unity project. Start by downloading Unity Hub from
https://unity.com/developer-tools—then install it and run it.

Click on Installs to
manage the installed

versions of Unity.

Unity Hub helps you manage your Unity installs
and projects. We used screenshots from Unity

6 in these Unity Labs, because that was the
most recent version available when we went to
production. You should install the latest official

release. When you click the Install Editor
button, Unity Hub will display a list of official
releases. Install the most recent version of

Unity 6. Make sure you choose the version (x64
or Arm64) that matches your hardware.

Unity Hub lets you install multiple versions of Unity on the same computer, so you should install
the same version that we used to build these labs. Click the Install Editor button and install the
version of Unity 6 that matches your hardware (x64 or Arm64—that’s the same version we used to
take the screenshots in these labs. Once it’s installed, make sure that it’s set as the preferred version.

The Unity installer may prompt you to install a different version of Visual Studio. You can have
multiple installations of Visual Studio on the same computer too, but if you already have one
version of Visual Studio installed there’s no need to make the Unity installer add another one.

You can learn more about installing Unity Hub on Windows and macOS here:
https://docs.unity3d.com/Manual/GettingStartedInstallingUnity.html

All of the screenshots in this book were taken with the free Personal Edition of Unity. You’ll need to enter your unity.com username and password into Unity Hub to activate your license.

Unity Hub lets you
have many Unity
installs on the same
computer. So even
if there’s a newer
version of Unity
available, you can use
Unity Hub to install
the version we used
in the Unity Labs.

Unity Lab #1
Explore C# with Unity

114 	 https://github.com/head-first-csharp/fifth-edition

Use Unity Hub to create a new project
Click the button on the Project page in Unity Hub to create a new Unity project.
Name it Unity Lab 1, select the Universal 3D template, and check that you’re creating it in
a sensible location (usually the Unity Projects folder underneath your home directory).

Click Create Project to create the new folder with the Unity project. When you create a new
project, Unity generates a lot of files (just like Visual Studio does when it creates new projects
for you). It could take Unity a minute or two to create all of the files for your new project.

Work with your project in the Unity editor
Once your project is created, it will load in the Unity editor, a powerful tool that you’ll use
to create 3D environments. Here are some important parts of the Unity editor:

OK! You’re all ready to get started on your first Unity project.

The Scene view is your
main interactive view

of the world that you’re
creating. You use it to

position 3D shapes,
cameras, lights, and all
of the other objects in

your game.

The Hierarchy window shows you all of the
objects in your scene.

Use the Project window
to work with the files
in your Unity project.

Every object
in your game
has properties,
which you’ll view
and edit in the
Inspector window.

You’ll use the Scene window to edit the objects in your scene, including lights, cameras, and
shapes. Notice the “Game” tab at the top? That lets you switch to the Game window, which lets you see the player’s view of your game when you run it.

You can use this
dropdown to change
the layout of the
Unity editor.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 115

You can use
Visual Studio
to debug
the code in
your Unity
games. Just
choose Visual
Studio as
the external
script editor
in Unity’s
preferences.

If you don’t see Visual Studio in the External Script Editor dropdown, choose Browse
and navigate to Visual Studio. On Windows it’s normally an executable called devenv.exe

in the folder C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\.
 On a Mac it’s typically an app called Visual Studio in the Applications folder.

Take control of the Unity layout
The Unity editor is like an IDE for all of the parts of your Unity project that aren’t C#.
You’ll use it to work with scenes, edit 3D shapes, create materials, and so much more.

When you started up Unity, did you notice that your screen looked a little different from our
screenshot? Just like in Visual Studio, the windows and panels in the Unity editor can be
rearranged in many different layouts. We chose a layout that works well for screenshots in a
book. We also chose dark mode, which we think is easier to read when these pages are printed.

Choose the Wide layout to match our screenshots
We’ve chosen the Wide layout because it works well for the screenshots in these labs. Find
the Layout dropdown in the toolbar and choose Wide so your Unity editor looks like ours.

Set up Unity to work with Visual Studio
The goal of these Unity Labs is to give you an exciting and fun way to explore C#.
The Unity editor works with Visual Studio and VSCode to make it easy to edit and debug
the code for your games. Open the Unity Preferences Window (on Windows choose
Preferences from the Edit menu; on a Mac choose Settings from the Unity menu). Click on
External Tools on the left, click the External Script Editor dropdown, and choose Visual
Studio 2022 (or Visual Studio Code if you’re using VSCode) from the list of options.

You can download
PDFs of all of these
Unity Labs and print

them out if that
makes it easier for
you to follow along.

Once you change the layout with the Layout dropdown on the right side of the toolbar, the dropdown changes its label to match the layout that you selected.

You’ll write code and do
some debugging with Visual
Studio or VSCode in the
next Unity Lab. This lab
is about getting used to
the way Unity works so
you’re ready to do that.

Unity Lab #1
Explore C# with Unity

116 	 https://github.com/head-first-csharp/fifth-edition

Your scene is a 3D environment
As soon as you start the editor, you’re editing a scene. You can think of scenes as levels in your Unity
games. Every game in Unity is made up of one or more scenes. Each scene contains a separate 3D
environment, with its own set of lights, shapes, and other 3D objects. When you created your project,
Unity added a scene called SampleScene and stored it in a file called SampleScene.unity.

Add a sphere to your scene by choosing GameObject >> 3D Object >> Sphere from the menu:

A sphere will appear in your Scene window. Everything you see in the Scene window is shown from the
perspective of the Scene view camera, which “looks” at the scene and captures what it sees.

The Scene window shows you all of the objects in your scene from the
perspective of the scene camera. It shows a perspective grid to help
you see how far away the objects are from the Scene view camera.

This is a light that illuminates the scene.

When you run your
game, you’ll see it
from the perspective
of this camera.

Here’s the sphere
that you added.

These are called Unity’s
“primitive objects.” We’ll be
using them a lot throughout
these Unity Labs.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 117

Unity games are made with GameObjects
When you added a sphere to your scene, you created a new GameObject. The
GameObject is a fundamental concept in Unity. Every item, shape, character,
light, camera, and special effect in your Unity game is a GameObject. Any scenery,
characters, and props that you use in a game are represented by GameObjects.

In these Unity Labs, you’ll build games with different kinds of GameObjects, including:

Spheres

Cubes

Planes

Capsules

Cylinders

Lights

Cameras

Each GameObject contains several components that provide its shape, set its position,
and give it all of its behavior. For example:

 " Transform components determine the position and rotation of the GameObject.

 " Material components change the way the GameObject is rendered—or how it’s
drawn by Unity—by changing the color, reflection, smoothness, and more.

 " Script components use C# scripts to determine the GameObject’s behavior.

GameObjects
are the
fundamental
objects in
Unity, and
components
are the
basic building
blocks of
their behavior.
The Inspector
window shows
you details
about each
GameObject in
your scene and
its components.

ren-der, verb.
to represent or depict artistically.
Michelangelo rendered his favorite model with
more detail than he used in any of his other drawings.

Unity Lab #1
Explore C# with Unity

118 	 https://github.com/head-first-csharp/fifth-edition

Use the Move Gizmo to move your GameObjects
The Tools panel lets you choose Transform tools. If the Move Tool isn’t selected, click on the sphere that
you just added, then click the Move Tool in the Tools overlay to select it.

The Move Tool lets you use the Move Gizmo to move GameObjects around the 3D space. You should see
red, green, and blue arrows and a cube appear in the middle of the window. This is the Move Gizmo, which
you can use to move the selected object around the scene.

Move your mouse cursor over the cube at the center of the Move Gizmo—notice how each of the faces of the
cube lights up as you move your mouse cursor over it? Click on the upper-left face and drag the sphere around.
You’re moving the sphere in the X-Y plane.

When you click on the upper-left face of the
cube in the middle of the Move Gizmo, its X
and Y arrows light up and you can drag your
sphere around the X-Y plane in your scene.

Move your sphere around the scene to get a feel for how the Move Gizmo works.
Click and drag each of the three arrows to drag it along each plane individually. Try
clicking on each of the faces of the cube in the Scene Gizmo to drag it around all three
planes. Notice how the sphere gets smaller as it moves farther away from you—or really,
the scene camera—and larger as it gets closer.

The Move
Gizmo lets
you move
GameObjects
along any
axis or plane
of the 3D
space in
your scene.

Using the Move Tool displays the Move Gizmo as arrows and a cube on top of the GameObject that’s currently selected. When you click the sphere and then choose the Move Tool, you’ll see the Move Gizmo appear on the sphere. Click anywhere else in the scene to deselect the sphere and the Move Gizmo goes away.

The Tools overlay lets you choose tools to manipulate
GameObjects. You’ll use the Move Tool to move your
sphere around the scene. In the Wide view, the Tools

overlay is vertical. You can right-click the two lines at the
top to change its orientation so it’s horizontal, or you can
drag it to the toolbar or the side of the window to dock it.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 119

Save your scene often! Use File >> Save or Ctrl+S / ⌘S to save the scene right now.

The Inspector shows your GameObject’s components
As you move your sphere around the 3D space, watch the Inspector window,
which is on the right side of the Unity editor if you’re using the Wide layout. Look
through the Inspector window—you’ll see that your sphere has four components
labeled Transform, Sphere (Mesh Filter), Mesh Renderer, and Sphere Collider.

Every GameObject has a set of components that provide the basic building blocks of
its behavior, and every GameObject has a Transform component that drives its
location, rotation, and scale.

You can see the Transform component in action as you use the Move Gizmo to drag
the sphere around the X-Y plane. Watch the X and Y numbers in the Position row
of the Transform component change as the sphere moves.

Try clicking on each of the other two faces of the Move Gizmo cube and dragging to move the sphere in
the X-Z and Y-Z planes. Then click on the red, green, and blue arrows and drag the sphere along just the
X, Y, or Z axis. You’ll see the X, Y, and Z values in the Transform component change as you move the
sphere.

Now hold down Shift to turn the cube in the middle of the Gizmo into a square. Click and drag on that
square to move the sphere in the plane that’s parallel to the Scene view camera.

Once you’re done experimenting with the Move Gizmo, use the sphere’s Transform component context
menu to reset the component to its default values. Click the context menu button () at the top of the
Transform panel and choose Reset from the menu.

The position will reset back to [0, 0, 0].

If you accidentally
deselect a GameObject,
just click on it again. If

it’s not visible in the
scene, you can select it
in the Hierarchy window,
which shows all of the

GameObjects in the scene.
When you reset the layout

to Wide, the Hierarchy
window is in the lower-left
corner of the Unity editor.

Use the context menu to reset a component.
You can either click the three dots or
right-click anywhere in the top line of the
Transform panel in the Inspector window to
bring up the context menu.

Did you notice the grid in your 3D
space? As you’re dragging the sphere

around, hold down the Control key.
That causes the GameObject that

you’re moving to snap to the grid. You’ll
see the numbers in the Transform

component move by whole numbers
instead of small decimal increments.

You can learn more about the tools and how to use them to position GameObjects in the Unity
Manual. Click Help >> Unity Manual and search for the “Positioning GameObjects” page.

Unity Lab #1
Explore C# with Unity

120 	 https://github.com/head-first-csharp/fifth-edition

Add a material to your Sphere GameObject
Unity uses materials to provide color, patterns, textures, and other visual effects. Your sphere looks
pretty boring right now because it just has the default material, which causes the 3D object to be rendered
in a plain, off-white color. Let’s make it look like a billiard ball.

Select the sphere.
When the sphere is selected, you can see its material as a component in the Inspector window:

We’ll make your sphere more interesting by adding a texture—that’s just a simple image file
that’s wrapped around a 3D shape, almost like you printed the picture on a rubber sheet and
stretched it around your object.

Go to our Billiard Ball Textures page on GitHub.
Go to https://github.com/head-first-csharp/fifth-edition and click on the Billiard Ball Textures link to
browse a folder of texture files for a complete set of billiard balls.

Download the texture for the 8 ball.
Click on the file 8 Ball Texture.png to view the texture for an 8 ball. It’s an ordinary 1200 × 600
PNG image file that you can open in your favorite image viewer.

Download the file into a folder on your computer.

(You might need to right-click on the Download button to save the file, or click Download to open it and then
save it, depending on your browser.)

1

2

3

We designed this
image file so that
it looks like an 8
ball when Unity
“wraps” it around a
sphere.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 121

Import the 8 Ball Texture image into your Unity project.
Right-click on the Assets folder in the Project window, choose Import New Asset and
import the texture file. You should now see it when you click on the Assets folder in the
Project window.

You right-clicked inside
the Assets folder in
the Project window to
import the new asset,
so Unity imported
the texture into that
folder.

Add the texture to your sphere.
Now you just need to take that texture and “wrap” it around your sphere. Click on 8 Ball
Texture in the Project window to select it. Once it’s selected, drag it into the Hierarchy
window onto the Sphere that you added.

4

5

Your sphere now looks like an 8 ball. Check the
Inspector, which is showing the 8 Ball GameObject. Now
it has a new material component:

Check your Assets window again.
Unity created a new Materials
folder in it and added a material
called 8 Ball Texture.

Unity Lab #1
Explore C# with Unity

122 	 https://github.com/head-first-csharp/fifth-edition

I’m learning C# for my job, not to write
video games. Why should I care about

Unity?

Unity is a great way to really “get” C#.
Programming is a skill, and the more practice you get writing C# code, the better
your coding skills will get. That’s why we designed the Unity Labs throughout
this book to specifically help you practice your C# skills and reinforce the
C# tools and concepts that you learn in each chapter. As you write more C#
code, you’ll get better at it, and that’s a really effective way to become a great C#
developer. Neuroscience tells us that we learn more effectively when we experiment,
so we designed these Unity Labs with lots of options for experimentation, and
suggestions for how you can get creative and keep going with each lab.

But Unity gives us an even more important opportunity to help get important
C# concepts and techniques into your brain. When you’re learning a new
programming language, it’s really helpful to see how that language works with lots
of different platforms and technologies. That’s why we included both console apps
and MAUI apps in the main chapter material, and in some cases even have you
build the same project using both technologies. Adding Unity to the mix gives you
a third perspective, which can accelerate your understanding of C#.

Do you want to make sure your Unity projects are always backed up? Try Unity Version Control.
Unity Version Control is a version control system that lets you back up your projects to cloud storage that comes free
with your Unity account—and it’s built right into the Unity editor, which makes it easy for you to use.

Click the Unity Version Control
button in the toolbar to open the

Unity Version Control window. The
first time you use it, you’ll get an
option to log in or sign up. When

you sign in with your Unity ID, you’ll
get to a web page where you can
sign into your Unity account, then
sign up for the free Unity VCS level
and join your default organization.

Then you can check in changes any
time you want.

Go to the Head First C# GitHub page for a free PDF that gives you step-by-step instructions
for setting Unity Version Control: https://github.com/head-first-csharp/fifth-edition

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 123

Rotate your sphere
Click the Rotate tool in the toolbar. You can use the Q, W, E, R, T, and Y keys to quickly switch
between the Transform tools—press E and W to toggle between the Rotate tool and Move Tool.

Click on the sphere. Unity will display a wireframe sphere Rotate Gizmo with red, blue, and
green circles. Click the red circle and drag it to rotate the sphere around the X axis.

Click and drag the green and blue circles to rotate around
the Y and Z axes. The outer white circle rotates the sphere along the
axis coming out of the Scene view camera. Watch the Rotation numbers
change in the Inspector window.

Open the context menu of the Transform panel in the Inspector window. Click
Reset, just like you did before. It will reset everything in the Transform component back to
default values—in this case, it will change your sphere’s rotation back to [0, 0, 0].

Use these options from farther down
in the context menu to reset the
position and rotation of a GameObject.

Click the three dots (or right-click anywhere in
the header of the Transform panel) to bring up the
context menu. The Reset option at the top of the
menu resets the component to its default values.

1

2

3

Use File >> Save or Ctrl+S / ⌘S to save the scene right now. Save early, save often!

We switched the Tools overlay to a
horizontal view by right-clicking on
the two lines and choosing Horizontal.
Try it out.

It’s easy to
reset your
windows and
scene camera.

If you change your Scene
view so you can’t see your
sphere anymore, or if you
drag your windows out of
position, just use the Layout
dropdown in the upper-right
corner to reset the Unity
editor to the Wide layout. It
will reset the window layout
and the Scene view

Relax

Unity Lab #1
Explore C# with Unity

124 	 https://github.com/head-first-csharp/fifth-edition

Move the Scene view camera with the View Tool and Scene Gizmo
Use the mouse scroll wheel or scroll feature on your trackpad to zoom in and out, and toggle between the Move
and Rotate Gizmos. Notice that the sphere changes size, but the Gizmos don’t. The Scene window in the editor
shows you the view from a virtual camera, and the scroll feature zooms that camera in and out.

Press Q to select the View Tool, or choose it from the toolbar. Your cursor will change to a hand.

The View Tool pans around the scene by changing the position and rotation of the scene camera. When the
View Tool is selected, you can click anywhere in the scene to pan.

Click and
drag the View Tool around
the scene to pan the scene camera.

Hold down Alt (or Option on a Mac) while
dragging the View Tool to rotate the scene
camera around the center of the scene.

When the View Tool is selected, you can pan the scene camera by clicking and dragging, and you can
rotate it by holding down Alt (or Option) and dragging. Use the mouse scroll wheel to zoom. Holding
down the right mouse button lets you fly through the scene using the W-A-S-D keys.

When you rotate the scene camera, keep an eye on the Scene Gizmo in the upper-right corner of the Scene
window. The Scene Gizmo always displays the camera’s orientation—check it out as you use the View Tool to
move the Scene view camera. Click on the X, Y, and Z cones to snap the camera to an axis.

The Unity Manual has great tips on navigating scenes: https://docs.unity3d.com/Manual/SceneViewNavigation.html

Click any of the cones in
the Scene Gizmo to snap the
camera to an axis. Drag them
around to rotate the camera.

Hold down Alt (Windows) or Option (Mac) while
dragging and the View Tool turns into an eye and
rotates the view around the center of the window.

Take a minute and look at this page—it’s got some really useful stuff.

If an “AI Navigation” box is
making it hard to see what’s

going on, right-click on its
header and choose Hide.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 125

When you click on the Directional Light GameObject
in the Hierarchy window, the Inspector shows you its
components. It just has two: a Transform component
that provides its position and rotation and a Light
component that actually casts the light. What do
you think you’ll use the Add Component button for?

You can click on the Help icon
for any component to bring up

the Unity Manual page for it.

Q: I’m still not clear on exactly what a component is. What
does it do, and how is it different from a GameObject?

A: A GameObject doesn’t actually do much on its own. All a
GameObject really does is serve as a container for components.
When you used the GameObject menu to add a sphere to your scene,
Unity created a new GameObject and added all of the components
that make up a sphere, including a Transform component to give it
position, rotation, and scale, a default material to give it its plain white
color, and a few other components to give it its shape, and help your
game figure out when it bumps into other objects. These components
are what make it a sphere.

Q: So does that mean I can just add any component to a
GameObject and it gets that behavior?

A: Yes, exactly. When Unity created your scene, it added two
GameObjects, one called Main Camera and another called Directional
Light. If you click on Main Camera in the Hierarchy window, you’ll see
that it has three components: a Transform, a Camera, and an Audio
Listener. If you think about it, that’s all a camera actually needs to
do: be somewhere, and pick up visuals and audio. The Directional
Light GameObject just has two components: a Transform and a Light,
which casts light on other GameObjects in the scene.

Q: If I add a Light component to any GameObject, does it
become a light?

A: Yes! A light is just a GameObject with a Light component. If you
click on the Add Component button at the bottom of the Inspector and
add a Light component to your ball, it will start emitting light. If you
add another GameObject to the scene, it will reflect that light.

Q: It sounds like you’re being careful with the way you
talk about light. Is there a reason you talk about emitting and
reflecting light? Why don’t you just say that it glows?

A: Because there’s a difference between a GameObject that emits
light and one that glows. If you add a Light component to your ball, it
will start emitting light—but it won’t look any different, because the
Light only affects other GameObjects in the scene that reflect its
light. If you want your GameObject to glow, you’ll need to change its
material or use another component that affects how it’s rendered.

there are no Dumb Questions

Unity Lab #1
Explore C# with Unity

126 	 https://github.com/head-first-csharp/fifth-edition

Get creative!
We built these Unity Labs to give you a platform to experiment on your
own with C# because that’s the single most effective way for you to become
a great C# developer. This lab lays down the foundation to start writing
Unity code—which you’ll do in the next lab. At the end of each Unity Lab, we’ll
include suggestions for things that you can try on your own. Take some time to
experiment with everything you just learned before moving to the next chapter:

 " Add a few more spheres to your scene. Try using some of the other billiard
ball maps. You can download them all from the same location where you
downloaded 8 Ball Texture.png.

 " Try adding other shapes by choosing Cube, Cylinder, or Capsule from the
GameObject >> 3D Object menu.

 " Experiment with using different images as textures. See what happens to
photos of people or scenery when you use them to create textures and add
them to different shapes.

 " Can you create an interesting 3D scene out of shapes, textures, and lights?

The more C#
code you write,
the better
you’ll get at it.
That’s the most
effective way
for you to
become a great
C# developer.
We designed
these Unity Labs
to give you a
platform for
practice and
experimentation.

When you’re ready to move on
to the next chapter, make sure
you save your project, because
you’ll come back to it in the
next lab. Unity will prompt you
to save when you quit.

 ◾ The Scene view is your main interactive view of the
world that you’re creating.

 ◾ When you select an object and use the Move Tool,
Unity displays the Move Gizmo that lets you move
objects around your scene.

 ◾ The View Tool lets you pan around the scene.
The Scene Gizmo always displays the camera’s
orientation.

 ◾ Unity uses materials to provide color, patterns,
textures, and other visual effects.

 ◾ Some materials use textures, or image files wrapped
around shapes.

 ◾ Your game’s scenery, characters, props, cameras, and
lights are all built from GameObjects.

 ◾ GameObjects are the fundamental objects in Unity.
Components are the building blocks for their
behavior.

 ◾ Every GameObject has a Transform component that
provides its position, rotation, and scale.

 ◾ The Project window gives you a folder-based view of
your project’s assets, including C# scripts and textures.

 ◾ The Hierarchy window shows all of the GameObjects
in the scene.

 ◾ Unity Version Control System (VCS) is an easy way
to back up projects to free cloud storage that comes
with a Unity Personal account. Download a PDF
to help you set up version control in Visual Studio,
VSCode, and Unity for free from our GitHub page:
https://github.com/head-first-csharp/fifth-edition

Bullet Points

namespaces and classes 3

Organizing your code

Great developers keep their code and data organized.
What’s the first thing you do when you’re creating an app? You think about what it’s

supposed to do, whether you’re solving a problem, creating a game, or just having fun.

But it’s not always obvious how individual statements fit into your app’s bigger picture…and

that’s where classes come in. They let you organize your code around the features you’re

creating and the problems the app needs to solve. Classes can help you organize your

data, too, by using them to create objects that represent any “thing” your app needs to know

about—and the classes that you design serve as “blueprints” for the objects used in your app.

this is a new chapter 127

128 Chapter 3

organize your code reuse your code

Every C# program’s code is structured in exactly the same way. All programs use
namespaces, classes, and methods to make your code easier to manage.

Anatomy of a C# App

When you create your app, all of the code is
inside a namespace. This helps keep your classes

separate from the ones that come with .NET.

A class has one or more methods. Your methods
must live inside a class. The order of the methods

in the class file doesn’t matter. Method 2 can just as
easily come before method 1.

Methods are made up of statements—like the ones
you used in your apps in the last two chapters.

A class contains a piece of your program. Some very small
programs can have just one class, but most have more.

Classes help you organize your code
Let’s be honest…you’re going to write a lot of code throughout this book. And as you keep
going through the chapters, your projects will get bigger and bigger. This is a good thing!

Bigger apps present an interesting challenge. The app you built at the end of Chapter 2 had
just a few methods. If you create a console app with the same number of methods, there’s
no reason not to put them all in Program.cs.

By the time you get to the end of the book, you’ll be creating apps with dozens of methods.
If you put all of those methods into one big Program.cs file, you’ll have a hard time
remembering which ones do what—and you’ll drive yourself crazy trying to sleuth out bugs!

Luckily, C# has an answer for this organizational challenge. Your C# code is organized
into classes, or units of code that contain methods. You could still put all of your methods
into one big class, and many small apps could have just one class. But when you have a
lot of code, it makes sense to organize your classes based on what they do. When
your classes are organized in a way that’s intuitive, it helps you figure out where to add new
methods—and it makes sleuthing out bugs a lot easier.

Namespace

Class

Method
Statement;
Statement;

Method
Statement;
Statement;

Method
Statement;
Statement;

Field;
Field;

A class can have fields. A field is a variable,
except that it’s declared outside of the methods

so all of the methods in the class can use it.

you are here 4 129

organizing your code

MainPage.xaml

MainPage.xaml.cs

PetManagerMAUI

Dog.cs
Cat.cs

namespace Pets {

 class Dog {

 public void Bark() {
 /> statements
 }

 }

}

Dog.cs

Cat.cs

If code is useful, classes can help you reuse it
Developers have been reusing code since the earliest days of programming, and it’s not hard to see why.
If you’ve written a class for one program, and you have another program that needs code that does
exactly the same thing, then it makes sense to reuse the same class in your new program. So if we were
going to build an app called PetManager, we might organize the code using classes called Dog and Cat.

We built the Dog and
Cat classes for our
PetManagerApp console app...

Since we put our classes in the Pets namespace, we
just had to copy the file into the new project and
add “using Pets;” to the top of any file with C#
code that uses the Dog or Cat classes.

...but we discovered we needed exactly the same classes in the MAUI version of our PetManager app, so we reused them.

Program.cs

PetManager

Dog.cs

Cat.cs

These are the same files with the Dog and Cat classes.

namespace Pets {

 class Cat {

 public void Meow() {
 /> statements
 }

 }

}

Cat.cs

130 Chapter 3

parameters and values make your methods flexible

Some methods take parameters and return a value
You’ve seen methods that do things, like the OperatorExamples method you generated in Chapter 2. Methods
can do more than that: they can use parameters to get input, do something with that input, and then
generate output with a return value that can be used by the statement that called the method.

Parameters
start the input

Method
does something

Return value
sends output back

Parameters are values that the method uses as input. They’re declared as variables that are included in the
method declaration (between the parentheses). The return value is a value that’s calculated or generated inside
the method, and sent back to the statement that called that method. The type of the return value (like string or
int) is called the return type. If a method has a return type, then it must use a return statement.

Here’s an example of a method with two int parameters and an int return type:

 int Multiply(int factor1, int factor2)
 {
 int product = factor1 * factor2;
 return product;
 }

The method takes two parameters called factor1 and factor2. It uses the multiplication operator * to
calculate the result, which it returns using the return keyword.

This code calls the Multiply method and stores the result in a variable called area:

 int height = 179;
 int width = 83;
 int area = Multiply(height, width);

You can pass values like 3
and 5 to methods, like this:
Multiply(3, 5)—but you can
also use variables when you
call your methods. It’s fine
if the variable names don’t
match the parameter names.

The return statement passes
the value back to the statement that called the method.

The return
type is int, so
the method
must return
an int value.

This method
takes two int
parameters
called factor1
and factor2 as
input. They’re
treated just
like int variables.

A method’s parameters let
you give it information that
it can use, and its return
value lets you use the
result of the method in the
statement that called it.

you are here 4 131

organizing your code

Since you’re about to create methods that return values, right now is a perfect time to
write some code and use the debugger to really dig into how the return statement works:

 " What happens when a method is done executing all of its statements? See for yourself—open up one of
the programs you’ve written so far, place a breakpoint inside a method, then keep stepping through it.

 " When the method runs out of statements, it returns to the statement that called it and continues executing
the next statement after that.

 " A method can also include a return statement, which causes it to immediately exit without executing
any of its other statements. Try adding a return statement in the middle of a method, then stepping
over it.

Do this!

Visual Studio helps you explore parameters and return values
In the next app, you’ll be using a .NET method called Console.ReadLine to get a line that the user types
into the console. Once you add the line to your app, you can hover over it to see more about it:

The IDE will pop up a box telling you what the method does. The very first thing in the box is its return
type—in this case, it’s a string? value that holds text. We’ll learn a lot more about how strings work in the
next chapter. In the meantime, what you need to know is that you call the method like this:

string? line = Console.ReadLine();

This calls the method to read a line of input, and stores the text the user typed in a variable called line.

You’ll also use a method called int.TryParse(), which you’ll use in an if statement like this:

The IDE is telling you that it takes two parameters, a string? value and an out int value. (We’ll learn a
lot more about the out keywords later in the book—for now, we’ll give you the code to use.)

This method
returns a string?
value that holds a
line of text that
the user typed.

This method takes
two parameters, a
string? that contains
text to turn into a
number, and a result
that the value gets
saved into.

This pop-up is called the Quick Info window,
and it’s a really useful part of Visual Studio’s
IntelliSense system. Read it really carefully.

We’ll use this window throughout the book as
a learning tool. (VSCode has a similar pop-up.)

132 Chapter 3

methods can return a value

Let’s build an app that picks random cards
In the first project in this chapter, you’re going to build a console app called
PickRandomCards that lets you pick random playing cards.

Let’s use it as a way to start using classes. Here’s what its structure will look like:

PickRandomCards

CardPicker

PickSomeCards
RandomValue()
RandomSuit()

RandomValue

if .// return

RandomSuit

if .// return

PickRandomCards

Program

Main
Console.ReadLine(.//)

if (int.TryParse(.//))
{ .// }
else
{ .// }

You’re going to create a console app that
has a Main method instead of top-level

statements (which we’ll talk more about).
Your Program.cs file will contain a class.

That class will have a method called Main,
which is the first thing that gets run when

you start the app.

When you create your app you’ll call
it PickRandomCards, so Visual Studio
will create a namespace for you that
matches the name of the app.

Your Main method will have all the
code that communicates with the user,

displaying text and getting input. The code
that has to do with picking random cards

will be in a class called CardPicker.

The CardPicker class doesn’t
have any fields, and that’s
OK! We’ll talk more about
fields later in the chapter.

Program.csPickRandomCards

CardPicker.cs

Your PickRandomCards app will
have a second C# class file called
CardPicker.cs, which contains the
code for the CardPicker class.

you are here 4 133

organizing your code

You’ll use an array to store the cards
Your PickSomeCards method will use string values to represent playing cards. Let’s say you want to use your
CardPicker class to pick five random cards and store them in a variable called cards. Here’s how you would do that:

 string[] cards = CardPicker.PickSomeCards(5);
There’s a lot going on in that line of code, so let’s break it down. The PickSomeCards method is in the CardPicker
class, but we’re calling it from a top-level statement, so we need to use the class name to call it:

 string[] cards = CardPicker.PickSomeCards(5);
We just learned about how methods can take parameters. The PickSomeCards method takes an int parameter, and
we’re passing the method the value 5 to tell it to pick five cards:

 string[] cards = CardPicker.PickSomeCards(5);
The first part of the statement declares the cards variable. We just learned about return values—so the method will
return a value that gets stored in the cards variable. But something looks different about it:

 string[] cards = CardPicker.PickSomeCards(5);
The cards variable has a type that you haven’t seen yet. Look closely at the type:

 string[] cards = CardPicker.PickSomeCards(5);
The square brackets [] mean that it’s an array of strings. Arrays let you use a single variable to store multiple
values—in this case, strings with playing cards—which will get stored in the cards variable.

You can use a collection expression to create an array of values by putting comma-separated values between two
square brackets []. Here’s an example of a string array that the PickSomeCards method might return:

 [
 "10 of Diamonds",
 "6 of Clubs",
 "7 of Spades",
 "Ace of Diamonds",
 "Ace of Hearts",
]

After your array is generated, you can use a foreach loop to write each of the
cards to the console:

 foreach (string card in cards) {
 Console.WriteLine(card);
 }

For the previous array, running that foreach loop will generate this output:

10 of Diamonds
6 of Clubs
7 of Spades
Ace of Diamonds
Ace of Hearts

This array of strings has
five values in it. Each value
is a separate string that
has the name of a card.

134 Chapter 3

create an app to pick random cards

Create an app with a Main method
When you created console apps in the first two chapters, the IDE generated a two-line Program.cs file:

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

You may not have realized it at the time, but you were taking advantage of a very useful feature of C#
called top-level statements that lets you start creating a console app with a simple file that contains a
set of statements that get executed in order.

Top-level statements are really convenient! A good way to understand what they do for you
and how they work is to create a C# app that doesn’t use top-level statements.

Create your PickRandomCards app without top-level statements
Use Visual Studio to create a new console app called PickRandomCards. But unlike previous
chapters, when you’re going through the steps to create the app, keep an eye out for a checkbox like this
and make sure that it’s checked:

When you create your new app, your Program.cs file should look like this:

namespace PickRandomCards
{
 internal class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
 }
}

When the IDE created your app and generated the
Program.cs file, it added a class called Program.
This program was generated with one method called
Main. The code inside the Main method is the familiar
statement that prints “Hello, World!” to the console.

Run your app—it should look very familiar. Your new
app does exactly the same thing as the “Hello, World!”
app you created in Chapter 1. But instead of starting
at the first statement in the Program.cs file, the first thing
your app does is execute the Main method.

Your app can only have one entry point. If you add
another class with a Main method, your code won’t build.

Visual Studio remembers
your checkbox choices.

The next time you create a
Console App project in Visual Studio,
it may remember that you checked
the “Do not use top-level statements”
box and check it again for you.
Make sure it’s unchecked the next
time you create a console app.

Watch it!

The very first statement that gets executed
in an app is called its entry point. The entry

point in an app with top-level statements
is the first statement in Program.cs. In an

app without top-level statements, the entry
point is the Main method.

Do this!

Make sure you check the “Do not
use top-level statements box” when
you create your app; otherwise,
your Program.cs file won’t have a
Program class with Main method.

you are here 4 135

organizing your code

Here’s what happens when you use top-level statements

Here’s the very first app that you created in Chapter 1:

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

The first line is a comment, so there’s actually only one statement in this app. When you build the
app, the compiler—the part of Visual Studio that turns your C# code into something that your
operating system can execute—reads all of the lines in the top-level statement and adds them to
a class. It creates a class that looks like the one that you just saw in your PickRandomCards app:

internal class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
}

That looks a lot like the Program class that Visual Studio just created in your PickRandomCards
app. But there’s one difference—can you spot it?

Here’s the Program class from your PickRandomCards app without top-level statements—we’ve
made text that’s the same a lighter color so you can see the difference:

namespace PickRandomCards
{
 internal class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
 }
}

In an app with top-level statements, the code in your Program.cs file is not in a namespace.
Every method in a C# program must be inside a class, but it’s OK for classes to be outside of
namespaces.

We’ll learn more about how to work with namespaces later in this chapter.

The rest of the console apps in this book will use top-level statements, so when you create the
next one make sure to uncheck the “Do not use top-level statements” checkbox.

Behind the
 Scenes

Top-Level Statements

At the time we’re writing this, VSCode does not have the option to create a console app that
does not use top-level statements. Just create your console app just like you did in Chapters
1 and 2, then replace the contents of Program.cs with the code we just showed you.

If you’re using VSCode and don’t have the
option to create a console app that does
not use top-level statements, replace the
contents of Program.cs with this code.

The top-level statements in this app are in
the global namespace, a default namespace

that contains any classes that aren’t
explicitly put into a namespace. You can

put any class into the global namespace by
leaving the namespace declaration off.

136 Chapter 3

Add a class called CardPicker to your app
The next thing you’ll do is add a class called CardPicker to your app. Here’s a class diagram that shows information
about the class you’ll build, including the methods that you’ll add to your CardPicker class:

CardPicker

PickSomeCards
RandomSuit
RandomValue

This is a class diagram. It’s a rectangle with
the class name on top and a list of its methods

on the bottom. Your CardPicker class will
have three methods named PickSomeCards,

RandomSuit, and RandomValue.

Luckily, both Visual Studio and VSCode will help you add a new class to your project.

For Visual Studio: Right-click on the PickRandomCards project in the Solution Explorer—it’s the second row,
underneath the solution, which has the same name. When the right-mouse menu pops up, choose Add >> Class
(or choose Add Class... from the Project menu). (If you don’t want to do all that clicking, you can also choose Add Class
from the Project menu instead of right-clicking on the project name to jump straight to the filename prompt.) Enter
CardPicker.cs when you’re asked for a filename. You should now see a new file called CardPicker.cs in your Solution
Explorer.

For VSCode: Right-click on the PickRandomCards project in the Solution Explorer—it’s the second row,
underneath the solution, which has the same name. When the right-mouse menu pops up, choose Add New File,
VSCode will display a list of templates at the top of the window and ask you to choose one. Choose Class. VSCode
will then display a prompt at the top of the window asking you for a filename. Enter CardPicker.cs. You should
now see a new file called CardPicker.cs in your Solution Explorer.

add a class to your app

Do this!

When you right-click on the project name
and choose “Add New File...” or click the

add file icon next to the project name,
VSCode will prompt you for the type of file

to add—choose Class. Make sure you’re
in the Solution Explorer, not the Explorer.

you are here 4 137

organizing your code

Double-click on CardPicker.cs in the Solution Explorer to open it. The code in the file will look
slightly different depending on whether you used Visual Studio or VSCode.

Here’s what your file will look like if you’re using Visual Studio:

Here’s what it will look like if you’re using VSCode:

Sharpen your pencil

Compare the code in these two screenshots. You should be
able to spot three important differences. Write them down:

You may not see the
"using" lines 1 through
5 in Visual Studio. An
update to .NET may have
removed them since we
took that screenshot. We
kept them here for this
"Sharpen" exercise.

138 Chapter 3

different ways to write the same code

We asked you to compare the code in two screenshots.
Here’s the screenshot from Visual Studio:

Did you spot these three differences?Solution
Sharpen your pencil

Difference #1: The first five lines in the Visual
Studio CardPicker.cs file that start with ‘using’
are not in the VSCode file.
Difference #2: The ‘namespace’ line in the
VSCode file ends with a semicolon while the same
line in Visual Studio is followed by { brackets }.
Difference #3: The ‘class CardPicker’ line starts
with ‘internal’ in VS and ‘public’ in VSCode.

Use Quick Actions to remove unnecessary using lines
If you’re using Visual Studio, you’ll see five lines at the top of your CardPicker.cs file that start with using. These
are using directives, and you’ll learn about them later in the book. But for now, they’re not needed.

Luckily, Visual Studio makes it easy to remove those unnecessary using directives from your file, which is good
for us because we want to keep things simple and easy to read. Click anywhere in the top five lines. Visual Studio
will display the Quick Actions icon to indicate that there’s a quick action available.

Choose the Remove Unnecessary Usings quick action. Visual Studio will remove the five using lines.

If you don't have "using"
lines, you can skip this step.

you are here 4 139

organizing your code

Convert between namespace styles
Let’s compare the Visual Studio and VSCode versions of the CardPicker.cs file again, this time with the unnecessary
using directives at the top of the Visual Studio version removed.

If you’re using Visual Studio, your CardPicker.cs file
uses a block-scoped namespace. The namespace
keyword is followed by the name of the namespace
(PickRandomCards), which is followed by a block of
code inside { brackets } and everything between those
brackets is in the PickRandomCards namespace.

namespace PickRandomCards
{
 internal class CardPicker
 {
 }
}

If you’re using VSCode, your CardPicker.cs file uses
a file-scoped namespace. The namespace
keyword is followed by the name of the namespace
(PickRandomCards) and a semicolon. Everything
in the entire file is in the PickRandomCards
namespace.

namespace PickRandomCards;

public class CardPicker
{

}

This is the second difference you spotted in the “Sharpen your pencil” exercise. Both ways to define a namespace
are valid. They’re two different ways to say the same thing: the CardPicker class is inside the PickRandomCards
namespace.

Click on the namespace line in your file. You’ll see a light bulb or screwdriver icon indicating that there’s a quick
action available (the icon looks a little different in VSCode). Click the icon (or press Ctrl+. or ⌘.) to bring up the Quick
Actions menu:

 " If your file has a block-scoped namespace, you’ll see a Convert to file-scoped namespace quick action.

 " If your file has a file-scoped namespace, you’ll see a Convert to block-scoped namespace quick action.

Choose the quick action to convert to the other namespace style. Then do the same thing and convert it back. Choose
the style you like the best—they both work exactly the same way. You can switch namespace styles at any time.

We’ll usually use file-scoped namespaces in the code in this book.

Your code will behave exactly the same whether you use block-scoped or file-scoped
namespaces. We’ll usually use file-scoped namespaces when we’re showing the code in
this book, especially in Console App projects, because it takes up less room on the page:
file-scoped namespaces don’t need the extra lines for the opening and closing brackets,
and the code doesn’t need to be indented as much.

Also—we didn’t talk about the third difference from the “Sharpen your pencil” exercise. The code
generated by Visual Studio has the internal keyword, while the code generated by VSCode has the
public keyword. Those are called access modifiers. We’ll talk more about them later in the book.

Relax

140 Chapter 3

use an array to hold multiple cards

Use the new keyword to create an array of strings
Let’s say you want to create an array of five strings and store it in a variable called myStrings.
You can use the new keyword to create a new array of strings. You can create your array of five strings like this:

 string myStrings = new string[5];
You can also use a variable, field, or method parameter instead of a number. Your PickSomeCards
method has a parameter called numberOfCards—you’ll use that parameter in your new statement: new
string[numberOfCards];

The PickSomeCards method will pick five random cards. Each of the cards will have a random value and a random
suit, so the class will also have two more methods that generate the value and suit for each card.

Add a new PickSomeCards method to your CardPicker class.
Put your cursor between the curly brackets, press Enter to add a space, and carefully type in this method:

 internal class CardPicker
 {
 public static string[] PickSomeCards(int numberOfCards)
 {

 }
 }

Create a new array of strings and store it in a variable called pickedCards.
We saw earlier that the PickSomeCards method will return an array of strings, so the first thing we’ll need is
an array of strings to return. Add this line of code to your method:

public static string[] PickSomeCards(int numberOfCards)
{
 string[] pickedCards = new string[numberOfCards];
}

Now the method has a string array to work with.

Add a for loop to set the value of each card in the array.
Your method has an array of strings. Now it needs to set them. Add this for loop—it will call two methods
called RandomValue and RandomSuit. Those methods don’t exist yet, but that’s OK.

public static string[] PickSomeCards(int numberOfCards)
{
 string[] pickedCards = new string[numberOfCards];
 for (int i = 0; i < numberOfCards; i+>)
 {
 pickedCards[i] = RandomValue() + " of " + RandomSuit();
 }
}

1

2

3

You’ll see a red squiggly line
under PickSomeCards. Visual
Studio is telling you that your
method is supposed to return
something, but there’s no
corresponding return statement.

The RandomValue and RandomSuit
methods don’t exist yet, so Visual
Studio will warn you about them too.

Do this!

If you carefully entered your method
declaration exactly as it appears here, you
should see a red squiggly underline underneath
PickSomeCards. What do you think it means?

Make sure you include the
“public” and “static” keywords.
We’ll talk more about them
later in the chapter.

If you're using
VSCode you'll
see ‘public’
instead of
‘internal’ here.
That’s OK!

you are here 4 141

organizing your code

Finish the method by adding a return statement.
Add a return statement to send the pickedCards array back to the statement that called the method.

public static string[] PickSomeCards(int numberOfCards)
{
 string[] pickedCards = new string[numberOfCards];
 for (int i = 0; i < numberOfCards; i+/)
 {
 pickedCards[i] = RandomValue() + " of " + RandomSuit();
 }
 return pickedCards;
}

Generate the RandomValue and RandomSuit methods.
In Chapter 2, you generated a method called OperatorExamples. Follow exactly the same steps to generate
a method in the CardPicker class called RandomSuit. Then do exactly the same thing to generate a
method called RandomValue.

Implement the RandomSuit method.
Every card has a suit: hearts, clubs, spades, or diamonds. The RandomSuit method will pick a suit at
random, store it in a string, and return it. It will use the same random number generator, Random.Shared,
that you used in Chapter 1 to pick emoji from a list. The random number generator’s Next method can take
two parameters: random.Next(1, 5) returns a number that’s at least 1 but less than 5—in other words,
calling Random.Shared.Next(1, 5) returns a random number from 1 to 4.

Let’s add code to your RandomSuit method that takes advantage of return statements to stop executing
the method as soon as it finds a match—we added a comment to each line to explain how it works:

 private static string RandomSuit()
 {
 int value = Random.Shared.Next(1, 5); // pick a random number from 1 to 4
 if (value =/ 1) return "Spades"; // if it's 1 return the string Spades
 if (value =/ 2) return "Hearts"; // if it's 2 return the string Hearts
 if (value =/ 3) return "Clubs"; // if it's 3 return the string Clubs
 return "Diamonds"; // otherwise return the string Diamonds
 }

4

5

6

Adding the return statement makes the warning on the method
declaration line go away, but the warnings for the two method
calls are still there.

You used a
Random.Shared
statement in
Chapter 1 to
choose random
emoji from a
list. The return statement causes your

method to stop immediately and go
back to the statement that called it.

A method can have more than one return statement, and when
it executes one of those statements it immediately returns, and

does not execute any more statements in the method.

142 Chapter 3

you created a class

Implement the RandomValue method.
Every playing card can have one of 13 values—ace, 2 through 10, jack, queen, or king. Here’s the
RandomValue method that generates a random value. Look closely at it. Can you figure out how it works?

 private static string RandomValue()
 {
 int value = Random.Shared.Next(1, 14);
 if (value =/ 1) return "Ace";
 if (value =/ 11) return "Jack";
 if (value =/ 12) return "Queen";
 if (value =/ 13) return "King";
 return value.ToString();
 }

Here's the code for your f inished CardPicker class
Your CardPicker class is in the PickRandomCards namespace and has the methods that we just added:

namespace PickRandomCards;

internal class CardPicker
{

 public static string[] PickSomeCards(int numberOfCards)
 {
 string[] pickedCards = new string[numberOfCards];
 for (int i = 0; i < numberOfCards; i++)
 {
 pickedCards[i] = RandomValue() + " of " + RandomSuit();
 }
 return pickedCards;
 }

 private static string RandomSuit()
 {
 int value = Random.Shared.Next(1, 5); // pick a random number from 1 to 4
 if (value == 1) return "Spades"; // if it's 1 return the string Spades
 if (value == 2) return "Hearts"; // if it's 2 return the string Hearts
 if (value == 3) return "Clubs"; // if it's 3 return the string Clubs
 return "Diamonds"; // otherwise return the string
 }

 private static string RandomValue()
 {
 int value = Random.Shared.Next(1, 14);
 if (value == 1) return "Ace";
 if (value == 11) return "Jack";
 if (value == 12) return "Queen";
 if (value == 13) return "King";
 return value.ToString();
 }
}

7

We added these comments to help you understand how the RandomSuit method works. Try adding similar comments to the RandomValue method to explain how it works. We put the comment on each line and used spaces to line them up. You can also put them on separate lines if you think it looks better or is easier to read.

We're using a file-scoped namespace to make the code
take up less space on the page. We also stuck with the
“internal” access modifier from Visual Studio, but if
you’re using VSCode and have “public” that’s fine too.

Notice how your method returns value.
ToString() and not just value? That’s

because value is an int variable, but
the RandomValue method was declared
with a string return type, so we need to
convert value to a string. You can add
.ToString() to any variable or value to

convert it to a string.

Visual Studio will
automatically indent

your code for you so it
looks like ours. If you’re

using VSCode, press
Alt+Shift+F or ⌥+Shift+F
to automatically fix the
indentation in your file.

It’s OK if your methods are in a different order.

you are here 4 143

organizing your code

Now that your CardPicker class has a method to pick random cards, you’ve got everything you need to finish your console
app by filling in the Main method. You just need a few useful methods to make your console app read a line of input
from the user and use it to pick a number of cards.

Useful method #1: Console.Write
You’ve already seen the Console.WriteLine method. Here’s its cousin, Console.Write, which writes text to the console but
doesn’t add a new line at the end. You’ll use it to display a message to the user:
 Console.Write("Enter the number of cards to pick: ");

Useful method #2: Console.ReadLine
The Console.ReadLine method reads a line of text from the input and returns a string. You’ll use it to let the user tell you
how many cards to pick:
 string? line = Console.ReadLine();

Useful method #3: int.TryParse
Your CardPicker.PickSomeCards method takes an int parameter. The line of input you get from the user is a string, so
you’ll need a way to convert it to an int. You’ll use the int.TryParse method for that:
 if (int.TryParse(line, out int numberOfCards))
 {
 // this block is executed if line COULD be converted to an int
 // value that’s stored in a new variable called numberOfCards
 }
 else
 {
 // this block is executed if line COULD NOT be converted to an int
 }

Put it all together
Your job is to take these three new pieces and put them together in a brand-new Main method for your console app.
Modify your Program.cs file and replace the “Hello, World!” line in the Main method with code that does this:

 " Use Console.Write to ask the user for the number of cards to pick.

 " Use Console.ReadLine to read a line of input into a string variable called line.

 " Use int.TryParse to try to convert it to an int variable called numberOfCards.

 " If the user input could be converted to an int value, use your CardPicker class to pick the number of cards that the user
specified: CardPicker.PickSomeCards(numberOfCards). Use a string[] variable to save the results, then
use a foreach loop to call Console.WriteLine on each card in the array. Flip back to Chapter 1 to see an example of a
foreach loop—you’ll use it to loop through every element of the array. Here’s the first line of the loop:
foreach (string card in CardPicker.PickSomeCards(numberOfCards))

 " If the user input could not be converted, use Console.WriteLine to write a message to the user indicating that the
number was not valid.

Exercise

We also showed
you this line of
code earlier in
the chapter.

We showed you this line of
code earlier in the chapter.

144 Chapter 3

exercise solution

Here’s the Main method for your console app. It replaces the one that Visual Studio created for you that prints
“Hello, World!” This method prompts the user for the number of cards to pick, attempts to convert it to an int, and then
uses the PickSomeCards method in the CardPicker class to pick that number of cards. PickSomeCards returns each
of the picked cards in an array of strings, so it uses a foreach loop to write each of them to the console.
static void Main(string[] args)
{
 Console.Write("Enter the number of cards to pick: ");
 string? line = Console.ReadLine();
 if (int.TryParse(line, out int numberOfCards))
 {
 string[] cards = CardPicker.PickSomeCards(numberOfCards);
 foreach (string card in cards)
 {
 Console.WriteLine(card);
 }
 }
 else
 {
 Console.WriteLine("Please enter a valid number.");
 }
}

Here’s what it looks like when you run your console app:

Take the time to really understand how this program works—this is a great
opportunity to use the Visual Studio or VSCode debugger to help you explore your
code. Place a breakpoint on the first line of the Main method, then use Step Into
to step through the entire program. Add a watch for the value variable, and keep
your eye on it as you step through the RandomSuit and RandomValue methods.

Exercise
Solution

We gave you these
lines of code.

This is just like the code we showed you earlier, except instead of passing a number like 5 to the method, you’re passing it the numberOfCards variable.

If you’re using VSCode, you’ll interact with your
console app in the Terminal at the bottom of the

window. Click inside the Terminal panel and type the
number of random cards you want your app to pick.
If your app is running in the Debug Console window,
go back to Chapter 1 and follow the instructions to

change the C# debug console setting.

you are here 4 145

organizing your code

Ana’s working on her next game
Meet Ana. She’s an indie game developer. Her last game sold thousands
of copies, and now she’s getting started on her next one.

Ana’s started working on some prototypes. She’s been working on the code for
the alien enemies that the player has to avoid in one exciting part of the game,
where the player needs to escape from their hideout while the aliens search for
them. Ana’s written several methods that define the enemy behavior: searching
the last location where the player was spotted, giving up the search after a while if
the player wasn’t found, and capturing the player if the enemy gets too close.

SearchForPlayer();

In my next game, the player is
defending their town from alien

invaders.

if (SpottedPlayer()) {
 CommunicatePlayerLocation();
}

CapturePlayer();

146 Chapter 3

classes keep your code organized

Ana’s game is evolving…
The humans versus aliens idea is pretty good, but Ana’s not 100% sure that’s
the direction she wants to go in. She’s also thinking about a nautical game
where the player has to evade pirates. Or maybe it’s a zombie survival game
set on a creepy farm. In all three of those ideas, she thinks the enemies will
have different graphics, but their behavior can be driven by the same methods.

…so how can Ana make things easier for herself?
Ana’s not sure which direction the game should go in, so she wants to make a few
different prototypes—and she wants them all to have the same code for the enemies, with
the SearchForPlayer, StopSearching, SpottedPlayer, CommunicatePlayerLocation, and
CapturePlayer methods. She’s got her work cut out for her.

I bet these enemy methods would work in
other kinds of games.

Can you think of a good way for Ana to use the
same methods for enemies in different prototypes?

Brain
Power

you are here 4 147

organizing your code

Enemy
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

I put all of the enemy behavior methods into a single
Enemy class. Can I reuse the classreuse the class in each of my three

different game prototypes?

Prototypes

A prototype is an early version of your game that you can play, test, learn from, and improve.
A prototype can be a really valuable tool to help you make changes early. Prototypes are
especially useful because they let you rapidly experiment with a lot of different ideas
before you’ve made permanent decisions.

• The first prototype is often a paper prototype, where you lay out the core elements of the
game on paper. For example, you can learn a lot about your game by using sticky notes
or index cards for the different elements of the game, and drawing out levels or play areas
on large pieces of paper to move them around.

• One good thing about building prototypes is that they help you get from an idea to a
working, playable game very quickly. You learn the most about a game (or any kind of
program) when you get working software into the hands of your players (or users).

• Most games will go through many prototypes. This is your chance to try out lots of
different things and learn from them. If something doesn’t go well, think of it as an
experiment, not a mistake.

• Prototyping is a skill, and just like any other skill, you get better at it with practice.
Luckily, building prototypes is also fun, and a great way to get better at writing C# code.

Prototypes aren’t just used for games! When you need to build any kind of app, it’s often a
great idea to build a prototype first to experiment with different ideas.

Game Design...and Beyond

148 Chapter 3

paper prototypes help you plan your app

PLAYER
32150 X 20 WORLD

3-1
TIME
182

Build a paper prototype for a classic game
Paper prototypes are really useful for helping you figure out how a game will work before you start
building it, which can save you a lot of time. There’s a fast way to get started building them—all you
need is some paper and a pen or pencil. Start by choosing your favorite classic game. Platform games
work especially well, so we chose one of the most popular, most recognizable classic video
games ever made...but you can choose any game you’d like! Here’s what to do next.

Draw the background on a piece of paper. Start your prototype by creating the
background. In our prototype, the ground, bricks, and pipe don’t move, so we drew them on
the paper. We also added the score, time, and other text at the top.

Tear small scraps of paper and draw the moving parts. In our prototype, we drew
the characters, the piranha plant, the mushroom, the fire flower, and the coins on separate
scraps. If you’re not an artist, that’s absolutely fine! Just draw stick figures and rough shapes.
Nobody else ever has to see this!

“Play” the game. This is the fun part! Try to simulate player movement. Drag the player
around the page. Make the nonplayer characters move too. It helps to spend a few minutes
playing the game, then go back to your prototype and see if you can reproduce the motion as
closely as possible. (It will feel a little weird at first, but that’s OK!)

1

2

3

The ground, bricks,
and pipe don’t move,
so we drew them on
the background paper.
There’s no rule about
what goes into the
background and what
moves around.

The mechanics of
how the player
jumps were really
carefully designed.
Simulating them in
a paper prototype
is a valuable learning
exercise.

When the player catches a mushroom he grows
to double his size, so
we also drew a small
character on a separate scrap of paper.

The text at the
top of the screen
is called the HUD,
or head-up display.
It’s usually drawn
on the background
in a paper
prototype.

Draw
this!

you are here 4 149

organizing your code

In the next project, you’ll create a MAUI app that uses your CardPicker class to generate a set of random cards. In this
paper-and-pencil exercise, you’ll build a paper prototype of your app to try out various design options.

Start by drawing the window frame on a large piece of paper and a label on a smaller scrap of paper.

CARD PICKER

Next, draw a bunch of different types of controls on more small scraps of paper. Drag them around the window and
experiment with ways to fit them together. What design do you think works best? There’s no single right answer—
there are lots of ways to design any app.

Sharpen your pencil

Paper prototypes look like they’d be useful
for more than just gamesmore than just games. I bet I can use them in

my other projects too.

Yes! A paper prototype is a great first step for any project.
If you’re building a desktop app, a mobile app, or any other project that has a user
interface, building a paper prototype is a great way to get started. Sometimes you
need to create a few paper prototypes before you get the hang of it. That’s why
we started with a paper prototype for a classic game…because that’s a great way
to learn how to build paper prototypes. Prototyping is a really valuable skill
for any kind of developer, not just a game developer.

All of the tools and ideas
in “Game Design...and Beyond”
sections are important skills
that go way beyond just game
development—but we’ve found
that they’re easier to learn when
you try them with games first.

4 OF HEARTS
2 OF DIAMONDS
KING OF SPADES
ACE OF HEARTS
7 OF CLUBS
10 OF SPADES
JACK OF CLUBS
9 OF HEARTS
9 OF DIAMONDS
3 OF CLUBS
ACE OF SPADES

PICK SOME CARDS

12

HOW MANY CARDS SHOULD I PICK?

Your app needs to include
a Button control with
the text “Pick some cards”
and a Label control
to display the cards
somewhere in the window.

Your app needs a way for the user to
choose the number of cards to pick. Try
drawing an Entry control that they can
use to type numbers into your app.

Try drawing Slider and Stepper controls
too. Can you think of other controls that
you’ve used to input numbers into apps
before? Maybe a Picker? Get creative!

150 Chapter 3

card picker app version 2.0

Build a MAUI version of your random card app
All of the code for picking random cards is conveniently organized into a class called
CardPicker. Now you’ll reuse that class in a .NET MAUI app.

Here’s how the app will work.

Make your app accessible!
Accessibility is really important—and paying attention to accessibility is a great way to
focus on important skills, like understanding your users and their needs:

 " The Label and Entry controls each have a SemanticProperties.Description
property so the screen reader will read it out loud.

 " The Button control has a SemanticProperties.Hint property because the
screen reader will read the contents of the button but we still want to give people
who use accessibility tools additional context for the control.

The user will enter
the number of cards
they want to pick
into this entry.

When the user clicks
the button, the app
will pick the number of
cards they asked for
and display them in this
multiline label.

you are here 4 151

organizing your code

You already have the tools you need to create the XAML for the MAUI card picker app! In this exercise, you’ll use
what you learned about XAML in the first two chapters to create the main page for your app. You may need to go back
to the XAML code you wrote in Chapter 2 to see how you added controls to your page.
Create a new .NET MAUI app called PickRandomCardsMAUI. Edit the MainPage.xaml.cs file to delete the controls
inside the VerticalStackLayout (just like you did in Chapter 2), then add the controls for your card picker app.
Bonus: Edit the AppShell.xaml file to set the page title! We haven’t shown you how to do that yet—can you figure it out?

Exercise

Can you figure out how to set the page title? Open
the AppShell.xaml file, look for a <ShellContent>

tag, and change its Title property.The ContentPage
contains a ScrollView,

which contains a
VerticalStackLayout,

just like your last
MAUI project.

This is a Label with FontSize 18. Make sure
you give it a SemanticProperties.Description.

Set its HorizontalOptions property to
"Center" so it gets centered in the window.

This is an Entry. Give
it a placeholder and a
semantic description

for accessibility,
and use the x:Name
property to name it

"NumberOfCards" so
your code can read

its value.

This Button has the name "PickCardsButton"
and a Clicked event handler method called

PickCardsButton_Clicked. Make sure the event
handler method is created in MainPage.xaml.cs.
Set its HorizontalOptions property to "Center"
and give it a SemanticProperties.Hint property.

This is a multiline Label with the name
"PickedCards" and a Padding property

to 20 so it has some space around
the text. It has white text on a dark

blue background. Make sure it has a
SemanticProperties.Description.

Peeking at the solution is not cheating! It’s actually
a great way to get these ideas to stick in your brain.

Don't forget to delete
everything in the

MainPage.xaml.cs
file except for the
MainPage method.

152 Chapter 3

now you can reuse your card picker class

Here’s the XAML for the contents of MainPage.xaml (we didn’t include the outer <ContentPage> tag):
<ScrollView>
 <VerticalStackLayout
 Spacing="25"
 Padding="30,0"
 VerticalOptions="Center">

 <Label
 Text="How many cards should I pick?"
 SemanticProperties.Description="How many cards should I pick?"
 FontSize="18"
 HorizontalOptions="Center" />

 <Entry
 x:Name="NumberOfCards"
 SemanticProperties.Description="Enter the number of cards to pick"
 Placeholder="Enter the number of cards to pick" />

 <Button
 x:Name="PickCardsButton"
 Text="Pick some cards"
 SemanticProperties.Hint="Picks some cards"
 Clicked="PickCardsButton_Clicked"
 HorizontalOptions="Center" />

 <Label x:Name="PickedCards" Padding="20"
 TextColor="White" BackgroundColor="DarkBlue"
 SemanticProperties.Description="Shows the cards that were picked" />

 </VerticalStackLayout>
</ScrollView>

We made this change to AppShell.xaml to set the title of the page to “Pick a card!”:
<?xml version="1.0" encoding="UTF-8" ?>
<Shell
 ...
 Shell.FlyoutBehavior="Disabled" BackgroundColor="Red">

 <ShellContent
 Title="Pick a card!"
 ContentTemplate="{DataTemplate local:MainPage}"
 Route="MainPage" />

</Shell>

Exercise
Solution

These are the same ScrollView
and VerticalStackLayout tags
that Visual Studio created
using the .NET MAUI template.

The HorizontalOptions property centers the label on the page. Try the other options—do you like the way they look better?You gave
the Entry,
Button, and
Label controls
names that
you’ll use in
your C#
code.

The XAML in AppShell.xaml
tells your MAUI app what

to do when it first starts up.
The ShellContent’s Route
property tells it to load the

page in your MainPage.
xaml file. Try setting the
BackgroundColor of the

outer Shell tag—what does
that change in the app?

Your MainPage.xaml.cs file should have
a public MainPage() method that calls

InitializeComponent and an empty Clicked
event handler method and nothing else.

Make sure Visual Studio added the
PickCardsButton_Clicked event
handler method that gets called

when the button is clicked. You’ll use
it in the second part of this project. If
you’re using VSCode you might need
to carefully type it yourself, just like

you did with the other MAUI projects.

you are here 4 153

organizing your code

Make your MAUI app pick random cards
You’ve got an app that looks like it’s supposed to, and that’s a great start! In the second
part of this project, you’ll make it work, so when the user enters a number and clicks
the button it picks random cards. That’s where your CardPicker class comes in. You’ve
already created a class that picks random cards. Now you just need to copy that
class into your new APP. Once it’s copied, you’ll be able to make your button’s
event handler method call the PickSomeCards method in the CardPicker class.

Program.csPickRandomCards

CardPicker.cs

MainPage.xaml.cs

AppShell.xaml

PickRandomCards

CardPicker.cs

MainPage.xaml

A few other files
and folders

Once you have code
organized into a class,
you can use that same
class in two projects.

Once you copy your CardPicker.cs file from your Console App project into your .NET MAUI project, you’ll be able to call its PickSomeCards method when the user clicks the button.

When your MAUI app builds, the code in
the XAML file and the C# code in the code-

behind file are combined together to create
a new class that makes the page work.

154 Chapter 3

use code in a different namespace

Reuse your CardPicker class
You took the time to put all of the random card picking code into a convenient class. Now it’s time to
reuse that class by copying the file with the C# code into your new MAUI project.

Choose Add Existing Item in Visual Studio or manually copy the file in VSCode.
This feature in the IDE will copy an existing file into your project. You created a file called CardPicker.cs in
your PickRandomCards console app. Now you’ll tell the IDE to add that class file to your MAUI project,
which will cause it to copy the file into your MAUI app’s project folder.

 " In Visual Studio, right-click on the project in the Solution Explorer window and choose Add >>
Existing Item (Shift+Alt+A), or choose Add Existing Item from the Project menu.

 " In VSCode, you’ll need to manually copy the file into the folder. Right-click on the project in the
Solution Explorer and choose “Reveal in File Explorer” (or “Reveal in Finder” if you’re using a Mac).
Use your operating system to copy the file into your project folder that VSCode opened. Once the file
is copied, it will automatically appear in the Solution Explorer.

Find your CardPicker.cs file and add it to your project.
The IDE will pop up a folder explorer window. Navigate to the folder with your PickACard console app and
double-click on CardPicker.cs. You should now see CardPicker in the Solution Explorer.

Try to use your CardPicker class in the MainPage.xaml.cs code.
Open MainPage.xaml.cs. Make sure you’ve deleted everything inside the MainPage class except the MainPage
method (starting with public MainPage() and ending with a closing bracket). Edit the PickCardsButton_
Clicked event handler method and try adding a statement that calls your CardPicker.PickSomeCards method.

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();
 }

 private void PickCardsButton_Clicked(object sender, EventArgs e)
 {
 CardPicker.
 }
}

1

2

3

Do
this!

Here's the event handler method that Visual Studio
added to your C# code when you added a Clicked
event handler to the XAML for the button. If
you’re using VSCode, you’ll need to carefully type
the empty method into your MainPage.xaml.cs file.

Hold on—something’s wrong!
When you start typing the statement to call CardPicker.

PickSomeCards, Visual Studio doesn’t pop up its normal IntelliSense
window, and there’s a squiggly error line under CardPicker.

Why do you think Visual Studio is treating CardPicker like that?

Make sure CardPicker.cs now shows up in your Solution
Explorer. Open it and make sure that you see the code
for the CardPicker class from earlier in the chapter.

you are here 4 155

organizing your code

Add a using directive to use code in another namespace
You used either a file-scoped namespace or block-scoped namespace to put your CardPicker class in
the PickRandomCards namespace. Compare the namespace declaration in your CardPicker class to the code
at the top of your MainPage.xaml.cs file in your MAUI app:

namespace PickRandomCardsMAUI;

public partial class MainPage : ContentPage
{
 ... your MAUI app's code is in the PickRandomCardsMAUI namespace ...
}

The reason your MainPage class can’t access the methods in your CardPicker class is
because they’re in different namespaces.

Luckily, C# has an easy way to deal with this. You’ll add a using directive in your code
that calls the methods in CardPicker—that’s a special line that you put at the top of a class
file to tell it to use code in another namespace.

Add this line to the top of your MainPage.xaml.cs file.
If you chose a different name for your console app, replace
PickRandomCards with the namespace in your CardPicker.cs file.

using PickRandomCards;
Now go back to the event handler method for your button. Start
typing CardPicker. like you did before. Now Visual Studio will
pop up its IntelliSense window, just like you’d expect it to.

This using directive will let you add
code to your MainPage.xaml.cs file that
uses classes in the PickRandomCards

namespace—so now you can write code
that calls methods in your CardPicker

class. You might see other using
directives at the top of the file too.

Add
this!

Here’s a C# coding challenge for you! Now that you added the using directive to the top of your MainPage.xaml.cs
file, code in that file can use the CardPicker class. Can you finish your event handler method to make your app work?
To do this, you’ll need to add statements to the PickCardsButton_Clicked event handler method. Here’s what to do:
• The first thing the method does is call int.TryParse to convert NumberOfCards.Text to a number.
• If the number is valid, it calls CardPicker.PickSomeCards just like in your console app. If it isn’t, it makes the

PickedCards label display a message: PickedCards.Text = "Please enter a valid number.";
• Instead of writing to the console, it sets PickedCards.Text to a string value to make text appear in the PickedCards

Label control. You can clear the text in PickedCards like this: PickedCards.Text = String.Empty;
• After it clears the PickedCards label, it uses a foreach loop that works just like the one in your console app.
• Add this statement after the foreach loop to tell the user how many cards they picked:

PickedCards.Text += Environment.NewLine + "You picked " + numberOfCards + "
cards.";

Exercise

156 Chapter 3

exercise solution

Here’s the finished event handler method.
private void PickCardsButton_Clicked(object sender, EventArgs e)
{
 if (int.TryParse(NumberOfCards.Text, out int numberOfCards))
 {
 string[] cards = CardPicker.PickSomeCards(numberOfCards);
 PickedCards.Text = String.Empty;
 foreach (string card in cards)
 {
 PickedCards.Text += card + Environment.NewLine;
 }
 PickedCards.Text += Environment.NewLine + "You picked " + numberOfCards + " cards.";
 }
 else
 {
 PickedCards.Text = "Please enter a valid number.";
 }
}

Exercise
Solution

 ◾ Classes have methods that contain statements that perform actions. Well-designed classes have sensible method
names.

 ◾ Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration
that starts with the int keyword returns an int value. Here’s a statement that returns an int value: return 37;

 ◾ When a method has a return type, it must have a return statement that returns a value that matches a return
type. So if a method declaration has the string return type then you need a return statement that returns a
string.

 ◾ As soon as a return statement in a method executes, your program jumps back to the statement that called the
method.

 ◾ Not all methods have a return type. A method with a declaration that starts public void doesn’t
return anything at all. You can still use a return statement to exit a void method, as in this example: if
(finishedEarly) { return; }

 ◾ Developers often reuse the same code in multiple programs. Classes can help you make your code more reusable.

 ◾ When you select a control in the XAML code editor, you can edit its properties in the Properties window.

 ◾ The XAML code combines with the C# code in the code-behind file to create a new class.

 ◾ You can create an array of values using a collection expression by putting the values between a pair of square
brackets [] and separating them with commas.

 ◾ The global namespace contains the top-level statements and any class not explicitly put into a namespace using
a namespace declaration.

Bullet Points

The foreach loop works just like the one in
the console app, except instead of writing a
line of text to the console it adds a line to
the multi-line PickedCards Label control.

Now that you have a using
directive at the top of your
MainPage.xaml.cs file, you
can use the CardPicker class.

you are here 4 157

organizing your code

Enemy1
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

Enemy2
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

Enemy3
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

…but what if she wants more than one enemy?
And that’s great…until Ana wants more than one enemy, which is all there
was in each of her early prototypes. What should she do to add a second
or third enemy to her game?

Ana could copy the Enemy class code and paste it into two more class files.
Then her program could use methods to control three different enemies at
once. Technically, we’re reusing the code…right?

Hey Ana, what do you think of that idea?

Ana's prototypes look great…
Ana found out that whether her player was being chased by an alien, a pirate,
a zombie, or an evil killer clown, she could use the same methods from her
Enemy class to make them work. Her game is starting to shape up.

She has a point. What if she
wants a level with, say, dozens
of zombies? Creating dozens of
identical classes just isn't practical.

Are you joking? Using
separate identical classes for

each enemy is a terrible ideaterrible idea. What if
I want more than three enemies at

once?

Maintaining three copies of the
same code is really messy.
A lot of problems you have to solve need a way
to represent one thing a bunch of different
times. In this case, it’s an enemy in a game,
but it could be songs in a music player app, or
contacts in a social media app. Those all have
one thing in common: they always need to treat
the same kind of thing in the same way, no
matter how many of that thing they’re dealing
with. Let’s see if we can find a better solution.

Enemy
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

158 Chapter 3

introducing objects

new Enemy()

new
 En

emy
()

Enemy obje
ct

enemy3

Ana can use objects to solve her problem
Objects are C#’s tool that you use to work with a bunch of
similar things. Ana can use objects to program her Enemy class just
once, and use it as many times as she wants in a program.

Enemy obje
ct

enemy1

Enemy obje
ct

enemy2

new Enemy()

Enemy enemy1 = new Enemy();
enemy1.SearchForPlayer();
if (enemy1.SpottedPlayer()) {
 enemy1.CommunicatePlayerLocation();
} else {
 enemy1.StopSearching();
}

All you need to create an
object is the new keyword
and the name of a class.

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

A level with three enemies chasing
the player will have three Enemy

objects at the same time.

Enemy
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

you are here 4 159

organizing your code

House obje
ct

House obje
ct

House obje
ct

A class is like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

You use a class to build an object

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from
it using the new statement. When you do this, every method in your class
becomes part of the object.

115 Oak
Drive

38 Pine
Street

26A Elm
Lane

A class defines
its members, just
like a blueprint
defines the
layout of the
house. You can
use one blueprint
to make any
number of houses,
and you can use
one class to make
any number of
objects.

House

GrowLawn
ReceiveDeliveries
AccruePropertyTaxes
NeedRepairs

This House class has four methods that
each of the instances of House can use.

160 Chapter 3

objects improve your code

House obje
ct

115 Oak
Drive

When you create a new object from a class,
it’s called an instance of that class

in-stance, noun.
an example or one occurrence of
something. The IDE search-and-
replace feature finds every instance
of a word and changes it to another.

You use the new keyword to create an object. All you
need is a variable to use with it. Use the class as the variable
type to declare the variable, so instead of int or bool, you’ll
use a class like House or Enemy.

Before: here’s a picture of
your computer’s memory
when your program starts.

After: now it has an
instance of the House
class in memory.

House oakDrive115 = new House();

Your program executes
a new statement.

This “new” statement creates a new House object and assigns it to a variable called oakDrive115.

you are here 4 161

organizing your code

Enemy obje
ct

enemy3

Enemy obje
ct

enemy1

Enemy obje
ct

enemy2

Enemy obje
ct

enemy1

A better solution for Ana…brought to you by objects
Ana used objects to reuse the code in the Enemy class without all that messy
copying that would’ve left duplicate code all over her project. Here’s how she did it.

for (int i = 0; i < 3; i++)
{
 Enemy enemy = new Enemy();
 enemyArray[i] = enemy;
}

She used a loop that called new statements to create new instances of
the Enemy class for the level and add them to an array of enemies.

2

Ana created a Level class that stored the enemies in an Enemy array called
enemyArray, just like you used string arrays to store cards and animal emoji.

internal class Level {
 Enemy[] enemyArray = new Enemy[3];

1

She called methods of each Enemy instance during
every frame update to implement the enemy behavior.

3

The enemy1 object is
an instance of the
Enemy class.

This statement
uses the new
keyword to create
an Enemy object.

This statement adds the newly
created Enemy object to the array.

We’re using the “new” keyword to create an array of
Enemy objects, just like you did earlier with strings.

Use the name of a class to declare an array of instances of that class.

foreach (Enemy enemy in enemyArray)
{
 // code that calls the Enemy methods
}

Enemy
SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

new Ene
my()

When you create a new instance of a class, it’s called instantiating that class.

Hmm, this array is inside the class, but outside of the methods. What do you think is going on?

The foreach
loop iterates
through the
array of
Enemy objects.

[],,

162 Chapter 3

how we help you learn

Wait a minute! You didn’t give me nearly enough nearly enough
informationinformation to build Ana’s game.

That’s right, we didn’t.
Some game prototypes are really simple, while others
are much more complicated—but complicated
programs follow the same patterns as simple ones.
Ana’s game program is an example of how someone
would use objects in real life. And this doesn’t just
apply to game development! No matter what kind of
program you’re building, you’ll use objects in exactly
the same way that Ana did in her game. Ana’s example
is just the starting point for getting this concept into
your brain. We’ll give you lots more examples
over the rest of the chapter—and this concept is so
important that we’ll revisit it in future chapters too.

Theory and practice
Speaking of patterns, here’s a pattern that you’ll see over and over
again throughout the book. We’ll introduce a concept or idea (like
objects) over the course of a few pages, using pictures and short
code excerpts to demonstrate the idea. This is your opportunity
to take a step back and try to understand what’s going on without
having to worry about getting a program to work.

House obje
ct

115 Oak
Drive

When we’re introducing a new concept
(like objects), keep your eyes open for
pictures and code excerpts like these.

House oakDrive115 = new House();

you are here 4 163

organizing your code

Now that you’ve got a better idea of how objects work, it’s a great time to go back to your CardPicker class and get to
know the Random class that you’re using.

1. Open any Console App project that uses top-level statements (or create a new one). Press Enter to start a new
statement, then type Random.Shared.—as soon as you type the second period, Visual Studio will pop up an
IntelliSense window that shows its methods. Each method is marked with a cube icon (). We filled in some of the
methods. Finish filling in the class diagram for the Random class.

Random

Equals
GetHashCode
GetType

ToString

2. Write code to create a new array of doubles called randomDoubles, then use a for loop to add 20 double values
to that array. Use the IntelliSense pop-up to help you choose the right method from the Random class to use in your
code—make sure you’re calling the method that returns a random floating-point number that is greater than or equal
to 0.0, and less than 1.0. (We’ll talk about what “floating point” means in the next chapter.)

Sharpen your pencil

double[] randomDoubles = new double[20];

{

 double value =

}

We filled in part of
the code, including
the curly braces.
Your job is to finish
those statements
and then write the
rest of the code.

In Chapter 2, we showed you three types, int
(for whole numbers), string (for text), and bool
(for true/false values). A double is another type

that’s used for numbers with decimal places.
The computer science term for a number with

decimal places is a floating-point number. You’ll
learn about more types in the next chapter.

164 Chapter 3

fields maintain an object’s state

Now that you’ve got a better idea of how objects work, it’s a great time to go back to your CardPicker class and get
to know the Random class that you’re using.

1. Open any Console App project that uses top-level statements (or create a new one). Press Enter to start a new
statement, then type Random.Shared.—as soon as you type the second period, Visual Studio will pop up an
IntelliSense window that shows its methods. Each method is marked with a cube icon (). We filled in some of the
methods. Finish filling in the class diagram for the Random class.

Random

Equals
GetHashCode
GetType

ToString

2. Write code to create a new array of doubles called randomDoubles, then use a for loop to add 20 double
values to that array. Use the IntelliSense pop-up to help you choose the right method from the Random class to
use in your code—make sure you’re calling the method that returns a random floating-point number that is greater
than or equal to 0.0, and less than 1.0. (We’ll talk about what “floating point” means in the next chapter.)

Solution
Sharpen your pencil

Next
NextBytes
NextDouble
NextInt64
NextSingle

double[] randomDoubles = new double[20];

for (int i = 0; i < 20; i++)
{

 double value = Random.Shared.NextDouble();
 randomDoubles[i] = value;
}

Here’s the IntelliSense
window that Visual
Studio popped up when
you typed Shared.Random.

When you select NextDouble in the IntelliSense window, it shows documentation for the method.

This is really
similar to the
code that you
used in your
CardPicker
class.

you are here 4 165

organizing your code

An instance uses f ields to keep track of things
We just saw an example of a House class that’s used to instantiate House
objects. Each house needs to remember its address: the 38 Pine Street instance
of House needs to store its specific address, while the 115 Oak Drive instance
needs to remember a different one.

This is where fields come in—they store the data that each instance of the class
needs to keep track of. Every time you instantiate the class, the new instance
that was created gets its own copy of that field,

When we want to include fields in a class diagram, we’ll draw a horizontal line
in the box. The fields go above the line, and methods go below the line.

Class

Field1
Field2
Field3

Method1
Method2
Method3

Methods are what an object does. Fields are what an object knows.
When Ana’s prototype created three instances of her Enemy class, each of those objects was used to keep
track of a different enemy in the game. Every instance keeps separate copies of the same data: setting a
field on the enemy2 instance won’t have any effect on the enemy1 or enemy3 instances.

An object’s behavior is defined
by its methods, and it uses
fields to keep track of its state.

Enemy
LastLocationSpotted

SearchForPlayer
SpottedPlayer
CommunicatePlayerLocation
StopSearching
CapturePlayer

This is where a class
diagram shows
the fields. Every

instance of the class
uses its own copy

of each field to keep
track of its state.

Each enemy in
Ana’s game uses

a field to keep
track of the last
location where it

spotted the player.

Sometimes people think
the word “instantiate”
sounds a little weird,
but it makes sense when
you think about what it
means: creating a new
instance of a class.

Class diagrams typically list
all of the fields and methods
in the class. We call them
the class members.

Level
enemyArray

ResetEnemies

Remember how
the Level class

used an array to
keep track of the
Enemy objects?
That was a field!

166 Chapter 3

static means a single shared object

Yes! That’s why you used the static keyword in your declarations.
Take another look at the method declarations in your CardPicker class:

 public static string[] PickSomeCards(int numberOfCards)

 private static string RandomValue()

 private static string RandomSuit()

When you use the static keyword to declare a field or method in a class, you don’t need
an instance of that class to access it. You just called your method like this:

 CardPicker.PickSomeCards(numberOfCards)

That’s how you call static methods. If you take away the static keyword from the
PickSomeCards method declaration, then you’ll have to create an instance of CardPicker
you can use to call the method. Other than that distinction, static methods are just like
instance methods: they can take arguments, they can return values, and they live in classes.

When a field is static there’s only one copy of it, and it’s shared by all instances.
So if you created multiple instances of CardPicker, they would all share the same random
field. You can even mark your whole class as static, and then all of its members must be
static too. If you try to add a nonstatic method to a static class, your program won’t build.

I used the newnew keyword to create an instance of Random, but I never never
created a new instancecreated a new instance of my CardPicker class. So does that mean I can call

methods without creating objects?

Q: When I think of something that’s “static,” I think
of something that doesn’t change. Does that mean
nonstatic methods can change, but static methods
don’t? Do they behave differently?

A: No, both static and nonstatic methods act exactly
the same. The only difference is that static methods don’t
require an instance, while nonstatic methods do.

Q: So I can’t use my class until I create an
instance of an object?

A: You can use its static methods, but if you have
methods that aren’t static, then you need an instance
before you can use them.

Q: Then why would I want a method that needs an
instance? Why wouldn’t I make all my methods static?

A: Because if you have an object that’s keeping track
of certain data—like Ana’s instances of her Enemy class
that each kept track of different enemies in her game—
then you can use each instance’s methods to work with
that data. So when Ana’s game calls the StopSearching
method on the enemy2 instance, it only causes that
one enemy to stop searching for the player. It doesn’t
affect the enemy1 or enemy3 objects, and they can keep
searching. That’s how Ana can create game prototypes
with any number of enemies, and her programs can keep
track of all of them at once.

When
a field
is static,
there’s only
one copy of
it shared
by all
instances.

there are no Dumb Questions

you are here 4 167

organizing your code

Here’s a console app that uses top-level statements and writes several lines to the console. It includes a class called
Clown that has two fields, Name and Height, and a method called WhoAreYou that uses those fields to write a line
to the console. Your job is to read the code and write down the lines that are printed to the console.

Here’s the class diagram and code for the Clown class:

Clown

Name
Height

WhoAreYou

class Clown {
 public string? Name;
 public int Height;

 public void WhoAreYou() {
 Console.WriteLine("My name is " + Name +
 " and I'm " + Height + " inches tall.");
 }
}

Here are the contents of the Program.cs file. There are comments next to each of the calls to the WhoAreYou
method, which prints a line to the console. Your job is to fill in the blanks in the comments so they match the output.

 Clown oneClown = new Clown();

 oneClown.Name = "Boffo";

 oneClown.Height = 14;

 oneClown.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

 Clown anotherClown = new Clown();

 anotherClown.Name = "Biff";

 anotherClown.Height = 16;

 anotherClown.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

 Clown clown3 = new Clown();

 clown3.Name = anotherClown.Name;

 clown3.Height = oneClown.Height - 3;

 clown3.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

 anotherClown.Height *= 2;

 anotherClown.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

Sharpen your pencil

The *= operator tells C# to take whatever’s on the left of the operator
and multiply it by whatever’s on the right, so this will update the Height field.

168 Chapter 3

toss your new object onto the heap of data

Here’s what the program prints to the console. It’s worth taking a few minutes to create a new console app—make
sure it uses top-level statements—add the Clown class, and make its Program.cs method the code below. Then step
through it with the debugger so you can see exactly how it works.

 Clown oneClown = new Clown();

 oneClown.Name = "Boffo";

 oneClown.Height = 14;

 oneClown.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

 Clown anotherClown = new Clown();

 anotherClown.Name = "Biff";

 anotherClown.Height = 16;

 anotherClown.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

 Clown clown3 = new Clown();

 clown3.Name = anotherClown.Name;

 clown3.Height = oneClown.Height - 3;

 clown3.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

 anotherClown.Height *= 2;

 anotherClown.WhoAreYou(); // My name is _______ and I'm ____ inches tall.

Solution
Sharpen your pencil

Boffo

Biff

Biff

Biff

14

16

11

32

Thanks for the memory
When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in
the heap so it can store the data for that object.

Here’s a picture of the heap before the
project starts. Notice that it’s empty.

When your program creates a new object, it gets added to the heap.

you are here 4 169

organizing your code

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

32

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

16

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 2

“Biff”

16
Clown object

 #
 1

“Boffo”

14

Clown object
 #

 1

// These statements create an instance of
// Clown and then set its fields
Clown oneClown = new Clown();
oneClown.Name = "Boffo";
oneClown.Height = 14;
oneClown.WhoAreYou();

// These statements instantiate a second
// Clown object and fill it with data
Clown anotherClown = new Clown();
anotherClown.Name = "Biff";
anotherClown.Height = 16;
anotherClown.WhoAreYou();

// Now we instantiate a third Clown object
// and use data from the other two
// instances to set its fields
Clown clown3 = new Clown();
clown3.Name = anotherClown.Name;
clown3.Height = oneClown.Height - 3;
clown3.WhoAreYou();

// Notice how there's no "new" statement
// here -- we're not creating a new object,
// just modifying one already in memory
anotherClown.Height *= 2;
anotherClown.WhoAreYou();

What’s on your app’s mind
Let’s take a closer look at the program in the “Sharpen your pencil”
exercise, starting with the first line of the app. It’s actually two
statements combined into one:

 Clown oneClown = new Clown();

This object is an instance of the
Clown class.

“Boffo”

14

Next, let’s look closely at what the heap looks like after
each group of statements is executed:

This is a statement that declares a variable called oneClown of type Clown.
This statement creates a
new object and assigns it
to the oneClown variable.

170 Chapter 3

good names make methods make more sense

Sometimes code can be diff icult to read
You may not realize it, but you’re constantly making choices about how to structure your code. Do you use
one method to do something? Do you split it into more than one? Do you even need a new method at all?
The choices you make about methods can make your code much more intuitive—or if you’re not careful,
much more convoluted.

Here’s a nice, compact chunk of code from a control program that runs a machine that makes candy bars:

 int t = m.chkTemp();
 if (t > 160) {
 T tb = new T();
 tb.clsTrpV(2);
 ics.Fill();
 ics.Vent();
 m.airsyschk();
 }

Extremely compact code can be especially problematic
Take a second and look at that code. Can you figure out what it does? Don’t feel bad if you can’t—it’s very
difficult to read! Here are a few reasons why:

 " We can see a few variable names: tb, ics, m. These are terrible names! We have no idea what they
do. And what’s that T class for?

 " The chkTemp method returns an integer…but what does it do? We can guess maybe it has
something to do with checking the temperature of…something?

 " The clsTrpV method has one parameter. Do we know what that parameter is supposed to be? Why
is it 2? What is that 160 number for?

C# code in industrial equipmentindustrial equipment?! Isn’t C# just for desktop
apps, business systems, websites, and games?

C# and .NET are everywhere…and we mean everywhere.
Have you ever played with a Raspberry PI? It’s a low-cost computer on a single board, and
computers like it can be found inside all sorts of machinery. Thanks to Windows IoT (or Internet
of Things), your C# code can run on them.

You can learn more about .NET IoT apps here: https://dotnet.microsoft.com/apps/iot

Microsoft even has a free Raspberry PI simulator that you can use to get started:

https://learn.microsoft.com/azure/iot-hub/iot-hub-raspberry-pi-web-simulator-get-started

you are here 4 171

organizing your code

How do you figure out what
your code is supposed to do?
Well, all code is written for
a reason. So it’s up to you to
figure out that reason! In this
case, we got lucky—we could
look up the page in the manual
that the developer followed.

Most code doesn’t come with a manual
Those statements don’t give you any hints about why the code’s doing what it’s doing. In this
case, the programmer was happy with the results because she was able to get it all into one
method. But making your code as compact as possible isn’t really useful! Let’s break it up into
methods to make it easier to read, and make sure the classes are given names that make sense.

We’ll start by figuring out what the code is supposed to do. Luckily, we happen to know that
this code is part of an embedded system, or a controller that’s part of a larger electrical
or mechanical system. And we happen to have documentation for this code—specifically, the
manual that the programmers used when they originally built the system.

General Electronics Type 5 Candy Bar Maker Manual

The nougat temperature must be checked every 3 minutes by an

automated system. If the temperature exceeds 160°C, the candy

is too hot, and the system must perform the candy isolation

cooling system (CICS) vent procedure:

• Close the trip throttle valve on turbine #2.

• Fill the isolation cooling system with a solid stream of water.

• Vent the water.

• Initiate the automated check for air in the system.

We can compare the code with the manual that tells us what the code is supposed to do.
Adding comments can definitely help us understand what it’s supposed to do:

/* This code runs every 3 minutes to check the temperature.
 * If it exceeds 160C we need to vent the cooling system.
 */
int t = m.chkTemp();
if (t > 160) {
 // Get the controller system for the turbines
 T tb = new T();

 // Close throttle valve on turbine #2
 tb.clsTrpV(2);

 // Fill and vent the isolation cooling system
 ics.Fill();
 ics.Vent();

 // Initiate the air system check
 m.airsyschk();
}

Adding extra line breaks
to your code in some
places can make it easier
to read.

Code comments are a good start.
Can you think of a way to make this
code even easier to understand?

Brain
Power

172 Chapter 3

readable code makes coding easier

Use intuitive class and method names
That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Let’s take a look at the first two lines:

/* This code runs every 3 minutes to check the temperature.
 * If it exceeds 160C we need to vent the cooling system.
 */
int t = m.chkTemp();
if (t > 160) {

The comment we added explains a lot. Now we know why the conditional test checks the variable
t against 160—the manual says that any temperature above 160°C means the nougat is too
hot. It turns out that m is a class that controls the candy maker, with static methods to check the
nougat temperature and check the air system.

So let’s put the temperature check into a method, and choose names for the class and the
methods that make their purpose obvious. We’ll move these first two lines into their own method
that returns a Boolean value, true if the nougat is too hot or false if it’s OK:

/// <summary>
/// If the nougat temperature exceeds 160C it's too hot.
/// </summary>
public bool IsNougatTooHot() {
 int temp = CandyBarMaker.CheckNougatTemperature();
 if (temp > 160) {
 return true;
 } else {
 return false;
 }
}

Did you notice the special /// comments above the method? That’s called an XML
Documentation Comment (or XMLDoc) The IDE uses those comments to show you
documentation for methods—like the documentation you saw when you used the IntelliSense
window to figure out which method from the Random class to use.

When we rename the
class “CandyBarMaker”
and the method
“CheckNougatTemperature,”
it starts to make the
code easier to understand.

Notice how the C in CandyBarMaker is uppercase? If we always start class names with an uppercase letter and variables with lowercase ones, it’s easier to tell when you’re calling a static method vs. using an instance.

Visual Studio helps you add XML documentation. Put your cursor in the line above any method and type three slashes,
and it will add an empty template for your documentation. If your method has parameters and a return type, it will add
<param> and <returns> tags for them as well. Try going back to your CardPicker class and typing /// in the line above
the PickSomeCards method—the IDE will add blank XML documentation. Fill it in and watch it show up in IntelliSense.

/// <summary>
/// Picks a number of cards and returns them.
/// </summary>
/// <param name="numberOfCards">The number of cards to pick.</param>
/// <returns>An array of strings that contain the card names.</returns>
You can create XML documentation for your fields too. Try it out by going to the line just above any field and typing three
slashes in the IDE. Anything you put after <summary> will show up in the IntelliSense window for the field.

IDE Tip: XML documentation for methods and fields

you are here 4 173

organizing your code

What does the manual say to do if the nougat is too hot? It tells us to perform the candy
isolation cooling system (or CICS) vent procedure. So let’s make another method, and
choose an obvious name for the T class (which turns out to control the turbine) and the
ics class (which controls the isolation cooling system, and has two static methods to fill and
vent the system), and cap it all off with some brief XML documentation:

/// <summary>
/// Perform the Candy Isolation Cooling System (CICS) vent procedure.
/// </summary>
public void DoCICSVentProcedure() {
 TurbineController turbines = new TurbineController();
 turbines.CloseTripValve(2);
 IsolationCoolingSystem.Fill();
 IsolationCoolingSystem.Vent();
 Maker.CheckAirSystem();
}

Now that we have the IsNougatTooHot and DoCICSVentProcedure methods, we can
rewrite the original confusing code as a single method—and we can give it a
name that makes clear exactly what it does:

/// <summary>
/// This code runs every 3 minutes to check the temperature.
/// If it exceeds 160C we need to vent the cooling system.
/// </summary>
public void ThreeMinuteCheck() {
 if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
 }
}

Now the code is a lot more intuitive! Even if you don’t know that the CICS vent
procedure needs to be run if the nougat is too hot, it’s a lot more obvious what this
code is doing.

When your method is declared
with a void return type, that

means it doesn’t return a value
and it doesn’t need a return
statement. All of the methods
you wrote in Chapter 2 used

the void keyword!

TemperatureChecker

ThreeMinuteCheck
DoCICSVentProcedure
IsNougatTooHot

Use class diagrams to plan out your classes
A class diagram is a valuable tool for designing your code BEFORE you

start writing it. Write the name of the class at the top of the diagram.

Then write each method in the box at the bottom. Now you can see all of

the parts of the class at a glance—and that’s your first chance to spot

problems that might make your code difficult to use or understand later.

We bundled these
new methods into
a class called
TemperatureChecker.
Here’s its class
diagram.

174 Chapter 3

you should constantly refactor your code

That’s right. When you change the structure of your
code without altering its behavior, it’s called refactoring.
Great developers write code that’s as easy as possible to understand, even
after they haven’t looked at it for a long time. Comments can help, but
nothing beats choosing intuitive names for your methods, classes, variables,
and fields.

You can make your code easier to read and write by thinking about the
problem your code was built to solve. If you choose names for your methods
that make sense to someone who understands that problem, then your code
will be a lot easier to decipher and develop. No matter how well we plan our
code, we almost never get things exactly right the first time.

That’s why great developers constantly refactor their code. They’ll
move code into methods and give them names that make sense. They’ll
rename variables. Any time they see code that isn’t 100% obvious, they’ll
take a few minutes to refactor it. They know it’s worth taking the time to do
it now, because it will make it easier to add more code in an hour (or a day, a
month, or a year!).

Hold on, we just did something really interesting!
We just made a lot of changes to a block of code. It looks

really different and it’s a lot easier to read now, but it still does it still does
exactly the same thingexactly the same thing.

you are here 4 175

organizing your code

DeliveryGuy

AddAPizza
PizzaDelivered
TotalCash
ReturnTime

Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you’d fix it.

Class23

CandyBarWeight
PrintWrapper
GenerateReport
Go

These two classes are part of a system that a pizza parlor uses to
track the pizza orders that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale
NoSale
PumpGas
Refund
TotalCashInRegister
GetTransactionList
AddCash
RemoveCash

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryGirl

AddAPizza
PizzaDelivered
TotalCash
ReturnTime

Sharpen your pencil

176 Chapter 3

a few helpful tips

Solution
Sharpen your pencil

Here’s how we improved the classes. We show just one possible
way to fix the problems—but there are plenty of other ways you
could design these classes depending on how they’ll be used.

CandyMaker

CandyBarWeight
PrintWrapper
GenerateReport
MakeTheCandy

These two classes are part of a system that a pizza parlor uses to
track the pizza orders that are out for delivery.

This class is part of the candy manufacturing system from earlier.

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryPerson

Gender

AddAPizza
PizzaDelivered
TotalCash
ReturnTime

The class name doesn’t describe what the class does. A programmer
who sees a line of code that calls Class23.Go will have no idea what
that line does. We’d also rename the method to something that’s
more descriptive—we chose MakeTheCandy, but it could be anything.

It looks like the DeliveryGuy class and the DeliveryGirl class
both do the same thing—they represent a delivery person
who’s out delivering pizzas to customers. A better design would
replace them with a single class that adds a field for gender.

All of the methods in the class do stuff that has to do with
a cash register—making a sale, getting a list of transactions,
adding cash…except for one: pumping gas. It’s a good idea to
pull that method out and stick it in another class.

We decided NOT to add a Gender field because there’s actually no

reason for this pizza delivery class to keep track of
 the gender

of the people delivering pizza—and we should respect their privacy!

Always look out for ways that bias can sneak into your code.

CashRegister

MakeSale
NoSale
Refund
TotalCashInRegister
GetTransactionList
AddCash
RemoveCash

We’re about to jump back into writing code. You’ll be writing code for the rest of this chapter,
and a LOT of code throughout the book. That means you’ll be creating a lot of classes. Here
are a few things to keep in mind when you make choices about how to design them:

 ¥ You’re building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces easily?
How would you explain that problem to someone else? These are good things to think
about when designing your classes.

 ¥ What real-world things will your program use?
A program to help a zookeeper track her animals’ feeding schedules might have classes
for different kinds of food and types of animals.

 ¥ Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by look-
ing at their names.

 ¥ Look for similarities between classes.
Sometimes two classes can be combined into one if they’re really similar. The candy
manufacturing system might have three or four turbines, but there’s only one method
for closing the trip valve that takes the turbine number as a parameter.

Code Tip: A few ideas for designing intuitive classes

you are here 4 177

organizing your code

It’s OK if you get stuck when you’re writing code.
In fact, getting stuck can be a good thing!
Writing code is all about solving problems—and some of them can be tricky! But if
you keep a few things in mind, it’ll make the code exercises go more smoothly:

 " It’s easy to get caught up in syntax problems, like missing parentheses or quotes. One
missing bracket can cause many build errors.

 " It’s much better to look at the solution than to get frustrated with a problem. When you’re
frustrated, your brain doesn’t like to learn.

 " All of the code in this book is tested and definitely works! But it’s easy to accidentally type
things wrong (like typing a one instead of a lowercase L, or missing a comma or semicolon).

 " If your solution just won’t build, try downloading it from the GitHub repository for the book—it
has working code for everything in the book: https://github.com/head-first-csharp/fifth-edition

You can learn a lot from reading code. So if you run into a problem with a coding exercise,
don’t be afraid to peek at the solution. It’s not cheating!

Relax

178 Chapter 3

a example to help you learn about classes

Build a class to work with some guys
Joe and Bob lend each other money all the time. Let’s create a class to keep track
of how much cash they each have. We’ll start with an overview of what we’ll build.

Guy Object
 2

Guy Objec
t

 1

Guy

Name
Cash

WriteMyInfo
GiveCash
ReceiveCash

We’ll create two instances of a “Guy” class.
We’ll use two Guy variables called joe and bob to keep track of each of our
instances. Here’s what the heap will look like after they’re created:

1

We’ll set each Guy object’s Cash and Name fields.
The two objects represent different guys, each with his own name and a different
amount of cash in his pocket. Each guy has a Name field that keeps track of his name,
and a Cash field that has the number of bucks in his pocket.

2

Guy Object
 2

“Bob”

50

Guy Objec
t

 1

“Joe”

100

We’ll add methods to give and receive cash.
We’ll make a guy give cash from his pocket (and reduce his Cash field) by calling
his GiveCash method, which will return the amount of cash he gave. We’ll
make him receive cash and add it to his pocket (increasing his Cash field) by
calling his ReceiveCash method.

3

Guy Objec
t

2

“Bob”

75
The ReceiveCash method adds the cash to
Bob’s pocket by adding the amount to his
Cash field—so now he has 75 bucks.

If we want to give Bob 25 bucks, we call his
ReceiveCash method (because he’s receiving the cash).

Guy Objec
t

2

“Bob”

50 bob.ReceiveCash(25);

We chose names for the methods
that make sense. You call a

Guy object’s GiveCash method
to make him give up some of

his cash, and his ReceiveCash
method when you want to give
cash to him (so he receives it).

A guy keeps cash (“bucks”) in his wallet so he can spend it on stuff. He can give cash to another guy, or receive cash from another guy.

you are here 4 179

organizing your codeinternal class Guy
{
 public string? Name;
 public int Cash;

 /// <summary>
 /// Writes my name and the amount of cash I have to the console.
 /// </summary>
 public void WriteMyInfo()
 {
 Console.WriteLine(Name + " has " + Cash + " bucks.");
 }

 /// <summary>
 /// Gives some of my cash, removing it from my wallet (or printing
 /// a message to the console if I don't have enough cash).
 /// </summary>
 /// <param name="amount">Amount of cash to give.</param>
 /// <returns>
 /// The amount of cash removed from my wallet, or 0 if I don't
 /// have enough cash (or if the amount is invalid).
 /// </returns>
 public int GiveCash(int amount)
 {
 if (amount <= 0)
 {
 Console.WriteLine(Name + " says: " + amount + " isn't a valid amount");
 return 0;
 }
 if (amount > Cash)
 {
 Console.WriteLine(Name + " says: " +
 "I don't have enough cash to give you " + amount);
 return 0;
 }
 Cash -= amount;
 return amount;
 }

 /// <summary>
 /// Receive some cash, adding it to my wallet (or printing
 /// a message to the console if the amount is invalid).
 /// </summary>
 /// <param name="amount">Amount of cash to receive.</param>
 public void ReceiveCash(int amount)
 {
 if (amount <= 0)
 {
 Console.WriteLine(Name + " says: " + amount + " isn't an amount I'll take");
 }
 else
 {
 Cash += amount;
 }
 }
}

Compare the comments in this code to the class diagrams
and illustrations of the Guy objects. If something doesn’t
make sense at first, take the time to really understand it.

The Name and Cash fields keep track of the guy’s name
and how much cash he has in his pocket. Don't forget the
question mark when you declare the string? field. We’ll

talk more about what that’s about in the next chapter.

Sometimes you want to ask
an object to perform a task,
like printing a description

of itself to the console.

The GiveCash and
ReceiveCash methods
verify that the amount
they’re being asked to
give or receive is valid.

That way you can’t ask a
guy to receive a negative

number, which would
cause him to lose cash.

Don’t add this
Guy class to an
app yet—just
read it. Can
you figure out
how it works?

180 Chapter 3

object initializers set up your instances

There’s an easier way to init ialize objects with C#
Almost every object that you create needs to be initialized in some way. The Guy
object is no exception—it’s useless until you set its Name and Cash fields. It’s so
common to have to initialize fields that C# gives you a shortcut for doing that. It’s
called an object initializer, and the IDE’s IntelliSense will help you add one.

You’re about to do an exercise where you create two Guy objects. You could use
one new statement and two more statements to set its fields:

joe = new Guy();
joe.Name = "Joe";
joe.Cash = 50;

Instead, type this: Guy joe = new Guy() {

As soon as you add the left curly bracket, the IDE will pop up an IntelliSense
window that shows all of the fields that you can initialize:

Choose the Cash field, set it to 50, and add a comma:

Guy joe = new Guy() { Cash = 50,

Now type a space—another IntelliSense window will pop up with the remaining field to set:

Set the Name field and add the semicolon. You now have a single statement that initializes your object:

 Guy joe = new Guy() { Cash = 50, Name = "Joe" };

Object initializers
save you time and
make your code
more compact
and easier to
read…and the
IDE helps you
write them.

This new declaration does the same thing as
the three lines of code at the top of the
page, but it’s shorter and easier to read.Now you have all of the pieces to build

your console app that uses two instances
of the Guy class. Here’s what it will look
like when it’s running:

Here’s how it works. It calls each Guy
object’s WriteMyInfo method. It reads
an amount from the input and asks who
to give the cash to, then calls one Guy
object’s GiveCash method, then the other
Guy object’s ReceiveCash method. It
keeps going until the user enters a blank
line, then it calls return to exit the app.

you are here 4 181

organizing your code

Here are the top-level statements for a console app that makes Guy objects give cash to each other.
Step 1: Create a new console app that uses top-level statements. Name it Guys.
Step 2: Add a new class to your app called Guy. Since your project is called Guys, your new class will be in the
namespace Guys. Carefully add all of the code from the Guy class that we just showed you.
Step 3: Here's the code that goes into your app's Program.cs file. Carefully enter it, then replace the comments
in with code—read each comment and write code that does exactly what it says. When you’re done, you’ll have a
program that looks like the screenshot on the previous page.
// Create a new Guy object in a variable called joe
// Set its Name field to "Joe"
// Set its Cash field to 50

// Create a new Guy object in a variable called bob
// Set its Name field to "Bob"
// Set its Cash field to 100

while (true)
{
 // Call the WriteMyInfo methods for each Guy object

 Console.Write("Enter an amount: ");
 string? howMuch = Console.ReadLine();
 if (howMuch == "") return;
 // Use int.TryParse to try to convert the howMuch string? to an int
 // if it was successful (just like you did earlier in the chapter)
 {
 Console.Write("Who should give the cash: ");
 string? whichGuy = Console.ReadLine();
 if (whichGuy == "Joe")
 {
 // Call the joe object's GiveCash method and save the results
 // Call the bob object's ReceiveCash method with the saved results
 }
 else if (whichGuy == "Bob")
 {
 // Call the bob object’s GiveCash method and save the results
 // Call the joe object’s ReceiveCash method with the saved results
 }
 else
 {
 Console.WriteLine("Please enter 'Joe' or 'Bob'");
 }
 }
 else
 {
 Console.WriteLine("Please enter an amount (or a blank line to exit).");
 }
}

Exercise

Replace all of the
comments with code
that does what the
comments describe.

This is Part 1 of a two-part exercise.

Add another if statement
after an else to check for

more than one condition. This
first checks if whichGuy is Joe,
then it checks if whichGuy is
Bob, and if neither are true, it

writes a line to the console.

182 Chapter 3

exercise solution

Here are the top-level statements for your console app. It uses an infinite loop to keep asking the user how much
cash to move between the Guy objects. If the user enters a blank line for an amount, the method executes a
return statement, which causes Main to exit and the program to end.
using Guys;

(Guy joe = new Guy() ...
Guy joe = new Guy() { Cash = 50, Name = "Joe" };
Guy bob = new Guy() { Cash = 100, Name = "Bob" };

while (true)
{
 joe.WriteMyInfo();
 bob.WriteMyInfo();
 Console.Write("Enter an amount: ");
 string? howMuch = Console.ReadLine();
 if (howMuch == "") return;
 if (int.TryParse(howMuch, out int amount))
 {
 Console.Write("Who should give the cash: ");
 string? whichGuy = Console.ReadLine();
 if (whichGuy == "Joe")
 {
 int cashGiven = joe.GiveCash(amount);
 bob.ReceiveCash(cashGiven);
 }
 else if (whichGuy == "Bob")
 {
 int cashGiven = bob.GiveCash(amount);
 joe.ReceiveCash(cashGiven);
 }
 else
 {
 Console.WriteLine("Please enter 'Joe' or 'Bob'");
 }
 }
 else
 {
 Console.WriteLine("Please enter an amount (or a blank line to exit).");
 }
}

Exercise
Solution

Here's the code where
one Guy object gives
cash from his pocket,
and the other Guy
object receives it.

When the app executes this return statement it ends the program, because console apps stop when the top-level statements finish running.

Don't move on to the next part of the exercise until you have the first part working
and you understand what's going on. It's worth taking a few minutes to use the

debugger to step through the program and make sure you really get it.

Use the debugger
to step through the
code. Put breakpoints
in the if, else if, and
else blocks. Can you
make it hit all three
breakpoints?

you are here 4 183

organizing your code

Now that you have your Guy class working, let’s see if you can reuse it in a betting game. Look closely at this
screenshot to see how it works and what it prints to the console.

Create a new console app that uses top-level statements, then add the Guy class from your Guys project. Make sure you
add a using statement to the top of your Program.cs file so you can use the Guy class.
In your Program.cs, declare two variables:
• A double variable called odds that stores the odds to beat set to .75
• A Guy variable called player for an instance of Guy named "The player" with 100 bucks.

Your app should write a line to the console welcoming the player and printing the odds. Then it should run this loop:
1. Call the Guy object’s WriteMyInfo method to write the amount of cash the player has to the console.
2. Write a line to the console asking the player how much money to bet.
3. Read the line from the console into a string variable called howMuch.
4. Try to parse it into an int variable called amount.
5. If it parses, the player gives the amount to an int variable called pot.

Only do steps 6 through 9 if pot is greater than zero.
6. Multiply pot by two, because it’s a double-or-nothing bet.
7. Use Random.Shared to pick a random double value between 0 and 1.
8. If the random value is greater than odds, the player receives the pot.
9. If not, the player loses the amount they bet.
10. The program keeps running while the player has cash.
The loop ends when the player runs out of money, then the app prints a message: “The house always wins.”

Exercise

These are the odds to beat.

The player makes a double-
or-nothing bet each round.

The program picks a
random double from 0
to 1. If the number is

greater than the odds, the
player wins twice their bet,
otherwise the player loses.

In step 5, you’ll call the Guy
object’s GiveCash method to give
the amount to bet. The GiveCash

method won’t give more cash
than the guy has, so you don’t
need to check if the player has

enough money. The Guy class will
write a message to the console
if it doesn’t have enough cash
to place the bet, so your app

doesn’t have to. Checking if the
pot variable is greater than zero
makes sure the bet is valid and

the player has enough cash.

Here's the second part of the two-part exercise.

184 Chapter 3

exercise solution

Here’s the working code for the top-level statements in the betting game. Can you think of ways to make it more fun?
See if you can figure out how to add additional players, or give different options for odds, or maybe you can think of
something more clever. This is a chance to get creative!
using Guys;

double odds = .75;

Guy player = new Guy() { Cash = 100, Name = "The player" };

Console.WriteLine("Welcome to the casino. The odds are " + odds);
while (player.Cash > 0)
{
 player.WriteMyInfo();
 Console.Write("How much do you want to bet: ");
 string? howMuch = Console.ReadLine();
 if (int.TryParse(howMuch, out int amount))
 {
 int pot = player.GiveCash(amount) * 2;
 if (pot > 0)
 {
 if (Random.Shared.NextDouble() > odds)
 {
 int winnings = pot;
 Console.WriteLine("You win " + winnings);
 player.ReceiveCash(winnings);
 } else
 {
 Console.WriteLine("Bad luck, you lose.");
 }
 }
 } else
 {
 Console.WriteLine("Please enter a valid number.");
 }

}
Console.WriteLine("The house always wins.");

Exercise
Solution

Was your code
a little different
than ours? If it
still works and
produces the right
output, that’s OK!
There are many
different ways to
write the same
program.

...and to get some practice. Getting
practice writing code is the best
way to become a great developer.

...and as you get further
along in the book and
the exercise solutions get
longer, your code will look
more and more different
from ours. Remember, it’s
always OK to look at
our solution when you’re
working on an exercise!

Is Guy really the best name for the
class? Why or why not? Can you
think of a better name for it?

Brain
Power

you are here 4 185

organizing your code

Here’s an app that writes three lines to the console. Your job is to figure out what it writes, without using a computer.
Start at the first line of the Main method and keep track of the values of each of the fields in the objects as it runs.

Pizzazz foxtrot = new Pizzazz() { Zippo = 2 };
foxtrot.Bamboo(foxtrot.Zippo);

Pizzazz november = new Pizzazz() { Zippo = 3 };
Abracadabra tango = new Abracadabra() { Vavavoom = 4 };

while (tango.Lala(november.Zippo))
{
 november.Zippo *= -1;
 november.Bamboo(tango.Vavavoom);
 foxtrot.Bamboo(november.Zippo);
 tango.Vavavoom -= foxtrot.Zippo;
}

Console.WriteLine("november.Zippo = " + november.Zippo);
Console.WriteLine("foxtrot.Zippo = " + foxtrot.Zippo);
Console.WriteLine("tango.Vavavoom = " + tango.Vavavoom);
class Pizzazz
{
 public int Zippo;

 public void Bamboo(int eek)
 {
 Zippo += eek;
 }
}

class Abracadabra
{
 public int Vavavoom;

 public bool Lala(int floq)
 {
 if (floq < Vavavoom)
 {
 Vavavoom += floq;
 return true;
 }
 return false;
 }
}

Sharpen your pencil

What does this program write to the console?

november.Zippo =
foxtrot.Zippo =
tango.Vavavoom =
To find the solution, enter the program into Visual Studio and run
it. If you didn’t get the answer right, step through the code line by
line and add watches for each of the object’s fields.

If you don’t want to type the whole thing in, you can download it
from GitHub: https://github.com/head-first-csharp/fifth-edition

186 Chapter 3

an ai chatbot can generate code

Ask an AI chatbot to do the exercise to write the betting game code for you
AI chatbots like Copilot, ChatGPT, Gemini, and Claude can do more than answer questions. They can draw pictures,
search for information, and even generate code for you. Let’s use the betting game to explore how this works.

Step 1: Download the PDF of the first four chapters of this book.
We made the first four chapters of this book available as a free PDF. Download it from our GitHub page:
https://github.com/head-first-csharp/fifth-edition

Step 2: Use the complete text of Part 1 of the exercise as a prompt.
Open the PDF and find Part 1 of the two-part exercise in this chapter. Part 1 starts with this sentence:
Here are the top-level statements for a console app that makes Guy objects give cash to each other.
Select all of the text for Part 1—including all of the code—starting with “Here are the top-level statements” and ending
with the closing bracket } at the bottom.
Open Copilot (https://copilot.microsoft.com), ChatGPT (https://chat.openai.com), Gemini (https://gemini.google.com),
Claude (https://claude.ai), or any other AI chatbot. Paste in all of the text that you copied as a prompt. The chatbot
should generate code for a Guy class, and code for the top-level statements that use it.

Step 3: Create a new Console App project and paste the generated code into it.
Create a new project to test out the code that the AI chatbot generated for you. Create a Guy class in your project,
then copy the code that the AI generated for its Guy class and paste it in. Finally, copy the code that the AI generated
for its top-level statements into your Program.cs.

Step 4: Use the AI safely—trust but verify.

Before you run your app, look at the code. Does it look right?
When we did this ourselves, all three AI chatbots generated working code that did exactly what we asked it to do.
However, one of the chatbots ignored our instruction to generate top-level statements and created a console app with
a Main method. The app still worked, though!
Also, two of the chatbots used object initializers, while one of them set the fields directly. Our instructions didn’t tell it
exactly what to do, and either of those choices will work just fine.

Step 5: Finish the betting game.
Find Part 2 of the exercise in the PDF, copy all of the text, and paste it into the chatbot as a follow-up prompt (so
don’t start a new chat). Copy the code that it generates and paste it into your Program.cs file. Before you run your
app, carefully read all of the code. Does it look like it works? Did the AI do things differently than you did?
When we pasted our Part 2 prompt, the betting game worked perfectly. All three chatbots were even smart enough to
ignore the instruction in Part 2 to look closely at the screenshot to see how the game works and what it prints to the
console, even though we didn’t actually include the contents of the screenshot in our prompt.

Sens-AI

Did the AI generate code that behaves the same way as the code you
wrote for the exercise, but is structured differently? Compare its code to
yours—that might give you ideas about how you can refactor your code.

Try this a few times with each chatbot.
Does it generate the same code each time?

Take the time to understand the code that the AI generated. Try this a few times and compare the results. That’s a really good way to learn.

you are here 4 187

organizing your code

If an AI chatbot is smart enough to write code for me,
why should I bother writing codebother writing code? Why should anyone even

learn to code in the first place?

It’s often easier to write the code that you want than it is to
engineer a prompt to generate that code.
Creating a prompt isn’t always easy. In fact, there’s an entire growing field of study
called prompt engineering that’s all about designing prompts to get an AI to do
what you want it to do.

Creating a great prompt can include many steps. You need to test the specific
language that you’re using, examine the output, then refine it to get the AI to give
you the output that you’re looking for. Prompt engineering can be a difficult and
often tedious process, because a very small change in a prompt can make a huge
difference in the output that the AI generates.

We know this because every coding exercise in this book is a prompt. The
only difference is that instead of building those prompts for an artificial intelligence,
we built them to be used by a real, smart, human intelligence—namely, you!

Every single exercise in this book went through a painstaking process to make sure
you have all of the information that you need to do it. When we’re building an
exercise, we start by writing the code for the solution. Believe it or not, that’s the
quickest part of creating the exercise. Then we go through a process of creating
instructions. We usually have to go through many versions of each exercise before
we end up with the version that you see. It’s a time-consuming and painstaking
process—and sometimes we don’t get it right. We got feedback from readers of the
first four editions of this book (especially the early editions) who had trouble doing
exercises because our instructions were unclear, difficult to follow, and on a few
occasions, even missed some steps.

In every single case, writing the code for each exercise was much easier than the
prompt engineering that we had to do to craft the finished exercise.

In this edition, we tested our
exercises by pasting them into
different AI chatbots to make
sure we didn’t accidentally
leave out any instructions. If
the AI can generate code for
a correct solution, it means we
included everything you need to
do it too.

Decide for yourself if prompt engineering is harder than writing code. We gave you this method earlier in the chapter:
 int Multiply(int factor1, int factor2)
 {
 int product = factor1 * factor2;
 return product;
 }

Start a new session with an AI chatbot and give it a prompt to create exactly this method. Make sure it doesn’t include
comments or any additional code. Ask it follow-up questions until it gives you exactly this output.
Repeat the same exercise with the loop from the Sens-AI element in Chapter 2. Can you get the AI to generate it?

Exercise

On our first try, we had to ask four
follow-up questions before we could get
ChatGPT to give us exactly this output.

188 Chapter 3

more ways to run your code

Use the C# Interactive window or csi to run C# code
If you just want to run some C# code, you don’t always need to create a new project in Visual
Studio. Any C# code entered into the C# Interactive window is run immediately. You can open
it by choosing View >> Other Windows >> C# Interactive. Try it now, and paste in the code
from the exercise solution to see the output. You can call methods and enter other statements too.

VSCode doesn’t
have a C# Interactive
window, but you can

run csi from Terminal
to use the dotnet C#
interactive compiler.

You can also run an interactive C# session from the command line. On Windows, search the Start
menu for Developer Command Prompt, start it, and then type csi. On macOS or Linux,
run csi from the Terminal. You can paste the Pizzazz, Abracadabra, and Program classes from
the previous exercise directly into the prompt, then paste in the code that you want to run.

Paste in each class.
You'll see periods for
each pasted line.

Only the first pasted line is
printed, so we pasted each
Console.WriteLine statement
separately to see the output.

 ◾ Use the new keyword to create instances of a class. A
program can have many instances of the same class.

 ◾ Each instance has all of the methods from the class
and gets its own copies of each of the fields.

 ◾ Use the static keyword to declare a field or
method in a class as static. You don’t need an instance
of that class to access static methods or fields.

 ◾ When a field is static, there’s only one copy of
it shared by all instances. When you include the
static keyword in a class declaration, all of its
members must be static.

 ◾ Fields and methods of a class are called its members.

 ◾ If you remove the static keyword from a static field,
it becomes an instance field.

 ◾ When your program creates an object, it lives in a part
of the computer’s memory called the heap.

 ◾ Visual Studio helps you add XML documentation (or
XMLDoc) to your fields and methods, and displays it
in its IntelliSense window.

 ◾ Class diagrams help you plan out your classes and
make them easier to work with.

 ◾ When you change the structure of your code without
altering its behavior, it’s called refactoring. Advanced
developers constantly refactor their code.

 ◾ Object initializers save you time and make your code
more compact and easier to read.

Bullet Points

If you’re running
Windows, open
Developer Command
Prompt or Developer
PowerShell from the
Start menu to make
sure csi is in your path.

data, types, objects, and references4

Managing your app’s data

Data and objects are the building blocks of your apps.
What would your apps be without data ? Think about it for a minute. Without data, your

programs are…well, it’s actually hard to imagine writing code without data. You need

information from your users, and you use that to look up or produce new information to give

back to them. In fact, almost everything you do in programming involves working with data

in one way or another. In this chapter, you’ll learn the ins and outs of C#’s data types and

references, see how to work with data in your program, and even learn a few more things

about objects (guess what…objects are data too!).

this is a new chapter 189

Game Masters Guide

Owen could use our help!
Owen is a game master—a really good one. He hosts a group that meets at his
place every week to play different role-playing games (or RPGs), and like
any good game master, he works hard to keep things interesting for the players.

Storytelling , fantasy, and mechanics
Owen is a particularly good storyteller. Over the last few
months, he’s created an intricate fantasy world for his party,
but he’s not so happy with the mechanics of the game that
they’ve been playing.

Can we find a way to help Owen improve his RPG?

Ability score (like strength, stamina, charisma,
and intelligence) is an important mechanic
in a lot of role-playing games. Players
frequently roll dice and use a formula to
determine their character’s scores.

190 Chapter 4

masterful game master

Character Name

Character Sheet

Level

Alignment

Character Class Picture

Strength

Dexterity

Intelligence

Wisdom

Charisma

 15

Spell Saving
Throw

Poison Saving
Throw

Magic Wand
Saving Throw

Arrow Saving
Throw

ELLIWYNN
7

LAWFUL GOOD
WIZARD

12

10

17

15

Character sheets store different
types of data on paper
If you’ve ever played an RPG, you’ve seen character sheets: a page
with details, statistics, background information, and any other notes
you might see about a character. If you wanted to make a class to
hold a character sheet, what types would you use for the fields?

CharacterSheet

CharacterName
Level
PictureFilename
Alignment
CharacterClass
Strength
Dexterity
Intelligence
Wisdom
Charisma
SpellSavingThrow
PoisonSavingThrow
MagicWandSavingThrow
ArrowSavingThrow

ClearSheet
GenerateRandomScores

In the RPG that Owen plays, saving
throws give players a chance to roll dice
and avoid certain types of attacks. This
character has a magic wand saving throw,
so the player filled in this circle.

Players create characters
by rolling dice for each of
their ability scores, which
they write in these boxes.

This box is for a picture of
the character. If you were
building a C# class for a
character sheet, you could save
that picture in an image file.

Look at the fields in the CharacterSheet class
diagram. What type would you use for each field?

Brain
Power

you are here 4 191

managing your app’s data

Better a witty fool,
than a foolish wit.

A variable’s type determines what kind
of data it can store
There are many types built into C#, and you’ll use them to store many
different kinds of data. You’ve already seen some of the most common
ones, like int, string, bool, and float. There are a few others that you
haven’t seen, and they can really come in handy too.

Here are some types you’ll use a lot.

 " int can store any integer
from –2,147,483,648 to
2,147,483,647. Integers don’t
have decimal points.

 " string can hold text of
any length (including
the empty string "").

 " bool is a Boolean value—it’s
either true or false. You’ll
use it to represent anything
that only has two options: it
can either be one thing or
another, but nothing else.

 " float can store real numbers
from ±1.5 × 10––45 to ±3.4 × 1038
with up to 8 significant digits.

 " double can store real numbers from ±5.0 × 10–324 to
±1.7 × 10308 with up to 16 significant digits. It’s a really
common type when you’re working with XAML properties.

Why do you think C# has more than one type for
storing numbers that have a decimal point?

Brain
Power

192 Chapter 4

know your types

C# has several types for storing integers
C# has several different types for integers, as well as int. This may seem a little odd (pun
intended). Why have so many types for numbers without decimals? For most of the programs
in this book, it won’t matter if you use an int or a long. If you’re writing a program that has
to keep track of millions and millions of integer values, then choosing a smaller integer type
like byte instead of a bigger type like long can save you a lot of memory.

 " byte can store any integer between 0 and 255.

 " sbyte can store any integer from –128 to 127.

 " short can store any integer from –32,768 to 32,767.

 " long can store any integer from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

Did you notice that byte only stores positive numbers,
while sbyte stores negative numbers? They both have 256
possible values. The difference is that, like short and long,
sbyte can have a negative sign—which is why those are
called signed types, (the “s” in sbyte stands for signed).
Just like byte is the unsigned version of sbyte, there are
unsigned versions of short, int, and long that start with “u”:

 " ushort can store any whole number
from 0 to 65,535.

 " uint can store any whole number from
0 to 4,294,967,295.

 " ulong can store any whole number
from 0 to 18,446,744,073,709,551,615.

byte only stores
small whole numbers
from 0 to 255.

If you need to store a larger number, you can use a short, which stores integers from -32,768 to 32,767.

Long also stores integers,
but it can store huge values.

Notice how we’re saying “integer” and
not “whole number”? We’re trying to
be really careful—our high school math
teachers always told us that integers
are any numbers that can be written
without a fraction, while whole numbers
are integers starting at 0, and do not
include negative numbers.

you are here 4 193

managing your app’s data

The float and double types are called “floating-point” because the decimal point can move (as opposed to a “fixed-
point” number, which always has the same number of decimal places). That—and, in fact, a lot of stuff that has to
do with floating-point numbers, especially precision—may seem a little weird, so let’s dig into the explanation.

“Significant digits” represents the precision of the number: 1,048,415, 104.8415, and
.0000001048415 all have seven significant digits. So when we say a float can store
real numbers as big as 3.4 × 1038 or as small as –1.5 × 10–45, that means it can store
numbers as big as eight digits followed by 30 zeros, or as small as 37 zeros followed
by eight digits.
The float and double types can also have special values, including both positive and
negative zero, positive and negative infinity, and a special value called NaN (not-a-
number) that represents, well, a value that isn’t a number at all. They also have static
methods that let you test for those special values. Try running this loop:
for (float f = 10; !float.IsInfinity(f); f *= f)
{
 Console.WriteLine(f);
}

Now try that same loop with double:

for (double d = 10; !double.IsInfinity(d); d *= d)
{
 Console.WriteLine(d);
}

Floating-Point Numbers Up Close

Types for storing really HUGE and really tiny numbers
Sometimes float just isn’t precise enough. Believe it or not, sometimes 1038 isn’t big enough and
10–45 isn’t small enough. A lot of programs written for finance or scientific research run into these
problems all the time, so C# gives us different floating-point types to handle huge and tiny values:

 " float can store any number from ±1.5 × 10–45 to ±3.4 × 1038 with 6–9 significant digits.

 " double can store any number from ±5.0 × 10–324 to ±1.7 × 10308 with 15–17 significant
digits.

 " decimal can store any number from ±1.0 × 10–28 to ±7.9 × 1028 with 28–29 significant
digits. When your program needs to deal with money or currency, you always want to
use a decimal to store the number.

If it's been a while
since you've used
exponents, 3.4x1038
means 34 followed
by 37 zeros,
and -1.5x10-45 is
-.00...(40 more
zeros)...0015.

The decimal type has a lot more precision (way more significant digits), which is why it’s appropriate for financial calculations.

194 Chapter 4

big numbers small numbers no numbers at all

Sometimes you declare a variable and set its value in a single statement like this: int i = 37;—but you already
know that you don’t have to set a value. What happens if you use the variable without assigning a value? Let’s find
out! Use the C# Interactive window (or the csi if you’re using VSCode) to declare a variable and check its value.

 int i;

 long l;

 float f;

 double d;

 decimal m;

 byte b;

 char c;

 string s;

 bool t;

Sharpen your pencil

0 Start the C# Interactive window
(from the View >> Other Windows
menu) or run csi from the
command line. Declare each
variable, then enter the variable
name to see its default value. Write
the default value for each type in
the space provided.

We wrote in the first answer for you.

Let’s talk about strings
You’ve written code that works with strings. So what, exactly, is a string?

In any .NET app, a string is an object. Its full class name is System.String—in other words, the class name
is String and it’s in the System namespace (just like the Random class you used earlier). When you use the
C# string keyword, you’re working with System.String objects. In fact, you can replace string with
System.String in any of the code you’ve written so far and it will still work! (The string keyword is
called an alias—as far as your C# code is concerned, string and System.String mean the same thing.)

There are also two special values for strings: an empty string, "" (or a string with no characters), and a null
string, or a string that isn’t set to anything at all. We’ll talk more about null later in the chapter.

Strings are made up of characters—specifically, Unicode characters (which you’ll learn a lot more about later
in the book). Sometimes you need to store a single character like Q or j or $, and when you do you’ll use
the char type. Literal values for char are always inside single quotes ('x', '3'). You can include escape
sequences in the quotes too ('\n' is a line break, '\t' is a tab). You can write an escape sequence in your
C# code using two characters, but your program stores each escape sequence as a single character in memory.

And finally, there’s one more important type: object. If a variable has object as its type, you can assign
any value to it. The object keyword is also an alias—it’s the same as System.Object.

you are here 4 195

managing your app’s data

A literal is a value written directly into your code
A literal is a number, string, or other fixed value that you include in your code. You’ve already
used plenty of literals—here are some examples of numbers, strings, and other literals that
you’ve used:

 int number = 15;
 string result = "the answer";
 public bool GameOver = false;
 Console.Write("Enter the number of cards to pick: ");
 if (value == 1) return "Ace";

So when you type int i = 5;, the 5 is a literal.

Use suffixes to give your literals types
Go back to the first loop you wrote in the “Up Close” section and change 10 to 10D:

 for (float f = 10D; float.IsFinite(f); f *= f)

Now your code will have a syntax error and won’t build. The C# compiler error
mentions a “literal of type double.” That’s because literals have types. Every literal
is automatically assigned a type, and C# has rules about how you can combine different
types. You can see for yourself how that works. Add this line to any C# program:

 int wholeNumber = 14.7;

When you try to build your program, the IDE will show you this error in the Error List:

The IDE is telling you is that the literal 14.7 has a type—it’s a double. You can use a
suffix to change its type—try changing it to a float by sticking an F on the end (14.7F) or
a decimal by adding M (14.7M—the M actually stands for “money”). The error message
now says it can’t convert float or decimal.

Can you spot all of the
literals in these statements
from code you've written in
previous chapters? The last
statement has two literals.

C# assumes
that an
integer literal
without a
suffix (like
371) is an int,
and one with
a decimal
point (like
27.4) is a
double.

 int i;
 long l;
 float f;
 double d;

 decimal m;
 byte b;
 char c;
 string s;
 bool t;

Solution
Sharpen your pencil

0
0
'\0'
null
false

0
0
0
0

If you used the C# command
line on Mac or Linux, you
might see '\x0' instead of
'\0' as the default value for
char. We’ll take a deep dive
into exactly what this means
later in the book when we
talk about Unicode.

196 Chapter 4

it’s literally a value

C# has dozens of reserved words called keywords. They’re words reserved by the C# compiler that you can’t use for
variable names. You’ve already learned many of them—here’s a little review to help seal them into your brain. Write
down what you think each of these keywords does in C#.

Sharpen your pencil

If you really want to use a reserved keyword as a variable name, put @ in front of it, but that’s as close as the
compiler will let you get to the reserved word. You can also do that with nonreserved names, if you want to.

namespace

for

class

new

using

if

while

else

you are here 4 197

managing your app’s data

C# has dozens of reserved words called keywords. They’re words reserved by the C# compiler that you can’t use
for variable names. You’ve already learned many of them—here’s a little review to help seal them into your brain.
Write down what you think each of these keywords does in C#.

Solution
Sharpen your pencil

All of the classes and methods in a program are inside a namespace.
Namespaces help make sure that the names you are using in your program
don’t clash with the ones in the .NET Framework or other classes.

This lets you do a loop that executes three statements. First it declares the
variable it’s going to use, then there’s the statement that evaluates the variable
against a condition. The third statement does something to the value.

Classes contain methods and fields, and you use them to instantiate objects.
Fields are what objects know and methods are what they do.

A block of code that starts with else must immediately follow an if block,
and will get executed if the if statement preceding it fails.

You use this to create a new instance of an object.

This is a way of listing off all of the namespaces you are using in your
program. A using statement lets you use classes from various parts of the
.NET Framework.

This is one way of setting up a conditional statement in a program. It says
if one thing is true, do one thing; if not, do something else.

while loops are loops that keep on going as long as the condition at the
beginning of the loop is true.

namespace

for

class

new

using

if

while

else

198 Chapter 4

make mine a double

A variable is like a data to-go cup
All of your data takes up space in memory. (Remember the heap from the previous
chapter?) So part of your job is to think about how much space you’re going to need
whenever you use a string or a number in your program. That’s one of the reasons
you use variables. They let you set aside enough space in memory to store your data.

Think of a variable like a cup that you keep your data in. C# uses a bunch of different
kinds of cups to hold different kinds of data. Just like the different sizes of cups at a
coffee shop, there are different sizes of variables too.

long int short byte
64 bits 32 bits 16 bits 8 bits

This is how many bits of memory are set aside for the variable when you declare it.

A byte can hold whole
numbers up to 255, while a
long can store numbers in the
billions of billions of billions.

Not all data ends up
on the heap. Value
types usually keep
their data in another part of memory
called the stack.
You’ll learn all about
that later in the book.

A short will hold integers up to 32,767.

int is the commonly used type
for integers. It holds numbers
up to 2,147,483,647.

You’ll use long
for integers
that are going
to be really big.

Use the Convert class to explore bits and bytes
You’ve always heard that programming is about 1s and 0s. .NET has a static Convert class that converts
between different numeric data types. Let’s use it to see an example of how bits and bytes work. Type these
Convert method calls into the Visual Studio C# Interactive window or CSI.

A bit is a single 1 or 0. A byte is 8 bits, so a byte variable holds an 8-bit number, which means it’s a number
that can be represented with up to 8 bits. What does that look like? Let’s use the Convert class to convert some
binary numbers to bytes:

 Convert.ToByte("10111", 2) // returns 23
 Convert.ToByte("11111111", 2) // returns 255

Bytes can hold numbers between 0 and 255 because they use 8 bits of memory—an 8-bit number is a binary
number between 0 and 11111111 binary (or 0 and 255 decimal).

A short is a 16-bit value. Let’s use Convert.ToInt16 to convert the binary value 111111111111111 (15 1s)
to a short. An int is a 32-bit value, so we’ll use Convert.ToInt32 to convert the 31 1s to an int:

 Convert.ToInt16("111111111111111", 2) // returns 32767
 Convert.ToInt32("1111111111111111111111111111111", 2) // returns 2147483647

Convert
this!

The first argument to Convert.ToByte is
the number to convert, and the second is
its base. Binary numbers are base 2.

you are here 4 199

managing your app’s data

Other types come in different sizes too
Numbers that have decimal places are stored differently than integers, and the different
floating-point types take up different amounts of memory. You can handle most of your
numbers that have decimal places using float, the smallest data type that stores decimals. If
you need to be more precise, use a double. If you’re writing a financial application where
you’ll be storing currency values, you’ll always want to use the decimal type.

Oh, and one more thing: don’t use double for money or currency, only use decimal.

 float double decimal
 32 bits 64 bits 128 bits

These types are for
fractions. They can also
be used to store very large
numbers. Larger variables
store more decimal places.

We’ve talked about strings, so you know that the C# compiler also can handle characters
and non-numeric types. The char type holds one character, and string is used for lots of
characters “strung” together. There’s no set size for a string object—it expands to hold as
much data as you need to store in it. The bool data type is used to store true or false values,
like the ones you’ve used for your if statements.

Strings can be big...REALLY big! C# uses
a 32-bit integer to keep track of the
string length, so the maximum string length
is 2,147,483,647 characters.

 bool char string
 8 16 depends on

the size
of the string

C# also has types for storing data that is not numeric. The different
floating-point
types take
up different
amounts of
memory: float
is smallest,
and decimal
is largest.

200 Chapter 4

bigger types take more memory

10 pounds of data in a 5-pound bag
When you declare your variable as one type, the C# compiler
allocates (or reserves) all of the memory it would need to store the
maximum value of that type. Even if the value is nowhere near the
upper boundary of the type you’ve declared, the compiler will see the
cup it’s in, not the number inside. So this won’t work:

 int leaguesUnderTheSea = 20000;
 short smallerLeagues = leaguesUnderTheSea;

20,000 would fit into a short, no problem. But because
leaguesUnderTheSea is declared as an int, C# sees it as int-sized
and considers it too big to put in a short container. The compiler
won’t make those translations for you on the fly. You need to make
sure that you’re using the right type for the data you’re working with.

20,000

int

shortshort

All C# sees is an int going
into a short (which doesn’t
work). It doesn’t care about
the value in the int cup.

This makes sense. What if you later put a larger value in the int cup, one that wouldn’t fit into the short cup? So C# is trying to help you.

Three of these statements won’t build, either because they’re trying to cram too much data into a small variable or
because they’re putting the wrong type of data in. Circle them and write a brief explanation of what’s wrong.

Sharpen your pencil

int hours = 24;

short y = 78000;

bool isDone = yes;

short RPM = 33;

int balance = 345667 - 567;

string taunt = "your mother";

byte days = 365;

int radius = 3;

char initial = 'S';

string months = "12";

you are here 4 201

managing your app’s data

Three of these statements won’t build, either because they’re trying to cram too much data into a small variable or
because they’re putting the wrong type of data in. Circle them and write a brief explanation of what’s wrong.

Solution
Sharpen your pencil

short y = 78000;

bool isDone = yes;

byte days = 365;

A byte can only hold a value
between 0 and 255. You’ll
need a short for this.

The short type holds numbers
from -32,767 to 32,768.
This number’s too big!

You can only assign a value of
“true” or “false” to a bool.

Casting lets you copy values that C# can’t
automatically convert to another type
Let’s see what happens when you try to assign
a decimal value to an int variable.

Create a new Console App project and add this code to your Program.cs:

 float myFloatValue = 10;
 int myIntValue = myFloatValue;
 Console.WriteLine("myIntValue is " + myIntValue);

1

Try building your program. You should get the same CS0266 error you saw earlier:

Look closely at the last few words of the error message: “are you missing a cast?”
That’s the C# compiler giving you a really useful hint about how to fix the problem.

2

Make the error go away by casting the decimal to an int. You do this by adding
the type that you want to convert to in parentheses: (int). Once you change the
second line so it looks like this, your program will compile and run:

 int myIntValue = (int) myFloatValue;

3

Do this!

So what happened?
The C# compiler won’t let you assign a value to a variable if it’s the wrong type—even if
that variable can hold the value just fine! It turns out that a LOT of bugs are caused by type
problems, and the compiler is helping by nudging you in the right direction. When you
use casting, you’re essentially saying to the compiler that you know the types are different, and
promising that in this particular instance it’s OK for C# to cram the data into the new variable.

Here’s where you cast the
decimal value to an int.

When you cast a floating-
point value to an int, it
rounds the value down
to the nearest integer.

Implicit conversion
means C# has a way to
automatically convert

a value to another type
without losing information.

202 Chapter 4

casting and converting

You can read a lot more about the different C# value types here—it’s worth taking a look:
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/value-types

When you cast a value that’s too big ,
C# adjusts it to f it its new container
You’ve already seen that a float can be cast to an int. It turns out that any number can be cast
to any other number. That doesn’t mean the value stays intact through the casting, though. Say
you have an int variable set to 365. If you cast it to a byte variable (max value 255), instead of
giving you an error, the value will just wrap around. 256 cast to a byte will have a value of 0,
257 will be converted to 1, 258 to 2, etc., up to 365, which will end up being 109. Once you get
back to 255 again, the conversion value “wraps” back to zero.

If you use + (or *, /, or -) with two different numeric types, the operator automatically
converts the smaller type to the bigger one. Here’s an example:

 int myInt = 36;

 float myFloat = 16.4F;

 myFloat = myInt + myFloat;

Since an int can fit into a float but a float can’t fit into an int, the + operator converts myInt to
a float before adding it to myFloat.

You can’t always cast any type to any other type.

Create a new Console App project and type these
statements into its top-level statements. Then build your
program—it will give lots of errors. Cross out the ones
that give errors. This is a great way to help you figure
out which types can be cast, and which can’t.

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = "false";

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = 'x';

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte +
myDouble + myChar;

Sharpen your pencil

you are here 4 203

managing your app’s data

Wrap it yourself!There’s no mystery to how casting “wraps” the numbers—you can do it yourself. Just open up any calculator app that has a Mod button (which does a modulus calculation—sometimes in a Scientific mode), and calculate 365 Mod 256.

Yes! When you concatenate
strings, C# converts values.
When you use the + operator to
combine a string with another value,
it’s called concatenation. When
you concatenate a string with an int,
bool, float, or another value type, it
automatically converts the value. This
kind of conversion is different from
casting, because under the hood it’s
really calling the ToString method for
the value…and one thing that .NET
guarantees is that every object has a
ToString method that converts it to a
string (but it’s up to the individual class
to determine if that string makes sense).

I’ve been combining numbers and strings in my
message boxes since I worked with loops in Chapter 2!

Have I been converting typesconverting types all along?

You can’t always cast any type to any other
type. Create a new Console App project
and type these statements into its top-level
statements. Then build your program—it will
give lots of errors. Cross out the ones that
give errors. This is a great way to help you
figure out which types can be cast, and which
can’t.

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = “false”;

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = ‘x’;

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)
myLong;

myString = myString + myInt +
myByte + myDouble + myChar;

Solution
Sharpen your pencil

204 Chapter 4

concatenation and conversion

There are two important conversions that don’t require you to do casting. The first is the
automatic conversion that happens any time you use arithmetic operators, like in this example:

 long l = 139401930;
 short s = 516;
 double d = l - s;
 d = d / 123.456;
 Console.WriteLine("The answer is " + d);

The other way C# converts types for you automatically is when you use the + operator to
concatenate strings (which just means sticking one string on the end of another, like you’ve been
doing with message boxes). When you use + to concatenate a string with something that’s another
type, it automatically converts the numbers to strings for you. Here’s an example—try adding
these lines to any C# program. The first two lines are fine, but the third one won’t compile:

 long number = 139401930;
 string text = "Player score: " + number;
 text = number;

The C# compiler gives you this error on the third line:

text is a string variable, so when you used the + operator to concatenate a string it converted the
value to a string and the assignment worked. But when you try to assign the number value to it
directly, it doesn’t have a way to automatically convert the long value to a string. You can convert
a numeric value (or any other value!) to a string by calling its ToString method.

The - operator subtracted the short
from the long, and the = operator
converted the result to a double.

C# does some conversions automatically

Q: You used the Convert.ToByte, Convert.ToInt32, and Convert.ToInt64 methods to convert strings with
binary numbers into integer values. Can you convert integer values back to binary?

A: Yes. The Convert class has a Convert.ToString method that converts many different types of values to strings.
The IntelliSense pop-up shows you how it works:

So Convert.ToString(255, 2) returns the string "11111111," and Convert.ToString(8675309,
2) returns the string "100001000101111111101101"—try experimenting with it to get a feel for how binary numbers work.

there are no Dumb Questions

you are here 4 205

managing your app’s data

When you call a method, the arguments need
to be compatible with the types of the parameters
In Chapter 3, you used the Random class to choose a random number from 1 up to (but not including) 5,
which you used to pick a suit for a playing card:

 int value = Random.Shared.Next(1, 5);

Try changing the first argument from 1 to 1.0:

 int value = Random.Shared.Next(1.0, 5);

You’re passing a double literal to a method that’s expecting an int value. So it shouldn’t
surprise you that the compiler won’t build your program—instead, it shows an error:

Sometimes C# can do the conversion automatically. It doesn’t know how to convert a double
to an int (like converting 1.0 to 1), but it does know how to convert an int to a double (like
converting 1 to 1.0). More specifically:

 " The C# compiler knows how convert an integer to a floating-point type.

 " And it knows how to convert an integer type to another integer type, or a floating-
point type to another floating-point type.

 " But it can only do those conversions if the type it’s converting from is the same size as
or smaller than the type it’s converting to. So, it can convert an int to a long or a float
to a double, but it can’t convert a long to an int or a double to a float.

But Random.Shared.Next isn’t the only method that will give you compiler errors if you try
to pass it a variable whose type doesn’t match the parameter. All methods will do that, even
the ones you write yourself. Add this method to a console app’s top-level statements:

int MyMethod(bool add3) {
 int value = 12;

 if (add3)
 value += 3;
 else
 value -= 2;

 return value;
}

Try passing it a string or long—you’ll get one of those CS1503 errors telling you it can’t convert the argument to a bool.

Some folks have trouble remembering the difference between a parameter and an argument. So just to be clear:

A parameter is what you define in your method. An argument is what you pass to it. You
can pass a byte argument to a method with an int parameter.

When the
compiler gives
you an “invalid
argument”
error, it
means that
you tried to
call a method
with variables
whose types
didn’t match
the method’s
parameters.

206 Chapter 4

some conversions are automatic

Q: That last if statement only said if (add3). Is that
the same thing as if (add3 == true)?

A: Yes. Let’s take another look at that if/else statement:

 if (add3)
 value += 3;
 else
 value -= 2;

An if statement always checks if something’s true. So because
the type of the add3 variable is bool, it evaluates to either true or
false, which means we didn’t have to explicitly include == true.

You can also check if something’s false using ! (an exclamation
point, or the NOT operator). Writing if (!add3) is the same
thing as writing if (add3 == false).

In our code examples from now on, if we’re using the conditional
test to check a Boolean variable, you’ll usually just see us write if
(add3) or if (!add3), and not use == to explicitly check to
see if the Boolean is true or false.

Q: You didn’t include curly braces in the if or else
blocks either. Does that mean they’re optional?

A: Yes—but only if there’s a single statement in the if or else
block. We could leave out the { curly braces } because there
was just one statement in the if block (return 45;) and one
statement in the else block (return 61;). If we wanted to
add another statement to one of those blocks, we’d have to use
curly braces for it:

 if (add3)
 value += 3;
 else {
 Console.WriteLine("Subtracting 2");
 value -= 2;
 }

Be careful when you leave out curly braces because it’s easy to
accidentally write code that doesn’t do what you want it to do. It
never hurts to add curly braces, but it’s also good to get used to
seeing if statements both with and without them.

 ◾ There are value types for variables that hold different
sizes of numbers. The biggest numbers should be of
type long and the smallest ones (up to 255) can be
declared as bytes.

 ◾ Every value type has a size, and you can’t put a value
of a bigger type into a smaller variable, no matter
what the actual size of the data is.

 ◾ When you’re using literal values, use the F suffix to
indicate a float (15.6F) and M for a decimal (36.12M).

 ◾ Use the decimal type for money and currency.
Floating-point precision is…well, it’s a little weird.

 ◾ There are a few types that C# knows how to convert
automatically (an implicit conversion), like short to int,
int to double, or float to double.

 ◾ When the compiler won’t let you set a variable equal
to a value of a different type, that’s when you need
to cast it. To cast a value (an explicit conversion) to
another type, put the target type in parentheses in
front of the value.

 ◾ Some keywords are reserved by the language and
you can’t name your variables with them. They’re
words (like for, while, using, new, and others) that
do specific things in the language.

 ◾ A parameter is what you define in your method. An
argument is what you pass to it.

 ◾ When you build your code in the IDE, it uses the C#
compiler to turn it into an executable program.

 ◾ You can use methods on the static Convert class to
convert values between different types.

Bullet Points

there are no Dumb Questions

you are here 4 207

managing your app’s data

Owen is constantly improving his game…
Good game masters are dedicated to creating the best experience they can for
their players. Owen’s players are about to embark on a new campaign with a
brand-new set of characters, and he thinks a few tweaks to the formula that
they use for their ability scores could make things more interesting.

ABILITYABILITY SCORE FORMULA SCORE FORMULA

* START WITH A 4d6 ROLL
TO GET A NUMBER BETWEEN
4 AND 24

* DIVIDE THE ROLL RESULT
BY 1.75

* ADD 2 TO THE RESULT OF
THAT DIVISION

* ROUND DOWN TO THE
NEAREST WHOLE NUMBER

* IF THE RESULT IS TOO
SMALL, USE THE MINIMUM
VALUE OF 3

A “4d6 ROLL” means rolling four normal six-sided dice and adding up the results.

When players fill out their character sheets at the sta
rt

of the game, they follow these steps to calculate each of
the ability scores for their character.

The standard rules for this game are a
good starting point, but I know we can do

better.

208 Chapter 4

owen wants to improve his game

…but the trial and error can be time-consuming
Owen’s been experimenting with ways to tweak the ability score calculation. He’s pretty
sure that he has the formula mostly right—but he’d really like to tweak the numbers.

Owen likes the overall formula: 4d6 roll, divide, subtract, round down, use a minimum
value…but he’s not sure that the actual numbers are right.

I think 1.75 may be a little low to divide the roll
result by, and maybe we want to add 3 to the result

instead of 4. I bet there’s an easier wayI bet there’s an easier way to test out
these ideas!

What can we do to help Owen find the best combination
of values for an updated ability score formula?

Brain
Power

DIVIDE BY 1.75?DIVIDE BY 1.75?
OR MAYBE 3.1?OR MAYBE 3.1?
SHOULD THE SHOULD THE
MINIMUM BE 1?MINIMUM BE 1?
OR MAYBE 2?OR MAYBE 2?

SUBTRACT BY 5?SUBTRACT BY 5?
ROLL 7ROLL 7

7 ÷ 1.75 = 47 ÷ 1.75 = 4
4 + 2 = 64 + 2 = 6

OVER MINIMUMOVER MINIMUM
SO KEEP ITSO KEEP IT

TRYING IT OUTTRYING IT OUT

you are here 4 209

managing your app’s data

Let’s help Owen experiment with ability scores
In this next project, you’ll build a console app that Owen can use to test his ability score
formula with different values to see how they affect the resulting score. The formula has
four inputs: the starting 4d6 roll, the divide by value that the roll result is divided by, the
add amount value to add to the result of that division, and the minimum to use if the result is
too small.

Owen will enter each of the four inputs into the app, and it will calculate the ability score
using those inputs. He’ll probably want to test a bunch of different values, so we’ll make
the app easier to use by asking for new values over and over again until he quits the app,
keeping track of the values he used in each iteration and using those previous inputs as
default values for the next iteration.

This is what it looks like when Owen runs the app:

The app prompts for the various values used
to calculate the ability score. It puts a
default value like [14] or [1.75] in square
brackets. Owen can enter a value, or just
hit Enter to accept a default value.

Here Owen is trying out new values: divide the roll
result by 2.15 (instead of 1.75), add 5 (instead of
2) to the result of that division, and a minimum
value of 2 (instead of 3). With an initial roll of
14, that gives an ability score of 11.

Now Owen wants to check those same values with
a different starting 4d6 roll, so he enters 21
as the starting roll, presses Enter to accept the
default values that the app remembered from the
previous iteration, and gets an ability score of 14.

Here’s the page from
Owen’s game master
notebook with the
ability score formula.

This project is a little larger than the previous console apps that you’ve built, so
we’ll tackle it in a few steps. First you’ll Sharpen your Pencil to understand the code
to calculate the ability score. Then you’ll do an Exercise to write the rest of the
code for the app. And finally, you’ll Sleuth out a bug in the code. Let’s get started!

ABILITYABILITY SCORE FORMULA SCORE FORMULA

* START WITH A 4d6 ROLL
TO GET A NUMBER BETWEEN
4 AND 24

* DIVIDE THE ROLL RESULT
BY 1.75

* ADD 2 TO THE RESULT OF
THAT DIVISION

* ROUND DOWN TO THE
NEAREST WHOLE NUMBER

* IF THE RESULT IS TOO
SMALL, USE THE MINIMUM
VALUE OF 3

210 Chapter 4

build a project to calculate scores

We’ve built a class to help Owen calculate ability scores. To use it, you'll set its RollResult, DivideBy, AddAmount, and
Minimum fields—or just leave the values set in their declarations—and call its CalculateAbilityScore method.

Create a new Console App project called AbilityScore and add a class called AbilityScoreCalculator. Enter all of
the code into the class file. Uh-oh! There’s one line of code that has a problem. Circle the line of code that causes a
compiler error. Then write down what you think you’ll need to do to fix it.

namespace AbilityScore;
internal class AbilityScoreCalculator
{
 public int RollResult = 14;
 public double DivideBy = 1.75;
 public int AddAmount = 2;
 public int Minimum = 3;
 public int Score;

 public void CalculateAbilityScore()
 {
 // Divide the roll result by the DivideBy field
 double divided = RollResult / DivideBy;

 // Add AddAmount to the result and round down
 int added = AddAmount += divided;

 // If the result is too small, use Minimum
 if (added < Minimum)
 {
 Score = Minimum;
 } else
 {
 Score = added;
 }
 }
}

After you circle the line of code that won’t compile, write down what you need to do to fix the compiler error.

Sharpen your pencil

These fields are initialized with
the values from the ability score
formula. The app will use them to
present default values to the user.

Here’s a hint! Visual Studio will show
you which line of code won’t compile,
and underline the specific part that
has problems. Hover over that part
and look closely at the error message.

If you’re using VSCode, you can
replace the “internal” access modifier
with “public”—it won’t make a
difference in how the app works.

you are here 4 211

managing your app’s data

Fix the compiler error by adding a cast
If you entered the code correctly, you should see a C# compiler error on this line of code:

Any time the C# compiler gives you an error, read it carefully. It often has a hint that can help you
track down the problem. This error tells us exactly what went wrong: it can’t convert a double
to an int without a cast. The divided variable is declared as a double, but C# won’t allow you
to add it to an int field like AddAmount because it doesn’t know how to convert it. So here’s the
answer to the “Sharpen your pencil” question:

After you circle the line of code that has problems, look at the error and write down what you need to do to fix it.

The compiler error says it can’t convert a double to an int, and asks if our code is missing a cast.
To fix it, we need to use (int) to cast the double to an int so += will be able to add the values.

When the C# compiler asks “are you missing a cast?” it’s giving you a huge hint that you need to
cast the double variable divided before you can add it to the int field AddAmount.

Add a cast to get the AbilityScoreCalculator class to compile ...
Now that you know what the problem is, you can add a cast to fix the problematic line of code in
AbilityScoreCalculator. The line that caused the error because AddAmount += divided returns
a double value. When you try to store a double value in an int variable like added, you’ll get a

“Cannot implicitly convert type” error.

You can fix it by casting divided to an int, so adding it to AddAmount returns another int.
Modify that line of code to change divided to (int)divided:

 int added = AddAmount += (int)divided;
Adding that cast also addresses an important part of Owen’s ability score formula:

* ROUND DOWN TO THE NEAREST WHOLE NUMBER
When you cast a double to an int, C# rounds it down—so for example (int)19.7431D gives us
19. By adding that cast, you’re making sure the score is rounded down, like Owen’s formula asks for.

…but there’s still a bug!
We’re not quite done yet! You fixed the compiler error, so now the project builds. But even though the
C# compiler will accept it, there’s still a bug in the code. So let’s go ahead and fix it! In the next
exercise, you’ll use the AbilityScoreCalculator class as is, then you’ll use it to sleuth out the bug.

This C# compiler error message is giving you a
big hint—it looks like we forgot to cast a value.

Cast this!

Sharpen your pencil
Solution

Here’s the line of code
to circle in the “Sharpen
your pencil” exercise.

But this isn’t
the whole
answer! There’s
still something
wrong with that
line of code.
Can you spot it?

212 Chapter 4

cast a double to an int

Finish building the console app that uses the AbilityScoreCalculator class. In this exercise, we’ll give you the top-level
statements for the console app. Your job is to write code for two methods: a method called ReadInt that reads user
input and converts it to an int using int.TryParse, and a method called ReadDouble that does exactly the same thing
except it parses doubles instead of int values.
Step 1: In this first step, you’ll add top-level statements to your Program.cs file. Almost everything was used in
previous projects. There’s only one new thing—it calls the Console.ReadKey method:

 char keyChar = Console.ReadKey(true).KeyChar;

Console.ReadKey reads a single key from the console. When you pass the argument true, it intercepts the input so
that it doesn’t get printed to the console. Adding .KeyChar causes it to return the key pressed as a char.

Delete the “Hello, World!” line from your Program.cs file and add these top-level statements:

using AbilityScore;

AbilityScoreCalculator calculator = new AbilityScoreCalculator();
while (true)
{
 calculator.RollResult = ReadInt(calculator.RollResult, "Starting 4d6 roll");
 calculator.DivideBy = ReadDouble(calculator.DivideBy, "Divide by");
 calculator.AddAmount = ReadInt(calculator.AddAmount, "Add amount");
 calculator.Minimum = ReadInt(calculator.Minimum, "Minimum");
 calculator.CalculateAbilityScore();
 Console.WriteLine("Calculated ability score: " + calculator.Score);
 Console.WriteLine("Press Q to quit, any other key to continue");
 char keyChar = Console.ReadKey(true).KeyChar;
 if ((keyChar == 'Q') || (keyChar == 'q')) return;
}

Step 2: The code you wrote calls a method called ReadInt, so add a static ReadInt method. The ReadInt method
takes two parameters: a string called prompt to display to the user, and an int called defaultValue. It writes the
prompt to the console, followed by the default value in square brackets. Then it reads a line from the console and
attempts to parse it with int.TryParse. If that returns true, return that value; otherwise, return the default value.

Here's the declaration:

static int ReadInt(int defaultValue, string prompt)

Calling ReadInt("37", "What's the magic number?") will cause the following prompt to be printed:

What's the magic number? [37]

There’s a space at the end of that prompt. The user then types in a value and presses Enter. The method reads that
line from the console and calls int.TryParse to try to parse it. If int.TryParse returns true, the method returns the
result. If it returns false, the method returns defaultValue—in this case, 37.

Step 3: Generate and implement the ReadDouble method. ReadDouble is exactly like ReadInt, except that it uses
double.TryParse instead of int.TryParse. The double.TryParse method works exactly like int.TryParse, except its out
variable needs to be a double, not an int.

static double ReadDouble(double defaultValue, string prompt)

Exercise

you are here 4 213

managing your app’s data

Here are the ReadInt and ReadDouble methods that display a prompt that includes the default value, read a line
from the console, try to convert it to an int or a double, and either use the converted value or the default value,
writing a message to the console with the value returned.
static int ReadInt(int defaultValue, string prompt)
{
 Console.Write(prompt + " [" + defaultValue + "]: ");
 string? line = Console.ReadLine();
 if (int.TryParse(line, out int value))
 {
 Console.WriteLine(" using value " + value);
 return value;
 } else
 {
 Console.WriteLine(" using default value " + defaultValue);
 return defaultValue;
 }
}

static double ReadDouble(double defaultValue, string prompt)
{
 Console.Write(prompt + " [" + defaultValue + "]: ");
 string? line = Console.ReadLine();
 if (double.TryParse(line, out double value))
 {
 Console.WriteLine(" using value " + value);
 return value;
 }
 else
 {
 Console.WriteLine(" using default value " + defaultValue);
 return defaultValue;
 }
}

Exercise
Solution

Really take some time
to understand how each

iteration of the while loop
in the top-level statements

uses fields to save the values
that the user entered, then
uses them for the default

values in the next iteration.

Thanks for writing this
app for me! I can’t wait to

try it out.

Did you get a “cannot read keys when either application
does not have a console” error in VSCode? If you did,
go back to Chapter 1 and follow the instructions to
change the C# debug console setting so your console
app runs in the Terminal and not the Debug Console.

Try changing the csharp.debug.console setting
to the external Terminal to run your app in
an external terminal window. You might prefer
debugging your apps that way!

Try experimenting with
the global namespace

by removing “using
AbilityScore;” from the

top-level statements. What
else do you need to do to
change the code to build?

214 Chapter 4

there’s still a bug in the code

Starting 4d6 roll [14]: 18
 using value 18
Divide by [1.75]: 2.15
 using value 2.15
Add amount [2]: 5
 using value 5
Minimum [3]:
 using default value 3
Calculated ability score: 13
Press Q to quit, any other key to continue
Starting 4d6 roll [18]:
 using default value 18
Divide by [2.15]: 3.5
 using value 3.5
Add amount [13]: 5
 using value 5
Minimum [3]:
 using default value 3
Calculated ability score: 10
Press Q to quit, any other key to continue
Starting 4d6 roll [18]:
 using default value 18
Divide by [3.5]:
 using default value 3.5
Add amount [10]: 7
 using value 7
Minimum [3]:
 using default value 3
Calculated ability score: 12
Press Q to quit, any other key to continue
Starting 4d6 roll [18]:
 using default value 18
Divide by [3.5]:
 using default value 3.5
Add amount [12]: 4
 using value 4
Minimum [3]:
 using default value 3
Calculated ability score: 9
Press Q to quit, any other key to continue
Starting 4d6 roll [18]:
 using default value 18
Divide by [3.5]:
 using default value 3.5
Add amount [9]:
 using default value 9
Minimum [3]:
 using default value 3
Calculated ability score: 14
Press Q to quit, any other key to continue

Something’s wrong.Something’s wrong. It’s supposed to
remember the values I enter, but it doesn’t always

work.

Look!Look!
In the first iteration, I entered 5 for the add

amount. It remembered all the other values just fine, but it
gave me a default add amount of 10. That’s the wrong

result.

You’re right, Owen. There’s a bug in the code.
Owen wants to try out different values to use in his ability
score formula, so we used a loop to make the app ask for
those values over and over again.

To make it easier for Owen to just change one value at a
time, we included a feature in the app that remembers the
last values he entered and presents them as default options.
We implemented that feature by keeping an instance of the
AbilityScoreCalculator class in memory, and updating its
fields in each iteration of the while loop.

But something’s gone wrong with the app. It remembers most
of the values just fine, but it remembers the wrong number
for the “add amount” default value. In the first iteration
Owen entered 5, but it gave him 10 as a default option. Then
he entered 7, but it gave a default of 12. What’s going on?

Where did this
9 number come
from? Did we see
it before? Can
that give us a
hint about what’s
causing this bug?

That's strange.
Owen entered 5
for the previous
add amount, but
the program is
giving him 10 as a
default option.

Again, the last
amount Owen
entered was 7,
but it’s giving
12 as a default
option. Weird.

Here’s the output from the app.

What steps can you take to
track down the bug in the
ability score calculator app?

Brain
Power

you are here 4 215

managing your app’s data

The Case of the Operator Oddity
The debugger is like a detective’s magnifying glass. It helps you spot even the smallest clues.
Let’s do an investigation and see if we can apprehend the culprit, Sherlock Holmes style. Something is causing
the bug, so let’s use the debugger to identify suspects and retrace their steps.
The problem seems to be isolated to the “add amount” value, so let’s start by looking for any line of code that
touches the AddAmount field. Here’s the line that uses the AddAmount field—put a breakpoint on it (and don’t
forget to use F5 to start your app with debugging if the breakpoint doesn’t fire):

Here’s another one in the AbilityScoreCalculator.CalculateAbilityScore method—breakpoint that suspect too:

The trap is set. Let’s see who springs it.
Now run your program. When your code hits the breakpoint, select calculator.AddAmount and add a watch (if
you just right-click on AddAmount and choose Add Watch from the menu, it will only add a watch for AddAmount
and not calculator.AddAmount). Does anything look weird there? We’re not seeing anything unusual. It seems to
read the value and update it just fine—that’s probably not the issue. You can delete that breakpoint.
Continue running your program. When the breakpoint in AbilityScoreCalculator.CalculateAbilityScore is hit, add
a watch for AddAmount. According to Owen’s formula, this line of code is supposed to add AddAmount to the
result of dividing the roll result. Now step over the statement and...

?!

Wait, what?! AddAmount changed. But…but that’s not supposed to happen—it’s impossible! Right? As
Sherlock Holmes said, “When you have eliminated the impossible, whatever remains, however improbable, must
be the truth.”
It looks like we’ve sleuthed out the source of the problem. That statement is supposed to cast divided to
an int to round it down to an integer, then add it to AddAmount and store the result in added. It also has an
unexpected side effect: it’s updating AddAmount with the sum because the statement uses the += operator,
which returns the sum but assigns the sum to AddAmount.

Sleuth it Out

216 Chapter 4

use the debugger to track down bugs

Now we can f inally f ix Owen’s bug—and get the REAL Sharpen answer
Now that you know what’s happening, you can fix the bug—and it turns out to be a pretty small change. You
just need to change the statement to use + instead of +=:

int added = AddAmount + (int)divided;
And we can finally have the real answer to the “Sharpen your pencil” question in the first part of this project.

Change the += to a + to keep this line of code
from updating the “added” variable and fix the bug.

After you circle the line of code that has problems, look at the error and write down what you need to do to fix it.

First, it won’t compile because AddAmount += divided is a double, so a cast needs to happen to
assign it to an int. Second, it uses += and not +, which causes the line to update AddAmount.

Q: I’m still not clear on the difference between the +
operator and the += operator. How do they work, and why
would I use one and not the other?

A: There are several operators that you can combine with an
equals sign. They include += for adding, -= for subtracting, /=
for dividing, *= for multiplying, and %= for remainder. Operators
like + that combine two values are called binary operators.
Some people find this name a little confusing, but “binary”
refers to the fact that the operator combines two values—

“binary” means “involving two things”—not that it somehow
operates only on binary numbers.

With binary operators, you can do something called compound
assignment, which means instead of this:

a = a + c;

you can do this:

a += c;

and it means the same thing. The compound assignment x
op= y is equivalent to x = x op y (that’s the technical
way of explaining it). They do exactly the same thing.

Operators like += or *= that combine a
binary operator with an equals sign are
called compound assignment operators.

Q: But then how did the added variable get updated?

A: What caused confusion in the score calculator is that the
assignment operator = also returns a value. You can do this:

int q = (a = b + c)

which will calculate a = b + c as usual. The = operator
returns a value, so it will update q with the result as well. So:

int added = AddAmount += divided;

is just like doing this:

int added = (AddAmount = AddAmount +
divided);

which causes AddAmount to be increased by divided,
but stores that result in added as well.

Q: Wait, what? The equals operator returns a value?

A: Yes, = returns the value being set. So in this code:

int first;
int second = (first = 4);

both first and second will end up equal to 4. Open up a
console app and use the debugger to test this. It really works!

there are no Dumb Questions

The += operator tells C#
to add a + c and then store
the result in a.

you are here 4 217

managing your app’s data

We learned about XML Documentation Comments (or XMLDoc) in Chapter 3. We added XMLDoc
to the ReadInt method from your Ability Score Calculator app—but we left a lot of blanks for
you to fill in. Go back to the section in Chapter 3 where we talked about XMLDoc and try filling
in the missing parts of the XMLDoc.

/// < >

///

/// </ >

/// < name="defaultValue">

///

/// </ >

/// < name="prompt">

///

/// </ >

/// <returns>

///

/// </returns>

static int ReadInt(int defaultValue, string prompt)

{

We aren’t giving you a solution for this “Sharpen” pencil-and-paper exercise. Instead, use the responses that the AI
chatbots give you in the next “Sens-AI” section—compare them against your answers to see how you did.

 ◾ We asked you to fill in six blanks for three pairs of opening and closing tags. Did you get them right?

 ◾ We gave you four blanks to describe what the method does, its parameters, and return values. Compare your
responses with the ones the chatbots generated. Do you agree with their descriptions? Remember—AIs don’t
always get everything right. You wrote this code, so your descriptions might be more accurate than the AI’s.

Sharpen your pencil

In the examples we showed you in Chapter 3, the opening
<returns> tag was on the same line as the closing </returns>
tag. In this exercise, we put them on separate lines to give you
more space to describe what the method returns.

218 Chapter 4

ai chatbots can help comment your code

Ask an AI chatbot to add comments to your code
Adding comments to your code is a great habit to get into. We’ve used comments throughout the first few chapters of
this book to help you understand the code we’ve written. Comments are really valuable, for a few reasons:

• Every developer knows what it feels like to look at code they wrote a long time ago and have absolutely no idea
what it does or how it works. This happens a lot when working on a larger app (like the ones you’ll write later in
the book). Comments help us remember what we were thinking when we wrote code.

• Sometimes you’ve got a particularly complex bit of code, like the event handler method for the buttons in the
animal matching game from Chapter 1. Comments can make it easier for you to figure out what’s going on in that
code—which can be really valuable if you’re trying to sleuth out a bug.

• Developers will often leave themselves comments like this:

//TODO: Finish this piece of code

as a reminder that there’s still work left to do in one part of an app.

These are three really good reasons that developers use comments, but there are many other ways—so many that
there’s no way we could possibly include them all in this book. Here’s an opportunity to learn more on your own.
Open an AI chatbot and give it this prompt: Why do developers use comments?

Create a prompt to add comments to your code
Start a new session with an AI chatbot and give it the following prompt:

Here are the contents of Program.cs:

<paste in the contents of your Program.cs file>

Here are the contents of AbilityScoreCalculator.cs:

<paste in the contents of the file with the AbilityScoreCalculator class>

Use AI chatbots to learn more about XML Documentation
In Chapter 3 we learned about XML Documentation (or XMLDoc), special comments with three slashes that you can
use to document your methods, fields, and other class members. AI chatbots are really good at generating XMLDoc.
Start a new AI chatbot session, and give it exactly the same prompt you just gave it for the comments, except replace
the first sentence of the prompt with this one, which asks it to generate XMLDoc where it's needed.

Add comments to the code for this C# console application, using XMLDoc
for the classes, methods, and fields.

Compare the response from the AI against your answers to the “Sharpen” exercise. Which descriptions are better?

Sens-AI

This is a great use of an AI chatbot as
a learning tool. We’ve given you a lot of
information about comments. Now you
can use AI to learn more on your own.

There are many answers
to this question, because
there are lots of reasons
that developers use
comments. Try giving
this prompt to more
than one AI chatbot, or
asking it multiple times.

you are here 4 219

managing your app’s data

Exactly. Decimal has a lot more precision than double
or float, so it avoids the 0.30000000000000004 problem.
Some floating-point types—not just in C#, but in most programming
languages!—can give you rare weird errors. This is so strange! How can 0.1
+ 0.2 be 0.30000000000000004?

It turns out that some numbers can’t be exactly represented as a double—it
has to do with how they’re stored as binary data (0s and 1s in memory).
For example, .1D is not exactly .1. Try multiplying .1D * .1D—you get
0.010000000000000002, not 0.01. But .1M * .1M gives you the right
answer. That’s why floats and doubles are really useful for a lot of things
(like positioning a GameObject in Unity). If you need more rigid precision—
like for a financial app that deals with money—decimal is the way to go.

Hey, kid! Wanna see
something WEIRD?WEIRD?

Try adding this if/else statement to a console app and build the solution:

 if (0.1M + 0.2M == 0.3M) Console.WriteLine("They're equal");
 else Console.WriteLine("They aren't equal");

You’ll see a green squiggle under the second Console—it’s an Unreachable code
detected warning. The C# compiler knows that 0.1 + 0.2 is always equal to 0.3, so the
code will never reach the else part of the statement. Run the code—it prints They're
equal to the console.

Next, change the float literals to doubles (remember, literals like 0.1 default to double):

 if (0.1 + 0.2 == 0.3) Console.WriteLine("They're equal");
 else Console.WriteLine("They aren't equal");

That’s really strange. The warning moved to the first line of the if statement. Try running
the program. Hold on, that can’t be right! It printed They aren't equal to the console.
How is 0.1 + 0.2 not equal to 0.3?

Now do one more thing. Change 0.3 to 0.30000000000000004 (with 15 zeros between
the 3 and 4). Now it prints They're equal again. So apparently 0.1D plus 0.2D equals
0.30000000000000004D.

Try this!

So is that why I should only use the decimal type for moneydecimal type for money, and
never use double for currency values?

Wait, what?!

220 Chapter 4

floating-point weirdness

The 0.1D + 0.2D != 0.3D example is an edge case, or a problem or situation that only happens under
certain rare conditions, usually when a parameter is at one of its extremes (like a very big or very
small number). If you want to learn more about it, there’s a great article by Jon Skeet about how

floating-point numbers are stored in memory in .NET: https://csharpindepth.com/Articles/FloatingPoint

Jon gave us some amazing technical review feedback for the very first edition
of this book, and that made a huge difference for us. Thanks so much, Jon!

Q: I’m still not clear on the difference between
conversion and casting. Can you explain it a little more
clearly?

A: “Conversion” is a general, all-purpose term for
converting data from one type to another. Casting is a much
more specific operation, with explicit rules about which
types can be cast to other types, and what to do when the
data for the value from one doesn’t quite match the type
it’s being cast to. You just saw an example of one of those
rules—when a floating-point number is cast to an int, it’s
rounded down by dropping any decimal value. You saw
another rule earlier about wrapping for integer types, where
a number that’s too big to fit into the type it’s being cast to is
wrapped using the remainder operator.

Q: Hold on a minute. Earlier you had me “wrap”
numbers myself using the mod function on my
calculator app. Now you’re talking about remainders.
What’s the difference?

A: Mod and remainder are very similar operations.
For positive numbers they’re exactly the same: A % B is
the remainder when you divide B into A, so: 5 % 2 is the
remainder of 5 ÷ 2, or 1. (If you’re trying to remember how
long division works, that just means that 5 ÷ 2 is equal to
2 × 2 + 1, so the rounded quotient is 2 and the remainder
is 1.) But when you start dealing with negative numbers,
there’s a difference between mod (or modulus) and
remainder. You can see for yourself: your calculator will tell
you that –397 mod 17 = 11, but if you use the C# remainder
operator you’ll get –397 % 17 = –6.

If you’re math oriented and want to challenge yourself,
here’s a good research topic: see if you can find an
explanation for why mod acts differently on a calculator
versus in C#. Try asking your favorite AI to help explain it.

Q: Owen’s formula had me dividing two values and
then rounding the result down to the nearest integer.
How does that fit in with casting?

A: Let’s say you have some floating-point values:

float f1 = 185.26F;
double d2 = .0000316D;
decimal m3 = 37.26M;

and you want to cast them to int values so you can assign
them to int variables i1, i2, and i3. We know that those
int variables can only hold integers, so your program needs
to do something to the decimal part of the number.

So C# has a consistent rule: it drops the decimal and
rounds down: f1 becomes 185, d2 becomes 0, and m3
becomes 37. But don’t take our word for it—write your own
C# code that casts those three floating-point values to int to
see what happens.

Q: Is there a way to make literals easier to read, like
how we put commas in really long numbers?

A: Yes. You can use underscores to make literals in
your code easier to read. If you want to store 8,675,309 in
an int, you can add a _ for each comma:

int i = 8_675_309;

That works for other literal types, too, including byte, float,
double, and decimal.

there are no Dumb Questions

There’s a whole web page dedicated to the
0.30000000000000004 problem! Check
out https://0.30000000000000004.com
to see examples in a lot of different languages.

you are here 4 221

managing your app’s data

Guy object #
2

Use reference variables to access your objects
When you create a new object, you use a new statement to instantiate it, like new Guy() in
your program at the end of Chapter 3—the new statement created a new Guy object on the
heap. You still needed a way to access that object, and that’s where a variable like joe came in:
Guy joe = new Guy(). Let’s dig a little deeper into exactly what’s going on there.

The new statement creates the instance, but just creating that instance isn’t enough. You need a
reference to the object. So you created a reference variable: a variable of type Guy with a
name, like joe. So joe is a reference to the new Guy object you created. Any time you want to
use that particular Guy, you can reference it with the reference variable called joe.

When you have a variable that’s an object type, it’s a reference variable: a reference to a
particular object. Let’s just make sure we get the terminology right since we’ll be using it a lot.
We’ll use the first two lines of the “Joe and Bob” program from the previous chapter:

Guy joe = new Guy() { Cash = 50, Name = "Joe" };
Guy bob = new Guy() { Cash = 100, Name = "Bob" };

Here’s the heap
before your code
runs. Nothing there.

And here’s the heap after
this code runs. It has two
objects, with the variable
“joe” referring to one
object and the variable
“bob” referring to the
other one.

The ONLY way to reference this Guy object is through the reference variable called “bob.”

Creating a reference
is like writing a name
on a sticky note and

sticking it to the object.
You’re using it to label
an object so you can

refer to it later.

This is the
reference
variable.

Guy object #
1

joe bob

This creates
the object that
it will refer to.

222 Chapter 4

references are like sticky notes

In your kitchen, you probably have containers of salt and sugar. If
you switched their labels, it would make for a pretty disgusting meal—
even though you changed the labels, the contents of the containers
stayed the same. References are like labels. You can move labels
around and point them at different things, but it’s the object that
dictates what methods and data are available, not the reference
itself—and you can copy references just like you copy values.

References are like sticky notes for your objects

We created this Guy
object with the “new”
keyword, and copied
the reference to it
with the = operator.

We stuck a lot of sticky notes on that object! In this particular case, there are a lot of
different references to this same Guy object—because a lot of different methods use it
for different things. Each reference has a different name that makes sense in its context.

That’s why it can be really useful to have multiple references pointing to the same
instance. So you could say Guy dad = joe, and then call dad.GiveCash()
(that’s what Joe’s kid does every day). If you want to write code that works with an
object, you need a reference to that object. If you don’t have that reference, you have no
way to access the object.

Every one of these labels is a different reference variable, but they all point to the SAME Guy object.

A reference is
like a label that
your code uses
to talk about a
specific object.
You use it to
access fields and
call methods on
an object that it
points to.

joejoseph

dad

uncle Joey

bro
ther

heyYou

mister

cus
tom

er

Guy joe = new Guy();
Guy joseph = joe;

Guy
 ob

je
ct

you are here 4 223

managing your app’s data

Guy object #
1

If there aren’t any more references,
your object gets garbage-collected
If all of the labels come off of an object, programs can no longer access that
object. That means C# can mark the object for garbage collection. That’s
when C# gets rid of any unreferenced objects and reclaims the memory those
objects took up for your program’s use.

“Joe”
50

joe

Now let’s create our second object.
Once we do this we’ll have two Guy object instances and two
reference variables: one variable (joe) for the first Guy object, and
another variable (bob) for the second.

 Guy bob = new Guy() { Cash = 100, Name = "Bob" };

2

Here’s some code that creates an object.
Just to recap what we’ve been talking about: when you use the new
statement, you’re telling C# to create an object. When you take
a reference variable like joe and assign it to that object, it’s like
you’re slapping a new sticky note on it.

 Guy joe = new Guy() { Cash = 50, Name = "Joe" };

1

Guy object #
1

“Joe”
50

joe

Guy object #
2

“Bob”
100

bob

We used an object
initializer to create this
Guy object. Its Name
field has the string
“Joe," its Cash field
has the int 50, and
we put a reference to
the object in a variable
called “joe.”

We created another Guy
object and created a
variable called “bob” that
points to it. Variables are
like sticky notes—they're
just labels that you can
“stick” to any object.

224 Chapter 4

it was an object now it’s garbage

For an object to stay in the heap, it has to be
referenced. Sometime after the last reference
to the object disappears, so does the object.

poof!

There’s no longer a reference to the first Guy object…so
it gets garbage-collected.
Now that joe is pointing to the same object as bob, there’s no longer a
reference to the Guy object it used to point to. So what happens? C# marks
the object for garbage collection, and eventually trashes it. Poof—it’s gone!

4

The CLR keeps track of all of the
references to each object, and

when the last reference disappears,
it marks it for removal. But it might
have other things to do right now,

so the object could stick around for
a few milliseconds—or even longer!

After the CLR (coming up in the “Garbage Collection Exposed” interview!) removes the last reference to the object, it marks it for garbage collection.

Guy object #
2

“Bob”
100

joebob

Let’s take the reference to the first Guy object and
change it to point to the second Guy object.
Take a really close look at what you’re doing when you create a new Guy
object. You’re taking a variable and using the = assignment operator to
set it—in this case, to a reference that’s returned by the new statement.
That assignment works because you can copy a reference just like
you copy a value.

So let’s go ahead and copy that value:

 joe = bob;

That tells C# to make joe point to the same
object that bob does. Now the joe and bob
variables both point to the same object.

3

Guy object #
1

“Joe”
50

Guy object #
2

“Bob”
100

bob joe

you are here 4 225

managing your app’s data

Dog object #
1

Dog object #
3

Dog object #
1

Dog object #
2

Multiple references and their
side effects
You’ve got to be careful when you start moving
reference variables around. Lots of times, it might seem
like you’re simply pointing a variable to a different
object. You could end up removing all references to
another object in the process. That’s not a bad thing,
but it may not be what you intended. Take a look:

Dog object #
1Dog rover = new Dog();

rover.Breed = "Greyhound";
1

Dog fido = new Dog();
fido.Breed = "Beagle";
Dog spot = rover;

2

Dog lucky = new Dog();
lucky.Breed = "Dachshund";
fido = rover;

3

rover is a Dog object with a
Breed field set to Greyhound.

fido is another Dog
object. spot is just another
reference to the first object.

lucky is a third object.
fido is now pointing to
object #1. So, object
#2 has no references.
It’s done as far as the
program is concerned.

1
1

2
3

2
4

poof!

spot

rover

fido

rover

lucky

fido

spot

public partial class Dog {
 public void GetPet() {
 Console.WriteLine("Woof!");
 }
}

Dog

Breed
GetPet

Objects:______

References:_____

Objects:______

References:_____

Objects:______

References:_____

rover

226 Chapter 4

you can pet the dog in Head First C#

Now it’s your turn. Here’s one long block of code. Figure out how many objects and references there are at each
stage. On the righthand side, draw a picture of the objects and sticky notes in the heap.

Sharpen your pencil

Dog rover = new Dog();
rover.Breed = "Greyhound";
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog bear = fido;

1

Dog spot = new Dog();
spot.Breed = "Dachshund";
spot = rover;

2

Dog lucky = new Dog();
lucky.Breed = "Beagle";
Dog charlie = fido;
fido = rover;

3

Objects:______

References:_____

Objects:______

References:_____

rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = "pug";

4

Objects:______

References:_____

charlie = laverne;
lucky = rinTinTin;

5

Objects:______

References:_____

Objects:______

References:_____

you are here 4 227

managing your app’s data

Solution
Sharpen your pencil

Dog rover = new Dog();
rover.Breed = "Greyhound";
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog bear = fido;

1

Dog spot = new Dog();
spot.Breed = "Dachshund";
spot = rover;

2

Dog lucky = new Dog();
lucky.Breed = "Beagle";
Dog charlie = fido;
fido = rover;

3

Objects:______

References:_____

Objects:______

References:_____

rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = "pug";

4

Objects:______

References:_____

charlie = laverne;
lucky = rinTinTin;

5

Objects:______

References:_____

Objects:______

References:_____

3

3

 4
7

4
8

4
8

4

5

Dog object
 #

5

Dog object
 #

3

Dog object
 #

1

Dog object
 #

4

Dog object
 #

1

Dog object
 #

3

Dog object
 #

5

Dog object
 #

4

Dog object
 #

2

Dog object
 #

3

Dog object
 #

1

Dog object
 #

4

Dog object
 #

3

Dog object
 #

1

Dog object
 #

2

Dog object
 #

3

One new Dog object is
created, but spot is the
only reference to it. When
spot is set to rover, that
object goes away.

charlie was set to fido
when fido was still on
object #3. Then, after
that, fido moved to object
#1, leaving charlie behind.

Here the references move
around, but no new objects
are created. Setting lucky to
rinTinTin did nothing because
they already pointed to the
same object.

Dog object
 #

1

Dog object
 #

2

poof!
Dog #2 lost its
last reference, and
it went away.

When rinTinTin moved
to lucky’s object, the
old rinTinTin object
disappeared.

lucky

fido

bear

lave
rne

spot

fido

bear

spot
fido

charlie

bear

spot
fido

charlie

bear

spot
fido

bear
rinTinTin

lucky

rover

rover

rover

rover

rover

rinTinTin
lucky

rinTinTin

rinTinTin

rinTinTin

lave
rne

charlie

228 Chapter 4

get practice with references

Head First: So, we understand that you do a pretty
important job for us. Can you tell us a little more about
what you do?

Common Language Runtime (CLR): In a lot of
ways, it’s pretty simple. I run your code. Any time you’re
using a .NET app, I’m making it work.

Head First: What do you mean by making it work?

CLR: I take care of the low-level “stuff ” for you by doing
a sort of “translation” between your program and the
computer running it. When you talk about instantiating
objects or doing garbage collection, I’m the one that’s
managing all of those things.

Head First: So how does that work, exactly?

CLR: Well, when you run a program on Windows,
macOS, Linux, or most other operating systems, the OS
loads machine language from a binary.

Head First: I’m going to stop you right there. Can you
back up and tell us what machine language is?

CLR: Sure. A program written in machine language is
made up of code that’s executed directly by the CPU—
and it’s a whole lot less readable than C#.

Head First: If the CPU is executing the actual machine
code, what does the OS do?

CLR: The OS makes sure each program gets its own
process, respects the security rules, and provides APIs.

Head First: And for our readers who don’t know what
an API is?

CLR: An API—or application programming
interface—is a set of methods provided by an OS,
library, or program. OS APIs help you do things like
work with the filesystem and interact with hardware.
But they’re often pretty difficult to use—especially for
memory management—and they vary from OS to OS.

Head First: So back to your job. You mentioned a
binary. What exactly is that?

CLR: A binary is a file that’s (usually) created by a
compiler, a program whose job it is to convert high-
level language into low-level code like machine code.
Windows binaries usually end with .exe or .dll.

Head First: But I’m guessing that there’s a twist here.
You said “low-level code like machine code”—does that
mean there are other kinds of low-level code?

CLR: Exactly. I don’t run the same machine language
as the CPU. When you build your C# code, Visual
Studio asks the C# compiler to create Common
Intermediate Language (CIL). That’s what I run.
C# code is turned into CIL, which I read and execute.

Head First: You talked about Windows binaries. But
you also work on macOS. How does that work?

CLR: If you look in the folders created for your Visual
Studio for Mac projects, you’ll see lots of files that end
with .dll. These are managed .NET DLL files, and
they contain CIL code for the app. You can run those
apps from the command line anywhere I’m installed!
Try it out for yourself. Open a console window, go to the
folder with the PickRandomCards project from Chapter
3, find the folder under bin/ that has files that end with
.dll, and run this: dotnet PickRandomCards.dll.

Head First: You mentioned managing memory. Is that
where garbage collection fits into all of this?

CLR: Yes! One useful thing that I do for you is manage
your computer’s memory by figuring out when your
app is done with certain objects. When it is, I get rid of
them for you to free up that memory. That’s something
programmers used to have to do themselves—but thanks
to me, it’s something that you don’t have to be bothered
with. You might not have known it at the time, but I’ve
been making your job of learning C# a whole lot easier.

Garbage Collection Exposed
This week’s interview: The .NET Common Language Runtime

You can run your console apps from the command line. Find the DLL file underneath the bin/ folder and run
it like this: dotnet ProjectName.dll—and this will work on any OS you can install .NET on—even Linux!

you are here 4 229

managing your app’s data

Create a program with an Elephant class. Instantiate two Elephant instances and then swap the reference values
that point to them, without getting any Elephant instances garbage-collected. Here’s what it will look like when your
program runs.

You’re going to build a new console app that has a class called Elephant.
Here’s an example of the output of the program:

Press 1 for Lloyd, 2 for Lucinda, 3 to swap
You pressed 1
Calling lloyd.WhoAmI()
My name is Lloyd.
My ears are 40 inches tall.

You pressed 2
Calling lucinda.WhoAmI()
My name is Lucinda.
My ears are 33 inches tall.

You pressed 3
References have been swapped

You pressed 1
Calling lloyd.WhoAmI()
My name is Lucinda.
My ears are 33 inches tall.

You pressed 2
Calling lucinda.WhoAmI()
My name is Lloyd.
My ears are 40 inches tall.

You pressed 3
References have been swapped

You pressed 1
Calling lloyd.WhoAmI()
My name is Lloyd.
My ears are 40 inches tall.

You pressed 2
Calling lucinda.WhoAmI()
My name is Lucinda.
My ears are 33 inches tall.

Exercise

Elephant
Name = ""
EarSize

WhoAmI

The CLR garbage-collects any object with no references to it. So here’s a
hint for this exercise: if you want to pour a cup of coffee into another cup
that’s currently full of tea, you’ll need a third glass to pour the tea into…

Here’s the class diagram for the Elephant class you’ll need to create.

The Elephant class has
a WhoAmI method that

writes these two lines to
the console to display
the values in the Name

and EarSize fields.

Swapping the references
causes the lloyd variable to
call the Lucinda object's
method, and vice versa.

Swapping them
again returns
things to the way
they were when the
program started.

When you create your Elephant class,
declare your Name field like this:

public string Name = "";

This sets the Name field to an empty
string. Why do you think we're asking

you to do that?

230 Chapter 4

let’s swap elephants

Your job is to create a console app with an Elephant class that matches the class diagram and uses its fields and
methods to generate output that matches the example output.

Create a new console app and add the Elephant class.
Add an Elephant class to the project. Have a look at the Elephant class diagram—you’ll need an int
field called EarSize and a string field called Name. Add them, and make sure both are public. Then
add a method called WhoAmI that writes two lines to the console to tell you the name and ear size of
the elephant. Look at the example output to see exactly what it’s supposed to print.

Create two Elephant instances and a reference.
Use object initializers to instantiate two Elephant objects:

Elephant lucinda = new Elephant() { Name = "Lucinda", EarSize = 33 };
Elephant lloyd = new Elephant() { Name = "Lloyd", EarSize = 40 };

Call their WhoAmI methods.
When the user presses 1, call lloyd.WhoAmI. When the user presses 2, call lucinda.WhoAmI. Make
sure that the output matches the example. This is a good place to use else if, which you learned
about in Chapter 3.

Now for the fun part: swap the references.
Here’s the interesting part of this exercise. When the user presses 3, make the app execute code
that exchanges the two references. You’ll need to write that method. After you swap references,
pressing 1 should write Lucinda’s message to the console, and pressing 2 should write Lloyd’s message.
If you swap the references again, everything should go back to normal.

1

2

3

4

Exercise

Elephant object
 #

1

Elephant object
#2

lloyd lucind
a

Elephant object
 #

1

Elephant object
#2

lloyd
lucind

a

Elephant object
 #

1

Elephant object
#2

lloyd lucind
a

When the user presses 3, the app swaps the two references, so now lucinda points to
the Elephant object lloyd used to point to, and vice versa. Now calling lloyd.WhoAmI()
causes it to print “My name is Lucinda.”

If the user presses 3 again, the app swaps
them back. Now calling lloyd.WhoAmI()
prints “My name is Lloyd" again.

Swap!

Swap!

you are here 4 231

managing your app’s data

Create a program with an Elephant class. Instantiate two Elephant instances and then swap the reference values that
point to them, without getting any Elephant instances garbage-collected.
Here’s the Elephant class:
class Elephant
{
 public int EarSize;
 public string Name = "";
 public void WhoAmI()
 {
 Console.WriteLine("My name is " + Name + ".");
 Console.WriteLine("My ears are " + EarSize + " inches tall.");
 }
}

Here are the top-level statements for your Program.cs file:
Elephant lucinda = new Elephant() { Name = "Lucinda", EarSize = 33 };
Elephant lloyd = new Elephant() { Name = "Lloyd", EarSize = 40 };

Console.WriteLine("Press 1 for Lloyd, 2 for Lucinda, 3 to swap");
while (true)
{
 char input = Console.ReadKey(true).KeyChar;
 Console.WriteLine("You pressed " + input);
 if (input == '1')
 {
 Console.WriteLine("Calling lloyd.WhoAmI()");
 lloyd.WhoAmI();
 } else if (input == '2')
 {
 Console.WriteLine("Calling lucinda.WhoAmI()");
 lucinda.WhoAmI();
 } else if (input == '3')
 {
 Elephant holder;
 holder = lloyd;
 lloyd = lucinda;
 lucinda = holder;
 Console.WriteLine("References have been swapped");
 }
 else
 {
 return;
 }
 Console.WriteLine();
}

Exercise
Solution

There’s no “new" statement when we declare the “holder” variable
because we don’t want to create another instance of Elephant.

If you just point Lloyd to
Lucinda, there won’t be any
more references pointing to
Lloyd, and his object will be
lost. That’s why you need to
have an extra variable (we called
it “holder”) to keep track of
the Lloyd object reference until
Lucinda can get there.

Elephant
Name = ""
EarSize

WhoAmI

We asked you to
initialize the Name
field like this.

We used “else if” to
check if the user
entered 1, 2, or 3,
and an else statement
to exit if they
entered anything else.

There’s more than one way to solve this exercise. If
you came up with different code that works, that’s

great! Take the time to understand our solution.

232 Chapter 4

two references one object

Besides losing all the references to an object, when you have multiple references
to an object, you can unintentionally change the object. In other words, one
reference to an object may change that object, while another reference to that
object has no idea that something has changed. Let’s see how that works.

Add one more else if block to your top-level statements. Can you
guess what will happen once it runs?

else if (input == '3')
{
 Elephant holder;
 holder = lloyd;
 lloyd = lucinda;
 lucinda = holder;
 Console.WriteLine("References have been swapped");
}
else if (input == '4')
{
 lloyd = lucinda;
 lloyd.EarSize = 4321;
 lloyd.WhoAmI();
}
else
{
 return;
}

Now go ahead and run your program. Here’s what you’ll see:

You pressed 4
My name is Lucinda
My ears are 4321 inches tall.

You pressed 1
Calling lloyd.WhoAmI()
My name is Lucinda
My ears are 4321 inches tall.

You pressed 2
Calling lucinda.WhoAmI()
My name is Lucinda
My ears are 4321 inches tall.

After you press 4 and run the new code that you added, both the lloyd and
lucinda variables contain the same reference to the second Elephant
object. Pressing 1 to call lloyd.WhoAmI prints exactly the same message as
pressing 2 to call lucinda.WhoAmI. Swapping them makes no difference
because you’re swapping two identical references.

Two references mean TWO variables
that can change the same object’s data

This statement says
to set EarSize to 4321

on whatever object
the reference stored
in the lloyd variable
happens to point to.

poof!

Elephant object
 #

1

Elephant object
#2lloyd

Elephant object
#2

After this statement, both the lloyd
and lucinda variables reference

the SAME Elephant object.

Swapping these two
sticky notes won’t change anything because they’re stuck to the same object.

lucind
a

lucind
a

lloyd

The program acts normally…
until you press 4. Once you
do that, pressing either 1 or
2 prints the same output—

and pressing 3 to swap
the references doesn’t do

anything anymore.

And since the lloyd reference is no longer pointing to the first Elephant object, it gets garbage-collected...and there’s no way to bring it back!

Do this!

you are here 4 233

managing your app’s data

234 Chapter 4

elephant objects having a chat

Add a method that lets an Elephant send a message.
Now let’s add a SpeakTo method to the Elephant class. It uses a special keyword: this.
That’s a reference that lets an object get a reference to itself.

 public void SpeakTo(Elephant whoToTalkTo, string message) {
 whoToTalkTo.HearMessage(message, this);
 }

Let’s take a closer look at what’s going on.

When we call the Lucinda object’s SpeakTo method:

 lucinda.SpeakTo(lloyd, "Hi, Lloyd!");

It calls the Lloyd object’s HearMessage method like this:

 whoToTalkTo.HearMessage("Hi, Lloyd!", this);

2

Objects use references to talk to each other
So far, you’ve seen forms talk to objects by using reference variables to call their
methods and check their fields. Objects can call one another’s methods using references
too. In fact, there’s nothing that a form can do that your objects can’t do, because your
form is just another object. When objects talk to each other, one useful keyword that
they have is this. Any time an object uses the this keyword, it’s referring to itself—
it’s a reference that points to the object that calls it. Let’s see what that looks like by
modifying the Elephant class so instances can call each other’s methods.

Add a method that lets an Elephant hear a message.
Let’s add a method to the Elephant class. Its first parameter is a message from another
Elephant object. Its second parameter is the Elephant object that sent the message:

 public void HearMessage(string message, Elephant whoSaidIt) {
 Console.WriteLine(Name + " heard a message");
 Console.WriteLine(whoSaidIt.Name + " said this: " + message);
 }

Here’s what it looks like when it’s called:

 lloyd.HearMessage("Hi", lucinda);

We called lloyd’s HearMessage method, and passed it two parameters: the string
"Hi" and a reference to Lucinda’s object. The method uses its whoSaidIt parameter to
access the Name field of whatever elephant was passed in.

1

An Elephant’s SpeakTo method uses the
“this” keyword to send a reference to
itself to another Elephant.

Elephant
Name
EarSize

WhoAmI
HearMessage
SpeakTo

Lucinda uses whoToTalkTo
(which has a reference to

Lloyd) to call HearMessage.

this is replaced with
a reference to

Lucinda’s object.

 [a reference to Lloyd].HearMessage("Hi, Lloyd!", [a reference to Lucinda]);

Do this!

Remember, if your app doesn’t pause
on the breakpoint, make sure you’re
starting the app with debugging. Run
the app by pressing F5 or choosing
Start Debugging from the Debug
(Visual Studio) or Run (VSCode) menu.

you are here 4 235

managing your app’s data

The “this”
keyword
lets an
object get
a reference
to itself.

Call the new methods.
Add one more else if block to the top-level statements to
make the Lucinda object send a message to the Lloyd object:

else if (input == '4')
{
 lloyd = lucinda;
 lloyd.EarSize = 4321;
 lloyd.WhoAmI();
}
else if (input == '5')
{
 lucinda.SpeakTo(lloyd, "Hi, Lloyd!");
}
else
{
 return;
}

Now run your program and press 5. You should see this output:

You pressed 5
Lloyd heard a message
Lucinda said this: Hi, Lloyd!

3

Use the debugger to understand what’s going on.
Place a breakpoint on the statement that you just added:

Run your program and press 5.

When it hits the breakpoint, use Debug >> Step Into (F11) to step into the SpeakTo method.

Add a watch for Name to show you which Elephant object you’re inside. You’re currently inside the Lucinda
object—which makes sense because the app just called lucinda.SpeakTo.

Hover over the this keyword at the end of the line and expand it. It’s a reference to the Lucinda object.

Hover over whoToTalkTo and expand it—it’s a reference to the Lloyd object.

The SpeakTo method has one statement—it calls whoToTalkTo.HearMessage. Step into it.

You should now be inside the HearMessage method. Check your watch again—now the value of the Name field
is “Lloyd”—the Lucinda object called the Lloyd object’s HearMessage method.

Hover over whoSaidIt and expand it. It’s a reference to the Lucinda object.

Finish stepping through the code. Take a few minutes to really understand what’s going on.

4

C# ignores underscores in your number literals, so we
used commas to make our long numbers easier to read.

236 Chapter 4

If you have to keep track of a lot of data of the same type, like a list of prices or a group
of dogs, you can do it in an array. What makes an array special is that it’s a group of
variables that’s treated as one object. An array gives you a way of storing and changing
more than one piece of data without having to keep track of each variable individually.
When you create an array, you declare it just like any other variable, with a name and a
type—except the type is followed by square brackets:

bool[] myArray;
Use the new keyword to create an array. Let’s create an array with 15 bool elements:

myArray = new bool[15];
Use square brackets to set one of the values in the array. This statement sets the value of
the fifth element of myArray to false by using square brackets and specifying the index
4. It’s the fifth one because the first is myArray[0], the second is myArray[1], etc.:

myArray[4] = false;

Use each element in an array like it’s a normal variable
When you use an array, first you need to declare a reference variable that points to
the array. Then you need to create the array object using the new statement, specifying
how big you want the array to be. Then you can set the elements in the array. Here’s
an example of code that declares and fills up an array—and what’s happening in the heap
when you do it. The first element in the array has an index of 0.

// declare a new 7-element decimal array
decimal[] prices = new decimal[7];
prices[0] = 12.37M;
prices[1] = 6_193.70M;
// we didn't set the element
// at index 2, it remains
// the default value of 0
prices[3] = 1193.60M;
prices[4] = 58_000_000_000M;
prices[5] = 72.19M;
prices[6] = 74.8M;

one reference to many objects

Arrays hold multiple values

decimal decimal decimal decimal decimal decimal decimal

Strings and arrays are different from the other data
types you’ve seen in this chapter because they’re the
only ones without a set size (think about that for a bit).

You use the new
keyword to create an
array because it’s an
object—so an array
variable is a kind of
reference variable.
In C#, arrays are

zero-based, which
means the first

element has index 0.

decim

al array

prices

The prices variable
is a reference, just

like any other object
reference. The object it
points to is an array of
decimal values, all in

one chunk on the heap.

We saw arrays of strings
in Chapter 3. Now let’s
take a deeper dive into
how arrays work.

you are here 4 237

managing your app’s data

Dog obje
ct

Arrays can contain reference variables
You can create an array of object references just like you create an array of
numbers or strings. Arrays don’t care what type of variable they store; it’s up to you.
So you can have an array of ints, or an array of Duck objects, with no problem.

Here’s code that creates an array of seven Dog variables. The line that initializes
the array only creates reference variables. Since there are only two new Dog()
lines, only two actual instances of the Dog class are created.

 // Declare a variable that holds an
 // array of references to Dog objects
 Dog[] dogs = new Dog[7];

 // Create two new instances of Dog
 // and put them at indexes 0 and 5
 dogs[5] = new Dog();
 dogs[0] = new Dog();

When you set
or retrieve an
element from
an array, the
number inside
the brackets is
called the index.
The first element
in the array has
an index of 0.

All of the elements in the array are
references. The array itself is an object.

 Dog Dog Dog Dog Dog Dog Dog

An array’s length
You can find out how many
elements are in an array using its
Length property. So if you’ve got
an array called “prices,” then you
can use prices.Length to find out
how long it is. If there are seven
elements in the array, that gives
you 7—which means the array
elements are numbered 0 to 6.

The first line of code only created the array, not the
instances. The array is a list of seven Dog reference

variables—but only two Dog objects have been created.

D
og array

Dog obje
ct

there are no Dumb Questions

238 Chapter 4

“this” lets an object refer to itself

Q: I’m still not sure I get how references work.

A: References are the way you use all of the methods
and fields in an object. If you create a reference to a Dog
object, you can then use that reference to access any
methods you’ve created for the Dog object. If the Dog class
has (nonstatic) methods called Bark and Fetch, you can
create a reference called spot, and then you can use that
to call spot.Bark() or spot.Fetch(). You can also change
information in the fields for the object using the reference
(so you could change a Breed field using spot.Breed).

Q: Then doesn’t that mean that every time I change
a value through a reference I’m changing it for all of the
other references to that object too?

A: Yes. If the rover variable contains a reference to
the same object as spot, changing rover.Breed to “beagle”
would make it so that spot.Breed was “beagle.”

Q: Remind me again—what does this do?

A: this is a special variable that you can only use
inside an object. When you’re inside a class, you use this
to refer to any field or method of that particular instance. It’s
especially useful when you’re working with a class whose
methods call other classes. One object can use it to send
a reference to itself to another object. So if spot calls one
of rover’s methods passing this as a parameter, it’s
giving rover a reference to the spot object.

Q: You keep talking about garbage-collecting, but
what’s actually doing the collecting?

A: Every .NET app runs inside the Common Language
Runtime (or the Mono Runtime if you’re running your apps
on macOS, Linux, Android, or iOS, basically anywhere other
than Windows, or if you’re using Mono on Windows—but
it works the same way, so we’ll just talk about the CLR in
general here).

The CLR does a lot of stuff, but there are two really
important things the CLR does that we’re concerned about
right now. First, it executes your code—specifically, the
output produced by the C# compiler. Second, it manages
the memory that your program uses. That means it keeps
track of all of your objects, figures out when the last
reference to an object disappears, and frees up the memory
that it was using. The folks on the .NET team at Microsoft
have done an enormous amount of work making sure that
it’s fast and efficient.

Q: I still don’t get that stuff about different types holding
different-sized values. Can you go over that one more time?

A: Sure. The thing about variables is they assign a
size to your number no matter how big its value is. So if
you name a variable and give it a long type even though
the number is really small (like, say, 5), the CLR sets
aside enough memory for it to get really big. When you
think about it, that’s really useful. After all, they’re called

“variables” because they change all the time.

The CLR assumes you know what you’re doing and you’re
not going to give a variable a type bigger than it needs. So
even though the number might not be big now, there’s a
chance that after some math happens, it’ll change. The CLR
gives it enough memory to handle the largest value that
type can accommodate.

Any time you’ve got code
in an object that’s going
to be instantiated, the
instance can use the special
“this” variable that has a
reference to itself.

Here’s an array of Elephant objects and a loop that will go through it and find the one with the biggest ears. What’s
the value of biggestEars.EarSize after each iteration of the for loop?

Elephant[] elephants = new Elephant[7];

elephants[0] = new Elephant() { Name = "Lloyd", EarSize = 40 };

elephants[1] = new Elephant() { Name = "Lucinda", EarSize = 33 };

elephants[2] = new Elephant() { Name = "Larry", EarSize = 42 };

elephants[3] = new Elephant() { Name = "Lucille", EarSize = 32 };

elephants[4] = new Elephant() { Name = "Lars", EarSize = 44 };

elephants[5] = new Elephant() { Name = "Linda", EarSize = 37 };

elephants[6] = new Elephant() { Name = "Humphrey", EarSize = 45 };

Elephant biggestEars = elephants[0];

for (int i = 1; i < elephants.Length; i++)

{

 Console.WriteLine("Iteration #" + i);

 if (elephants[i].EarSize > biggestEars.EarSize)

 {

 biggestEars = elephants[i];

 }

 Console.WriteLine(biggestEars.EarSize.ToString());

}

Sharpen your pencil

Be careful—this loop starts
with the second element of the
array (at index 1) and iterates
six times until “i” is equal to the
length of the array.

Arrays start
with index 0,
so the first
Elephant in
the array is
elephants[0].

This sets the biggestEars reference to
the object that elephants[i] points to.

We’re creating an array of
seven Elephant references.

Iteration #1 biggestEars.EarSize = _________

Iteration #2 biggestEars.EarSize = _________

Iteration #3 biggestEars.EarSize = _________

Iteration #4 biggestEars.EarSize = _________

Iteration #5 biggestEars.EarSize = _________

Iteration #6 biggestEars.EarSize = _________

Fill in these values.

you are here 4 239

managing your app’s data

Here’s an array of Elephant objects and a loop that will go through it and find the one with the biggest ears. What’s
the value of biggestEars.EarSize after each iteration of the for loop?

Elephant[] elephants = new Elephant[7];

elephants[0] = new Elephant() { Name = "Lloyd", EarSize = 40 };

elephants[1] = new Elephant() { Name = "Lucinda", EarSize = 33 };

elephants[2] = new Elephant() { Name = "Larry", EarSize = 42 };

elephants[3] = new Elephant() { Name = "Lucille", EarSize = 32 };

elephants[4] = new Elephant() { Name = "Lars", EarSize = 44 };

elephants[5] = new Elephant() { Name = "Linda", EarSize = 37 };

elephants[6] = new Elephant() { Name = "Humphrey", EarSize = 45 };

Elephant biggestEars = elephants[0];

for (int i = 1; i < elephants.Length; i++)

{

 Console.WriteLine("Iteration #" + i);

 if (elephants[i].EarSize > biggestEars.EarSize)

 {

 biggestEars = elephants[i];

 }

 Console.WriteLine(biggestEars.EarSize.ToString());

}

Solution
Sharpen your pencil

Iteration #1 biggestEars.EarSize = _________

Iteration #2 biggestEars.EarSize = _________

Iteration #3 biggestEars.EarSize = _________

Iteration #4 biggestEars.EarSize = _________

Iteration #5 biggestEars.EarSize = _________

Iteration #6 biggestEars.EarSize = _________

40

42

42

44

44

45

Did you remember that
the loop starts with
the second element of
the array? Why do you
think that is?

The biggestEars reference keeps track
of which Elephant we've seen so far
has the biggest ears. Use the debugger
to check this! Put your breakpoint
here and watch biggestEars.EarSize.

The for loop starts with the second Elephant and
compares it to whatever Elephant biggestEars points
to. If its ears are bigger, it points biggestEars at
that Elephant instead. Then it moves to the next
one, then the next one…by the end of the loop,
biggestEars points to the one with the biggest ears.

240 Chapter 4

null and void

null means a reference points to nothing
There’s another important keyword that you’ll use with objects.
When you create a new reference and don’t set it to anything, it has
a value. It starts off set to null, which means it’s not pointing to
any object at all. Let’s have a closer look at this:

Dog object #
2poof!

Dog fido;
Dog lucky = new Dog();

fido = new Dog();

Dog object #
1

lucky = null;

Dog object #
2

Dog object #
1

fido

lucky

lucky

fido

The default value
for any reference
variable is null.

Since we haven't
assigned a value
to fido, it's set to

null.

Now fido is set
to a reference to
another object,
so it’s not equal
to null anymore.

Once we set
lucky to null it
no longer points
to its object, so it
gets marked for

garbage collection.

Would I ever reallyreally use “null” in a
program?

Yes. The null keyword can be useful.
There are a few ways you see null used in typical programs. The
most common way is making sure a reference points to an object:

 if (lloyd == null) {

That test will return true if the lloyd reference is set to null.

Another way you’ll see the null keyword used is when you want
your object to get garbage-collected. If you’ve got a reference to an
object and you’re finished with the object, setting the reference to
null will immediately mark it for collection (unless there’s another
reference to it somewhere).

you are here 4 241

managing your app’s data

I think I’ve seen the word nullnull before. Didn’t
the IDE tell me something about it when I was using

Console.ReadLine?

Yes! Console.ReadLine can return a null value.
Back at the beginning of Chapter 3, you hovered over Console.ReadLine
so you could learn more about it from the description that the IntelliSense
quick info window showed you. Let’s take another look at that window:

Console.ReadLine will return
the next line of characters
that it reads. If there are no

more lines, then it returns null.

Console.ReadLine returns a null when there are no lines available
You’ve been running your apps in Visual Studio and typing input using the keyboard. But you
can also run them from the command line. In Windows, there’s an executable in the bin\Debug
folder. You can use this command to run your app from the project folder:

C:\Users\Public\source\repos\ConsoleApp1\ConsoleApp1>dotnet run
Hello, World!

You can also use your operating system’s pipe commands like << or < or | to send input to
your app from a file or the output of another console app. When you do this, Console.ReadLine
needs a way to tell your app that it hit the end of the file—and that’s when it returns null.

But there’s still one issue: what does your app do when Console.ReadLine returns null?

Make sure you run
from inside the
project folder
that has the
.csproj file, not
the solution folder
that contains it.

242 Chapter 4

strings can be null

Use the string? type when a string might be null
You’ve been using two different (but related!) types to hold text values. First, there’s the string type,
like you used for the Name field in the Elephant class:

public string Name = "";

Then there’s the string? type, like the type returned by Console.ReadLine or which int.TryParse
takes as its first parameter, like you used in Owen’s ability score calculator app:

string? line = Console.ReadLine();
if (int.TryParse(line, out int value))

The difference is that in the Elephant class the Name field is never null. That's why we asked
you to initialize the Name field in your Elephant class.

What do you think would happen if you didn’t initialize the Name field in the Elephant class?

Change the field declaration in the Elephant class so it doesn’t initialize it to an empty string:

Visual Studio gives you a warning that has to do with null values, and asks you to consider
declaring the field as nullable. That’s what the string? type is—a nullable string.

You can make the error disappear by changing the Name field to a nullable string? instead of a
string:

public string? Name;

Now your app builds again, and runs exactly the same way as it did before.

int.TryParse takes a string? parameter
So what does your app do if Console.ReadLine returns null?

Luckily, int.TryParse also takes a string? value, so if your app gets to the end of the input and
Console.ReadLine returns null, int.TryParse will just return false—so the app will work just fine,
and when it gets a null value it will treat it the way it treats any other value that can’t be parsed.

Do this!

Use the debugger to step
through the app, and add a watch
for the holder variable. Its value

is null until it runs this statement:
holder = lloyd;

Visual Studio is smart enough to check for possible places
where a value can be null. You can avoid that problem by
making sure all of your reference variables are initialized.

you are here 4 243

managing your app’s data

Even if we’re not writing code for video games,
there’s a lot we can learn from tabletop games.
A lot of our programs depend on random numbers. For
example, you’ve already used the Random class to create random
numbers for several of your apps. Most of us don’t actually have
a lot of real-world experience with genuine random numbers…
except when we play games. Rolling dice, shuffling cards, spinning
spinners, flipping coins…these are all great examples of random
number generators. The Random class is .NET’s random
number generator—you’ll use it in many of your programs, and
your experience using random numbers when playing tabletop
games will make it a lot easier for you to understand what it does.

If you've never played Go Fish, take a
few minutes and read the rules. We'll
use them later in the book!

There’s a rich history to tabletop games—and, as it turns out, a long history of tabletop games influencing
video games, at least as early as the very first commercial role-playing game.

• The first edition of Dungeons and Dragons (D&D) was released in 1974, and that same year games with
names like “dungeon” and “dnd” started popping up on university mainframe computers.

• You’ve used the Random class to create numbers. The idea of games based on random numbers
has a long history—for example, tabletop games that use dice, cards, spinners, and other sources of
randomness.

• We saw in Chapter 3 how a paper prototype can be a valuable first step in designing a video game.
Paper prototypes have a strong resemblance to tabletop games. In fact, you can often turn the paper
prototype of a video game into a playable tabletop game, and use it to test some game mechanics.

• You can use tabletop games—especially card games and board games—as learning tools to understand
the more general concept of game mechanics. Dealing, shuffling, dice rolling, rules for moving pieces
around the board, use of a sand timer, and rules for cooperative play are all examples of mechanics.

• The mechanics of Go Fish include dealing cards, asking another player for a card, saying “Go Fish”
when asked for a card you don’t have, determining the winner, etc. We’re going to actually build a Go
Fish game later in the book, so take a minute and read the rules:
https://en.wikipedia.org/wiki/Go_Fish#The_game.

Tabletop Games

244 Chapter 4

test out the random class

You’ll be using the Random class throughout the book, so let’s get to know it better by
kicking its tires and taking it for a spin. Fire up Visual Studio and follow along—and make
sure you run your code multiple times, since you’ll get different random numbers each time.

A Random Test Drive

Create a new console app—all of this code will go in the top-level statements. Random.Shared
returns an instance of the Random class. Start by using it to generate a random int:

 int randomInt = Random.Shared.Next();
 Console.WriteLine(randomInt);

Specify a maximum value to get random numbers from 0 up to—but not including—the
maximum value. A maximum of 10 generates random numbers from 0 to 9:

 int zeroToNine = Random.Shared.Next(10);
 Console.WriteLine(zeroToNine);

Now simulate the roll of a die. You can specify a minimum and maximum value. A
minimum of 1 and maximum of 7 generates random numbers from 1 to 6:

 int dieRoll = Random.Shared.Next(1, 7);
 Console.WriteLine(dieRoll);

The NextDouble method generates random double values. Hover over the method name
to see a tooltip—it generates a floating-point number from 0.0 up to 1.0:

 double randomDouble = Random.Shared.NextDouble();

You can multiply a random double to generate much larger random double values. So if you
want a random double value from 1 to 100, multiply the random double by 100:

 Console.WriteLine(randomDouble * 100);

Use casting to convert the random double to other types. Try running this code a bunch of times—
you’ll see tiny precision differences in the float and decimal values.

 Console.WriteLine((float)randomDouble * 100F);
 Console.WriteLine((decimal)randomDouble * 100M);

Use a maximum value of 2 to simulate a coin toss. That generates
a random value of either 0 or 1. Use the Convert class, which has a
static ToBoolean method that will convert it to a Boolean value:

 int zeroOrOne = Random.Shared.Next(2);
 bool coinFlip = Convert.ToBoolean(zeroOrOne);
 Console.WriteLine(coinFlip);

1

2

3

4
How would you use Random
to choose a random string
from an array of strings?

Brain
Power

you are here 4 245

managing your app’s data

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
Sloppy Joe has a pile of meat, a whole lotta bread, and more
condiments than you can shake a stick at. What he doesn’t have is a
menu! Can you build a program that makes a new random menu for
him every day? You definitely can…with a new MAUI app, some
arrays, your handy random number generator, and a couple of new,
useful tools. Let’s get started!

Here’s the app you’ll build. It creates a menu with six random
sandwiches. Each sandwich has a protein, a condiment, and a bread,
all chosen at random from a list. Every sandwich is given a random
price, and there’s a special random price at the bottom to add
guacamole on the side.

Welcome to Sloppy Joe's, hon. The
meat's nice and fresh! What can I

getcha?

Sloppy Joe needs a new menu every
day. Your app will generate random
sandwiches and prices for him.

Each sandwich is generated by choosing a
random protein, random condiment, and
random bread from arrays.

The prices are random numbers between 5.00 and 14.99.

246 Chapter 4

the meat’s usually fresh at sloppy joe's

Sloppy Joe's menu app uses a Grid layout
A Grid control contains other controls, and defines a set of rows and columns to lay out those controls.

You’ve used other layout controls: you’ve used VerticalStackLayout controls to stack Button, Label, and other
controls in your apps on top of each other. You used a HorizontalStackLayout control in Chapter 2 for your
bird picker. And in the Animal Matching Game project, your VerticalStackLayout contained a FlexLayout
that arranged the buttons so they stacked horizontally, flowing into rows as the window size changed.

A Grid control is for layouts, not data.

When	most	of	us	see	something	that	contains	“rows”	and	“columns,”	we	
think	of	tables	of	data,	like	spreadsheets	or	HTML	tables.	That’s	not	what	a	Grid	
control	is	all	about.

The	Grid	control	is	for	laying out content.	Its	job	is	to	contain	other	controls,	and	
give	you	a	way	to	design	more	interesting	or	intricate	layouts	than	you	get	with	stack	
panels,	in	a	way	that	works	well	with	different	window	sizes	or	on	mobile	devices.

Watch it!

This cell spans the first two columns, which means that it takes up the full width of both of them combined.

This is a row.

The second
row height is
twice as tall as
the first row.

The first column is twice
as wide as the second.

The second
column.

The third column is 1.5
times as wide as the second.

Here’s an example of a Grid layout
with two rows and three columns.

The layout adjusts as you
change the window size.

The Grid preserves
the row and column
proportions when

you change the
size and shape of
the page, which is
really useful when
you want your app
to run on devices

with different
screen sizes.

you are here 4 247

managing your app’s data

Grid controls
The Grid control contains other controls, and works just like the other layout controls to contain
child controls (the other controls nested inside it). There’s an opening <Grid> tag and a
closing </Grid> tag, and the tags for all of the child controls are between them.

Cells in a grid are invisible—their only purpose is to determine where the child controls are
displayed on the page. We used Border controls to make the grid visible. A Border control
draws a border around a child control nested inside it:

 <Border>
 <Label Text="I have a border!"/>
 </Border>

A Border can only contain one child control. In the app below we didn’t nest any controls inside
the Borders—we just took advantage of the fact that each Border fills up the entire cell. We used
the Border control’s BackgroundColor property to make some of the cells in the grid darker.

Use Grid properties to put a control in a cell
The rows and columns in a Grid are numbered starting with 0. To put a child control in a
specific row and column, use the Grid.Row and Grid.Column properties. For example, putting
<Border Grid.Row="1" Grid.Column="2" /> between Grid tags will make the Grid
place the border in the second row and third column. You can also make a control span multiple
rows or columns using the Grid.RowSpan and Grid.ColumnSpan properties.

<Border
 Grid.Column="1"/>

<Border
 BackgroundColor="DarkGray"/>

<Border Grid.Column="2"
 BackgroundColor="Gray"/>

<Border Grid.Row="1"
 Grid.Column="2"
/>

<Border Grid.Row="1" Grid.ColumnSpan="2"
 BackgroundColor="LightGray"/>

This Border control doesn’t have a Grid.Column property, so
the Grid puts it in the first column (or column #0). It’s in
the second row (or row #1) because it has Grid.Row set to 1.
It spans two columns because Grid.ColumnSpan is set to 2.

248 Chapter 4

lay out your page with a grid control

Define the rows and columns for a Grid
The Grid control XAML has sections to define rows and columns. Each row or column can either have
proportional sizes—for example, column 3 is twice as wide as column 2 and three times as wide as column 1—or
absolute sizes in device-independent pixels.

The row and column definitions are in special sections inside the <Grid> tag. The row definitions are inside a
<Grid.RowDefinitions> section, and the column definitions are inside a <Grid.ColumnDefinitions> section.

Here’s the complete XAML for the app that we’ve been showing you. Create a .NET MAUI app called
GridExample and add this XAML code (and delete the OnCounterClicked method in MainPage.xaml.cs).

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="GridExample.MainPage">

 <ScrollView>

 <Grid>

 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition Height="2*"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition/>
 <ColumnDefinition Width="1.5*"/>
 </Grid.ColumnDefinitions>

 <Border BackgroundColor="DarkGray"/>
 <Border Grid.Column="1" />
 <Border Grid.Column="2" BackgroundColor="Gray"/>

 <Border Grid.Row="1" Grid.ColumnSpan="2" BackgroundColor="LightGray"/>
 <Border Grid.Row="1" Grid.Column="2" />

 </Grid>

 </ScrollView>

</ContentPage>

Here are the
child Border
controls we
just showed
you.

The app has two rows, so the Grid.RowDefinitions
section contains two RowDefinition tags. The

second row height is twice as tall as the first row,
so we added the Height="2*" property to the

second RowDefinition tag to make it twice as tall.

The Grid.ColumnDefinitions section has three
ColumnDefinition tags, one for each of the three
columns. The first column is twice as wide as the

second, so it has Width="2*". The third column is
1.5 times as wide, so it has Width="1.5*".

Do this!

you are here 4 249

managing your app’s data

Row heights and column widths
When you use a value like 2* in a RowDefinition.Height or ColumnDefinition.Width property,
you're choosing a proportional width, which means they're proportional to each other. You'll
get the same results setting the first row to 6* and the second row to 12* because the
proportions are still the same: the second row is still twice as big as the first row.

You can also set a row width or column height to an absolute value like 100, which will cause
it to be sized in device-independent pixels. If all the rows and columns are proportional, the
grid will fill up the page. If you set an absolute width or height, it could end up larger than
the page, which is why it's a good idea to nest the Grid inside a ScrollView.

Create the Sloppy Joe's menu app and set up the grid
Create a new .NET MAUI app and name it SloppyJoe. The first thing you’ll do is create the
XAML for the app. Here’s how it will work:

Th
e g

rid
 ha

s s
eve

n e
qua

l-s
ize

d r
ow

s

Each of the cells in the grid
contains a Label control...

The grid has two columns. Column 1 is 5 times wider than column 2.

...except for the Label with the
guacamole price, which fills up the
whole row by spanning two cells.

 </Grid>
 </ScrollView>
</ContentPage>

<ContentPage>
 <ScrollView>
 <Grid Margin="10">

We’ll give you all of the XAML for the app. But before we
do, try editing the MainPage.xaml file and creating the
XAML for the page on your own. Can you use the app
we just gave you as an example to create the row and
column definitions yourself?

See how far you can get, then compare it with our XAML.

250 Chapter 4

start building the app for sloppy joe

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="SloppyJoe.MainPage">

 <ScrollView>

 <Grid Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Label x:Name="item1" FontSize="18" Text="item #1" />
 <Label x:Name="price1" FontSize="18" HorizontalOptions="End"
 Grid.Column="1" Text="price #1"/>

 <Label x:Name="item2" FontSize="18" Grid.Row="1" Text="item #2"/>
 <Label x:Name="price2" FontSize="18" HorizontalOptions="End"
 Grid.Row="1" Grid.Column="1" Text="price #2"/>

 <Label x:Name="item3" FontSize="18" Grid.Row="2" Text="item #3" />
 <Label x:Name="price3" FontSize="18" HorizontalOptions="End"
 Grid.Row="2" Grid.Column="1" Text="price #3"/>

 <Label x:Name="item4" FontSize="18" Grid.Row="3" Text="item #4" />
 <Label x:Name="price4" FontSize="18" HorizontalOptions="End"
 Grid.Row="3" Grid.Column="1" Text="price #4"/>

 <Label x:Name="item5" FontSize="18" Grid.Row="4" Text="item #5" />
 <Label x:Name="price5" FontSize="18" HorizontalOptions="End"
 Grid.Row="4" Grid.Column="1" Text="price #5"/>

 <Label x:Name="item6" FontSize="18" Grid.Row="5" Text="item #6" />
 <Label x:Name="price6" FontSize="18" HorizontalOptions="End"
 Grid.Row="5" Grid.Column="1" Text="price #6"/>

 <Label x:Name="guacamole" FontSize="18" FontAttributes="Italic" Text="guacamole"
 Grid.Row="6" Grid.ColumnSpan="2" HorizontalOptions="End" VerticalOptions="End" />

 </Grid>
 </ScrollView>

</ContentPage>

If you used a different app name,
you'll see a different namespace here.

The grid has six rows that
are all the same height.

The 10-pixel margin around the grid adds a little
space between the Labels and the edge of the window.

The grid has two columns. The first column is five times wider than the second.

Each of these Label
controls goes in a
different cell. We gave
each of them text like
“item #1” or “price #3”
to make it easier to see
how the grid is laid out
when you run the app.

The Label with the guacamole price has both its
Horizontal and Vertical options set to “End” to
align it to the bottom right corner of the cell.

Each price has its HorizontalOptions set to “End” so it gets aligned all the way to the right
of the window.

This Label spans both columns in the
bottom row, so it stretches across
two cells. Try removing the Grid.
ColumnSpan property—what happens?

Here’s the XAML for the app
Take your time and go through it line by line to make sure you understand how its grid works.

After you add this code to your
MainPage.xaml file, don’t forget

to go to the MainPage.xaml.cs file
and delete the OnCounterClicked

method and count field.

you are here 4 251

managing your app’s data

namespace SloppyJoe;

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();
 MakeTheMenu();
 }

 private void MakeTheMenu()
 {
 MenuItem[] menuItems = new MenuItem[6];

 for (int i = 0; i < 6; i++)
 {
 menuItems[i] = new MenuItem();
 menuItems[i].Generate();
 }

 price1.Text = menuItems[0].Price;
 item1.Text = menuItems[0].Description;
 price2.Text = menuItems[1].Price;
 item2.Text = menuItems[1].Description;
 price3.Text = menuItems[2].Price;
 item3.Text = menuItems[2].Description;
 price4.Text = menuItems[3].Price;
 item4.Text = menuItems[3].Description;
 price5.Text = menuItems[4].Price;
 item5.Text = menuItems[4].Description;
 price6.Text = menuItems[5].Price;
 item6.Text = menuItems[5].Description;

 MenuItem guacamoleMenuItem = new MenuItem();
 guacamoleMenuItem.Generate();
 guacamole.Text = "Add guacamole for " + guacamoleMenuItem.Price;
 }
}

The C# code for the main page
Here's the C# code for the main page of your Sloppy Joe app. We’re about to give
you an exercise to build a class called MenuItem that generates random sandwiches
and prices. As soon as the page loads, it calls a method called MakeTheMenu that
uses an array of MenuItem objects to fill in all of the prices, and one last MenuItem
object to get the price for the guacamole.

You’ll use a for loop to create each MenuItem and call its Generate method. You’ll write that Generate method in the next exercise.

Create one more MenuItem object to
generate a random price for the guacamole.
You won’t use its Description field.

Now that you have the MenuItem
objects with sandwich descriptions
and prices, you can use them to set
the text in the Label controls.

Call the MakeTheMenu method
as soon as the page loads.

This array will hold six
references to MenuItem objects.

Your namespace will be different if you
chose a different name for your app.

finish the app for sloppy joe

252 Chapter 4

Create the MenuItem class for your menu app.
Start by looking closely at the class diagram. It has five fields: three arrays to hold the various
sandwich parts, a description, and a price. The array fields use collection expressions that let
you create an array by putting comma-separated values between [square brackets].
Add the MenuItem class to your project. Here's the code for the fields:
namespace SloppyJoe;

class MenuItem
{
 public string[] Proteins = [
 "Roast beef", "Salami", "Turkey",
 "Ham", "Pastrami", "Tofu"
];

 public string[] Condiments = [
 "yellow mustard", "brown mustard",
 "honey mustard", "mayo", "relish", "French dressing"
];

 public string[] Breads = ["rye", "white", "wheat", "pumpernickel", "a roll"];

 public string Description = "";
 public string Price = "";

 public void Generate()
 {
 // You'll fill in this method
 }
}

Your job is to fill in the Generate method. It does the following:
• Picks a random protein from the Proteins array.
• Picks a random condiment from the Condiments array.
• Picks a random bread from the Breads array.
• Sets the description field like this: protein + " with " + condiment + " on " + bread.
• Sets the Price field to a random price that's at least 5.00 and less than 15.00. Pick a random int that's at least 5

and less than 15. Then pick a second random int that's at least 0 and less than 100. Multiply the second number
by .01M to get a decimal value that's at least .00 and less than 1.00, and add it to the first value, and store it in a
variable called price. Then set the Price field like this: Price = price.ToString("c");

Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here’s a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?

Exercise
MenuItem

Proteins
Condiments
Breads
Description
Price

Generate

Sharpen your pencil

The Generate method uses Random.Shared to
choose random prices between 5.00 and 14.99 by

creating a random decimal value out of two ints.
We gave you the last line of code for the method:

Price = price.ToString("c");

The parameter to the ToString method is a
format. In this case, the "c" format tells ToString

to format the value with the local currency: if
you’re in the United States you’ll see a $, in the

UK you’ll get a £, in the EU you’ll see €, etc. If the
values don't make sense in your currency, choose

different random numbers!

The MenuItem class has three array fields that use collection expressions to set their values, just like the array you saw in Chapter 3 to store playing cards.

you are here 4 253

managing your app’s data

public void Generate()
{
 string protein = Proteins[Random.Shared.Next(Proteins.Length)];
 string condiment = Condiments[Random.Shared.Next(Condiments.Length)];
 string bread = Breads[Random.Shared.Next(Breads.Length)];
 Description = protein + " with " + condiment + " on " + bread;

 int bucks = Random.Shared.Next(5, 15);
 int cents = Random.Shared.Next(0, 100);
 decimal price = bucks + (cents * .01M);
 Price = price.ToString("c");
}

Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here's a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?

Exercise
Solution

Price = (Random.Shared.NextDouble() * 10 + 5).ToString("c");

We haven’t talked about accessibilityaccessibility in this project
yet. Shouldn’t we add semantic properties to the

controls in the menu app?

You’re right! This is a great time to improve accessibility.
Sloppy Joe has a wheelchair ramp and braille versions of all of his menus, because
he wants to make sure everyone has a chance to eat his budget-friendly sandwiches.
So let’s make sure our menu app is accessible too!

Start your operating system’s screen reader and read the menu page.

Windows Narrator

Start Windows Narrator (Ctrl++N).
Narrator will scroll through the contents
of any window when you hold down the
Narrator key ((typically the Insert key, but
you can change that in Narrator settings))
and press the left or right arrows.
Navigate to your app, then navigate
through all the controls and listen to
what Narrator says.

macOS VoiceOver

Start VoiceOver (⌘+F5). VoiceOver will
read the contents of any window when
you hold down the VoiceOver activation
key (^ control + ⌥ option) and press A.
Navigate to your app and press VO+A (or
^ ⌥A), and listen to what VoiceOver says.
Press the either ^ or ⌥ to stop reading.

Do this!

always think about accessibility

254 Chapter 4

Can we make the app more accessible?
When a screen reader narrates a window, it navigates from item to item, reading each item aloud and drawing a
rectangle around it. What did you hear when you listened to the screen reader narrate your app? What did you see?
Try having it read the menu while you have your eyes closed. Did you still understand everything that you needed
to? It’s pretty good! But accessibility is all about making things better for all of our users. Can we make it better?

Set the main header so the screen reader narrates it
You may have noticed that the first thing it said was “Home”—and if you watched carefully, you saw that was
narrating the title bar. Modify AppShell.xaml to change “Home” to “Sloppy Joe’s menu” and have the
screen reader narrate the page again.

It would be great to have the narrator tell the user that they’re looking at items on a menu. Let’s try adding a
SemanticProperties.Description to the <Grid> tag:

<Grid Margin="10"
 SemanticProperties.Description="Here are the items on the menu.">

Now try using the screen reader to narrate the window. It sounds fine in Windows, but if you’re using
macOS there’s a problem: the screen reader won’t read the items or prices. That’s because if you set the
SemanticProperties.Description on a control that has children, the screen reader can’t reach those children
anymore. This is important even if you’re building software for Windows, because your MAUI apps are cross-
platform, and you want your app to be accessible anywhere.

Try setting the item1 label’s SemanticProperties.Description instead
OK, let’s try something else. Remove the SemanticProperties.Description property from the <Grid> tag. Then try
setting the SemanticProperties.Description on the first label:

 <Label x:Name="item1" FontSize="18" Text="item #1"
 SemanticProperties.Description="Here are the items on the menu." />

Try using the screen reader again. It’s still not right! When you have a Label, you always want the screen reader
to read the contents of the label. Setting the SemanticProperties.Description causes the screen reader to read that
description instead of the label text.

Go ahead and delete the SemanticDescription property from the item1 Label control (and also from the Grid, if
you haven’t done it already).

What do you think you’ll do to make the screen reader say
“Here are the items on the menu” followed by the randomly
generated sandwich in the item1 Label control’s Text property?

Brain
Power

you are here 4 255

managing your app’s data

 ◾ The new keyword returns a reference to an object that
you can store in a reference variable.

 ◾ You can have multiple references to the same object.
You can change an object with one reference and
access the results of that change with another.

 ◾ For an object to stay in the heap, it has to be
referenced. Once the last reference to an object
disappears, it eventually gets garbage-collected and
the memory it used is reclaimed.

 ◾ Your .NET apps run in the Common Language
Runtime (CLR), a “layer” between the OS and your
program. The C# compiler builds your code into
Common Intermediate Language (CIL), which the CLR
executes.

 ◾ Declare array variables by putting square brackets
after the type in the variable declaration (like bool[]
trueFalseValues or Dog[] kennel).

 ◾ Use the new keyword to create a new array,
specifying the array length in square brackets (like new
bool[15] or new Dog[3]). The this keyword lets an
object get a reference to itself.

 ◾ An AI chatbot can read your code and add comments,
including XML documentation (XMLDoc) comments.

 ◾ Use the Length method on an array to get its length
(like kennel.Length).

 ◾ Access an array value using its index in square brackets
(like bool[3] or Dog[0]). Array indexes start at 0.

 ◾ null means a reference points to nothing. The compiler
will warn you when a variable can potentially be null.

 ◾ Use the string? type to hold a string that’s allowed to
be null. Console.ReadLine can return null strings.

 ◾ You can use Random.NextDouble to create a random
double value between 0 and 1. Multiply a random
double to generate much larger random double values.

 ◾ Use collection expressions to initialize an array field
by setting the field equal to a value starting with a
square bracket, followed by a comma-delimited list of
values, and ending with a square bracket.

 ◾ You can pass a format parameter to an object or
value’s ToString method. If you’re calling a numeric
type’s ToString method, passing it a value of “c” formats
the value as a local currency.

 ◾ Use a control’s SetValue method to set its semantic
properties in code, so the screen reader can include
text that’s generated when the app runs.

Bullet Points

Use the SetValue method to change a control’s semantic properties
Let’s find a different way to make the screen reader say “Here are the items on the menu” before it reads the menu
items. We’ll still use the SemanticProperties.Description for the first menu item, but instead of using a XAML tag, we’ll
use C# to make sure it preserves the text.

Add this line of code to the end of your MainPage method:

 public MainPage()
 {
 InitializeComponent();
 MakeTheMenu();

 item1.SetValue(SemanticProperties.DescriptionProperty,
 "Here are the items on the menu. " + item1.Text);
 }

This code sets the SemanticProperties.Description property—in this case, it’s setting it to the text “Here are the items on
the menu” followed by the random sandwich generated by MenuItem. Try the screen reader one more time—now the
page includes that text, and works on all operating systems.

If you type “item1.” into Visual Studio, you won’t see SemanticProperties in the IntelliSense pop-up. That’s why you need to use the SetValue method to set it instead.

256 Chapter 4

set semantic properties in your C# code

C# Lab 257Head First C# Unity Lab 257https://github.com/head-first-csharp/fifth-edition

Unity Lab #2
Write C# Code for Unity

Unity Lab #2
Write C# Code for Unity

Unity isn’t just a powerful, cross-platform engine and
editor for building 2D and 3D games and simulations.
It’s also a great way to get practice writing C# code.

In the last Unity Lab, you learned how to navigate
around Unity and your 3D space, and started to
create and explore GameObjects. Now it’s time to
write some code to take control of your GameObjects.
The whole goal of that lab was to get you oriented in
the Unity editor (and give you an easy way to remind
yourself of how to navigate around it if you need it).

In this Unity Lab, you’ll start writing code to control
your GameObjects. You’ll write C# code to explore
concepts you’ll use in the rest of the Unity Labs,
starting with adding a method that rotates the 8 Ball
GameObject that you created in the last Unity Lab.
You’ll also start using the Visual Studio debugger
with Unity to sleuth out problems in your games.

Unity Lab #2
Write C# Code for Unity

258 https://github.com/head-first-csharp/fifth-edition

C# scripts add behavior to your GameObjects
Now that you can add a GameObject to your scene, you need a way to make it, well, do stuff. That’s where your
C# skills come in. Unity uses C# scripts to define the behavior of everything in the game.

This Unity Lab will introduce tools that you’ll use to work with C# and Unity. You’re going to build a simple
“game” that’s really just a little bit of visual eye candy: you’ll make your 8 ball fly around the scene. Start by
going to Unity Hub and opening the same project that you created in the first Unity Lab.

Here’s what you’ll do in this Unity Lab:

Attach a C# script to your GameObject. You’ll add a Script component to your Sphere
GameObject. When you add it, Unity will create a class for you. You’ll modify that class so that it
drives the 8 ball sphere’s behavior.

Use Visual Studio to edit the script. Remember how you set the Unity editor’s preferences to
make Visual Studio the script editor? That means you can just double-click on the script in the Unity
editor and it will open up in Visual Studio.

Play your game in Unity. There’s a Play button at the top of the screen. When you press it, it
starts executing all of the scripts attached to the GameObjects in your scene. You’ll use that button to
run the script that you added to the sphere.

Use Unity and Visual Studio together to debug your script. You’ve already seen how
valuable the Visual Studio debugger is when you’re trying to track down problems in your C# code.
Unity and Visual Studio work together seamlessly so you can add breakpoints, use the Locals window,
and work with the other familiar tools in the Visual Studio debugger while your game is running.

1

2

3

4

This Unity Lab
picks up where
the first one
left off, so go
to Unity Hub
and open the
project you
created in the
last lab.

The Play button does not save your game!
So make sure you save early and save often.
A lot of people get in the habit of saving
the scene every time they run the game.

Unity Lab #2
Write C# Code for Unity

Head First C# Unity Lab 259

Add a C# script to your GameObject
Unity is more than an amazing platform for building 2D and 3D games. Many people use it for
artistic work, data visualization, augmented reality, and more. It’s especially valuable to you, as a
C# learner, because you can write code to control everything that you see in a Unity game. That
makes Unity a great tool for learning and exploring C#.

Let’s start using C# and Unity right now. Make sure the Sphere GameObject is selected, then
click the Add Component button at the bottom of the Inspector window.

When you click it, Unity pops up a window with all of the different kinds of components that you
can add—and there are a lot of them. Choose “New script” to add a new C# script to your
Sphere GameObject. You’ll be prompted for a name. Name your script BallBehaviour.

Click the “Create and Add” button to add the script. You’ll see a
component called Ball Behaviour (Script) appear in the Inspector window.

You’ll also see the C# script in the Project window.

The Project window gives you a folder-
based view of your project. Your Unity
project is made up of files: media files,

data files, C# scripts, textures, and
more. Unity calls these files assets.

The Project window was displaying a
folder called Assets when you right-

clicked inside it to import your texture,
so Unity added it to that folder.

Did you notice a folder called Materials
appeared in the Project window as soon as you
dragged the 8 ball texture onto your sphere?

Unity code
uses British
spelling.

If	you’re	American	
(like	us),	or	if	you’re	used	to	
the	US	spelling	of	the	word	
behavior,	you’ll	need	to	be	
careful	when	you	work	with	
Unity	scripts	because	the	
class	names	often	feature	the	
British	spelling	behaviour.

Watch it!

Unity Lab #2
Write C# Code for Unity

260 https://github.com/head-first-csharp/fifth-edition

Write C# code to rotate your sphere
In the first lab, you told Unity to use Visual Studio as its external script editor. So go ahead and double-click
your new C# script in the Assets window. When you do, Unity will open your script in Visual
Studio. Your C# script contains a class called BallBehaviour with two empty methods called Start and Update:

using UnityEngine;

public class BallBehaviour : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {

 }
}

Here’s a line of code that will rotate your sphere. Add it to your Update method:

 transform.Rotate(Vector3.up, 180 * Time.deltaTime);

Now go back to the Unity editor and click the Play button in the toolbar to start your game:

Your game will start,
and the 8 ball will start
spinning at a speed of

1/2 rotation per second.

Click the Play button

You opened your C# script in
Visual Studio by clicking on it in the

Hierarchy window, which shows you
a list of every GameObject in the

current scene. When Unity created
your project, it added a scene called
SampleScene with a camera and a
light. You added a sphere to it, so

your Hierarchy window will show all
of those things.

If you don’t see the Hierarchy window,
reset the layout to Wide (click the Game

tab to switch back to the Game view).

Press the Play button again to stop your
game. Use the Play button to start and stop

your game any time you want.

Click on Sphere in the
Hierarchy window
to select it, then

watch the Inspector
window to see the Y

rotation change in its
Transform component.

If Unity didn’t launch Visual Studio and open your C# script
in it, go back to the beginning of Unity Lab 1 and make sure
you followed the steps to set the External Tools preferences.

Unity Lab #2
Write C# Code for Unity

Head First C# Unity Lab 261

using UnityEngine;

public class BallBehaviour : MonoBehaviour
{
 /> Start is called before the first frame update
 void Start()
 {

 }

 /> Update is called once per frame
 void Update()
 {
 transform.Rotate(Vector3.up, 180 * Time.deltaTime);
 }
}

Your Unity Code Up Close
You learned about namespaces

in Chapter 3. When Unity created
the file with the C# script, it added
using lines so it can use code in
the UnityEngine namespace and
two other common namespaces.

A frame is a fundamental concept of animation. Unity draws one still
frame, then draws the next one very quickly, and your eye interprets

changes in these frames as movement. Unity calls the Update method for
every GameObject before each frame so it can move, rotate, or make any

other changes that it needs to make. A faster computer will run at a higher
frame rate—or number of frames per second (FPS)—than a slower one.

The transform.Rotate method
causes a GameObject to rotate.

The first parameter is the axis to
rotate around. In this case, your

code used Vector3.up, which
tells it to rotate around the Y

axis. The second parameter is
the number of degrees to rotate.

Different computers will run your game at
different frame rates. If it’s running at 30 FPS, we
want one rotation every 60 frames. If it’s running

at 120 FPS, it should rotate once every 240
frames. Your game’s frame rate may even change

if it needs to run more or less complex code.

That’s where the Time.deltaTime value comes
in handy. Every time the Unity engine calls a

GameObject’s Update method—once per frame—
it sets Time.deltaTime to the fraction of a second

since the last frame. Since we want our ball
to do a full rotation every two seconds, or 180

degrees per second, all we need to do is multiply
it by Time.deltaTime to make sure that it rotates

exactly as much as it needs to for that frame.Inside your Update method,
multiplying any value by
Time.deltaTime turns it into
that value per second.

Time.deltaTime is static—and like we saw in Chapter 3,
you don’t need an instance of the Time class to use it.

Unity Lab #2
Write C# Code for Unity

262 https://github.com/head-first-csharp/fifth-edition

Add a breakpoint and debug your game
Let’s debug your Unity game. First stop your game if it’s still running (by pressing the Play button again). Then
switch over to Visual Studio, and add a breakpoint on the line that you added to the Update method:

 " In Visual Studio, click the button or choose Debug >> Start Debugging (F5) from the menu.

 " In VSCode, choose Run and Debug (Ctrl+Shift+D) on the left, then click

Attaching to Unity starts the debugger. Now switch back to the Unity editor. If this is the first time you’re debugging
this project, the Unity editor will pop up a dialog window with these buttons:

Press the “Enable debugging for this session” button (or if you want to keep that pop-up from appearing again, press
“Enable debugging for all projects”). Visual Studio is now attached to Unity, which means it can debug your game.

Now press the Play button in Unity to start your game. Since Visual Studio is attached to Unity, it breaks
immediately on the breakpoint that you added, just like with any other breakpoint you’ve set.

Use a hit count to skip frames
Sometimes it’s useful to let your game run for a while before your breakpoint stops it. For example, you might want your
game to spawn and move its enemies before your breakpoint hits. Let’s tell your breakpoint to break every 500 frames.
You can do that by adding a Hit Count condition to your breakpoint:

 " In Visual Studio, right-click on the breakpoint dot () at the left side of the line, choose Conditions from the
pop-up menu, select Hit Count and Is a multiple of from the dropdowns, and enter 500 in the box:

 " In VScode, right-click the breakpoint dot, choose Edit breakpoint from the dropdown, and enter 500:

Now the breakpoint will only pause the game every 500 times the Update
method is run—or every 500 frames . If your game is running at 60 FPS,
then when you press Continue the game will run for a little over 8 seconds
before it breaks again. Press Continue, then switch back to Unity and
watch the ball spin until the breakpoint breaks.

Congratulations, you’re
now debugging a game!

VSCode lets you set a hit
count for breakpoints just
like Visual Studio does,
but at the time we’re
writing this that feature
does not work when
debugging Unity projects.

Unity Lab #2
Write C# Code for Unity

Head First C# Unity Lab 263

Use the debugger to understand Time.deltaTime
You’re going to be using Time.deltaTime in many of the Unity Labs projects. Let’s take advantage of your breakpoint
and use the debugger to really understand what’s going on with this value.

While your game is paused on the breakpoint in Visual Studio, hover over Time.deltaTime to see the fraction of
a second that elapsed since the previous frame (you’ll need to put your mouse cursor over deltaTime). Then add a
watch for Time.deltaTime by selecting Time.deltaTime and choosing Add Watch from the right-mouse menu.

Every time the breakpoint pauses the game, your Time.deltaTime watch will show you the
fraction of a second since the previous frame. Can you use this number to figure out the
FPS we were getting when we took this screenshot?

When you hover over Time.deltaTime, you’ll see a pushpin icon next to the value. Press it to keep a small watch window pinned open in Visual Studio.

Continue debugging (F5), just like with the other apps you’ve debugged), to resume your game. The ball will start
rotating again, and after another 500 frames the breakpoint will trigger again. You can keep running the game for 500
frames at a time. Keep your eye on the Time.deltaTime value each time it breaks, either in the pinned value or in the
watch window.

Press the Continue button to get another Time.deltaTime
value, then another. You can
get your approximate FPS by dividing 1 ÷ Time.deltaTime.

Stop debugging (Shift + F5) to stop your program. Then start debugging again. Since your game is still running,
the breakpoint will continue to work when you reattach Visual Studio to Unity. Once you’re done debugging, toggle
your breakpoint again so the IDE will still keep track of it but not break when it’s hit. Stop debugging one more
time to detach from Unity.

Go back to Unity and stop your game—and save it, because the Play button doesn’t automatically save the game.

The Play button in Unity
starts and stops your
game. Visual Studio will
stay attached to Unity
even when the game is
stopped.

Debug your game again and hover over “Vector3.up” to inspect
its value—you’ll have to put your mouse cursor over “up.” It has
a value of (0.0, 1.0, 0.0). What do you think that means?

Brain
Power

Unity Lab #2
Write C# Code for Unity

264 https://github.com/head-first-csharp/fifth-edition

Add a cylinder to show where the Y axis is
Your sphere is rotating around the Y axis at the very center of the scene. Let’s add a very tall and very
skinny cylinder to make it visible. Create a new cylinder by choosing 3D Object >> Cylinder from
the GameObject menu. Make sure it’s selected in the Hierarchy window, then look at the Inspector
window and check that Unity created it at position (0, 0, 0)—if not, use the context menu () to reset it.

Let’s make the cylinder tall and skinny. Choose the Scale tool from the toolbar: either click on it () or
press the R key. You should see the Scale Gizmo appear on your cylinder:

The Scale Gizmo looks a lot like the Move Gizmo, except that it has cubes
instead of cones at the end of each axis. Your new cylinder is sitting on top
of the sphere—you might see just a little of the sphere showing through the
middle of the cylinder. When you make the cylinder narrower by changing

its scale along the X and Z axes, the sphere will get uncovered.

Click and drag the green cube up to elongate your cylinder along the Y axis. Then click on the red cube
and drag it toward the cylinder to make it very narrow along the X axis, and do the same with the blue
cube to make it very narrow along the Z axis. Watch the Transform panel in the Inspector as you change
the cylinder’s scale—the Y scale will get larger, and the X and Z values will get much smaller.

Click on the X label in the Scale row in the Transform panel and drag up and down. Make
sure you click the actual X label to the left of the input box with the number. When you click the label
it turns blue, and a blue box appears around the X value. As you drag your mouse up and down, the
number in the box goes up and down, and the Scene view updates the scale as you change it. Look
closely as you drag—the scale can be positive and negative. Now reset the Transform window.

Now select the number inside the X box and type 0.1—the cylinder gets very skinny. Press Tab
and type 20, then press Tab again and type 0.1, and press Enter.

Now your sphere has a very long cylinder going through it that shows the Y axis where Y = 0.

You might notice the Position
values change when you make the
X and Z Scale values very small.

When you edit the values in the
Properties window, you can see the
results update in the scene immediately.

Unity Lab #2
Write C# Code for Unity

Head First C# Unity Lab 265

Add fields to your class for the rotation angle and speed
In Chapter 3, you learned how C# classes can have fields that store values methods can use. Let’s modify your code
to use fields. Add these four lines just under the class declaration, immediately after the first curly brace {:
public class BallBehaviour : MonoBehaviour
{
 public float XRotation = 0;
 public float YRotation = 1;
 public float ZRotation = 0;
 public float DegreesPerSecond = 180;

The XRotation, YRotation, and ZRotation fields each contain a value between 0 and 1, which you’ll combine to
create a vector that determines the direction that the ball will rotate:

 new Vector3(XRotation, YRotation, ZRotation)

The DegreesPerSecond field contains the number of degrees to rotate per second, which you’ll multiply by Time.
deltaTime just like before. Modify your Update method to use the fields. This new code creates a Vector3
variable called axis and passes it to the transform.Rotate method:

 void Update()
 {
 Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);
 transform.Rotate(axis, DegreesPerSecond * Time.deltaTime);
 }

Select the Sphere in the Hierarchy window. Your fields now show up in the Script component. When the Script
component renders fields, it adds spaces between the capital letters to make them easier to read.

When you add public fields to a class in your Unity script,
the Script component displays input boxes that let you
modify those fields. If you modify them while the game
is not running, the updated values will get saved with

your scene. You can also modify them while the game is
running, but they’ll revert when you stop the game.

Run your game again. While it’s running, select the Sphere in the Hierarchy window and change the degrees per
second to 360 or 90—the ball starts to spin at twice or half the speed. Stop your game—and the field will reset to 180.

While the game is stopped, use the Unity editor to change the X Rotation field to 1 and the Y Rotation field to 0.
Start your game—the ball will rotate away from you. Click the X Rotation label and drag it up and down to change
the value while the game is running. As soon as the number turns negative, the ball starts rotating toward you. Make it
positive again, and it starts rotating away from you.

When you use the Unity editor to set the Y Rotation field to 1 and then start your game, the ball rotates clockwise around the Y axis.

These are just like the fields that you added to the
projects in Chapters 3 and 4. They’re variables that

keep track of their values—each time Update is
called, it reuses the same field over and over again.

Unity Lab #2
Write C# Code for Unity

266 https://github.com/head-first-csharp/fifth-edition

Use Debug.DrawRay to explore how 3D vectors work
A vector is a value with a length (or magnitude) and a direction. If you ever learned about vectors in a
math class, you probably saw lots of diagrams like this one of a 2D vector:

Here’s a diagram of a two-dimensional vector.
You can represent it with two numbers: its

value on the X axis (4) and its value on the Y
axis (3), which you’d typically write as (4, 3).

Y

4
3

X
That’s not hard to understand…on an intellectual level. But even those of us who took a math class that
covered vectors don’t always have an intuitive grasp of how vectors work, especially in 3D. Here’s another
area where we can use C# and Unity as a tool for learning and exploration.

Use Unity to visualize vectors in 3D
You’re going to add code to your game to help you really “get” how 3D vectors work. Start by having a closer
look at the first line of your Update method:

 Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);

What does this line tell us about the vector?

 " It has a type: Vector3. Every variable declaration starts with a type. Instead of using string, int, or
bool, you’re declaring it with the type Vector3. This is a type that Unity uses for 3D vectors.

 " It has a variable name: axis.

 " It uses the new keyword to create a Vector3. It uses the XRotation, YRotation, and ZRotation
fields to create a vector with those values.

So what does that 3D vector look like? There’s no need to guess—we can use one of Unity’s useful debugging
tools to draw the vector for us. Add this line of code to the end of your Update method:

 void Update()
 {
 Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);
 transform.Rotate(axis, DegreesPerSecond * Time.deltaTime);
 Debug.DrawRay(Vector3.zero, axis, Color.yellow);
 }

The Debug.DrawRay method is a special method that Unity provides to help you debug your games. It draws
a ray—which is a vector that goes from one point to another—and takes parameters for its start point, end
point, and color. There’s one catch: the ray only appears in the Scene view. The methods in Unity’s
Debug class are designed so that they don’t interfere with your game. They typically only affect how your
game interacts with the Unity editor.

Unity Lab #2
Write C# Code for Unity

Head First C# Unity Lab 267

Run the game to see the ray in the Scene view
Now run your game again. You won’t see anything different in the Game view because Debug.DrawRay is a tool
for debugging that doesn’t affect gameplay at all. Use the Scene tab to switch to the Scene view. You may also
need to reset the Wide layout by choosing Wide from the Layout dropdown.

Now you’re back in the familiar Scene view. Do these things to get a real sense of how 3D vectors work:

 " Use the Inspector to modify the BallBehaviour script’s fields. Set the X Rotation to 0, Y Rotation
to 0, and Z Rotation to 3. You should now see a yellow ray coming directly out of the Z axis and the ball
rotating around it (remember, the ray only shows up in the Scene view).

The vector (0, 0, 3) extends 3 units along the Z axis. Look closely at the
grid in the Unity editor—the vector is exactly 3 units long. Try clicking

and dragging the Z Rotation label in the Script component in the
Inspector. The ray will get larger or smaller as you drag. When the Z
value in the vector is negative, the ball rotates in the other direction.

 " Set the Z Rotation back to 3. Experiment with dragging the X Rotation and Y Rotation values to see what
they do to the ray. Make sure to reset the Transform component each time you change them.

 " Use the Hand tool and the Scene Gizmo to get a better view. Click the X cone on the Scene Gizmo to set
it to the view from the right. Keep clicking the cones on the Scene Gizmo until you see the view from the
front. It’s easy to get lost—you can reset the Wide layout to get back to a familiar view.

Add a duration to the ray so it leaves a trail
You can add a fourth argument to your Debug.DrawRay method call that specifies the number of seconds the ray
should stay on the screen. Add .5f to make each ray stay on screen for half a second:

 Debug.DrawRay(Vector3.zero, axis, Color.yellow, .5f);

Now run the game again and switch to the Scene view. Now when you drag the numbers up and down, you’ll see a
trail of rays left behind. This looks really interesting, but more importantly, it’s a great tool to visualize 3D vectors.

Making your ray leave a trail is a good
way to help you develop an intuitive sense
of how 3D vectors work.

You can use the Inspector window to modify the fields in
a Script component while the game is running. The field

values will reset when you stop the game. It will remember
the values if you set them while the game is stopped.

Unity Lab #2
Write C# Code for Unity

268 https://github.com/head-first-csharp/fifth-edition

Rotate your ball around a point in the scene
Your code calls the transform.Rotate method to rotate your ball around its center, which changes its X, Y, and Z
rotation values. Select Sphere in the Hierarchy window and change its X position to 5 in the Transform
component. Then use the context menu () in the BallBehaviour Script component to reset its fields.
Run the game again—now the ball will be at position (5, 0, 0) and rotating around its own Y axis.

Changing the X position to 5 causes
the ball to rotate in place away
from the center of the scene.

Let’s modify the Update method to use a different kind of rotation. Now we’ll make the ball rotate around the
center point of the scene, coordinate (0, 0, 0), using the transform.RotateAround method, which rotates
a GameObject around a point in the scene. (This is different from the transform.Rotate method you used earlier,
which rotates a GameObject around its center.) Its first parameter is the point to rotate around. We’ll use
Vector3.zero for that parameter, which is a shortcut for writing new Vector3(0, 0, 0).

Here’s the new Update method:

void Update()
{
 Vector3 axis = new Vector3(XRotation, YRotation, ZRotation);
 transform.RotateAround(Vector3.zero, axis, DegreesPerSecond * Time.deltaTime);
 Debug.DrawRay(Vector3.zero, axis, Color.yellow, .5f);
}

Now run your code. This time it rotates the ball in a big circle around the center point:

This new Update method rotates the ball around the point (0, 0, 0) in the scene.

Unity Lab #2
Write C# Code for Unity

Head First C# Unity Lab 269

Use Unity to take a closer look at rotation and vectors
You’re going to be working with 3D objects and scenes in the rest of the Unity Labs throughout the
book. Even those of us who spend a lot of time playing 3D video games don’t have a perfect feel for how
vectors and 3D objects work, and how to move and rotate in a 3D space. Luckily, Unity is a great tool to
explore how 3D objects work. Let’s start experimenting right now.

While your code is running, try changing parameters to experiment with the rotation:

 " Switch back to the Scene view so you can see the yellow ray that Debug.DrawRay renders in
your BallBehaviour.Update method.

 " Use the Hierarchy window to select the Sphere. You should see its components in the
Inspector window.

 " Change the X Rotation, Y Rotation, and Z Rotation values in the Script component to 10
so you see the vector rendered as a long ray. Use the Hand tool (Q) to rotate the Scene view until
you can clearly see the ray.

 " Use the Transform component’s context menu () to reset the Transform component.
Since the center of the sphere is now at the zero point in the scene, (0, 0, 0), it will rotate around
its own center.

 " Then change the X position in the Transform component to 2. The ball should now be
rotating around the vector. You’ll see the ball cast a shadow on the Y axis cylinder as it flies by.

While the game is running, set the X, Y, and Z Rotation fields in the BallBehaviour Script component to 10, reset the sphere’s Transform component, and change its X position to 2—as soon as you do, it starts rotating around the ray.

Try repeating the last three steps for different values of X, Y, and Z
rotation, resetting the Transform component each time so you start from a
fixed point. Then try clicking the rotation field labels and dragging them up
and down—see if you can get a feel for how the rotation works.

Unity is a
great tool to
explore how 3D
objects work
by modifying
properties on
your GameObjects
in real time.

Unity Lab #2
Write C# Code for Unity

270 https://github.com/head-first-csharp/fifth-edition

Get creative!
This is your chance to experiment on your own with C# and Unity.
You’ve seen the basics of how you combine C# and Unity GameObjects. Take
some time and play around with the different Unity tools and methods that
you’ve learned about in the first two Unity Labs. Here are some ideas:

 " Add cubes, cylinders, or capsules to your scene. Attach new scripts to
them—make sure you give each script a unique name!—and make them
rotate in different ways.

 " Try putting your rotating GameObjects in different positions around the
scene. See if you can make interesting visual patterns out of multiple
rotating GameObjects.

 " Try adding a light to the scene. What happens when you use
transform.rotateAround to rotate the new light around various axes?

 " Here’s a quick coding challenge: try using += to add a value to one of the
fields in your BallBehaviour script. Make sure you multiply that value by
Time.deltaTime. Try adding an if statement that resets the field to 0 if it
gets too large.

Take the time
to experiment
with the tools
and techniques
you just learned.
This is a great
way to take
advantage of
Unity and Visual
Studio as tools
for exploration
and learning.

Before you run the code, try to figure out what it will do. Does it
act the way you expected it to act? Trying to predict how the code
you added will act is a great technique for getting better at C#.

 ◾ The Scene Gizmo always displays the camera’s
orientation.

 ◾ You can attach a C# script to any GameObject. The
script’s Update method will be called once per frame.

 ◾ The transform.Rotate method causes a GameObject
to rotate a number of degrees around an axis.

 ◾ Inside your Update method, multiplying any value by
Time.deltaTime turns it into that value per second.

 ◾ You can attach the Visual Studio debugger to Unity
to debug your game while it’s running. It will stay
attached to Unity even when your game is not
running.

 ◾ Adding a Hit Count condition to a breakpoint makes
it break after the statement has executed a certain
number of times.

 ◾ A field is a variable that lives inside of a class outside
of its methods, and it retains its value between
method calls.

 ◾ Adding public fields to the class in your Unity script
makes the Script component show input boxes that
let you modify those fields. It adds spaces between
capital letters in the field names to make them easier
to read.

 ◾ You can create 3D vectors using new Vector3. (You
learned about the new keyword in Chapter 3.)

 ◾ The Debug.DrawRay method draws a vector in the
Scene view (but not the Game view). You can use
vectors as a debugging tool, but also as a learning
tool.

 ◾ The transform.RotateAround method rotates a
GameObject around a point in the scene.

Bullet Points

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform
free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900v_8x9.25

	Title page
	Copyright
	About the authors
	Table of Contents
	Introduction
	Who is this book for?
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did
	README.md
	The technical review team
	Acknowledgments

	Chapter 1
	Learn C#…and learn to become a great developer
	Write code and explore C# with Visual Studio
	Install Visual Studio Community Edition
	Run Visual Studio
	Create and run your first C# project in Visual Studio
	You can use Visual Studio Code with Head First C#
	Install the C# extensions
	Create and run your first project in Visual Studio Code
	Set up Visual Studio Code for the next project
	Let’s build a game!
	Break up large projects into smaller parts
	Here’s how you’ll build your game
	Create a .NET MAUI project in Visual Studio
	Run your new .NET MAUI app
	MAUI apps work on all of your devices
	Here’s the page that you’ll build
	Start editing your XAML code
	Add the XAML for a Button and a Label
	Use a FlexLayout to make a grid of animal buttons
	Write C# code to add the animals to the buttons
	Start editing the PlayAgainButton event handler method
	Add more statements to your event handler
	Add animals to your buttons
	Run your app!
	Visual Studio makes it easy to use Git
	Add C# code to handle mouse clicks
	Enter the code for the event handler
	Run your app and find all the pairs
	Finish the game by adding a timer
	Add a timer to your game’s code
	Finish the code for your game
	Even better ifs…

	Chapter 2
	Take a closer look at the files in your console app
	Statements are the building blocks for your apps
	Statements live inside methods
	Your methods use variables to work with data
	Generate a new method to work with variables
	Add code that uses operators to your method
	Use the debugger to watch your variables change
	Use code snippets to help write loops
	Use operators to work with variables
	if statements make decisions
	Loops perform an action over and over
	Controls drive the mechanics of your user interfaces
	Other controls you’ll use in this book
	Build a .NET MAUI app to experiment with controls
	Create a new app to experiment with controls
	Explore your new MAUI app and figure out how it works
	Add an Entry control to your app
	Add properties to your Entry control
	Make your Entry control update a Label control
	Combine horizontal and vertical stack layouts
	Add a Picker control to display a list of choices

	Unity Lab #1
	Unity is a powerful tool for game design
	Download Unity Hub
	Use Unity Hub to create a new project
	Your scene is a 3D environment
	Unity games are made with GameObjects
	Use the Move Gizmo to move your GameObjects
	The Inspector shows your GameObject’s components
	Add a material to your Sphere GameObject
	Rotate your sphere
	Get creative!

	Chapter 3
	Classes help you organize your code
	If code is useful, classes can help you reuse it
	Some methods take parameters and return a value
	Visual Studio helps you explore parameters and return values
	Let’s build an app that picks random cards
	You’ll use an array to store the cards
	Create an app with a Main method
	Add a class called CardPicker to your app
	Use Quick Actions to remove unnecessary using lines
	Convert between namespace styles
	Use the new keyword to create an array of strings
	Ana’s working on her next game
	Ana’s game is evolving…
	Build a paper prototype for a classic game
	Build a MAUI version of your random card app
	Make your MAUI app pick random cards
	Reuse your CardPicker class
	Add a using directive to use code in another namespace
	Ana's prototypes look great…
	Ana can use objects to solve her problem
	You use a class to build an object
	When you create a new object from a class, it’s called an instance of that class
	A better solution for Ana…brought to you by objects
	An instance uses fields to keep track of things
	Thanks for the memory
	What’s on your app’s mind
	Sometimes code can be difficult to read
	Most code doesn’t come with a manual
	Use intuitive class and method names
	Build a class to work with some guys
	There’s an easier way to initialize objects with C#
	Use the C# Interactive window or csi to run C# code

	Chapter 4
	Owen could use our help!
	Character sheets store different types of data on paper
	A variable’s type determines what kind of data it can store
	C# has several types for storing integers
	Types for storing really HUGE and really numbers
	Let’s talk about strings
	A literal is a value written directly into your code
	A variable is like a data to-go cup
	Other types come in different sizes too
	10 pounds of data in a 5-pound bag
	Casting lets you copy values that C# can’t automatically convert to another type
	C# does some conversions automatically
	When you call a method, the arguments need to be compatible with the types of the parameters
	Owen is constantly improving his game…
	Let’s help Owen experiment with ability scores
	Fix the compiler error by adding a cast
	Use reference variables to access your objects
	References are like sticky notes for your objects
	If there aren’t any more references,your object gets garbage-collected
	Multiple references and their side effects
	Two references mean TWO variables that can change the same object’s data
	Objects use references to talk to each other
	Arrays hold multiple values
	Arrays can contain reference variables
	null means a reference points to nothing
	Use the string? type when a string might be null
	Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
	Sloppy Joe's menu app uses a Grid layout
	Grid controls
	Define the rows and columns for a Grid
	Create the Sloppy Joe's menu app and set up the grid
	The C# code for the main page
	Can we make the app more accessible?
	Use the SetValue method to change a control’s semantic properties

	Unity Lab #2
	C# scripts add behavior to your GameObjects
	Add a C# script to your GameObject
	Write C# code to rotate your sphere
	Add a breakpoint and debug your game
	Use the debugger to understand Time.deltaTime
	Add a cylinder to show where the Y axis is
	Add fields to your class for the rotation angle and speed
	Use Debug.DrawRay to explore how 3D vectors work
	Run the game to see the ray in the Scene view
	Rotate your ball around a point in the scene
	Use Unity to take a closer look at rotation and vectors
	Get creative!

	Chapter 5
	Let’s help Owen roll for damage
	Create a console app to calculate damage
	Design a MAUI version of the damage calculator app
	Tabletop talk (or maybe…dice discussion?)
	Let’s try to fix that bug
	Use Debug.WriteLine to print diagnostic information
	It’s easy to accidentally misuse your objects
	Encapsulation means keeping some data in a class private
	Use encapsulation to control access to your class’s methods and fields
	But is the RealName field REALLY protected?
	Private fields and methods can only be accessed from instances of the same class
	Why encapsulation? Think of an object as an opaque box…
	Let’s use encapsulation toimprove the SwordDamage class
	Encapsulation keeps your data safe
	Write a console app to test the PaintballGun class
	Properties make encapsulation easier
	Modify your top-level statements to use the Balls property
	Auto-implemented properties simplify your code
	Use a private setter to create a read-only property
	What if we want to change the magazine size?
	Use a constructor with parameters to initialize properties
	Specify arguments when you use the new keyword
	Initialize fields and properties inline or in the constructor
	Make the screen reader announce each roll
	A few useful facts about methods and properties

	Chapter 6
	Calculate damage for MORE weapons
	Use a switch statement to match several candidates
	One more thing…can we calculate damage for a dagger? And a mace? And a staff? and...
	When your classes use inheritance, you only need to write your code once
	Build up your class model by starting general and getting more specific
	How would you design a zoo simulator?
	Different animals have different behaviors
	Every subclass extends its base class
	Any place where you can use a base class, you can use one of its subclasses instead
	Use a colon to extend a base class
	We know that inheritance adds the base class fields, properties, and methods to the subclass…
	A subclass can override methods to change or replace members it inherited
	Some members are only implemented in a subclass
	Use the debugger to understand how overriding works
	Build an app to explore virtual and override
	A subclass can hide methods in the base class
	Use the override and virtual keywords to inherit behavior
	A subclass can access its base class using the base keyword
	When a base class has a constructor, your subclass needs to call it
	A subclass and base class can have different constructors
	It’s time to finish the job for Owen
	A class should do one thing
	Build a beehive management system
	How the Beehive Management System app works
	The page uses a grid to lay out the controls for the UI
	The Beehive Management System class model
	All bees in the system extend the Bee class
	All the constants are in their own static class
	The worker bees extend the Bee class
	The Queen class: how she manages the worker bees
	Here’s the code-behind for MainPage.xaml.cs
	Feedback drives your beehive management game
	The Beehive Management System is turn-based…now let’s convert it to real-time
	Some classes should never be instantiated
	An abstract class is an intentionally incomplete class
	Like we said, some classes should never be instantiated
	An abstract method doesn’t have a body
	Abstract properties work just like abstract methods
	The Deadly Diamond of Death

	Unity Lab #3
	Let’s build a game in Unity!
	Create a new material inside the Materials folder
	Spawn a billiard ball at a random point in the scene
	Use the debugger to understand Random.value
	Turn your GameObject into a prefab
	Create a script to control the game
	Attach the GameController script to the Main Camera
	Press Play to run your code
	Use the Inspector to work with GameObject instances
	Use physics to keep balls from overlapping
	Get creative!

	Chapter 7
	The beehive is under attack!
	We could use casting to call the DefendHive method…
	An interface defines methods and properties that a class must implement…
	Interfaces let unrelated classes do the same job
	Get a little practice using interfaces
	If you’re given… What’s the picture?
	If you’re given… What’s the declaration?
	You can’t instantiate an interface, but you can reference an interface
	Interface references are ordinary object references
	The RoboBee 4000 can do a worker bee’s job without using valuable honey
	The IWorker's Job property is a hack
	Use is to check the type of an object
	Use is to access methods in a subclass
	What if we want different animals to swim or hunt in packs?
	Use interfaces to work with classes that do the same job
	Safely navigate your class hierarchy with is
	C# has another tool for safe type conversion: the as keyword
	Use upcasting and downcasting tomove up and down a class hierarchy
	A quick example of upcasting
	Upcasting turns your CoffeeMaker into an Appliance
	Downcasting turns your Appliance back into a CoffeeMaker
	Upcasting and downcasting work with interfaces too
	Interfaces can inherit from other interfaces
	Interfaces can have static members
	Default implementations give bodies to interface methods
	Add a ScareAdults method with a default implementation
	Data binding updates MAUI controls automatically
	Add data binding to the default MAUI app
	Make Moods implement the INotifyPropertyChanged interface
	Use the PropertyChanged event to make data binding work
	Polymorphism means that one object can take many different forms

	Chapter 8
	If a constructor just sets fields, use a primary constructor instead
	A primary constructor can extend a base constructor
	Strings don’t always work for storing categories of data
	Enums let you work with a set of valid values
	Enums let you represent numbers with names
	We could use an array to create a deck of cards…
	Arrays can be annoying to work with
	Lists make it easy to store collections of…anything
	Lists are more flexible than arrays
	Let’s build an app to store shoes
	Generic collections can store any type
	You can use collection expressions to create Lists
	Let’s create a List of Ducks
	Sorting lists can be tricky
	IComparable<Duck> helps your List sort its Ducks
	Use IComparer to tell your List how to sort
	Create an instance of your comparer object
	Comparers can do complex comparisons
	Overriding a ToString method lets an object describe itself
	Update your foreach loops to let your Ducks and Cards write themselves to the console
	You can upcast an entire list using IEnumerable<T>
	Use a Dictionary to store keys and values
	The Dictionary functionality rundown
	Write an app that uses a Dictionary
	And yet MORE collection types…
	A queue is FIFO—first in, first out
	A stack is LIFO—last in, first out
	CollectionView is a MAUI control built for displaying collections
	ObservableCollection is a collection made for data binding
	Add your Card class to the project
	Use XAML to instantiate your objects for data binding
	Modify your app to use a resource Dictionary
	Modify the event handlers to use the resource Dictionary
	Use what you’ve learned to build an app with two decks

	Unity Lab #4
	Add a score that goes up when the player clicks a ball
	Add two different modes to your game
	Add game mode to your game
	Add a UI to your game
	Set up the Text that will display the score in the UI
	Add a Button that calls a method to start the game
	Make the Play Again button and Score Text work
	Finish the code for the game
	Get creative!

	Chapter 9
	Jimmy’s a Captain Amazing superfan…
	…but his collection’s all over the place
	Use LINQ to query your collections
	LINQ works with any sequence
	LINQ’s query syntax
	LINQ works with objects
	Use a LINQ query to finish the app for Jimmy
	The var keyword lets C# figure out variable types for you
	LINQ is versatile
	LINQ queries aren’t run until you access their results
	Use a group query to separate your sequence into groups
	Use join queries to merge data from two sequences
	Use the new keyword to create anonymous types
	Unit tests help you make sure your code works
	Start writing your first test method
	Give your unit tests access to the classes they’re testing
	One project can only access public classes in another project
	Use the Arrange-Act-Assert pattern to write an effective test
	Finish your first unit test
	Write a unit test for the GetReviews method
	Write unit tests to handle edge cases and weird data
	Use the => operator to create lambda expressions
	Refactor a clown with lambdas
	Use the ?: operator to make your lambdas make choices
	LINQ queries are made up of methods
	LINQ declarative syntax can be refactored into chained methods
	Use the => operator to create switch expressions
	Explore the Enumerable class
	Create an enumerable sequence by hand
	Use yield return to create your own sequences
	Use yield return to refactor ManualSportSequence
	Downloadable exercise: Go Fish

	Chapter 10
	.NET uses streams to read and write data
	Different streams read and write different things
	A FileStream reads and writes bytes in a file
	Write text to a file in three simple steps
	The Swindler launches another diabolical plan
	Use a StreamReader to read a file
	Data can go through more than one stream
	Use the static File and Directory classes to work with files and directories
	IDisposable makes sure objects are closed properly
	Avoid filesystem errors with using statements
	Use a MemoryStream to stream data to memory
	What happens to an object when it’s serialized?
	But what exactly IS an object’s state?What needs to be saved?
	When an object is serialized, all of the objects it refers to get serialized too…
	Use JsonSerializer to serialize your objects
	JSON only includes data, not specific C# types
	Next up: we’ll take a deep dive into our data
	C# strings are encoded with Unicode
	Visual Studio works really well with Unicode
	.NET uses Unicode to store characters and text
	C# can use byte arrays to move data around
	Use a BinaryWriter to write binary data
	Use BinaryReader to read the data back in
	A hex dump lets you see the bytes in your files
	Use StreamReader to build a hex dumper
	Use Stream.Read to read bytes from a stream
	Modify your hex dumper to read directly from the stream
	Run your app from the command line
	Pass command-line arguments to an app run in the IDE
	Downloadable exercise: Hide and Seek

	Unity Lab #5
	Create a new Unity project and start to set up the scene
	Set up the camera
	Create a GameObject for the player
	Introducing Unity’s navigation system
	Install the AI Navigation package
	Things you’ll do with navigation
	Set up the NavMesh
	Make your player automatically navigate the play area

	Chapter 11
	The life and death of an object
	Use the GC class (with caution) to force garbage collection
	Your last chance to DO something…your object’s finalizer
	When EXACTLY does a finalizer run?
	Finalizers can’t depend on other objects
	A struct looks like an object…
	Values get copied; references get assigned
	Structs are value types; objects are reference types
	The stack vs. the heap: more on memory
	Use out parameters to make a methodreturn more than one value
	Pass by reference using the ref modifier
	Use optional parameters to set default values
	A null reference doesn’t refer to any object
	Non-nullable reference types help you avoid NREs
	Nullable value types can be null…and handled safely
	The null-coalescing operator ?? checks for nulls automatically
	“Captain” Amazing…not so much
	Records give your objects value equality automatically
	Don’t modify records—copy them
	Extension methods add new behavior to EXISTING classes
	Extending a fundamental type: string

	Chapter 12
	Your hex dumper reads a filenamefrom the command line
	When your program throws an exception, the CLR generates an Exception object
	All Exception objects inherit from System.Exception
	There are some files you just can’t dump
	What happens when a method you want to call is risky?
	Handle exceptions with try and catch
	Use the debugger to follow the try/catch flow
	If you have code that ALWAYS needs to run, use a finally block
	Catch-all exceptions handle System.Exception
	Use the right exception for the situation
	Exception filters help you create precise handlers
	The worst catch block EVER: catch-all plus comments
	Temporary solutions are OK (temporarily)
	Use NuGet to add a logging library to your app
	Add logging to your ExceptionExperiment app

	Unity Lab #6
	Let’s pick up where the last Unity Lab left off
	Add a platform to your scene
	Use bake options to make the platform walkable
	Include the stairs and ramp in the NavMesh
	Make the player navigate around the obstacles
	Get creative!
	Downloadable exercise: animal match boss battle

	Thank you for reading our book!
	Index

