
Andrew Stellman
Blazor Learner’s Guide

Andrew Stellman
https://github.com/head-first-csharp/fifth-edition

Andrew Stellman
This is a bonus companion guide to help you learn web development with C# and Blazor.

Andrew Stellman

Andrew Stellman

Andrew Stellman
Check out our GitHub page for videos, downloads, and more!

Praise for Head First C#

“In a sea of dry technical manuals, Head First C# stands out as a beacon of brilliance. Its unique teaching style
not only imparts essential knowledge but also sparks curiosity and fuels passion for coding. An indispensable
resource for beginners!”

—Gerald Versluis, Senior Software Engineer at Microsoft

“Head First C# started my career as a software engineer and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books have helped me to launch my career.”

—Ryan White, Game Developer

“If you’re a new C# developer (welcome to the party!), I highly recommend Head First C#. Andrew and Jennifer
have written a concise, authoritative, and most of all, fun introduction to C# development. I wish I’d had this
book when I was first learning C#!”

—Jon Galloway, Senior Program Manager on the .NET Community Team, Microsoft

“Not only does Head First C# cover all the nuances it took me a long time to understand, it has that Head First
magic going on where it is just a super fun read.”

—Jeff Counts, Senior C# Developer

“Head First C# is a great book with fun examples that keep learning interesting.”

—Lindsey Bieda, Lead Software Engineer

“Head First C# is a great book, both for brand-new developers and developers like myself coming from a Java
background. No assumptions are made as to the reader’s proficiency, yet the material builds up quickly enough
for those who are not complete newbies—a hard balance to strike. This book got me up to speed in no time for
my first large-scale C# development project at work—I highly recommend it.”

—Shalewa Odusanya, Principal

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I’ve ever
seen—the samples are clear, the topics are concise and well written. The mini-games that guide you through the
different programming challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”

—Johnny Halife, Partner

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The many
coding challenges keep it fun, even when the concepts are tough.”

—Rebeca Dunn-Krahn, Founding Partner, Sempahore Solutions

Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want
to learn C# in depth and have fun doing it, this is THE book for you.”

—Andy Parker, fledgling C# Programmer

“It’s hard to really learn a programming language without good, engaging examples, and this book is full of them! Head
First C# will guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

—Chris Burrows, Software Engineer

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable
while covering a great amount of detail in a unique style. If you’ve been turned off by more conventional books on C#,
you’ll love this one.”

—Jay Hilyard, Director and Software Security Architect, and author of
 C# 6.0 Cookbook

“I’d recommend this book to anyone looking for a great introduction into the world of programming and C#. From the
first page onward, the authors walk the reader through some of the more challenging concepts of C# in a simple, easy-
to-follow way. At the end of some of the larger projects/labs, the reader can look back at their programs and stand in
awe of what they’ve accomplished.”

—David Sterling, Principal Software Developer

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style is
sure to captivate readers—from the humorously annotated examples to the Fireside Chats, where the abstract class and
interface butt heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

— Joseph Albahari, inventor of LINQPad, and coauthor of C# 12 in a Nutshell and
C# 12 Pocket Reference

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to
jump into the C# waters. I will recommend it to the advanced developer that wants to understand better what is
happening with their code. [I will recommend it to developers who] want to find a better way to explain how C# works
to their less-seasoned developer friends.”

—Giuseppe Turitto, Director of Engineering

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and
enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Advanced Systems Analyst

“Going through this Head First C# book was a great experience. I have not come across a book series which actually
teaches you so well.…This is a book I would definitely recommend to people wanting to learn C#.”

—Krishna Pala, MCP

Praise for the Head First Approach

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

—Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, former VP of Design, Twitter, and founder of Newsvine

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of

pragmatism and wit.”

— Ken Goldstein, Executive VP & Managing Director, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Beijing		•		Boston		•		Farnham		•			Sebastopol			•		Tokyo

Head First C#

Wouldn’t it be dreamy if
there was a C# book that’s

more fun than memorizing
a dictionary? It’s probably
nothing but a fantasy...

Andrew Stellman
Jennifer Greene

build web applications with C#

Blazor Learner’s Guide

Want to build great web apps…right now?
C# is great for building web applications that run in your browser. We didn’t have

room in Head First C# to teach you how to build web applications, but we wanted

to give you a foundation that included web development and page design. (And

that’s why we created this learner’s guide, a companion to Head First C# (5th

edition) to teach the fundamentals of web application development using Blazor,

Microsoft's free and open-source framework for building complete web applications.

Get ready for a wild ridewild ride!

Head First C# presents...

this is a new chapter 1

Build web applications with C# with Blazor
Welcome to the Head First C# Blazor Learner’s Guide, a free downloadable
companion to Head First C# (5th edition). The goal of this guide is to give you a
foundation in Blazor, Microsoft’s framework for building rich interactive web
applications.

Blazor is great for C# developers because it allows them to use our existing skills and
knowledge to build modern web applications. Here’s why Blazor is so appealing:

 ≥ Use C# Everywhere: Developers can use C# for both client-side and server-
side code, eliminating the need to switch between languages. Before Blazor, you
had to use another language like JavaScript or TypeScript to build your web
pages. Blazor lets you do all of your web development in C#.

 ≥ Seamless Integration: Blazor integrates seamlessly with the .NET ecosystem,
allowing developers to use the extensive .NET classes and methods that you’ll
learn throughout the book.

 ≥ Rich UI Development: Blazor makes it straightforward to build dynamic and
interactive user interfaces with features like data binding and event handling.
You’ll learn the basics of web design using HTML and Bootstrap to create
responsive and visually rich pages in your web applications.

This is what you see when you create a new .NET
Blazor application and run it. It will be your first
building block for building web applications with C#.

2 https://github.com/head-first-csharp/fifth-edition

create web applications that run in your browser

Blazor sounds
exciting! How do I get

started?

How to use this guide
Most projects in the book are console apps, but many chapters also include a project built using
.NET MAUI, which you can use to build native and mobile applications. This learner’s guide has
replacements for all of those MAUI projects—including a complete replacement for Chapter 1—that
use C# to create Blazor Web Apps that run in your browser and are equivalent to the Windows
apps. You’ll do it all with Visual Studio or Visual Studio Code, which you’re already using in the
rest of the book to learn and explore C#. Let’s dive right in and get coding!

First step: get up and running with Visual Studio or Visual Studio Code
This book is filled with projects, and to do them you’ll need to install Visual Studio or Visual Studio
Code. Those are both advanced code editors and development environments built by Microsoft
that you can download and use for free—and lucky for us, they make great tools for learning and
exploration.

Before you start this guide, make sure you read the first 18 pages of
Head First C# (5th edition). They’ll show you how to install Visual Studio
or Visual Studio Code, and you’ll create your first Console App project.
Return to the Blazor Learner’s Guide when you get to this heading:

Let’s build a game!

You can download the first four chapters of the book for free from our
GitHub page: https://github.com/head-first-csharp/fifth-edition

If you’re using Windows, you can use
Visual Studio or Visual Studio Code.
If you’re on macOS or Linux, you’ll
stick with Visual Studio Code.

you are here 4 3

Blazor Learner’s Guide

Let’s build a game!
You’ve built your first C# app, and that’s great! Now that you’ve
done that, let’s build something a little more complex. We’re going to
build an animal matching game, where a player is shown a grid
of 16 animals and needs to click on pairs to make them disappear.

Here’s the animal matching
game that you’ll build.

Your animal matching game is a Blazor Web App
Console apps are great if you just need to input and output text. If you want a visual
app that’s displayed on a browser page, you’ll need to use a different technology.
That’s why your animal matching game will be a Blazor Web app. Blazor lets
you create rich web applications that can run in any modern browser. Most of the
chapters in this book will feature a Blazor app. The goal of this project is to introduce
you to Blazor and give you tools to build rich web applications as well as console apps.

The game shows eight different pairs of
animals scattered randomly around the
grid. The player clicks on two animals—if
they match, they disappear from the page.

This timer keeps track of how long it takes the player to finish the game. The goal is to find all of the matches in as little time as possible.

By the time
you’re done with
this project,
you’ll be a lot
more familiar
with the tools
that you’ll rely
on throughout
this book to learn
and explore C#.

chapter 1 build something great... fast! Make sure you’ve read the first 18 pages of the book, and have
installed Visual Studio or Visual Studio Code before you start this
project. You can download the first four chapters for free from
our GitHub page: https://github.com/head-first-csharp/fifth-edition

4 https://github.com/head-first-csharp/fifth-edition

Keep an eye out for these “Game Design…and Beyond” elements scattered throughout
the book. We’ll use game design principles as a way to learn and explore important
programming concepts and ideas that apply to any kind of project, not just video games.

What is a game?

It may seem obvious what a game is. But think about it for a minute--it’s not as simple as it
seems.

* Do all games have a winner? Do they always end? Not necessarily. What about a flight
simulator? A game where you design an amusement park? Or a farming simulator? What
about a game like The Sims?

* Are games always fun? Not for everyone. Some players like a “grind” where they do the
same thing over and over again; others find that miserable.

* Is there always decision making, conflict, or problem solving? Not in all games. Walking
simulators are games where the player just explores in an environment, and there are often
no puzzles or conflicts at all.

* It’s actually pretty hard to pin down exactly what a game is. If you read textbooks on game
design, you’ll find all sorts of compelling definitions. So for our purposes, let’s define the
meaning of “game” like this:

A game is a program that lets you play with it in a way that (hopefully) is as entertaining
to play as it is to make.

Game Design...and Beyond

When you’ve found all
eight pairs of animals,
the game displays your
final time and the
text “Play again?”
next to it. Click any
animal button to
start over again!

you are here 4 5

Blazor Learner’s Guide

The goal of this project is to help get you used to writing C# and using the IDE. If
you run into any trouble with this project, you can watch a full video walkthrough
on our YouTube channel. https://www.youtube.com/@headfirstcsharp

You can download all of the code and a PDF of this chapter from our GitHub
page: https://github.com/head-first-csharp/fifth-edition

Break up large projects into smaller parts
Our goal in this book is to help you to learn C#, but we also help you become
a great developer, and one of the most important skills great developers
work on is tackling large projects. You’ll build a lot of projects throughout this
book. They’ll be smaller starting with the next chapter, but they’ll get bigger
as you go further. As the projects get bigger, we’ll show you how to break them
up into smaller parts that you can work on one after another. This project is
no exception—it’s a larger project, like the ones you’ll do later in the book—so
you’ll do it in five parts.

This chapter is all about learning the basics, getting used to creating
projects, editing code, and building your game.

Don’t worry if there are things that you don’t understand yet. By the end of the book, you’ll
understand everything that’s going on in this game. For now, just follow the step-by-step

instructions to get your game up and running. This will give you a solid foundation to build on later.

Relax

1 2 43 5

Home.razor

CREATE THE CREATE THE
PROJECTPROJECT

SHUFFLE THE SHUFFLE THE
ANIMALSANIMALS

HANDLE HANDLE
MOUSE CLICKSMOUSE CLICKS

DETECT WHEN DETECT WHEN
THE PLAYER WINSTHE PLAYER WINS

ADD A GAME ADD A GAME
TIMERTIMER

@page “/”
@code {
}

chapter 1 build something great... fast!

6 https://github.com/head-first-csharp/fifth-edition

This project can take anywhere from 20
minutes to over an hour, depending on how
quickly you type. We learn better when we don’t feel rushed, so give yourself plenty of time.

Here’s how you’ll build your game
You’ll build your animal matching game using Blazor,
Microsoft’s technology that you can use to create highly
interactive web apps in C# that can run in your browser.

The rest of this chapter will walk you through building the
game. You’ll be doing it in a series of separate parts:

First you’ll create a new Blazor
WebAssembly App project.
You just created a new console application. Now
you’ll create a new Blazor app.

Then you’ll lay out the page and write C#
code to shuffle the animals.
When your app first loads, it will run that code to
display 16 buttons with eight pairs of animal emoji in
a random order.

The game needs to let the user click on
pairs of emoji to match them.
The game needs to detect when the user clicks on
pairs of emoji, and keep track of those pairs. You’ll
write code to handle those clicks.

You’ll write more C# code to detect
when the player has won the game.
The app will end the game when the player has found
all of the matches. You’ll write that code too.

Finally, you’ll make the game more
exciting by adding a timer.
Your timer will start when the player starts the game,
and keep track of how long it takes the player to find
all eight pairs of animals.

1

2

3

4

5

Home.razor

@page “/”
<html>
</htim>
@code {
}

you are here 4 7

Blazor Learner’s Guide

Create a Blazor Web App project in Visual Studio
Let’s create a new Blazor Web App project. Before you start, if you still have the Console App project open, close it
by choosing File >> Close Solution from the menu.

Next, create a new Blazor Web App project. If the “Get Started” window is displayed. click the Create a new
project button. If not, choose File >> New >> Project... from the menu.

Click the Blazor Web App option:

Name your project BlazorMatchGame and click the Next button:

Accept the default Additional information options and click the Create button to create the project:

If you’re using Visual Studio Code, skip to the next section, which shows
you how to create a new Blazor Web App project with VSCode.

Visual Studio remembers
the most recent choices
that you made when
creating a new project,
so look over them and
make sure they match the
selections in our screenshot.

chapter 1 build something great... fast!

8 https://github.com/head-first-csharp/fifth-edition

Once your project is loaded, run your app. Find the Run button at the top of the Visual Studio window and click the
dropdown next to it to select IIS Express:

Then click the button to run your app.

You may see several windows asking you to accept certificates—make sure to accept them:

You may also be displayed a window saying that your connection isn’t private. If you see it, click the Advanced button
and then click the Continue to localhost (unsafe) link.

Skip the next two pages, which tell you how to set up your Blazor project in VSCode.

Your app will run in the Edge
browser by default. If you
have Chrome installed, you
can use this sub-menu to run
your app in Chrome instead.

you are here 4 9

Blazor Learner’s Guide

Create a Blazor Web App in Visual Studio Code
Let’s create a new Blazor Web App project. Before you start, if you still have the Console App project open, close it by
choosing File >> Close Folder from the menu.

Next, create a new Blazor Web App project. Start by clicking the Create .NET Project button.

You’ll be prompted to create a new .NET project. Search for Blazor and select Blazor Web App:

You’ll be prompted to choose a project location. Create a folder called BlazorMatchGame and select it.

On macOS you’ll
see the Mac
version of the
dialog to select
the folder.

chapter 1 build something great... fast!

10 https://github.com/head-first-csharp/fifth-edition

You’ll be prompted for a project name. Name your project AnimalMatchingGame, just like the folder.

Press enter to accept the default location to create your project:

If you’re asked to trust the authors of the files in the folder, choose Yes:

Wait for Visual Studio Code to finish creating your project.

Click on Program.cs in the Solution Explorer (not any of the other sections in the Explorer panel). Find the triangle
shaped button in the upper right corner and click it to start your web application open up its home page the
Microsoft Edge or Google Chrome browser. You can also choose Start Debugging (F5) from the Run menu to
start your app (choose the defaults if it prompts you), then you can press F5 at any time to run your app.

Expand the Solution Explorer in the Explorer panel on the left side of the window, and collapse all of the other sections.

When you select Program.cs in the Solution
Explorer, you can see this button to start your
app in the debugger. If you hover over it you’ll see
a tooltip: “Debug project associated with this file.”

If you’re on a Mac, Safari
will run your web apps just
fine, but you won’t be able

to use it to debug them .
Web app debugging is only

supported in Microsoft Edge
or Google Chrome. Go to

https://microsoft.com/edge
to download Edge, or

https://google.com/chrome
to download Chrome.

you are here 4 11

Blazor Learner’s Guide

Your Blazor web app runs in a browser
When you run a Blazor web app, there are two parts: a server and a web application. Visual Studio launches
them both with one button.

Interact with your web app.
When you run your web application, the IDE automatically opens browser window running your app:

Find the file with the HTML code for the page that you’re looking at.
Go to the Solution Explorer and expand the BlazorMatchGame solution. Inside it you’ll find a
BlazorMatchGame project, and underneath it the Components folder that contains a Pages folder. Open
the Pages folder and either double-click (Visual Studio) or click (VSCode) on Home.razor.

1

2

Do this!

Visual Studio and VSCode
have Solution Explorer
windows that look a little
different, but contain the
same files and work the same
way (for the most part).

chapter 1 build something great... fast!

12 https://github.com/head-first-csharp/fifth-edition

Compare the code in Home.razor with what you see in your browser.
The web app in your browser has two parts: a navigation menu on the left side with links
to different pages (Home, Counter, and Fetch data), and a page displayed on the right side.
Compare the HTML markup in the Home.razor file with the app displayed in the browser.

3

Change “Hello, world!” to something else.
Change the third line of the Home.razor file so it says something else:

<h1>Elementary, my dear Watson.</h1>

Now go back to your browser and reload the page. Wait a minute, nothing changed—it still says “Hello, world!”
That’s because you changed your code, but you never updated the server.

Click the Stop button to stop the application. In Visual Studio, click the square button in the toolbar or choose
Stop Debugging (Shift+F5) from the menu. In VSCode, click the square button at the top of the code window, or
press Shift+F5 to stop debugging.

Visual Studio may close your browser automatically for you. If it didn’t, go back and reload your browser—since
you stopped your app, it displays its “Site can’t be reached” page. (If your browser closed when you stopped
debugging, run the app it again, copy the URL, stop your app, then open a new browser window and paste it in.)

Start your app again, then reload your page in the browser. Now you’ll see the updated text.

4

Do you have extra instances of your browser open, or extra tabs? The IDE opens
a new browser or tab each time you run your Blazor web app, and VSCode

leaves it open. Get in the habit of closing the browser before you stop your app.

Try copying the URL
from your browser,

opening a new Safari
window, and pasting
it in. Your application

will run there, too.
Now you have two
different browsers
connecting to the

same server.

The <PageTitle> tag sets the title of the
page that’s displayed the tab in your browser.

you are here 4 13

Blazor Learner’s Guide

Home.razor

CREATE THE CREATE THE
PROJECTPROJECT

SHUFFLE THE SHUFFLE THE
ANIMALSANIMALS

HANDLE HANDLE
MOUSE CLICKSMOUSE CLICKS

DETECT WHEN DETECT WHEN
THE PLAYER WINSTHE PLAYER WINS

ADD A GAME ADD A GAME
TIMERTIMER

@page “/”
@code {
}

When you enter your C# code, even tiny errors can make a big difference.
Some people say that you truly become a developer after the first time you’ve spent hours tracking
down a misplaced period. Case matters: AnimalButtons is different from animalButtons. Extra
commas, semicolons, parentheses, etc. can break your code—or, worse, change your code so
that it still builds but does something different than what you want it to do. The IDE’s AI-assisted
IntelliSense and IntelliCode features can help you avoid those problems…but it can’t do everything
for you. It’s up to you to make sure your code is right—and that it does what you expect it to do.

Watch it!

Now you’re ready to start writing code for your game
You’ve created a new app, and Visual Studio generated a bunch of files for you. Now it’s time to add
C# code to start making your game work (as well as HTML markup to make it look right).

Now you’ll start working on the C# code,
which will be in the Home.razor file. A file
that ends with .razor is a Razor markup
page. Razor combines HTML for page
layout with C# code, all in the same file.

You’ll add C# code to this file that defines
the behavior of the game, including code

to add the emoji to the page, handle mouse
clicks, and make the countdown timer work.

When you created your console app
earlier in the chapter, your C# code
was in a file called Program.cs—when you
see that .cs file extension, it tells you
that the file contains C# code.

chapter 1 build something great... fast!

YOU ARE HEREYOU ARE HERE

14 https://github.com/head-first-csharp/fifth-edition

How the page layout in your animal matching game will work
Your animal matching game is laid out in a grid—or, at least, that’s how it looks. It’s
actually made up of 16 square buttons.

You’ll lay out the page by creating a container that’s 400 pixels wide (a CSS “pixel” is
1/96 inch when the browser is at default scale) that contains 100-pixel-wide buttons. We’ll
give you all of the C# and HTML code to enter into the IDE. Keep an eye out for
this code that you’ll add to your project soon—it’s where the “magic” happens, by using
Razor markup to mix C# code with HTML:

<div class="container">
 <div class="row">
 @foreach (var animal in animalEmoji)
 {
 <div class="col-3">
 <button type="button" class="btn btn-outline-dark">
 <h1>@animal</h1>
 </button>
 </div>
 }
 </div>
</div>

The @ symbol is used in Razor pages to
switch from HTML to C# code. In this line

of code, @foreach is used to create a loop
that goes through a list of animal emojis to
add a block of HTML to the page. For each

emoji in the list, the loop generates a button.

The foreach loop causes everything between the
{ and } to be repeated once for each emoji in a

list of animal emoji, replacing @animal with each
of the emoji in the list one by one. Since the list
has 16 emoji, the result is a series of 16 buttons.

you are here 4 15

Blazor Learner’s Guide

The IDE helps you write C# code
Blazor lets you create rich, interactive apps that combine HTML markup and C# code. Luckily, both Visual Studio and
Visual Studio Code have useful features to help you write that C# code.

Add C# code to your Home.razor file.
Start by adding a @code block to the end of your Home.razor file. (Keep the existing contents of the file
there for now—you’ll delete them later.) Go to the last line of the file and type @code {. The IDE will fill
in the closing curly bracket } for you. Press Enter to add a line between the two brackets:

Use the IDE’s IntelliSense window to help you write C#.
Position your cursor on the line between the { brackets } and type the letter L. The IDE will pop up an
IntelliSense window with autocomplete suggestions. Choose List<> from the pop-up:

The IDE will fill in List. Add an opening angle bracket (greater-than sign) <—the IDE will
automatically fill in the closing bracket > and leave your cursor positioned between them.

Start creating a List to store your animal emoji.
Type s to bring up another IntelliSense window:

Choose string—the IDE will add it between the brackets. Press the right arrow and then the space
bar, then type animalEmoji = [.

As soon as you typed the opening square bracket [, Visual Studio added a matching one, placing your mouse
cursor between the two brackets.:

 List<string> animalEmoji = []

Press Enter, then add a semicolon to the end.

1

2

3

The IntelliSense window in the IDE pops
up and helps you write your C# code by
suggesting useful autocomplete options.

Use the arrow keys to choose an option and
press Enter to select it (or use your mouse).

chapter 1 build something great... fast!

16 https://github.com/head-first-csharp/fifth-edition

How to enter emoji
If you’re using a Mac, use the Character Viewer panel,
by pressing Ctrl + δ + space. Use the search box to search
for a specific animal. When you find the emoji you want to
enter, click on it to enter it as if you’d typed it.

Add a pair of animal emoji to your list.
Your C# statement isn’t done yet. Make sure your cursor is placed on the blank line you added between
the brackets. Now let’s add eight pairs of animal emoji. You can find emoji by going to your
favorite emoji website (for example, https://emojipedia.org/nature) and copying individual emoji
characters. Alternately…

If you’re using Windows, use the Windows emoji panel (press Windows logo key + period). If you’re
using a Mac, use the Character Viewer panel (press the fn key, or Ctrl+δ+Space on older Macs).

Go back to your code and add a double quote " then paste the character—we used an octopus—
followed by another " and a comma, a space, another ", the same character again, and one more "
and comma. You might notice Visual Studio helping you enter this list—for example, when you enter a
double quote, it adds the closing quote.

Here’s what your list should look like now:

4

Some people think the plural emoji is
emoji, others think it’s emojis. We went
with emoji—but both ways are fine!

If you’re using Windows, use the emoji panel
by pressing Windows logo key � + period.
Use the search box to search for a specific
animal. When you find the emoji you want to
enter, click on it to enter it as if you’d typed it.

You can also bring up the macOS
Character Viewer using the Input
menu in the menu bar. If you
don’t see the Input menu, open
System Settings and search for
“input menu”—there’s an option
that you can turn on to show
the input menu in the menu bar.

Press � + period to bring
up the Windows emoji panel,
a really useful tool that
lets you enter emoji easily.

you are here 4 17

Blazor Learner’s Guide

Finish creating your emoji list and display it in the app
You just added a dog emoji to your animalEmoji list. Now add a second dog emoji by adding a comma after
the second quote, then a space, another quote, another dog emoji, another quote, and a comma:

Now add a second line right after it that’s exactly the same, except with a pair of wolf emoji instead of
dogs. Then add six more lines with pairs of cows, foxes, cats, lions, tigers, and hamsters. You should now have
eight pairs of emoji in your animalEmoji list:

Replace the contents of the page
Delete these lines from the top of the page:

<h1>Elementary, my dear Watson.</h1>
Welcome to your new app.

Update the <PageTitle> tag to replace Home with BlazorMatchGame. Then put your cursor on the third
line of the page and type <st—the IDE will pop up an IntelliSense window:

Choose style from the list, then type >. The IDE will add a closing HTML tag: <style></style>

The IDE will help you write
HTML for your page—in

this case, you’re creating
an HTML tag. It’s OK if you

don’t know HTML; we’ll
give you all of the code
that you need for your

apps throughout the book.

 The IDE automatically indents your C#
code for you as you enter it. But when
you’re entering the emoji or HTML tags, you
might find that it doesn’t quite indent them
the way you want. You can easily fix that
by selecting the text you want to indent
and pressing ή (Tab) to indent, or ίή�
(Shift+Tab) to unindent.

IDE Tip: Indent lines

18 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Put your cursor between <style> and </style> and press Enter, then carefully enter all of the
following code. Make sure the code in your app matches it exactly.

<style>
 .container {
 width: 400px;
 }

 button {
 width: 100px;
 height: 100px;
 font-size: 50px;
 }
</style>

Go to the next line and use the IntelliSense to enter an opening and closing <div> tag, just like you
did with <style> earlier. Then carefully enter the code below, making sure it matches exactly:

<div class="container">
 <div class="row">
 @foreach (var animal in animalEmoji)
 {
 <div class="col-3">
 <button type="button" class="btn btn-outline-dark">
 <h1>@animal</h1>
 </button>
 </div>
 }
 </div>
</div>

Make sure your app looks like this screenshot when you run it. Once
it does, you’ll know you entered all of the code without any typos.

If you’ve worked with HTML before, you’ll
notice the @foreach and @animal that don’t
look like ordinary HTML. That’s Blazor—C#

code embedded directly into the HTML.

The matching game is made up of a series of buttons. This is a really simple CSS stylesheet to set the total width of the container, and the height and width of each button. Since the container is 400 pixels wide and each button is 100 pixels wide, the page will only allow four columns in a row before adding a break, making them appear in a grid.

Each button on the page contains
a different animal. The players will
press the buttons to find matches.

Changing the
PageTitle tag
changed the
name of the page
displayed in the
browser tab.

you are here 4 19

Blazor Learner’s Guide

Shuffle the animals so they’re in a random order
Our match game would be too easy if the pairs of animals were all next to each other. Let’s add C# code to shuffle
the animals so they appear in a different order each time the player reloads the page.

Place your cursor just after the semicolon ; just above the closing bracket } near the bottom of Home.razor
and press Enter twice. Then use the IntelliSense pop-ups just like you did earlier to enter the following
line of code:

 List<string> shuffledAnimals = new List<string>();

Next type protected override (the IntelliSense can autocomplete those keywords). As soon as you
enter that and type a space, you’ll get an IntelliSense pop-up—select OnInitialized() from the list:

The IDE will fill in code for a method called OnInitialized (we’ll talk more about methods in Chapter 2):

Replace base.OnInitialized() with SetUpGame() so your
method looks like this:

 protected override void OnInitialized()
 {
 SetUpGame();
 }

Then add this SetUpGame method just below your OnInitialized method—again, the IntelliSense
window will help you get it right:

 private void SetUpGame()
 {
 shuffledAnimals = animalEmoji
 .OrderBy(item => Random.Shared.Next())
 .ToList();
 }

As you type in the SetUpGame method, you’ll notice that the IDE pops up many IntelliSense windows to
help you enter your code more quickly. The more you use Visual Studio to write C# code, the more helpful
these windows will become—you’ll eventually find that they significantly speed things up. For now, use
them to keep from entering typos—your code needs to match our code exactly or your app won’t run.

1

2

3

VSCode might require you
to do a little more work,

like typing the word void
between override and

OnInitialized(). Make sure
your code matches the

code on this page exactly.

You just added two methods to your
app, but it’s OK if you’re still not 100%
clear on what a method is. You’ll learn
much more about methods and how C#
code is structured in the next chapter.

20 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Do you see the run toolbar at the top of the IDE? That means your app is still running. Press
the square stop button or choose Stop Deubgging (Shift+F5) from the Debug or Run menu.

Scroll back up to the HTML and find this code: @foreach (var animal in animalEmoji)

Double-click animalEmoji to select it, then type s. The IDE will pop up an IntelliSense window. Choose
shuffledAnimals from the list:

Now run your app again. Your animals should be shuffled so they’re in a random order. Reload the
page in the browser—they’ll be shuffled in a different order. Each time you reload, it reshuffles the animals.

4

Again, make sure your app looks like this screenshot when you run it. Once it does,
you’ll know you entered all of the code without any typos. Don’t move on until your
game is reshuffling the animals every time you reload the browser page.

you are here 4 21

Blazor Learner’s Guide

AW]¼ZM�Z]VVQVO�aW]Z�OIUM�QV�\PM�LMJ]OOMZ
When you click the Run button in the toolbar or choose Start Debugging (F5) from the Run or
Debug menu to start your program running, you’re putting the IDE into debugging mode.

You can tell that you’re debugging an app when you see the debug controls appear in the
toolbar (Visual Studio) or at the top of the window (VSCode).

Hover your mouse cursor over the Pause Execution (it has two lines) button to see its tooltip.

You can stop your app clicking the Stop button or choosing Stop Debugging (Shift F5) from
the Debug or Run menu.

Wow, this game is already
starting to look good!

You’ve set the stage for the next part
that you’ll add.
When you build a new game, you’re not just
writing code. You’re also running a project. A really
effective way to run a project is to build it in small
increments, taking stock along the way to make
sure things are going in a good direction. That way
you have plenty of opportunities to change course.

22 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Congratulations—you’ve created a working app! Obviously, programming is more than just copying
code out of a book. But even if you’ve never written code before, you may surprise yourself with just how much
of it you already understand. Draw a line connecting each of the C# statements on the left to the description of
what the statement does on the right. We’ll start you out with the first one.

C# statement

Create copies of the animal emoji, shuffle them,
and store them in the shuffledAnimals list

What it does

Create a list of eight pairs of emoji

Set up the game every time the page is reloaded

The end of a method that sets
up the game

Create a second list to store the
shuffled emoji

The beginning of a method
that sets up the game

Here’s a pencil-and-paper exercise. It’s
absolutely worth your time to do all of
them because they’ll help get important
C# concepts into your brain faster.

shuffledAnimals = animalEmoji
 .OrderBy(item => Random.Shared.Next())
 .ToList();

you are here 4 23

Blazor Learner’s Guide

C# statement What it does
solutionsolution

Here’s a pencil-and-paper exercise that will help you really understand your C# code.

1. Take a piece of paper and turn it on its side so it’s in landscape orientation, and draw a
vertical line down the middle.

2. Write out all of the C# code by hand on the left side of the paper, leaving space between
each statement. (You don’t need to be accurate with the emoji.)

3. On the right side of the paper, write each of the “what it does” answers above next to the
statement that it’s connected to. Read down both sides—it should all start to make sense.

MINIMINI

Create copies of the animal emoji, shuffle them,
and store them in the shuffledAnimals list

Create a list of eight pairs of emoji

Set up the game every time the page is reloaded

The end of a method that sets
up the game

Create a second list to store the
shuffled emoji

The beginning of a method
that sets up the game

shuffledAnimals = animalEmoji
 .OrderBy(item => Random.Shared.Next())
 .ToList();

24 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

I’m not sure about this “Sharpen your pencil”
exercise. Isn’t it better to just give me the codejust give me the code

to type into the IDE?

Working on your code comprehension skills
will make you a better developer.
The pencil-and-paper exercises are not optional. They
give your brain a different way to absorb the information.
But they do something even more important: they give you
opportunities to make mistakes. Making mistakes is a
part of learning, and we’ve all made plenty of mistkaes
(you may even find one or two typos in this book!). Nobody
writes perfect code the first time—really good programmers
always assume that the code that they write today will
probably need to change tomorrow. In fact, later in the book
you’ll learn about refactoring, or programming techniques
that are all about improving your code after you’ve written it.

We’ll add bullet points like
this to give a quick summary
of many of the ideas and
tools that you’ve seen so far.

 ࣤ Visual Studio is Microsoft’s IDE—or integrated
development environment—that simplifies and assists
in editing and managing your C# code files.

 ࣤ .Console apps are cross-platform apps that use text
for input and output.

 ࣤ .Blazor Web Apps let you build rich interactive web
applications using C# code and HTML markup.

 ࣤ C# is made up of statements grouped into methods.

 ࣤ A foreach loop in a Razor page lets you repeat a
block of HTML code for each element in a list.

 ࣤ Visual Studio can run your Blazor app in debugging
mode, opening a browser to display your app.Razor
lets you add C# code directly into your HTML markup.
Razor page files end with the .razor extension.

 ࣤ Use an @ to embed your C# code in a Razor page.

 ࣤ User interfaces for Blazor apps are designed in HTML,
the markup language used to design web pages.

 ࣤ Visual Studio’s AI-assisted IntelliSense and
IntelliCode help you enter code more quickly.

Bullet Points

you are here 4 25

Blazor Learner’s Guide

My project has a lot of code already! Wouldn’t
it be dreamy if there was an easy way for me to save
everything I’ve done someplace where I can save my save my

codecode, share itshare it, and always find italways find it any time I want?

You can use Git to save all of your code,
and Visual Studio will help make it easy.
You’re going to write a lot of code in this book! Wouldn’t it
be great if there was a convenient place to put that code so
you can always go back to it?

We bet that you’ll write some apps that you really like, and
you’ll want to share them with your friends so they can see
the great things you’ve built.

Do you have a desktop and a laptop? A computer at home
and at an office? Wouldn’t it be great if you could start a
project on one computer, then finish it on another one?

Imagine you’re working on a project. You’ve spent hours
getting the code right, and you’re really happy with it.
Then you make a few changes, and...oh no! Something
went completely wrong, your code is broken, and you don’t
remember exactly what you changed. It would be great if
you could see a history of all the changes you made, right?

Git can help you do all of those things!

Here are just a few things Git can do for you
 ≥ It can save your files somewhere that you can access them from anywhere, any time.

 ≥ It lets you save snapshots of your work so you can go back and see exactly what changed.

 ≥ It lets you share your code with anyone (or keep it private!).

 ≥ It lets a group of people collaborate on a project together—so if you’re learning C# with
your friends, you can all work on code together.

26 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Visual Studio makes it easy to use Git
Git is a really powerful and flexible tool that can help you save, manage, and share
the code and files for all of your projects. It can also be complex and confusing
at times! Luckily, Visual Studio has built-in Git support that takes care of the
complexity. It helps you with Git, so you can concentrate on your code.

We’ll give you everything you need to use Visual Studio to save and share
your projects. But there is a lot more that you can do with Git, especially if
you’re working with large teams! If you’re fascinated by what you see and
want to do a deep dive into Git, check out Head First Git by Raju Gandhi.

Visual Studio can help you create a new Git repository on GitHub, the popular platform for source code hosting and collaboration.

Visual Studio’s Git features help you
easily add your code to any Git and
push changes as often as you want.

We recommend that you create a GitHub account and use it to
save the code for each of the projects in this book. That will
make it easy for you to go back and revisit past projects any time!

Our free Head First C# Guide to Git PDF gives you a simple,
step-by-step guide to saving your code in Git with Visual Studio.
Download it from https://github.com/head-first-csharp/fifth-edition.

you are here 4 27

Blazor Learner’s Guide

Add C# code to handle mouse clicks
You’ve got buttons with random animal emoji. Now you need them
to do something when the player clicks them. Here’s how it will work:

The player clicks the first button.
The player clicks buttons in pairs. When they
click the first button, the game keeps track of
that particular button’s animal.

The player clicks the second button.
The game looks at the animal on the second
button and compares it against the one that it
kept track of from the first click.

The game checks for a match.
If the animals match, the game goes through all of the
emoji in its list of shuffled animal emoji. It finds any
emoji in the list that match the animal pair the player
found and replaces them with blanks.

If the animals don’t match, the game doesn’t do anything.

In either case, it resets its last animal found so it can do
the whole thing over for the next click.

YOU ARE HEREYOU ARE HERE

Home.razor

CREATE THE CREATE THE
PROJECTPROJECT

SHUFFLE THE SHUFFLE THE
ANIMALSANIMALS

HANDLE HANDLE
MOUSE CLICKSMOUSE CLICKS

DETECT WHEN DETECT WHEN
THE PLAYER WINSTHE PLAYER WINS

ADD A GAME ADD A GAME
TIMERTIMER

@page “/”
@code {
}

28 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

When you added the Clicked event handler to your animal button, Visual Studio automatically
added a method called Button_Clicked to MainPage.xaml.cs. Here’s the code that will go into

that method. Before you add this code to your app, read through it and try to figure out what it does.
We’ve asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.
 string lastAnimalFound = string.Empty;

 private void ButtonClick(string animal)
 {
 if (lastAnimalFound == string.Empty)
 {
 lastAnimalFound = animal;
 }
 else if (lastAnimalFound == animal)
 {
 lastAnimalFound = string.Empty;

 shuffledAnimals = shuffledAnimals
 .Select(a => a.Replace(animal, string.Empty))
 .ToList();
 }
 else
 {
 lastAnimalFound = string.Empty;
 }
 }

4. What do the last lines of the method starting
with else and going to the end do?

Sharpen your pencil

1. What do these lines of code do?

3. What does this block of code do?

Before you go on, add the following line of code to the top of your Home.razor file:

@rendermode InteractiveServer
In a Blazor app, adding @rendermode InteractiveServer to your Razor file instructs it to render the component
interactively on the server, enabling real-time updates and interactions. This makes sure that actions like mouse
clicks and timer ticks work. They’re processed on the server and then sent back to your browser for seamless updates.

Add this to your file!

you are here 4 29

Blazor Learner’s Guide

Add the event handler and hook it up to the buttons
Go ahead and add all of the above code to your Razor file.

Then modify your buttons to call the ButtonClick method when clicked:

 @foreach (var animal in animalEmoji)
 {
 <div class="col-3">
 <button @onclick="@(() => ButtonClick(animal))"
 type="button" class="btn btn-outline-dark">
 <h1>@shuffledAnimals</h1>
 </button>
 </div>
 }

We’ve asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.
 string lastAnimalFound = string.Empty;

 private void ButtonClick(string animal)
 {
 if (lastAnimalFound == string.Empty)
 {
 // First selection of the pair. Remember it.
 lastAnimalFound = animal;
 }
 else if (lastAnimalFound == animal)
 {
 // Match found! Reset for next pair.
 lastAnimalFound = string.Empty;

 // Replace found animals with empty string to hide them.
 shuffledAnimals = shuffledAnimals
 .Select(a => a.Replace(animal, string.Empty))
 .ToList();
 }
 else
 {
 // User selected a pair that doesn't match.
 // Reset selection.
 lastAnimalFound = string.Empty;
 }
 }

4. What do the last lines of the method starting
with else and going to the end do?

Solution
Sharpen your pencil

1. What do these lines of code do?

3. What does this block of code do?

When the player clicks on the
first animal in a pair, these lines
of code keep track of which
animal the player clicked.

This block of code is run when
the player successfully clicks on
a matching animal. If the animals
match, resets for the next pair.
Then it goes through clears the
matching animals in the list.If the player clicks on a second animal that doesn’t

match the first, it resets to wait for a first click.

When we ask you to update one thing in a block of code,
we might make the rest of the code a lighter shade and

make the part of the code you change boldface.

The lines starting with //
are comments. They don’t
do anything—they’re only

there to make the code
easier to understand. We
added them to help you

read the code more easily.

30 https://github.com/head-first-csharp/fifth-edition

Let’s take a closer look at how that event handler works. We’ve matched up the code from the event handler
against our earlier explanation of how the game detects mouse clicks. Look at the code below and compare it
with the code that you just typed into the IDE. See if you can follow along—it’s OK if you don’t get 100% of it,
just try to follow the general idea of how the code that you just added fits together. This is a useful exercise for
ramping up your C# comprehension skills.

Your Event Handler Up Close

The player clicks the first button.
This code checks to see if this is the first button
clicked. If it is, it uses lastAnimalFound to keep
track of the button’s animal.

The player clicks the second button.
The statements between the opening { and closing
} brackets only execute if the player clicked on a
button whose animal matches the last one clicked.

The game checks for a match.
This C# code is only run if the second animal
matches the first one. It goes through the shuffled
list of animal emoji and replaces the ones that
match the pair that the player found with blanks.

if (lastAnimalFound == string.Empty)
{
 lastAnimalFound = animal;
}

else if (lastAnimalFound == animal)
{

}

shuffledAnimals = shuffledAnimals
 .Select(a => a.Replace(animal, string.Empty))
 .ToList();

lastAnimalFound = string.Empty;You’ll find this statement in the code twice: in the
section that’s run if the second animal the player
clicked matches the first, and in the section that’s
run if the second animal doesn’t match. It blanks
out the last animal found to reset the game so the
next button click is the first of the pair.

Uh-oh—there’s a bug in this code! Can you spot it?
We’ll track it down and fix it in the next section.

Are you clicking on the buttons, but your
app isn’t responding? Make sure you added
 @rendermode InteractiveServer
to the top of your Home.razor file.

you are here 4 31

Blazor Learner’s Guide

Test your event handler
Run your app again. When it comes up, test your event handler by clicking on a button,
then clicking on the button with the matching emoji. They should both disappear.

Click on another, then another, then another. You should be able to keep clicking on
pairs until all of the buttons are blank. Congratulations, you found all the pairs!

If your game doesn’t work the way it should or you don’t see
the bug on this page, go back and check the code you entered
against the code in the book. It’s really easy to overlook a typo.

Finding those issues is a good use of your time, because spotting
errors in your code is a really good developer skill to work on.

Are your buttons not clicking? Make sure you added the
@rendermode InteractiveServer

line to the top of your Home.razor file.

32 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Uh-oh—there’s a bug in the code!
If you typed in all of the code correctly, you may have noticed a problem. Start your
app, click the “Play again?” button to show the random animals, and click on a pair
to make the animals disappear from their buttons.

But what happens if you click on the same button twice?
Reload the page in your browser to reset the game. But this time instead of finding a
pair, click twice on the same button. Hold on—there’s a bug in the game! It
should have ignored the click, but instead, it acted like you got a match.

Every bug is caused by
a problem in the code,
so the first step in
fixing a bug is figuring
out what’s causing it.

If you click on the same
button twice, the game
acts like you found a
match. That’s not how
the game should work!

When you double-clicked on the same button, your game removed
both of the animals in the pair. Wait, what!? That’s not
supposed to happen! Your game has a bug.

Don’t worry, this bug is not your fault!

We left that bug in your code on purpose. You’re going to be writing
a lot of code throughout this book. Every chapter has several projects
for you to work on…and there are opportunities for bugs in every one
of those projects. Finding and fixing bugs is a normal and healthy
part of writing code—and a really valuable skill for you to practice.

When you find a bug, you need to sleuth it out
Every bug is different. Code can break in many different ways.
But there’s one thing all bugs have common: every one of them is
caused by a problem in the code. So when there’s a bug, your
job is to figure out what’s causing it, because you can’t fix the problem
until you know why it’s happening.

If you’ve ever read a mystery novel or watched a detective show, you
know that to solve a mystery, you need to find the culprit. So let’s
do that right now. It’s time to put on your Sherlock Holmes cap, grab
your magnifying glass, and sleuth out what’s causing the bug.

you are here 4 33

Blazor Learner’s Guide

Use the debugger to troubleshoot the problem
You might have heard the word “bug” before. You might have even said something like this to your friends at
some point in the past: “That game is really buggy, it has so many glitches.” Every bug has an explanation—
everything in your program happens for a reason—but not every bug is easy to track down.

Understanding a bug is the first step in fixing it. Luckily, the Visual Studio debugger is a great tool for
that. (That’s why it’s called a debugger: it’s a tool that helps you get rid of bugs!)

Think about what’s going wrong.
The first thing to notice is that your bug is reproducible: any time you click on the same button
twice, it always acts like you clicked a matching pair.

The second thing to notice is that you have a pretty good idea where the bug is. The problem
only happened after you added the code to handle the Click event, so that’s a great place to start.

Add a breakpoint to the Click event handler code that you just wrote.
Click on the first line of the ButtonClick method and choose Run >> Toggle Breakpoint (δ?)
from the menu. The line will change color and you’ll see a dot in the left margin:

1

2

When your app is paused in the debugger—that’s called “breaking” the app—the Debug
controls show up in the toolbar. You’ll get plenty of practice using them throughout the
book, so you don’t need to memorize what they do. For now, just read the descriptions
we’ve written, hover your mouse over them to see the tooltips, and check the Run or Debug
menu to see their corresponding shortcut keys (like F10 for Step Over).

The Continue Execution
button starts your app
running again.

You can use the Pause
Execution button to pause
your app when it’s running.

The Step Into button also executes the next statement, but if that statement is a method it only executes the first statement inside the method.

The Step Out button finishes executing the current method and
breaks on the line after the one that called it.

Anatomy of the Debugger

When a breakpoint
is set on a line, the

IDE changes its
background color

and displays a dot in
the left margin.

The Step Over button
executes the next
statement. If it’s a method,
it runs the whole thing.VSCode looks a little different

but uses very similar icons to
do the same things.

34 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Keep debugging your event handler
Now that your breakpoint is set, use it to get a handle on what’s going on with your code.

Click on an animal to trigger the breakpoint.
If your app is already running, stop it and close all browser windows. Then run your app
again and click any animal button. Visual Studio should pop into the foreground. The line
where you toggled the breakpoint should now be highlighted in a different color:

Move your mouse to the first line of the method, which starts private void, and hover your
cursor over animal. A small window will pop up that shows you the animal that you clicked
on:

Press the Step Over button or choose Run >> Step Over (ίδ2) from the menu. The
highlight will move down to the { line. Step over again to move the highlight to the next
statement:

Step over one more time to execute that statement, then hover over lastAnimalFound:

The statement that you stepped over set the value of lastAnimalFound so it matches animal.

That’s how the code keeps track of the first animal that the player clicked.

Continue execution.
Press the Continue Execution button or choose Run >> Continue Debugging (δΣ) from the
menu. Switch back to the browser—your game will keep going until it hits the breakpoint again.

3

4

Hover over
“animal” to see
the emoji that
you clicked.

you are here 4 35

Blazor Learner’s Guide

Click the matching animal in the pair.
Find the button with the matching emoji and click it. The IDE will trigger the breakpoint and pause
the app again. Press Step Over—it will skip the first block and jump to the second:

Hover over lastAnimalFound and animal—they should both have the same emoji. That’s how
the event handler knows that you found a match. Step over three more times:

Now hover over shuffledAnimals. You’ll see several items in the window that pops up. Click the
triangle next to shuffledAnimals to expand it, then expand _items to see all the animals:

Continue Execution to resume your game, then click another matched pair of animals to
trigger your breakpoint again and return to the debugger. Then hover over shuffledAnimals
again and look at its items. There are now two (null) values where the matched emoji used to be:

5

Once you've expanded
shuffledAnimals and _items,
you can use the debugger to
inspect the contents of the
List. You'll learn more about
what a List is and how it
works in Chapter 8.

We’ve sifted through a lot of
evidence and gathered some
important clues. What do you
think is causing the problem?

shuffledAnimals is a
List that contains
all of the animals
currently in the game.
Use these triangles
to first expand
shuffledAnimals, and
then expand _items
to see the items
that it contains.

36 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

The Case of the Unexpected Match
You’ve probably heard the word “bug” before.
You might have even said something like this to your friends at some point in the past: “That game is really
buggy, it has so many glitches.” Every bug has an explanation, and everything in your program happens for a
reason…but not every bug is easy to track down. That’s why we’ll include tips for sleuthing out bugs throughout
the book, starting with this “Sleuth it Out” section.

Every bug has a culprit.
Bugs are weird. They’re what happens when your code does something you didn’t expect it to do.
But bugs are also normal. Every developer spends time finding and fixing bugs. It’s a normal part
of writing code. You’re going to write code that doesn’t do what you expect it to. And
when you do, the first thing you need to do is figure out what’s causing the bug.

The first step in finding a bug is thinking about what might have caused it.
Sherlock Holmes once said, “Crime is common. Logic is rare. Therefore it is upon the
logic rather than upon the crime that you should dwell.” That’s great advice for figuring out what caused a bug.
Don’t get frustrated because your app doesn’t do what you want (that’s dwelling on the crime!). Instead, think
about the logic of the situation. So let’s look at the code and figure out what’s going on.

Read the code carefully and search for clues.
We know that all of the code for handling mouse clicks is in the Button_Clicked event handler that you just
added. So let’s go back to the code and see if we can find clues about what went wrong.
Luckily, you did that “Sharpen your pencil” exercise. You looked closely at the code in the Button_Clicked
event handler method to understand it. (If you haven’t done that exercise yet, go back and do it now!)
Based on what we found in the “Sharpen your pencil” exercise, we already know a few things about the code:
1. Every time you click the button, the click event handler runs.
2. The event handler uses animal to figure out which animal you clicked first.
3. The event handler uses lastAnimalFound to figure out which animal you clicked second.
4. If animal equals lastAnimalFound, it decides it has a match and removes the matching animals from

the list.

Those are the important clues that will help us find and fix the bug. Before you go on, can you sleuth out
what’s causing the game to decide that it found a match when you double-click on an animal?

Sleuth it Out

Finding and fixing bugs is one part typing, nine parts thinking...
and 100% guaranteed to make you a better developer. That’s
what these “Sleuth it Out” sections are all about.

you are here 4 37

Blazor Learner’s Guide

“Elementary, my dear Watson.”
What happens if you click the same animal button twice? Let’s find out! Repeat the same steps you just did, except
this time click the same animal twice. Watch what happens when you get to step 5 .
Hover over animal and lastAnimalFound, just like you did before. They’re the same! That’s because the event
handler doesn’t have a way to distinguish between different buttons with the same animal.

...and fix the bug!
Now that we know what’s causing the bug, we know how to fix it: give the event handler a way to distinguish between
the two buttons with the same emoji.
First, make these changes to the ButtonCick event handler (make sure you don’t miss any changes):
 string lastAnimalFound = string.Empty;
 string lastDescription = string.Empty;

 private void ButtonClick(string animal, string animalDescription)
 {
 if (lastAnimalFound == string.Empty)
 {
 // First selection of the pair. Remember it.
 lastAnimalFound = animal;
 lastDescription = animalDescription;
 }
 else if ((lastAnimalFound == animal) && (animalDescription != lastDescription))

Then replace the foreach loop with a different kind of loop, a for loop—this for loop counts the animals:
 <div class="row">
 @for (var animalNumber = 0; animalNumber < shuffledAnimals.Count; animalNumber++)
 {
 var animal = shuffledAnimals[animalNumber];
 var uniqueDescription = $"Button #{animalNumber}";

 <div class="col-3">
 <button @onclick="@(() => ButtonClick(animal, uniqueDescription))"
 type="button" class="btn btn-outline-dark">@animal</button>

Now debug through the app again, just like you did before. This time when you click the same
animal twice it will skip down to the end of the event handler. The bug is fixed!

Sleuth it Out

You'll get a lot of practice
sleuthing out bugs. It's a really
useful developer skill.

Add this line of code just above the beginning
of the ButtonClick event handler method.

Make these changes
inside the method.

Replace the line that starts
with @for with this line

Then add these two lines after the {.

Finally, modify
this line.

38 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Q: You mentioned that I’m running a server and a web
application. What did you mean by that?

A: When you run your app, the IDE starts up the browser that
you selected. The address bar in the browser has a URL like
https://localhost:5001/—if you copy that URL and paste it into
the URL bar of another browser, that browser will run your game,
too. That’s because the browser is running a web application, or
a web page that runs entirely inside your browser. Like any web
page, it needs to be hosted on a web server.

Q: What web server is my browser connecting to?

A: Your browser is connecting to a server that’s running inside
Visual Studio. Click the Application Output button at the bottom of
the IDE to open a window that shows you the output of whatever
application is running—in this case, it’s an application that
includes the server that’s hosting your web application. Scroll or
search through that window to find the line that shows it listening
for incoming browser connections:

Now listening on: https://localhost:5001

Q: When I press δή (Command-Tab) to switch between
macOS apps, there are a bunch of instances of Edge or
Chrome still open. What’s happening?

A: Every time you stop and restart your app in Visual Studio,
it launches a new instance of the browser because it needs to
establish a separate connection for debugging. You can connect
other instances of a browser, but you can only debug with the
browser that the IDE launched. You can test this yourself: start, stop,
and restart your app in the IDE, then set a breakpoint. Only one of
the browsers will actually pause when the breakpoint is hit.

Q: Blazor web apps seem a lot more complicated than
console apps. Do they really work the same way?

A: Yes. When you get down to it, all C# code works the same
way: one statement executes, then the next one, and then the
next one. One reason web apps seem more complex is because
some methods are only called when certain things happen, like
when the page is loaded or the user clicks on a button. Once a
method gets called, it works exactly like in a console app—and
you can prove that to yourself by setting a breakpoint inside of it.

Keep an eye out for these Q&A sections. They often answer your most pressing questions, and point out questions other readers are thinking of. In fact, a lot of them are real questions from readers of previous editions of this book!

Unless you have a superhuman ability to enter code perfectly without a single typo, you’ve seen the Errors window at the
bottom of the IDE. It pops up when you try to run your project but it has errors. Here’s what it looked like when we tried
to fix the bug, but accidentally included this typo: string lsatDescription = string.Empty;

You can always check for errors by building your code, either by running it or choosing Build All (δ%) from the Build
menu. If the Errors window doesn’t pop up, that means your code builds, which is what the IDE does to turn your code
into a binary, or an executable file that macOS can run.

Let’s add an error to your code. Go to the first line in your SetUpGame method, then add this on its own line: Xyz

Build your code. The IDE will open the Errors window with at the top and one error. If you click elsewhere, the
Errors window will disappear—but don’t worry, you can always reopen it by clicking at the bottom of the IDE.

IDE Tip: The Errors Window

you are here 4 39

Blazor Learner’s Guide

When you see a Brain Power
element, take a minute
and really think about the
question that it’s asking.

Add code to reset the game when the player wins
The game is coming along—your player starts out with a grid full of animals to match,
and they can click on pairs of animals that disappear when they’re matched. But what
happens when all of the matches are found? We need a way to reset the game so the
player gets another chance.

The player clicks on
pairs and they disappear

Eventually, the player
finds all of the pairs

Once the last pair is
found, the game resets

Take a minute and look through the C# code and
HTML markup. What parts of it do you think you’ll
need to change to make it reset the game once
the player has clicked all of the matched pairs?

Brain
Power

YOU ARE HEREYOU ARE HERE

Home.razor

CREATE THE CREATE THE
PROJECTPROJECT

SHUFFLE THE SHUFFLE THE
ANIMALSANIMALS

HANDLE HANDLE
MOUSE CLICKSMOUSE CLICKS

DETECT WHEN DETECT WHEN
THE PLAYER WINSTHE PLAYER WINS

ADD A GAME ADD A GAME
TIMERTIMER

@page “/”
@code {
}

40 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Here are four blocks of code to add to your app. Once each block is in the right place, the game will reset as soon as
the player gets all of the matches.

matchesFound++;
if (matchesFound == 8)
{
 SetUpGame();
}

int matchesFound = 0; matchesFound = 0;

<div class="row">
 <h2>Matches found: @matchesFound</h2>
</div>

Your job is to figure out where each of the four blocks goes. We've copied parts of the code for your game below
and added four boxes, one for each block of code above. Can you figure out which block of code goes in each box?
<div class="container">
 <div class="row">
 @for (var animalNumber = 0; animalNumber < shuffledAnimals.Count; animalNumber++)
 {
 var animal = shuffledAnimals[animalNumber];
 var uniqueDescription = $"Button #{animalNumber}";

 <div class="col-3">
 <button @onclick="@(() => ButtonClick(animal, uniqueDescription))"
 type="button" class="btn btn-outline-dark">
 <h1>@animal</h1>
 </button>
 </div>
 }
 </div>

</div>

List<string> shuffledAnimals = new List<string>();

private void SetUpGame()
{
 shuffledAnimals = animalEmoji
 .OrderBy(item => Random.Shared.Next())
 .ToList();

}

 else if ((lastAnimalFound == animal) && (animalDescription != lastDescription))
 {
 // Match found! Reset for next pair.
 lastAnimalFound = string.Empty;

 // Replace found animals with empty string to hide them
 shuffledAnimals = shuffledAnimals
 .Select(a => a.Replace(animal, string.Empty))
 .ToList();

 }

Exercise

 This isn’t a pencil-and-paper exercise—you
should do this exercise by modifying your code
in the IDE. When you see an Exercise with the

running shoe icon in the corner, that’s your cue
to go back to the IDE and start writing C# code.

When you’re doing a code
exercise, it’s not cheating
to peek at the solution! We

don’t learn effectively if
we’re frustrated—it’s easy

to get stuck on one little
thing, and the solution

can help you get past it.

you are here 4 41

Blazor Learner’s Guide

Here’s what the code looks like with each block of code in the correct place. If you haven’t already, add all four
blocks of code to your game to make it reset when the player finds all the matches.

<div class="container">
 <div class="row">
 @for (var animalNumber = 0; animalNumber < shuffledAnimals.Count; animalNumber++)
 {
 var animal = shuffledAnimals[animalNumber];
 var uniqueDescription = $"Button #{animalNumber}";

 <div class="col-3">
 <button @onclick="@(() => ButtonClick(animal, uniqueDescription))"
 type="button" class="btn btn-outline-dark">
 <h1>@animal</h1>
 </button>
 </div>
 }
 </div>

<div class="row">
 <h2>Matches found: @matchesFound</h2>
</div>

</div>

List<string> shuffledAnimals = new List<string>();

int matchesFound = 0;

private void SetUpGame()
{

 shuffledAnimals = animalEmoji
 .OrderBy(item => Random.Shared.Next())
 .ToList();

 matchesFound = 0;
}

 else if ((lastAnimalFound == animal) && (animalDescription != lastDescription))
 {
 // Match found! Reset for next pair.
 lastAnimalFound = string.Empty;

 // Replace found animals with empty string to hide them
 shuffledAnimals = shuffledAnimals
 .Select(a => a.Replace(animal, string.Empty))
 .ToList();

matchesFound++;
if (matchesFound == 8)
{
 SetUpGame();
}

 }

Exercise
Solution

42 https://github.com/head-first-csharp/fifth-edition

Timers “tick” every
time interval by
calling methods
over and over
again. You’ll use a
timer that starts
when the player
starts the game and
ends when the last
animal is matched.

Finish the game by adding a timer
Your animal matching game will be more exciting if players can try
to beat their best time. We’ll add a timer that “ticks” after a fixed
interval by repeatedly calling a method.

Let’s add some excitement to the game! The time
elapsed since the game started will appear at the
bottom of the window, constantly going up, and
only stopping after the last animal is matched.

TickTic
k
Tick

YOU ARE HEREYOU ARE HERE

Home.razor

CREATE THE CREATE THE
PROJECTPROJECT

SHUFFLE THE SHUFFLE THE
ANIMALSANIMALS

HANDLE HANDLE
MOUSE CLICKSMOUSE CLICKS

DETECT WHEN DETECT WHEN
THE PLAYER WINSTHE PLAYER WINS

ADD A GAME ADD A GAME
TIMERTIMER

@page “/”
@code {
}

you are here 4 43

Blazor Learner’s Guide

Add a timer to your game’s code
Start by finding this line at the very top of the Home.razor file: @page "/"

Add this line just below it—you need it in order to use a Timer in your C# code:

@using System.Timers

You’ll need to update the HTML markup to display the time. Add this just below the
first block that you added in the exercise:

 </div>
 <div class="row">
 <h2>Matches found: @matchesFound</h2>
 </div>
 <div class="row">
 <h2>Time: @timeDisplay</h2>
 </div>
</div>

Your page will need a timer. It will also need to keep track of the elapsed time:

List<string> shuffledAnimals = new List<string>();
int matchesFound = 0;
Timer timer;
int tenthsOfSecondsElapsed = 0;
string timeDisplay;

You need to tell the timer how frequently to “tick” and what method to call. You’ll
do this in the OnInitialized method, which is called once after the page is loaded:

protected override void OnInitialized()
{
 timer = new Timer(100);
 timer.Elapsed += Timer_Elapsed;

 SetUpGame();
}

Reset the timer when you set up the game:

private void SetUpGame()
{
 shuffledAnimals = animalEmoji
 .OrderBy(item => Random.Shared.Next())
 .ToList();

 matchesFound = 0;
 tenthsOfSecondsElapsed = 0;
}

1

2

3

4

5

Add this!

44 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

You need to stop and start your timer. Add this line of code near the top of the
ButtonClick method to start the timer when the player clicks the first button:

if (lastAnimalFound == string.Empty)
{
 // First selection of the pair. Remember it.
 lastAnimalFound = animal;
 lastDescription = animalDescription;

 timer.Start();
}

And finally, add these two lines further down in the ButtonClick method to stop the
timer and display a “Play Again?” message after the player finds the last match:

matchesFound++;
if (matchesFound == 8)
{
 timer.Stop();
 timeDisplay += " - Play Again?";

 SetUpGame();
}

Finally, your timer needs to know what to do each time it ticks. Just like buttons have
Click event handlers, timers have Tick event handlers: methods that get executed
every time the timer ticks.

Add this code at the very bottom of the page, just above the closing bracket }:

private void Timer_Elapsed(object? sender, ElapsedEventArgs e)
{
 InvokeAsync(() =>
 {
 tenthsOfSecondsElapsed++;
 timeDisplay = (tenthsOfSecondsElapsed / 10F)
 .ToString("0.0s");
 StateHasChanged();
 });
}

6

7

The timer starts when the player clicks the
first animal and stops when the last match is
found. This doesn’t fundamentally change the
way the game works, but makes it more exciting.

you are here 4 45

Blazor Learner’s Guide

Clean up the navigation menu
Your game is working! But did you notice that there are other pages in your app? Try clicking on “Counter” or

“Fetch data” in the navigation menu on the left side. When you created the Blazor WebAssembly App project, Visual
Studio added these additional sample pages. You can safely remove them.

Expand the Layout folder underneath Components and double-click NavMenu.razor. Find this line:

 BlazorMatchGame

and replace it with this:

 Animal Matching Game

Then delete these lines:
<div class="nav-item px-3">
 <NavLink class="nav-link" href="counter">
 Counter
 </NavLink>
</div>

<div class="nav-item px-3">
 <NavLink class="nav-link" href="weather">
 Weather
 </NavLink>
</div>

Hold down Control or δ�(Command) and click to multiselect Counter.razor and Weather.razor in the
Pages folder. Right-click on one of them and choose Delete from the menu to delete the two files.

Finally, go back to your Home.razor file and change the page title:

<PageTitle>Animal Matching Game</PageTitle>

And now your game is done!

It was really useful to break the game up into smaller
pieces that I could tackle one at a time.

Whenever you have a large project, it’s always a good
idea to break it into smaller pieces.
One of the most useful programming skills that you can develop is the ability
to look at a large and difficult problem and break it down into smaller, easier
problems.

It’s really easy to be overwhelmed at the beginning of a big project and think,
“Wow, that’s just so…big!” But if you can find a small piece that you can
work on, then you can get started. Once you finish that piece, you can move
on to another small piece, and then another, and then another. As you build
each piece, you learn more and more about your big project along the way.

Make sure you only delete the second and third <div> blocks for Counter and Weather.

Now your app doesn’t have any extraneous files that
it doesn’t need, and the navigation bar on the side
doesn’t include links to pages that no longer exist.

Having trouble getting back to the Solution
Explorer in Visual Studio Code? Just choose
Explorer (Ctrl+Shift+E) from the View menu.

46 https://github.com/head-first-csharp/fifth-edition

chapter 1 build something great... fast!

Can you think of your own “even better
if” improvements for the game? This is a
great exercise—take a few minutes and
write down at least three improvements
to the animal matching game.

Even better ifs…
Your game is pretty good! But every game—in fact, pretty
much every program—can be improved. Here are a few
things that we thought of that could make the game better:

 ≥ Add different kinds of animals so the same ones
don’t show up each time.

 ≥ Keep track of the player’s best time so they can try
to beat it.

 ≥ Make the timer count down instead of counting up
so the player has a limited amount of time. We’re serious—take a few minutes and do this. Stepping back and thinking about the project you just finished is a great way to seal the lessons you learned into your brain.

Just a quick reminder: we’ll refer to
Visual Studio or Visual Studio Code
as “the IDE” a lot in this book.

This is a great time to push
your code to Git! Then you'll
always be able to go back to
your project if you want to
reuse some of the code in it.

Sharpen your pencil
MINIMINI

Great job!

 ࣤ An event handler is a method that your application
calls when a specific event like a mouse click, page
reload, or timer tick happens.

 ࣤ The IDE’s Errors window shows any errors that
prevent your code from building.

 ࣤ Timers execute Tick event handler methods over and
over again on a specified interval.

 ࣤ foreach is a kind of loop that iterates through a
collection of items.

 ࣤ for is a kind of loop that can be used for counting.

 ࣤ When your program has a bug, gather evidence and
try to figure out what’s causing it.

 ࣤ Bugs are easier to fix when they’re reproducible.

 ࣤ The IDE’s debugger lets you pause your app on a
specific statement to help track down problems.

 ࣤ Setting a breakpoint makes the debugger pause on
the statement where the breakpoint is set.

 ࣤ Visual Studio makes it really easy to use source
control to back up your code and keep track of all
changes that you’ve made.

 ࣤ You can commit your code to a remote Git
repository. We use GitHub for the repository with the
source code for all of the projects in this book.

Bullet Points

you are here 4 47

Blazor Learner’s Guide

It looks like we’re done with the project –
and that’s the end of Chapter 1. It’s time to go back to

the book, right?

That’s right. You can pick up your
learning at the start of Chapter 2.
Chapter 1 was all about getting used to writing
code in Visual Studio or VSCode, and starting to
get some important C# ideas into your brain. Now
it’s time to head back to the main book. Go to the
start of Chapter 2 and jump right back in.

48 https://github.com/head-first-csharp/fifth-edition

great job now go straight to chapter 2

Come back to this PDF as soon as you reach the
.NET MAUI project near the end of the chapter.
In Chapter 2, you’ll work on Console App projects. About two thirds of
the way through the chapter, you’ll reach a page with this heading:

Controls drive the mechanics of your user interfaces
That’s when you come back to the Blazor Learner’s Guide, where you’ll do
an equivalent Blazor project.

You can do the same thing any time you see a .NET MAUI project
in the book. We’ll give you an equivalent Blazor project, and tell you
where to pick up reading when you’re done.

How do I know when to come back to the Blazor
Learner’s Guide?

you are here 4 49

Blazor Learner’s Guide

Don’t worry about memorizing the specific section to watch

out for. All you need to know is that

Controls drive the mechanics of your user interfaces
In the last chapter, you built a game using Button controls. But there are a lot of different ways that you can use
controls, and the choices you make about what controls to use can really change your app. Does that sound weird?
It’s actually really similar to the way we make choices in game design. If you’re designing a tabletop game that
needs a random number generator, you can choose to use dice, a spinner, or cards. If you’re designing a platformer,
you can choose to have your player jump, double jump, wall jump, or fly (or do different things at different times).
The same goes for apps: if you’re designing an app where the user needs to enter a number, you can choose from
different control to let them do that—and that choice affects how your user experiences the app.

Meet some of the controls you’ll use in this book
There’s a Blazor project for most of the chapters in the book. We included them so you can go beyond console
apps and start learning how to build visual apps. In those projects, you’ll use many different controls to build each
app’s user interface (or UI)—or the way the window is laid out so the user can interact with it—of each app.

Here are some controls you’ll see in Blazor applications.

Controls are common
user interface (UI)
components, the
building blocks of

your UI. The choices
you make about

what controls to use
change the mechanics

of your app.

We can borrow the
idea of mechanics
from video games
to understand our
options, so we can
make great choices
for any of our own
apps—not just games.

 ≥ A text box lets a user enter
any text they want. But we
need a way to make sure
they’re only entering numbers
and not just any text.

 ≥ Radio buttons let you restrict the user’s choice.
They often look like circles with dots in them, but
you can style them to look like regular buttons too.

 ≥ Sliders are used exclusively to choose a number.
Phone numbers are just numbers, too, so technically
you could use a slider to choose a phone number.
Do you think that’s a good choice?

 ≥ Pickers are controls that are
specially built to pick a specific
type of value from a list. For
example, date pickers let
you specify a date by picking
its year, month, and day, and
color pickers let you choose
a color using a spectrum slider
or by its numeric value.

50 https://github.com/head-first-csharp/fifth-edition

chapter 2 experiment with controls You can figure out what chapter you’re in by looking here.

Create a new Blazor Web App project
Earlier in this Blazor Learner’s Guide, you created a Blazor Web App project for your animal matching game. You’ll
do the same thing for this project, too.

Here’s a concise set of steps to follow to create a Blazor Web App project, change the title text for
the main page, and remove the extra files that Visual Studio creates. We won’t repeat this for every
additional project in this guide—you should be able to follow these same instructions for all of the
future Blazor Web App projects.

Create a new Blazor Web App project.
Create a new project just like you did at the beginning of Chapter 1, except this time give it a different name.
In this case, use the name ExperimentWithControlsBlazor.

Delete the extra lines from Home.razor and set the PageTitle tag to match your app.
When you create a Blazor Web App project, the Home.razor file contains lines that display “Hello, World!”
and “Welcome to your new app.” Delete those lines.

All of the projects in this book will use interactive controls, so add a @rendermode InteractiveServer line.

In Chapter 1 we learned that the <PageTitle> tag in the Razor file sets the page title that the browser displays
in the tab. Change it to match the name of the app. Here’s what your page will look like:
@rendermode InteractiveServer
@page "/"

<PageTitle>Experiment With Controls</PageTitle>

Remove the extra navigation menu options and their corresponding files.
This is just like what you did at the end of the animal matching game project. Expand the Layout folder inside
Coponents and double-click on NavMenu.razor, then delete these lines:

<div class="nav-item px-3">
 <NavLink class="nav-link" href="counter">
 Counter
 </NavLink>
</div>

<div class="nav-item px-3">
 <NavLink class="nav-link" href="weather">
 Weather
 </NavLink>
</div>

Finally, delete the Counter.razor and Weather.razor files in the Pages folder.

1

2

3

The layout of a Blazor Web App project may change
if you're using a different version of .NET, so make

sure you create your projects using .NET 8.0.

Modify Home.razor to delete the
@rendermode line, set the page
title so it matches your app, and
delete the extra lines at the end.

you are here 4 51

Blazor Learner’s Guide

Create a page with a slider control
Many of your programs will need the user to input numbers, and one of the most basic controls to input a number
is a slider, also known as a range input. Let’s create a new Razor page that uses a slider to update a value.

Replace the Home.razor page.
Open Home.razor and replace all of its contents with this HTML markup:
@rendermode InteractiveServer
@page "/"

<PageTitle>Experiment With Controls</PageTitle>

<div class="container">
 <div class="row">
 <h1>Experiment with controls</h1>
 </div>
 <div class="row mt-2">
 <div class="col-sm-6">
 Pick a number:
 </div>
 <div class="col-sm-6">
 <input type="range"/>
 </div>
 </div>
 <div class="row mt-5">
 <h2>
 Here's the value:
 </h2>
 </div>
</div>

Run your app.
Run your app just like you did with the app in Chapter 1. Compare the HTML markup with the page
displayed in the browser—match up the individual <div> blocks with what’s displayed on the page.

1

2

<div class="col-sm-6">
 <input type="range"/>
</div>

<div class="row mt-5">
 <h2>Here's the value:</h2>
</div>

<div class="row">
 <h1>Experiment with controls</h1>
</div>

<div class="col-sm-6">
 Pick a number:
</div>

This is an input tag. It has a type attribute
that determines what kind of input

control appears on the page. When you
set the type to range, it displays a slider:

<input type="range"/>
HTML controls sometimes look different
depending on what browser you use. A

slider in Edge looks like this:

Edit the Razor page, just
like you did with the animal
match game in Chapter 1.

The class="row" attribute in this tag tells
the page to render everything between the
opening <div class="row"> tag and the

closing </div> tag in a single row on the page.

Here's the row we pointed
out above. See if you can
spot the other rows in
the HTML markup.

Adding mt-2 to
the class causes the
page to add a two-
space top margin
above the row.

The <PageTitle> tag sets the title
that gets displayed in the browser tab.

52 https://github.com/head-first-csharp/fifth-edition

chapter 2 experiment with controls

Add C# code to your page.
Go back to Home.razor and add this C# code to the bottom of the file:
@code
{
 private string DisplayValue = "";

 private void UpdateValue(ChangeEventArgs e)
 {
 DisplayValue = e.Value.ToString();
 }
}

Hook up your range control to the Change event handler you just added.
Add an @onchange attribute to your range control:
@rendermode InteractiveServer
@page "/"

<PageTitle>Experiment With Controls</PageTitle>

<div class="container">
 <div class="row">
 <h1>Experiment with controls</h1>
 </div>
 <div class="row mt-2">
 <div class="col-sm-6">
 Pick a number:
 </div>
 <div class="col-sm-6">
 <input type="range" @onchange="UpdateValue" />
 </div>
 </div>
 <div class="row mt-5">
 <h2>
 Here's the value: @DisplayValue
 </h2>
 </div>
</div>

3

4

The UpdateValue method is a
Change event handler. It takes

one parameter, which your
method can use to do something

with the data that changed.

The change event handler updates DisplayValue any time it's called with
a value. It’s okay if you see a squiggly underline and get a warning on
this line of code—we’ll learn how to fix that later in the book

Any time DisplayValue changes, the value displayed on the page will change too.

You added this
value that gets
updated any time
the slider changes.

When you use @onchange to
hook up a control to a Change
event handler, your page calls

the event handler any time
the control’s value changes.

you are here 4 53

Blazor Learner’s Guide

Add a text input to your app
The goal of this project is to experiment with different kinds of controls, so let’s add a text input control
so users can type text into the app and have it display at the bottom of the page.

Add a text input control to your page’s HTML markup.
Add an <input ... /> tag that’s almost identical to the one you added for the slider. The
only difference is that you’ll set the type attribute to "text" instead of "range". Here's the
HTML markup:

<div class="container">
 <div class="row">
 <h1>Experiment with controls</h1>
 </div>
 <div class="row mt-2">
 <div class="col-sm-6">
 Enter text:
 </div>
 <div class="col-sm-6">
 <input type="text" placeholder="Enter text"
 @onchange="UpdateValue" />
 </div>
 </div>
 <div class="row mt-2">
 <div class="col-sm-6">
 Pick a number:
 </div>

Run your app again—now it has a text input control. Any text you enter will show up at the
bottom of the page. Try changing the text, then moving the slider, then changing the text again.
The value at the bottom will change each time you modify a control.

1

Here’s the markup for the text input control. Its
type is "text" and it uses the same @onchange

tag as the slider. There’s an additional tag to
set the placeholder text, so the control looks

like this until the user enters text:

You might have to hit Enter after you type your text for the
app to register the change and run the event handler.

The event handler updates this text, just like before.

You're adding
another row
to your page
with a two-
space top
margin.

54 https://github.com/head-first-csharp/fifth-edition

chapter 2 experiment with controls

You used Button controls in your animal matching game in Chapter 1. Here’s some HTML markup to add a strip of
buttons to your page—it’s very similar to the code that you used earlier. Your job is to finish this code so it adds six
buttons, and add an event handler to the C# code.
 <div class="row mt-2">
 <div class="col-sm-6">Pick a number:</div>
 <div class="col-sm-6"><input type="range" @onchange="UpdateValue" /></div>
 </div>
 <div class="row mt-2">
 <div class="col-sm-6">Click a button:</div>
 <div class="col-sm-6 btn-group" role="group">

 {
 string valueToDisplay = $"Button #{buttonNumber}";
 <button type="button" class="btn btn-secondary"
 @onclick="() => ButtonClick(valueToDisplay)">
 @buttonNumber
 </button>
 }
 </div>
 </div>
 <div class="row mt-5">
 <h2>
 Here's the value: @DisplayValue
 </h2>
 </div>

Exercise

Add an event handler method that only accepts numeric values.
What if you only want to accept numeric input from your users? Add this
method to the code between the brackets at the bottom of the Razor page:

 private void UpdateNumericValue(ChangeEventArgs e)
 {
 if (int.TryParse(e.Value.ToString(), out int result))
 {
 DisplayValue = e.Value.ToString();
 }
 }

Change the text input to use the new event handler method.
Modify your text control’s @onchange attribute to call the new event handler:

 <input type="text" placeholder="Enter text"
 @onchange="UpdateNumericValue" />

Now try entering text into the text input—it won’t update the value at the bottom
of the page unless the text that you enter is an integer value.

2

3

You’ll learn all about
int.TryParse later in
the book—for now, just
enter the code exactly
as it appears here.

Replace this box
with a line of C#
code that will
cause the page to
display six buttons.

When the buttons are clicked, they call an event handler method called ButtonClick. Add that method to the code at the bottom of the page—it contains just one statement..

Try putting a breakpoint in this method and
using the debugger to explore how it works.

dive into C#

You may see warnings
on the code in this
method. You can
ignore them for now,
we’ll learn more about
them in Chapter 6.

you are here 4 55

Blazor Learner’s Guide

Here’s the line of code that makes the Razor markup add six buttons to the page. It’s a for loop, and it works just like
the other for loops you learned about in Chapter 2:
 <div class="row mt-2">
 <div class="col-sm-6">Pick a number:</div>
 <div class="col-sm-6"><input type="range" @onchange="UpdateValue" /></div>
 </div>
 <div class="row mt-2">
 <div class="col-sm-6">Click a button:</div>
 <div class="col-sm-6 btn-group" role="group">
 @for (var buttonNumber = 1; buttonNumber <= 6; buttonNumber++)
 {
 string valueToDisplay = $"Button #{buttonNumber}";
 <button type="button" class="btn btn-secondary"
 @onclick="() => ButtonClick(valueToDisplay)">
 @buttonNumber
 </button>
 }
 </div>
 </div>
 <div class="row mt-5">
 <h2>
 Here's the value: @DisplayValue
 </h2>
 </div>

Here’s the event handler method to add to the @code section at the bottom of the page. It sets DisplayValue to the
value passed to it by the button when it’s clicked:
 private void ButtonClick(string displayValue)
 {
 DisplayValue = displayValue;
 }

Exercise
Solution

The for loop that creates the buttons works exactly
like the one in the animal matching game—the code

is almost identical. The buttons are styled as a group
(that’s what btn-group does) and shaded differently in

some browswers (that’s what btn-secondary does).

56 https://github.com/head-first-csharp/fifth-edition

Add color and date pickers to your app
Pickers are just different types of inputs. A date picker has the input type "date" and a color
picker has the input type "color"—other than that, the HTML markup for those input types is
identical.

Modify your app to add a date picker and a color picker. Here’s the HTML markup—add
it just above the <div> tag that contains the display value:

 <div class="row mt-2">
 <div class="col-sm-6">Pick a date:</div>
 <div class="col-sm-6">
 <input type="date" @onchange="UpdateValue" />
 </div>
 </div>
 <div class="row mt-2">
 <div class="col-sm-6">Pick a color:</div>
 <div class="col-sm-6">
 <input type="color" @onchange="UpdateValue" />
 </div>
 </div>
 <div class="row mt-5">
 <h2>Here's the value: @DisplayValue</h2>
 </div>
</div>

The date and color pickers use the same Change event handler method, so you don’t need to modify the code at all to display the color or date that the user picks.

Select a value in the color picker
and it will call the same change
event handler to update the
value at the bottom of the page.

you are here 4 57

Blazor Learner’s Guide

birds and addedBirds are string arrays.
You’ll learn more about arrays in

Chapter 3. For now, we’ll give you all of
the code you need to work with them.

58 https://github.com/head-first-csharp/fifth-edition

chapter 2 experiment with controls

Add a dropdown control to display a list of choices
A dropdown control (also called a select control) displays a list of items in a dropdown so the user can pick one of
them. Let’s add one to your app that lets the user pick a bird from a list of birds.

Add the HTML for a dropdown (or select) control.
Let’s add three rows to the bottom of your page: a row with a dropdown that contains a list of birds, a row
with a button the user can click to add a bird, and a row that displays the list of birds that were added.

Go ahead and add this HTML code just above the closing </div> tag:

 <div class="row mt-5">
 <h2>
 Here's the value: @DisplayValue
 </h2>
 </div>
 <div class="row mt-5">
 <label>Pick a bird</label>
 <select @bind="selectedBird">
 @foreach (var bird in birds)
 {
 <option value="@bird">@bird</option>
 }
 </select>
 </div>
 <div class="row mt-2">
 <button type="button" class="btn btn-primary"
 @onclick="AddBird">Add a bird</button>
 </div>
 <div class="row mt-2" style="background-color: darkblue; color: white;">
 @foreach (var bird in addedBirds)
 {
 <div>@bird</div>
 }
 </div>
</div>

Add three fields to store the birds in the dropdown list, the birds that were added,
and the bird that’s currently selected.
Add these variables just under the @code opening bracket:

@code
{
 string[] birds = ["Duck", "Pigeon", "Penguin", "Ostrich", "Owl"];
 string[] addedBirds = [];
 string selectedBird;

1

2

This is the existing HTML
to display the value from
the radio buttons, date
picker, or color picker.

This row contains a dropdown
that displays everything between
its opening and closing tags in a
dropdown. You'll use a foreach
loop to include everything in a
variable called birds.

This row contains a foreach loop that
displays the birds that were added.
We used a style property to give it
white text on a dark blue background.Here's the closing <div> tag.

Add a method that reads the selected bird and adds it to the page.
Take a closer look at the :

@code
{
 string[] birds = ["Duck", "Pigeon", "Penguin", "Ostrich", "Owl"];
 string[] addedBirds = [];
 string selectedBird;

 private void AddBird()
 {
 string[] newAddedBirds = new string[addedBirds.Length + 1];
 for (int i = 0; i < addedBirds.Length; i++)
 {
 newAddedBirds[i] = addedBirds[i];
 }
 newAddedBirds[newAddedBirds.Length - 1] = selectedBird;
 addedBirds = newAddedBirds;
 }

Run your app and use your new dropdown control.
Scroll to the bottom of the page, choose a bird from the dropdown, and click the Add a bird button. The bird
will get added to the list that contains the birds. Select a few more birds and add them.

3

4

Choose a bird from the
dropdown, then click the
“Add a bird” button.

The bird that you selected in
the dropdown gets added to
the list of birds on the page.

We gave you a lot of code, but it’s a lot like code on the page you’ve already seen. Let’s break down this part of it:

<div class="row mt-2" style="background-color: darkblue; color: white;">
 @foreach (var bird in addedBirds)
 {
 <div>@bird</div>
 }
</div>

This @foreach adds a block
of HTML to the page for
each bird in addedBirds.

This <div> block
adds a new row
to the page. The
style property
changes its color.

This is the block of HTML that
the @foreach adds to the page.
It displays a bird on a new line.

you are here 4 59

Blazor Learner’s Guide

You’ll learn a lot more about arrays—and specifically
how this code works—when we get to Chapter 6. For
now, just type in the code exactly like it appears here.

60 https://github.com/head-first-csharp/fifth-edition

You’re right! You found a bug in the code.
Take a look at the screenshot we showed you earlier:

We were really careful to show that birds were already added. But when
you first start your app, you don’t see any added birds.

Run your app and try clicking the button before you select a bird.
Nothing happens! If you want to add a duck, you have to click on the
dropdown and choose Duck, even though Duck is already selected.

Looks like we’ve got a bug. Time to put on your Sherlock Holmes cap.
Let’s sleuth out this bug!

chapter 2 experiment with controls

Hold on. My app isn’t working correctly. If I start it up, pick a bird
from the dropdown, and then click the button, it works just fine. But if I click the click the
button as soon as I start the app button as soon as I start the app nothing happens, even though I see “Duck”

selected in the dropdown. This code has a bug.

Oops! It looks like the
button doesn’t work until
you choose something
from the dropdown, even
though it looks like Duck
is already selected.

you are here 4 61

Blazor Learner’s Guide

The Case of the Duck That Didn’t Quack
Understanding a bug is the first step in fixing it.
In Chapter 1, we looked at the code carefully and found several clues to help us solve the Case of the
Unexpected Match. But as you keep going through this book, your apps will get longer and longer, and while
looking at the code is a good start, it may not always be the best way to figure out what’s causing a bug.
Luckily, the debugger in Visual Studio and Visual Studio Code is a great tool for that. (That’s why it’s called a
debugger: it’s a tool that helps you get rid of bugs!)

Reproduce the bug
It seems obvious that there’s a problem. But as Sherlock Holmes once said, “There is nothing more deceptive
than an obvious fact.” When you’re sleuthing out bugs, you can’t just rely on what seems obvious. You need to
confirm for yourself exactly what’s going on. The way to do that is to reproduce the bug.
Stop your app. Make sure it’s not running, so you’ve got a fresh start. Then do this:
1. Start your app again.
2. Click the “Add a bird” button.
3. Nothing happens.

4. Choose “Duck” from the dropdown.
5. Click the “Add a bird” button again.
6. Now the Duck is displayed.

Now restart your app, then try a few different things. Does it always happen, every time you run the app? What
happens if you choose another bird first? What if you click the button several times before selecting a bird?
You can make the bug happen over and over again, at will. That means the problem is reproducible: you can
follow a set of steps to make it happen. Reproducing a bug is a great first step to fixing it.
Before you go on, can you sleuth out what’s causing the extra space to get added?

Sleuth it Out

“There is nothing
more deceptive than
an obvious fact.”
— Sherlock Holmes

62 https://github.com/head-first-csharp/fifth-edition

chapter 2 experiment with controls

Every good investigation starts by identifying a list of suspects
When you’re tracking down a bug, what’s the first thing you should do? You could start placing breakpoints in
the code…but where? The first step in debugging is thinking. Look at your code, think about how it works,
and try to imagine where the bug might be. That will help you figure out where to put your breakpoints.
So let’s think through the code. It starts with a button—and the button calls a method:
 <div class="row mt-2">

<button type="button" class="btn btn-primary"
 @onclick="AddBird">Add a bird</button>
 </div>

All of the code to display the selected bird is in that AddBird method. Now we have a suspect!

Sleuth it Out

You’re going to be using the debugger a lot in this book! We’ve walked you through it a few times, but as you get fur-
ther in the book and write more and more code, you should feel comfortable using the debugger on your own.

Let’s start with a few tips to help you get comfortable debugging your code:

 ≥ Think before you debug. Read through your code. Understand how it works (and not just how you think it works).

 ≥ Use the Watch window, Locals window, and hovering over variables to keep track of their values. They all do the
same thing—show you the value of a variable—so you can decide which one you feel most comfortable with.

 ≥ Don’t be afraid to restart your app. Stop and start your code frequently—every time you run your code, you’re
running an experiment. Run it as many times as it takes to understand what’s going on.

Here’s a handy list of useful debugger commands. They may feel strange at first, but they’ll be second nature soon:

 ≥ When you press the triangle Run button in the toolbar or choose Start Debugging (F5), Visual Studio starts run-
ning your code in the debugger. You can place a breakpoint whether or not the debugger is running.

 ≥ To place a breakpoint, click on a line of code and choose Toggle Breakpoint (F9) from the Debug menu.

 ≥ When your code hits a breakpoint, it stops running so you can inspect variables.

 ≥ When Visual Studio breaks on a breakpoint, the toolbar shows you the commands you can use to keep executing.
Debugging code can be a little weird to get used to if you haven’t done it before, so try sticking to just these four
commands—here’s where you’ll find them in the IDE’s toolbar, along with their keyboard shortcuts:

IDE Tip: Using the debugger

Continue Debugging (F5)
starts the app running again.

Continue Debugging (F5)
starts the app running again.

Step Over (F10) executes the current
statement and breaks on the next one.

Step Over (F10) executes the current
statement and breaks on the next one.

Stop Debugging (Shift+F5)
stops the debugger.

Stop Debugging (Shift+F5)
stops the debugger.

VSCode
Visual Studio

Remember, If your app doesn’t pause on the breakpoint,
make sure you’re starting the app with debugging. Run

the app by pressing F5 or choosing Start Debugging
from the Debug (Visual Studio) or Run (VSCode) menu.

you are here 4 63

Blazor Learner’s Guide

Now that we have a suspect, let’s catch it in the act. Add a breakpoint to the first line in the AddBird method:

Now run your code. Pick a bird, then click the “Add a bird” button. The debugger stops on your breakpoint. Next,
add a watch for addedBirds, just like you did earlier in the chapter. The value should be {string[0]}:

Then choose Continue (F5) from the Run or Debug menu (or click the triangle Continue button) to start up the
app again. Now click the button again. The breakpoint stops, but now addedBirds has the value {string[1]},
and there’s a triangle next to the watch. Click on the triangle to expand addedBirds:

Repeat that step (press F5 then click the button) three times. Now you’ll see {string[4]} with these values:

We haven’t talked about arrays or told you what null means, but even with this limited information we’ve got a lot
of clues. We know that addedBirds has the birds to display, and somehow null keeps them from being displayed.
We just need to figure out where that null is coming from. Let’s start with the HTML that displays the dropdown:
 <select @bind="selectedBird">

That tells the app to store the selected bird in the selectedBird variable that you added. Now look at this line of
code from the AddBird method:
 newAddedBirds[newAddedBirds.Length - 1] = selectedBird;

Even though we haven’t talked about arrays yet, you can see that something is being set to the value in
selectedBird. Hover over it to see its value:

When the app starts, selectedBird contains null, even though Duck is selected.
We have our culprit! We’ve sleuthed out the bug, and we know enough to fix it.

Sleuth it Out

Before we show you the
solution, can you think of how
you would fix this bug? Is there

a way to set selectedBird as
soon as the page is initialized?

There’s that null value again.

64 https://github.com/head-first-csharp/fifth-edition

chapter 2 experiment with controls

Use the OnInitialized method to set selectedBird
In Chapter 1 we learned about the the OnInitialized method, which gets run as soon as
the page is initialized, and we used it to set up the game. Now you can use it to set up your
app so selectedBird starts out with a bird.

Add this OnInitialized method that sets the selectedBird variable:

 protected override void OnInitialized()
 {
 selectedBird = birds[0];
 }

Run your app again. The bug is fixed!

This statement sets selectedBird to
the first value in the birds array. You’ll
learn more about arrays in Chapter 3.

There are no unexplainable mysteries in your code.
Every bug has an explanation, even if it takes work
to figure out what’s going on and fix it.
Bugs can be weird! If you’ve been playing video games for a long time,
you’ve probably experienced a few glitches, and some of them can be
extremely odd. If you haven’t seen any yourself, try searching the web
for videos of game glitches—even the most polished game has bugs.

Every bug you see is code behaving in a way you don’t expect. That’s why bugs
need sleuthing out. Bugs can be confusing, mysterious, and sometimes
extremely frustrating. It’s even tempting to think that something is
fundamentally wrong, and the code will never work. Always remember
that every bug has an explanation. Every bug is strange, but even a
bug that appears to be a weird mystery is caused by something in your
code—so you can fix it. Because like Sherlock Holmes once said, “It is a
mistake to confound strangeness with mystery.”

When I first spotted the bug in the
app, it seemed really weirdseemed really weird. But once I

thought through the code and did some
experimenting, I found an explanationfound an explanation.

Now that we're done with the project,
let's get back to the book.

You finished Chapter 2, so you can go to the next chapter.
The very next part of the book after Chapter 2 is Unity Lab #1: Explore
C# with Unity, where you’ll start using Unity to create 3D games. The Unity
Labs are optional, but they’re also really valuable for getting practice using
C# and learning important skills that you’ll use even if you aren’t planning on
writing games in C#.

If you’re not doing the Unity Lab projects, you can go straight to Chapter 3.

You’ll return to the Blazor Learner’s Guide partway
through Chapter 3.
Watch for this heading—it comes after you create a console app that picks
random cards and displays them:

Build a MAUI version of your random card app

As soon as you get to this heading in
the book, come back to the Blazor
Learner’s Guide so you can build a
Blazor version of that project.

you are here 4 65

Blazor Learner’s Guide

 ࣤ You’ll use many different controls to build your app’s user interface (or UI). The UI is the part of the application
that your user interacts with.

 ࣤ You can build up a page with rows using <div class="row"> tags.

 ࣤ Add a slider to your page with an input tag like this: <input type="range" @onchange="UpdateValue" />

 ࣤ The @onchange property causes the control to run an event handler method every time the value is changed.

 ࣤ Use an <input> tag with different type properties to add other kinds of controls. Get user text input with a text
box control: <input type="text" placeholder="Enter text" @onchange="UpdateValue" />

 ࣤ A date picker has the input type "date" and a color picker has the input type "color".

 ࣤ You can pass values to a button’s click event handler: @onclick="() => ButtonClick(valueToDisplay)"

 ࣤ A dropdown (or select) control creates a dropdown: <select @bind="selectedBird">
Everything between the opening and closing tags is displayed in the dropdown. the @bind-value property causes
the control to update a variable every time it's changed.

 ࣤ The first step in debugging is thinking: look at your code, think about how it works, and try to imagine where the
bug might be.

 ࣤ Reproducing a bug is an important tool that helps you fix it.

 ࣤ When you’re debugging, you’re running an experiment every time you run your code. Run it as many times as it
takes to understand what’s going on.

Bullet Points

66 https://github.com/head-first-csharp/fifth-edition

chapter 3 objects... get oriented!

Build a Blazor version of your random card app
In the next project, you’ll build a Blazor app called PickACardBlazor. It will use a slider to let you choose the
number of random cards to pick and display those cards in a list. Here’s what it will look like:

Use the slider to select
how many cards to pick.

Press the button to pick the specified number of cards and add them to the list.

This button’s event handler will call
a method in your class that returns
a list of cards, then it will add each

card to an array, just like you did
with the bird dropdown in Chapter 2.

You’ll use a loop to turn
an array of cards into
a series of HTML tags,

just like you did with the
buttons in the previous

Blazor projects.

Create a new Blazor WebAssembly App project called PickRandomCardsBlazor.
You’ll follow exactly the same steps you used to create your animal matching game in Chapter 1:

 ≥ Open Visual Studio and create a new project.

 ≥ Select Blazor WebAssembly App, just like you did with your previous Blazor apps.

 ≥ Name your new app PickRandomCardsBlazor. Visual Studio will create the project.

Do this!

Go back to the Blazor app you built in Chapter 2 and look at how the AddBird
method worked. Now look at how the “Pick some cards” button in this app will
work. What do you think will go in the event handler method for that button?

Brain
Power

you are here 4 67

Blazor Learner’s Guide

Reuse your CardPicker class in your new Blazor app
If you’ve written a class for one program, you’ll often want to use the same behavior in another.
That’s why one of the big advantages of using classes is that they make it easier to reuse your code.
You’ll give your card picker app a shiny new user interface, but keep the same behavior by reusing
your CardPicker class.

You’ve got an app that looks like it’s supposed to, and that’s a great start! In the second part of this
project, you’ll make it work, so when the user enters a number and clicks the button it picks random
cards. That’s where your CardPicker class comes in. You’ve already created a class that picks random
cards. Now you just need to copy that class into your new APP. Once it’s copied, you’ll be able
to make your button’s event handler method call the PickSomeCards method in the CardPicker class.

Program.csPickRandomCards

CardPicker.cs

Home.razor

PickRandomCardsBlazor

A few other files
and folders

Once you have code
organized into a class,
you can use that same
class in two projects.

Once you copy your CardPicker.cs file from your Console App project into your .NET MAUI project, you’ll be able to call its PickSomeCards method when the user clicks the button.

When your Blazor app builds, the
Razor markup in the HTML file and

the C# code in the @code section file
are combined together to create a

new class that makes the page work.

Pages

Components

CardPicker.cs

68 https://github.com/head-first-csharp/fifth-edition

chapter 3 objects... get oriented!

Reuse your CardPicker class
You took the time to put all of the random card picking code into a convenient class. Now it’s time to
take reuse that class by copying the file with the C# code into your new Blazor project.

Choose Add Existing Item in Visual Studio or manually copy the file in VSCode.
This feature in the IDE will copy an existing file into your project. You created a file called CardPicker.cs in
your PickRandomCards console app. Now you’ll tell the IDE to add that class file to your Blazor project,
which will cause it to copy the file into your MAUI app’s project folder.

 ≥ In Visual Studio, right-click on the project in the Solution Explorer window and choose Add >>
Existing Item (Shift+Alt+A), or choose Add Existing Item from the Project menu.

 ≥ In VSCode, you’ll need to manually copy the file into the folder. Right-click on the project in the
Solution Explorer and choose “Reveal in File Explorer” (or “Reveal in Finder” if you’re using a Mac).
Use your operating system to copy the file into your project folder that VSCode opened. Once the file
is copied, it will automatically appear in the Solution Explorer.

Find your CardPicker.cs file and add it to your project.
The IDE will pop up a folder explorer window. Navigate to the folder with your PickACard console app and
double-click on CardPicker.cs. You should now see CardPicker in the Solution Explorer.

Try to use your CardPicker class in the @code section of your home page.
Open Home.razor. Make sure you’ve added the @rendermode line, updated the <PageTitle> tag, and deleted
everything else (follow the instructions we gave you back in Chapter 2).

Next, add a @code section. You’ll need an array to hold the cards, so add a pickedCards variable and use
the CardPicker.PickSomeCards method to initialize it:

 string[] pickedCards = CardPicker.PickSomeCards(5);

Here’s what your Home.razor file will look like. Did you run into a problem trying to call PickSomeCards?

@rendermode InteractiveServer
@page "/"

<PageTitle>Pick Random Cards</PageTitle>

@code {
 string[] pickedCards = CardPicker.
}

1

2

3

Do
this!

Hold on—something’s wrong!
When you start typing the statement to call
CardPicker.PickSomeCards, Visual Studio

doesn’t pop up its normal IntelliSense window,
and there’s a squiggly error line under CardPicker.

Why do you think Visual Studio is treating
CardPicker like that?

Make sure CardPicker.cs now shows up in your Solution
Explorer. Open it and make sure that you see the code
for the CardPicker class from earlier in the chapter.

you are here 4 69

Blazor Learner’s Guide

Add a using directive to use code in another namespace
You used either a file-scoped namespace or block-scoped namespace to put your CardPicker class in
the PickRandomCards namespace. But that’s not the namespace of the code in your Blazor app.

The component in your .razor file is a blend of C# code and HTML with Razor markup. When your Blazor
web app gets compiled, each Razor file is transformed into a class. This class handles both rendering
(HTML) and logic (C#), and it lives in the PickRandomCardsBlazor.Components.Pages namespace.

The reason your Blazor code can’t access the methods in your CardPicker class is because they’re in
different namespaces.

Luckily, C# has an easy way to deal with this. You’ll add a using directive in your code that calls the
methods in CardPicker—that’s a special line that you put at the top of a class file to tell it to use code in
another namespace.

Open the Program.cs file at the root of your Blazor app and look at the first line:

using PickRandomCardsBlazor.Components;

That’s a using directive. Using directives in C# code start with the keyword using
and end with a semicolon. They look a little different in a Razor file—then start
with @using and don’t end in a semicolon.

Add this line to the top of your Home.razor file. If
you chose a different name for your console app, replace
PickRandomCards with the namespace in your CardPicker.cs file.

@using PickRandomCards
Now go back to the event handler method for your button. Start
typing CardPicker. like you did before. Now the IDE will pop up
its IntelliSense window, just like you’d expect it to.

Finish adding the code section to your Home.razor file
Make sure you have the @rendermode, @page, and @using lines at the top, the PageTitle tag is updated, and
your @code section has a pickedCards variable.

Here’s what your Home.razor file will look like.

@rendermode InteractiveServer
@page "/"
@using PickRandomCards

<PageTitle>Pick Random Cards</PageTitle>

@code {
t}

This using directive will let you add code
to your Home.razor file that uses classes
in the PickRandomCards namespace—

so now you can write code that calls
methods in your CardPicker class. You

might see other using directives at the top
of the file too.

Add this!

When your project builds, the
HTML, Razor markup, and C#

code in the Home.razor file is built
into a class called Home in the a
separate namespace. Since it’s
a class, that means pickedCards
is more than just a variable. It’s

actually a field in that class.

70 https://github.com/head-first-csharp/fifth-edition

chapter 3 objects... get oriented!

<div class="container">
 <div class="row">
 <div class="col-8">

 </div>
 </div>
</div>

<div class="col-4">

</div>

</div>

</div>

</div>

<div class="row">

<div class="row mt-5">

<div class="row mt-5">

The page is laid out with rows and columns
The Blazor apps in Chapters 1 and 2 used HTML markup to create rows and columns, and this
new app does the same thing. Here’s a picture that shows you how your app will be laid out:

The left
column is
divided into
three rows.

The whole app lives inside a
container, which contains a row
that’s divided into two columns.

Here’s the code that generates the list of cards in the right column.
It uses a foreach loop (like the one you used in your animal
matching game) to create a list from an array called pickedCards:

<div class="col-4">
 <ul class="list-group">
 @foreach (var card in pickedCards)
 {
 <li class="list-group-item">@card
 }

</div>

The list starts with <ul class="list-group"> and ends with
 (which stands for “unnumbered list”). Each list item begins
with <li class="list-group-item"> and ends with .

<div class="col-4">

 Ace of Diamonds
 2 of Hearts
 2 of Clubs
 6 of Hearts
 8 of Diamonds
 4 of Diamonds

</div>

This is how you
create a list with
HTML markup.

you are here 4 71

Blazor Learner’s Guide

The slider uses data binding to update a variable
The code at the bottom of the page will start with a variable called numberOfCards:

@code {
 int numberOfCards = 5;

You could use an event handler to update numberOfCards, but Blazor has a better way: data binding,
which lets you set up your input controls to automatically update your C# code, and can automatically insert
values from your C# code back into the page.

Here’s the HTML markup for the header, the range input, and the text next to it that shows its value:

 <div class="row">
 <h3>How many cards should I pick?</h3>
 </div>
 <div class="row mt-5">
 <input type="range" class="col-10 form-control-range"
 min="1" max="15" @bind="numberOfCards" />
 <div class="col-2">@numberOfCards</div>
 </div>

Take a closer look at the attributes for the input tag. The min and max attributes restrict the input to
values from 1 to 15. The @bind attribute sets up the data binding, so any time the slider changes Blazor
automatically updates numberOfCards.

The input tag is followed by <div class="col-2">@numberOfCards</div>—that markup adds
text (with ml-2 adding space to the left margin). This also uses data binding, but to go in the other direction:
every time the numberOfCards field is updated, Blazor automatically updates the text inside that div tag.

When you enter this into the IDE, it may add a line break after the opening tag and before the closing tag.

We’ve given all you almost all of the parts you need to add the HTML markup and code to your Index.razor file. Can
you figure out how to put them together to make your web app work?

Step 1: Finish the HTML markup
The first four lines of Index.razor are identical to the first four lines in the ExperimentWithControlsBlazor app from
Chapter 2. You can find the next two lines of HTML at the top of the screenshot where we explain how the rows and
columns work. The only markup we haven’t given you yet is for the button—here it is:
<button type="button" class="btn btn-primary"
 @onclick="UpdateCards">Pick some cards</button>

Step 2: Finish the code
We gave you the beginning of the @code section at the bottom of the page, with an int field called numberOfCards.
• You already have a string array field called pickedCards.
• Add the UpdateCards event handler method called by the button. It calls CardPicker.PickSomeCards and assigns

the result to the pickedCards field.

Exercise

72 https://github.com/head-first-csharp/fifth-edition

Here’s the entire code for the Index.razor file. You can also follow exactly the same steps from the
ExperimentWithControlsBlazor project to remove the extra files and update the navigation menu.
@rendermode InteractiveServer
@page "/"
@using PickRandomCards

<PageTitle>Pick Random Cards</PageTitle>

<div class="container">
 <div class="row">
 <div class="col-8">
 <div class="row">
 <h3>How many cards should I pick?</h3>
 </div>
 <div class="row mt-5">
 <input type="range" class="col-10 form-control-range"
 min="1" max="15" @bind="numberOfCards" />
 <div class="col-2">@numberOfCards</div>
 </div>
 <div class="row mt-5">
 <button type="button" class="btn btn-primary"
 @onclick="UpdateCards">
 Pick some cards
 </button>
 </div>
 </div>
 <div class="col-4">
 <ul class="list-group">
 @foreach (var card in pickedCards)
 {
 <li class="list-group-item">@card
 }

 </div>
 </div>
</div>

@code {
 int numberOfCards = 5;

 string[] pickedCards = CardPicker.PickSomeCards(5);

 void UpdateCards()
 {
 pickedCards = CardPicker.PickSomeCards(numberOfCards);
 }
}

Exercise
Solution

chapter 3 objects... get oriented!

The button’s Click event handler
method calls the PickSomeCards
method in the CardPicker class that
you wrote earlier in the chapter.

When you click the button, its Click
event handler method UpdateCards sets
the pickedCards array to a new set
of random cards. As soon as it changes,
Blazor’s data binding kicks in and it
automatically runs the foreach loop again.

numberOfCards and pickedCards are
both fields in the Home class that's built

from the HTML and C# code in the file.

The range
input and
text after it
are columns
in their own
little row.

you are here 4 73

Blazor Learner’s Guide

Your Blazor web apps use Bootstrap for page layout.

Your app looks pretty good! Part of the reason for that is because it uses Bootstrap, a free and open source
framework for creating web pages that are responsive—they adjust automatically when the screen size changes—
and work well on mobile devices.

The row and column layout that drives your app’s layout comes straight out of Bootstrap. Your app uses the
class attribute (which has nothing to do with C# classes) to take advantage of Bootstrap’s layout features.

<div class="container">

<div class="row">
<div class="col-4"><div class="col-8">

<div class="row">

<div class="row">

<div class="row">

You can experiment with this—try changing col-8 and col-4 so they’re both col-6 to make them equal sizes.
What happens when you choose numbers that don’t add up to 12?

Bootstrap also helps style your controls. Try removing the class attribute from the button, input, ul, or li
tags and running the app again. It still works the same way, but it looks different—the controls lost some of their
styling. Try removing all of the class attributes—the rows and columns disappear, but the app still functions.

You can learn more about Bootstrap at https://getbootstrap.com.

Behind
the Scenes

Bootstrap containers
have a width of 12, so
the “col-4” column is half
the width of the “col-8”
column, and together they
take up the full width.

Take a few minutes and read about Bootstrap. Go to the
Bootstrap website, open the documentation, and read
the introduction in the “Quick start” guide. You may not
understand everything yet, but you’ll recognize some of the
most important concepts—and you’ll know where to learn
more if you want to do more advanced Bootstrap design.

74 https://github.com/head-first-csharp/fifth-edition

chapter 3 objects... get oriented!

 ࣤ Classes have methods that contain statements that perform actions. Well-designed classes have sensible method
names.

 ࣤ Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration
that starts with the int keyword returns an int value. Here’s a statement that returns an int value: return 37;

 ࣤ When a method has a return type, it must have a return statement that returns a value that matches a return
type. So if a method declaration has the string return type then you need a return statement that returns a string.

 ࣤ As soon as a return statement in a method executes, your program jumps back to the statement that called the
method.

 ࣤ Not all methods have a return type. A method with a declaration that starts public void doesn’t return anything
at all. You can still use a return statement to exit a void method, as in this example: if (finishedEarly) {
return; }

 ࣤ Developers often reuse the same code in multiple programs. Classes can help you make your code more reusable.

 ࣤ The HTML and Razor markup code combines with the C# code in the Razor component file to create a new class.

 ࣤ You can create an array of values using a collection expression by putting the values between a pair of square
brackets [] and separating them with commas.

 ࣤ The global namespace is contains the top-level statements and any class not explicitly put into a namespace
using a namespace declaration.

 ࣤ Use a using directive like using CardPicker; to use classes from other namespaces in your C# code. Razor
pages have slightly different using directives that look like this: @using CardPicker

 ࣤ You can design Blazor apps using Bootstrap, a framework that helps you design responsive web pages.

 ࣤ Bootstrap uses a grid system with a twelve-column layout, which lets you lay out your pages horizontally by
dividing content into equal-width columns1.

 ࣤ Use the class property in your <div> tags to Add columns to your page. <div class="col-4"> adds a column
that takes up a third of the width of the page (or 4 of the 12 columns in the grid).

 ࣤ You can mix rows and columns in your layout by nesting row <div> tags inside col <div> tags or vice versa to
create more complex layouts.

Bullet Points

you are here 4 75

Blazor Learner’s Guide

Let’s get back to the book!

Great idea! You can pick up Chapter 3 right
after the end of the .NET MAUI project.
Look for a page with this heading:

)VI¼[�XZW\W\aXM[�TWWS�OZMI\���
Start on that page, then finish Chapter 3.

You can read all the way through Chapter 4, almost up
to the end. The very last thing in the chapter is a .NET
MAUI project that starts with this heading:

?MTKWUM�\W�;TWXXa�2WM¼[�*]LOM\�0W][M�
W¼�,Q[KW]V\�;IVL_QKPM[
As soon as you get to that page, come back to the Blazor
Learner’s Guide for a Blazor version of that project.

76 https://github.com/head-first-csharp/fifth-edition

chapter 4 managing your app’s data

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
Sloppy Joe has a pile of meat, a whole lotta bread, and more
condiments than you can shake a stick at. What he doesn’t have is a
menu! Can you build a program that makes a new random menu for
him every day? You definitely can…with a new Blazor app, some
arrays, your handy random number generator, and a couple of new,
useful tools. Let’s get started!

Here’s the app you’ll build. It creates a menu with six random
sandwiches. Each sandwich has a protein, a condiment, and a bread,
all chosen at random from a list. Every sandwich is given a random
price, and there’s a special random price at the bottom to add
guacamole on the side.

Welcome to Sloppy Joe's, hon. The
meat's nice and fresh! What can I

getcha?

Sloppy Joe needs a new menu every
day. Your app will generate random
sandwiches and prices for him.

Each sandwich is generated by choosing a
random protein, random condiment, and
random bread from arrays.

The prices are random numbers between 5.00 and 14.99.

you are here 4 77

Blazor Learner’s Guide

The menu page is made up of a series of Bootstrap rows, one for each menu item. Each row has
two columns, a col-9 with the menu item description and a col-3 with the price. There’s one last

row on the bottom with a centered col-6 for the guacamole. Can you fill in the blank lines of HTML?
container
row col-3col-9

row col-3col-9

row col-3col-9

row col-3col-9

row col-3col-9

col-6

@rendermode InteractiveServer
@page "/"

<PageTitle>Welcome to Sloppy Joe's</PageTitle>

 @foreach (MenuItem menuItem in menuItems)
 {

 @menuItem.Description
 </div>

 @menuItem.Price
 </div>
 </div>
 }

 Add guacamole for @guacamolePrice
 </div>
 </div>
</div>

Sharpen your pencil

These rows are generated
using a @foreach loop. Each
row has two column <div>s
in the 12-column Bootstrap
grid layout, one with width
9 and one with width 3.

There's one more row
at the bottom for the
guacamole.

This picture shows how
the page is laid out.

78 https://github.com/head-first-csharp/fifth-edition

@rendermode InteractiveServer
@page "/"

<PageTitle>Welcome to Sloppy Joe's</PageTitle>

<div class="container">
 @foreach (MenuItem menuItem in menuItems)
 {
 <div class="row">
 <div class="col-9">
 @menuItem.Description
 </div>
 <div class="col-3">
 @menuItem.Price
 </div>
 </div>
 }
 <div class="row justify-content-center">
 <div class="col-6">
 Add guacamole for @guacamolePrice
 </div>
 </div>
</div>

@using SloppyJoe;
@code {
 MenuItem[] menuItems = new MenuItem[5];
 string? guacamolePrice;

 protected override void OnInitialized()
 {
 for (int i = 0; i < 5; i++)
 {
 menuItems[i] = new MenuItem();
 if (i >= 3)
 menuItems[i].Breads =
 ["plain bagel", "onion bagel","pumpernickel bagel", "everything bagel"];
 menuItems[i].Generate();

 MenuItem guacamoleMenuItem = new MenuItem();
 guacamoleMenuItem.Generate();
 guacamolePrice = guacamoleMenuItem.Price;
 }
 }
}

Solution
Sharpen your pencil

Here's the Sharpen Your Pencil solution with the
missing lines of HTML filled in. We also added
a @code section to the bottom. This is the
complete Home.razor file for your app.

Here's the @code section
with the C# code for your

Home.razor file. It contains
the two fields, menuItems and

guacamolePrice, that were
used by the Razor markup.
It also has an OnInitialized

method that sets up the page.

You'll need this @using directive
because you'll use a class in the
SloppyJoe namespace.

you are here 4 79

Blazor Learner’s Guide

Create a new Blazor app called SloppyJoeBlazor. Replace the Home.razor file with the code
in the “Sharpen Your Pencil” solution.
Looking closely at the MenuItem class diagram. It has five fields: three arrays to hold the
various sandwich parts, a description, and a price. The array fields use collection expressions
that let you create an array by putting comma-separated values between [square brackets].
Add the MenuItem class to your project. Here's the code for the fields:
namespace SloppyJoe;

class MenuItem
{
 public string[] Proteins = [
 "Roast beef", "Salami", "Turkey",
 "Ham", "Pastrami", "Tofu"
];

 public string[] Condiments = [
 "yellow mustard", "brown mustard",
 "honey mustard", "mayo", "relish", "French dressing"
];

 public string[] Breads = ["rye", "white", "wheat", "pumpernickel", "a roll"];

 public string Description = "";
 public string Price = "";

 public void Generate()
 {
 // You'll fill in this method
 }
}

Your job is to fill in the Generate method. It does the following:
• Picks a random protein from the Proteins array.
• Picks a random condiment from the Condiments array.
• Picks a random bread from the Breads array.
• Sets the description field like this: protein + " with " + condiment + " on " + bread.
• Sets the Price field to a random price that's at least 5.00 and less than 15.00. Pick a random int that's at least 5

and less than 15. Then pick a second random int that's at least 0 and less than 100. Multiply the second number
by .01M to get a decimal value that's at least .00 and less than 1.00, and add it to the first value, and store it in a
variable called price. Then set the Price field like this: Price = price.ToString("c");

Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here’s a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?

Exercise
MenuItem

Proteins
Condiments
Breads
Description
Price

Generate

Sharpen your pencil

The Generate method uses Random.Shared to
choose random prices between 5.00 and 14.99 by

creating a random decimal value out of two ints.
We gave you the last line of code for the method:

Price = price.ToString("c");

The parameter to the ToString method is a
format. In this case, the "c" format tells ToString

to format the value with the local currency: if
you’re in the United States you’ll see a $, in the

UK you’ll get a £, in the EU you’ll see €, etc. If the
values don't make sense in your currency, choose

different random numbers!

The MenuItem class has three array fields that use collection expressions to set their values, just like the array you saw in Chapter 3 to store playing cards.

The MenuItem class is in
the SloppyJoe namespace.

80 https://github.com/head-first-csharp/fifth-edition

chapter 4 managing your app’s data

public void Generate()
{
 string protein = Proteins[Random.Shared.Next(Proteins.Length)];
 string condiment = Condiments[Random.Shared.Next(Condiments.Length)];
 string bread = Breads[Random.Shared.Next(Breads.Length)];
 Description = protein + " with " + condiment + " on " + bread;

 int bucks = Random.Shared.Next(5, 15);
 int cents = Random.Shared.Next(0, 100);
 decimal price = bucks + (cents * .01M);
 Price = price.ToString("c");
}

Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here's a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?

Exercise
Solution

Price = (Random.Shared.NextDouble() * 10 + 5).ToString("c");

 ࣤ The new keyword returns a reference to an object that
you can store in a reference variable.

 ࣤ You can have multiple references to the same object.
You can change an object with one reference and
access the results of that change with another.

 ࣤ For an object to stay in the heap, it has to be
referenced. Once the last reference to an object
disappears, it eventually gets garbage-collected and
the memory it used is reclaimed.

 ࣤ Your .NET apps run in the Common Language
Runtime (CLR), a “layer” between the OS and your
program. The C# compiler builds your code into
Common Intermediate Language (CIL), which the CLR
executes.

 ࣤ Declare array variables by putting square brackets
after the type in the variable declaration (like bool[]
trueFalseValues or Dog[] kennel).

 ࣤ Use the new keyword to create a new array, specifying
the array length in square brackets (like new bool[15]
or new Dog[3]). The this keyword lets an object get a
reference to itself.

 ࣤ An AI chatbot can read your code and add comments,
including XML documentation (XMLDoc) comments.

 ࣤ Use the Length method on an array to get its length
(like kennel.Length).

 ࣤ Access an array value using its index in square brackets
(like bool[3] or Dog[0]). Array indexes start at 0.

 ࣤ null means a reference points to nothing. The compiler
will warn you when a variable can potentially be null.

 ࣤ Use the string? type to hold a string that’s allowed to
be null. Console.ReadLine can return null strings.

 ࣤ You can use Random.NextDouble to create a random
double value between 0 and 1. Multiply a random
double to generate much larger random double values.

 ࣤ Use collection expressions to initialize an array field
by setting the field equal to a value starting with a
square bracket, followed by a comma-delimited list of
values, and ending with a square bracket.

 ࣤ You can pass a format parameter to an object or
value’s ToString method. If you’re calling a numeric
type’s ToString method, passing it a value of “c” formats
the value as a local currency.

 ࣤ Use a control’s SetValue method to set its semantic
properties in code, so the screen reader can include
text that’s generated when the app runs.

Bullet Points

you are here 4 81

Blazor Learner’s Guide

Working on Blazor projects is just like
working on any other kind of C# app. I can
create classes and then use objects in my

HTML. What's next?

Next up: a project partway through Chapter 5.
Your won’t have to wait long next .NET MAUI app project,
because it’s actually pretty close to the beginning of Chapter 5.

Look for this heading:

Design a MAUI version of the damage calculator app

As soon as you get to it, come back to the Blazor Learner’s
Guide for a Blazor version of that project.

We’ll let you know exactly where to pick up in Chapter 5 when
you’re done.

82 https://github.com/head-first-csharp/fifth-edition

chapter 5 how objects keep their secrets

Yes! We can build a Blazor app that uses the same class.
Let’s find a way to reuse the SwordDamage class in a Blazor app. The first
challenge for us is how to provide an intuitive user interface. A sword can be
magic, flaming, both, or none, so we need to figure out how we want to handle
that in the UI—and there are a lot of options.

One way to design it would be to use a dropdown with four options, like this:

But that’s a little...weird? There’s got to be a better way to design the app, right?

That is excellentexcellent! But I was
wondering...do you think you can build

a more visual appmore visual app for it?

We think using a dropdown for options
would be a little weird. Do you agree?

The Blazor project starts after the
first exercise solution
We gave you the code for a class called SwordDamage, and then
challenged you with an exercise to write the code for a console app
that uses it. You’ll come back to the Learner’s Guide right after
you finish doing that exercise.

Here’s what Owen told you
after you finished the
first exercise in Chapter 5.

you are here 4 83

Blazor Learner’s Guide

Design a Blazor version of the damage calculator app
Let’s build a Blazor damage calculator app for Owen. We’ll give you the @code section with C#
code for the app. Your job will be to create the HTML that works with the C# code.

In this project, you’ll be working with two new things that you haven’t used yet:

 ≥ Your app will use two checkboxes. A checkbox is a control that should be very familiar
to you—it’s a box that displays a check when you click it, and is empty when you click
it again. In MAUI, the Checkbox control has a Boolean value that’s true if the box is
checked and false if the box is unchecked.

 ≥ The C# code in your app will use string interpolation to build a string to display to the
user. You’ve been using the + operator to build strings by concatenating values together.
String interpolation does the same thing, but in a way that’s easier to read.

How your damage calculator app will work
Here’s the main page for the damage calculator. It has two checkbox controls to turn flaming and
magic on and off, a button to roll for damage, and an <h3> section to display the results:

 ≥ When you click the button, it generates three random numbers to do a 3d6 roll (just like
the console app did), then uses the SwordDamage class to display the damage.

 ≥ Clicking on a checkbox causes the label to update automatically. When you check or
uncheck either of the checkboxes, it updates the SwordDamage fields, recalculates the
damage, and updates the label.

When you check the Flaming box, it calls the
SwordDamage.SetFlaming, passing it true if the box

is checked and false if it’s unchecked, and th
en calls a

method to update the label to display the dam
age.

The Magic checkbox works just like the Flaming one, except it calls SetMagic instead of SetFlaming.

Clicking the button does a new random
3d6 roll, then updates the Roll field
and displays the damage.

84 https://github.com/head-first-csharp/fifth-edition

chapter 5 how objects keep their secrets

Create a new Blazor app called BlazorDamageCalculator.
Modify NavMenu.razor to change the menu title to “Damage Calculator” and remove the Counter and Weather menu
items, just like we showed you in Chapter 2.
Next, add the SwordDamage class to the project. Don’t add a namespace directive—keep it in the global namespace.
That will let your code in your Razor component access it without adding a @using directive.
Here’s the @code section for the Home.razor file:
@code {
 SwordDamage swordDamage = new SwordDamage();

 string damageText = "";

 private void UpdateFlaming(ChangeEventArgs e)
 {
 swordDamage.SetFlaming((bool)e.Value);
 DisplayDamage();
 }

 private void UpdateMagic(ChangeEventArgs e)
 {
 swordDamage.SetMagic((bool)e.Value);
 DisplayDamage();
 }

 protected override void OnInitialized()
 {
 swordDamage.SetMagic(false);
 swordDamage.SetFlaming(false);
 RollDice();
 }

 public void RollDice()
 {
 swordDamage.Roll = Random.Shared.Next(1, 7) +
 Random.Shared.Next(1, 7) + Random.Shared.Next(1, 7);
 DisplayDamage();
 }

 void DisplayDamage()
 {
 damageText = "Rolled " + swordDamage.Roll + " for " + swordDamage.Damage + " HP";
 }
}

Exercise

There’s a bug in the code for this app! Can you spot it?

It's not easy to find—don't feel bad if you don't see it yet!

The Flaming checkbox has this property:
@onchange="UpdateFlaming"

That will cause it to call the
UpdateFlaming checkbox every time
the user checks or unchecks the box.
The page will send that value to the
SwordDamage.SetFlaming method.

The Magic checkbox has a
property that works the same way:

@onchange="UpdateMagic"

The button has @onclick="RollDice" to
generate a new random number and send

the results to the SwordDamage object.

The DisplayDamage method updates the damageText
field, which is displayed on the page like this:

<h3>@damageText</h3>

you are here 4 85

Blazor Learner’s Guide

Your Blazor app will have two checkboxes to set the options for flaming and magic swords, a button to roll for damage,
and text to display the results of the roll.
We’ll lay it out with our familiar Bootstrap tags that we used in the previous projects:
• The page will have three rows. The bottom two rows have a top 5-space spacer (mt-5). Each row’s content is

centered (justify-content-center).
• The top row will have two col-3 columns.
• The middle row will have a single col-4 column.
• The bottom row will have a single col-6 column.

Here’s a new bit of Bootstrap to help lay things out.
• The left column in the top row will use the text-left class to align its contents to the left side.
• The right column in the top row will use the text-right class to align its contents to the right side.
• The columns in the bottom rows will have the text-center class, which tells them to center their contents.

The last piece of the puzzle is the markup to create a checkbox. Here’s the HTML for the flaming sword checkbox:
<div class="col-3 text-left">
 <input class="form-check-input" type="checkbox" id="flaming" />
 <label class="form-check-label" for="flaming">
 Flaming
 </label>
</div>

Here’s what the page looks like:

Your job is to add the HTML and Razor markup to the Home.razor file. Make sure you also add the @code section
that we gave you. Remember, it’s not cheating to peek at the solution!

Exercise

col-3 text-left col-3 text-right

col-4 text-center

col-6 text-center

ro
w

ro
w

mt
-5

ro
w

mt
-5

This markup uses the same <input> tag that you used for sliders and
other controls. Setting type="checkbox" tells it to create a checkbox.

We also added a <label> to add the “Flaming” text next to the checkbox.
The for attribute on the label matches the id attribute on the input,

which is how the page knows which input the label is associated with.

86 https://github.com/head-first-csharp/fifth-edition

chapter 5 how objects keep their secrets

Your job was to add the HTML and Razor markup to the Home.razor file. Make sure you also add the @code section
that we gave you to the bottom of the file.

@rendermode InteractiveServer
@page "/"

<PageTitle>Damage Calculator</PageTitle>

<div class="container">
 <div class="row justify-content-center">
 <div class="col-3 text-left">
 <input class="form-check-input" type="checkbox" id="flaming"
 @onchange="UpdateFlaming" />
 <label class="form-check-label" for="flaming">
 Flaming
 </label>
 </div>
 <div class="col-3 text-right">
 <input class="form-check-input" type="checkbox" id="magic"
 @onchange="UpdateMagic" />
 <label class="form-check-label" for="magic">
 Magic
 </label>
 </div>
 </div>
 <div class="row justify-content-center mt-5">
 <div class="col-4 text-center">
 <button type="button" class="btn btn-primary"
 @onclick="RollDice">
 Roll for damage
 </button>
 </div>
 </div>
 <div class="row justify-content-center mt-5">
 <div class="col-6 text-center">
 <h3>@damageText</h3>
 </div>
 </div>
</div>

@code {

 // We gave you this code earlier

}

Exercise
Solution

you are here 4 87

Blazor Learner’s Guide

We’re not done with this
project yet, right?

Tabletop talk (or maybe…dice discussion?)

Part 3: Modify the Blazor app to use the well-encapsulated SwordDamage class
1. Copy the code from Part 1 into a new Blazor web app. Copy the HTML markup from earlier in the chapter.
2. Modify the markup:

• Replace everything between <h3> and </h3> with to bind directly to the SwordDamage object
<h3>Rolled @swordDamage.Roll for @swordDamage.Damage HP</h3>

• Replace @onchange="UpdateFlaming" with @bind="swordDamage.Flaming"
• Replace @onchange="UpdateMagic" with @bind="swordDamage.Magic"

3. Modify the code in the @code { } section at the bottom of your Index.razor file:
• Your new SwordDamage class no longer has a CalculateDamage method, so remove lines that call it.
• You removed the SetFlaming and SetMagic methods from your SwordDamage class, so remove all calls to

those methods. You're not using the UpdateFlaming or UpdateMagic event handlers, so remove those too.
• Now that you modified the “Rolled ... for ... HP” line at the bottom of the page to bind directly, you can delete

the DisplayDamage method. Delete the damageText field, and all calls to the DisplayDamage method, too.
• The new SwordDamage class has a constructor with one parameter—just pass it 10. It doesn’t matter what

value you use here, because you’ll roll the dice when the page is initialized.

Exercise

Test everything. Use the debugger or Debug.WriteLine
statements to make sure that it all REALLY works.

Go back to Chapter 5 and
find this heading—that’s

where to start again. Keep
reading the chapter until you
get to the very last exercise.

Do parts 1 and 2 of that
exercise. We'll give you a

Blazor version of Part 3 here.

That’s right. You’ll learn a lot about encapsulation throughout
the chapter and use it to fix the bug.
You’re about to discover that your code has a bug in it! Don’t worry, it’s not your fault—
we left it in there on purpose. Keep reading through the chapter until the very end.

The last exercise in the chapter has three parts. The chapter has the first two parts—do
them exactly as they appear in the book:

Part 1: Modify SwordDamage so it’s a well-encapsulated class

Part 2: Modify the console app to use the well-encapsulated SwordDamage class

Then do Part 3 below, which has you update your Blazor app.

88 https://github.com/head-first-csharp/fifth-edition

chapter 5 how objects keep their secrets

Here’s the complete Index.razor file for your Blazor web app, including HTML markup and C# code. Did you notice
how much less C# code you need in it? That's one way well-encapsulated classes help you write better code—you
don't need to write as much additional code to use them.
@rendermode InteractiveServer
@page "/"

<PageTitle>Damage Calculator</PageTitle>

<div class="container">
 <div class="row justify-content-center">
 <div class="col-3 text-left">
 <input class="form-check-input" type="checkbox" id="flaming"
 @bind="swordDamage.Flaming" />
 <label class="form-check-label" for="flaming">
 Flaming
 </label>
 </div>
 <div class="col-3 text-right">
 <input class="form-check-input" type="checkbox" id="magic"
 @bind="swordDamage.Magic" />
 <label class="form-check-label" for="magic">
 Magic
 </label>
 </div>
 </div>
 <div class="row justify-content-center mt-5">
 <div class="col-4 text-center">
 <button type="button" class="btn btn-primary"
 @onclick="RollDice">
 Roll for damage
 </button>
 </div>
 </div>
 <div class="row justify-content-center mt-5">
 <div class="col-6 text-center">
 <h3>Rolled @swordDamage.Roll for @swordDamage.Damage HP</h3>
 </div>
 </div>
</div>

@code {
 SwordDamage swordDamage = new SwordDamage(10);

 protected override void OnInitialized()
 {
 RollDice();
 }

 public void RollDice()
 {
 swordDamage.Roll = Random.Shared.Next(1, 7) +
 Random.Shared.Next(1, 7) + Random.Shared.Next(1, 7);
 }
}

Exercise
Solution

The updated code for the
SwordDamge class is in the

solution in the book.

you are here 4 89

Blazor Learner’s Guide

That’s right. You can go finish Chapter 5 and move on
to the next chapter after that.
Find this heading in Chapter 5:

A few useful facts about methods and properties

You can start reading at that heading. Finish the chapter, including the
crossword. After that, you can go through all of Chapter 6 until you get to
the final project in the chapter. It’s a big project that starts with this heading:

Build a beehive management system

As soon as you get to that heading, come back to the Blazor Learner’s
Guide. We’ll give you a replacement for the first part of the project to build
a Blazor version of the UI, then you’ll be able to return to the book to finish
the project (with just one small section to skip).

I finished the exercise, but it
looked like there was a little

more to do in the chapter.

90 https://github.com/head-first-csharp/fifth-edition

chapter 6 your object’s family tree

Build a beehive management system
The queen bee needs your help! Her hive is out of control,
and she needs a program to help manage her honey production
business. She’s got a beehive full of workers, and a whole bunch of
jobs that need to be done around the hive, but somehow she’s lost
control of which bee is doing what, and whether or not she’s got
the beepower to do the jobs that need to be done. It’s up to you to
build a beehive management system to help her keep track of
her workers. Here’s how it’ll work.

The queen assigns jobs to her workers.
There are three different jobs that the workers can do.
Nectar collector bees fly out and bring nectar back to
the hive. Honey manufacturer bees turn that nectar
into honey, which bees eat to keep working. Finally, the
queen is constantly laying eggs, and egg care bees
make sure they become workers.

When the jobs are all assigned, it’s time to work.
Once the queen’s done assigning the work, she’ll tell the bees to work the next shift. At the end of the
shift, she gets a shift report that tells her how many bees are assigned to each job and the status of the
nectar and honey in the honey vault.

Help the queen grow her hive.
Like all business leaders, the queen is
focused on growth. The beehive business
is hard work, and she measures her hive in
the total number of workers. Can you help
the queen keep adding workers? How big
can she grow the hive before it runs out of
honey and she has to file for bee-nkruptcy?

1

2

3

This is a bigger project than the ones in the last few chapters.
The main goal of this book is to help you learn C#. But we’ll also teach important skills
that can help you become a great developer. One way to do that is to help show you
how to work on—and finish!—larger projects. When you did the Animal Matching Game
project in Chapter 1, you broke it down into smaller pieces. You’ll do the same for the
Beehive Management System project. First you’ll create the XAML for the main page,
then you’ll do a “Sharpen your pencil” exercise to complete the code for several of the
classes, and finally you’ll do an exercise to finish the rest of the code for the project.

This is a big project.
You can do this!

you are here 4 91

Blazor Learner’s Guide

How the Beehive Management System app works
When the app starts, the honey vault has 25 units of honey and 100 units of nectar, and the hive
has three workers: a nectar collector bee, a honey manufacturer bee, and an egg care bee. The
first shift report delivered is displayed on the righthand side of the app.

If there are any unassigned workers at the
start of the shift, you can use the dropdown
to choose a job, then click the Assign button

to give a worker that job (it’s disabled if there
aren’t enough unassigned workers). If there
are multiple unassigned workers, you can do

this more than before the next shift.

This is the shift report that the queen
generates at the end of every shift. It
shows the status of the honey vault,

followed by the number of eggs,
unassigned workers, and how many

workers there are of each type.

Once you’ve done all of your worker
assignments, you can click the

Work the Next Shift button to tell the
workers to work the next shift.

Each worker consumes honey
to do a job. The numbers

change at the end of each
shift to show what they did.

If the Unassigned Workers
count is at least 1, clicking

the Assign button assigns a
worker to the selected job.

Assigning a worker makes the
unassigned workers go down

by 1 and the total workers
increase by 1.

92 https://github.com/head-first-csharp/fifth-edition

chapter 6 your object’s family tree

col-4

ro
w

ro
w

ro
w

ro
w

ro
w

ro
w

col-1 col-7

How the main window is designed
Create a new Blazor web app called BlazorBeehiveManagementSystem. Here’s
the HTML markup for the main window, including its entire @code section. It has three
columns: one for job assignments, an empty divider column, and a column for the Queen’s
report. The left column contains four rows: one for the header, one for the job dropdown,
one for the job assignment button, and one for the button to work the next shift

This is a dropdown control (or select control), just like you used in Chapter 2. It gives you
a list of options to choose from. You’ll use it to let the user choose a job to assign and @
bind its value to a field called selectJob. In Chapter 2 you used a @foreach to create
the options, but now you’ll create seprate <option> tags for each of the three options.

This column has two
rows, one for text and
one for a TextArea.

This column has four
rows, one for text,
one for a selector, and
two for buttons.

Put your classes in the right namespace (or add a @using directive).

You’ll be creating a project called BlazorBeehiveManagementSystem, including
classes that the code in your Home.Razor file will use. You have two options for which
namespace to use. You can add namespace BlazorBeehiveManagementSystem; to the

top of each class file to put it in the same namespace as your app, or you can put the classes in
a different namespace and use a @using directive in your Home.razor to use that namespace.

Watch it!

This is a TextArea control. It displays multiple lines
of text. You’ll use @bind data binding to make it

display the Queen object’s StatusReport property.

you are here 4 93

Blazor Learner’s Guide

Create a new Blazor web app called BlazorBeehiveManagementSystem. Your job in this exercise is to add the
HTML markup for the main window.
Before you get started, you'll need to add this Queen class to your project—it has methods that the buttons will call
and a property that you’ll bind to. You’ll fill in the rest of the class later on in the project:
public class Queen
{
 public void AssignBee(string selectedJob) { /* You’ll fill this in later */ }

 public void WorkTheNextShift() { /* You’ll fill this in later */ }

 public string StatusReport { get; private set; } = "";
}

Here’s the entire @code section for your Home.razor file:
@code {
 Queen queen = new Queen();
 string selectedJob = "Nectar Collector";
}

Your job is to create the HTML markup for the main window. Look carefully at the layout that we just showed you.
• The page has three columns: one for job assignments, an empty divider column, and a column for the Queen’s

report.
• The left column contains four rows: one for the <h3> header text, one for the job dropdown, one for the job

assignment button, and one for the button to work the next shift.
• The right column has two rows, one for the <h3> header text and one for a TextArea control.

Here are a few useful tips that will help you create your form:
• You can make a text tag like <h3> its own row like this: <h3 class="row">This is a separate row</h3>
• The dropdown uses a <select> control, with three options: Nectar Collector, Honey Manufacturer, and Egg Care.

It works just like the <select> that you used in Chapter 2, except instead of using a @foreach loop to create its
options, you'll add three separate <option> tags between the opening <select> and closing </select> tags. Give it
the property class="row mt-4" to put it on its own row with a top margin. Look carefully at how the @foreach
loop works. Can you figure out the properties to add to each <option> tag?

• The “Work the next shift” button is a primary button, which means that it represents the most important action for
the user on the page, and it gets clicked when the user presses the Enter key. Here’s the code for it:

 <button type="button" class="col btn btn-lg btn-primary"
 @onclick="() => queen.WorkTheNextShift()">

• The “Assign this job to a bee” button is a secondary button. You can only have one primary button, but you can
have many secondary buttons. Here's the code for it:

 <button type="button" class="col btn btn-small btn-secondary"
 @onclick="() => queen.AssignBee(selectedJob)">

• A TextArea control lets you display or enter multi-line text. Use this HTML for a read-only text area with 12 rows:
 <textarea class="row" rows="12" cols="50"
 value="@queen.StatusReport" readonly />

Exercise

You’ll need to add this class to
your project to get the @bind and
@onclick data binding to build.

Any HTML element can be its own row.

94 https://github.com/head-first-csharp/fifth-edition

Here’s the complete code for the Home.razor file.
@rendermode InteractiveServer
@page "/"
@using BlazorBeehiveManagementSystem;

<PageTitle>Beehive Management System</PageTitle>

<div class="container">
 <div class="row">

 <div class="col-4">
 <h3 class="row">Job Assignments</h3>

 <select type="row mt-4" @bind="selectedJob">
 <option value="Nectar Collector">Nectar Collector</option>
 <option value="Honey Manufacturer">Honey Manufacturer</option>
 <option value="Egg Care">Egg Care</option>
 </select>

 <div class="row mt-4">
 <button type="button" class="col btn btn-small btn-secondary"
 @onclick="() => queen.AssignBee(selectedJob)">
 Assign this job to a bee
 </button>
 </div>

 <div class="row mt-4">
 <button type="button" class="col btn btn-lg btn-primary"
 @onclick="() => queen.WorkTheNextShift()">
 Work the next shift
 </button>
 </div>
 </div>

 <div class="col-1" />

 <div class="col-7">
 <h3 class="row">Queen's Report</h3>
 <textarea class="row" rows="12" cols="50"
 value="@queen.StatusReport" readonly />
 </div>

 </div>
</div>

@code {
 Queen queen = new Queen();
 string selectedJob = "Nectar Collector";
}

Exercise
Solution

The left column has four rows: one with <h3>
text, one with a dropdown, one with a secondary
button, and one with a primary button.

We gave you the code for the two buttons. Look at the “class” properties—try experimenting with swapping them around. How does that change the buttons?

We gave you the HTML code for this
textarea. What happens if you change
the rows and columns properties, or
remove the readonly property?

We gave you the @code
section and a minimal Queen
class with empty methods
so the project builds.

The <select> has a class
property to put it in its own
row and give it a top margin.

The dropdown uses these three <option> tags to determine the options the user can choose from.

Here’s the middle column.

you are here 4 95

Blazor Learner’s Guide

Yes, exactly. The rest of the project is the same for
both the Blazor and MAUI versions—with one tweak.
Find this heading in Chapter 6:

The Beehive Management System class model

That’s where you can keep going with the project. You’ll go on to create the
Bee superclass and several subclasses, a static Constants class to hold your
constants, and you’ll do an exercise to finish building the Queen class, along
with a HoneyVault class.

You should ignore the section with this header:

Here’s the code-behind for MainPage.xaml.cs

For the .NET MAUI version, we had to provide some additional code. But
you already have all of the code for your Home.razor file, so you can just skip
that section and go right to the exercise. Then you can finish the chapter.

Now that I built the user interface for the
Beehive Management System, do I go back to

the book to finish the project?

You also need to add this code to your page disable the “Work the next shift” button
when the hive runs out of honey
The Queen.WorkTheNextShift method returns true if there is still honey in the honey vault, or false if it ran out of
honey. Add a boolean field called outOfHoney to track when the hive runs out of honey:

 @code {
 bool outOfHoney = false;
 Queen queen = new Queen();

Then modify the HTML for the button to set the field when the button calls the WorkTheNextShift method, and use
its disabled property to disable the button when the honey vault is out of honey:

 <div class="row mt-4">
 <button type="button" class="col btn btn-lg btn-primary"
 disabled="@outOfHoney"
 @onclick="() => outOfHoney = !queen.WorkTheNextShift()">
 Work the next shift
 </button>
 </div>

This is where the button calls the
WorkTheNextShift button. This
change uses ! to the response, and sets
the outOfHoney field to that value.

This field will be set to true when
the honey vault runs out of honey.

This property
disables the
button if
outOfHoney
is true.

96 https://github.com/head-first-csharp/fifth-edition

chapter 6 your object’s family tree

The Beehive Management System is turn-based…
now let’s convert it to real-time
A turn-based game is a game where the flow is broken down into parts—in the case of the Beehive
Management System, into shifts. The next shift doesn’t start until you click a button, so you can take all the
time you want to assign workers. We can use a timer—like the one you used in Chapter 1—to convert it to
a real-time game where time progresses continuously…and we can do it with just a few lines of code.

Start a timer in the OnInitialized method.
You’ve used the OnInitialized method to run code when the app first starts:
Now do the same thing to start a time:

@code {
 bool outOfHoney = false;
 Queen queen = new Queen();
 string selectedJob = "Nectar Collector";

 @using System.Timers
 Timer timer;
 protected override void OnInitialized()
 {
 timer = new Timer(1500);
 timer.Elapsed += Timer_Elapsed;
 timer.Start();
 }

Add the Timer_Elapsed method to work the next shift on each “tick.”
We want the timer to keep the game moving forward, so we can have it automatically trigger the
next shift if the player hasn’t done it already. Here’s the code for the method:

 private void Timer_Elapsed(object? sender, ElapsedEventArgs e)
 {
 InvokeAsync(() =>
 {
 if (!outOfHoney)
 {
 outOfHoney = !queen.WorkTheNextShift();
 StateHasChanged();
 }
 });
 }

Now run your game. A new shift starts every 1.5 seconds, whether or not you click the button. This is a small
change to the mechanics, but it dramatically changes the dynamics of the game, which leads to a huge
difference in aesthetics. It’s up to you to decide if the game is better as a turn-based or real-time simulation.

1

2

You used a timer just like
this in Chapter 1 to add
a timer to your animal

matching game. This code
is very similar to the code

you used in Chapter 1.
Take a few minutes and

flip back to that project to
remind yourself how the

timer works.

This method starts a timer
that calls the Timer_Elapsed
method every 1.5 seconds.

If the TimerTick method
returns false, the timer stops

running. This if statement
keeps the timer from trying
to work the next shift if the
hive has run out of honey.

Look for a page in the book with this heading. Here’s a replacement for that page.

you are here 4 97

Blazor Learner’s Guide

There’s no Blazor equivalent for the .NET MAUI section in Chapter 7.

There’s a .NET MAUI project in Chapter 7 that starts with this heading:

Data binding updates MAUI controls automatically
That project is about data binding in .NET MAUI. It’s in that chapter because it uses an interface.
You’ve used data binding with Blazor since Chapter 2, so there’s no equivalent Blazor project. That
means you can skip the entire project and start again at this heading near the end of the chapter:

Polymorphism means that one object can take many different forms
Keep going until you reach this heading at the end of Chapter 8:

CollectionView is a MAUI control built for displaying collections
Then come back to the Blazor Learner’s Guide for the next Blazor project.

Relax

I don’t see any other MAUI
projects in Chapter 6.

You can head back to the book for
the rest of the chapter.
There’s one more place in Chapter 6 where you
revisit the Beehive Management System. Look for
this heading:

Abstract properties work just like
abstract methods
All of the code in that section works with the
Blazor version of the project. There’s also an
exercise in Chapter 7 where you add an interface
called IWorker to the Beehive Management
System, but that also works with the Blazor version.

A list box shows you a list of items that you can pick
There’s a close relative of the dropdown list called the list box. A list box lets you choose an item from a list, but
unlike a dropdown it displays the items in a box. A list box uses the same <select> tag as the dropdown that
you used to pick birds in Chapter 2 or bee jobs in Chapter 6. To turn a <select> into a list box, all you have to is
give it a size property that tells it how many items to display before showing scrolling them.

Here’s an example of a list box that could display animals in your zoo simulator from Chapter 6. It uses
<select> tag with a size="5" property to turn it into a list box that displays five items:
<select size="5">
 <option value="Lion">Lion</option>
 <option value="Wolf">Wolf</option>
 <option value="Hippo">Hippo</option>
 <option value="Bobcat">Bobcat</option>
</select>

Here’s how the list box is displayed on the page—it’s only got four items, so there’s space underneath Bobcat:

Let’s add two more items to the list:

<select size="5">
 <option value="Lion">Lion</option>
 <option value="Wolf">Wolf</option>
 <option value="Hippo">Hippo</option>
 <option value="Bobcat">Bobcat</option>
 <option value="Tiger">Tiger</option>
 <option value="Dog">Dog</option>
</select>

The <select> tag still has size="5" so the list box only displays five items at a time. Since there are six items in
the list, the list box now has a scroll bar so you can scroll down to see the list item:

Data binding works just like it did with the dropdown: <select size="5" @bind="animal">

Blazor uses two-way binding, which means you can change the selected item by setting the bound variable:

 animal = "Dog";

This size property makes the <select>
appear as a list box that displays five items.

When the number of options is
bigger than the size, the list
box adds a scroll bar.

98 https://github.com/head-first-csharp/fifth-edition

chapter 8 organizing your data

The <select> is bound to the animal variable.
Setting the variable to one of the items in the list
causes the list box to select that item. If the list
is currently scrolled so the item isn't currently

displayed, the list box will scroll to make it visible.

Create a new Blazor Web app that uses a list box
Let’s create a new app that we’ll use to learn about how list boxes work, and get some practice
working with collections. We’ll start with a list box that displays the familiar list of birds. Later in the
chapter we’ll modify it to use your Card class to work with decks of cards instead.

Create a new Blazor Web App called BlazorCards.
For now, we’ll display a familiar array of birds. But later on, we’ll replace them with cards,
so make sure you use the name BlazorCards for your app. Modify NavMenu.razor to
remove the Counter and Weather sections, and set the page title to "Blazor cards".

Replace the HTML with a page that has a list box.
Open Home.razor and delete everything. Replace it with this code:
@page "/"
@rendermode InteractiveServer
<PageTitle>Blazor Cards</PageTitle>

<div class="container">
 <h3 class="row">Pick a bird</h3>
 <div class="row">
 <select class="col-12" size="8">
 @foreach (string bird in birds)
 {
 <option value="@bird">@bird</option>
 }
 </select>
 </div>
</div>

@code {
 private List<string> birds = [
 "Duck",
 "Pigeon",
 "Penguin",
 "Ostrich",
 "Owl"
];
}

Run your app.
Try clicking on different birds in the list box—it selects each bird that you clicked on.

1

2

3

Do this!

The <select> tag in this app
looks almost identical to the
one you used for a dropdown.
The only difference is the
size=“8” property.

In Chapter 2 you used a string array for the list
of birds. Now you can use a List<string> instead,
but you can still use the same collection expression.

This @foreach loop is
just like the one you
used in Chapter 2.

you are here 4 99

Blazor Learner’s Guide

Make your app work with Card objects
Let’s make your list box work with objects, not just strings—specifically, card objects. You created a Card class,
Suits and Values enums, and a CardComparerByValue class. Now you’ll reuse them in a Blazor app.

Add your Card class, CardComparerByValue class, Suits enum, and Values enum.
The list box automatically calls the ToString method for any item that it displays, so make sure you use the
version of the Card class that has the ToString method. Add the existing files to your project just like you
did in Chapter 3 (in Visual Studio: right-click on the project and choose Add >> Existing Item and add each
file; in VSCode: right-click on the project and choose Reveal in Explorer/Finder and drag the files onto the
project). Make sure the classes and enums are in the BlazorCards namespace.

Change your HTML to work with cards instead of birds.
Here’s the updated Home.razor file. We added a row to show the selected card and added a button that
calls the the AddBird method, which adds a random card to the list and updates selectedCard to select it:

@page "/"
@rendermode InteractiveServer
@using BlazorCards
<PageTitle>Blazor Cards</PageTitle>

<div class="container">
 <h3 class="row">Pick a card</h3>
 <div class="row">
 <select class="col-12" size="8" @bind="selectedCard">
 @foreach(Card card in cards)
 {
 <option value="@card">@card</option>
 }
 </select>
 </div>

 <h4 class="row">You selected: @selectedCard</h4>

 <button type="button" class="row mt-2 btn btn-primary"
 @onclick="AddCard">Add a card</button>
</div>

@code {
 string? selectedCard;
 private List<Card> cards = new List<Card>();

 private void AddCard()
 {
 cards.Add(new Card((Values)Random.Shared.Next(1, 14),
 (Suits)Random.Shared.Next(0, 4)));

 selectedCard = cards[cards.Count - 1].ToString();
 }
}

1

2

Bind your list box to a new
field callde selectedCard.

We renamed the variable in the foreach loop to card.
Add two rows to the page. The
first row is an <h4> that displays
the selected card, just like you did
in Chapter 2 with the dropdown.

This row adds a button that calls
a new method called AddCard.

Here are the
fields for binding:
the selected
card, and the list
of cards (which
starts out empty).

The AddCard method
adds a new random
card to the list, then
sets the selectedCard
field to the string value
of the card that was
just added to the list.

100 https://github.com/head-first-csharp/fifth-edition

chapter 8 organizing your data

Run your app and add a bunch of cards.
Every time you click the button, the app adds a card to the list. But hold on—something’s wrong.

Most of the time, clicking the card causes the list box to scroll all the way to the bottom. But
sometimes it jumps to the middle of the list. What’s going on?

3

The Case of the Card that Jumped
You’ve been sleuthing out bugs throughout the book—and as Sherlock Holmes once said, “You know my methods,
Watson.” Luckily, this bug won’t be hard to track down.
Start your app and keep clicking the Add a card button until the selection jumps to the middle of the list. In our
screenshot above, it selected the Ace of Spades. Now use the scroll bar to scroll to the bottom of the list box:

Aha! The card that got selected in the middle of the list is the same card that was just added. When the AddCard
method updated the selectedCard field, the list box found the first card that matched the updated value. Since
there was already an Ace of Spades in the list, it selected that card instead of the one added to the end.
We have a culprit! But how will we get the list box to select a specific Ace of Spades, not just any Ace of Spades?

Sleuth it Out

Here’s the card that just got added to
the end of the list. It’s the same card!

Here’s the card that got selected
when we pressed the button.

We clicked the Add a card
button, but instead of adding a
card and scrolling to the bottom
of the list our app selected a
card in the middle of the list.

Does your list box show “BlazorCards.Card” instead of card names? Make
sure your Card class overrides the ToString method so it returns Name.

you are here 4 101

Blazor Learner’s Guide

Give options unique values so the list box can select a specific card
It’s not unusual for a list box to display two items that appear the same, but when that happens your app needs to figure
out which item it should select. To help with that problem, you can use the <option> tag’s value property to assign a
unique value to every item in the list.

All of the options you’ve used so far have looked like this: <option value="Lion">Lion</option> – the value
property has always been the same as the content of the tag.

You’ll fix the bug in your app by setting the value property to something unique to that specific item in the list.
Since this is a list, you can use the index of the card in the List<Card>. We’ll introduce some new Razor markup to
help you make the change: @for lets you include a for loop in your HTML, and @if lets you add an if/else conditional.

First, change the @foreach that creates the options to a @for loop:

 <select class="col-12" size="8" @bind="selectedCard">
 @for(int i = 0; i < cards.Count; i++)
 {
 <option value="@i">@cards[i]</option>
 }
 </select>

Instead of setting the selectedCard field to the name of the card, the list box will set it to the index of the card in the
list. There’s a problem, though—the selectedCard field is a string? type. Change it to an int instead of a string?:

 int selectedCard;

Now we’ve got another problem. The <h4> row displays the value of the selectedCard field, but now that value is a
number and not the name of a card. Try replacing @selectedCard with @cards[selectedCard] – when you run
your app, you’ll get an exception because the @cards list is empty.

Replace your <h4> row with this @if that makes sure selectedCard won’t throw an exception:
 @if (selectedCard >= cards.Count)
 {
 <h4 class="row">No card selected</h4>
 }
 else
 {
 <h4 class="row">You selected: @cards[selectedCard]</h4>
 }

Finally, update your AddCard method to set selectedCard to the index of the card that was just added:

 private void AddCard()
 {
 cards.Add(new Card((Values)Random.Shared.Next(1, 14),
 (Suits)Random.Shared.Next(0, 4)));

 selectedCard = cards.Count - 1;
 }

Run your app again. Click the button many times—now it always scrolls to the card that was just added.

This is the value that the
bound variable gets set to.

This is the text that's
displayed in the list.

102 https://github.com/head-first-csharp/fifth-edition

chapter 8 organizing your data

A @for loop in Razor markup
works just like a C# for loop. Just

like with @foreach, any HTML
inside the loop is repeated for

each iteration of the loop.

An @if directive lets you do a
conditional test and add HTML

to the page based on the results
of the test. You can include an
else, just like with a C# if/else.

Create a Deck class that extends List<Card>.
You learned all about inheritance in Chapter 6. Now it’s time to apply that
knowledge to create a class that represents a deck of cards.
Add a Deck class to your project that extends List<Card> so it inherits
all of the collection-related methods, including the Clear and Add methods.
class Deck : List<Card>
{
 /// <summary>
 /// The constructor resets the 52-card deck
 /// </summary>
 public Deck() {
 Reset();
 }

 /// <summary>
 /// Clears the deck, then loops through suits and
 /// values, and adds each card to the 52-card deck
 /// </summary>
 public void Reset() { ... }

 /// <summary>
 /// Creates a copy of the deck, clears the deck, and
 /// uses a while loop to move a random card from
 /// the copy to the deck and remove it from the copy
 /// </summary>
 public void Shuffle() { ... }
}
Write the code for the Reset and Shuffle methods. Carefully read the XMLDoc to see what the methods need to do.

Modify your Home.razor to use the deck add buttons to the bottom of the page that call its methods
Here's what how the buttons are laid out. Can you create the HTML so your app matches our screenshot?

Surround your current <button> tag with a
<div> that adds a row with a top margin:
Change the button’s class property so it
contains "col-9" to make it span 9 of the
12 columns in the Bootstrap grid layout.
The next two buttons are also contained in
a <div class="row mt-2">. Each of those
buttons spans 4 columns, and there's a
col-1 between them to add space:
<div class="col-1" />

Only the top button is a primary button.
Make the rest of the buttons secondary.
It’s not cheating to peek at the solution!

Exercise
List<Card>

Clear
Add
Sort
many other collection-related methods

Deck
Reset
Shuffle

The Deck class is a subclass of
List<Card> so it inherits many methods,
including Clear, Add, and Sort.

you are here 4 103

Blazor Learner’s Guide

Here's the full Home.razor for your Blazor Cards page with buttons to shuffle, sort, reset, and clear the deck:

@page "/"
@rendermode InteractiveServer
@using BlazorCards
<PageTitle>Blazor Cards</PageTitle>

<div class="container">
 <h3 class="row">Pick a card</h3>
 <div class="row">
 <select class="col-12" size="8" @bind="selectedCard">
 @for (int i = 0; i < cards.Count; i++)
 {
 <option value="@i">@cards[i]</option>
 }
 </select>
 </div>

 @if (selectedCard >= cards.Count)
 {
 <h4 class="row">No card selected</h4>
 }
 else
 {
 <h4 class="row">You selected: @cards[selectedCard]</h4>
 }

 <div class="row mt-2">
 <button type="button" class="col-9 mt-2 btn btn-primary"
 @onclick="AddCard">
 Add a card
 </button>
 </div>

 <div class="row mt-2">
 <button type="button" class="col-4 btn btn-secondary"
 @onclick="ShuffleDeck">
 Shuffle the deck
 </button>
 <div class="col-1" />
 <button type="button" class="col-4 btn btn-secondary"
 @onclick="SortDeck">
 Sort the deck
 </button>
 </div>

 <div class="row mt-2">
 <button type="button" class="col-4 btn btn-secondary"
 @onclick="ResetDeck">
 Reset the deck
 </button>
 <div class="col-1" />
 <button type="button" class="col-4 btn btn-secondary"
 @onclick="ClearDeck">
 Clear the deck
 </button>
 </div>
</div>

Exercise
Solution

This row has a button
that spans 9 of the 12
Bootstrap columns. We made
it the primary button.

The other two rows have
two buttons that span
4 of the 12 Bootstrap
columns, with a 1-column
margin between them so
they add up to a total of
9 columns. That will make
them the same width as
the “Add a card” button.

This @if checks that the selected
card is a valid index in the List,
so it never tries to get the value
of cards[selectedCard] if it will
throw an “out of range” exception.

Each option displays the
name of the card, but
the actual value that gets
bound to selectedCard is
@i, or the index of the
card in the List.

The card classes and enums are
in the BlazorCards namespace.

104 https://github.com/head-first-csharp/fifth-edition

chapter 8 organizing your data

@code {
 int selectedCard;
 private Deck cards = new Deck();

 private void AddCard()
 {
 cards.Add(new Card((Values)Random.Shared.Next(1, 14),
 (Suits)Random.Shared.Next(0, 4)));

 selectedCard = cards.Count - 1;
 }

 private void ShuffleDeck() { cards.Shuffle(); }
 private void SortDeck() { cards.Sort(new CardComparerByValue()); }
 private void ResetDeck() { cards.Reset(); }
 private void ClearDeck() { cards.Clear(); }
}

Here’s the Deck class that extends List<Card> and adds Reset and Shuffle methods:

namespace BlazorCards;

class Deck : List<Card>
{
 public Deck()
 {
 Reset();
 }

 public void Reset()
 {
 Clear();
 for (int suit = 0; suit <= 3; suit++)
 for (int value = 1; value <= 13; value++)
 Add(new Card((Values)value, (Suits)suit));
 }

 public void Shuffle()
 {
 List<Card> copy = new List<Card>(this);
 Clear();
 while (copy.Count > 0)
 {
 int index = Random.Shared.Next(copy.Count);
 Card card = copy[index];
 copy.RemoveAt(index);
 Add(card);
 }
 }
}

This while loop picks a random card
from the copy, adds it to the Deck,
and then removes it from the copy,
repeating until the copy is empty.

This nested for loop goes through each of
the suits, and for each suit it loops through all of the cards and adds them to the Deck.

Exercise
Solution

In the next exercise, you’ll take the ideas and tools you just used and apply
them to a new project. This is a great way to get them to stick in your brain.

The cards field is now a Deck object, which extends List<Card>.

The event handler
methods for the
four buttons call
the corresponding
methods on the
Deck class.

you are here 4 105

Blazor Learner’s Guide

You’ve just used a list box control, options with unique values, @for, and @if, and you used inheritance to create a
Deck class that extends List<Card>, and you’ve learned more about laying out pages using the 12-clolumn Bootstrap
grid system. In this exercise, you'll use all of those things to create an app that has two decks of cards, with buttons
that let you shuffle, sort, reset, and clear the deck, and two more buttons to move cards from one deck to the other.
You can do this! Just take it step by step, and remember that it’s not cheating to peek at the solution.

Click a card in the left deck to
select it, then click the Move Right
button to remove it from this deck
and add it to the other one.

Now there are two sets of buttons to add, shuffle, sort, reset, and clear the decks.
The “Move right” button removes the selected card
from the right deck and adds it to the left deck.
The “Move left” button removes the selected card
from the left deck and adds it to the right deck.

We cleared the left deck,
then used the “Add left”
button to add six cards to it.

Step 1: Copy the BlazorCards code and card classes, then replace the cards field with two Deck fields
Create a new project called TwoDecksBlazor. Modify NavMenu.razor to update the app name and remove the extra
menu items. Add the Deck, Card, and CardComparerByValue classes and the Suits and Values enums into your
project and add a @using directive to your Home.razor file because they’re in the BlazorCards namespace.
Add a @code section to and add two Deck fields called leftDeck and RightDeck:
 Deck leftDeck = new Deck();
 Deck rightDeck = new Deck();

You’ll also need two fields to store the indexes of the selected left and right cards:
 int selectedCardLeft;
 int selectedCardRight;

Exercise

2
col

um
n s

pac
e

106 https://github.com/head-first-csharp/fifth-edition

Getting argument out of
range exceptions you’re
having trouble tracking

down? Make sure you’re
not using selectedCardLeft
with rightDeck or vice versa.

Step 2. Add click event handler methods that work just like the ones in your Blazor Cards project
Your app has familiar buttons to add, shuffle, sort, reset, and clear the right decks. These buttons work just like the
ones in your Blazor Cards project. Add methods named AddCardLeft, ShuffleLeftDeck, SortLeftDeck ResetLeftDeck,
and ResetLeftDeck that work just like the ones in Blazor Cards, except they use the leftDeck field. Then add
AddCardRight, ShuffleRightDeck, SortRightDeck ResetRightDeck, and ResetRightDeck methods for the right deck.

Step 3. Create the MoveLeftToRight and MoveRightToLeft methods
Add a MoveLeftToRight event handler method for the “Move left” button that moves a card from the left deck to the
right deck. It adds leftDeck[selectedCardLeft] to the right deck, sets selectedCardRight to rightDeck.Count - 1, and
then calls leftDeck.RemoveAt(selectedCardLeft) – that’s a method inherited from List<Card> that removes an
element at a specific index. “Move right” button that moves a card from the right deck to the left deck.
Then add the MoveRightToLeft method, which does exactly the same thing except left and right are reversed.

Step 4. Add LeftCardNotSelected and RightCardNotSelected properties
Create two boolean properties called LeftCardNotSelected and RightCardNotSelected that do the same check
as the @if directive in the BlazorCards project. The LeftCardNotSelected property has a getter that returns
selectedCardLeft >= leftDeck.Count. RightCardNotSelected does the same thing, except for the right deck.

Step 5. Lay out the HTML for the page
The page has five rows, each with a top margin of 2 (<div class="row mt-2">) except for the top row, whcih
doesn’t have mt-2 in the class property. Here’s what you’ll add to each row:
• The first row has a list box for the left deck, a two-column spacer (<div class="col-2" />), and a list box for

the right deck. Both decks are 5 columns wide. They work just the list boxes in the BlazorCards project, except the
left list box @for loop reads the cards from the leftDeck field, and the right list box reads from the rightDeck field.

• The second row has an @if for the text that displays the card selected in the left deck, a two-column spacer, and
an @if for the text that displays the card selected in the right deck. The @if directives call the properties to check
if a card is not selected (@if (LeftCardNotSelected)). They work just like the similar @if in BlazorCards,
except instead of adding <h4 class="row"> they add <div class="col-5"> to the page.

• The third row has the Add left, Move left, Add right, and Move right buttons, in that order. The buttons all are 2
columns wide. The Add buttons are primary (class="col-2 btn btn-primary"), all of the other buttons
are secondary, including the buttons in the other rows (class="col-2 btn btn-primary"). There's a
1-column spacer (<div class="col-1" />) between each pair of Add and Move buttons, and a 2-column
spacer between the buttons on the left and and the ones on the right. The Add buttons call the AddCardLeft and
AddCardRight Mehtods, and the Move buttons call the MoveLeftToRight and MoveRightToLeft methods. Add the
property disabled="@LeftCardNotSelected" to the Move left button to disable it if a card is not selected.
Add the property disabled="@RightCardNotSelected" to the Move right card too.

• The fourth row has the Shuffle left, Sort left, Shuffle right, and Sort right buttons. They are all 2-column wide
secondary buttons, with the same spacers as in the third row. They call the ShuffleLeftDeck, SortLeftDeck,
ShuffleRightDeck, and SortRightDeck methods.

• The fourth row has the Reset left, Clear left, Reset right, and Clear right buttons. They are all 2-column wide
secondary buttons, with the same spacers as in the third row. They call the ResetLeftDeck, ClearLeftDeck,
ResetRightDeck, and ClearRightDeck methods.

Exercise

If there are more than 12 columns in a row Bootstrap will wrap to the
next row, so if you see buttons in the wrong place, you may just be

missing a <div> and <div class="row mt-2"> between two buttons.
you are here 4 107

Blazor Learner’s Guide

We gave you this property to disable the
button if there’s no left card selected.

108 https://github.com/head-first-csharp/fifth-edition

Here’s the full Home.razor file for the Two Decks app.
@page "/"
@rendermode InteractiveServer
@using BlazorCards

<PageTitle>Two Decks</PageTitle>

<div class="container">
 <div class="row">
 <select class="col-5" size="8" @bind="selectedCardLeft">
 @for (int i = 0; i < leftDeck.Count; i++)
 {
 <option value="@i">@leftDeck[i]</option>
 }
 </select>

 <div class="col-2"/>

 <select class="col-5" size="8" @bind="selectedCardRight">
 @for (int i = 0; i < rightDeck.Count; i++)
 {
 <option value="@i">@rightDeck[i]</option>
 }
 </select>
 </div>

 <div class="row mt-2">
 @if (LeftCardNotSelected)
 {
 <div class="col-5">No left card selected</div>
 }
 else
 {
 <div class="col-5">Left card: @leftDeck[selectedCardLeft]</div>
 }
 <div class="col-2" />
 @if (RightCardNotSelected)
 {
 <div class="col-5">No right card selected</div>
 }
 else
 {
 <div class="col-5">Right card: @rightDeck[selectedCardRight]</div>
 }
 </div>

 <div class="row mt-2">
 <button type="button" class="col-2 btn btn-primary"
 @onclick="AddCardLeft">
 Add left
 </button>
 <div class="col-1" />
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="MoveLeftToRight" disabled="@LeftCardNotSelected">
 Move left
 </button>

 <div class="col-2" />

Exercise
Solution

The list boxes for the left and right
decks work just like the ones in your
BlazorCards app. The only difference
is that they read cards from the
leftDeck and rightDeck fields.

The second row has the two @if directives for the text
that display the selected card in each deck. They use
the properties that return true if a card is selected.

We gave you this property to disable the
button if there’s no right card selected.

These buttons all work just like the ones in the BlazorCards app. The only difference is that they all have class properties that make them 2 columns wide and secondary buttons, and they use call the methods for the left and right decks.

you are here 4 109

Blazor Learner’s Guide

 <button type="button" class="col-2 btn btn-primary"
 @onclick="AddCardRight">
 Add right
 </button>
 <div class="col-1" />
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="MoveRightToLeft" disabled="@RightCardNotSelected">
 Move right
 </button>
 </div>

 <div class="row mt-2">
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="ShuffleLeftDeck">
 Shuffle left
 </button>
 <div class="col-1" />
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="SortLeftDeck">
 Sort left
 </button>

 <div class="col-2" />

 <button type="button" class="col-2 btn btn-secondary"
 @onclick="ShuffleRightDeck">
 Shuffle right
 </button>
 <div class="col-1" />
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="SortRightDeck">
 Sort right
 </button>
 </div>

 <div class="row mt-2">
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="ResetLeftDeck">
 Reset left
 </button>
 <div class="col-1" />
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="ClearLeftDeck">
 Clear left
 </button>

 <div class="col-2" />

 <button type="button" class="col-2 btn btn-secondary"
 @onclick="ResetRightDeck">
 Reset right
 </button>
 <div class="col-1" />
 <button type="button" class="col-2 btn btn-secondary"
 @onclick="ClearRightDeck">
 Clear right
 </button>
 </div>

</div>

110 https://github.com/head-first-csharp/fifth-edition

@code {
 int selectedCardLeft;
 int selectedCardRight;

 Deck leftDeck = new Deck();
 Deck rightDeck = new Deck();

 private void AddCardLeft()
 {
 leftDeck.Add(new Card((Values)Random.Shared.Next(1, 14),
 (Suits)Random.Shared.Next(0, 4)));

 selectedCardLeft = leftDeck.Count - 1;
 }
 private void ShuffleLeftDeck() { leftDeck.Shuffle(); }
 private void SortLeftDeck() { leftDeck.Sort(new CardComparerByValue()); }
 private void ResetLeftDeck() { leftDeck.Reset(); }
 private void ClearLeftDeck() { leftDeck.Clear(); }

 private void AddCardRight()
 {
 rightDeck.Add(new Card((Values)Random.Shared.Next(1, 14),
 (Suits)Random.Shared.Next(0, 4)));

 selectedCardRight = rightDeck.Count - 1;
 }
 private void ShuffleRightDeck() { rightDeck.Shuffle(); }
 private void SortRightDeck() { rightDeck.Sort(new CardComparerByValue()); }
 private void ResetRightDeck() { rightDeck.Reset(); }
 private void ClearRightDeck() { rightDeck.Clear(); }

 void MoveLeftToRight()
 {
 rightDeck.Add(leftDeck[selectedCardLeft]);
 selectedCardRight = rightDeck.Count - 1;
 leftDeck.RemoveAt(selectedCardLeft);
 }

 void MoveRightToLeft() {
 leftDeck.Add(rightDeck[selectedCardRight]);
 selectedCardLeft = leftDeck.Count - 1;
 rightDeck.RemoveAt(selectedCardRight);
 }

 public bool LeftCardNotSelected {
 get { return selectedCardLeft >= leftDeck.Count; }
 }

 public bool RightCardNotSelected {
 get { return selectedCardRight >= rightDeck.Count; }
 }
}

Exercise
Solution

There are two sets of fields to
track the deck and selected cards,
one set for the left deck and one
set for the right deck.

These event handler methods
work just like the ones in
the BlazorCards app, except
they use the leftDeck and
rightDeck fields.

The event handler methods for the
buttons to move cards from one deck
to the other first add the card being
moved, then update the field that
tracks the selected card to make sure
the moved card is selected, and finally
remove the card from the old deck.

These properties return true of a
valid card is selected in the deck.

If MoveLeftToRight is called when there’s no card selected, it will throw an exception. We
could added an if statement that checks LeftCardNotSelected and only moves the card if it is,

but instead we used the disabled property to disable the button. Did we make the right choice?

There’s no right or wrong answer to this question, because
there are lots of ways to write code to do the same thing.

you are here 4 111

Blazor Learner’s Guide

I’ve built a lot of Blazor apps!

You’ve got the tools you need to build some
really great web applications with Blazor.
The last four chapters in the book don’t have .NET MAUI
projects, so...

Congratulations! You’re done with the Blazor Learner’s Guide.
You can go back to the book and resume with Unity Lab 8 (or if
you’re skipping the Unity Lab projects, Chapter 9).

But you don’t have to stop your Blazor journey here. You’ve laid
down a great foundation. If you want to learn more, we love
Learning Blazor, a fantastic book by Blazor expert David Pine
that gives you a great in-depth guide to building web powerful
applications using Blazor.

We love this book! If you want
to learn more about Blazor,
this is where to go next.

