
Andrew Stellman
https://github.com/head-first-csharp/fifth-edition

Andrew Stellman

Andrew Stellman

Andrew Stellman
Check out our GitHub page for videos, downloads, and more!

Andrew Stellman
Hide and Seek

Andrew Stellman
This is the downloadable project for Chapter 10.

Praise for Head First C#

“In a sea of dry technical manuals, Head First C# stands out as a beacon of brilliance. Its unique teaching style
not only imparts essential knowledge but also sparks curiosity and fuels passion for coding. An indispensable
resource for beginners!”

—Gerald Versluis, Senior Software Engineer at Microsoft

“Head First C# started my career as a software engineer and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books have helped me to launch my career.”

—Ryan White, Game Developer

“If you’re a new C# developer (welcome to the party!), I highly recommend Head First C#. Andrew and Jennifer
have written a concise, authoritative, and most of all, fun introduction to C# development. I wish I’d had this
book when I was first learning C#!”

—Jon Galloway, Senior Program Manager on the .NET Community Team, Microsoft

“Not only does Head First C# cover all the nuances it took me a long time to understand, it has that Head First
magic going on where it is just a super fun read.”

—Jeff Counts, Senior C# Developer

“Head First C# is a great book with fun examples that keep learning interesting.”

—Lindsey Bieda, Lead Software Engineer

“Head First C# is a great book, both for brand-new developers and developers like myself coming from a Java
background. No assumptions are made as to the reader’s proficiency, yet the material builds up quickly enough
for those who are not complete newbies—a hard balance to strike. This book got me up to speed in no time for
my first large-scale C# development project at work—I highly recommend it.”

—Shalewa Odusanya, Principal

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I’ve ever
seen—the samples are clear, the topics are concise and well written. The mini-games that guide you through the
different programming challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”

—Johnny Halife, Partner

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The many
coding challenges keep it fun, even when the concepts are tough.”

—Rebeca Dunn-Krahn, Founding Partner, Sempahore Solutions

Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want
to learn C# in depth and have fun doing it, this is THE book for you.”

—Andy Parker, fledgling C# Programmer

“It’s hard to really learn a programming language without good, engaging examples, and this book is full of them! Head
First C# will guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

—Chris Burrows, Software Engineer

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable
while covering a great amount of detail in a unique style. If you’ve been turned off by more conventional books on C#,
you’ll love this one.”

—Jay Hilyard, Director and Software Security Architect, and author of
 C# 6.0 Cookbook

“I’d recommend this book to anyone looking for a great introduction into the world of programming and C#. From the
first page onward, the authors walk the reader through some of the more challenging concepts of C# in a simple, easy-
to-follow way. At the end of some of the larger projects/labs, the reader can look back at their programs and stand in
awe of what they’ve accomplished.”

—David Sterling, Principal Software Developer

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style is
sure to captivate readers—from the humorously annotated examples to the Fireside Chats, where the abstract class and
interface butt heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

— Joseph Albahari, inventor of LINQPad, and coauthor of C# 12 in a Nutshell and
C# 12 Pocket Reference

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to
jump into the C# waters. I will recommend it to the advanced developer that wants to understand better what is
happening with their code. [I will recommend it to developers who] want to find a better way to explain how C# works
to their less-seasoned developer friends.”

—Giuseppe Turitto, Director of Engineering

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and
enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Advanced Systems Analyst

“Going through this Head First C# book was a great experience. I have not come across a book series which actually
teaches you so well.…This is a book I would definitely recommend to people wanting to learn C#.”

—Krishna Pala, MCP

Praise for the Head First Approach

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

—Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, former VP of Design, Twitter, and founder of Newsvine

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of

pragmatism and wit.”

— Ken Goldstein, Executive VP & Managing Director, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Beijing		•		Boston		•		Farnham		•			Sebastopol			•		Tokyo

Head First C#

Wouldn’t it be dreamy if
there was a C# book that’s

more fun than memorizing
a dictionary? It’s probably
nothing but a fantasy...

Andrew Stellman
Jennifer Greene

Downloadable Project10

Hide and Seek

Explore. Hide. Seek. Build a game that puts your dev skills to the test.
 One of the most important ideas we’ve emphasized throughout this book is that writing C# code is a skill,

and the best way to improve that skill is to get lots of practice. We want to give you as many opportunities

to get practice as possible! In this next exercise, you’ll build a Hide and Seek game where you explore a

virtual house and play against a computer opponent. But there’s more to this project than just writing code.

This is the biggest project we’ve given you so far, so you’ll be building it in parts. You’ll also be getting

more practice with test-driven development, writing your unit tests before you implement the classes they

test. This project will help you reinforce important concepts and develop valuable skills like unit testing and

project planning—essential for any software developer, especially if you’re aiming for a professional career.

You can download the latest version of this PDF from https://github.com/head-first-csharp/fifth-edition

this is a new chapter 1

2 Chapter 10

test-driven development helps you build bigger projects

Kitchen

Master
Bath

Living Room

Entry

Nursery

Hallway

Go UpUp from the
Hallway to get
to the Landing

Landing

First Floor Second Floor

Kids Room

Second
Bathroom

Master
Bedroom

Pantry

Bathroom

Let's build a house!
In this project, you’ll be creating a game where you play hide-and-seek in a
virtual house against computer opponents. Here’s the layout of the house.
It has two floors, a garage, and an attic. The player will use directions to
navigate through the house: they’ll go East from the entry to get to the hallway,
and from there they’ll go Northwest to the kitchen or up to the landing.

Go UpUp from
the Landing to
get to the Attic

Go OutOut of
the Entry
to get to

the Garage

you are here 4 3

hide and seek

You’ll use test-driven development
to build your game in increments
You’ve been doing larger and larger projects as you’ve gotten further through the book. To do them, you’ve been
breaking them down into increments, or smaller “mini-projects” that you can complete individually, one after
the other. You’ll take the same incremental approach to this project—and test-driven development will
help.

We learned about test-driven development in the Chapter 9 Go Fish! project. It’s called “test-driven” because you
write the tests for your classes before you write the code for them. Here’s a quick recap of how that worked:

 ≥ You started with a class diagram, which was drawn if a class that depends on another class is above
it in the diagram.

 ≥ You created a skeleton for the class at the bottom of the diagram. It had all of the class members, but
each member was a stub—or a temporary piece of code that will eventually be replaced by working
code. Each stub throws a NotImplementedException.

 ≥ You added unit tests for that class. When you first added the tests, they all failed because the stub
methods just throw exceptions.

 ≥ You implemented the class. You knew that your class was done when all of your tests passed.

 ≥ You moved to the next class in the diagram, creating a skeleton, adding unit tests that failed at first,
and implementing the class so the unit tests passed.

 ≥ Once once you got to the top of the class diagram, you were done.

Test-driven development can make your projects easier because it helps you follow a plan: start at the bottom
of the class diagram and work your way up, building each class and only moving on to the next one when it’s
done. That’s especially valuable when you’re taking an incremental approach to your projects—building them
in parts—and that’s how we’ll do this project: we’ll create the class diagram for the first part of the project where
you explore the house, then we’ll update the diagram for the second part, where you play hide-and-seek.

We’re giving you more freedom with how you do this project.

We’re giving you more freedom with how you do this project. That means we’ll give you
fewer instructions—and we’re not including solution code.

These projects are getting pretty big! The larger a project is, the more likely it is that your code will look
very different from ours. In fact, it may be so different that we don’t want to include the solution code
in this PDF—not just because it could be very different than yours, but also because it’s getting really
long, and the solution will end up being many pages of code.

You can see our solution on GitHub—and remember, it’s not cheating to look at our solution if you
get stuck: https://github.com/head-first-csharp/fifth-edition/tree/master/Code/Chapter_10

Relax

4 Chapter 10

explore the house

Part 1: Build an app to explore the house
Here’s what it will look like when you run your app:

You are in the Entry. You see the following exits:
 - the Hallway is to the East
 - the Garage is Out
Which direction do you want to go: East
Moving East
You are in the Hallway. You see the following exits:
 - the Bathroom is to the North
 - the Living Room is to the South
 - the Entry is to the West
 - the Kitchen is to the Northwest
 - the Landing is Up
Which direction do you want to go: Northwest
Moving Northwest
You are in the Kitchen. You see the following exits:
 - the Hallway is to the Southeast
Which direction do you want to go: Southeast
Moving Southeast
You are in the Hallway. You see the following exits:
 - the Bathroom is to the North
 - the Living Room is to the South
 - the Entry is to the West
 - the Kitchen is to the Northwest
 - the Landing is Up
Which direction do you want to go: Up
Moving Up
You are in the Landing. You see the following exits:
 - the Pantry is to the South
 - the Second Bathroom is to the West
 - the Nursery is to the Southwest
 - the Kids Room is to the Southeast
 - the Master Bedroom is to the Northwest
 - the Attic is Up
 - the Hallway is Down
Which direction do you want to go: Northwest
Moving Northwest
You are in the Master Bedroom. You see the following exits:
 - the Master Bath is to the East
 - the Landing is to the Southeast
Which direction do you want to go: East
Moving East
You are in the Master Bath. You see the following exits:
 - the Master Bedroom is to the West
Which direction do you want to go: Down
There's no exit in that direction
You are in the Master Bath. You see the following exits:
 - the Master Bedroom is to the West
Which direction do you want to go: Baloney
That's not a valid direction

When you start the app, you’re in the
Entry. The floor plan says there are
two exits: the Hallway is through a door
to the East, and the Garage is outside.

The app prompts you for a direction.
You’ll enter a direction like Northwest,
East, Up, or Out. If there’s an exit from
your current location in that direction, it
will move you to a new location.

The app keeps track of your current
location, lists all of the exits that
connect to other locations.

The Kitchen is Northwest of the Hallway. To get
back to the Hallway from the Kitchen, you have
to move in the opposite direction: Southeast

We went up from the Hallway to get to the
Landing. Look closely at the floor plan and
compare it with the list of exits that the
app lists when you’re in the Landing. You
can use the floor plan and this output to
figure out the complete layout of the house.

The Master Bath has only one exit,
to the West. If you enter Down while
in that location, the app will tell you
there’s no exit in that direction.

The app will let you know if you give it
input that isn’t a valid direction.

you are here 4 5

hide and seek

Location obje
ctLocation obje
ct

Kitchen

Location obje
ctLocation obje
ct

Hallway

N
orthw

est

S
outheast

static House
static Location Entry

static constructor

Location
string Direction
IDictionary<Direction, Location> Exits
IEnumerable<string> ExitList

AddExit
GetExit

The class diagram for your house explorer
Here’s the class diagram for the first part of the project, where you explore the
house. It has three classes: Location, House, and GameController.

using HideAndSeek;

GameController gameController = new GameController();

while (true)
{
 Console.WriteLine(gameController.Status);
 Console.Write(gameController.Prompt);
 Console.WriteLine(gameController.ParseInput(Console.ReadLine()));
}

The top-level statements call the GameController
It’s just an infinite loop that writes the status, displays a prompt, and
parses the input from the user. All of the “smarts” are in the other classes.

public enum
Direction
{
 North = -1,
 South = 1,
 East = -2,
 West = 2,
 Northeast = -3,
 Southwest = 3,
 Southeast = -4,
 Northwest = 4,
 Up = -5,
 Down = 5,
 In = -6,
 Out = 6,
}

Each Location uses a Dictionary
called Exits to keep track of the other
locations that it’s connected to. When

one Location has an exit to another,
that other Location has an exit back
to it—for example, the Hallway has a
Northwest exit to the Kitchen, which

has a Southeast exit back to the
hallway. The uses the Direction enum

for the Dictionary key, and to figure out
which direction the user wants to move.We're showing you the top-level

statements now so you know
what's coming, but you won't add
it to your project until you've
created the Location, House,
and GameController classes.

GameController
Location CurrentLocation
string Status
public string Prompt

public bool Move(Direction direction)
public string ParseInput(string input)

GameController uses the
static House class, but
since it’s static it doesn’t
keep a reference to it.

6 Chapter 10

Add the Location skeleton, write its unit tests, and then implement it. Start by creating a new solution called
HideAndSeek, then add an MSTest unit test project to it, just like you did in Chapter 9. Here’s the skeleton for the Location
class. It has stub methods that throw exceptions. Add it to your project.
Here’s the skeleton for the Location class:
public class Location
{
 /// <summary>
 /// The name of this location
 /// </summary>
 public string Name { get; private set; }

 /// <summary>
 /// The exits out of this location
 /// </summary>
 public IDictionary<Direction, Location> Exits { get; private set; }
 = new Dictionary<Direction, Location>();

 /// <summary>
 /// The constructor sets the location name
 /// </summary>
 /// <param name="name">Name of the location</param>
 public Location(string name) => throw new NotImplementedException();

 public override string ToString() => Name;

 /// <summary>
 /// Returns a sequence of descriptions of the exits, sorted by direction
 /// </summary>
 public IEnumerable<string> ExitList => throw new NotImplementedException();

 /// <summary>
 /// Adds an exit to this location
 /// </summary>
 /// <param name="direction">Direction of the connecting location</param>
 /// <param name="connectingLocation">Connecting location to add</param>
 public void AddExit(Direction direction, Location connectingLocation)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Gets the exit location in a direction
 /// </summary>
 /// <param name="direction">Direciton of the exit location</param>
 /// <returns>The exit location, or this if there is no exit in that direction</returns>
 public Location GetExit(Direction direction) => throw new NotImplementedException();
}

Exercise

Location
string Direction
IDictionary<Direction, Location> Exits
IEnumerable<string> ExitList

AddExit
GetExit

We gave you the Direction enum we gave you on the previous page. Add it to your project, too.

you are here 4 7

hide and seek

Add a new unit test class to your unit test project called HideAndSeekTests. Edit its project dependencies to add a
reference to the HideAndSeek project (again, just like you did in Chapter 9). Your job is to figure write tests for the
Location class. They’ll fail when you first run them—you’ll know you’re done with the Location class when they all pass.

namespace HideAndSeekTests;

using HideAndSeek;

[TestClass]
public class LocationTests
{
 private Location center;

 /// <summary>
 /// Initializes each unit test by setting creating a new the center location
 /// and adding a room in each direction before the test
 /// </summary>
 [TestInitialize]
 public void Initialize()
 {
 // You’ll use this to create a bunch of locations before each test
 }

 /// <summary>
 /// Make sure GetExit returns the location in a direction only if it exists
 /// </summary>
 [TestMethod]
 public void TestGetExit()
 {
 // This test will make sure the GetExit method works
 }

 /// <summary>
 /// Validates that the exit lists are working
 /// </summary>
 [TestMethod]
 public void TestExitList()
 {
 // This test will make sure the ExitList property works
 }

 /// <summary>
 /// Validates that each room’s name and return exit is created correctly
 /// </summary>
 [TestMethod]
 public void TestReturnExits()
 {
 // This test will test navigating through the center Location
 }

 /// <summary>
 /// Add a hall to one of the rooms and make sure the hall room’s names
 /// and return exits are created correctly
 /// </summary>
 [TestMethod]
 public void TestAddHall()
 {
 // This test will add a hallway with two locations and make sure they work
 }
}

Exercise

8 Chapter 10

Continue building out the Location unit tests and updating the class to make them pass.

Add this useful private method.
Look closely at the output from the game—the lists of exits include phrases like the Hallway is to
the East the Garage is Out and the Landing is Up. Here’s a useful switch expression that
will help you create that output.

/// <summary>
/// Describes a direction (e.g. "in" vs. "to the North")
/// </summary>
/// <param name="d">Direction to describe</param>
/// <returns>string describing the direction</returns>
private string DescribeDirection(Direction d) => d switch
{
 Direction.Up => "Up",
 Direction.Down => "Down",
 Direction.In => "In",
 Direction.Out => "Out",
 _ => $"to the {d}",
};

There’s one thing to keep in mind: your unit tests won’t test private methods. In Chapter 9 we talked
about black box testing, where your unit tests only test public behavior. Your private methods will definitely
be tested, but only because they’re called by public methods that the tests call directly.

The test initializer creates a Center location with exits in each direction.
The unit test class we gave you has an Initialize method marked with the [TestInitialize] annotation.
We saw in Chapter 9 that the annotation tells Visual Studio’s test executor to run that method before every
test. Start your tests by adding the code for the Initialize method. It should create a new Location instance
and assign it to the center field in the test class. It should then call its AddExit ten times, adding an exit to
a new location in each of the directions in the Directions enum.

We’ll start you off with the first few lines of the Initialize method:

 center = new Location("Center Room");
 Assert.AreSame("Center Room", center.ToString());
 Assert.AreEqual(0, center.ExitList.Count());

 center.AddExit(Direction.North, new Location("North Room"));

Add those lines to the Initialize method. Then add eleven more lines creating rooms in each direction. Give
them names like East Room, Upper Room, and Outside Room.

End the initializer with this line to make sure it added ten exits:

Assert.AreEqual(10, center.ExitList.Count());

Try running your tests. They’ll still fail, of course! They won’t pass until you finish your Location class.

1

2

Exercise

you are here 4 9

hide and seek

Add the TestGetExit method and implement Location.GetExit.
Here’s the TestGetExit method. It uses GetExit to get the exit to the east of the Center room and uses
Assert.AreEqual to check its name to make sure it got the correct exit. Then it uses Assert.AreSame to
make sure that a GetExit returns a reference to the location if it’s called with a direction where that room
doesn’t have an exit.

/// <summary>
/// Make sure GetExit returns the location in a direction only if it exists
/// </summary>
[TestMethod]
public void TestGetExit()
{
 var eastRoom = center.GetExit(Direction.East);
 Assert.AreEqual("East Room", eastRoom.Name);
 Assert.AreSame(center, eastRoom.GetExit(Direction.West));
 Assert.AreSame(eastRoom, eastRoom.GetExit(Direction.Up));
}

Now implement Location.GetExit. You’ll know it works when your unit test passes.

Add the TextExitList method and implement the ExitList property.
Take another close look at the output that includes the list of exits. That exit list is created by calling
string.join to join the list of exits returned by Location.ExitList. Use CollectionAssert.AreEqual to
compare a list of strings against center.ExitList.ToList(). Pay attention to the order and
capitalization of the exit list—use LINQ’s OrderBy to make sure they’re always in the same order.

Add the TestReturnExits method and make AddExit add the return exit.
Here’s a useful private method to add a return exit—you’ll call it from Location.AddExit:

/// <summary>
/// Adds a return exit to a connecting location
/// </summary>
/// <param name="direction">Direction of the connecting location</param>
/// <param name="connectingLocation">Location to add the return exit to</param>
private void AddReturnExit(Direction direction, Location connectingLocation) =>
 Exits.Add((Direction)(-(int) direction), connectingLocation);

Can you figure out a good way to test your AddExit method to make sure it generates return exits?

Implement TestAddHall and add any other tests you can think of.
We included a test called TestAddHall that adds an East exit to the East Room location, then another
exit to the East of that one, and makes sure they both have the right number of exits. Try adding any
other tests you can think of to make sure the Location class works.

We won’t include a solution in this PDF, because our solution will probably be
different from ours. You can see our solution on the GitHub page for the book.t

3

4

5

6

Exercise

10 Chapter 10

lay out the house

Location obje
ctLocation obje
ct

Kitchen

Location obje
ctLocation obje
ct

Hallway

Location obje
ctLocation obje
ct

Entry

Location obje
ctLocation obje
ct

Garage

Location obje
ctLocation obje
ct

Bathroom

Location obje
ctLocation obje
ct

Kids
Room

Location obje
ctLocation obje
ct

Living
Room

Location obje
ctLocation obje
ct

Landing

Location obje
ctLocation obje
ct

Master
Bath

Location obje
ctLocation obje
ct

Attic

Location obje
ctLocation obje
ct

Master
Bedroom

Location obje
ctLocation obje
ct

Second
Bathroom

Location obje
ctLocation obje
ct

Nursery

Location obje
ctLocation obje
ct

Pantry

static House
static Location Entry

static constructor

The House class lays out the f loor plan
The static House class keeps track of all of the rooms in the house. It has a
constructor that sets up the rooms in the house. Its Entry property contains
a reference to the Entry location. It will create a separate Location object for
each room in the house, using their AddExit methods to link them together.

The House constructor will instantiate
each of these objects and call their
AddExit methods to link them together.
Remember, AddExit creates the return
exit, so when your House constructor calls
entry.AddExit(Direction.Out, garage)
it not only adds the Out exit from the
Entry to the Garage, but also the In
exit from the Garage back to the Entry.

Your House class will create
a set of Location instances.
They’ll make up the layout

of the house, and their Exits
Dictionary properties will hold

references to each other. This is
a data structure, or a collection
of objects and relationships that

you can use to organize and
manage the data for a program.

you are here 4 11

hide and seek

Add this unit test class that tests the House class. We’re giving you a unit test class that navigates through the
House and verifies the layout. Your job is to build a House class that makes this test pass.
namespace HideAndSeekTests;

using HideAndSeek;

[TestClass]
public class HouseTests
{
 [TestMethod]
 public void TestLayout()
 {
 Assert.AreEqual("Entry", House.Entry.Name);

 var garage = House.Entry.GetExit(Direction.Out);
 Assert.AreEqual("Garage", garage.Name);

 var hallway = House.Entry.GetExit(Direction.East);
 Assert.AreEqual("Hallway", hallway.Name);

 var kitchen = hallway.GetExit(Direction.Northwest);
 Assert.AreEqual("Kitchen", kitchen.Name);

 var bathroom = hallway.GetExit(Direction. North);
 Assert.AreEqual("Bathroom", bathroom.Name);

 var livingRoom = hallway.GetExit(Direction.South);
 Assert.AreEqual("Living Room", livingRoom.Name);

 var landing = hallway.GetExit(Direction.Up);
 Assert.AreEqual("Landing", landing.Name);

 var masterBedroom = landing.GetExit(Direction.Northwest);
 Assert.AreEqual("Master Bedroom", masterBedroom.Name);

 var masterBath = masterBedroom.GetExit(Direction.East);
 Assert.AreEqual("Master Bath", masterBath.Name);

 var secondBathroom = landing.GetExit(Direction.West);
 Assert.AreEqual("Second Bathroom", secondBathroom.Name);

 var nursery = landing.GetExit(Direction.Southwest);
 Assert.AreEqual("Nursery", nursery.Name);

 var pantry = landing.GetExit(Direction.South);
 Assert.AreEqual("Pantry", pantry.Name);

 var kidsRoom = landing.GetExit(Direction.Southeast);
 Assert.AreEqual("Kids Room", kidsRoom.Name);

 var attic = landing.GetExit(Direction.Up);
 Assert.AreEqual("Attic", attic.Name);
 }
}

Exercise

The House class has two members: the Entry property that
returns the starting location for the player, and the constructor

that sets up the data structure. Remember, House is a static class,
so use the static access modifier when you declare the members.

You can see our solution in the HideAndSeek_part_1
project in our Chapter 10 code folder on GitHub.
https://github.com/head-first-csharp/fifth-edition

12 Chapter 10

add a game controller

GameController
Location CurrentLocation
string Status
public string Prompt
private House house

public bool Move(Direction direction)
public string ParseInput(string input)

The GameController class manages the game
Go back a few pages in this PDF and have a look at the top-level statements. They’re
really short; all it does is use the GameController properties and methods to write the
status to the console, write a prompt, and get input from the user. The GameController
has the code to manage the game: it parses the input that the user types in, moves
the player through the house, and provides status that the app can show the player.

Here’s the skeleton for the GameController class.

public class GameController
{
 /// <summary>
 /// The player's current location in the house
 /// </summary>
 public Location CurrentLocation { get; private set; }

 /// <summary>
 /// Returns the the current status to show to the player
 /// </summary>
 public string Status => throw new NotImplementedException();

 /// <summary>
 /// A prompt to display to the player
 /// </summary>
 public string Prompt => "Which direction do you want to go: ";

 public GameController()
 {
 CurrentLocation = House.Entry;
 }

 /// <summary>
 /// Move to the location in a direction
 /// </summary>
 /// <param name="direction">The direction to move</param>
 /// <returns>True if the player can move in that direction, false oterwise</returns>
 public bool Move(Direction direction)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Parses input from the player and updates the status
 /// </summary>
 /// <param name="input">Input to parse</param>
 /// <returns>The results of parsing the input</returns>
 public string ParseInput(string input)
 {
 throw new NotImplementedException();
 }
}

We could have made the Move method private, since no other classes use it. We made it public so you could write separate tests for it. Did we make the right choice?

The ParseInput method parses
a string that the user typed in.
Parsing means analyzing text.
You’ll use the Enum.TryParse
method, just like you did with

card values in Chapter 9.

you are here 4 13

hide and seek

Add this unit test class that tests the GameController class. We want the output to look a specific way, so we added
tests to make sure it does. Add more tests, then build a GameController class that passes.
namespace HideAndSeekTests;

using HideAndSeek;

[TestClass]
public class GameControllerTests
{
 GameController gameController;

 [TestInitialize]
 public void Initialize()
 {
 gameController = new GameController();
 }

 [TestMethod]
 public void TestMovement()
 {
 Assert.AreEqual("Entry", gameController.CurrentLocation.Name);

 Assert.IsFalse(gameController.Move(Direction.Up));
 Assert.AreEqual("Entry", gameController.CurrentLocation.Name);

 Assert.IsTrue(gameController.Move(Direction.East));
 Assert.AreEqual("Hallway", gameController.CurrentLocation.Name);

 Assert.IsTrue(gameController.Move(Direction.Up));
 Assert.AreEqual("Landing", gameController.CurrentLocation.Name);

 // Add more movement tests to the TestMovement test method
 }

 [TestMethod]
 public void TestParseInput()
 {
 var initialStatus = gameController.Status;

 Assert.AreEqual("That's not a valid direction", gameController.ParseInput("X"));
 Assert.AreEqual(initialStatus, gameController.Status);

 Assert.AreEqual("There's no exit in that direction",
 gameController.ParseInput("Up"));
 Assert.AreEqual(initialStatus, gameController.Status);

 Assert.AreEqual("Moving East", gameController.ParseInput("East"));
 Assert.AreEqual("You are in the Hallway. You see the following exits:" +
 Environment.NewLine + " - the Bathroom is to the North" +
 Environment.NewLine + " - the Living Room is to the South" +
 Environment.NewLine + " - the Entry is to the West" +
 Environment.NewLine + " - the Kitchen is to the Northwest" +
 Environment.NewLine + " - the Landing is Up", gameController.Status);

 Assert.AreEqual("Moving South", gameController.ParseInput("South"));
 Assert.AreEqual("You are in the Living Room. You see the following exits:" +
 Environment.NewLine + " - the Hallway is to the North", gameController.Status);

 // Can you add more input parsing tests to the TestParseInput test method?
 }
}

Exercise

We’re using Environment.NewLine in TestParseInput
instead of @ verbatim strings (like in Chapter 9). You

can use verbatim strings instead, just be careful
when you mix line breaks in verbatim strings with

Environment.NewLine, because you may end up with
a test that will pass on Windows but fail on macOS (or
vice versa) with confusing test failure messages that
show you two strings that appear identical but claim

that they’re different. The problem is that it’s comparing
stings that have macOS/Unix line endings \n with strings

that have Windows line endings \r\n. We stuck with
Environment.NewLine to keep our code cross-platform.

That’s the end of part 1 of the project. Once all three classes pass
their tests, add the top-level statements we gave you earlier and
you run it. Does the output match the sample output we gave you? If
not, add a failing test that reproduces the problem, then update your
code to fix it. That’s how test-driven development helps you fix bugs.

14 Chapter 10

test-driven development improves your code

Test-driven development makes it easier to write code
When you do test-driven development (or TDD), it means that you write unit tests first, and then you
write the code that the tests validate. The test fails when you first write it—after you write the test, you write
the code to make it pass. When you’re in the habit of writing unit tests first, it helps you think about what it
means for your code to work correctly, and a lot of developers find that it makes their projects come out better.

Unit tests change the way you design your code.
As you write more and more code, you’ll find yourself writing a block of code,
only to wish later that you’d written it a little differently—looking back, you
might realize that a different argument would have worked better for a particular
function, or that you could have used a different data structure, or made other
choices. But now the code you wrote is called from five other places, and it will
be more work to change it than it will be to just live with the poor decision.

In other words, some of the most annoying code problems happen when you
make a bad design choice, then you add other code that depends on it.

Unit testing helps you write great, well-designed code from the very beginning
of the project. Design problems in your code often become apparent the first
time that you write code that uses it. And that’s exactly what you’re doing when
you write a unit test first: you use the code that you’re about to write. And
you do it in small increments, one bit at a time, smoothing out design problems
as you encounter them.

Move on to the
next small piece
of functionality

Think about
what the code
has to do

Write a unit
test that fails

Write code
that makes
the test pass

This still doesn’t make sense. Am I really expected to test code
that I haven’t written yet? Why does it matter if I write the tests

first or write the code first?

The test-driven
development

feedback loop
TDD forces you to
really think through your
code’s behavior before
you dive into writing it.

you are here 4 15

hide and seek

Test-Driven Development Up Close
Code is always divided into discrete units
In C#, those units are typically classes (but they could be
individual methods or entire namespaces). You’ve written
a lot of code going through this book. Take a few minutes
and think back to some of your projects. How was the
code divided up? Did you think about your code as being
divided into discrete units when you were writing it?

Each unit gets its own unit tests
The name “unit testing” is pretty self-explanatory: you
write tests for the units of code. In C#, unit testing is
typically done on a class-by-class basis. Those tests are
written in the same language as the rest of the code,
and are stored in the same repository. The tests access
whatever part of the unit is visible to the rest of the code.
For your classes, that means the unit tests use the public
methods and fields to make sure the class works.

Writing the unit tests first helps developers to
think about how the code is going to be used
Every unit of code is used by at least one other unit somewhere in
the system—that’s how code works. But when you’re writing code,
there’s a paradox: in a lot of cases, you don’t really know exactly
how the unit you’re working on will be used until you actually use it.

Test-driven development helps you catch problems in your code
early, when they’re much easier to fix. It’s surprisingly easy to
design a unit that’s difficult to use later, and just as easy to “seal” in
that poor design by writing additional units that depend on it. But
if you write a small unit test every time you make a change to a
unit, a lot of those design decisions become obvious.

public class House {

public class Location {

public class GameController {

public class HouseTests {

public class LocationTests {

public class GameControllerTests {

Test-driven development is
more than a technique. It’s a
mindset that helps you think

differently about programming,
design, and code. That’s why

TDD is a great habitgreat habit to get into,
because it helps you write

code that’s easier to go back
and work with later.

Test-driven development is an important
part of agile development, which teams
all over the world use to work together and
build great software. If you’re curious about
agile, check out our book, Head First Agile.

16 Chapter 10

turn your house into a game

Part 2: Make it a game of hide-and-seek
You’ve set up a data structure that lays out the plans for a virtual house. Now you’ll turn it into a game:

 ≥ You’ll add hiding places to some of the locations.

 ≥ You’ll add five opponents, who will scatter throughout the house and hide in those hiding places.

 ≥ You’ll give the player a way to check hiding places. The game is over when all opponents are found!

Here’s a sample run of the game. This player found all five opponents in 19 moves:

1: Which direction do you want to go: East
Moving East
You are in the Hallway. You see the following exits:
 - the Bathroom is to the North
 - the Living Room is to the South
 - the Entry is to the West
 - the Kitchen is to the Northwest
 - the Landing is Up
You have not found any opponents
2: Which direction do you want to go (or type 'check'): Northwest
Moving Northwest
You are in the Kitchen. You see the following exits:
 - the Hallway is to the Southeast
Someone could hide next to the stove
You have not found any opponents
3: Which direction do you want to go (or type 'check'): Check
You found 1 opponent hiding next to the stove
You are in the Kitchen. You see the following exits:
 - the Hallway is to the Southeast
Someone could hide next to the stove
You have found 1 of 5 opponents: Owen
4: Which direction do you want to go (or type 'check'): Southeast
Moving Southeast
You are in the Hallway. You see the following exits:
 - the Bathroom is to the North
 - the Living Room is to the South
 - the Entry is to the West
 - the Kitchen is to the Northwest
 - the Landing is Up
You have found 1 of 5 opponents: Owen
5: Which direction do you want to go (or type 'check'): Up
Moving Up
You are in the Landing. You see the following exits:
 - the Pantry is to the South
 - the Second Bathroom is to the West
 - the Nursery is to the Southwest
 - the Kids Room is to the Southeast
 - the Master Bedroom is to the Northwest
 - the Attic is Up
 - the Hallway is Down
You have found 1 of 5 opponents: Owen

Some of the locations have hiding
places where an opponent can hide.
For example, someone could hide
next to the stove in the kitchen.

You’ll update the
GameController’s parser so it checks the hiding place in the current location.

The game keeps
track of which
opponents the player
has found so far.

you are here 4 17

hide and seek

You’ll build on the code you wrote in Part
1. Your game still needs to list the exits
and navigate through the house—and your
unit tests will help you make sure you
don’t accidentally reak that code.

The game keeps track of how many moves the player has
made so far. Checking a hiding place counts as a move.

The game ends when
the player finds
the last opponent.

You’ll use the
code you wrote in
Part 1 to lay out
and navigate the
house as a starting
point. You’ll add
classes to manage
the opponents
and hiding places,
and update your
GameController
and other classes to
turn it in to a game.

6: Which direction do you want to go (or type 'check'): West
Moving West
You are in the Second Bathroom. You see the following exits:
 - the Landing is to the East
Someone could hide in the shower
You have found 1 of 5 opponents: Owen
7: Which direction do you want to go (or type 'check'): Check
Nobody was hiding in the shower
You are in the Second Bathroom. You see the following exits:
 - the Landing is to the East
Someone could hide in the shower
You have found 1 of 5 opponents: Owen
8: Which direction do you want to go (or type 'check'): East
Moving East
You are in the Landing. You see the following exits:
 - the Pantry is to the South
 - the Second Bathroom is to the West
 - the Nursery is to the Southwest
 - the Kids Room is to the Southeast
 - the Master Bedroom is to the Northwest
 - the Attic is Up
 - the Hallway is Down
You have found 1 of 5 opponents: Owen
9: Which direction do you want to go (or type 'check'): Northwest
Moving Northwest
You are in the Master Bedroom. You see the following exits:
 - the Master Bath is to the East
 - the Landing is to the Southeast
Someone could hide in the closet
You have found 1 of 5 opponents: Owen
10: Which direction do you want to go (or type 'check'): Check
You found 2 opponents hiding in the closet
You are in the Master Bedroom. You see the following exits:
 - the Master Bath is to the East
 - the Landing is to the Southeast
Someone could hide in the closet
You have found 3 of 5 opponents: Owen, Joe, Bob
11: Which direction do you want to go (or type 'check'):

...

You have found 4 of 5 opponents: Owen, Joe, Bob, Ana
17: Which direction do you want to go (or type 'check'): South
Moving South
You are in the Pantry. You see the following exits:
 - the Landing is to the North
Someone could hide inside a cabinet
You have found 4 of 5 opponents: Owen, Joe, Bob, Ana
18: Which direction do you want to go (or type 'check'): Check
You found 1 opponent hiding inside a cabinet
You won the game in 19 moves!
Press P to play again, any other key to quit.

18 Chapter 10

your updated classes

static House
static Location Entry
private static IEnumerable<Location>
 locations
static constructor
static Location GetLocationByName
static Location RandomExit
void ClearHidingPlaces

Location
string Direction
IDictionary<Direction, Location> Exits
IEnumerable<string> ExitList

AddExit
GetExit

GameController
Location CurrentLocation
string Status
public string Prompt
public int MoveNumber
public bool GameOver
private List<Opponent> opponents
private List<Opponent> foundOpponents

public bool Move(Direction direction)
public string ParseInput(string input)

Opponent
string Name

Hide

Here’s the updated class diagram
You’ll add two classes, Opponent and LocationWithHidingPlace, and make
changes to the House and GameController classes and the top-level statements.

You’ll modify the House class to add all
of its locations to a sequence, and add
methods to get a location by name and
find a random exit for a location.

The GameController will create
opponents and keep track of
which ones were found.

LocationWithHidingPlace
is a subclass of Location
that adds a hiding place
where opponents can hide.

Each opponent is represented by an
Opponent object. Its Hide method
navigates to a random room in the house
with a hiding place and hides there.

LocationWithHidingPlace
string HidingPlace

Hide(Opponent opponent)
IEnumerable<Opponent>
 CheckHidingPlace

The Opponent.Hide method calls the LocationWithHidingPlace class’s Hide method, but its CheckHidingPlace
returns a sequence of Opponent references. Which class do you build first? Can you build them in parts?

Brain
Power

you are here 4 19

hide and seek

Add these unit tests to the House class. Your updated House class has two additional methods. The
GetLocationByName method takes the name of a location and returns a reference to the Location with that name (or the
entry, if the name isn’t found). The RandomExit method takes a location and returns a random exit. The Opponent class
will use that method to navigate to a random location to hide in.
[TestMethod]
public void TestGetLocationByName()
{
 Assert.AreEqual("Entry", House.GetLocationByName("Entry").Name);
 Assert.AreEqual("Attic", House.GetLocationByName("Attic").Name);
 Assert.AreEqual("Garage", House.GetLocationByName("Garage").Name);
 Assert.AreEqual("Master Bedroom", House.GetLocationByName("Master Bedroom").Name);
 Assert.AreEqual("Entry", House.GetLocationByName("Secret Library").Name);
}

[TestMethod]
public void TestRandomExit()
{
 var landing = House.GetLocationByName("Landing");

 House.Random = new MockRandom() { ValueToReturn = 0 };
 Assert.AreEqual("Attic", House.RandomExit(landing).Name);

 House.Random = new MockRandom() { ValueToReturn = 1 };
 Assert.AreEqual("Hallway", House.RandomExit(landing).Name);

 House.Random = new MockRandom() { ValueToReturn = 2 };
 Assert.AreEqual("Kids Room", House.RandomExit(landing).Name);

 House.Random = new MockRandom() { ValueToReturn = 3 };
 Assert.AreEqual("Master Bedroom", House.RandomExit(landing).Name);

 House.Random = new MockRandom() { ValueToReturn = 4 };
 Assert.AreEqual("Nursery", House.RandomExit(landing).Name);

 House.Random = new MockRandom() { ValueToReturn = 5 };
 Assert.AreEqual("Pantry", House.RandomExit(landing).Name);

 House.Random = new MockRandom() { ValueToReturn = 6 };
 Assert.AreEqual("Second Bathroom", House.RandomExit(landing).Name);

 var kitchen = House.GetLocationByName("Kitchen");
 House.Random = new MockRandom() { ValueToReturn = 0 };
 Assert.AreEqual("Hallway", House.RandomExit(kitchen).Name);
}
Add this MockRandom class to your project. The tests reuse the MockRandom class that you created in the Go Fish!
project from Chapter 9, so you’ll need to add it to your unit test project as well.
/// <summary>
/// Mock Random for testing that always returns a specific value
/// </summary>
public class MockRandom : System.Random
{
 public int ValueToReturn { get; set; } = 0;
 public override int Next() => ValueToReturn;
 public override int Next(int maxValue) => ValueToReturn;
 public override int Next(int minValue, int maxValue) => ValueToReturn;
}

Exercise

You can see our solution in the HideAndSeek_part_2
project in our Chapter 10 code folder on GitHub.
https://github.com/head-first-csharp/fifth-edition

You’ll need to add a collection
of Location references to the

House class and add each
location to it. There’s more

than one way to do this! You
could use a List<Location>, a
Dictionary<string, Location>,

or something else entirely.
You’ll also need to add a

static Random field called
Random that the RandomExit
method will use to choose a
random exit from a location.

TestRandomExit
uses a mock random
number generator to
check the exits that
RandomExit returns
when Random.Next

returns specific values.
Your Landing location

will need to add its
exits in a specific

order to pass this test.

20 Chapter 10

start with the class with fewest dependencies

Starting at the bottom of the class diagram is a general
guideline to help you find classes without dependencies.
We asked you to start Part 1 with unit tests for the Location class, then move
on to create unit tests for the House class, and finish up with unit tests for
the GameController class. This order made sense because GameController
depends on House—meaning that it has members that use members of the
House class—and the House class in turn, depends on Location. So it made
sense to start with Location first, because having a working Location class
made it easier to build and test your House class. Those dependencies are
reflected in the class diagram: we generally draw those diagrams so that
a class that depends on another class is above it in the diagram—and we drew
lines on that diagram to show those dependencies.

In this case, we decided to start with the House class—even though it’s in the
middle of the class diagram—because the new code that we added doesn’t
depend on any of the other code we’re adding in Part 2.

There’s another reason we wanted to start Part 2 with the changes to the
House class. When you refactor or modify your code, your unit tests can help
you do it safely and make sure that you didn’t accidentally break your code.

You’ll see an example of unit tests helping you safely modify your code in
the next section. The next class you’ll add is LocationWithHidingPlace, the
subclass of Location that adds a place for an opponent to hide. After you add it,
you’re going to modify your House class to replace some of the lines that create
a new Location instance with ones that instantiate LocationWithHidingPlace.
When you do, you’ll be able to use your tests to make sure you don’t
accidentally cause any bugs when you modify your House class.

Hold on! Didn’t you say that we should start at the bottom of the
class diagram? The House class is in the middle of the diagram.

Why did we start Part 2 there?

When you refactor or modify your code, your
unit tests can help you do it safely and make
sure that you didn’t accidentally break your code.

you are here 4 21

hide and seek

Use TDD to add the LocationWithHidingPlace class. Look closely at the bottom of the updated class diagram.
Did you notice two lines that show how Opponent depends on LocationWithHidingPlace, which depends right
back on Opponent? When you have two classes that depend on each other, you can still test one of them first—
you just need to create a skeleton of the other that has stub methods. Start by adding an Opponent skeleton
with a stub Hide method that throws an exception.
public class Opponent
{
 public readonly string Name;
 public Opponent(string name) => Name = name;
 public override string ToString() => Name;

 public void Hide()
 {
 throw new NotImplementedException();
 }
}

Add the LocationWithHidingPlaceTests unit test class to test LocationWithHidingPlace. It
namespace HideAndSeekTests;

using HideAndSeek;

[TestClass]
public class LocationWithHidingPlaceTests
{
 [TestMethod]
 public void TestHiding()
 {
 // The constructor sets the Name and HidingPlace properties
 var hidingLocation = new LocationWithHidingPlace("Room", "under the bed");
 Assert.AreEqual("Room", hidingLocation.Name);
 Assert.AreEqual("Room", hidingLocation.ToString());
 Assert.AreEqual("under the bed", hidingLocation.HidingPlace);

 // Hide two opponents in the room, then check the hiding place
 var opponent1 = new Opponent("Opponent1");
 var opponent2 = new Opponent("Opponent2");
 hidingLocation.Hide(opponent1);
 hidingLocation.Hide(opponent2);
 CollectionAssert.AreEqual(new List<Opponent>() { opponent1, opponent2 },
 hidingLocation.CheckHidingPlace().ToList());

 // The hiding place should now be empty
 CollectionAssert.AreEqual(new List<Opponent>(),
 hidingLocation.CheckHidingPlace().ToList());
 }
 }
}

Exercise

There are other ways
to design this app so
these two classes don’t
both depend on each
other. We designed our
app this way to give an
example of how to to
TDD in this situation.

Your LocationWithHidingPlace class will extend
the Location class. Its constructor will take two
parameters, name and hidingPlace, and call
the base constructor with name. The class will

have a private Opponent collection to keep track
of the opponents currently hiding in the hiding

place. Once the hiding place is checked, the
opponents are found, so it clears the collection.

22 Chapter 10

type assertions check object types

Use type assertions to add hiding places to the house
Now that you’ve added your LocationWithHidingPlace and Opponent classes, you can update your House
class to add hiding places—and you’ll use Opponent objects to test it. You’ll also use IsInstanceOfType, an
assertion that validates that an object is a specific type.

 Assert.IsInstanceOfType(reference, typeof(type));
Here’s one of the assertions that you’ll add to your House tests:

Assert.IsInstanceOfType(House.GetLocationByName("Garage"),
typeof(LocationWithHidingPlace));

This assertion will pass if House.GetLocationByName("Garage") is an instance of LocationWithHidingPlace, but
it will fail if it’s still an instance of Location.

Use TDD to finish the House class. Add these tests to validate that locations with rooms places were instantiated with
the right type and that the ClearHidingPlaces method is working.
[TestMethod]
public void TestHidingPlaces()
{
 Assert.IsInstanceOfType(House.GetLocationByName("Garage"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Kitchen"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Living Room"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Bathroom"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Master Bedroom"),
 typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Master Bath"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Second Bathroom"),
 typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Kids Room"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Nursery"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Pantry"), typeof(LocationWithHidingPlace));
 Assert.IsInstanceOfType(House.GetLocationByName("Attic"), typeof(LocationWithHidingPlace));
}

[TestMethod]
public void TestClearHidingPlaces()
{
 var garage = House.GetLocationByName("Garage") as LocationWithHidingPlace;
 garage.Hide(new Opponent("Opponent1"));

 var attic = House.GetLocationByName("Garage") as LocationWithHidingPlace;
 attic.Hide(new Opponent("Opponent2"));
 attic.Hide(new Opponent("Opponent3"));
 attic.Hide(new Opponent("Opponent4"));

 House.ClearHidingPlaces();
 Assert.AreEqual(0, garage.CheckHidingPlace().Count());
 Assert.AreEqual(0, attic.CheckHidingPlace().Count());
}

Exercise

You'll need to add
“using System.Linq” to
your test class to use
the Count() method.

This test creates four
Opponent objects and
hides them in two
locations in the house,
then clears the hiding
places and checks
them to make sure
they’re empty.

Your existing House unit tests will help to make sure that you
don’t accidentally break any of the code that’s already there.

you are here 4 23

hide and seek

Opponent.Hide requires a random location
The next thing you’ll do is implement the Opponent.Hide method. You’ll replace the method in the
skeleton that we just gave you with one that passes a test that we give you.

 public void Hide()
 {
 throw new NotImplementedException();
 }

When you call Opponent.Hide, it will start at the entry, then move through a random number—between
10 and 50— of locations, calling House.RandomExit at each location to find the next place to go. If the
opponent ends up in a location that doesn’t have a hiding place, they’ll keep calling House.RandomExit
and going to that location until they get to a location with a hiding place, and hide in that location.

...but MockRandom won’t work for this test!
We’ll need to use a mock random number generator to make our test reproducible. We could use this
code this to test the Opponent.Hide method, but there’s a problem:

var opponent1 = new Opponent("opponent1");
Assert.AreEqual("opponent1", opponent1.Name);

House.Random = new MockRandom() { ValueToReturn = 0 };
opponent1.Hide();

var bathroom = House.GetLocationByName("Bathroom") as LocationWithHidingPlace;
CollectionAssert.AreEqual(new[] { opponent1 }, bathroom.CheckHidingPlace().
ToList());

Let’s figure out what happens when the opponent tries to hide:

1. The opponent will move a random number of steps—but in this case, that number is zero, so they
end up in the Entry.

2. The Entry doesn’t have a hiding place, so the opponent calls House.RandomExit, which calls the
MockRandom.Next method, which returns 0. It returns the first exit in its exit list, Hallway.

3. Hallway doesn’t have a hiding place, so the opponent calls House.RandomExit, which calls the
MockRandom.Next method, which returns 0. It returns the first exit in its exit list, Entry.

4. We’re back at step 2. Uh-oh! Now we’re stuck in an infinite loop.

Take a few minutes and really understand what’s going on there.

The same thing happens if you set MockRandom.ValueToReturn to 1 (or any other number)—the test
will still end up in an infinite loop.

Create an opponent and make
sure its name is set correctly.

Use MockRandom like you did with the house
tests, then call the opponent’s Hide method.

Make sure the
opponent hid in
the expected
location.

When you implement the Opponent.Hide method, add this statement to the end of the method:
System.Diagnostics.Debug.WriteLine($"{Name} is hiding " +

$"{(currentLocation as LocationWithHidingPlace).HidingPlace} in the {currentLocation.
Name}");

That will write a line to the application output telling you exactly where each opponent is hiding, which can
be very useful when you’re debugging your code so you can go straight to the opponent locations.

24 Chapter 10

Use TDD to finish the Opponent class. You’ll need a slightly different mock random number generator. Add this
MockRandomWithValueList class to your unit test project:
/// <summary>
/// Mock Random for testing that uses a list to return values
/// </summary>
public class MockRandomWithValueList : System.Random
{
 private Queue<int> valuesToReturn;
 public MockRandomWithValueList(IEnumerable<int> values) =>
 valuesToReturn = new Queue<int>(values);
 public int NextValue()
 {
 var nextValue = valuesToReturn.Dequeue();
 valuesToReturn.Enqueue(nextValue);
 return nextValue;
 }
 public override int Next() => NextValue();
 public override int Next(int maxValue) => Next(0, maxValue);
 public override int Next(int minValue, int maxValue)
 {
 var next = NextValue();
 return next >= minValue && next < maxValue ? next : minValue;
 }
}

Add the OpponentTests unit test class to test Opponent and implement the Opponent.Hide method. It uses
MockRandomWithValueList to get the Hide method to navigate to a specific room in the house.

namespace HideAndSeekTests;

using HideAndSeek;

[TestClass]
public class OpponentTests
{
 [TestMethod]
 public void TestOpponentHiding()
 {
 var opponent1 = new Opponent("opponent1");
 Assert.AreEqual("opponent1", opponent1.Name);

 House.Random = new MockRandomWithValueList(new int[] { 0, 1 });
 opponent1.Hide();
 var bathroom = House.GetLocationByName("Bathroom") as LocationWithHidingPlace;
 CollectionAssert.AreEqual(new[] { opponent1 }, bathroom.CheckHidingPlace().ToList());

 var opponent2 = new Opponent("opponent2");
 Assert.AreEqual("opponent2", opponent2.Name);

 House.Random = new MockRandomWithValueList(new int[] { 0, 1, 2, 3, 4 });
 opponent2.Hide();
 var kitchen = House.GetLocationByName("Kitchen") as LocationWithHidingPlace;
 CollectionAssert.AreEqual(new[] { opponent2 }, kitchen.CheckHidingPlace().ToList());
 }
}

Exercise

add some opponents

If you modified your house layout to add rooms or change exits, your opponents may end up in a different location. In that case, you may need to modify the test to change the expected location names so they match the locations where your oppnents end up.

Take a few minutes and really
understand how we're using
MockRandomWithValueList.

Step through the code (in
the debugger, or even better,

on paper!) and figure out
when it calls Random.Next.
Then determine what value
the mock random number

generator returns and how it's
used in the rest of the code.

you are here 4 25

hide and seek

Add opponents to your GameController
Now that you’ve got your Opponent class and a LocationWithHidingPlace for opponents to hide in, you can
modify GameController to add opponents. You’ll keep track of the opponents in a private List<Opponent>
called opponents, and the opponents that the player has found in another private List<Opponent> called
foundOpponents. You’ll also have properties to keep track of the number of moves the player has made, and

Add these fields and properties to your GameController, replacing the existing Prompt property:

/// <summary>
/// The number of moves the player has made
/// </summary>
public int MoveNumber { get; private set; } = 1;

/// <summary>
/// Private list of opponents the player needs to find
/// </summary>
public readonly IEnumerable<Opponent> Opponents = new List<Opponent>()
{
 new Opponent("Joe"),
 new Opponent("Bob"),
 new Opponent("Ana"),
 new Opponent("Owen"),
 new Opponent("Jimmy"),
};

/// <summary>
/// Private list of opponents the player has found so far
/// </summary>
private readonly List<Opponent> foundOpponents = new List<Opponent>();

/// <summary>
/// Returns true if the game is over
/// </summary>
public bool GameOver => Opponents.Count() == foundOpponents.Count();

/// <summary>
/// A prompt to display to the player
/// </summary>
public string Prompt =>
 $"{MoveNumber}: Which direction do you want to go (or type 'check'): ";

Then, modify the GameController constructor to clear the hiding places and tell each opponent to hide:

public GameController()
{
 House.ClearHidingPlaces();
 foreach (var opponent in Opponents)
 opponent.Hide();

 CurrentLocation = House.Entry;
}

Do this!

26 Chapter 10

Modify GameControllerTests to add the TestParseCheck method. This method sets up a specific game by clearing
the house, hiding opponents in specific rooms, then uses ParseInput to simulate a complete game that includes checking
various locations.
[TestMethod]
public void TestParseCheck()
{
 Assert.IsFalse(gameController.GameOver);

 // Clear the hiding places and hide the opponents in specific rooms
 House.ClearHidingPlaces();
 var joe = gameController.Opponents.ToList()[0];
 (House.GetLocationByName("Garage") as LocationWithHidingPlace).Hide(joe);
 var bob = gameController.Opponents.ToList()[1];
 (House.GetLocationByName("Kitchen") as LocationWithHidingPlace).Hide(bob);
 var ana = gameController.Opponents.ToList()[2];
 (House.GetLocationByName("Attic") as LocationWithHidingPlace).Hide(ana);
 var owen = gameController.Opponents.ToList()[3];
 (House.GetLocationByName("Attic") as LocationWithHidingPlace).Hide(owen);
 var jimmy = gameController.Opponents.ToList()[4];
 (House.GetLocationByName("Kitchen") as LocationWithHidingPlace).Hide(jimmy);

 // Check the Entry -- there are no players hiding there
 Assert.AreEqual(1, gameController.MoveNumber);
 Assert.AreEqual("There is no hiding place in the Entry",
 gameController.ParseInput("Check"));
 Assert.AreEqual(2, gameController.MoveNumber);

 // Move to the Garage
 gameController.ParseInput("Out");
 Assert.AreEqual(3, gameController.MoveNumber);

 // We hid Joe in the Garage, so validate ParseInput's return value and the properties
 Assert.AreEqual("You found 1 opponent hiding behind the car",
 gameController.ParseInput("check"));
 Assert.AreEqual("You are in the Garage. You see the following exits:" +
 Environment.NewLine + " - the Entry is In" +
 Environment.NewLine + "Someone could hide behind the car" +
 Environment.NewLine + "You have found 1 of 5 opponents: Joe",
 gameController.Status);
 Assert.AreEqual("4: Which direction do you want to go (or type 'check'): ",
 gameController.Prompt);
 Assert.AreEqual(4, gameController.MoveNumber);

 // Move to the bathroom, where nobody is hiding
 gameController.ParseInput("In");
 gameController.ParseInput("East");
 gameController.ParseInput("North");

 // Check the Bathroom to make sure nobody is hiding there
 Assert.AreEqual("Nobody was hiding behind the door",
 gameController.ParseInput("check"));
 Assert.AreEqual(8, gameController.MoveNumber);

Exercise

Notice how we used an uppercase C
in one assertion and a lowercase c in
another? This is testing that you’re
doing a case-insensitive check when you
parse the word “Check” in the input.

This test calls the
GameController’s

ParseInput method
to simulate playing

the game.

you are here 4 27

hide and seek

 // Check the Bathroom to make sure nobody is hiding there
 gameController.ParseInput("South");
 gameController.ParseInput("Northwest");
 Assert.AreEqual("You found 2 opponents hiding next to the stove",
 gameController.ParseInput("check"));
 Assert.AreEqual("You are in the Kitchen. You see the following exits:" +
 Environment.NewLine + " - the Hallway is to the Southeast" +
 Environment.NewLine + "Someone could hide next to the stove" +
 Environment.NewLine + "You have found 3 of 5 opponents: Joe, Bob, Jimmy",
 gameController.Status);
 Assert.AreEqual("11: Which direction do you want to go (or type 'check'): ",
 gameController.Prompt);
 Assert.AreEqual(11, gameController.MoveNumber);

 Assert.IsFalse(gameController.GameOver);

 // Head up to the Landing, then check the Pantry (nobody's hiding there)
 gameController.ParseInput("Southeast");
 gameController.ParseInput("Up");
 Assert.AreEqual(13, gameController.MoveNumber);

 gameController.ParseInput("South");
 Assert.AreEqual("Nobody was hiding inside a cabinet",
 gameController.ParseInput("check"));
 Assert.AreEqual(15, gameController.MoveNumber);

 // Check the Attic to find the last two opponents, make sure the game is over
 gameController.ParseInput("North");
 gameController.ParseInput("Up");
 Assert.AreEqual(17, gameController.MoveNumber);

 Assert.AreEqual("You found 2 opponents hiding in a trunk",
 gameController.ParseInput("check"));
 Assert.AreEqual("You are in the Attic. You see the following exits:" +
 Environment.NewLine + " - the Landing is Down" +
 Environment.NewLine + "Someone could hide in a trunk" +
 Environment.NewLine +
 "You have found 5 of 5 opponents: Joe, Bob, Jimmy, Ana, Owen",
 gameController.Status);
 Assert.AreEqual("18: Which direction do you want to go (or type 'check'): ",
 gameController.Prompt);
 Assert.AreEqual(18, gameController.MoveNumber);

 Assert.IsTrue(gameController.GameOver);
}

You’ll also need to modify two assertions at the end of the TestParseInput method. Replace this line:
 Environment.NewLine + " - the Landing is Up", gameController.Status);

With this:
 Environment.NewLine + " - the Landing is Up" +
 Environment.NewLine + "You have not found any opponents", gameController.Status);

And replace this line:
 Environment.NewLine + " - the Hallway is to the North", gameController.Status);

With this
 Environment.NewLine + " - the Hallway is to the North" +
 Environment.NewLine + "Someone could hide behind the sofa" +
 Environment.NewLine + "You have not found any opponents", gameController.Status);

Exercise

28 Chapter 10

your new top-level statements

Update the top-level statements
If all of the tests pass, then your game should work! Update the top-level stateements to create a new
GameController for each new game, and use its GameOver property to check if the game is over.

using HideAndSeek;

while (true)
{
 var gameController = new GameController();
 while (!gameController.GameOver)
 {
 Console.WriteLine(gameController.Status);
 Console.Write(gameController.Prompt);
 Console.WriteLine(gameController.ParseInput(Console.ReadLine()));
 }

 Console.WriteLine($"You won the game in {gameController.MoveNumber} moves!");
 Console.WriteLine("Press P to play again, any other key to quit.");
 if (Console.ReadKey(true).KeyChar.ToString().ToUpper() != "P") return;
}

My game works! I can see how test-driven
development can help me approach a large

project.

That’s right. Test-driven development gives you
the freedom to start the classes that have the
fewest dependencies and move on from there.
Not only that, but they also help you catch bugs so you can
make sure your code works. In fact, this is a great opportunity
to practice testing—and maybe catch some bugs in your code.
Before you go on to the last part of the project, take some time
and add more unit tests to your test classes. What happens
when you give them weird data? Find some edge cases to check?
Adding unit tests will help you understand your code better.

you are here 4 29

hide and seek

Part 3: Make your game load and save
In Part 3 you’ll add load and save commands to load and save your game. Here’s what it will look
like when you save a game to a file, then restart the game and load that file:
You are in the Entry. You see the following exits:
 - the Hallway is to the East
 - the Garage is Out
You have not found any opponents
1: Which direction do you want to go (or type 'check'): Out
Moving Out
You are in the Garage. You see the following exits:
 - the Entry is In
Someone could hide behind the car
You have not found any opponents
2: Which direction do you want to go (or type 'check'): check
You found 1 opponent hiding behind the car
You are in the Garage. You see the following exits:
 - the Entry is In
Someone could hide behind the car
You have found 1 of 5 opponents: Bob
3: Which direction do you want to go (or type 'check'): In
Moving In
You are in the Entry. You see the following exits:
 - the Hallway is to the East
 - the Garage is Out
You have found 1 of 5 opponents: Bob
4: Which direction do you want to go (or type 'check'): East
Moving East
You are in the Hallway. You see the following exits:
 - the Bathroom is to the North
 - the Living Room is to the South
 - the Entry is to the West
 - the Kitchen is to the Northwest
 - the Landing is Up
You have found 1 of 5 opponents: Bob
5: Which direction do you want to go (or type 'check'): Northwest
Moving Northwest
You are in the Kitchen. You see the following exits:
 - the Hallway is to the Southeast
Someone could hide next to the stove
You have found 1 of 5 opponents: Bob
6: Which direction do you want to go (or type 'check'): Check
You found 2 opponents hiding next to the stove
You are in the Kitchen. You see the following exits:
 - the Hallway is to the Southeast
Someone could hide next to the stove
You have found 3 of 5 opponents: Bob, Owen, Jimmy
7: Which direction do you want to go (or type 'check'): save my_saved_game
Saved current game to my_saved_game

You are in the Entry. You see the following exits:
 - the Hallway is to the East
 - the Garage is Out
You have not found any opponents
1: Which direction do you want to go (or type 'check'): load my_saved_game
Loaded game from my_saved_game
You are in the Kitchen. You see the following exits:
 - the Hallway is to the Southeast
Someone could hide next to the stove
You have found 3 of 5 opponents: Bob, Owen, Jimmy
7: Which direction do you want to go (or type 'check'):

We hit ^C and then restarted the game

We started out playing the
game as usual. We found
three of the opponents, and
now we’re in the Kitchen.

We used the ‘save’
command to save the
current game to a file
called my_saved_game.json.
(in the same folder as the
binaries for the game).

When we load the game from my_saved_game.
json it restores the found opponents, move
number, and current location.

30 Chapter 10

you can do this!

Get creative!
Did you finish the project? Don’t stop there—keep going! There are lots of ways you
can improve the game. Here are a few ideas:

 ≥ Create a .NET MAUI or Blazor version of the game. You can build a user
interface that reuses the classes as the Console App version.

 ≥ Add rooms to your house with more hiding places.

 ≥ Add more opponents.

 ≥ Add a score.

 ≥ Add a timer.

 ≥ Try adding interactive fiction components to your game. Add an inventory
and items to pick up (like keys that unlock rooms or open hiding places). You’ll
need to update your parser to add more commands like take, unlock, and inventory.

Time to take f light!
For this last part of the project, we’re not including tests or code. Your job
is to figure out how to do it! There are many different ways to solve this
problem. Here’s what we did to create our solution:

1. We created a class called SavedGame with four properties: a
string to store the name of the player’s location, a Dictionary with
opponent names as the key and their hiding place location names
as the value, a List of found opponent names, and move number.

2. We add a unit test that hid opponents in specific locations in the
house, called ParseInput to play the game and find some of them,
and then called ParseInput to save the game to a temporary file.
Then it creates a new GameController and calls ParseInput to load
the game from the temporary file, and checks various values to
make sure the game was loaded. Then we delete the temporary file.

3. We added a unit test to make sure the game does not allow
filenames that included slashes or spaces (to prevent accidentally
overwriting important system files).

4. We updated GameController to parse the load and save
commands and added the code that loads and saves the game,
using JsonSerializer to serialize and deserialize the SavedGame
class to a file in the current execution folder.

You can do this!
You know enough C# to create the

skeleton methods, write the test, and
implement the code. If you get stuck,

it’s not cheating to check our solution
on GitHub to see how we solved this

problem. In fact, that’s a great way to get
these ideas to stick in your brain.

Have you ever played an interactive fiction game (sometimes called a text
adventure)? If not, try playing one online! We recommend starting with the award-
winning Spider and Web by Andrew Plotkin: https://eblong.com/zarf/zweb/tangle/

