
Andrew Stellman
Go Fish!

Andrew Stellman
https://github.com/head-first-csharp/fifth-edition

Andrew Stellman
This is the downloadable project from Chapter 9.

Andrew Stellman

Andrew Stellman

Andrew Stellman
Check out our GitHub page for videos, downloads, and more!

Praise for Head First C#

“In a sea of dry technical manuals, Head First C# stands out as a beacon of brilliance. Its unique teaching style
not only imparts essential knowledge but also sparks curiosity and fuels passion for coding. An indispensable
resource for beginners!”

—Gerald Versluis, Senior Software Engineer at Microsoft

“Head First C# started my career as a software engineer and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books have helped me to launch my career.”

—Ryan White, Game Developer

“If you’re a new C# developer (welcome to the party!), I highly recommend Head First C#. Andrew and Jennifer
have written a concise, authoritative, and most of all, fun introduction to C# development. I wish I’d had this
book when I was first learning C#!”

—Jon Galloway, Senior Program Manager on the .NET Community Team, Microsoft

“Not only does Head First C# cover all the nuances it took me a long time to understand, it has that Head First
magic going on where it is just a super fun read.”

—Jeff Counts, Senior C# Developer

“Head First C# is a great book with fun examples that keep learning interesting.”

—Lindsey Bieda, Lead Software Engineer

“Head First C# is a great book, both for brand-new developers and developers like myself coming from a Java
background. No assumptions are made as to the reader’s proficiency, yet the material builds up quickly enough
for those who are not complete newbies—a hard balance to strike. This book got me up to speed in no time for
my first large-scale C# development project at work—I highly recommend it.”

—Shalewa Odusanya, Principal

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I’ve ever
seen—the samples are clear, the topics are concise and well written. The mini-games that guide you through the
different programming challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”

—Johnny Halife, Partner

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The many
coding challenges keep it fun, even when the concepts are tough.”

—Rebeca Dunn-Krahn, Founding Partner, Sempahore Solutions

Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want
to learn C# in depth and have fun doing it, this is THE book for you.”

—Andy Parker, fledgling C# Programmer

“It’s hard to really learn a programming language without good, engaging examples, and this book is full of them! Head
First C# will guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

—Chris Burrows, Software Engineer

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable
while covering a great amount of detail in a unique style. If you’ve been turned off by more conventional books on C#,
you’ll love this one.”

—Jay Hilyard, Director and Software Security Architect, and author of
 C# 6.0 Cookbook

“I’d recommend this book to anyone looking for a great introduction into the world of programming and C#. From the
first page onward, the authors walk the reader through some of the more challenging concepts of C# in a simple, easy-
to-follow way. At the end of some of the larger projects/labs, the reader can look back at their programs and stand in
awe of what they’ve accomplished.”

—David Sterling, Principal Software Developer

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style is
sure to captivate readers—from the humorously annotated examples to the Fireside Chats, where the abstract class and
interface butt heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

— Joseph Albahari, inventor of LINQPad, and coauthor of C# 12 in a Nutshell and
C# 12 Pocket Reference

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to
jump into the C# waters. I will recommend it to the advanced developer that wants to understand better what is
happening with their code. [I will recommend it to developers who] want to find a better way to explain how C# works
to their less-seasoned developer friends.”

—Giuseppe Turitto, Director of Engineering

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and
enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Advanced Systems Analyst

“Going through this Head First C# book was a great experience. I have not come across a book series which actually
teaches you so well.…This is a book I would definitely recommend to people wanting to learn C#.”

—Krishna Pala, MCP

Praise for the Head First Approach

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

—Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, former VP of Design, Twitter, and founder of Newsvine

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of

pragmatism and wit.”

— Ken Goldstein, Executive VP & Managing Director, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Beijing		•		Boston		•		Farnham		•			Sebastopol			•		Tokyo

Head First C#

Wouldn’t it be dreamy if
there was a C# book that’s

more fun than memorizing
a dictionary? It’s probably
nothing but a fantasy...

Andrew Stellman
Jennifer Greene

Downloadable Project9

Go Fish!

Write your tests first. Code confidently. Catch bugs before they happen.
One of the most important ideas we’ve emphasized throughout this book is that writing C# code is a skill,

and the best way to improve that skill is to get lots of practice. We want to give you as many opportunities

to get practice as possible! In this next exercise you’ll build a Go Fish card game where you play against

computer players—it’s a complete app, and it’s a longer project to give you some great C# practice. But

there’s more to this project than just writing code. Unit testing will play an important part, because you’ll be

doing test-driven development. That’s a technique where you write your unit tests before you write the

code that they test. That sounds a little crazy the first time you hear it, but it’s an extremely effective way

to write your classes (not to mention a really important professional development skill!).

You can download the latest version of this PDF from https://github.com/head-first-csharp/fifth-edition

this is a new chapter 1

Build a card game where you play against the computer
In this project, you’ll build a card game where a person plays Go Fish! against a number of computer
players. Like some of the other projects in the book , you’ll do it in parts.

The rules of Go Fish!
Go Fish! is a game played by two to five players. There are a few variations—here are the rules that you’ll
use for your version:

 ≥ The game is played with one human player and up to four computer players.

 ≥ The game starts with a shuffled deck of 52 playing cards.

 ≥ Each player is dealt a hand of 5 cards from the deck. The remaining cards are called the stock.

 ≥ The players play rounds, taking turns playing the round. The human player starts each round,
followed by each computer player. They go in the same order during each round. During the
round, each player:

 → Chooses a value from their hand. The value must match one of the cards in the player’s hand.

 → Chooses another player and asks if they have any cards of that value.

 → If the other player has any cards with that value, those cards are moved from the other player’s
hand to the hand of the player who asked for them.

 → If the other player does not have any cards with that value, the player asking for the card must “Go
fish!” and draw a card from the stock. If the stock is out, the player does not draw a card.

 → The player checks their hand for books of cards. A book is a set of all four cards in each suit
that have the same value. They remove any complete books from their hand and set them aside.
After a book is set aside, that book’s value is no longer part of the game.

 ≥ The game ends when all players are out of cards. The winner of the game is the player with the
most books. The game can end in a tie.

Playing a sample round
Let’s walk through one player’s actions during a sample round, just to make sure the rules are clear.

The player checks their hand to see
what values they have.
We’ll start with a player that currently has a hand
of six cards: Ten of Hearts, Six of Spades, Seven of
Diamonds, Eight of Spades, Ten of Diamonds, and
Ten of Clubs. It’s that player’s turn to ask for a card.

1

2 Chapter 9

the rules of go fish!

The player chooses a value and
asks another player for that value.
The current player decides to ask for tens
and selects another player to ask. They then
ask that other player, “Do you have any 10s?”

2

The other player hands over any
cards with that value.
In this case, the other player has one ten, the
Ten of Spades. They hand that card over to
the player who asked for the card.

3

The card is added to the player’s hand.
The player who asked for the ten adds the Ten of
Spades to their hand. Their hand now has all four tens.

Pull out books and move to the next player.
The player pulls out the book of tens and sets them
aside. The player is now done playing the round, and
gameplay moves to the next player in the game.

4

5

How would you start building your own Go Fish! game? If you wanted
to break the project into smaller parts, what part would you start with?

Brain
Power

Do you have any aces?

you are here � 3

go fish!

Top-level statements
GameController gameController

Values AskForValue
Player AskForPlayer

GameController
private GameState gameState
bool GameOver
Player HumanPlayer
IEnumerable<Player> Opponents
string Status

NextRound
ComputerPlayersPlayNextRound
NewGame

GameState
IEnumerable<Player> Players
IEnumerable<Player> Opponents
Player HumanPlayer
bool GameOver
Deck Stock

Player RandomPlayer
string PlayRound
string CheckForWinner

0MZM¼[�\PM�KTI[[�LQIOZIU
Your game will use the same Deck and Card classes you
used in your Chapter 8 “Two Decks” project. You’ll
build top-level statements and three additional classes:
GameController, GameState, and Player.

Player

IEnumerable<Card> Hand
IEnumerable<Values> Books
string Name

string Status
GetNextHand
IEnumerabe<Card> DoYouHaveAny
AddCardsAndPullOutBooks
DrawCard(Deck stock)
Values RandomValueFromHand
override string ToString

This is the Deck class
from the “Two Decks”
project in Chapter 8. You
modified it in Chapter
9 to make the Shuffle
method work with
method chaining. Now
you'll add a Deal method
that deals a number of
cards from the deck.

This is the Card class from
the “Two Decks” project.
It uses the Suits and
Values enums, and in the
WPF version, it also uses
the CardComparerByValue
class in its Sort method.

The top-level statements run
the “Go Fish!” game. They all
of the code to prompt the
user for input, display output,
and run the main game loop.

The GameController class manages the game. It makes the players play each round, keeps track of when the game is over, and provide a Status property that has a string description of what happened in the most recent round.
The GameState class
keeps references to
all of the players
and the deck, and
has methods that
GamController uses
to play each round.

The Player class keeps track of
each player (computer or human),
with properties for their cards
and books, and methods to play
a round in the game.

IEnumerable<Card>

LINQ methods

Deck

Card Deal
Reset
'HFN�6KXIÀH
Sort

Card
Values Value
Suits Suit
string Name
override string ToString

4 Chapter 9

the class diagram

AW]¼TT�J]QTL�\PQ[�XZWRMK\�QV�U]T\QXTM�XIZ\[
starting with the Player class
You’ve done several “Long Exercise” projects now, and each time you broke the project down into steps that you could
build one at a time. You’ll do the same for this project. Here’s how it will work:

1. First, you’ll build the Player class with members that control a player and keep track of its hand and books.

2. Then you’ll build the GameState class that keeps track of the players and deck in the game, with methods to
play a round.

3. After that, you’ll build the GameController class that manages the game, calling methods to play round after
round until the game is over.

4. Finally, you’ll build the top-level statements that take input from the user and display the state of the game.

How am I supposed to build those classes in that order?
I can’t run the code in the Player class until I have a GameState, and I can’t get to

that code without a GameController, and that won’t work unless it’s called
from the top-level statements.

You’ll use unit tests to build and test each class, starting from the
bottom of the class diagram and working your way up.
The class diagrams that you’ve seen in the book so far showed you the class members (fields,
properties, and methods) and hierarchy (base classes and interfaces they extended). We
added additional information to the class diagram for this project: lines that connect the
classes and show how each class uses the other classes.

First, we arranged the classes in the diagram so that when a class uses another class is above
it—for example, the Player class stores Deck and Card references, so the box for the Player
class is higher on the page than boxes for Deck and Card. Then we drew each line from
the Player class member that uses a Deck or Card reference to the top of the Deck or Card
box. The Player.DoYouHaveAny method, for example, returns an IEnumerable<Card> so
there’s a line from the DoYouHaveAny method in the Player box to the top of the Card box.

It’s possible to do the project starting at the top of the diagram, but that would be
complicated: to build the Program methods you’d need to create temporary “fake” methods
in GameController, then you’d have to do the same for GameState, and then Player—all
before you even wrote a single line of code for the top-level statements.

Luckily, there’s a better way. You already have the Card and Deck classes, so you can
start with the Player class—and you can use unit tests to make sure the Player class works
before you move on to the members of the GameState class that use it.

Unit testing is a core developer skill—as important as writing the code itself—and an
important one to practice to ramp up your professional developer skillset. It’s your
safety net, letting you code with confidence knowing you’ll catch unexpected issues.

you are here � 5

go fish!

+ZMI\M�\PM�[WT]\QWV�IVL�ILL�I�]VQ\�\M[\�XZWRMK\
The first step in the project is to create a new .NET Console App project called GoFish and add
an MSTest unit test project called GoFishTests to the solution, just like you did earlier in Chapter
9. Here’s a refresher with all of the steps you need to follow to create the project.

+ZMI\M�I�[WT]\QWV�_Q\P�_W�XZWRMK\[�NWZ�\PM�IXX�IVL�NWZ�\PM�]VQ\�\M[\[
First, create a new Console App (.NET Core) project called GoFish. Then add a second MSTest
project:

1. Go to the Solution Explorer and right-click on the solution name in the top row (not the
project name in the second row).

2. In Visual Studio, choose Add >> New Project. In VSCode, choose New Project (or click
the + button at the right side of the row with the solution name).

3. Search for the MSTest Test Project template and select it.

4. Name your new test project GoFishTestsTests. In VSCode, choose the default directory.

)LL�I�XZWRMK\�ZMNMZMVKM�[W�\PM�]VQ\�\M[\[�KIV�IKKM[[�\PM�KTI[[M[�\PMa�VMML
We learned in Chapter 9 that the different projects in a multiproject are independent: the classes in one
project can’t use classes in another project. If you want one project to access classes in another project,
you need to add a project reference to it.

The unit test methods in the GoFishTests project need to use classes from the GoFish project, so you’ll
modify the GoFishTests project to add a reference to the GoFish project.

 ≥ Visual Studio: Expand the JimmyLinqTests project in the Solution Explorer, right-click on
Dependencies, and choose Add Project Reference from the menu. Check the box for the
JimmyLinq project.

 ≥ Visual Studio Code: Right-click on the project name in the Solution Explorer and choose Add
Project Reference. VSCode displays the other projects in the solution. Click on the JimmyLinq
project.

)LL�aW]Z�KIZL�KTI[[M[�\W�\PM�/W.Q[P�XZWRMK\
Add the Card, Deck, and CardComparerByValue classes and the Suits and Values enums
from the Two Decks project in Chapter 8 to the Go Fish project. Rename the namespace to GoFish.
Make all of the classes and enums public so the tests can access them.

Do this!

Make sure you add the version of the Deck class that you modified in Chapter 9 to
support method chaining by changing the return type to Deck and returning “this”.

6 Chapter 9

let’s get started

You canuse LINQ methods with any sequence, or object
that implements the IEnumerable<T> interface. LINQ also
includes the Enumerable class, with useful static methods:
• Enumerable.Empty returns an empty sequence
• Enumerable.Range(5, 8) returns a sequence of 8 ints

starting at 5: { 5, 6, 7, 8, 9, 10, 11, 12 }
• Enumerable.Repeat("Hi", 3) returns a sequence with the

string "Hi" repeated four times: { "Hi", "Hi", "Hi" }

LINQ methods to take the count, minimum, maximum,
sum, or average of a sequence of numbers:
var values = Enumerable.Range(5, 8);
Console.WriteLine(values.Count()); // 8
Console.WriteLine(values.Min()); // 3
Console.WriteLine(values.Max()); // 12
Console.WriteLine(values.Sum()); // 68
Console.WriteLine(values.Average()); // 8.5

LINQ methods to take the first or last elements in a
sequence and concatenate sequences together:
var first3 = values.Take(3);
var last2 = values.TakeLast(2);
var joined = first3.Concat(last2);
Console.Write(string.Join(", ", joined));
// writes 5, 6, 7, 11, 12

There are LINQ methods to skip values in a sequence or
take the first value in a sequence:
var sk = values.Skip(3).Take(4);
var f = sk.First() // 8
Console.WriteLine(string.Join(", ", sk));
// writes 8, 9, 10, 11

Use lambda expressions with any LINQ method that
takes a Func parameter. The Where method can filter a
sequence so it contains only specific values:
var d = new Deck();
var a = d.Where(c => c.Value == Values.Ace);
// a has the four Ace cards in the deck

The Select method modifies all elements in a sequence:
var evens = Enumerable.Range(1, 5)
 .Select(n => n * 2);
// evens contains { 2, 4, 6, 8, 10 }

Select works really well with string interpolation:
var message = evens.Select(n =>
 $"#{n + 1}");
Console.WriteLine(
 string.Join(Environment.NewLine, message))
// Writes 5 lines: #3, #5, #7, #9, #11

Use LINQ query syntax to manipulate a sequence:
var result =
 from v in values // range variable v
 where v < 9 // choose only values >
9
 orderby v descending // sort
 select v * 10; // multiply each by
10
 // result = 80, 70, 60, 50

Or chained LINQ methods to make the same query:
var result = values
 .Where(v => v < 9)
 .OrderByDescending(v => v)
 .Select(v => v * 10);
 // result = 80, 70, 60, 50

Use LINQ query syntax for creating groups:
var groups = from card in new Deck()
 group card by card.Suit
 into suitGroup
 orderby suitGroup.Key descending
 select suitGroup;
// groups contains four groups, one per suit

The same query using LINQ methods and lambdas:
var groups = new Deck()
 .GroupBy(card => card.Suit)
 .OrderByDescending(
 suitGroup => suitGroup.Key);

Each group is an object with a Key property.

We learned all about LINQ in Chapter 9. Here’s a quick recap of
some useful LINQ syntax and methods that you’ll use in this project.

Here’s some LINQLINQ that you’ll find useful!

you are here � 7

go fish!

Part 1: Create the Player class (and make a few small changes to the Deck class). Here are all of the members of the
Player class. This is a skeleton, or an outline of a class that has placeholders for (most of) its members but doesn’t include
the code. We also included XML documentation for all of the public members to help you understand what they need to do.
Modify your Deck class so the Shuffle method calls Player.Random instead of Random.Shared, and add this Deal method:
public Card Deal(int index)
{
 Card cardToDeal = base[index];
 RemoveAt(index);
 return cardToDeal;
}

Then add the Player class. This class skeleton is your starting point. Some methods throw NotImplementedException
exceptions. Your job is to replace them with working code that makes the Player class do what it’s supposed to do.
public class Player(string name)
{
 public static Random Random = Random.Shared;

 private List<Card> hand = new List<Card>();
 private List<Values> books = new List<Values>();

 /// <summary>
 /// The cards in the player's hand
 /// </summary>
 public IEnumerable<Card> Hand => hand;

 /// <summary>
 /// The books that the player has pulled out
 /// </summary>
 public IEnumerable<Values> Books => books;

 /// <summary>
 /// Pluralize a word, adding "s" if a value isn't equal to 1
 /// </summary>
 public static string S(int s) => s == 1 ? "" : "s";

 /// <summary>
 /// Returns the current status of the player: the number
 /// of cards and books
 /// </summary>
 public string Status => throw new NotImplementedException();

 /// <summary>
 /// Alternate constructor (used for unit testing)
 /// </summary>
 /// <param name="name">Player's name</param>
 /// <param name="cards">Initial set of cards</param>
 public Player(string name, IEnumerable<Card> cards) : this(name)
 {
 hand.AddRange(cards);
 }

Exercise

We saw earlier in Chapter 9 that you need to make your classes public to
use them in the unit test project. Make sure you modifymodify the Card, Deck, and

CardComparerByValue classes and Suits and Values enums to add the public
access modifier, otherwise you’ll get compiler errors about inconsistent accessibility.

We implemented a few of the members—
like the Hand and Books properties and
their backing fields, the readonly Name

field, and a useful S method to pluralize an
English word, so $"card{S(hand.Count())}"
interpolates to “card” if there's one card

in the hand, and “cards” if there are either
zero cards or multiple cards in the hand.

Make sure you use the Deck class you modified in Chapter 9
so its Shuffle method can be used with method chaining.

Change the line in Deck.Shuffle that gets the next card to call
Player.Random.Next instead of Random.Shared.Next:

int index = Player.Random.Next(copy.Count);

We added this extra
constructor that's
used by the unit tests.

The Player class has a primary constructor with one parameter, the name of the player.

You’ll build this project in four parts. First, you’ll build
the Player class and make sure it passes all of the unit
tests. Then you’ll build two other classes. Finally, you’ll
write the top-level statements that make the game run.

8 Chapter 9

start by creating the player class

 /// <summary>
 /// Gets up to five cards from the stock
 /// </summary>
 /// <param name="stock">Stock to get the next hand from</param>
 public void GetNextHand(Deck stock)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// If I have any cards that match the value, return them. If I run out of cards, get
 /// the next hand from the deck.
 /// </summary>
 /// <param name="value">Value I'm asked for</param>
 /// <param name="deck">Deck to draw my next hand from</param>
 /// <returns>The cards that were pulled out of the other player's hand</returns>
 public IEnumerable<Card> DoYouHaveAny(Values value, Deck deck)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// When the player receives cards from another player, adds them to the hand
 /// and pulls out any matching books
 /// </summary>
 /// <param name="cards">Cards from the other player to add</param>
 public void AddCardsAndPullOutBooks(IEnumerable<Card> cards)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Draws a card from the stock and add it to the player's hand
 /// </summary>
 /// <param name="stock">Stock to draw a card from</param>
 public void DrawCard(Deck stock)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Gets a random value from the player's hand
 /// </summary>
 /// <returns>The value of a randomly selected card in the player's hand</returns>
 public Values RandomValueFromHand() => throw new NotImplementedException();

 public override string ToString() => name;
}

Exercise

We gave you XML comments as a starting point to help you figure out what the Player
class needs to do. But you’ll need more information than that to figure out what the
Player class is supposed to do! What do you think we’ll give you to help with that?

Use LINQ to implement the method
RandomValueFromHand: first order the

list by card value, then select the value of
each card, skip a random number of cards,
and choose the first element in the result.

Make sure you add the Deal method to the Deck class.
And don’t forget to modify its Shuffle method to call
Player.Random.Next instead of Random.Shared.Next,
otherwise some of the unit tests won’t pass.

you are here � 9

go fish!

Part 1 (continued): Add the Player class unit tests. Here’s the complete PlayerTests class, along with a MockRandom
class used by one of the tests. Add this code to PlayerTests.cs, and add the MockRandom object to the GoFishTests project.
Your job is to modify the Player class so all of these tests pass.

using GoFish;
namespace GoFishTests;

[TestClass]
public class PlayerTests
{
 [TestMethod]
 public void TestGetNextHand()
 {
 var player = new Player("Owen", new List<Card>());
 player.GetNextHand(new Deck());
 CollectionAssert.AreEqual(
 new Deck().Take(5).Select(card => card.ToString()).ToList(),
 player.Hand.Select(card => card.ToString()).ToList());
 }

 [TestMethod]
 public void TestDoYouHaveAny()
 {
 IEnumerable<Card> cards = [
 new Card(Values.Jack, Suits.Spades),
 new Card(Values.Three, Suits.Clubs),
 new Card(Values.Three, Suits.Hearts),
 new Card(Values.Four, Suits.Diamonds),
 new Card(Values.Three, Suits.Diamonds),
 new Card(Values.Jack, Suits.Clubs),
];

 var player = new Player("Owen", cards);

 var threes = player.DoYouHaveAny(Values.Three, new Deck())
 .Select(Card => Card.ToString())
 .ToList();

 CollectionAssert.AreEqual(
 (string[])["Three of Diamonds", "Three of Clubs", "Three of Hearts"],
 threes);

 Assert.AreEqual(3, player.Hand.Count());

 var jacks = player.DoYouHaveAny(Values.Jack, new Deck())
 .Select(Card => Card.ToString())
 .ToList();

 CollectionAssert.AreEqual((string[])["Jack of Clubs", "Jack of Spades"], jacks);

 var hand = player.Hand.Select(Card => Card.ToString()).ToList();
 CollectionAssert.AreEqual((string[])["Four of Diamonds"], hand);

 Assert.AreEqual("Owen has 1 card and 0 books", player.Status);
 }

Exercise

We saw CollectionAssert in
Chapter 9 – it compares
an expected collection
with an actual result.

GetNewHand returns up
to 5 cards from the deck.
CollectionAssert can’t
compare cards, so we used
the Select LINQ method
to convert them to lists
of card names to compare.

The test sets up an instance of Player with a set of cards. We used the constructor that take a name and a sequence of cards to start with a hand that has two jacks, three threes, and a four.
The
DoYouHaveAny
method removes
the matching
cards from the
player’s hand and
returns them—in
this case, the
three threes.

The second call to
DoYouHaveAny returns the two jacks and removes them from the player’s hand. Make sure your method sorts the cards before you return them so they match the test.

The end of the test checks the cards in the
Player’s hand and verifies the Status property.

Unit tests aren’t just useful for making sure your
code works. They’re also a great way to understand

what your code is supposed to do. Part of your
job is to read through these unit tests to figure out
what the Player class should do. You’ll know your

class is working when all of the unit tests pass.

Notice how we're using a cast when we create the
collection expression? We need to do that so the C#

compiler knows what type of collection to create:

(string[])["Jack of Clubs", "Jack of Spades"]

Don’t forget to modify your Suits and Values
enums and Deck, Card, and CardComparerByValue
classes to add the public access modifier and put
them in the GoFish namespace.

10 Chapter 9

when the unit tests pass your player class is done

 [TestMethod]
 public void TestAddCardsAndPullOutBooks()
 {
 IEnumerable<Card> cards = [
 new Card(Values.Jack, Suits.Spades),
 new Card(Values.Three, Suits.Clubs),
 new Card(Values.Jack, Suits.Hearts),
 new Card(Values.Three, Suits.Hearts),
 new Card(Values.Four, Suits.Diamonds),
 new Card(Values.Jack, Suits.Diamonds),
 new Card(Values.Jack, Suits.Clubs),
];

 var player = new Player("Owen", cards);

 Assert.AreEqual(0, player.Books.Count());

 List<Card> cardsToAdd = [
 new Card(Values.Three, Suits.Diamonds),
 new Card(Values.Three, Suits.Spades),
];
 player.AddCardsAndPullOutBooks(cardsToAdd);

 var books = player.Books.ToList();
 CollectionAssert.AreEqual((Values[])[Values.Three, Values.Jack], books);

 var hand = player.Hand.Select(Card => Card.ToString()).ToList();
 CollectionAssert.AreEqual((string[])["Four of Diamonds"], hand);

 Assert.AreEqual("Owen has 1 card and 2 books", player.Status);
 }

 [TestMethod]
 public void TestDrawCard()
 {
 var player = new Player("Owen", new List<Card>());
 player.DrawCard(new Deck());
 Assert.AreEqual(1, player.Hand.Count());
 Assert.AreEqual("Ace of Diamonds", player.Hand.First().ToString());
 }

 [TestMethod]
 public void TestRandomValueFromHand()
 {
 var player = new Player("Owen", new Deck());

 Player.Random = new MockRandom() { ValueToReturn = 0 };
 Assert.AreEqual("Ace", player.RandomValueFromHand().ToString());
 Player.Random = new MockRandom() { ValueToReturn = 16 };
 Assert.AreEqual("Five", player.RandomValueFromHand().ToString());
 Player.Random = new MockRandom() { ValueToReturn = 51 };
 Assert.AreEqual("King", player.RandomValueFromHand().ToString());
 }
}

/// <summary>
/// Mock Random for testing that always returns a specific value
/// </summary>
public class MockRandom : System.Random
{
 public int ValueToReturn { get; set; } = 0;
 public override int Next() => ValueToReturn;
 public override int Next(int maxValue) => ValueToReturn;
 public override int Next(int minValue, int maxValue) => ValueToReturn;
}

The Player.RandomValueFromHand method
uses the Random class to generate random
values. How do you test a method that relies

on a random number? We used a mock object,
or a simulated Random object that mimics the

behavior of the actual .NET Random class.
Lucky for us, the Next and NextInt methods in
the .NET Random class are virtual, so we
created a MockRandom class that extends

System.Random but overrides those methods.
We added a ValueToReturn property to tell the
mock object what int value its Next and NextInt

methods should return. That lets us test
methods that rely on random numbers. That's
why the Player class has a static Random field

that it uses to generate random numbers.

Exercise

We replaced the
Player.Random
reference with a
reference to a new
MockRandom object
with ValueToReturn
set to return a
specific value.

Here’s our mock Random object
that overrides its int methods to
return a specific value.

Carefully read through the code in this test method.
Between the test and the XML comments, you can figure
out what the AddCardsAndPullOutBooks method does.

The DrawCard method pulls the next card out of the deck and adds it to the player’s hand. What happens if the deck is empty? How would you test that?

you are here � 11

go fish!

Here’s our code for the Player class. Remember, it’s not cheating to peek at our solution when you’re working on your code!
Just make sure you take the time to understand it all.

namespace GoFish;

public class Player(string name)
{
 public static Random Random = Random.Shared;

 private List<Card> hand = new List<Card>();
 private List<Values> books = new List<Values>();

 /// <summary>
 /// The cards in the player's hand
 /// </summary>
 public IEnumerable<Card> Hand => hand;

 /// <summary>
 /// The books that the player has pulled out
 /// </summary>
 public IEnumerable<Values> Books => books;

 /// <summary>
 /// Pluralize a word, adding "s" if a value isn't equal to 1
 /// </summary>
 public static string S(int s) => s == 1 ? "" : "s";

 /// <summary>
 /// Returns the current status of the player: the number of cards and books
 /// </summary>
 public string Status =>
 $"{name} has {hand.Count()} card{S(hand.Count())} and {books.Count()} book{S(books.Count())}";

 /// <summary>
 /// Alternate constructor (used for unit testing)
 /// </summary>
 /// <param name="name">Player's name</param>
 /// <param name="cards">Initial set of cards</param>
 public Player(string name, IEnumerable<Card> cards) : this(name)
 {
 hand.AddRange(cards);
 }

 /// <summary>
 /// Gets up to five cards from the stock
 /// </summary>
 /// <param name="stock">Stock to get the next hand from</param>
 public void GetNextHand(Deck stock)
 {
 while ((stock.Count() > 0) && (hand.Count < 5))
 {
 hand.Add(stock.Deal(0));
 }
 }

Exercise
Solution

There are many ways to solve any
programming problem. It’s okay if
your code looks different than ours,
as long as the unit tests pass! For
example, we used LINQ methods,
but it’s absolutely valid to use LINQ
query syntax. You don’t even have
to use LINQ at all! But make sure
you take the time to understand our
solution, even if you came up with
a different (and possibly better!)
way to solve the same problem.

You can use the unit tests figure out exactly what the Status method should return. We used the S method to pluralize “card” and “book” in the status message.

There are lots of ways to get up to 5 cards from the deck. We decided to use a while loop. What did you come up with?

Unit testing is a crucial skill for any professional developer, helping
catch bugs early and ensure code reliability. Many companies
consider it a core job skill, expecting even new people on the team to
write unit tests as part of their everyday coding work from day one.

12 Chapter 9

 /// <summary>
 /// If I have any cards that match the value, return them. If I run out of cards, get
 /// the next hand from the deck.
 /// </summary>
 /// <param name="value">Value I'm asked for</param>
 /// <param name="deck">Deck to draw my next hand from</param>
 /// <returns>The cards that were pulled out of the other player's hand</returns>
 public IEnumerable<Card> DoYouHaveAny(Values value, Deck deck)
 {
 var matchingCards = hand.Where(card => card.Value == value)
 .OrderBy(Card => Card.Suit);
 hand = hand.Where(card => card.Value != value).ToList();

 if (hand.Count() == 0)
 GetNextHand(deck);

 return matchingCards;
 }

 /// <summary>
 /// When the player receives cards from another player, adds them to the hand
 /// and pulls out any matching books
 /// </summary>
 /// <param name="cards">Cards from the other player to add</param>
 public void AddCardsAndPullOutBooks(IEnumerable<Card> cards)
 {
 hand.AddRange(cards);

 var foundBooks = hand
 .GroupBy(card => card.Value)
 .Where(group => group.Count() == 4)
 .Select(group => group.Key);

 books.AddRange(foundBooks);
 books.Sort();

 hand = hand
 .Where(card => !books.Contains(card.Value))
 .ToList();
 }

 /// <summary>
 /// Draws a card from the stock and add it to the player's hand
 /// </summary>
 /// <param name="stock">Stock to draw a card from</param>
 public void DrawCard(Deck stock)
 {
 if (stock.Count > 0)
 AddCardsAndPullOutBooks(new List<Card>() { stock.Deal(0) });
 }

 /// <summary>
 /// Gets a random value from the player's hand
 /// </summary>
 /// <returns>The value of a randomly selected card in the player's hand</returns>
 public Values RandomValueFromHand() => hand.OrderBy(card => card.Value)
 .Select(card => card.Value)
 .Skip(Random.Next(hand.Count()))
 .First();

 public override string ToString() => name;
}

Exercise
Solution

We used Where and
OrderBy to pull
the matching cards
out of the hand to
return them, then
used Where to remove
those same cards.

We used GroupBy to group the hand by
value, then Where to include only the groups
that have all four suits, and finally Select
to convert each group to its key, the suit.

Once the method finds the books, it adds them to its private books field, and then updates its private hand field to remove any cards that match a found book.

We sorted the hand by value so the test will always start with the hand in the same order.

To get a random value from the hand, we used the Select method to convert each card to its value, then skipped a random number of cards and got the next one.

The rules say that when a player
runs out of cards, they need to
draw a new hand from the stock.

The first thing the method does is add the cards to the hand.

DrawCard needs to pull
out the books after it deals
a card. Can you figure out
how to add a unit test to
make sure that works?

you are here � 13

go fish!

I can use unit tests to make sure one class works before
moving on to the next one, so I can choose to implement the

classes in any order I want.

Unit tests let you develop code your own way.
One of the most challenging parts of real-world software
development is figuring out how to manage your projects, and
unit tests can help you do that. At the beginning of the book,
you were doing small projects, so you didn’t really need to
plan your approach. But now that you’re doing much larger
projects, you need to take a more systematic approach. Unit
tests can help you choose an approach that works well for your
project because they let you be flexible about the order that
you build your classes. They let you choose which part of the
code to work on first, and give you a good stopping point—
all unit tests for that part of the code pass—so you can be
confident moving on to the next part of the project.

Test-driven development means writing unit tests first
Unit tests help you take on larger projects by giving yo

u the flexibility to choose what part of

the code to work on first, and a good stopping point for that part
 of the code so you can more

easily break the project up into parts—which is what we did with this project.

But we did something else that’s even more important: we had you create the unit tests firstcreate the unit tests first.

We gave you the skeleton of the Player class, then we gave you a unit test so you could see

exactly what it’s supposed to do. It was your job to write the code for the Player class to make

it pass the tests. When you write unit tests first, it’s called test-driven developmenttest-driven development (or TDDTDD).

You’ll use test-driven development to build the GameState and GameController classes. We’ll give

you their unit tests, just like we did with the Player class, and you’ll use those tests to figure

out exactly what the classes are supposed to do.

You can do test-driven development on any project! It’s a great way to make sure you really

understand what your classes are supposed to do, and you end up w
ith a lot fewer bugs than you

would without it.

14 Chapter 9

first build the tests then build the code

Part 2: Create the GameState class. Here’s a skeleton for the GameState class. Like before, we gave you a skeleton—
we gave you the fields and properties, and it’s up to you to implement the methods that throw NotImplementedExceptions.

public class GameState
{
 public readonly IEnumerable<Player> Players;
 public readonly IEnumerable<Player> Opponents;
 public readonly Player HumanPlayer;
 public bool GameOver { get; private set; } = false;

 public readonly Deck Stock;

 /// <summary>
 /// Constructor creates the players and deals their first hands
 /// </summary>
 /// <param name="humanPlayerName">Name of the human player</param>
 /// <param name="opponentNames">Names of the computer players</param>
 /// <param name="stock">Shuffled stock of cards to deal from</param>
 public GameState(string humanPlayerName, IEnumerable<string> opponentNames,
 Deck stock)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Gets a random player that doesn't match the current player
 /// </summary>
 /// <param name="currentPlayer">The current player</param>
 /// <returns>A random player that the current player can ask for a card</returns>
 public Player RandomPlayer(Player currentPlayer) =>
 throw new NotImplementedException();

 /// <summary>
 /// Makes one player play a round
 /// </summary>
 /// <param name="player">The player asking for a card</param>
 /// <param name="playerToAsk">The player being asked for a card</param>
 /// <param name="valueToAskFor">The value to ask the player for</param>
 /// <param name="stock">The stock to draw cards from</param>
 /// <returns>A message that describes what just happened</returns>
 public string PlayRound(Player player, Player playerToAsk,
 Values valueToAskFor, Deck stock)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Checks for a winner by seeing if any players have any cards left,
 /// sets GameOver
 /// if the game is over and there's a winner
 /// </summary>
 /// <returns>String with the winners, empty string if there are no winners</returns>
 public string CheckForWinner()
 {
 throw new NotImplementedException();
 }
}

Exercise

you are here � 15

go fish!

Part 2 (continued): Add the GameState class unit tests. Here’s the complete GameStateTests class. In addition to tests for
each method in the class, it also includes a separate test for the constructor that's more complex than the Player constructor.
using GoFish;
namespace GoFishTests;

[TestClass]
public class GameStateTests
{
 [TestMethod]
 public void TestConstructor()
 {
 var computerPlayerNames = new List<string>()
 {
 "Computer1",
 "Computer2",
 "Computer3",
 };
 var gameState = new GameState("Human", computerPlayerNames, new Deck());

 CollectionAssert.AreEqual(
 new List<string> { "Human", "Computer1", "Computer2", "Computer3" },
 gameState.Players.Select(player => player.ToString()).ToList());

 Assert.AreEqual(5, gameState.HumanPlayer.Hand.Count());
 }

 [TestMethod]
 public void TestRandomPlayer()
 {
 var computerPlayerNames = new List<string>()
 {
 "Computer1",
 "Computer2",
 "Computer3",
 };

 var gameState = new GameState("Human", computerPlayerNames, new Deck());
 Player.Random = new MockRandom() { ValueToReturn = 1 };
 Assert.AreEqual("Computer2",
 gameState.RandomPlayer(gameState.Players.ToList()[0]).ToString());

 Player.Random = new MockRandom() { ValueToReturn = 0 };
 Assert.AreEqual("Human", gameState.RandomPlayer(gameState.Players.ToList()[1]).
ToString());
 Assert.AreEqual("Computer1",
 gameState.RandomPlayer(gameState.Players.ToList()[0]).ToString());
 }

 [TestMethod]
 public void TestPlayRound()
 {
 var deck = new Deck();
 deck.Clear();
 List<Card> cardsToAdd = [

 // Cards the game will deal to Owen
 new Card(Values.Jack, Suits.Spades),
 new Card(Values.Jack, Suits.Hearts),
 new Card(Values.Six, Suits.Spades),
 new Card(Values.Jack, Suits.Diamonds),
 new Card(Values.Six, Suits.Hearts),

Exercise

The constructor takes three parameters:
the name of the human player, the
names of the computer players, and a
Deck object to serve as the stock.

To test the RandomPlayer method, we set up a
GameState, then used the MockRandom object
to get RandomPlayer to return a specific player.

We test the PlayRound method by setting up a deck to deal to our Owen and Brittany players. Once the deck is set up, we create a GameState with the two players and call PlayRound to play out the rounds.

The GameState constructor
calls each player’s GetNextHand method to deal their initial hand. We already tested that method in PlayerTests, so we didn’t include an in-depth test for it here.

16 Chapter 9

build a gamestate class that passes these tests

 // Cards the game will deal to Brittney
 new Card(Values.Six, Suits.Diamonds),
 new Card(Values.Six, Suits.Clubs),
 new Card(Values.Seven, Suits.Spades),
 new Card(Values.Jack, Suits.Clubs),
 new Card(Values.Nine, Suits.Spades),

 // Two more cards in the deck for Owen to draw when he runs out
 new Card(Values.Queen, Suits.Hearts),
 new Card(Values.King, Suits.Spades),
];

 foreach (var card in cardsToAdd)
 deck.Add(card);

 var gameState = new GameState("Owen", ["Brittney"], deck);

 var owen = gameState.HumanPlayer;
 var brittney = gameState.Opponents.First();

 Assert.AreEqual("Owen", owen.ToString());
 Assert.AreEqual(5, owen.Hand.Count());
 Assert.AreEqual("Brittney", brittney.ToString());
 Assert.AreEqual(5, brittney.Hand.Count());

 var message = gameState.PlayRound(owen, brittney, Values.Jack, deck);
 Assert.AreEqual("Owen asked Brittney for Jacks" + Environment.NewLine +
 "Brittney has 1 Jack card", message);
 Assert.AreEqual(1, owen.Books.Count());
 Assert.AreEqual(2, owen.Hand.Count());
 Assert.AreEqual(0, brittney.Books.Count());
 Assert.AreEqual(4, brittney.Hand.Count());

 message = gameState.PlayRound(brittney, owen, Values.Six, deck);
 Assert.AreEqual("Brittney asked Owen for Sixes" + Environment.NewLine +
 "Owen has 2 Six cards", message);
 Assert.AreEqual(1, owen.Books.Count());
 Assert.AreEqual(2, owen.Hand.Count());
 Assert.AreEqual(1, brittney.Books.Count());
 Assert.AreEqual(2, brittney.Hand.Count());

 message = gameState.PlayRound(owen, brittney, Values.Queen, deck);
 Assert.AreEqual("Owen asked Brittney for Queens" + Environment.NewLine +
 "The stock is out of cards", message);
 Assert.AreEqual(1, owen.Books.Count());
 Assert.AreEqual(2, owen.Hand.Count());
 }

 [TestMethod]
 public void TestCheckForAWinner()
 {
 List<string> computerPlayerNames = [
 "Computer1",
 "Computer2",
 "Computer3",
];

 var emptyDeck = new Deck();
 emptyDeck.Clear();
 var gameState = new GameState("Human", computerPlayerNames, emptyDeck);
 Assert.AreEqual("The winners are Human and Computer1 and Computer2 and Computer3",
 gameState.CheckForWinner());
 }
}

Exercise

Here’s where we set up the deck, then
create the GameState with one human player
(Owen) and one computer player (Brittney).

Next we make sure the GameState was set up correctly, with hands of five cards dealt to each of the two players.

In the first round, Owen asks
Brittney for Jacks. We set up the
deck so that Brittney has one jack.

We checked for a winner by setting up a
GameState with an empty deck, so all of the
players would be dealt empty hands. They all have
the same number of books, so they’ll all be winners.

Look closely at the message that the
PlayRound method returns. Your PlayRound
method should return a message that looks just
like this. Notice how “Sixes” is spelled correctly.

We’re using Environment.NewLine to add
line breaks (instead of @ verbatim strings)

because we want this code to work on
both Mac and Windows, and your test will
fail if it tries to compare \n against \r\n.

Can you think of additional ways to test that the CheckForAWinner
method works? Try writing another unit test for that method.

you are here � 17

go fish!

Here’s our code for the GameState class. It has a constructor and methods to pick a random player, play a round, and
check for a winner.

namespace GoFish;

public class GameState
{
 public readonly IEnumerable<Player> Players;
 public readonly IEnumerable<Player> Opponents;
 public readonly Player HumanPlayer;
 public bool GameOver { get; private set; } = false;

 public readonly Deck Stock;

 /// <summary>
 /// Constructor creates the players and deals their first hands
 /// </summary>
 /// <param name="humanPlayerName">Name of the human player</param>
 /// <param name="opponentNames">Names of the computer players</param>
 /// <param name="stock">Shuffled stock of cards to deal from</param>
 public GameState(string humanPlayerName, IEnumerable<string> opponentNames,
 Deck stock)
 {
 this.Stock = stock;

 HumanPlayer = new Player(humanPlayerName);
 HumanPlayer.GetNextHand(Stock);

 var opponents = new List<Player>();
 foreach (string name in opponentNames)
 {
 var player = new Player(name);
 player.GetNextHand(stock);
 opponents.Add(player);
 }
 Opponents = opponents;
 Players = new List<Player>() { HumanPlayer }.Concat(Opponents);
 }

 /// <summary>
 /// Gets a random player that doesn't match the current player
 /// </summary>
 /// <param name="currentPlayer">The current player</param>
 /// <returns>A random player that the current player can ask for a card</returns>
 public Player RandomPlayer(Player currentPlayer) =>
 Players
 .Where(player => player != currentPlayer)
 .Skip(Player.Random.Next(Players.Count() - 1))
 .First();

Exercise
Solution

We used the LINQ methods to get a random player from the list of players. First
we use Where to make sure we’re picking a player who isn’t the current player,
then we skip a random number of players, and pull the first player from the list.

Create the Player object for the
human player and draw its next hand
from the shuffled stock of cards.

Create the Player object for each
computer player and draw their cards.

We used the LINQ
Concat method to
create the list of
all players (human
and computer).

18 Chapter 9

exercise solution

 /// <summary>
 /// Makes one player play a round
 /// </summary>
 /// <param name="player">The player asking for a card</param>
 /// <param name="playerToAsk">The player being asked for a card</param>
 /// <param name="valueToAskFor">The value to ask the player for</param>
 /// <param name="stock">The stock to draw cards from</param>
 /// <returns>A message that describes what just happened</returns>
 public string PlayRound(Player player, Player playerToAsk,
 Values valueToAskFor, Deck stock)
 {
 var valuePlural = (valueToAskFor == Values.Six) ? "Sixes" : $"{valueToAskFor}s";
 var message = $"{player} asked {playerToAsk}"
 + $" for {valuePlural}{Environment.NewLine}";
 var cards = playerToAsk.DoYouHaveAny(valueToAskFor, stock);
 if (cards.Count() > 0)
 {
 player.AddCardsAndPullOutBooks(cards);
 message += $"{playerToAsk} has {cards.Count()}"
 + $" {valueToAskFor} card{Player.S(cards.Count())}";
 }
 else if (stock.Count == 0) {
 message += $"The stock is out of cards";
 }

 else
 {
 player.DrawCard(stock);
 message += $"{player} drew a card";
 }

 if (player.Hand.Count() == 0)
 {
 player.GetNextHand(stock);
 message += $"{Environment.NewLine}{player} ran out of cards,"
 + $" drew {player.Hand.Count()} from the stock";
 }

 return message;
 }

 /// <summary>
 /// Checks for a winner by seeing if any players have any cards left, sets GameOver
 /// if the game is over and there's a winner
 /// </summary>
 /// <returns>String with the winners, empty string if there are no winners</returns>
 public string CheckForWinner()
 {
 var playerCards = Players.Select(player => player.Hand.Count()).Sum();
 if (playerCards > 0) return "";
 GameOver = true;
 var winningBookCount = Players.Select(player => player.Books.Count()).Max();
 var winners = Players.Where(player => player.Books.Count() == winningBookCount);
 if (winners.Count() == 1) return $"The winner is {winners.First()}";
 return $"The winners are {string.Join(" and ", winners)}";
 }
}

Exercise
Solution

We used the
conditional operator
to make the
message correctly
use the word “Sixes”

The PlayRound method relies on the methods you already added to the Player class to ask another player for a card, add those cards and pull out books or draw a card from the stock, and get the next hand if the player is out.

you are here � 19

go fish!

Part 3: Add the GameController class and unit tests. Here's the skeleton for the GameController class, followed by the
GameControllerTests class with unit tests for the constructor and its two methods, NextRound and NewGame. The NextRound
method calls a private ComputerPlayersPlayRound method.
public class GameController
{
 private GameState gameState;
 public bool GameOver { get { return gameState.GameOver; } }
 public Player HumanPlayer { get { return gameState.HumanPlayer; } }
 public IEnumerable<Player> Opponents { get { return gameState.Opponents; } }

 public string Status { get; private set; }

 /// <summary>
 /// Constructs a new GameController
 /// </summary>
 /// <param name="humanPlayerName">Name of the human player</param>
 /// <param name="computerPlayerNames">Names of the computer players</param>
 public GameController(string humanPlayerName, IEnumerable<string> computerPlayerNames)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Plays the next round, ending the game if everyone ran out of cards
 /// </summary>
 /// <param name="playerToAsk">Which player the human is asking for a card</param>
 /// <param name="valueToAskFor">The value of the card the human is asking for</param>
 public void NextRound(Player playerToAsk, Values valueToAskFor)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// All of the computer players that have cards play the next round. If the human is
 /// out of cards, then the deck is depleted and they play out the rest of the game.
 /// </summary>
 private void ComputerPlayersPlayNextRound()
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Starts a new game with the same player names
 /// </summary>
 public void NewGame()
 {
 throw new NotImplementedException();
 }
}

Exercise

The Status property is important. The constructor,
NextRound, and NewGame methods update it so the
app can use it to write messages for the player.

Unit tests only test public class members.
We included a private method called

ComputerPlayersPlayNextRound, which is
called by NextRound. You won’t test that method
directly—but you’ll know that it works correctly

if the unit test for the NextRound method passes.

20 Chapter 9

the gamecontroller manages the whole game

using GoFish;
namespace GoFishTests;

[TestClass]
public class GameControllerTests
{
 [TestInitialize]
 public void Initialize()
 {
 Player.Random = new MockRandom() { ValueToReturn = 0 };
 }

 [TestMethod]
 public void TestConstructor()
 {
 var gameController = new GameController("Human",
 ["Player1", "Player2", "Player3"]);
 Assert.AreEqual("Starting a new game with players Human, Player1, Player2, Player3",
 gameController.Status);
 }

 [TestMethod]
 public void TestNextRound()
 {
 // The constructor shuffles the deck, but MockRandom makes sure it stays in order
 // so Owen should have Ace to 5 of Diamonds, Brittney should have 6 to 10 of Diamonds
 var gameController = new GameController("Owen", new List<string>() { "Brittney" });

 gameController.NextRound(gameController.Opponents.First(), Values.Six);
 Assert.AreEqual("Owen asked Brittney for Sixes" +
 Environment.NewLine + "Brittney has 1 Six card" +
 Environment.NewLine + "Brittney asked Owen for Sevens" +
 Environment.NewLine + "Brittney drew a card" +
 Environment.NewLine + "Owen has 6 cards and 0 books" +
 Environment.NewLine + "Brittney has 5 cards and 0 books" +
 Environment.NewLine + "The stock has 41 cards" +
 Environment.NewLine, gameController.Status);
 }

 [TestMethod]
 public void TestNewGame()
 {
 Player.Random = new MockRandom() { ValueToReturn = 0 };
 var gameController = new GameController("Owen", new List<string>() { "Brittney" });
 gameController.NextRound(gameController.Opponents.First(), Values.Six);
 gameController.NewGame();
 Assert.AreEqual("Owen", gameController.HumanPlayer.ToString());
 Assert.AreEqual("Brittney", gameController.Opponents.First().ToString());
 Assert.AreEqual("Starting a new game", gameController.Status);
 }
}

Exercise

The NextRound method uses the GameState.RandomPlayer and Player.RandomValueFromHand methods to make the computer players choose a random value to ask for and a player to ask, so we'll use MockRandom to test it.

The constructor test checks to
make sure the Status property
is updated correctly after the
GameController is instantiated.

The NextRound method calls the
GameState method to make the
human player to play the next
round, then calls the private
ComputerPlayersPlayNextRound
method to make the computer
players play. All the test needs to
do is check the Status property—if the status matches the expected
result of the first round we can be comfortable that the method works.

Starting a new game causes GameController to create a new GameState with a newly
shuffled Deck (which will actually be in order because we're using MockRandom).

NextRound eventually calls each Player object's RandomValueFromHand
method. We made sure it sorts the hand before picking a random value, so when

we use MockRandom it will always pick the same “random” values for the test.

We need to set Player.Random to a new MockRandom that always
returns 0 to make sure the deck is in order and the players always

pick the same “random” value from their hands. We put this in a
method marked with the [TestInitialize] attribute, which tells MSTest

to always run that method before running any of the tests in the class.

Make sure you modify the Deck.Shuffle method to call
Player.Random.Next instead of Random.Shared.Next,
otherwise some of the unit tests won’t pass.

you are here � 21

go fish!

Here’s our code for the Player class. Remember, it’s not cheating to peek at our solution when you’re working on your code!
Just make sure you take the time to understand it all.
namespace GoFish;

public class GameController
{
 private GameState gameState;
 public bool GameOver { get { return gameState.GameOver; } }
 public Player HumanPlayer { get { return gameState.HumanPlayer; } }
 public IEnumerable<Player> Opponents { get { return gameState.Opponents; } }

 public string Status { get; private set; }

 /// <summary>
 /// Constructs a new GameController
 /// </summary>
 /// <param name="humanPlayerName">Name of the human player</param>
 /// <param name="computerPlayerNames">Names of the computer players</param>
 public GameController(string humanPlayerName, IEnumerable<string> computerPlayerNames)
 {
 gameState = new GameState(humanPlayerName, computerPlayerNames, new Deck().Shuffle());
 Status = $"Starting a new game with players {string.Join(", ", gameState.Players)}";
 }

 /// <summary>
 /// Plays the next round, ending the game if everyone ran out of cards
 /// </summary>
 /// <param name="playerToAsk">Which player the human is asking for a card</param>
 /// <param name="valueToAskFor">The value of the card the human is asking for</param>
 public void NextRound(Player playerToAsk, Values valueToAskFor)
 {
 Status = gameState.PlayRound(gameState.HumanPlayer, playerToAsk,
 valueToAskFor, gameState.Stock) + Environment.NewLine;

 ComputerPlayersPlayNextRound();

 Status += string.Join(Environment.NewLine,
 gameState.Players.Select(player => player.Status));
 Status += $"{Environment.NewLine}The stock has {gameState.Stock.Count()} cards";

 Status += Environment.NewLine + gameState.CheckForWinner();
 }

Exercise
Solution

In Chapter 9 you modified the Shuffle method so it can be used with method chaining. We're using that here.

22 Chapter 9

exercise solution

 /// <summary>
 /// All of the computer players that have cards play the next round. If the human is
 /// out of cards, then the deck is depleted and they play out the rest of the game.
 /// </summary>
 private void ComputerPlayersPlayNextRound()
 {
 IEnumerable<Player> computerPlayersWithCards;
 do
 {
 computerPlayersWithCards =
 gameState
 .Opponents
 .Where(player => player.Hand.Count() > 0);
 foreach (Player player in computerPlayersWithCards)
 {
 var randomPlayer = gameState.RandomPlayer(player);
 var randomValue = player.RandomValueFromHand();
 Status += gameState
 .PlayRound(player, randomPlayer, randomValue, gameState.Stock)
 + Environment.NewLine;
 }
 } while ((gameState.HumanPlayer.Hand.Count() == 0)
 && (computerPlayersWithCards.Count() > 0));
 }

 /// <summary>
 /// Starts a new game with the same player names
 /// </summary>
 public void NewGame()
 {
 Status = "Starting a new game";
 gameState = new GameState(gameState.HumanPlayer.ToString(),
 gameState.Opponents.Select(player => player.ToString()),
 new Deck().Shuffle());
 }
}

Exercise
Solution

Here’s a great opportunity to get some practice writing
unit tests. Can you come up with more tests for your
Player, GameState, and GameController classes?

you are here � 23

go fish!

Part 4: Add the top-level statements. Now that the “guts” of the game are done, it’s time to finish the project. Here’s a sample
run of the game. It starts by asking the user’name and the number of computer opponents (which must be between 1 and 5).
Then it plays each round, writing the cards in the player’s hand to the console, then prompting for a card to ask for (which must
be in the player’s hand) and an opponent to ask for a card. To finish the round, it calls GameController.NextRound and displays
GameController.Status. When the game is over, it asks the player to press Q to quit, or any other key for a new game.
There aren't unit tests for the top-level statements. Look closely at the output and create top-level statements that generate
matching output. We've given you a skeleton for them as a starting point.

Enter your name: Andrew
Enter the number of computer opponents: 4
Welcome to the game, Andrew
Starting a new game with players Human, Computer #1, Computer #2, Computer #3, Computer #4
Your hand:
Ace of Clubs
Three of Hearts
Six of Diamonds
Six of Spades
Ten of Hearts
What card value do you want to ask for? Six
1. Computer #1
2. Computer #2
3. Computer #3
4. Computer #4
Who do you want to ask for a card? 2
Human asked Computer #2 for Sixes
Human drew a card
Computer #1 asked Computer #3 for Threes
Computer #1 drew a card
Computer #2 asked Human for Queens
Computer #2 drew a card
Computer #3 asked Computer #1 for Twos
Computer #3 drew a card
Computer #4 asked Computer #2 for Tens
Computer #4 drew a card
Human has 6 cards and 0 books
Computer #1 has 6 cards and 0 books
Computer #2 has 6 cards and 0 books
Computer #3 has 6 cards and 0 books
Computer #4 has 6 cards and 0 books
The stock has 22 cards
Your hand:
Ace of Clubs
Three of Hearts
Six of Diamonds
Six of Spades
Seven of Hearts
Ten of Hearts

Exercise

The top-level statements manage game flow, handle user
input, and interact with GameController to play the game.
Here's what how they work:
1. Prompt for human player's name and the number of
computer opponents (between 1 and 4).
2. Initialize the game:
• Create a GameController with the human player and

computer opponents.
• Display the initial game status.

3. Run the main game loop, continuing until the game is over:
• Display the human player's hand.
• Prompt the player to select a card value and an opponent.
• Make the computer players take their turns
• Display the game status.

4. Handle the end of the game:
• Prompt to quit or start a new game.

Reset the game if a new game is chosen.
There are lots of ways to build this app. We recommed that
you add these two methods:
• PromptForAValue: Asks the player for a card value

currently in their hand.
• PromptForAnOpponent: Asks the player to select an

opponent to ask for a card.

Convert a string to a Values enum with Enum.TryParse
Here's a useful method that will help. Enum.TryParse tries to convert a string into a
matching enum value and tells you if it worked or not. It works just like int.TryParse, which
you've been using throughout the book. Try using AI to research how it works!

24 Chapter 9

finish the app with top-level statements

What card value do you want to ask for? Ten
1. Computer #1
2. Computer #2
3. Computer #3
4. Computer #4
Who do you want to ask for a card? 4
Human asked Computer #4 for Tens
Computer #4 has 1 Ten card
Computer #1 asked Computer #3 for Jacks
Computer #3 has 1 Jack card
Computer #2 asked Computer #1 for Twos
Computer #2 drew a card
Computer #3 asked Computer #1 for Twos
Computer #3 drew a card
Computer #4 asked Computer #2 for Sevens
Computer #2 has 1 Seven card
Human has 7 cards and 0 books
Computer #1 has 7 cards and 0 books
Computer #2 has 6 cards and 0 books
Computer #3 has 6 cards and 0 books
Computer #4 has 6 cards and 0 books
The stock has 20 cards

Your hand:
Ace of Clubs
Three of Hearts
Six of Diamonds
Six of Spades
Seven of Hearts
Ten of Hearts
Ten of Spades
What card value do you want to ask for?
Seven
1. Computer #1
2. Computer #2
3. Computer #3
4. Computer #4
Who do you want to ask for a card? 4
Human asked Computer #4 for Sevens
Computer #4 has 2 Seven cards
Computer #1 asked Computer #2 for Three
Computer #1 drew a card
Computer #2 asked Computer #1 for Queens
Computer #2 drew a card
Computer #3 asked Computer #4 for Eight
Computer #4 has 1 Eight card
Computer #4 asked Computer #2 for Jacks
Computer #4 drew a card
Human has 9 cards and 0 books

Computer #1 has 8 cards and 0 books
Computer #2 has 7 cards and 0 books
Computer #3 has 7 cards and 0 books
Computer #4 has 4 cards and 0 books
The stock has 17 cards

Your hand:
Ace of Clubs
Three of Hearts
Six of Diamonds
Six of Spades
Seven of Diamonds
Seven of Hearts
Seven of Spades
Ten of Hearts
Ten of Spades
What card value do you want to ask for?
Three
1. Computer #1
2. Computer #2
3. Computer #3
4. Computer #4
Who do you want to ask for a card? 1
Human asked Computer #1 for Threes
Computer #1 has 3 Three cards
Computer #1 asked Computer #3 for Eight
Computer #1 drew a card
Computer #2 asked Computer #3 for Twos
Computer #3 has 1 Two card
Computer #3 asked Human for Kings
Computer #3 drew a card
Computer #4 asked Computer #2 for Sixes
Computer #4 drew a card
Human has 8 cards and 1 book
Computer #1 has 6 cards and 0 books
Computer #2 has 8 cards and 0 books
Computer #3 has 7 cards and 0 books
Computer #4 has 5 cards and 0 books
The stock has 14 cards

Your hand:
Ace of Clubs
Six of Diamonds
Six of Spades
Seven of Diamonds
Seven of Hearts
Seven of Spades
Ten of Hearts
Ten of Spades
What card value do you want to ask for?

you are here � 25

go fish!

using GoFish;

string? humanName = "";
while (String.IsNullOrWhiteSpace(humanName))
{
 Console.Write("Enter your name: ");
 humanName = Console.ReadLine();
}

Console.Write("Enter the number of computer opponents: ");
int opponentCount;
while (!int.TryParse(Console.ReadKey().KeyChar.ToString(), out opponentCount)
 || opponentCount < 1 || opponentCount > 4)
{
 Console.WriteLine("Please enter a number from 1 to 4");
}
Console.WriteLine($"{Environment.NewLine}Welcome to the game, {humanName}");

var gameController = new GameController(humanName,
 Enumerable.Range(1, opponentCount).Select(i => $"Computer #{i}"));
Console.WriteLine(gameController.Status);

while (!gameController.GameOver)
{
 while (!gameController.GameOver)
 {
 Console.WriteLine($"Your hand:");
 foreach (var card in gameController.HumanPlayer.Hand
 .OrderBy(card => card.Suit)
 .OrderBy(card => card.Value))
 Console.WriteLine(card);

 var value = PromptForAValue(gameController);

 var player = PromptForAnOpponent(gameController);

 gameController.NextRound(player, value);

 Console.WriteLine(gameController.Status);
 }

 Console.WriteLine("Press Q to quit, or any other key for a new game.");
 if (Console.ReadKey(true).KeyChar.ToString().ToUpper() == "N")
 gameController.NewGame();
}

Exercise
Solution

This input loop makes sure
the player enters a name.

This foreach loop uses
LINQ to put the
cards in suit and value
order, then writes
them to the console.

After the program gets
the input from the player,
it tells GameController
to play the next round.

26 Chapter 9

exercise solution

/// <summary>
/// Asks the player for a card value currently in their hand
/// </summary>
/// <param name="gameController">The game controller</param>
/// <returns>The value to ask for</returns>
Values PromptForAValue(GameController gameController)
{
 var handValues = gameController.HumanPlayer.Hand.Select(card => card.Value).ToList();
 Console.Write("What card value do you want to ask for? ");
 while (true)
 {
 if (Enum.TryParse(typeof(Values), Console.ReadLine(), out var value) &&
 handValues.Contains((Values)value))
 return (Values)value;
 else
 Console.WriteLine("Please enter a value in your hand.");
 }
}

/// <summary>
/// Asks the player to select an opponent to ask for a card
/// </summary>
/// <param name="gameController">The game controller</param>
/// <returns>The opponent to ask</returns>
Player PromptForAnOpponent(GameController gameController)
{
 var opponents = gameController.Opponents.ToList();
 for (int i = 1; i <= opponents.Count(); i++)
 Console.WriteLine($"{i}. {opponents[i - 1]}");
 Console.Write("Who do you want to ask for a card? ");
 while (true)
 {
 if (int.TryParse(Console.ReadLine(), out int selection)
 && selection >= 1 && selection <= opponents.Count())
 return opponents[selection - 1];
 else
 Console.Write($"Please enter a number from 1 to {opponents.Count()}: ");
 }
}

Exercise
Solution

We used Enum.TryParse to
try converting the user's
input to a card value.

Can you think ways to refactor it by extracting some of the
behavior into separate classes that you can write unit tests
for? Is it possible to move some of the main game loop into
GameController (or its own class) and write unit tests for it?

you are here � 27

go fish!

+IV�aW]�][M�\PM�[IUM�KTI[[M[�\W�J]QTL�I�=1'
We put together a simple paper prototype for a UI. But we didn’t finish it—it has
a button to ask for a card, but it still needs a way for the player to choose which
opponent to ask. So here’s a code challenge for you! Can you use this project as a
starting point to build a .NET MAUI or Blazor version of the Go Fish! game?

GO FISH!

2 OF SPADES
2 OF DIAMONDS
2 OF HEARTS
4 OF SPADES
7 OF DIAMONDS
7 OF CLUBS
8 OF SPADES
8 OF HEARTS
JACK OF CLUBS

YOUR HANDGAME PROGRESS

BOOKS

ASK FOR A CARD

YOU HAVE A BOOK OF ACES
CHARLIE HAS A BOOK OF FIVES
YOU HAVE A BOOK OF SIXES
SKYLER HAS A BOOK OF QUEENS

YOU ASK IF ANYONE HAS A TEN
CHARLIE HAS 1 TEN
SKYLER HAS 0 TENS
YOU MUST DRAW FROM THE STOCK
CHARLIE HAS 9 CARDS
SKYLER HAS 7 CARDS

0MZM¼[�_PI\�aW]¼TT�VMML�\W�LW���
 ≥ Create your own paper prototype, and figure out how you want to prompt the player for

an opponent to ask.

 ≥ Add either a .NET MAUI or Blazor Web App project to your GoFish solution.

 ≥ Modify its project dependencies to add a dependency on the GoFish project so it can
see GameController, Card, Deck, and the other classes and enums.

 ≥ Create the XAML window or HTML page that has an instance of GameController
and bind the game progress to its Status property.

 ≥ Create event handlers to get the input and play the next round.

 ≥ When the game is over, prompt the user to reset GameController and start a new game.

Did you come up with a creative and interesting solution to this code challenge?
Claim your bragging rights—publish it to GitHub and share it on social media!

28 Chapter 9

go fish code challenge

