https://github.com/head-first-csharp/fifth-edition

O'REILLY’ \ %
@
Chetk out our Github ob@/&é &
page for videos, N7

downloads, and more! 1

Head First e,

C#

A Learner's Guide to
Real-World Programming
with C# and .NET

Andrew Stellman
& Jennifer Greene

Blazor Learner’s Guide e, 1

N This is @ bonus tompanion guide to l Py m—
help you learn web development N

with C# and Blazov.

A Brain-Friendly Guide

Andrew Stellman
Blazor Learner’s Guide

Andrew Stellman
https://github.com/head-first-csharp/fifth-edition

Andrew Stellman
This is a bonus companion guide to help you learn web development with C# and Blazor.

Andrew Stellman

Andrew Stellman

Andrew Stellman
Check out our GitHub page for videos, downloads, and more!

Head First

#

What will you learn from this book?

Create apps, games, and more using this engaging, highly visual
introduction to C#, .NET, and software development. You'll learn
how to use classes and object-oriented programming, create
3D games in Unity, and query data with LINQ. And you'll do it all
by solving puzzles, completing hands-on exercises, and building
real-world applications. Interested in a development career?
You'll learn important development techniques and ideas—just like
many others who've learned to code with this book and are now
professional developers, team leads, coding streamers, and more.
There's no experience required except the desire to learn. And
this is the best place to start.

Understand the N e ‘f:”d s o
velationship between RN P I"Vs\é“f £ . f ond f,
tlasses and ob etts, ’/// T §\é eh he very
and equip \/oursc|f A &L= -

with tlnat krow]cdg: ; \/ \ N

to build SuCCCSS%u! apps. v “ .\

What's so special about this book?

If you've read a Head First book, you know what to expect: a visually
rich format designed for the way your brain works. If you haven't, you're
in for a treat. With this book, you'll learn C# through a multisensory
experience that engages your mind—rather than a text-heavy
approach that puts you to sleep.

C#/ NET

US $7999 CAN $9999
ISBN: 978-1-098-14178-3

JOCHEROOY

781098"141783

“Thank you so much! Your
books have helped me
to launch my career.”

—Ryan White
Game Developer

“In a sea of dry technicall
manuals, Head First C#
stands out as a beacon
of brilliance. Its unique
teaching style not
only imparts essential
knowledge but also
sparks curiosity and
fuels passion for coding.
An indispensable
resource for beginners!”

—Gerald Versluis

Senior Software Engineer
at Microsoft

"Andrew and Jennifer
have written a concise,
authoritative, and, most
of all, fun introduction
to C# development.”

—Jon Galloway
Senior Program Manager on

the .NET Community Team
at Microsoft

O'REILLY"

Praise for Head First C#

“In a sea of dry technical manuals, Head First C# stands out as a beacon of brilliance. Its unique teaching style
not only imparts essential knowledge but also sparks curiosity and fuels passion for coding. An indispensable
resource for beginners!”

—Gerald Versluis, Senior Software Engineer at Microsoft

“Head First C# started my career as a software engineer and backend developer. I am now leading a team in a
tech company and an open source contributor.”

—Zakaria Soleymani, Development Team Lead

“Thank you so much! Your books have helped me to launch my career.”

—Ryan White, Game Developer

“If you’re a new G# developer (welcome to the party!), I highly recommend Head First C#. Andrew and Jennifer
have written a concise, authoritative, and most of all, fun introduction to C# development. I wish I'd had this
book when I was first learning C#!”

—Jon Galloway, Senior Program Manager on the .NET Community Team, Microsoft

“Not only does Head First C# cover all the nuances it took me a long time to understand, it has that Head First
magic going on where it is just a super fun read.”

—Jeff Counts, Senior C# Developer

“Head First C# 1s a great book with fun examples that keep learning interesting.”

—Lindsey Bieda, Lead Software Engineer

“Head Furst C# 1s a great book, both for brand-new developers and developers like myself coming from a Java
background. No assumptions are made as to the reader’s proficiency, yet the material builds up quickly enough
for those who are not complete newbies—a hard balance to strike. This book got me up to speed in no time for
my first large-scale C# development project at work—TI highly recommend it.”

—Shalewa Odusanya, Principal

“Head Furst C# 1s an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I've ever
seen—the samples are clear, the topics are concise and well written. The mini-games that guide you through the
different programming challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”

—Johnny Halife, Partner

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The many
coding challenges keep it fun, even when the concepts are tough.”

—Rebeca Dunn-Krahn, Founding Partner, Sempahore Solutions

Praise for Head First C#

“I’'ve never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want
to learn C# in depth and have fun doing it, this is THE book for you.”

—Andy Parker, fledgling C# Programmer

“It’s hard to really learn a programming language without good, engaging examples, and this book is full of them! Head
First C# will guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

—Chris Burrows, Software Engineer

“With Head Furst C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable
while covering a great amount of detail in a unique style. If you’ve been turned oftf by more conventional books on C#,
you’ll love this one.”

—Jay Hilyard, Director and Software Security Architect, and author of
C# 6.0 Cookbook

“I’d recommend this book to anyone looking for a great introduction into the world of programming and C#. From the
first page onward, the authors walk the reader through some of the more challenging concepts of C# in a simple, easy-
to-follow way. At the end of some of the larger projects/labs, the reader can look back at their programs and stand in
awe of what they’ve accomplished.”

—David Sterling, Principal Software Developer

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style 1s
sure to captivate readers—from the humorously annotated examples to the Fireside Chats, where the abstract class and
interface butt heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

—Joseph Albahari, inventor of LINQPad, and coauthor of C# 12 in a Nutshell and
C# 12 Pocket Reference

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to
jump into the C# waters. I will recommend it to the advanced developer that wants to understand better what is
happening with their code. [I will recommend it to developers who| want to find a better way to explain how C# works
to their less-seasoned developer friends.”

—Giuseppe Turitto, Director of Engineering

‘Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and
enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Advanced Systems Analyst

“Going through this Head First C# book was a great experience. I have not come across a book series which actually
teaches you so well....This is a book I would definitely recommend to people wanting to learn C#.”

—Krishna Pala, MCP

Praise for the Head First Approach

“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely tres ‘cool.” It
1s fun, but they cover a lot of ground and they are right to the point. I'm really impressed.”

—Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, former VP of Design, Twitter, and founder of Newsvine

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive VP & Managing Director, Disney Online

“Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller...Bueller...Bueller...” this book is on the float
belting out ‘Shake it up, baby!””

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Head First C#

Wouldn't it be dreamy it
there was a C# book that's
more fun than memorizing
a dictionary? It's probably
nothing but a fantasy...

Andrew Stellman
Jennifer Greene

O'REILLY"

Beijing +« Boston « Farnham + Sebastopol + Tokyo

build web appl‘icact‘igns with C#

Head Fivst CH# presents..

Blazor Learner’s Guide

Want to build great web apps...right now?

C# is great for building web applications that run in your browser. We didn’t have

room in Head First C# to teach you how to build web applications, but we wanted
to give you a foundation that included web development and page design. (And
that's why we created this learner’s guide, a companion to Head First C# (5th
edition) to teach the fundamentals of web application development using Blazor,

Microsoft's free and open-source framework for building complete web applications.

this is a new chapter

create web applications that run in your browser

Build web applications with C# with Blazor

Welcome to the Head First C# Blazor Learner’s Guide, a free downloadable
companion to Head First C# (5th edition). The goal of this guide is to give you a
foundation in Blazor, Microsoft’s framework for building rich interactive web
applications.

Blazor is great for C# developers because it allows them to use our existing skills and
knowledge to build modern web applications. Here’s why Blazor is so appealing:

* Use C# Everywhere: Developers can use C# for both client-side and server-
side code, eliminating the need to switch between languages. Before Blazor, you
had to use another language like JavaScript or TypeScript to build your web
pages. Blazor lets you do all of your web development in C#.

* Seamless Integration: Blazor integrates seamlessly with the .NET ecosystem,
allowing developers to use the extensive .NET classes and methods that you’ll
learn throughout the book.

* Rich Ul Development: Blazor makes it straightforward to build dynamic and
interactive user interfaces with features like data binding and event handling.
You’ll learn the basics of web design using HTML and Bootstrap to create
responsive and visually rich pages in your web applications.

Blazor sound's
exciting! How do I get

This is what you see when you eveate a new NET
started?

itati i [Liest
Blazov a\vylucabon and vun it [t will b? \/ow.
building block for building web applieations with C#- \

S O @ Home x + = a] X

G @ httpsy/localhost:44325 A Y m e % -~ O

BlazorMatchGame About

A Home Hello, world! &

Welcome to your new app. x
Counter £

= Weather

2 https://qgithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

How to use this guide

Most projects in the book are console apps, but many chapters also include a project built using
NET MAUI, which you can use to build native and mobile applications. This learner’s guide has
replacements for all of those MAUI projects—including a complete replacement for Chapter 1—that
use C# to create Blazor Web Apps that run in your browser and are equivalent to the Windows
apps. You'll do it all with Visual Studio or Visual Studio Code, which you're already using in the
rest of the book to learn and explore C#. Let’s dive right in and get coding!

First step: get up and running with Visval Studio or Visual Studio Code

This book is filled with projects, and to do them you’ll need to install Visual Studio or Visual Studio
Code. Those are both advanced code editors and development environments built by Microsoft
that you can download and use for free—and lucky for us, they make great tools for learning and

exploration.
0Q fle Edit View Git Project Build Debug Test Apalyze Iools Extensions Window Help S Search~ MyFir.leApp = u] X
- - - Debug ~ AnyCPU - P MyfirstConsoleApp ~ > 7 - BB B - % Aol = : | Live Share &)
What's New? ngram.cs & X ~ # Solution Explorer v X g
[€¥) MyFirstConsoleApp - - -+ .8 o-s [l li;‘, /.L: H
(& 1 |/ See https://aka.ms/new-console-template for more information alfo— o N S LA
2 Console.WriteLine("Hello, World!"); Seusch Solition B 1ol L g
3 FR Solution 'MyFirstConsoleApp’ (1 of 1 project) = &

4 [c5] MyFirstConsoleApp
b &8 Dependencies
c# Program.cs

H'\ \/ou’re us'm5 Windows, you tan use
Visual Studio or Visual Studio Code.
£ \/ou’rc on mat0S or Linux, YOuI”
stick with Visual Studio Code.

100% <@ © Noissues found AR » Llm1 Ch1 SPC CRLF
Output v x
Show output from: Debug - E O

‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
*MyFirstConsoleApp.exe' (CoreCLR: clrhost): Loaded 'C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
‘MyFirstConsoleApp.exe’ (CoreCLR: clrhost): Loaded ‘C:\Program Files\dotnet\shared\Microsoft.NETCore.App\™
The program '[2360] MyFirstConsoleApp.exe' has exited with code @ (0x0).

< > Solution Explorer | Git Changes

] Ready /> Add to Source Control + i Select Repository « [

Before you start this guide, make sure you read the first 18 pages of
Head First C# (5th edition). They’ll show you how to install Visual Studio
or Visual Studio Code, and you’ll create your first Console App project.
Return to the Blazor Learner’s Guide when you get to this heading:

Let’s build a game!

You can download the first four chapters of the book for free from our
GitHub page: https://github.com/head-first-csharp/fifth-edition

you are here » 3

chapter 1 build something great... fast! Make sure you've read the first 18 pages of the book, and have

installed Visual Studio or Visual Studio Code before you start this
) . I project. You can download the first four chapters for free from
Lef S bUlId a game. our GitHub page: https.//qithub.com/head-first-csharp/fifth-edition

You've built your first C# app, and that’s great! Now that you’ve
done that, let’s build something a little more complex. We’re going to
build an animal matching game, where a player is shown a grid
of 16 animals and needs to click on pairs to make them disappear.

The game shows eight diffevent pairs of
animals stattered vandomly around the

Heve's the animal matehing grid. The player elicks on two animals—if
game that you'l build. they matth, they disappear from the page.

& D @ sazovachcame x I - 5

G @ localhost5180 e OB B -

a
BlazorMatchGame About

; By the time
you're done with

M Home

P e 2@ X

[l 24
£ A4

_

,
B O

this Project,
you'll be a lot
more familiar
ﬁifihifuf i N with the tools
) that you'll rely

This timer keeps track of how long it takes the
player to finish the game. The 90al is to find all of on tllFOUgIlOUt

the matthes in as little Lime as possible. tlus 13001(to learn

and explore C#,

7N £ o0
D | B 2

ERS &;

Your animal matching game is a Blazor Web App

Console apps are great if you just need to input and output text. If you want a visual
app that’s displayed on a browser page, you’ll need to use a different technology.
That’s why your animal matching game will be a Blazor Web app. Blazor lets

you create rich web applications that can run in any modern browser. Most of the
chapters in this book will feature a Blazor app. The goal of this project is to introduce
you to Blazor and give you tools to build rich web applications as well as console apps.

4 https://qgithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

2 D @ BlazoMatchcame x + o x
(@] (localhost:5180 AN Ty m P @ @
When \/ou’vc found all ! A 2 (/)
Cigh't ‘;aiy-s o.(: animals, BlazorMatchGame About X
the game displays your .
£inal time and Jd\i A Home - " s -
{C‘ﬁ"’, \(P'B\i agalh? L - b o
next to it. Click any :
animal button to a =t .
start over aga'm,’ = ' £
w
L> v R | s e .
b 7.N
* H
Matches found: 0

Keep an eye out for these “Qame Design...and Beyond” elements scaH:e\fcd £hroughout
the book. We'll use game design printiples as a way 4o learn and explore utnvorjc.an{:
programming tontepts and ideas that apply to any kind of yro\)cc{:, not Jus{: video games.

. bame Design..and Beyondc..c...c.n..

A What is a game?

It may seem obvious what a game is. But think about it for a minute--it's not as simple as it
seems.

* Do all games have a winner? Do they always end? Not necessarily. What about a flight
simulator? A game where you design an amusement park? Or a farming simulator? What
about a game like The Sims?

* Are games always fun? Not for everyone. Some players like a “grind” where they do the
same thing over and over again; others find that miserable.

* |s there always decision making, conflict, or problem solving? Not in all games. Walking
simulators are games where the player just explores in an environment, and there are often
no puzzles or conflicts at all.

* It's actually pretty hard to pin down exactly what a game is. If you read textbooks on game
design, you'll find all sorts of compelling definitions. So for our purposes, let’s define the
meaning of “game” like this:

A game is a program that lets you play with it in a way that (hopefully) is as entertaining
to play as it is to make.

you are here » 5

chapter 1 build something great... fast!

Preak up large projects into swmaller parts

Our goal in this book is to help you to learn C#, but we also help you become
a great developer, and one of the most important skills great developers
work on is tackling large projects. You’ll build a lot of projects throughout this
book. They’ll be smaller starting with the next chapter, but they’ll get bigger

as you go further. As the projects get bigger, we’ll show you how to break them
up into smaller parts that you can work on one after another. This project is

no exception—it’s a larger project, like the ones you’ll do later in the book—so
you’ll do it in five parts.

@Pa&c “ /"
Btode {

}

Home.razor

CREATE THE SHUFFLE THE HanoLe
ProJecT AMmaLS Mouse Crickse THE PLAYER WiNs TIMER

The goal of this project is to help get you used to writing C# and using the IDE. If
you run into any trouble with this project, you can watch a full video walkthrough
on our YouTube channel. https:/www.youtube.com/@headfirstcsharp

You can download all of the code and a PDF of this chapter from our GitHub
page: https://github.com/head-first-csharp/fifth-edition

R elax ...

This chapter is all about learning the basics, getting used to creating
projects, editing code, and building your game.

Don’t worry if there are things that you don’t understand yet. By the end of the book, you'll
understand everything that’s going on in this game. For now, just follow the step-by-step
instructions to get your game up and running. This will give you a solid foundation to build on later.

6 https://qgithub.com/head-first-csharp/fifth-edition

Here’s how you’ll build your game

You’ll build your animal matching game using Blazor,
Microsoft’s technology that you can use to create highly
interactive web apps in C# that can run in your browser.

The rest of this chapter will walk you through building the
game. You’'ll be doing it in a series of separate parts:

0 First you’ll create a new Blazor
WebAssembly App project.

You just created a new console application. Now
you’ll create a new Blazor app.

e Then you’ll lay out the page and write C#
code to shuffle the animals.
When your app first loads, it will run that code to
display 16 buttons with eight pairs of animal emoji in
a random order.

e The game needs to let the user click on
pairs of emoji to match them.
The game needs to detect when the user clicks on
pairs of emoji, and keep track of those pairs. You’ll
write code to handle those clicks.

e You’ll write more C# code to detect

when the player has won the game.
The app will end the game when the player has found
all of the matches. You’ll write that code too.

e Finally, you’ll make the game more
exciting by adding a timer.
Your timer will start when the player starts the game,
and keep track of how long it takes the player to find
all eight pairs of animals.

Blazor Learner’s Guide

This yro\)chc ¢an take anywhere from 20
minutes to over an hour, depending on how

Euickly you type. We learn better when we don’t
eel vushed, so give \/ou\rscl«c plenty of time.

@page /"
<html>
</htim>
B@tode {

}

Home.razor

o + o x
[¢] n e R - 0O
lazor! RS

— L4

] =

s %0 :

-]

A (A -
»] oo

Matches found: 2
Time: 4.1s .8

you are here » 7

chapter 1 build something great... fast!

Create a Blazor Web App project in Visval Studio

Let’s create a new Blazor Web App project. Before you start, if you still have the Console App project open, close it
by choosing File >> Close Solution from the menu.

Next, create a new Blazor Web App project. If the “Get Started” window is displayed. click the Create a new
project button. If not, choose File >> New >> Project... from the menu.

Click the Blazor Web App option:

Blazor Web App

A project template for creating a Blazor web app that supports both server-side
rendering and client interactivity. This template can be used for web apps with rich
dynamic user interfaces (Uls).

C# Linux macOS Windows Blazor Cloud Web

Name your project BlazorMatchGame and click the Next button:

Configure your new project

Blazor Web App ¢ Lnux macOS Windows Blazor Cloud Web

Project name

| BlazorMatchGame ‘

Accept the default Additional information options and click the Create button to create the project:

Additional information

Visual Studio remembers

Blazor Web App C# Linux macOS Windows Blazor Cloud Web
the most vetent choies

Framework ® 'Eha{ \/OU "\adc WhCh
.NET 8.0 (Long Term Support) M CY‘C&‘EIY\B a new PV'O\)CC{,
Authentication type @ so |°°k over ‘H\CM and

make sure they matth the

—— seleetions in our sereenshot.

Interactive render mode @ é/
‘ Server "‘

Interactivity location @

None -

Per page/component v
Include sample pages ®
D Do not use top-level statements @

D Enlist in .NET Aspire orchestration ®

If you’re using Visual Studio Code, skip to the next section, which shows
you how to create a new Blazor Web App project with VSCode.

8 https://qgithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Once your project is loaded, run your app. Find the Run button at the top of the Visual Studio window and click the
dropdown next to it to select IIS Express:

P 1IS Express ~ [ibg O~ BB B -

> s Express
i http I
https
(v IS Express Your app will vun in the Edge
WL browser by default. (£ You
\) have Chrome installed, you
el Brvsay (Yiese 200 pL—— tanuse this sub—menu to vun

Your app in Chrome instead.

Then click the ‘ > s Express ‘ button to run your app.

You may sce several windows asking you to accept certificates—make sure to accept them:

Security Warning

“u are about to install a certificate from a certification
X thority (CA) claiming to represent:

calhost
Trust the IIS Express SSL certificate. This is used by Hot Reload to create a secure
indows cannot validate that the certificate is actually from

connection to the browser. yealhost”. You should confirm its origin by contacting
)calhost". The following number will assist you in this
ocess:

Would you like to trust the IS Express SSL certificate?
jumbprint (sha1): 38AD66D2 CDB524E4 SFBI79F8 OFC23EC4

Learn More 300c81

arning:
V] . . you install this root certificate, Windows will
Don't ask me again st any certificate issued by this CA. Installing a certificate
| ‘ th an unconfirmed thumbprint is a security risk. If you dlick

No #s” you acknowledge this risk.

-0 you want to install this certificate?

You may also be displayed a window saying that your connection isn’t private. If you see it, click the Advanced button
and then click the Continue to localhost (unsafe) link.

Hide advanced

This server couldn't prove that it's localhost; its security certificate is not trusted by your

computer's operating system. This may be caused by a misconfiguration or an attacker
intercepting your connection.

Continue to localhost (unsafe)

Skip the next two pages, which tell you how to set up your Blazor project in VSCode.

you are here »

9

chapter 1 build something great... fast!

Create a Blazor Web App in Visval Studio Code

Let’s create a new Blazor Web App project. Before you start, if you still have the Console App project open, close it by
choosing File >> Close Folder from the menu.

Next, create a new Blazor Web App project. Start by clicking the Create NET Project button.

You can open a folder containing a
.NET project or solution, or create a

new .NET project.

Create .NET Project

You’ll be prompted to create a new .NET project. Search for Blazor and select Blazor Web App:

Create a new .NET project

Blazod

Web App Web, Blazor, WebAssembly
WebAss¢ Web, Blazor, WebAssembly Blazo
.NET MAUI Hybrid App MAUI, Android, iOS, macOS, Ma yst, Win zen, Blazor, Blazo...

You’ll be prompted to choose a project location. Create a folder called BlazorMatchGame and select it.

ﬂProject Location X
& v /[\ > andrewstellman > Projects v G Search Projects P
On macOS you'l
Organize ~ New folder = - see 'H'\C Maé
= version of the
N Dat dified T .
A Home I ame ate modifie ype d'aloe {o SCICC‘{:
‘ BlazorMatchGame 7/21/2024 3:23 PM File folder ‘H\C oldcr.
MyFirstConsoleApp 7/21/2024 3:22 PM File folder

B Downloads
[& Documents

[Pictures

Folder: BlazorMatchGame

Select Folder Cancel

10 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide
You’ll be prompted for a project name. Name your project AnimalMatchingGame, just like the folder.

Name the new project

BIazorMatchGame|

Press 'Enter’ to confirm your input or 'Escape’ to cancel

Press enter to accept the default location to create your project:

Create project or view options N
proJ P If you’re on a Mac, Safari

Project will be created in " \andrewstellman\Projects\BlazorMatchGame\BlazorMatchGame" VY'" run your web apps just
fine, but you won’t be able

Create project Project will be created in "c:\Users\andrewstellman\Projects\BlazorMatchGame\BlazorMat... touse itto debug them.

Show all template options Web app debugging is only
supported in Microsoft Edge
If you’re asked to trust the authors of the files in the folder, choose Yes: or Google Chrome. Go to

https://microsoft.com/edge
to download Edge, or

Do you trust the authors of the files in this folder? https:iigoogle.comichrome
to download Chrome.

Wait for Visual Studio Code to finish creating your project.

File Edit Selection View Go Run - O BlazorMatchGame
EXPLORER

> BLAZORMATCHGAME

omue 1az0 : * Expand the Solution Explover in £he Explorer
| > BLAZORMATCHGAME ation.createbuilipgneion the left side the window, and

> OUTLINE o COHAPSC all of the other setLions.
> TIMELINE orComponents ()

erComponents();
v SOLUTION EXPLORER

v B BlazorMatchGame

v &) BlazorMatchGame 70

> 3 Dependencies

r("/Error", createScopeForErrors:

> Properties

v Components
> layout
> Pages TERMINAL

App.razor

Routes.razor

_Imports.razor When You seleet PY‘OQVGM-CS in the Solution
> wwwroot Explover, you ¢an see this button to start your
> {} appsettings,json app in the dcbusser. I-F You hover over it YYou || see

a tooltip: “Debug project assotiated with this file”

ts:1 Debug Any CPU Ln1,Col1 Spacess4 UTF-8 CRIF C¢# @ Q

Program.cs

Click on Program.cs in the Solution Elorcr (not any of the other sections in the Explorer panel). Find the triangle

shaped button in the upper right corner and click it to start your web application open up its home page the
Microsoft Edge or Google Chrome browser. You can also choose Start Debugging (F5) from the Run menu to
start your app (choose the defaults if it prompts you), then you can press F5 at any time to run your app.

you are here » 11

chapter 1 build something great... fast!

Your Blazor web app runs in a browser

When you run a Blazor web app, there are two parts: a server and a web application. Visual Studio launches
them both with one button.

5 this!
Q Interact with your web app. r Do ﬂ!lS.

When you run your web application, the IDE automatically opens browser window running your app:

z. (im} @ Home x 4+ = o X
(@) @ https//localhost:44325 A e M = w - O
BlazorMatchGame About Q
&
A Home Hello, world! &
Welcome to your new app. 1
Counter &
[+

= Weather
o
w
.
+
€3

9 Find the file with the HTML code for the page that you’re looking at.
Go to the Solution Explorer and expand the BlazorMatchGame solution. Inside it you’ll find a
BlazorMatchGame project, and underneath it the Components folder that contains a Pages folder. Open
the Pages folder and either double-click (Visual Studio) or click (VSCode) on Home.razor.

Solution Explorer v & x @ Explorer (¢ $E)
a8 s i) - / > BLAZORMATCHGAME
Search Solution Explorer (Ctrl+;) PH :I:I,ITELLI:‘EE
=_Type words to search for e’ (1 of 1 project) ~ SOLUTION EXPLORER
4 &1 BlazorMatchGame v O BlazorMatchGame
D & Connected Services v &) BlazorMatchGame
b & Dependencies > @ Dependencies
> &7 Properties < \/.IS\Aal S{:udw and VSCOdC — > Properties
P © wwwroot haVC gOIU'E-IOV\ E%FlOYCY‘ v COmpEReS
4« @ Components . . > Layout
b BN Layout windows that look a little « Pages
4 [pages di‘C‘CCYCV\{Z; but COH{aih {-‘hc = Counter.razor
C | . = Error.razor
) Gt same files and work the same -
Error.razor Shiome1azor
[@ Home.razor wa\, (‘COY‘ 'H’\C mOS‘{', FaY’{) = Weather.razor

[@ weather.razor = App.razor

_Imports.razor

@ App.razor

Routes.razor
14 appsettings.json
D C# Program.cs

Routes.razor
_Imports.razor

> wwwroot

> {} appsettings.json

Program.cs

12 https://qithub.com/head-first-csharp/fifth-edition

OO EWNR

Blazor Learner’s Guide

Compare the code in Home.razor with what you see in your browser.
The web app in your browser has two parts: a navigation menu on the left side with links
to different pages (Home, Counter, and Fetch data), and a page displayed on the right side.
Compare the HIML markup in the Home.razor file with the app displayed in the browser.

lepage /" _yHello, world!
<PageTitle>Home</PageTitle> ,.°° ’ . s Welcome to your new app.

<hl>Hello, world!</h1>*" _.+°

Uelcome to your new app.’ K. The <PageTitle> tag sets the 4itle of the

page that’s displayed the £ab in Your browser-.

Change “Hello, world!” to something else.
Change the third line of the Home.razor file so it says something else:

<hl>Elementary, my dear Watson.</hl>

Now go back to your browser and reload the page. Wait a minute, nothing changed—it still says “Hello, world!”
That’s because you changed your code, but you never updated the server.

Click the Stop button to stop the application. In Visual Studio, click the square button in the toolbar or choose
Stop Debugging (Shift+F>5) from the menu. In VSCode, click the square button at the top of the code window, or
press Shift+I5 to stop debugging.

Visual Studio may close your browser automatically for you. If it didn’t, go back and reload your browser—since
you stopped your app, it displays its “Site can’t be reached” page. (If your browser closed when you stopped
debugging, run the app it again, copy the URL, stop your app, then open a new browser window and paste it in.)

Start your app again, then reload your page in the browser. Now you’ll see the updated text.

& D @ Home x + = G Try copying the URL]
G & https//localhost44325 ¢ W= S -~ F-N from your browser,
opening a new Safari
BlazorMatchGame About window, and pasting
Q itin. Your application
Elementary, my dear Watson. ¢ will run there, too.
Now you have two
- Welcome to your new app. o different browsers
i . connecting to the
+ same server.

Do you have extra instances of your browser open, or extra tabs? The IDE opens
a new browser or tab each time you run your Blazor web app, and VSCode
leaves it open. Get in the habit of closing the browser before you stop your app.

you are here » 13

chapter 1 build something great... fast!

You ARE HERE

Home.razor
CREATE THE SHFFLE THE HANDLE Derecr wien App 4 GamE
FroJecT ANimALS Mouse Cricks THE PLAYER Wins TIMER

Now you’re ready to start writing code for your game

You've created a new app, and Visual Studio generated a bunch of files for you. Now it’s time to add
C# code to start making your game work (as well as HITML markup to make it look right).

R

Search Solution Explorer (Ctrl+;) }3"‘
=4 Type words to search for \e' (1 of 1 project)

4 51 BlazorMatchGame Now you’ll start working on the C# code,)
b @ Connected Services which will be in the Home.razor file. A file
[‘: ‘:‘ pERelcelcies that ends with .razor is a Razor markup
&) Properties .
b @ wwwroot page. Ra_\zor combines !-lTML for page
4 I Components layout with C# code, all in the same file.
> B3 Layout You’ll add C# code to this file that defines
4 B Pages the behavior of the game, including code
@ Counter.razor ..
B Errorrazor to add the emoji to the page, handle mouse
Home.razor _clicks, and make the countdown timer work)
Weather.razor
@ _Imports.razor
@ App.razor
@ Routes.razor
4 appsettings.json When You tveated Your tonsole apy
b C# Program.cs carlicr n {:hc C\'\&Y{ZCV‘, \IOUY' C# LOdC

was in a file called Program.es—when you
see that .¢s file extension, it tells Yyou
that the file contains C# code.

When you enter your C# code, even tiny errors can make a big difference.
Some people say that you truly become a developer after the first time you’ve spent hours tracking

down a misplaced period. Case matters: AnimalButtons is different from animalButtons. Extra
commas, semicolons, parentheses, etc. can break your code—or, worse, change your code so
that it still builds but does something different than what you want it to do. The IDE’s Al-assisted

IntelliSense and IntelliCode features can help you avoid those problems...but it can’t do everything

for you. It’s up to you to make sure your code is right—and that it does what you expect it to do.

14 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

{] @ | BlazorMatchGame x S8
&) & https://localhost:5001 Yo ¥ S
BlazorMatchGame About

A Home

¥l w | M| M
@ LAY

= Counter

m= Fetch data S&; @ @ g‘j;

@ | w|

4 Q| 4 B

How the page layout in your animal matching game will work

Your animal matching game is laid out in a grid—or, at least, that’s how it looks. It’s
actually made up of 16 square buttons.

You'll lay out the page by creating a container that’s 400 pixels wide (a CSS “pixel” is
1/96 inch when the browser is at default scale) that contains 100-pixel-wide buttons. We’ll
give you all of the C# and HTML code to enter into the IDE. Keep an eye out for
this code that you’ll add to your project soon—it’s where the “magic” happens, by using
Razor markup to mix C# code with HTML:

<div class="container"> [The @ symbol is used in Razor pages to
<div class="row"> switch from HTML to C# code. In this line

of code, @foreach is used to create a loop

that goes through a list of animal emojis to

@foreach (var animal in animalEmoji) <

{ add a block of HTML to the page. For each
<div class="col-3"> emoiji in the list, the loop generates a button.
<button type="button" class="btn btn-outline-dark">
<hl>@animal</h1>
</button>
. The foreach loop causes everything between the
</div> o
{ and } to be repeated once for each emoji in a
} list of animal emoji, replacing @animal with each
</div> of the emoji in the list one by one. Since the list
</div> has 16 emoji, the result is a series of 16 buttons.

you are here » 15

chapter 1 build something great... fast!

The IPE helps you write C# code

Blazor lets you create rich, interactive apps that combine HTML markup and G# code. Luckily, both Visual Studio and
Visual Studio Code have useful features to help you write that C# code.

@ Add C# code to your Home.razor file.
Start by adding a @code block to the end of your Home.razor file. (Keep the existing contents of the file
there for now—you’ll delete them later.) Go to the last line of the file and type @code {. The IDE will fill
in the closing curly bracket } for you. Press Enter to add a line between the two brackets:

9 @code {
10 |
11 }

@ Use the IDE’s IntelliSense window to help you write C#.
Position your cursor on the line between the { brackets } and type the letter L. The IDE will pop up an
IntelliSense window with autocomplete suggestions. Choose List<> from the pop-up:

@COdE i The IntelliSense window in the IDE pops
¥} & LinkedListNode<> up and helps you write your C# code by
$licr— suggesting useful autocomplete options.

Use the arrow keys to choose an option and

©® LoaderOptimization .
P press Enter to select it (or use your mouse).

© LoaderOptimizationAttribute

The IDE will fill in List. Add an opening angle bracket (greater-than sign) <—the IDE will
automatically fill in the closing bracket > and leave your cursor positioned between them.

® Start creating a List to store your animal emoji.
Type s to bring up another IntelliSense window:

@code {
List<sp
¥ #® string
= struct
= svm

Choose string—the IDE will add it between the brackets. Press the right arrow and then the space
bar, then type animalEmoji = [.

As soon as you typed the opening square bracket [, Visual Studio added a matching one, placing your mouse
cursor between the two brackets.:

List<string> animalEmoji = [ﬂ

Press Enter, then add a semicolon to the end.

16 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide
Some Ycayle think the ?Iwal Cmo\")i is
emoii, others think it's emojis. We went

J wi{:g cmoji—buﬁ both ways ave Line!

@ Add a pair of animal emaji to your list.
Your C# statement isn’t done yet. Make sure your cursor is placed on the blank line you added between
the brackets. Now let’s add eight pairs of animal emoji. You can find emoji by going to your
favorite emoji website (for example, https://emojipedia.org/nature) and copying individual emoji
characters. Alternately...

If you’re using Windows, use the Windows emoji panel (press Windows logo key + period). If you’re
using a Mac, use the Character Viewer panel (press the fn key, or Curl+38 +Space on older Macs).

Go back to your code and add a double quote " then paste the character—we used an octopus—
followed by another " and a comma, a space, another ", the same character again, and one more "
and comma. You might notice Visual Studio helping you enter this list—for example, when you enter a
double quote, it adds the closing quote.

Here’s what your list should look like now:

@code {
List<string> animalEmoji = new List<string>()
{
"(';.«\"
b
+

— How to enter emoji

If you’re using Windows, use the emoji panel If you’re using a Mac, use the Character Viewer panel,
by pressing Windows logo key . period. by pressing Citrl + 38 + space. Use the search box to search
Use the search box to search for a specific for a specific animal. When you find the emoji you want to
animal. When you find the emoji you want to enter, click on it to enter it as if you’d typed it.

enter, click on it to enter it as if you'd typed it.

— X B 4 X ® & ¢ [}
c cemibac ST il m—
o g | Open Keyboard Settings... ('v" W Nﬁ’” g){ ﬁ ..“33 \/ %
: @ ¥ A
Emoji
You ¢an also bring up the macOS
DR N Chavatter Viewer using the [nput
; menu in the menu bar. [£ You
Press 2@ + peviod to bring don't see the [nput menu, open
up the Windows emoji panel, Sys{cm Settings and searth for
a Yca”\/ “SJ“I tool that “in‘?u{: mcnu"——{:hcrc's an o?{:iov\
lets e enter emaji easily. that You an turn on to show 5 S eleET S

the 'm?u{: menu in the menu bar.

you are here » 17

chapter 1 build something great... fast!

Finish creating your emoiji list and display it in the app

You just added a dog emoji to your animalEmoji list. Now add a second dog emoji by adding a comma after
the second quote, then a space, another quote, another dog emoji, another quote, and a comma:

@code {
List<string> animalEmoji = [
"@“'"@“'
1;
}

Now add a second line right after it that’s exactly the same, except with a pair of wolf emoji instead of
dogs. Then add six more lines with pairs of cows, foxes, cats, lions, tigers, and hamsters. You should now have
cight pairs of emoji in your animalEmoji list:

@code {
List<string> animalEmoji = [
n @ non @ n
I I
n ‘ non ‘ "
X~ 1 X~ 1 .]
llgll'llg"' IDE T‘iP- Indent 11nes_
ngy e, The IDE automatically indents your C#
S o L o L code for you as you enter it. But when
@@ you're entering the emoji or HTML tags, you
Ny " &y ! might find that it doesn't quite indent them
! ! the way you want. You can easily fix that
llll llll g i
1 1 by selecting the text you want to indent
1; and pressing = (Tab) to indent, or £
1 (Shift+Tab) to unindent.

Replace the contents of the page
Delete these lines from the top of the page:

<hI>Etementary,—mydearWatson-</h1i>
etecome—to—yournew—-app~

Update the <PageTitle> tag to replace Home with BlazorMatchGame. Then put your cursor on the third
line of the page and type <st—the IDE will pop up an IntelliSense window:

. Gpage "/ The IDE will help you write
3 <PageTitle>BlazorMatchGame</PageTitle> HTML for your page—in
4 this case, you’re creating
5 ﬁﬁﬂ an HTML tag. It’s OK if you
don’t know HTML; we’ll
[l Markup snippet for a style block € give you all of the code
M that you need for your
- | apps throughout the book. |

Choose style from the list, then type >. The IDE will add a closing HTML tag: <style></style>

18 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Put your cursor between <style> and </style> and press Enter, then carefully enter all of the
following code. Make sure the code in your app matches it exactly.

<style>
.container {

) width: 400px; Thc ma{:t.hif\g game is made up of a sevies of buttons. This
is a vcally. simple CSS stylesheet to set the total width of
button { {:.hc tontainer, a.nd the height and width of each button.
width: 108px; Since f,hc ¢ontainer is 400 pixels wide and each button is
height: 100px: loo pixels wide, the Page will onl\/ allow four columns in a
font-size: 50px; vow before adding a break, making them appear in a grid
} .
</style>

Go to the next line and use the IntelliSense to enter an opening and closing <div> tag, just like you
did with <style> carlier. Then carefully enter the code below, making sure it matches exactly:

<div class="container">
<div class="row">
@foreach (var animal in animalEmoji)

If you’ve worked with HTML before, you’ll
notice the @foreach and @animal that don’t
look like ordinary HTML. That’s Blazor—C#

{ <div class="col-3"> code embedded directly into the HTML.
<button type="button" class="btn btn-outline-dark">
<hl>@animal</h1>
</button> f\\ ;
</div> Each button on the page tontains
} 3 di‘F‘CCV‘CV\{ animal. The ?la\/CV‘S WI”
</div> press the buttons to find matehes.
</div>
® ©® | BlazorMatchGame x IS
ﬁ & O 2 https://localhost:5001 Y | = £ 3
C\’\ ahﬁihﬁ H’\ e BlazorMatchGame About
PageTitle tag

thanged the
name of the page
displayed in the
browser {:ab S Fetch data WK X !; !!

A Home @ @ # #

=+ counter

5|

@

% |

,v
BB e

B 8| &3]3

Make sure your app looks like this screenshot when you run it. Once
it does, you’ll know you entered all of the code without any typos.

you are here » 19

chapter 1 build something great... fast!

Shuttle the animals so they’re in a random order

Our match game would be too easy if the pairs of animals were all next to each other. Let’s add C# code to shuffle
the animals so they appear in a different order each time the player reloads the page.

20

o

2]

Place your cursor just after the semicolon ; just above the closing bracket } near the bottom of Home.razor
and press Enter twice. Then use the IntelliSense pop-ups just like you did earlier to enter the following
line of code:

List<string> shuffledAnimals = new List<string>();

Next type protected override (the IntelliSense can autocomplete those keywords). As soon as you
enter that and type a space, you’ll get an IntelliSense pop-up—select OnInitialized() from the list:
protected override

M@ OnAfterRender(bool firstRender)

[onAfterRenderAsync(bool firstRender)

M@ OnInitialized()

M OnInitializedAsync()

@ OnParametersSet()

[OnParametersSetAsync()

M ShouldRender()

The IDE will fill in code for a method called Onlnitialized (we’ll talk more about methods in Chapter 2):
protected override void OnInitialized()

{
base.OnInitialized(); . \
} VSCode might require you
. . to do a little more work,
Replace basg .OnIp:.t:.a'L:.zed() with SetUpGame () so your like typing the word void
method looks like this: between override and
protected override void OnInitialized() Onlinitialized(). Make sure
{ your code matches the
SetUpGame() ; | code on this page exactly.)

}

Then add this SetUpGame method just below your Onlnitialized method—again, the IntelliSense
window will help you get it right:

private void SetUpGame() You just added two methods to your

{ app, but it’s OK if you’re still not 100%

shuffledAnimals = animalEmoji clear on what a method is. You’ll learn
.OrderBy(item => Random.Shared.Next()) | huch more about methods and how C#

-ToList(); code is structured in the next chapter.

}

As you type in the SetUpGame method, you’ll notice that the IDE pops up many IntelliSense windows to
help you enter your code more quickly. The more you use Visual Studio to write C# code, the more helpful
these windows will become—you’ll eventually find that they significantly speed things up. For now, use
them to keep from entering typos—your code needs to match our code exactly or your app won’t run.

https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

A

Do you see the run toolbar at the top of the IDE? That means your app is still running. Press
the square stop button or choose Stop Deubgging (Shift+F5) from the Debug or Run menu.

e Scroll back up to the HTML and find this code: @foreach (var animal in animalEmoji)

Double-click animalEmoji to select it, then type s. The IDE will pop up an IntelliSense window. Choose
shuffledAnimals from the list:

@foreach (var animal in s)

{ ; # shyte
<div class="col-md
u % short -
<button type= : e-dark"s _
<h 1>@anim ShuffledAn lmals (field) List<string> Index.shuffledAnimals
</button> = sim
</div> % sizeof
¥ % stackalloc

Now run your app again. Your animals should be shuffled so they’re in a random order. Reload the
page in the browser—they’ll be shuffled in a different order. Each time you reload, it reshuffles the animals.

@ [1 BlazorMatchGame x IS8

&) B https://localhost:5001 A S e

BlazorMatchGame About

A Home
X r
& &Y
=+ Counter
= 5
= Fetch data >4 £9% s
" U @ Il .\ f:l

@] o | ¥ |8

4 @4 3

Again, make sure your app looks like this screenshot when you run it. Once it does,
you’ll know you entered all of the code without any typos. Don’t move on until your
game is reshuffling the animals every time you reload the browser page.

you are here » 21

chapter 1 build something great... fast!

You're running your game in the debugger

When you click the Run button in the toolbar or choose Start Debugging (F5) from the Run or
Debug menu to start your program running, you're putting the IDE into debugging mode.

You can tell that you’re debugging an app when you see the debug controls appear in the
toolbar (Visual Studio) or at the top of the window (VSCode).

nmmeo I © 0Ov

Hover your mouse cursor over the Pause Execution (it has two lines) button to see its tooltip.

You can stop your app clicking the Stop button or choosing Stop Debugging (Shift F5) from
the Debug or Run menu.

Wow, this game is already
starting to look good!

You’ve set the stage for the next part
that you’ll add.

When you build a new game, you’re not just
writing code. You're also running a project. A really
effective way to run a project is to build it in small
increments, taking stock along the way to make
sure things are going in a good direction. That way
you have plenty of opportunities to change course.

22 https://github.com/head-first-csharp/fifth-edition

i i ' Blazor Learner’s Guide
Heve's a pentil-and—paper exeveise. It's

absolutely worth your time to do all of
£hem because they'll help get important

C# ctontepts into your brain Laster.
T i@

Congratulations—you’ve created a working app! Obviously, programming is more than just copying
code out of a book. But even if you’ve never written code before, you may surprise yourself with just how much
of it you already understand. Draw a line connecting each of the C# statements on the left to the description of
what the statement does on the right. We’ll start you out with the first one.

C# statement What it does

List<string> animalEmoji = new List<string>()

{
III‘ \II II" \II .
"3." ’ "3." ’ Create a second list to store the
nign ! nagn ! Shufﬂed emoji
" !!ll , n !!n)
nedn nein
||éll, Iléll'
e ! Create copies of the animal emoji, shuffle them,
&, ", and store them in the shuffledAnimals list
||C’8u uOSu
e O
I

List<string> shuffledAnimals = new List<string>(); The beginning of 2 method

that sets up the game

protected override void OnInitialized() Create a list of eight pairs of emoji
{

SetUpGame();
¥

Set up the game every time the page is reloaded
private void SetUpGame()

{
shuffledAnimals = animalEmoji
.OrderBy(item => Random.Shared.Next()) The end of a method that sets
.ToList(Q); up the game
}

you are here » 23

C# statement What it does

List<string> animalEmoji = new List<string>()

{
III. \II III. \II .
"3’" . j" ’ Create a second list to store the
nign ! nign ! shuffled €moj1
" BII : n !;ll :
nein nedn
||’,Y_‘||’ ||’,Y_‘||'
g . oot ’ Create copies of the animal emoji, shuffle them,
3 I 5y and store them in the shuffledAnimals list
||08|| "08"
&8, 23",
};

The beginning of a method

List<string> shuffledAnimals = new List<string>(); that sets up the game

Create a list of eight pairs of emoji
protected override void OnInitialized()

{
¥

SetUpGame();

Set up the game every time the page is reloaded

private void SetUpGame()

{

shuffledAnimals = animalEmoji
.OrderBy(item => Random.Shared.Next()) The end of a method that sets

.ToList(Q); / up the game

N\hﬁ%arpen your pencl
2N

Here’s a pencil-and-paper exercise that will help you really understand your C# code.

1. Take a piece of paper and turn it on its side so it’s in landscape orientation, and draw a
vertical line down the middle.

2. Write out all of the C# code by hand on the left side of the paper, leaving space between
each statement. (You don’t need to be accurate with the emoji.)

3. On theright side of the paper, write each of the “what it does” answers above next to the
statement that it's connected to. Read down both sides—it should all start to make sense.

24 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

I'm not sure about this "Sharpen your pencil”
exercise, Isn't it better to just give me the code
to type into the IDE?

Working on your code comprehension skills
will make you a better developer.

The pencil-and-paper exercises are not optional. They
give your brain a different way to absorb the information.
But they do something even more important: they give you
opportunities to make mistakes. Making mistakes is a
part of learning, and we’ve all made plenty of mistkaes

(you may even find one or two typos in this book!). Nobody
writes perfect code the first time—really good programmers
always assume that the code that they write today will
probably need to change tomorrow. In fact, later in the book
you’ll learn about refactoring, or programming techniques
that are all about improving your code after you’ve written it.

r/c)“ add bullet points like
his o 5ch a quick Ssummavy
of many of the ideas and !
tools that you'vc seen so fav.

Bu]let Points

m Visual Studio is Microsoft’s IDE—or integrated m Visual Studio can run your Blazor app in debugging
development environment—that simplifies and assists mode, opening a browser to display your app.Razor
in editing and managing your C# code files. lets you add C# code directly into your HTML markup.

Razor page files end with the .razor extension.
= .Console apps are cross-platform apps that use text

for input and output. m Use an @ to embed your C# code in a Razor page.

m .Blazor Web Apps let you build rich interactive web m User interfaces for Blazor apps are designed in HTML,
applications using C# code and HTML markup. the markup language used to design web pages.

m C# is made up of statements grouped into methods. m Visual Studio’s Al-assisted IntelliSense and

Intelli hel ickly.
= A foreach loop in a Razor page lets you repeat a ntelliCode help you enter code more quickly.

block of HTML code for each element in a list.

you are here » 25

chapter 1 build something great... fast!

My project has a lot of code already! Wouldn't
it be dreamy it there was an easy way for me to save
everything I've done someplace where I can save my

code, share it, and always find it any time I want?

You can use Git to save all of your code,
and Visual Studio will help make it easy.

You’re going to write a lot of code in this book! Wouldn’t it
be great if there was a convenient place to put that code so
you can always go back to it?

We bet that you’ll write some apps that you really like, and
you’ll want to share them with your friends so they can see
the great things you’ve built.

Do you have a desktop and a laptop? A computer at home
and at an office? Wouldn’t it be great if you could start a
project on one computer, then finish it on another one?

Imagine you’re working on a project. You’ve spent hours
getting the code right, and you’re really happy with it.
Then you make a few changes, and...oh no! Something
went completely wrong, your code 1s broken, and you don’t
remember exactly what you changed. It would be great if
you could see a history of all the changes you made, right?

Git can help you do all of those things!

Here are just a few things Git can do for you

* It can save your files somewhere that you can access them from anywhere, any time.

* [t lets you save snapshots of your work so you can go back and see exactly what changed.
* [t lets you share your code with anyone (or keep it private!).
*

It lets a group of people collaborate on a project together—so if you’re learning C# with
your friends, you can all work on code together.

26 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Visval Studio makes it easy to use Git

Git is a really powerful and flexible tool that can help you save, manage, and share
the code and files for all of your projects. It can also be complex and confusing
at times! Luckily, Visual Studio has built-in Git support that takes care of the

complexity. It helps you with Git, so you can concentrate on your code. Visual Studio ean help t
ou Lreate

a new Git vepository on GitHub,
- the popular platform for source
tode hos‘l:ihg and ¢ollaboration.

Create a Git repository

Push to a new remote & Initialize a local Git repository ece Git Changes
©) GitHub Local path © C:\Users\Public\s{ [J Git Changes .
J Azure DevOps .gitignore template O Default (VisualStuq > main 4 Pull | [1 Push
License template @ None Finished the third part of the animal matching game
Other

Add a READMEmd @

@ Existing remote

A;ﬂ Local only () Create a new GitHub repository Commit Staged v Amend =
Account R signin..

v Staged Changes

Owner There are no staged changes.

Repository name @© AnimalMatchingq

v Changes - 38 + Stage All
Description Enter the descripf] = gitignore U
Private repository @ BB AnimalMatchingGame U
[®] AnimalMatchingGame.sin u
@ AnimalMatchingGame.csproj AnimalMatchingGame U
@ App.xaml AnimalMatchingGame U
@ App.xaml.cs AnimalMatchingGame U
) . q : .
Visual Studio’s Git features help you _ﬁ (6] Appshell.xaml AnimalMatchingGame u
. : 0] AppShell.xaml.cs AnimalMatchingGame u
easily add your tode to any Git and D PP
|<—_>| MainPage.xaml AnimalMatchingGame U

push changes as often as You want.

We recommend that you create a GitHub account and use it to
save the code for each of the projects in this book. That will
make it easy for you to go back and revisit past projects any time!

OREILLY

Our free Head First C# Guide to Git PDF gives you a simple, Head First
step-by-step guide to saving your code in Git with Visual Studio. Git
Download it from https://github.com/head-first-csharp/fifth-edition. Pty

to Understanding Git
from the Inside Out

Raju Gandhi

We’ll give you everything you need to use Visual Studio to save and share
your projects. But there is a lot more that you can do with Git, especially if
you’re working with large teams! If you’re fascinated by what you see and

want to do a deep dive into Git, check out Head First Git by Raju Gandhi. € ABrainFriondly Guize

you are here » 27

chapter 1 build something great... fast!)/ou ARE HERE

\l/
/
Home.razor
CREATE THE SHUFFLE THE HanoLE DEerecT wveN App 4 Game
Provect Animars Mouse CLicks THE PLAYER Wins TImER

Add C# code to handle mouse clicks

You've got buttons with random animal emoji. Now you need them
to do something when the player clicks them. Here’s how it will work:

& The player clicks the first button.

The player clicks buttons in pairs. When they
& click the first button, the game keeps track of
that particular button’s animal.

&3 @ o & The player clicks the second button.

The game looks at the animal on the second

!! ik 6o ‘ button and compares it against the one that it
kept track of from the first click.

e M|

&8 & “»

(s 7o %8

&3 &) & The game checks for a match.

If the animals match, the game goes through all of the
M) 4 emojl in its list of shuffled animal emoji. It finds any
emoji in the list that match the animal pair the player
found and replaces them with blanks.

If the animals don’t match, the game doesn’t do anything;

e & 6 In either case, it resets its last animal found so it can do
the whole thing over for the next click.

28 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Before you go on, add the following line of code to the top of your Home.razor file:

@rendermode InteractiveServer < Add this to your file!

In a Blazor app, adding @rendermode InteractiveServer to your Razor file instructs it to render the component

interactively on the server, enabling real-time updates and interactions. This makes sure that actions like mouse

clicks and timer ticks work. They’re processed on the server and then sent back to your browser for seamless updates.

en your penci]

4.What do the last lines of the method starting
with else and going to the end do?

Empty;

animal)

animal)

.Select(a => a.Replace(animal, string.Empty))

string lastAnimalFound = string.
private void ButtonClick(string
{
if (lastAnimalFound == string.Empty)
{
lastAnimalFound = animal;
}
else if (lastAnimalFound ==
lastAnimalFound = string.Empty;
shuffledAnimals = shuffledAnimals
.ToList(Q);
}
else
{
lastAnimalFound = string.Empty;
}
}

A\ When you added the Clicked event handler to your animal button, Visual Studio automatically
added a method called Button_Clicked to MainPage.xaml.cs. Here’s the code that will go into
that method. Before you add this code to your app, read through it and try to figure out what it does.

We've asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.

1. What do these lines of code do?

/

3. What does this block of code do?

you are here »

29

en your penci]

N Solution

string lastAnimalFound = string.Empty;

We've asked you a few questions about what the code does. Try writing down the answers. It’s OK if you’re not 100%
right! The goal is to start training your brain to recognize C# as something you can read and make sense of.

1. What do these lines of code do?
private void ButtonClick(string animal) When the playcr ¢lieks on the

{

fivst animal in a paiv, these lines

if (lastAnimalFound == string.Empty)

{ of tode keep track of whith

// First selection of the pair. Remember it.
lastAnimalFound = animal;

animal the player tlicked.

}
else if (lastAnimalFound == animal) \
{
// Match found! Reset for next pair.
lastAnimalFound = string.Empty;
// Replace found animals with empty string to hide them.
shuffledAnimals = shuffledAnimals
.Select(a => a.Replace(animal, string.Empty))
.ToList(); Y,
}
?159 3. What does this block of code do?
// User selected a pair that doesn't match. This block of eode is vun when
// Reset selection. the player suceessfully elicks on
lastAnimalFound = string.Empty; Yoy . ' .
} g-=mpty a matehing animal. [£ the animals
} mateh, vesets for the next paiv.
4. What do the last lines of the method starting Then it qoes throuah ¢tlears the

with else and going to the end do?

matehing animals in the list.

H: the Playcr tlieks on a setond animal that doesn't
mateh the fivst, it vesets 4o wait for a fivst elick.

Add the event handler and hook it up to the buttons The lines starting with //
are comments. They don’t
Go ahead and add all of the above code to your Razor file. do anything—they’re only
) .) there to make the code
Then modify your buttons to call the ButtonClick method when clicked: easier to understand. We
@foreach (var animal in animalEmoji) added them to help you
{ read the code more easily.

<div class="col-3">
<button @onclick="@(() => ButtonClick(animal))"
type="button" class="btn btn-outline-dark">
<h1>@shuffledAnimals</h1>
</button>

</div> When we ask you to update one thing in a block of code,
} we might make the rest of the code a lighter shade and
make the part of the code you change boldface.

30 https://qithub.com/head-first-csharp/fifth-edition

Let’s take a closer look at how that event handler works. We've matched up the code from the event handler
against our earlier explanation of how the game detects mouse clicks. Look at the code below and compare it
with the code that you just typed into the IDE. See if you can follow along—it's OK if you don’t get 100% of it,
just try to follow the general idea of how the code that you just added fits together. This is a useful exercise for
ramping up your C# comprehension skills.

The player clicks the first button. if (lastAnimalFound == string _Empty)

This code checks to see if this is the first button
clicked. Ifitis, it uses lastAnimalFound to keep

{

lastAnimalFound = animal;

track of the button’s animal. H
Ave You clicking on the buttons, but your
app isnt rcs‘?onding? Make sure you added
@vendermode [nteractiveServer
4o the top of Your Home.vazor file.
The player clicks the second button. else if (lastAnimalFound == animal)

The statements between the opening { and closing {
} brackets only execute if the player clicked on a
button whose animal matches the last one clicked.

The game checks for a match.

This C# code is only run if the second animal
matches the first one. It goes through the shuffled
list of animal emoji and replaces the ones that
match the pair that the player found with blanks.

shuffledAnimals = shuffledAnimals
.Select(a => a.Replace(animal, string.Empty))
.ToList();

You'll find this statement in the code twice: in the — lastAnimalFound = string.Empty;
section that's run if the second animal the player

clicked matches the first, and in the section that’s

run if the second animal doesn’t match. It blanks

out the last animal found to reset the game so the

next button click is the first of the pair.

Uh-oh—there’s a bug in this code! Can you spot it?
We’ll track it down and fix it in the next section.

you are here » 31

chapter 1 build something great... fast! &

Are your buttons not clicking? Make sure you added the
@rendermode InteractiveServer
line to the top of your Home.razor file.

Test your event handler

Run your app again. When it comes up, test your event handler by clicking on a button,
then clicking on the button with the matching emoji. They should both disappear.

€&
@
&
&
&
@
&
&

9
o
o)
4
-9
&o
~
<

Click on another, then another, then another. You should be able to keep clicking on
pairs until all of the buttons are blank. Congratulations, you found all the pairs!

I = T I R I o 3| & &
» | & » |
¥ e 4 @ 4

2
o
&
2
2
o
&

N

>

If your game doesn’t work the way it should or you don’t see
the bug on this page, go back and check the code you entered
against the code in the book. It’s really easy to overlook a typo.

Finding those issues is a good use of your time, because spotting
errors in your code is a really good developer skill to work on.

32 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Uh-oh—there’s a bug in the code!

If you typed in all of the code correctly, you may have noticed a problem. Start your
app, click the “Play again?” button to show the random animals, and click on a pair
to make the animals disappear from their buttons.

But what happens if you click on the same button twice?

Reload the page in your browser to reset the game. But this time instead of finding a
pair, click twice on the same button. Hold on—there’s a bug in the game! It
should have ignored the click, but instead, it acted like you got a match.

£ you elick on the same - o
Lu‘Z‘cpn twite, the game @ |3
acts like you found a -\5
mateh. That's not how M €
the game should work!

When you double-clicked on the same button, your game removed
both of the animals in the pair. Wait, what!? That’s not
supposed to happen! Your game has a bug

Every l)ug is caused l)y

Don’t worry, this bug is not your fault! a Pl" Ol)lem n tlle CO(Ie,
We left that bug in your code on purpose. You're going to be writing . .

alot of code throughout this book. Every chapter has several projects S0 tlle {lrSt Step n

for you to work on...and there are opportunities for bugs in every one {ixing a Lug is {iguring
of those projects. Finding and fixing bugs is a normal and healthy

part of writing code—and a really valuable skill for you to practice. out Wllat,s CaUSing it.

When you find a bug, you need to sleuth it out

Every bug is different. Code can break in many different ways.

But there’s one thing all bugs have common: every one of them s
caused by a problem in the code. So when there’s a bug, your
job is to figure out what’s causing it, because you can’t fix the problem
until you know why it’s happening;

If you’ve ever read a mystery novel or watched a detective show, you
know that to solve a mystery, you need to find the culprit. So let’s
do that right now. It’s time to put on your Sherlock Holmes cap, grab
your magnifying glass, and sleuth out what’s causing the bug.

you are here » 33

chapter 1 build something great... fast!

Use the debugger fo troubleshoot the problem

You might have heard the word “bug” before. You might have even said something like this to your friends at
some point in the past: “That game is really buggy, it has so many glitches.” Every bug has an explanation—
everything in your program happens for a reason—but not every bug is easy to track down.

Understanding a bug is the first step in fixing it. Luckily, the Visual Studio debugger is a great tool for

that. (That’s why it’s called a debugger: it’s a tool that helps you get rid of bugs!)

Q Think about what’s going wrong.

The first thing to notice is that your bug is reproducible: any time you click on the same button

twice, it always acts like you clicked a matching pair.

The second thing to notice is that you have a pretty good idea where the bug is. The problem
only happened affer you added the code to handle the Click event, so that’s a great place to start.

e Add a breakpoint to the Click event handler code that you just wrote.
Click on the first line of the ButtonClick method and choose Run >> Toggle Breakpoint (38)
from the menu. The line will change color and you’ll see a dot in the left margin:

[Whena breakpoint
is seton aline, the

62 private void ButtonClick(string animal)
63 {
64 if (lastAnimalFound == string.Empty) <
65 {
66 //First selection of the pair. Remember it.
67 lastAnimalFound = animal;
68 }

IDE changes its
background color
and displays a dot in
the left margin.

I Anatemy of the Debugger

the next statement, but if that
s{:ajccfncn{: is @ method it only exetutes
VSCode looks a little different the first statement inside the method.

Your app when it's vunning.

When your app is paused in the debugger—that’s called “breaking” the app—the Debug
controls show up in the toolbar. You’ll get plenty of practice using them throughout the
book, so you don’t need to memorize what they do. For now, just read the descriptions
we’ve written, hover your mouse over them to see the tooltips, and check the Run or Debug
menu to see their corresponding shortcut keys (like F10 for Step Over).

The Continue Exetution The Step Out button Finishes exetuting the turrent method and
button starts your app breaks on the line after the one that called it
running a9 in-)
u’Continue'd'Ovﬁﬁﬁ BO > ¢ a1
‘/ou tan use the Pause
Execution button to pause The Step Into button also executes The Step Over button

exetutes the next
statement. |£ it's a method,
it vuns the whole thing,

but uses very similar icons to
do the same things.
34 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Keep debugging your event handler

Now that your breakpoint is set, use it to get a handle on what’s going on with your code.

(5]

Click on an animal to trigger the breakpoint.

If your app is already running, stop it and close all browser windows. Then run your app
again and click any animal button. Visual Studio should pop into the foreground. The line
where you toggled the breakpoint should now be highlighted in a different color:

62 private void ButtonClick(string animal)
63 {

® 64 | if (lastAnimalFound == string.Empty)
65 {

Hover over
Move your mouse to the first line of the method, which starts private void, and hover yous ., 1" 1/ <, .

cursor over animal. A small window will pop up that shows you the animal that you clicked {},, 4, oj that
on. \/\/ou clicked.

private void ButtonClick(string animal; animal @&y’ =

{

Press the Step Over button or choose Run >> Step Over (4> 880) from the menu. The
highlight will move down to the { line. Step over again to move the highlight to the next
statement:

64 if (lastAnimalFound == string.Empty)

65 {

66 //First selection of the pair. Remember it.
d 67 lastAnimalFound = animal;

68 }

Step over one more time to execute that statement, then hover over lastAnimalFound:

66 //First selection of the pair. Remember it.
67 lastAnimalFound lastAnimalFound @' &’ 3
» 68 i

The statement that you stepped over set the value of lastAnimalFound so it matches animal.

That’s how the code keeps track of the first animal that the player clicked.

Continue execution.
Press the Continue Execution button or choose Run >> Continue Debugging (88) from the
menu. Switch back to the browser—your game will keep going until it hits the breakpoint again.

you are here » 35

chapter 1 build something great... fast!

shu«cﬂchnimals is a

(5]

Click the matching animal in the pair.
Find the button with the matching emoji and click it. The IDE will trigger the breakpoint and pause

the app again. Press Step Over—it will skip the first block and jump to the second:

2 69 =
70
71
72

else if (lastAnimalFound == animal)

{
//Match found! Reset for next pair.
lastAnimalFound = string.Empty;

Hover over lastAnimalFound and animal—they should both have the same emoji. That’s how
the event handler knows that you found a match. Step over three more times:

74
> 75
76
77

//Replace found animals with empty string to hide them
shuffledAnimals = shuffledAnimals
.Select(a => a.Replace(animal, string.Empty))
.ToList();]

Now hover over shuffledAnimals. You'll see several items in the window that pops up. Click the
triangle next to shuffledAnimals to expand it, then expand _items to see all the animals:

v shuffledAnimals
v _items
0

List that contains !
all of the animals 2
eurrently in the game. 8
Use these triangles 4
to fivst expand =
shu\cﬂchnimals, and 6
then expand _items 7
to see the items 8
that it contains. 9
10
11
12
13
14
15

36

System.Collections.Generic.List<string>
string[](16)
°om
[/ R2Y
'3

Iggl
Onte You've expanded
shuffledAnimals and _items,
You €an use the debugger to
inspect the contents of the
List. You'll learn more about
what a List is and how it
works in Chapter 8.

e &

29
F s

¢

Q00000000
.

Continue Execution to resume your game, then click another matched pair of animals to
trigger your breakpoint again and return to the debugger. Then hover over shuffledAnimals
again and look at its items. There are now two (null) values where the matched emoji used to be:

'3

We’ve sifted through a lot of
(null) evidence and gathered some
Q' important clues. What do you
e think is causing the problem?

https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

O
Finding and fixing bugs is one part typing, nine parts f)\inkin?.n O Q(')@ O
and 100% guaranteed to make you a better developer. That's - ,Q
what these “Sleuth it Out” settions ave all about. \’ O - P

The Case of the Unexpected Match
You’ve probably heard the word “bug” before.

You might have even said something like this to your friends at some point in the past: “That game is really
buggy, it has so many glitches.” Every bug has an explanation, and everything in your program happens for a
reason...but not every bug is easy to track down. That's why we’ll include tips for sleuthing out bugs throughout
the book, starting with this “Sleuth it Out” section.

Every bug has a culprit.
Bugs are weird. They’re what happens when your code does something you didn’t expect it to do.

But bugs are also normal. Every developer spends time finding and fixing bugs. It's a normal part
of writing code. You're going to write code that doesn’t do what you expect it to. And
when you do, the first thing you need to do is figure out what’s causing the bug.

The first step in finding a bug is thinking about what might have caused it.

Sherlock Holmes once said, “Crime is common. Logic is rare. Therefore it is upon the

logic rather than upon the crime that you should dwell.” That's great advice for figuring out what caused a bug.
Don't get frustrated because your app doesn’t do what you want (that’s dwelling on the crime!). Instead, think
about the logic of the situation. So let’s look at the code and figure out what's going on.

Read the code carefully and search for clues.

We know that all of the code for handling mouse clicks is in the Button_Clicked event handler that you just
added. So let’s go back to the code and see if we can find clues about what went wrong.

Luckily, you did that “Sharpen your pencil” exercise. You looked closely at the code in the Button_Clicked
event handler method to understand it. (If you haven’t done that exercise yet, go back and do it now!)

Based on what we found in the “Sharpen your pencil” exercise, we already know a few things about the code:
1. Every time you click the button, the click event handler runs.

2. The event handler uses animal to figure out which animal you clicked first.

3. The event handler uses lastAnimalFound to figure out which animal you clicked second.

4

If animal equals lastAnimalFound, it decides it has a match and removes the matching animals from
the list.

Those are the important clues that will help us find and fix the bug. Before you go on, can you sleuth out
what’s causing the game to decide that it found a match when you double-click on an animal?

of Sleuth it Out (i'

you are here »

37

chapter 1 build something great... fast!

You'll get a lot of practice

sleuthing out bugs. [£'s a veally
useful developer skill: —&

“Elementary, my dear Watson.”

What happens if you click the same animal button twice? Let’s find out! Repeat the same steps you just did, except
this time click the same animal twice. Watch what happens when you get to step e

Hover over animal and lastAnimalFound, just like you did before. They're the same! That's because the event
handler doesn’t have a way to distinguish between different buttons with the same animal.

...and fix the bug!

Now that we know what'’s causing the bug, we know how to fix it: give the event handler a way to distinguish between
the two buttons with the same emoji.

First, make these changes to the ButtonCick event handler (make sure you don’t miss any changes):

Str:l:.ng -Empty; Add this line 0‘(: tode Jus{ above the bcg'mn'mg
string.Empty; < of the ButtonClick event handler method.

private void ButtonClick(string animal, string animalDescription)

{

string lastAnimalFound
string lastDescription

if (lastAnimalFound == string.Empty)

{ Make these thanges
// First selection of the pair. Remember it. inside the method.
lastAnimalFound = animal; / \[

lastDescription = animalDescription;

}

else if ((lastAnimalFound == animal) && (animalDescription != lastDescription))

Then replace the foreach loop with a different kind of loop, a for loop—this for loop counts the animals:

<div class="row">
@for (var animalNumber = 0; animalNumber < shuffledAnimals.Count; animalNumber++)

{ - Replace the line that starts

var animal = shuffledAnimals[animalNumber]; ! : .
var uniqueDescription = $"Button #{animalNumber}"; with @for with this line

<div class="col-3"> - Then add these two lines after the {.

<button @onclick="@(() => ButtonClick(animal, uniqueDescription))"
type="button" class="btn btn—outline—dark">@anima1</button>§

Now debug through the app again, just like you did before. This time when you click the same Finally, modi‘(’\y
animal twice it will skip down to the end of the event handler. The bug is fixed! this line.

38 https://github.com/head-first-csharp/fifth-edition

therejare no
Dumb Questions

Q: You mentioned that I'm running a server and a web
application. What did you mean by that?

A: When you run your app, the IDE starts up the browser that
you selected. The address bar in the browser has a URL like
https://localhost:5001/—if you copy that URL and paste it into
the URL bar of another browser, that browser will run your game,
too. That's because the browser is running a web application, or
a web page that runs entirely inside your browser. Like any web
page, it needs to be hosted on a web server.

Q: What web server is my browser connecting to?

A: Your browser is connecting to a server that's running inside
Visual Studio. Click the Application Output button at the bottom of
the IDE to open a window that shows you the output of whatever
application is running—in this case, it's an application that
includes the server that's hosting your web application. Scroll or
search through that window to find the line that shows it listening
for incoming browser connections:

Now listening on: https://localhost:5001

[)20: IDE Tip: The Errors Window

Unless you have a superhuman ability to enter code perfectly without a single typo, you've seen the Errors window at the
bottom of the IDE. It pops up when you try to run your project but it has errors. Here's what it looked like when we tried
to fix the bug, but accidentally included this typo: string lsatDescription =

Blazor Learner’s Guide

Keep an eye out for these QEA seetions. They often answer
Your most pressing questions, and point out questions other
veaders are thinking of. In fact, a lot of them ave veal
ﬂucs{ions from veaders of previous editions of this book_’

Q: When | press 38— (Command-Tab) to switch between
macOS apps, there are a bunch of instances of Edge or
Chrome still open. What’s happening?

A: Every time you stop and restart your app in Visual Studio,

it launches a new instance of the browser because it needs to
establish a separate connection for debugging. You can connect
other instances of a browser, but you can only debug with the
browser that the IDE launched. You can test this yourself: start, stop,
and restart your app in the IDE, then set a breakpoint. Only one of
the browsers will actually pause when the breakpoint is hit.

Q: Blazor web apps seem a lot more complicated than
console apps. Do they really work the same way?

A: Yes. When you get down to it, all C# code works the same
way: one statement executes, then the next one, and then the
next one. One reason web apps seem more complex is because
some methods are only called when certain things happen, like
when the page is loaded or the user clicks on a button. Once a
method gets called, it works exactly like in a console app—and
you can prove that to yourself by setting a breakpoint inside of it.

string.Empty;

@ Errors

! Line ~ Description File Project Path

(%] 90 The name 'lastDescription' does not exist in the current context Index.razor Blazor...tchGame Pages/Index.razor
(CS0103)

(%) 87 The name 'lastDescription' does not exist in the current context Index.razor Blazor...tchGame Pages/Index.razor
(CS0103)

You can always check for errors by building your code, either by running it or choosing Build All (88 B) from the Build
menu. If the Errors window doesn't pop up, that means your code builds, which is what the IDE does to turn your code
into a binary, or an executable file that macOS can run.

Let's add an error to your code. Go to the first line in your SetUpGame method, then add this on its own line: Xyz

Build your code. The IDE will open the Errors window with at the top and one error. If you click elsewhere, the
Errors window will disappear—but don't worry, you can always reopen it by clicking at the bottom of the IDE.

you are here » 39

chapter 1 build something great... fast!

You ARE HERE

Home.razor

CREATE THE SHUFFLE THE HanoLE DETECT WHEN ADD 4 GAmE
ProJecT AvimaLs Mouse Cricke THE PLAYER Wins TIMER

Add code to reset the game when the player wins

The game is coming along—your player starts out with a grid full of animals to match,
and they can click on pairs of animals that disappear when they’re matched. But what
happens when all of the matches are found? We need a way to reset the game so the
player gets another chance.

The player clicks on
pairs and they disappear

s a3 *3 Eventually, the player
. . finds all of the pairs

Once the last pair is
found, the game resets

4 & M| 2
.

rq * I X
P P S N & Q,S 50y
(SAY ~—
[%s
e

Take a minute and look through the C# code and

‘\ucs{:ion that it's ask'mg.

40 https://github.com/head-first-csharp/fifth-edition

HTML markup. What parts of it do you think you'll When You see 3 Brain Power
need to change to make it reset the game once element, take a minute
the player has clicked all of the matched pairs? and veally think about the

Blazor Learner’s Guide

| Exercise

e
~T Here are four blocks of code to add to your app. Once each block is in the right place, the game will reset as soon as
the player gets all of the matches.

'

|int matchesFound = 0;| |matchesFound = 0;| matchesFound++;
if (matchesFound == 8)
<div class="row"> {
<h2>Matches found: @matchesFound</h2> SetUpGame();
</div> }

Your job is to figure out where each of the four blocks goes. We've copied parts of the code for your game below
and added four boxes, one for each block of code above. Can you figure out which block of code goes in each box?

<div class="container">

<div class="row">
@for (var animalNumber = 0; animalNumber < shuffledAnimals.Count; animalNumber++)

var animal = shuffledAnimals[animalNumber];
var uniqueDescription = $"Button #{animalNumber}";

<div class="col-3">
<button @onclick="@(() => ButtonClick(animal, uniqueDescription))"
type="button" class="btn btn-outline-dark">
<h1>@animal</h1>
</button>
</div>

</div>

</div>

List<string> shuffledAnimals = new List<string>();

rivate void SetUpGame()
This isn’t a pencil-and-paper exercise—you

shuffledAnimals = animalEmoji should do this exercise by modifying your code
-OrderBy(item => Random.Shared.Next()) in the IDE. When you see an Exercise with the
.ToList(Q); . . . A
running shoe icon in the corner, that’s your cue

| | to go back to the IDE and start writing C# code.

else if ((lastAnimalFound == animal) && (animalDescription != lastDescription))

// Match found! Reset for next pair.
lastAnimalFound = string.Empty;

-

/é Eiglgzej‘o%nd anﬁmgﬁ vdvi\th eTpty string to hide them When you’re doing a code
shuffledAnimals = shuffledAnimals e it :

.Select(a => a.Replace(animal, string.Empty)) exercise, 'tsw

.ToListQ); to peek at the solution! We

| don’t learn effectively if
we’re frustrated—it’s easy
} to get stuck on one little
thing, and the solution
can help you get past it.

|
you are here » 41

Y Exercise

—

~".'é‘ Bl o
e E;()lltt]‘)ll
=T Here’s what the code looks like with each block of code in the correct place. If you haven't already, add all four
blocks of code to your game to make it reset when the player finds all the matches.

<div class="container">
<div class="row">
@for (var animalNumber = 0; animalNumber < shuffledAnimals.Count; animalNumber++)

var animal = shuffledAnimals[animalNumber];
var uniqueDescription = $"Button #{animalNumber}";

<div class="col-3">
<button @onclick="@(() => ButtonClick(animal, uniqueDescription))"
type="button" class="btn btn-outline-dark">
<hl>@animal</h1>
</button>
</div>

</div>
<div class="row">
<h2>Matches found: @matchesFound</h2>
</div>
</div>

List<string> shuffledAnimals = new List<string>();

|int matchesFound = 0;|

?rivate void SetUpGame()

shuffledAnimals = animalEmoji
.OrderBy(item => Random.Shared.Next())
.ToList();

|matchesFound = Gﬂ

?lse if ((lastAnimalFound == animal) && (animalDescription != lastDescription))

// Match found! Reset for next pair.
lastAnimalFound = string.Empty;

// Replace found animals with empty string to hide them
shuffledAnimals = shuffledAnimals
.Select(a => a.Replace(animal, string.Empty))
.ToList(Q);

matchesFound++;
if (matchesFound == 8)
{

}

SetUpGame();

42 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

You ARE HERE

Home.razor

CREATE THE SHUFFLE THE HanoLE DerecT wien ADD A 6)
ProsecT AmmaLs Mouse Cricks THE PLAYER WiNs TImER
Finish the game by adding a timer Tick
Your animal matching game will be more exciting if players can try 1 i—c“ T-l E ’.,.l:

to beat their best time. We’ll add a timer that “ticks” after a fixed A
interval by repeatedly calling a method.

&8 M
B M| 4 Timers "tick” every
time interval lay
% o calling methods
Matches found: 3 over and over
Time: 8.8s again. You'll use a
timer that starts
when the Player
Let’s add some extitement to the gamc_’ The time
elapsed since the game started will appear at the starts tlle game anJ
bottom o(: the window, £ons{‘,8h{:|\/ Soing wp) and
only stopping after the last animal is matehed. ean Wllen tlle last

animal is matched.

you are here » 43

chapter 1 build something great... fast!

Add a timer to your game’s code

44

e}
@ Start by finding this line at the very top of the Home.razor file: @page " /" /- Add thlsy

Add this line just below it—you need it in order to use a Timer in your C# code:

@Qusing System.Timers

@ You’ll need to update the HTML markup to display the time. Add this just below the
first block that you added in the exercise:

</div>
<div class="row">
<h2>Matches found: @matchesFound</h2>
</div>
<div class="row">
<h2>Time: @timeDisplay</h2>
</div>
</div>

@ Your page will need a timer. It will also need to keep track of the elapsed time:

List<string> shuffledAnimals = new List<string>();
int matchesFound = 0;

Timer timer;

int tenthsOfSecondsElapsed = 0;

string timeDisplay;

@ You need to tell the timer how frequently to “tick” and what method to call. You’ll
do this in the Onlnitialized method, which is called once after the page is loaded:

protected override void OnInitialized()

{
timer = new Timer(100);
timer.Elapsed += Timer_Elapsed;
SetUpGame();

}

@ Reset the timer when you set up the game:
private void SetUpGame()

{
shuffledAnimals = animalEmoji
.OrderBy(item => Random.Shared.Next())
.ToList();
matchesFound = 0;
tenthsOfSecondsElapsed = 0;
}

https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

You need to stop and start your timer. Add this line of code near the top of the
ButtonClick method to start the timer when the player clicks the first button:

if (lastAnimalFound == string.Empty)

{
// First selection of the pair. Remember it.
lastAnimalFound = animal;
lastDescription = animalDescription;
timer.Start();

}

And finally, add these two lines further down in the ButtonClick method to stop the
timer and display a “Play Again?” message after the player finds the last match:

matchesFound++;
if (matchesFound == 8)

{
timer.Stop();
timeDisplay += " - Play Again?";

SetUpGame();
}

@ Finally, your timer needs to know what to do each time it ticks. Just like buttons have
Click event handlers, timers have Tick event handlers: methods that get executed
every time the timer ticks.

Add this code at the very bottom of the page, just above the closing bracket }:

private void Timer_Elapsed(object? sender, ElapsedEventArgs e)

{
InvokeAsync(() =>
tenthsOfSecondsElapsed++;
timeDisplay = (tenthsOfSecondsElapsed / 10F)
.ToString("0.0s");
StateHasChanged();
b;
}

The timer starts when the Player clicks the
first animal and sto]os when the last match is
found. This doesn’t func[amentally change the

way the game worlcs, but makes it more exciting.

you are here » 45

chapter 1 build something great... fast! &
Having trouble getting back to the Solution

Explorer in Visual Studio Code? Just choose
Explorer (Ctri+Shift+E) from the View menu.

Clean up the navigation menu

Your game is working! But did you notice that there are other pages in your app? Try clicking on “Counter” or
“Fetch data” in the navigation menu on the left side. When you created the Blazor WebAssembly App project, Visual
Studio added these additional sample pages. You can safely remove them.

Expand the Layout folder undernecath Components and double-click NavMenu.razor. Find this line:

BlazorMatchGame

Make sure You only
delete the second and
Animal Matching Game thivd <div> bloeks for

Counter and Weather-

and replace it with this:

Then delete these lines:

Hold down Control or 3 (Command) and click to multiselect Counter.razor and Weather.razor in the
Pages folder. Right-click on one of them and choose Delete from the menu to delete the two files.

Finally, go back to your Home.razor file and change the page title: Now your app doesn't have any € xbraneous files that

<PageTitle>Animal Matching Game</PageTitle> it doesn’t need, and the navigation bar on the .sidc
doesn't intlude links to pages that no longer exist.

And now your game is done!

It was really usetful to break the game up into smaller
pleces that I could tackle one at a time,

Whenever you have a large project, it’s always a good
idea to break it into smaller pieces.

One of the most useful programming skills that you can develop is the ability
to look at a large and difficult problem and break it down into smaller, easier
problems.

It’s really easy to be overwhelmed at the beginning of a big project and think,
“Wow, that’s just so...big!” But if you can find a small piece that you can
—— work on, then you can get started. Once you finish that piece, you can move
on to another small piece, and then another, and then another. As you build
each piece, you learn more and more about your big project along the way.

46 https://github.com/head-first-csharp/fifth-edition

Even better ifs...

Your game is pretty good! But every game—in fact, pretty
much every program—can be improved. Here are a few
things that we thought of that could make the game better:

* Add different kinds of animals so the same ones
don’t show up each time.

* Keep track of the player’s best time so they can try
to beat it.

* Make the timer count down instead of counting up
so the player has a limited amount of time.

Bu]let Points

Blazor Learner’s Guide

MinNL
en your penei] ——

Can you think of your own “even better

if” improvements for the game? This is a
great exercise—take a few minutes and
write down at least three improvements
to the animal matching game.

1

Wc.'!rc serious—take a few minutes and do

this. S{:cﬂ?ing back and {:hinking about the
Project you just finished is a great way to
seal the lessons You learned into Your brain.

= An event handler is a method that your application
calls when a specific event like a mouse click, page
reload, or timer tick happens.

= The IDE’s Errors window shows any errors that
W prevent your code from building.

= Timers execute Tick event handler methods over and
over again on a specified interval.

= foreach is a kind of loop that iterates through a
collection of items.

= foris a kind of loop that can be used for counting.

= When your program has a bug, gather evidence and
try to figure out what’s causing it.

m Bugs are easier to fix when they’re reproducible.

= The IDE's debugger lets you pause your app on a
specific statement to help track down problems.

m Setting a breakpoint makes the debugger pause on
the statement where the breakpoint is set.

= Visual Studio makes it really easy to use source
control to back up your code and keep track of all
changes that you've made.

= You can commit your code to a remote Git
repository. We use GitHub for the repository with the
source code for all of the projects in this book.

i\

Just a quick veminder: we'll vefer to
Visual Studio or Visual Studio Code
as “the [DE” a lot in this book.

4 reat 'o,_s/ \

This is a oreat time to YuS\'\)
your tode to 61‘(‘,’ Then You I
always be able 4o 9o back to
our ?ro)cc{', if You wan 2
reuse some of the tode in it.

you are here » 47

great job now go straight to chapter 2

It looks like we're done with the project —
and that's the end of Chapter [, It's time to go back to
the book, right?

That’s right. You can pick up your
learning at the start of Chapter 2.

Chapter 1 was all about getting used to writing
code in Visual Studio or VSCode, and starting to
get some important C# ideas into your brain. Now
it’s time to head back to the main book. Go to the
start of Chapter 2 and jump right back in.

48 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

How do I know when to come back to the Blazor
Learner's Guide?

Come back to this PDF as soon as you reach the
.NET MAUI project near the end of the chapter.

In Chapter 2, you’ll work on Console App projects. About two thirds of
the way through the chapter, you’ll reach a page with this heading:

Controls drive the mechanics of your user interfaces

That’s when you come back to the Blazor Learner’s Guide, where you’ll do
an equivalent Blazor project.

You can do the same thing any time you see a .INET MAUI project
in the book. We’ll give you an equivalent Blazor project, and tell you
where to pick up reading when you’re done.

\

(. . W
Don't worry about memorizing the syccu-(:u', settion to wate
out for. All you need Lo know is that

you are here » 49

chapter 2 experiment with controls €— You ¢an figure out what chapter you've in by looking here.

Controls drive the mechanics of your user interfaces

In the last chapter, you built a game using Button controls. But there are a lot of different ways that you can use
controls, and the choices you make about what controls to use can really change your app. Does that sound weird?
It’s actually really similar to the way we make choices in game design. If you’re designing a tabletop game that
needs a random number generator, you can choose to use dice, a spinner, or cards. If you’re designing a platformer,
you can choose to have your player jump, double jump, wall jump, or fly (or do different things at different times).
The same goes for apps: if you’re designing an app where the user needs to enter a number, you can choose from
different control to let them do that—and that choice affects how your user experiences the app.

Meet some of the controls you'll use in this book

There’s a Blazor project for most of the chapters in the book. We included them so you can go beyond console
apps and start learning how to build visual apps. In those projects, you’ll use many different controls to build each
app’s user interface (or UI)—or the way the window is laid out so the user can interact with it—of each app.

Here are some controls you'll see in Blazor applications.

Enter text I 1 2 3 4 5 6
* A text box lets a user enter % Radio buttons let you restrict the user’s choice.

any text they want. But we They often look like circles with dots in them, but

need a way to make sure you can style them to look like regular buttons too.

they’re only entering numbers

and not just any text. f Controls are common] We tan borrow the
user interface (Ul) idea of .
1dea ot methanies
components, the £ d
—— building blocks of < om Video games
* Sliders are used exclusively to choose a number. your Ul. The choices to l{mdcrsﬁand our
Phone numbers are just numbers, too, so technically you make about options, so we ¢an
you could use a slider to choose a phone number. what controls to use make great choices
Do you think that’s a good choice? change the mechanics or any of our own
of your app. J apps—not Jjust games.
09/23/2019 =] (]
September 2019 v %
s M T W T F s % Pickers are controls that are
1 2 3 4 5 6 7 specially built to pick a specific

type of value from a list. For
example, date pickers let
you specify a date by picking

8 9 10 11 12 13 14

15 16 17 18 19 20 21

2 El 2 % % 27 28 its year, month, and day, and
2 3 1 2 3 4 5 color pickers let you choose 52 60 183
6 7 8 9 10 11 12 a color using a spectrum slider R G B s

. or by its numeric value.
oday

50 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Create a new Blazor Web App project

Earlier in this Blazor Learner’s Guide, you created a Blazor Web App project for your animal matching game. You’ll
do the same thing for this project, too.

Here’s a concise set of steps to follow to create a Blazor Web App project, change the title text for
the main page, and remove the extra files that Visual Studio creates. We won’t repeat this for every
additional project in this guide—you should be able to follow these same instructions for all of the
Juture Blazor Web App projects.

o

(2]

Create a new Blazor Web App project.
Create a new project just like you did at the beginning of Chapter 1, except this time give it a different name.
In this case, use the name ExperimentWithControlsBlazor.

Delete the extra lines from Home.razor and set the PageTitle tag to match your app.
When you create a Blazor Web App project, the Home.razor file contains lines that display “Hello, World!”
and “Welcome to your new app.” Delete those lines.

All of the projects in this book will use interactive controls, so add a @rendermode InteractiveServer line.

In Chapter 1 we learned that the <PageTitle> tag in the Razor file sets the page title that the browser displays
in the tab. Change it to match the name of the app. Here’s what your page will look like:

@rendermode InteractiveServer

@page "/" Modify Home.vazor to delete the

@vrendermode line, set the page

<PageTitle>Experiment With Controls</PageTitle> title so it matehes your app, and
delete the extra lines at the end.

Remove the extra navigation menu options and their corresponding files.
This is just like what you did at the end of the animal matching game project. Expand the Layout folder inside
Coponents and double-click on NavMenu.razor, then delete these lines:

Finally, delete the Counter.razor and Weather.razor files in the Pages folder.

&The layout of a Blazor Web App project may change
if you're using a different version of .NET, so make

sure you create your projects using .NET 8.0. you are here » 51

chapter 2 experiment with controls

Create a page with a slider control

Many of your programs will need the user to input numbers, and one of the most basic controls to input a number
1s a slider, also known as a range input. Let’s create a new Razor page that uses a slider to update a value.

[Edit the Razor page, just
like you did with the animal
mateh game in Chapter |.
@rendermode InteractiveServer The <PagcTiJclc> {ao sets the titl

n n 5 Sc e : C
@page "/ I_/_ that gets displayed in the browser tab.

o Replace the Home.razor page.
Open Home.razor and replace all of its contents with this HTML markup:

<PageTitle>Experiment With Controls</PageTitle>

<div class="container"> [The class="row" attribute in this tag tells

<div class="row"> < the page to render everything between the
<hl>Experiment with controls</hl> opening <div class="row"> tag and the

:ég\ll\IZlass:"row mt=2"> closing </div> tag in a single row on the page.
Adding wmt-2 to <div class="col-sm-6">
the ctlass causes the _Plck a number:) .
page to add a two- :é(ij$VZlass="col—sm—6"> This is an input tag. It has a type attribute
space {o‘, margin <input type="range" /> < that determines what kind of input
bove the vow. </div> control appears on the page. When you
abe </div> set the type to range, it displays a slider:
<div class="row mt-5"> <input type="range"/>
<h2> HTML controls sometimes look different
</h2§ere 's the value: depending on what browser you use. A
</div> slider in Edge looks like this: =9
</div>)

Q Run your app.
Run your app just like you did with the app in Chapter 1. Compare the HTML markup with the page
displayed in the browser—match up the individual <div> blocks with what’s displayed on the page.

)

© @ | | Experiment With Controls x [<div class="row">

S O | G httpsy/localhost:5001 <hl>Experiment with controls</hl>
</div>

Experiment With Controls / ADOUT
<div class="col-sm-6">

EXperiment with controls “—_ Here's the vow we pointed

out above| See i‘p You tan

Pick a number: =0 S?O‘t the other vows in
\ the HTML markup.

Here's the value:

Pick a number:
</div>

<div class="col-sm-6">
f <input type="range"/>
/ </div>

<div class="row mt-5">
<h2>Here's the value:</h2>
</div>

52 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Add C# code to your page.

Go back to Home.razor and add this C# code to the bottom of the file:

@code

{
private string DisplayValue = ""; The UpdateValue method is a

Change event handler. It takes

private void UpdateValue(ChangeEventArgs e) one parameter, which your
{ . . method can use to do something
) DisplayValue = e.Value.ToString(); with the data that changed.

} & The change event handler updates DisplayValue any time it's called with

a value. [+’ oka\/ if You see 3 st\uiggly underline and 5:{: a warning on

this line of code—we'll learn how to fix that later in the book
Hook up your range control to the Change event handler you just added.
Add an @onchange attribute to your range control:

@rendermode InteractiveServer
@page ||/||

When you use @onchange to
<PageTitle>Experiment With Controls</PageTitle> hook U)F; a control to a Change

event handler, your page calls
the event handler any time
the control’s value changes.

<div class="container">
<div class="row">
<hl>Experiment with controls</hl>
</div>
<div class="row mt-2">
<div class="col-sm-6">
Pick a number:
</div>
<div class="col-sm-6">
<input type="range" @onchange="UpdateValue" />

</div> p A"‘/ time DisFlayValuc

</div> thanges, the value d;
0 e displayed

<div class="row mt-5"> . Y

_cta on the Page will chan3¢ +oo0.

Here's the value: @DisplayValue

</h2>

</div>
</d iv> ©® @ | Experiment With Controls x I
& O B https://localhost:5001 b ¥= S

Experiment With Controls About

A tHome Experiment with controls

Pick a number: ==]

\/ou added this
Here's the value:@/- value that gets

updated any time

the slider thanges.

you are here » 53

chapter 2 experiment with controls

Add a text input to your app

The goal of this project is to experiment with different kinds of controls, so let’s add a text input control
so users can type text into the app and have it display at the bottom of the page.

o Add a text input control to your page’s HTML markup.
Add an <input ... /> tag that’s almost identical to the one you added for the slider. The
only difference is that you’ll set the type attribute to "text" instead of "range". Here's the

HTML markup: .
. . Here’s the markup for the text input control. Its
<div class="container"> type is "text" and it uses the same @onchange
<div class="row"> tag as the slider. There’s an additional tag to
_<hl>Experiment with controls</hl> set the placeholder text, so the control looks
</div> like this until the user enters text:
<div class="row mt-2">
You've adding <div class="col-sm-6"> Enter text
another vow Enter text: |
1o your page </div>
with a two— <div class="col-sm-6">
spate top <input type="texE:: placeholdef::“Enter text"
margin.] @onchange="UpdateValue" />
</div>
</div>

<div class="row mt-2">
<div class="col-sm-6">
Pick a number:
</div>

Run your app again—now it has a text input control. Any text you enter will show up at the

bottom of the page. Try changing the text, then moving the slider; then changing the text again.
The value at the bottom will change each time you modify a control.

O ® | Experiment With Controls x ==

- () 8 https://localhost:5001 Yoo ok L4

Experiment With Controls You migh‘t have to hit Enter after Yyou '{‘,\/Pc Yyour text for the
app to vegister the thange and vun the event handler.

Experiment with controls

Enter text:

About

A Home

[Hello worla!]
Pick a number:
The event handler updates

[this text, ‘)us{: like befove.
Here's the value: Hello world!

54 https://github.com/head-first-csharp/fifth-edition

Blazor LealimeristG @itie

e Add an event handler method that only accepts numeric values.
What if you only want to accept numeric input from your users? Add this
method to the code between the brackets at the bottom of the Razor page:

private void UpdateNumericValue(ChangeEventArgs e) Vou'll learn all about
n ow

{ . .
if (int.TryParse(e.Value.ToString(), out int result)) int. TryParse later in
& the book—1co\r now, just

{
DisplayValue = e.Value.ToString(Q); enter the code exactly
} as it appears heve.

} Try putting a breakpoint in this method and
using the debugger to explore how it works. ’r

You may see warnings

e Change the text input to use the new event handler method. on the tode in this

Modify your text control’s @nchange attribute to call the new event handler: method. You tan
<input type="text" placeholder="Enter text" 'gnore them for now,
@onchange="UpdateNumericValue" /> well learn more about
them in Chapter 6.

Now try entering text into the text input—it won’t update the value at the bottom
of the page unless the text that you enter is an integer value.

% Exercise

- \)V‘
You used Button controls in your animal matching game in Chapter 1. Here’s some HTML markup to add a strip of
buttons to your page—it's very similar to the code that you used earlier. Your job is to finish this code so it adds six
buttons, and add an event handler to the C# code.
<div class="row mt-2">
<div class="col-sm-6">Pick a number:</div>
<div class="col-sm—-6"><input type="range" @onchange="UpdateValue" /></div>
</div>
<div class="row mt-2"> Revlate this box
<div class="col-sm-6">Click a button:</div> .CF ace. |°£ jon
<div class="col-sm-6 btn—-group" role="group"> J with a line \

| | Codc ‘H\&‘{: W'"

: cause the page to
string valueToDisplay = $"Button #{buttonNumber}"; dusylay six button
<button type="button" class="btn btn-secondary"

@onclick="() => ButtonClick(valueToDisplay)">
@buttonNumber
</button>
- /di\}l> Wh{;’: jhc :’I“j%"s are C!iCde; ‘Ehc\/ call an event handler
</div> e o calicd DettonClick. Add that method £o the code
<div class="row mt-5"> 3t the bottom of the page—it contains Jjust one statement..
<h2>
Here's the value: @DisplayValue
</h2>
</div>

you are here » 55

1Y Exercise

Solution

the other for loops you learned about in Chapter 2:

<div class="row mt-2">

<div class="col-sm-6">Pick a number:</div>

<div class="col-sm-6"><input type="range" @onchange="UpdateValue" /></div>
</div>
<div class="row mt-2">

<div class="col-sm-6">Click a button:</div>

<div class="col-sm-6 btn-group" role="group">

| @for (var buttonNumber = 1; buttonNumber <= 6; buttonNumber++) |

{
string valueToDisplay = $"Button #{buttonNumber}";
<button type="button" class="btn btn-secondary"
@onclick="() => ButtonClick(valueToDisplay)">
@buttonNumber
</button> The for loop that creates the buttons works exactly
} like the one in the animal matching game—the code
</div> is almost identical. The buttons are styled as a group
</div> (that’s what btn—group does) and shaded differently in
<div class="row mt-5"> some browswers (that’s what btn—-secondary does).
<h2>
Here's the value: @DisplayValue
</h2>
</div>

Here'’s the event handler method to add to the @code section at the bottom of the page. It sets DisplayValue to the
value passed to it by the button when it’s clicked:

private void ButtonClick(string displayValue)

56

{
DisplayValue = displayValue;
}
@ [J | Experiment With Controls x S
&) & nttps:/localhost:5001 3= S

Experiment With Controls About

A Home Experiment with controls
Enter text: [EnterLJ
Pick a number: =g
Click a button: 1 2 3 4 5 6

Here's the value: Button #2

https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Add color and date pickers to your app

Pickers are just different types of inputs. A date picker has the input type "date" and a color
picker has the input type "color"—other than that, the HI'ML markup for those input types is

identical.

Modify your app to add a date picker and a color picker. Here’s the HITML markup—add
it just above the <div> tag that contains the display value:

<div class="row mt-2">
<div class="col-sm-6">Pick a date:</div>
<div class="col-sm-6">

<input type="date" @onchange="UpdateValue" /> The date and color bi k
n olor Pu‘, ers

</div>

</ divi use the same Change event

<div class="row mt-2"> handler method, so You don't
<div class="col-sm-6">Pick a color:</div> need to modify the code at
<div class="col-sm-6"> all o display the eolor or

<input type="color" @onchange="UpdateValue" /> date that the user pieks.

</div>

</div>

<div class="row mt-5">
<h2>Here's the value: @DisplayValue</h2>

</div>
</div>
[J ® | Experiment With Controls x NS
&) & https://localhost:5001 pll L4

About

Experiment With Controls

L7 R Experiment with controls
Enter text:
aammn@)

Pick a number:

Click a button: 1
Pick a date: 10/06/2020
Pick a color: E]

Here's the value: #813232

Celeet a value in the color picker
and it will call the same thange
event handler to update the
value at the bottom of the page. e .

you are here »

57

chapter 2 experiment with controls

Add a dropdown control to display a list of choices

A dropdown control (also called a select control) displays a list of items in a dropdown so the user can pick one of
them. Let’s add one to your app that lets the user pick a bird from a list of birds.

o Add the HTML for a dropdown (or select) control.
Let’s add three rows to the bottom of your page: a row with a dropdown that contains a list of birds, a row
with a button the user can click to add a bird, and a row that displays the list of birds that were added.

Go ahead and add this HTML code just above the closing </div> tag:

<div class="row mt-5"> This is the existing HTML

<h2> . 1o display the value from
Here's the value: @DisplayValue the vadio bubtons, date
< >)
</divﬁhz picker, or tolor picker.

<div class="row mt-5">
<label>Pick a bird</label>

<select @bind="selectedBird"> This vow tontains a d.ro?down
@foreach (var bird in birds) that displays everything bc{?wccn
{ its opening and Llos'mg {',355 nad
<option value="@bird">@bird</option> dropdown. Youll use 3 foveath
; loop to intlude cvcv‘/{‘)\ihg ina
</select>

vaviable ¢alled birds.
</div>

<div class="row mt-2">
<button type="button" class="btn btn-primary"
@onclick="AddBird">Add a bird</button>
</div>
<div class="row mt-2" style="background-color: darkblue; color: white;">
@foreach (var bird in addedBirds) N~ — -

{ . . . This vow tontains a foreach loop that
<div>@bird</div> &— displays the birds that were added.
</di\};> We used a style property to give it

</div> white text on a davk blue badkg\rouhd.

&— Heve's the tlosing <div> taq.

e Add three fields to store the birds in the dropdown list, the birds that were added,
and the bird that’s currently selected.
Add these variables just under the @code opening bracket:

@code

{
string[] birds = ["Duck", "Pigeon", "Penguin", "Ostrich", "owl" 1;
string[] addedBirds = [];

string selectedBird; birds and addedBirds are string arrays.
! You’ll learn more about arrays in

Chapter 3. For now, we’ll give you all of
the code you need to work with them.

58 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

We gave you a lot of code, but it’s a lot like code on the page you've already seen. Let’s break down this part of it:

<div class="row mt-2" style="background-color: darkblue; color: white;">
@foreach (var bird in addedBirds) €— This @foreach adds 3 block

This <div> blotk {

ad;is 3 new row <div>@bird</div> of HT.ML.{” the page for
} L each bivd in addedBirds.

to the page The 3 I This is the blotk of HTML tha

style property the @foreath adds to the Fage.

Chanscs I{',S COIOY‘- |£ dISY‘a\/S a ble on @ new ‘IV\C-

9 Add a method that reads the selected bird and adds it to the page.

Take a closer look at the :

@code

{
string[] birds = ["Duck", "Pigeon", "Penguin", "Ostrich", "owl" 1;
string[] addedBirds = [];
string selectedBird;

private void AddBird()
{
string[] newAddedBirds = new string[addedBirds.Length + 1];
for (int i = 0; i < addedBirds.Length; i++)
{
newAddedBirds[i] = addedBirds[il; ﬁ
}
newAddedBirds[newAddedBirds.Length - 1] = selectedBird;
} addedBirds = newAddeddirds; \/ou)” learn a lot more about arra\/s——and s?ccigica”\/
how this tode works—when we g,c{: to Chapﬁcv b. For
now, just type in the code exactly like it appears here.

o Run your app and use your new dropdown control.
Scroll to the bottom of the page, choose a bird from the dropdown, and click the Add a bird button. The bird
will get added to the list that contains the birds. Select a few more birds and add them.

Pick a bird
[Figeon vl Choose a bird ‘C\rom the
drodoun thn e he
“Add a bird” button.

Penguin

Pigeon

owl The bird that you seletted in
Duck the dropdown gets added to
Pigeon the list of birds on the page.

you are here » 59

chapter 2 experiment with controls

tHold on, My app isn't working correctly. If I start it up, pick a bird
from the dropdown, and then click the button, it works just fine, But if I click the
button as soon as I start the app nothing happens, even though I see "Duck”
selected in the dropdown, This code has a bug.

You’re right! You found a bug in the code.

Take a look at the screenshot we showed you earlier:

: Pick a bird :
[Pigeon v] :

| Add a bird I

Penguin

Pigeon
Owl
Duck
Pigeon

We were really careful to show that birds were already added. But when

. Pick a bird :
;| Duck e

Ooys! [+ looks like the

. &— button doesn't work until
Add a bird ou thoose some{:hing
' : zrom the dropdown, even

H\ough it looks like Duck
is alveady selected.

Run your app and try clicking the button before you select a bird.
Nothing happens! If you want to add a duck, you have to click on the
dropdown and choose Duck, even though Duck s already selected.

Looks like we’ve got a bug. Time to put on your Sherlock Holmes cap.
Let’s sleuth out this bug!

60 https://github.com/head-first-csharp/fifth-edition

00O

Blazor Learner’s Guide

"</ Sleuth it Out [

The Case of the Duck That Didn’t Quack

Understanding a bug is the first step in fixing it.

In Chapter 1, we looked at the code carefully and found several clues to help us solve the Case of the
Unexpected Match. But as you keep going through this book, your apps will get longer and longer, and while
looking at the code is a good start, it may not always be the best way to figure out what’s causing a bug.

Luckily, the debugger in Visual Studio and Visual Studio Code is a great tool for that. (That's why it's called a
debugger: it's a tool that helps you get rid of bugs!)

Reproduce the bug

It seems obvious that there’s a problem. But as Sherlock Holmes once said, “There is nothing more deceptive
than an obvious fact.” When you're sleuthing out bugs, you can'’t just rely on what seems obvious. You need to
confirm for yourself exactly what's going on. The way to do that is to reproduce the bug.

Stop your app. Make sure it's not running, so you've got a fresh start. Then do this:
1. Start your app again.

2. Click the “Add a bird” button.

3. Nothing happens.

Pick a bird .
:[Duck v

PEENCTTEENN [eere is nothing

... more (Iec e])tive tllan

4. Choose “Duck” from the dropdown.

. 9
5. Click the “Add a bird” button again. an obvious fact.
6. Now the Duck is displayed.
flow 1 Duck 5 s Played: ..o — Sherlock Holmes
[Duck v]:

Add a bird ;

Now restart your app, then try a few different things. Does it always happen, every time you run the app? What
happens if you choose another bird first? What if you click the button several times before selecting a bird?

You can make the bug happen over and over again, at will. That means the problem is reproducible: you can
follow a set of steps to make it happen. Reproducing a bug is a great first step to fixing it.

Before you go on, can you sleuth out what’s causing the extra space to get added?

you are here » 61

o 00 ©O

~ O
=f Sleuth it Out

When you're tracking down a bug, what's the first thing you should do? You could start placing breakpoints in
the code...but where? The first step in debugging is thinking. Look at your code, think about how it works,
and try to imagine where the bug might be. That will help you figure out where to put your breakpoints.

So let’s think through the code. It starts with a button—and the button calls a method:

<div class="row mt-2">
<button type="button" class="btn btn-primary"
@onclick="AddBird">Add a bird</button>

chapter 2 experiment with controls

Every good investigation starts by identifying a list of suspects

</div>

All of the code to display the selected bird is in that AddBird method. Now we have a suspect!

fRemember, If your app doesn’t pause on the breakpoint,
make sure you’re starting the app with debugging. Run

. o the app by pressing F5 or choosing Start Debugging
_ IDE T‘iP' USlng ﬂle debllgg'ef from the Debug (Visual Studio) or Run (VSCode) menu.
You're going to be using the debugger a lot in this book! We've walked you through it a few times, but as you get fur-
ther in the book and write more and more code, you should feel comfortable using the debugger on your own.

Let’s start with a few tips to help you get comfortable debugging your code:
* Think before you debug. Read through your code. Understand how it works (and not just how you think it works).

* Use the Watch window, Locals window, and hovering over variables to keep track of their values. They all do the
same thing—show you the value of a variable—so you can decide which one you feel most comfortable with.

* Don't be afraid to restart your app. Stop and start your code frequently—every time you run your code, you're
running an experiment. Run it as many times as it takes to understand what’s going on.

Here's a handy list of useful debugger commands. They may feel strange at first, but they’ll be second nature soon:

* When you press the triangle Run button in the toolbar or choose Start Debugging (F5), Visual Studio starts run-
ning your code in the debugger. You can place a breakpoint whether or not the debugger is running.

* To place a breakpoint, click on a line of code and choose Toggle Breakpoint (F9) from the Debug menu.

*»

When your code hits a breakpoint, it stops running so you can inspect variables.

#* When Visual Studio breaks on a breakpoint, the toolbar shows you the commands you can use to keep executing.
Debugging code can be a little weird to get used to if you haven't done it before, so try sticking to just these four
commands—here’s where you'll find them in the IDE's toolbar, along with their keyboard shortcuts:

Step Over (F10) executes the current Continue Debugging (F5) Stop Debugging (Shift+F5)
statement and breaks on the next one. starts the app running again. stops the debugger.

. ¢ ‘m " Visual Studio
P Continue ~ I‘Q N SR 4’/ VSCode

Continue Debugging (F5) Stop Debugging (Shift+F5) Step Over (F10) executes the current
starts the app running again. stops the debugger. statement and breaks on the next one.

62 https://github.com/head-first-csharp/fifth-edition

Now that we have a suspect, let’s catch it in the act. Add a breakpoint to the first line in the AddBird method:
101 v private void AddBird()

102 {
@® 103 string[] newAddedBirds = new string[addedBirds.Length + 1];
104 v for (int i = 0; i < addedBirds.Length; i++)
105 {
106 ‘ newAddedBirds[i] = addedBirds[i];

Now run your code. Pick a bird, then click the “Add a bird” button. The debugger stops on your breakpoint. Next,
add a watch for addedBirds, just like you did earlier in the chapter. The value should be {string[0]}:

~Name Value Type
I -> addedBirds i QView ~|string

Then choose Continue (F5) from the Run or Debug menu (or click the triangle Continue button) to start up the
app again. Now click the button again. The breakpoint stops, but now addedBirds has the value {string[1]1},
and there’s a triangle next to the watch. Click on the triangle to expand addedBirds:

Name Value Type
e &2 addedBirds {string[1]} Q View ~|string[] ‘
@10 null string

Repeat that step (press F5 then click the button) three times. Now you'll see {string[4]} with these values:

Name Value Type
RlDaddedBids stringd) Quiew~|stringd |
@ [0] null__ string
@] null string
P2 null string
@3] null string

We haven'’t talked about arrays or told you what null means, but even with this limited information we've got a lot
of clues. We know that addedBirds has the birds to display, and somehow null keeps them from being displayed.
We just need to figure out where that null is coming from. Let’s start with the HTML that displays the dropdown:

<select @bind="selectedBird">

That tells the app to store the selected bird in the selectedBird variable that you added. Now look at this line of
code from the AddBird method:

newAddedBirds[newAddedBirds.Length — 1] = selectedBird;

Even though we haven't talked about arrays yet, you can see that something is being set to the value in
selectedBird. Hover over it to see its value:

selectedBird; ,)
' heve's that null value again.
&2 selectedBird null - & The 9

Before we show you the
solution, can you think of how
you would fix this bug? Is there
When the app starts, selectedBird contains null, even though Duck is selected. a way to set selectedBird as
We have our culprit! We've sleuthed out the bug, and we know enough to fix it. soon as the page is initialized?

you are here » 63

chapter 2 experiment with controls

Use the Onlnitialized method to set selectedBird

In Chapter 1 we learned about the the OnlInitialized method, which gets run as soon as
the page is initialized, and we used it to set up the game. Now you can use it to set up your
app so selectedBird starts out with a bird.

Add this Onlnitialized method that sets the selectedBird variable:

protected override void OnInitialized()

{ This statement sets selectedBivd to
selectedBird = birds[0]; €—— {p, ficst value in the birds areay. You'l
} learn more about arrays in Chapter 3.

Run your app again. The bug is fixed!

When I first spotted the bug in the
app, it seemed really weird, But once I

thought through the code and did some

experimenting, I found an explanation,

There are no unexplainable mysteries in your code.
Every bug has an explanation, even if it takes work
to figure out what’s going on and fix it.

Bugs can be weird! If you’ve been playing video games for a long time,
you’ve probably experienced a few glitches, and some of them can be
extremely odd. If you haven’t seen any yourself, try searching the web
for videos of game glitches—even the most polished game has bugs.

Every bug you see is code behaving in a way you don’t expect. That’s why bugs
need sleuthing out. Bugs can be confusing, mysterious, and sometimes
extremely frustrating. It’s even tempting to think that something is
fundamentally wrong, and the code will never work. Always remember
that every bug has an explanation. Every bug is strange, but even a

bug that appears to be a weird mystery is caused by something in your
code—so0 you can fix it. Because like Sherlock Holmes once said, “Itis a
mistake to confound strangeness with mystery.”

64 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

— Bul]et Points

® You'll use many different controls to build your app’s user interface (or Ul). The Ul is the part of the application
that your user interacts with.

= You can build up a page with rows using <div class="row"> tags.
= Add a slider to your page with an input tag like this: <input type="range" @onchange="UpdateValue" />
= The @onchange property causes the control to run an event handler method every time the value is changed.

= Use an <input> tag with different type properties to add other kinds of controls. Get user text input with a text
box control: <input type="text" placeholder="Enter text" @onchange="UpdateValue" />

= A date picker has the input type "date" and a color picker has the input type "color".
= You can pass values to a button’s click event handler: @onclick="() => ButtonClick(valueToDisplay)"

= A dropdown (or select) control creates a dropdown: <select @bind="selectedBird">
Everything between the opening and closing tags is displayed in the dropdown. the @bind-value property causes
the control to update a variable every time it's changed.

m The first step in debugging is thinking: look at your code, think about how it works, and try to imagine where the
bug might be.

= Reproducing a bug is an important tool that helps you fix it.

= When you're debugging, you're running an experiment every time you run your code. Run it as many times as it
takes to understand what’s going on.

Now that we're done with the project,
let's get back to the book,

You finished Chapter 2, so you can go to the next chapter.

The very next part of the book after Chapter 2 is Unity Lab #1: Explore
C# with Unity, where you’ll start using Unity to create 3D games. The Unity
Labs are optional, but they’re also really valuable for getting practice using

C# and learning important skills that you’ll use even if you aren’t planning on
writing games in C#.

If you’re not doing the Unity Lab projects, you can go straight to Chapter 3.

You’ll return to the Blazor Learner’s Guide partway
through Chapter 3.

Watch for this heading—it comes after you create a console app that picks
As soon as You get to this hCBaldi"S n random cards and displays them:
the book, tome back to the Blazor . .
Learmer's Guide so you can build 2 —> Build a MAUI version of your random card app

Blazor version of that yro\')cclc-

you are here » 65

chapter 3 objects... get oriented!

Build a Blazor version of your randowm card app

In the next project, you’ll build a Blazor app called PickACardBlazor. It will use a slider to let you choose the
number of random cards to pick and display those cards in a list. Here’s what it will look like:

How many cards should | pick? ace of Diamonds

You’ll use a loop to turn
2 of Hearts an array of cards into
) ¢ a series of HTML tags,
6 just like you did with the
2 of Clubs

Use the slider to select buttons in the previous
how many ¢ards to pick. Blazor projects.

8 of Diamonds

L

Press the button to pi k
s pick the
$ specified number of cards \zloaamonds
T and add them to the list.

1
This button’s event handler will call
a method in your class that returns
a list of cards, then it will add each
card to an array, just like you did
with the bird dropdown in Chapter 2.

/D@) ﬂﬁS!

Create a new Blazor WebAssembly App project called PickRandomCardsBlazor.

You’ll follow exactly the same steps you used to create your animal matching game in Chapter 1:
* Open Visual Studio and create a new project.
* Sclect Blazor WebAssembly App, just like you did with your previous Blazor apps.

* Name your new app PickRandomCardsBlazor. Visual Studio will create the project.

Go back to the Blazor app you built in Chapter 2 and look at how the AddBird
method worked. Now look at how the “Pick some cards” button in this app will
work. What do you think will go in the event handler method for that button?

66 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Reuse your CardPicker class in your new Blazor app

If you’ve written a class for one program, you’ll often want to use the same behavior in another.
That’s why one of the big advantages of using classes is that they make it easier to reuse your code.

You’ll give your card picker app a shiny new user interface, but keep the same behavior by reusing
your CardPicker class.

You've got an app that looks like it’s supposed to, and that’s a great start! In the second part of this
project, you’ll make it work, so when the user enters a number and clicks the button it picks random
cards. That’s where your CardPicker class comes in. You've already created a class that picks random
cards. Now you just need to copy that class into your new APP. Once it’s copied, you’ll be able
to make your button’s event handler method call the PickSomeCards method in the CardPicker class.

Lerttt e, When your Blazor app builds, the
.o el Razor markup in the HTML file and
eett O the C# code in the @code section file
. . are combined together to create a
. . new class that makes the page work

..o / -.
Once Yyou topy Your CardPicker-cs file from

PickRandomCards Program.cs your Console App project into your .NET MAU

. project, You Il be able to eall its PickSomeCards
. method when the user clicks the button.

t.. CardPicker.

N PickRandomCardsBlazor

Once yOU]mave coJe :mponj\

organizec[into a class, D
you can use tllat same -, CardPicker.cs

Pages A few other files

class in two projects. K and folders

.

Home.razor .

.
®e oo e

you are here » 67

chapter 3 objects... get oriented!

Reuse your CardPicker class

You took the time to put all of the random card picking code into a convenient class. Now it’s time to /‘D@
take reuse that class by copying the file with the C# code into your new Blazor project. t}’isy

Q Choose Add Existing Item in Visual Studio or manually copy the file in VSCode.
This feature in the IDE will copy an existing file into your project. You created a file called CardPicker.cs in
your PickRandomCards console app. Now you’ll tell the IDE to add that class file to your Blazor project,
which will cause it to copy the file into your MAUI app’s project folder.

* In Visual Studio, right-click on the project in the Solution Explorer window and choose Add >>
Existing Item (Shift+Alt+A), or choose Add Existing Item from the Project menu.

#* In VSCode, you’ll need to manually copy the file into the folder. Right-click on the project in the
Solution Explorer and choose “Reveal in File Explorer” (or “Reveal in Finder” if you’re using a Mac).
Use your operating system to copy the file into your project folder that VSCode opened. Once the file
1s copied, it will automatically appear in the Solution Explorer.

Q Find your CardPicker.cs file and add it to your project.
The IDE will pop up a folder explorer window. Navigate to the folder with your PickACard console app and
double-click on CardPicker.cs. You should now see CardPicker in the Solution Explorer.

r\ Make sure CardPitker.ts now shows up in Your Solution
Explover. Open it and make sure that you see the code
for the CardPicker elass from earlier in the chapter.

6 Try to use your CardPicker class in the @code section of your home page.
Open Home.razor. Make sure you've added the @rendermode line, updated the <PageTitle> tag, and deleted
everything else (follow the instructions we gave you back in Chapter 2).

Next, add a @code section. You’ll need an array to hold the cards, so add a pickedCards variable and use
the CardPicker.PickSomeCards method to initialize it:

string[] pickedCards = CardPicker.PickSomeCards(5);
Here’s what your Home.razor file will look like. Did you run into a problem trying to call PickSomeCards?

@rendermode InteractiveServer

@page II/II
Hold on—something’s wrong!

When you start typing the statement to call
CardPicker.PickSomeCards, Visual Studio
doesn’t pop up its normal IntelliSense window,
and there’s a squiggly error line under CardPicker.

<PageTitle>Pick Random Cards</PageTitle>

@code {
string[] pickedCards = CardPicker. <=

} puoserbuviosimiviiet
Why do you think Visual Studio is treating

CardPicker like that?

68 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Add a using directive to use code in another namespace

You used cither a file-scoped namespace or block-scoped namespace to put your CardPicker class in
the PickRandomCards namespace. But that’s not the namespace of the code in your Blazor app.

The component in your .razor file is a blend of C# code and HIML with Razor markup. When your Blazor
web app gets compiled, each Razor file is transformed into a class. This class handles both rendering
(HTML) and logic (C#), and it lives in the PickRandomCardsBlazor.Components.Pages namespace.

The reason your Blazor code can’t access the methods in your CardPicker class is because they’re in
different namespaces.

Luckily, C# has an casy way to deal with this. You’ll add a using directive in your code that calls the
methods in GardPicker—that’s a special line that you put at the top of a class file to tell it to use code in
another namespace.

Open the Program.cs file at the root of your Blazor app and look at the first line:
using PickRandomCardsBlazor.Components;

That’s a using directive. Using directives in C# code start with the keyword using
and end with a semicolon. They look a little different in a Razor file—then start

with @using and don’t end in a semicolon. V ACICI t})iS!

Add this line to the top of your Home.razor file. If
you chose a different name for your console app, replace

PickRandomCards with the namespace in your CardPickercs file. This using directive \{VIII let you add code
to your Home.razor file that uses classes
@Qusing PickRandomCards - in the PickRandomCards namespace—
S0 now you can write code that calls
Now go back to the event handler method for your button. Start methods in your CardPicker class. You
typing CardPicker. like you did before. Now the IDE will pop up might see other using directives at the top
its IntelliSense window, just like you’d expect it to. of the file too.

Finish adding the code section to your Home.razor file

Make sure you have the @rendermode, @page, and @using lines at the top, the PageTitle tag is updated, and
your @code section has a pickedCards variable.

Here’s what your Home.razor file will look like.

@rendermode InteractiveServer
@page ||/||
@using PickRandomCards

When your project builds, the

<PageTitle>Pick Random Cards</PageTitle> HTML, Razor markup, and C#
acode { code in the Home.razor file is built
code ; ;
into a class called Home in the a
t} < separate namespace. Since it’s

a class, that means pickedCards
is more than just a variable. It’s
actually a field in that class.

you are here » 69

chapter 3 objects... get oriented!

The page is laid out with rows and columns

The Blazor apps in Chapters 1 and 2 used HTML markup to create rows and columns, and this
new app does the same thing. Here’s a picture that shows you how your app will be laid out:

The whole app lives inside a
<div class="container"> tontainer, whith tontains a vow
<div class="row"> / that's divided into two tolumns. N

<div class="col-8"> <div class="col-4">

<div class="row"> ;
How many cards should | pick? | acc of Diamonds
/ </div> :
<div class="row mt-5"> || 2of Hearts
The left aasssssss——({)) 6 |
cohumnis ™ |__S/div> | 20f Clubs
divided into <div class="row mt-5"> |
three vows. |
-, oo
. |
</div> : 8 of Diamonds
|
: 4 of Diamonds
|
! R
</div> </div> \
. </div> This is how You
</div> eveate a list with
HTML mav‘ku\?~
Here’s the code that generates the list of cards in the right column.
It uses a foreach loop (like the one you used in your animal

matching game) to create a list from an array called pickedCards: .
<div class="col-4">

<div class="col-4">
<ul class="list-group"> Ace of Diamonds</1i>
@foreach (var card in pickedCards) <1i>2 of Hearts
{ 2 of Clubs
<li class="list-group-item">@card</1i> <1li>6 of Hearts
} <1i>8 of Diamonds</1i>

 4 of Diamonds
</div>
</div>

The list starts with <ul class="1ist-group"> and ends with
 (which stands for “unnumbered list”). Each list item begins
with <1i class="1list-group-item"> and ends with </1i>.

70 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

The slider uses data binding fo update a variable

The code at the bottom of the page will start with a variable called numberOfCards:

@code {
int numberOfCards = 5;

You could use an event handler to update numberOfCards, but Blazor has a better way: data binding,
which lets you set up your input controls to automatically update your C# code, and can automatically insert
values from your C# code back into the page.

Here’s the HTML markup for the header, the range input, and the text next to it that shows its value:

<div class="row">
<h3>How many cards should I pick?</h3> How many cards should | pick?
</div>
<div class="row mt-5">
<input type="range" class="col-10 form-control-range"
min="1" max="15" @bind="numberOfCards" />]—
<div class="col-2">@numberOfCards</div>
</div>

Take a closer look at the attributes for the input tag. The min and max attributes restrict the input to
values from 1 to 15. The @bind attribute sets up the data binding, so any time the slider changes Blazor
automatically updates numberOfCards.

The input tag is followed by <div class="col-2">@numberOfCards</div>—that markup adds
text (with ml-2 adding space to the left margin). This also uses data binding, but to go in the other direction:
every time the numberOfCards field is updated, Blazor automatically updates the text inside that div tag

i Exerecise

::‘
We've given all you almost all of the parts you need to add the HTML markup and code to your Index.razor file. Can
you figure out how to put them together to make your web app work?

Step 1: Finish the HTML markup

The first four lines of Index.razor are identical to the first four lines in the ExperimentWithControlsBlazor app from
Chapter 2. You can find the next two lines of HTML at the top of the screenshot where we explain how the rows and
columns work. The only markup we haven't given you yet is for the button—here it is:

<button type="button" class="btn btn-primary" When you enter this into the |DE
@onclick="UpdateCards">Pick some cards</button> (it may add a line break 3fter {:hc,

opening tag and before the tlosing taq.
Step 2: Finish the code

We gave you the beginning of the @code section at the bottom of the page, with an int field called numberOfCards.
* You already have a string array field called pickedCards.

+ Add the UpdateCards event handler method called by the button. It calls CardPicker.PickSomeCards and assigns
the result to the pickedCards field.

you are here » 71

chapter 3 objects... get oriented!

Y Exercise

”5/ Solution

=
Here’s the entire code for the Index.razor file. You can also follow exactly the same steps from the
ExperimentWithControlsBlazor project to remove the extra files and update the navigation menu.

@rendermode InteractiveServer
@page ||/||
@using PickRandomCards

<PageTitle>Pick Random Cards</PageTitle>

<div class="container">
<div class="row">
<div class="col-8">
<div class="row">
<h3>How many cards should I pick?</h3>
</div>

Thcgzn?; <div class="row mt-5">
'"P"{ E{: it <input type="range" class="col-10 form-control-range"
text atter i min="1" max="15" @bind="numberOfCards" />
ave Columns <div class="col-2">@numberOfCards</div>
in their own </div>
little vow. <div class="row mt-5">
<button type="button" class="btn btn-primary"
@onclick="UpdateCards">
Pick some cards When you elick the button, its Click
</button>
</div> event handler method UpdateCards sets
</div> the pickedCards array to a new set
<div class="col-4"> of vandom tards. As soon as it thanges,
<ul class="list-group"> Blazor’s data binding kicks in and it
@foreach (var card in pickedCards) automatically vuns the foreath loop again.
{
<li class="list-group-item">@card</1i>
}

_</div> number0OfCards and pickedCards are
_</div> both fields in the Home class that's built
</div> from the HTML and C# code in the file.
@code {

The button’s Click event handlev
method éalls the PickSomeCards

string[] pickedCards = CardPicker.PickSomeCards(5): method in the CavdPicker class that
You wrote eavlier in the chapter.

int numberOfCards = 5;

void UpdateCards() /
{

pickedCards = CardPicker.PickSomeCards(numberOfCards);
}

72 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

& Behind
& the Scenes -

Your Blazor web apps use Bootstrap for page layout.

Your app looks pretty good! Part of the reason for that is because it uses Bootstrap, a free and open source

framework for creating web pages that are responsive—they adjust automatically when the screen size changes—
and work well on mobile devices.

The row and column layout that drives your app’s layout comes straight out of Bootstrap. Your app uses the
class attribute (which has nothing to do with C# classes) to take advantage of Bootstrap’s layout features.

- -
<div class="container"> h

(-)
<div class="row">

-

<div class="col-8"> h h

(<div class="col-4">

Boo{s{'xa? tontainers
) have a width of 12, so
the “col-4" eolumn is half
) the width of the “col-8”
Gdiv class="row">) ¢olumn, and ‘[‘,ogc*{:bcr they
L\) \{:akc up the Lull width.)]
\

(<div class="row">

(<div class="row">

J

You can experiment with this—try changing col-8 and col-4 so they’re both col-6 to make them equal sizes.
What happens when you choose numbers that don’t add up to 12?

Bootstrap also helps style your controls. Try removing the class attribute from the button, input, ul, or 1i
tags and running the app again. It still works the same way, but it looks different—the controls lost some of their
styling. Try removing all of the class attributes—the rows and columns disappear, but the app still functions.

You can learn more about Bootstrap at https://getbootstrap.com.

Toke a few minutes and vead about Bootstrap. Qo to the
Bootstrap website, open the dotumentation, and vead

the introduction in the “Quick start” guide. You may not
undevstand everything yet, but you'll veeognize some of the
most im?or{:an{: t,onCcy{‘,s——ahd YOu'” know wheve to learn
move if You want 4o do move advanted Bootstrap design.

you are here » 73

chapter 3 objects... get oriented!

Bu]let Points —

Classes have methods that contain statements that perform actions. Well-designed classes have sensible method
names.

Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration
that starts with the int keyword returns an int value. Here’s a statement that returns an int value: return 37;

When a method has a return type, it must have a return statement that returns a value that matches a return
type. So if a method declaration has the string return type then you need a return statement that returns a string.

m As soon as a return statement in a method executes, your program jumps back to the statement that called the

method.

Not all methods have a return type. A method with a declaration that starts public void doesn't return anything
at all. You can still use a return statement to exit a void method, as in this example: if (finishedEarly) {
return; }

Developers often reuse the same code in multiple programs. Classes can help you make your code more reusable.

m The HTML and Razor markup code combines with the C# code in the Razor component file to create a new class.

You can create an array of values using a collection expression by putting the values between a pair of square
brackets [] and separating them with commas.

= The global namespace is contains the top-level statements and any class not explicitly put into a namespace

using a namespace declaration.

Use a using directive like using CardPicker; to use classes from other namespaces in your C# code. Razor
pages have slightly different using directives that look like this: @using CardPicker

You can design Blazor apps using Bootstrap, a framework that helps you design responsive web pages.

Bootstrap uses a grid system with a twelve-column layout, which lets you lay out your pages horizontally by
dividing content into equal-width columns1.

Use the class property in your <div> tags to Add columns to your page. <div class="col-4">adds a column
that takes up a third of the width of the page (or 4 of the 12 columns in the grid).

You can mix rows and columns in your layout by nesting row <div> tags inside col <div> tags or vice versa to
create more complex layouts.

74

https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Let's get back to the book!

Great idea! You can pick up Chapter 3 right
after the end of the .NET MAUI project.

Look for a page with this heading:
Ana’s prototypes look great...
Start on that page, then finish Chapter 3.

You can read all the way through Chapter 4, almost up
to the end. The very last thing in the chapter is a NET
MAUI project that starts with this heading:

Welcowme to Sloppy Joe’s Budget House
0’ Discount Sandwiches!

As soon as you get to that page, come back to the Blazor
Learner’s Guide for a Blazor version of that project.

you are here » 75

chapter 4 managing your app’s data

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!

Sloppy Joe has a pile of meat, a whole lotta bread, and more

condiments than you can shake a stick at. What he doesn’t have is a

menu! Can you build a program that makes a new random menu for

him every day? You definitely can...with a new Blazor app, some

arrays, your handy random number generator, and a couple of new,

useful tools. Let’s get started!

Here’s the app you’ll build. It creates a menu with six random

sandwiches. Each sandwich has a protein, a condiment, and a bread,

all chosen at random from a list. Every sandwich is given a random

price, and there’s a special random price at the bottom to add

guacamole on the side.

Sloppy Joe needs a new menu every
day. Your app will generate vandom
sandwiches and prices for him. l

Welcome to Sloppy Joe's, hon. The
meat's nice and fresh! What can I
getcha?

:. im} @ Welcome to Sloppy Joe's

(@]) https://localhost:7123

Sloppy Joe's Menu

ﬁ Home

x WS

A M = @

Roast beef with honey mustard on pumpernickel

Pastrami with French dressing on rye

Ham with brown mustard on wheat

Turkey with relish on everything bagel

Tofu with yellow mustard on everything bagel
Add guacamole for $6.50

The prices are vandom numbers

$14.51
$9.05
$9.12
$14.31
$10.29

between 5.00 and 14-.99.

Eath sandwich is generated by choosing a
vandom yro{:c'm, vandom tondiment, and

vandom bread from arvays.

- o X
®

About Q

76 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

en your penci]

The menu page is made up of a series of Bootstrap rows, one for each menu item. Each row has
two columns, a col-9 with the menu item description and a col-3 with the price. There’s one last
row on the bottom with a centered col-6 for the guacamole. Can you fill in the blank lines of HTML?

-
container

[row [co'L—9][co'L—3]

This picture shows how
the page is laid out.

These vows are genevated
using @ @foreath loop. Eath [
vow has two tolumn <div>s [

row (co1-9)(cor-3

_J

row [co'l.—9][col—3

|

in the 12—tolumn Bootstrap
grid |ayou+,, one with width
9 and one with width 2.

rou (co1-9)(cor-3

|

)
)
)
)
)

[row [col-9][col—3]
Theve's one more row
| [cots) € 3t the bottom for Lhe
@rendermode InteractiveServer Juacamale

@page ||/||

<PageTitle>Welcome to Sloppy Joe's</PageTitle>

@menuItem.Description
</div>

@menulItem.Price
</div>

Add guacamole for @guacamolePrice
</div>
</div>
</div>

you are here » 77

Here's the Sharpen Your Pencil solution with the
missing lines of HTML filled in. We also added
a @code section to the bottom. This is the
complete Home.razor file for your app.

i~ Sharpen your penci]
ySollf’cion1

@rendermode InteractiveServer
@page ||/||

<PageTitle>Welcome to Sloppy Joe's</PageTitle>

<div ¢lass="container’>

@foreach (MenuItem menuItem in menuItems)

<AV LlaSST oW >

@menuItem.Description

</div>
<div ¢lass="¢ol-3">

@menultem.Price
</div>
</div>

Add guacamole for @guacamolePrice
</div>
</div>

</div> You'll need this Busing divective

bectause \/ou'“ use a ¢tlass in the

@using SloppyJoe; Sloﬂ?\/\)oc namespace.
@code {
MenuItem[] menuItems = new MenuItem[5];

Here's the @code section
with the C# code for your

string? guacamolePrice;

protected override void OnInitialized()

{

for (int i = 0; i < 5; i++)

{

menuItems[i] = new MenuItem();
if (i >= 3)
menultems[i].Breads =

menuItems[i].Generate();

guacamoleMenuItem.Generate();

Home.razor file. It contains
the two fields, menultems and
guacamolePrice, that were
used by the Razor markup.
It also has an Onlnitialized
method that sets up the page. |

["plain bagel", "onion bagel","pumpernickel bagel", "everything bagel" 1;

MenuItem guacamoleMenuItem = new MenuItem();

guacamolePrice = guacamoleMenuItem.Price;

78 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

% Exercise

Create a new Blazor app called SloppyJoeBlazor. Replace the Home.razor file with the code

in the “Sharpen Your Pencil” solution.

Looking closely at the Menultem class diagram. It has five fields: three arrays to hold the
various sandwich parts, a description, and a price. The array fields use collection expressions
that let you create an array by putting comma-separated values between [square brackets 1.

Add the Menultem class to your project. Here's the code for the fields:

namespace SloppyJoe; £—— The Menultem tlass is in

SloppyJoe namespate.
class MenuItem the SloppyJoe namesp

Menultem

Proteins
Condiments
Breads
Description
Price

Generate

{
public string[] Proteins = [The Menultem ¢lass ha
"Roast bee_Fu, "Sa'l.ami", "Turkey", < f.clds -{:ha{ e co”ic‘{:.s ‘H‘WCC ar.ray
"Ham", "Pastrami", "Tofu" L thei ollection expressions to
1; set their values, Jjust like the array you
Saw In ChaP‘&CY 3 ‘bo s{;oy—c Pla\/‘ma tards.
public string[] Condiments = [
"yellow mustard", "brown mustard",
"honey mustard", "mayo", "relish", "French dressing"
1;
public string[] Breads = ["rye", "white", "wheat", "pumpernickel", "a roll" 1];
public string Description = ""; [The Generate method uses Random.Shared to
public string Price = ""; choose random prices between 5.00 and 14.99 by
. . creating a random decimal value out of two ints.
public void Generate() We gave you the last line of code for the method:
// You'll fill in this method Price = price.ToString("c");
} } The parameter to the ToString method is a

Your job is to fill in the Generate method. It does the following:

Picks a random protein from the Proteins array.

Picks a random condiment from the Condiments array.

format. In this case, the "c" format tells ToString
to format the value with the local currency: if
you’re in the United States you’ll see a $, in the
UK you’llget a £, in the EU you’ll see €, etc. If the
values don't make sense in your currency, choose
different random numbers!

Picks a random bread from the Breads array.
Sets the description field like this: protein + ™ with " +

" Sharpen your penci]

Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here’s a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?

Sets the Price field to a random price that's at least 5.00 and less than 15.00. Pick a random int that's at least 5

and less than 15. Then pick a second random int that's at least 0 and less than 100. Multiply the second number
by .01M to get a decimal value that's at least .00 and less than 1.00, and add it to the first value, and store it in a
variable called price. Then set the Price field like this: Price

condiment + " on " + bread.

price.ToString("c");

you are here » 79

chapter 4 managing your app’s data

Y Exercise
Solution

P

<public void Generate()
{
string protein = Proteins[Random.Shared.Next(Proteins.Length)];
string condiment = Condiments[Random.Shared.Next(Condiments.Length)];
string bread = Breads[Random.Shared.Next(Breads.Length)];
Description = protein + " with " + condiment + " on " + bread;
int bucks = Random.Shared.Next(5, 15);
int cents = Random.Shared.Next(0, 100);
decimal price = bucks + (cents * .01M);
Price = price.ToString("c");
}
Can you write a single line of code that sets Price to a random value between 5.00 and 14.99? Here's a hint: if the
NextDouble method returns a value between 0 and 1, try multiplying it by 10. What do you get?
Priee = (RandomShared NextDouble) % 10 + 20 ToString(e’); ..o,

Bullet Points —__

Use the Length method on an array to get its length

= The new keyword returns a reference to an object that

you can store in a reference variable. (like kennel.Length).
= You can have multiple references to the same object. = Access an array value using its index in square brackets
You can change an object with one reference and (like bool[3] or Dogl[0]). Array indexes start at 0.

access the results of that change with another. = null means a reference points to nothing. The compiler

= For an object to stay in the heap, it has to be will warn you when a variable can potentially be null.
referenced. Once the last reference to an object
disappears, it eventually gets garbage-collected and
the memory it used is reclaimed.

Use the string? type to hold a string that’s allowed to
be null. Console.ReadLine can return null strings.

= You can use Random.NextDouble to create a random
double value between 0 and 1. Multiply a random
double to generate much larger random double values.

Your .NET apps run in the Common Language
Runtime (CLR), a “layer” between the OS and your
program. The C# compiler builds your code into
Common Intermediate Language (CIL), which the CLR Use collection expressions to initialize an array field
executes. by setting the field equal to a value starting with a
square bracket, followed by a comma-delimited list of
values, and ending with a square bracket.

Declare array variables by putting square brackets
after the type in the variable declaration (like bool[]
trueFalseValues or Dog[] kennel). = You can pass a format parameter to an object or
value’s ToString method. If you're calling a numeric
type’s ToString method, passing it a value of “c” formats
the value as a local currency.

Use the new keyword to create a new array, specifying
the array length in square brackets (like new bool[15]
or new Dog[3]). The this keyword lets an object get a
reference to itself. m Use a control’s SetValue method to set its semantic
properties in code, so the screen reader can include
text that’s generated when the app runs.

An Al chatbot can read your code and add comments,
including XML documentation (XMLDoc) comments.

80 https://qithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Working on Blazor projects is just like
working on any other kind of C# app. I can
create classes and then use objects in my

HTML, What's next?

Next up: a project partway through Chapter 5.

Your won’t have to wait long next NET MAUI app project,
because it’s actually pretty close to the beginning of Chapter 5.

Look for this heading:

Pesign a MAUI version of the damage calculator app

As soon as you get to it, come back to the Blazor Learner’s
Guide for a Blazor version of that project.

We’ll let you know exactly where to pick up in Chapter 5 when
you’re done.

you are here »

81

chapter 5 how objects keep their secrets

The Blazor project starts after the
first exercise solution

We gave you the code for a class called SwordDamage, and then
challenged you with an exercise to write the code for a console app
that uses it. You’ll come back to the Learner’s Guide right after
you finish doing that exercise.

Heve's what Owen told Yyou
alter you Finished the
Livst exertise in Chay{cr 5.

That /s excellent! But I was
wondering...do you think you can build
a more visual app for /t?

Yes! We can build a Blazor app that uses the same class.

Let’s find a way to reuse the SwordDamage class in a Blazor app. The first
challenge for us is how to provide an intuilive user interface. A sword can be
magic, flaming, both, or none, so we need to figure out how we want to handle
that in the Ul—and there are a lot of options.

One way to design it would be to use a dropdown with four options, like this:

| Not flaming, not magic

%_/ We think using a dropdown for o?‘{:ions

Flaming, not magic would be a little weivd. Do You agree?

Not flaming, magic

Flaming, magic

But that’s a little...weird? There’s got to be a better way to design the app, right?

https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Pesign a Blazor version of the damage calculator app

Let’s build a Blazor damage calculator app for Owen. We’ll give you the @code section with C#
code for the app. Your job will be to create the HTML that works with the C# code.

In this project, you’ll be working with two new things that you haven’t used yet:

*

Your app will use two checkboxes. A checkbox is a control that should be very familiar
to you—it’s a box that displays a check when you click it, and is empty when you click

it again. In MAUI, the Checkbox control has a Boolean value that’s true if the box 1s
checked and false if the box is unchecked.

The C# code in your app will use string interpolation to build a string to display to the
user. You've been using the + operator to build strings by concatenating values together.
String interpolation does the same thing, but in a way that’s easier to read.

How your damage calculator app will work

Here’s the main page for the damage calculator. It has two checkbox controls to turn flaming and
magic on and off, a button to roll for damage, and an <h3> section to display the results:

*

*

When you click the button, it generates three random numbers to do a 3d6 roll (just like
the console app did), then uses the SwordDamage class to display the damage.

Clicking on a checkbox causes the label to update automatically. When you check or
uncheck either of the checkboxes, it updates the SwordDamage fields, recalculates the
damage, and updates the label.

mina box, it calls the _
When 1 cm‘; %élﬂ?n;\?as:a:g it brue if the box The Magic eheekbox works just like
Sword amaaca E e if i{;;s unthetked, and then calls a the Flavnm3 one, chCP«[; it ealls
is thetked and talse SetMagie instead of SetFlaming.

method 4o update the label 4o display the damage- \

2 D @ lcalhost7174 < B

c @ https://localhost:7174 A e B ¢= @

Damage Calculator About

OFIaming Magic

i
Roll for damage
(<]

B ¢ o @ x

M Home

&
Rolled 12 for 24 HP -

Clicking the button does a new random
3db voll, then updates the Roll field "
and displays the damage. B

you are here » 83

chapter 5 how objects keep their secrets

Exercise

| Create a new Blazor app called BlazorDamageCalculator.

Modify NavMenu.razor to change the menu title to “Damage Calculator” and remove the Counter and Weather menu
items, just like we showed you in Chapter 2.

Next, add the SwordDamage class to the project. Don’'t add a namespace directive—keep it in the global namespace.
That will let your code in your Razor component access it without adding a @using directive.
Here's the @code section for the Home.razor file:

@code {
SwordDamage swordDamage = new SwordDamage();

[The Flaming checkbox has this property:]
@onchange="UpdateFlaming"
That will cause it to call the

string damageText = "";

private void UpdateFlaming(ChangeEventArgs e)

{ UpdateFlaming checkbox every time
swordDamage . SetFlaming((bool)e.Value); <= theuser checks or unchecks the box.
DisplayDamage(); The page will send that value to the

SwordDamage.SetFlaming method.

private void UpdateMagic(ChangeEventArgs e)

swordDamage . SetMagic((bool)e.Value); The Magic checkbox has a
DisplayDamage(); property that works the same way:

@onchange="UpdateMagic"

protected override void OnInitialized()

{
swordDamage . SetMagic(false);
swordDamage.SetFlaming(false); The button has @onclick="RollDice" to
RollDice(); generate a new random number and send

the results to the SwordDamage object.

public void RollDice()

{

swordDamage.Roll = Random.Shared.Next(1, 7) +

Random.Shared.Next(1, 7) + Random.Shared.Next(1, 7);
DisplayDamage();
The DisplayDamage method updates the damageText
field, which is displayed on the page like this:

void DisplayDamage() <h3>@damageText</h3>
{

damageText = "Rolled " + swordDamage.Roll + " for " + swordDamage.Damage + " HP";

There’s a bug in the code for this app! Can you spot it? | <«
if You don't see it \/c{:’

[4's not easy to find—dont feel bad

84 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

~ Exercise -

Your Blazor app will have two checkboxes to set the options for flaming and magic swords, a button to roll for damage,
and text to display the results of the roll.

We'll lay it out with our familiar Bootstrap tags that we used in the previous projects:

+ The page will have three rows. The bottom two rows have a top 5-space spacer (mt-5). Each row’s content is
centered (justify—-content-center).

* The top row will have two col-3 columns.

+ The middle row will have a single col-4 column.

+ The bottom row will have a single col-6 column.

Here’s a new bit of Bootstrap to help lay things out.

* The left column in the top row will use the text-left class to align its contents to the left side.

+ The right column in the top row will use the text-right class to align its contents to the right side.

+ The columns in the bottom rows will have the text—center class, which tells them to center their contents.

The last piece of the puzzle is the markup to create a checkbox. Here’s the HTML for the flaming sword checkbox:

<div class="col-3 text-left">
<input class="form-check-input" type="checkbox" id="flaming" />
<label class="form-check-label" for="flaming">

Flaming
</label> This markup uses the same <input> tag that you used for sliders and
</div> other controls. Setting type="checkbox" tells it to create a checkbox.
. We also added a <label> to add the “Flaming” text next to the checkbox.
Here’s what the page looks like: The for attribute on the label matches the id attribute on the input,
which is how the page knows which input the label is associated with.
col=3 textrleftG0LZ3 textoright
o i) Flaming Magic!

Your job is to add the HTML and Razor markup to the Home.razor file. Make sure you also add the @code section
that we gave you. Remember, it's not cheating to peek at the solution!

you are here » 85

chapter 5 how objects keep their secrets

Exercise

°
.~/ Dolution
=T Your job was to add the HTML and Razor markup to the Home.razor file. Make sure you also add the @code section
that we gave you to the bottom of the file.

@rendermode InteractiveServer
@page ||/||

<PageTitle>Damage Calculator</PageTitle>

<div class="container">
<div class="row justify-content-center">
<div class="col-3 text-left">
<input class="form-check-input" type="checkbox" id="flaming"
@onchange="UpdateFlaming" />
<label class="form-check-label" for="flaming">
Flaming
</label>
</div>
<div class="col-3 text-right">
<input class="form-check-input" type="checkbox" id="magic"
@onchange="UpdateMagic" />
<label class="form-check-label" for="magic">
Magic
</label>
</div>
</div>
<div class="row justify-content-center mt-5">
<div class="col-4 text-center">
<button type="button" class="btn btn-primary"
@onclick="RollDice">
Roll for damage
</button>
</div>
</div>
<div class="row justify-content-center mt-5">
<div class="col-6 text-center">

<h3>@damageText</h3>
</div>
</div>
</div>
@code {

// We gave you this code earlier

86 https://qithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

. . . Go back to Chapter 5 and
Tabletop talk (or maybe...dice discussion?) <—— finatnis heading—that's
where to start again. Keep
reading the chapter until you
get to the very last exercise.
Do parts 1 and 2 of that
exercise. We'll give you a
| Blazor version of Part 3 here. |

We're not done with this
project yet, right?

That’s right. You’ll learn a lot about encapsulation throughout
the chapter and use it to fix the bug.

You're about to discover that your code has a bug in it! Don’t worry, it’s not your fault—
we left it in there on purpose. Keep reading through the chapter until the very end.

The last exercise in the chapter has three parts. The chapter has the first two parts—do
them exactly as they appear in the book:

Part 1: Modify SwordDamage so it’s a well-encapsulated class

Part 2: Modify the console app to use the well-encapsulated SwordDamage class

Then do Part 3 below, which has you update your Blazor app.

Exercise

Part 3: Modify the Blazor app to use the well-encapsulated SwordDamage class

1. Copy the code from Part 1 into a new Blazor web app. Copy the HTML markup from earlier in the chapter.
2. Modify the markup:

+ Replace everything between <h3> and </h3> with to bind directly to the SwordDamage object
<h3>Rolled @swordDamage.Roll for @swordDamage.Damage HP</h3>

* Replace @onchange="UpdateFlaming" with @bind="swordDamage.Flaming"
* Replace @onchange="UpdateMagic" with @bind="swordDamage.Magic"
3. Modify the code in the @code { } section at the bottom of your Index.razor file:
* Your new SwordDamage class no longer has a CalculateDamage method, so remove lines that call it.

* You removed the SetFlaming and SetMagic methods from your SwordDamage class, so remove all calls to
those methods. You're not using the UpdateFlaming or UpdateMagic event handlers, so remove those too.

+ Now that you modified the “Rolled ... for ... HP” line at the bottom of the page to bind directly, you can delete
the DisplayDamage method. Delete the damageText field, and all calls to the DisplayDamage method, too.

* The new SwordDamage class has a constructor with one parameter—just pass it 10. It doesn’t matter what
value you use here, because you'll roll the dice when the page is initialized.

Test everything. Use the debugger or Debug.WriteLine
statements to make sure that it all REALLY works.

you are here » 87

chapter 5 how objects keep their secrets

Y Exercise

"gr\j 1 .

S>3 Dolution
Here’s the complete Index.razor file for your Blazor web app, including HTML markup and C# code. Did you notice
how much less C# code you need in it? That's one way well-encapsulated classes help you write better code—you

don't need to write as much additional code to use them.

@rendermode InteractiveServer

@page "/" The updated code for the

SwordDamge class is in the

<PageTitle>Damage Calculator</PageTitle> solution in the book.

<div class="container">
<div class="row justify-content-center">
<div class="col-3 text-left">
<input class="form—-check-input" type="checkbox" id="flaming"
@bind="swordDamage.Flaming" />
<label class="form-check-label" for="flaming">
Flaming
</label>
</div>
<div class="col-3 text-right">
<input class="form—-check-input" type="checkbox" id="magic"
@bind="swordDamage.Magic" />
<label class="form-check-label" for="magic">
Magic
</label>
</div>
</div>
<div class="row justify-content-center mt-5">
<div class="col-4 text-center">
<button type="button" class="btn btn-primary"
@onclick="RollDice">
Roll for damage
</button>
</div>
</div>
<div class="row justify-content-center mt-5">
<div class="col-6 text-center">
/ <h3>Rolled @swordDamage.Roll for @swordDamage.Damage HP</h3>
</div>
</div>
</div>

@code {
SwordDamage swordDamage = new SwordDamage(10);

protected override void OnInitialized()

RollDice();

?ublic void RollDice()

swordDamage.Roll = Random.Shared.Next(1, 7) +
Random.Shared.Next(1, 7) + Random.Shared.Next(1, 7);

88 https://qithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

I finished the exercise, but it
looked like there was a little
more to do in the chapter,

That’s right. You can go finish Chapter 5 and move on
to the next chapter after that.

Find this heading in Chapter 5:
A few useful facts about methods and properties

You can start reading at that heading. Finish the chapter, including the
crossword. After that, you can go through all of Chapter 6 until you get to
the final project in the chapter. It’s a big project that starts with this heading:

Build a beehive management system

As soon as you get to that heading, come back to the Blazor Learner’s

Guide. We’ll give you a replacement for the first part of the project to build
a Blazor version of the Ul then you’ll be able to return to the book to finish
the project (with just one small section to skip).

you are here » 89

chapter 6 your object’s family tree

Build a beehive management system

The queen bee needs your help! Her hive is out of control, af

and she needs a program to help manage her honey production

business. She’s got a beehive full of workers, and a whole bunch of

jobs that need to be done around the hive, but somehow she’s lost af

control of which bee is doing what, and whether or not she’s got

the beepower to do the jobs that need to be done. It’s up to you to
build a beehive management system to help her keep track of

her workers. Here’s how i1t’ll work.

®

The queen assigns jobs to her workers.
There are three different jobs that the workers can do.
Nectar collector bees fly out and bring nectar back to U
the hive. Honey manufacturer bees turn that nectar
into honey, which bees eat to keep working, Finally, the
queen is constantly laying eggs, and egg care bees
make sure they become workers.
When the jobs are all assigned, it’s time to work.
Once the queen’s done assigning the work, she’ll tell the bees to work the next shift. At the end of the
shift, she gets a shift report that tells her how many bees are assigned to each job and the status of the
nectar and honey in the honey vault.
Job Assignments Queen's Report
Nectar Collector B \1/:”(;‘ "ef:°"tf N
. .0 units of honey
Help the queen grow her hive. 1.9 units of noctar
Like all business leaders, the queen is a0 count 3
focused on growth. The bechive business Unassigned workers: 0.9
is hard work, and she measures her hive in l:ﬁﬁgﬁ:ﬂiﬁiﬁfbees
the total number of workers. Can you help 1Eqg Care bee
. . TOTAL WORKERS: 34

the queen keep adding workers? How big
can she grow the hive before it runs out of)

honey and she has to file for bee-nkruptcy?

This is a bigger project than the ones in the last few chapters.
‘&L This is a big project.

The main goal of this book is to help you learn C#. But we’ll also teach important skills Vou ¢an do Lhis!
ou tan :

that can help you become a great developer. One way to do that is to help show you
how to work on—and finish!-—larger projects. When you did the Animal Matching Game
project in Chapter 1, you broke it down into smaller pieces. You’ll do the same for the
Beehive Management System project. First you’ll create the XAML for the main page,
then you’ll do a “Sharpen your pencil” exercise to complete the code for several of the
classes, and finally you’ll do an exercise to finish the rest of the code for the project.

90 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

How the Beehive Management System app works

When the app starts, the honey vault has 25 units of honey and 100 units of nectar, and the hive
has three workers: a nectar collector bee, a honey manufacturer bee, and an egg care bee. The
first shift report delivered is displayed on the righthand side of the app.

If there are any unassigned workers at the
start of the shift, you can use the dropdown
to choose a job, then click the Assign button

to give a worker that job (it’s disabled if there

aren’t enough unassigned workers). If there

are multiple unassigned workers, you can do
this more than before the next shift.

This is the shift report that the queen
generates at the end of every shift. It
shows the status of the honey vault,
followed by the number of eggs,
unassigned workers, and how many
workers there are of each type.

/

Job Assignments /

Nectar Collector]

Assign this job to a bee
Work the next shift

Queen's Report

Vault report:
16.0 units of honey
1.9 units of nectar

Egg count: 3.9

Unassigned workers: 0.9

1 Nectar Collector bee

2 Honey Manufacturer bees
1 Egg Care bee

TOTAL WORKERS: 34

Once you’ve done all of your worker

assignments, you can click the

Work the Next Shift button to tell the

workers to work the next shift.

|

|

Each worker consumes honey
to do a job. The numbers
change at the end of each
shift to show what they did.

Vault report:
27.50 units of honey
34.55 units of nectar

Egg count: 7.80

Unassigned workers: 0.60

4 Nectar Collector bees

3 Honey Manufacturer bees
2 Egg Care bees

TOTAL WORKERS: 9

If the Unassigned Workers
count is at least 1, clicking
the Assign button assigns a
worker to the selected job.

Assigning a worker makes the
unassigned workers go down
by 1 and the total workers
increase by 1.

Vault report:
30.89 units of honey
101.65 units of nectar

Egg count: 8.10

Unassigned workers:{].20

4 Nectar Collector bees

3 Honey Manufacturer bees
2 Egg Care bees

TOTAL WORKERS: 9

Vault report:
28.74 units of honey
101.65 units of nectar

Egg count: 8.10
Unassigned Workers
5 Nectar Collector bee
oney Manufacturer bees
2 Egg Care bees
TOTAL WORKERfK@e

you are here » 91

chapter 6 your object’s family tree

How the main window is designed

Create a new Blazor web app called BlazorBeehiveManagementSystem. Here’s
the HTML markup for the main window, including its entire @code section. It has three
columns: one for job assignments, an empty divider column, and a column for the Queen’s
report. The left column contains four rows: one for the header, one for the job dropdown,
one for the job assignment button, and one for the button to work the next shift

This is a dropdown control (or select control), just like you used in Chapter 2. It gives you
a list of options to choose from. You’ll use it to let the user choose a job to assign and @
bind its value to a field called selectJob. In Chapter 2 you used a @foreach to create
the options, but now you’ll create seprate <option> tags for each of the three options.

col-4 col-1 col-7
. ! ! =

¢| Job Assignments/ | |Queen'sReport____________ g

----------------- ——-' -— e e -

! Vault report:

o Nectar Collector ¢ | . =
el T : 16.0unitsof honey | his olumn has two 8
19w oinecar yows, one for text and

--------------------- one for a Textpvrea.

Egg count: 3.9
Unassigned workers: 0.9

1 Nectar Collector bee

2 Honey Manufacturer bees
1 Egg Care bee

TOTAL WORKERS: 34

row

Work the next shift

This column has four
vows, one for text,
one for a selettor, and

{:WO ‘(: or bu'&'&th-

\
This is a TextArea control. It displays multiple lines
of text. You’ll use @bind data binding to make it
display the Queen object’s StatusReport property.

Put your classes in the right namespace (or add a @Qusing directive).

You'll be creating a project called BlazorBeehiveManagementSystem, including
h 0t‘ classes that the code in your Home.Razor file will use. You have two options for which
a_tc L. namespace to use. You can add namespace BlazorBeehiveManagementSystem; to the
top of each class file to put it in the same namespace as your app, or you can put the classes in
a different namespace and use a @using directive in your Home.razor to use that namespace.

92 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

7 ’ °
./ Exercise
=1 Create a new Blazor web app called BlazorBeehiveManagementSystem. Your job in this exercise is to add the

HTML markup for the main window.

Before you get started, you'll need to add this Queen class to your project—it has methods that the buttons will call
and a property that you'll bind to. You'll fill in the rest of the class later on in the project:

public class Queen

{
public void AssignBee(string selectedJob) { /* You’ll fill this in later =*/ }
public void WorkTheNextShift() { /* You’ll fill this in later =*/ }
public string StatusReport { get; private set; } = ""; S
}
You'll need to add +this elass to
Here's the enti tion f Home. file: .
ere’s the entire @code section for your Home.razor file your project 4o aet the @bind and
@codg { . o B@onelitk data binding to build.
ueen queen = new Queen();
string selectedJob = "Nectar Collector";
}

Your job is to create the HTML markup for the main window. Look carefully at the layout that we just showed you.

+ The page has three columns: one for job assignments, an empty divider column, and a column for the Queen’s
report.

+ The left column contains four rows: one for the <h3> header text, one for the job dropdown, one for the job
assignment button, and one for the button to work the next shift.

+ The right column has two rows, one for the <h3> header text and one for a TextArea control.
Here are a few useful tips that will help you create your form: Any HTML element ean be its own vow

* You can make a text tag like <h3> its own row like this: <h3 class="row">This is a separate row</h3>

+ The dropdown uses a <select> control, with three options: Nectar Collector, Honey Manufacturer, and Egg Care.
It works just like the <select> that you used in Chapter 2, except instead of using a @foreach loop to create its
options, you'll add three separate <option> tags between the opening <select> and closing </select> tags. Give it
the property class="row mt-4" to put it on its own row with a top margin. Look carefully at how the @foreach
loop works. Can you figure out the properties to add to each <option> tag?

+ The “Work the next shift” button is a primary button, which means that it represents the most important action for
the user on the page, and it gets clicked when the user presses the Enter key. Here’s the code for it:

<button type="button" class="col btn btn-lg btn-primary"
@onclick="() => queen.WorkTheNextShift()">

+ The “Assign this job to a bee” button is a secondary button. You can only have one primary button, but you can
have many secondary buttons. Here's the code for it:

<button type="button" class="col btn btn-small btn-secondary"
@onclick="() => queen.AssignBee(selectedJob)">

+ ATextArea control lets you display or enter multi-line text. Use this HTML for a read-only text area with 12 rows:

<textarea class="row" rows="12" cols="50"
value="@queen.StatusReport" readonly />

you are here » 93

® Exercise

S/ Solution

W
: mthe complete code for the Home.razor file.

@rendermode InteractiveServer
@page Il/ll
@Qusing BlazorBeehivelManagementSystem;

<PageTitle>Beehive Management System</PageTitle>

. . . . The left column has four rows: one with <h3>
<dl\i d(?laSi= cgrl]'tal?lir > text, one with a dropdown, one with a scCondar\/
1v class="row button, and one with a primary button.

<div class="col-4">

Th et> h ¢
<h3 class="row">Job Assignments</h3> e <selett> has a class

K yroycr{:\/ to Pu‘{: it in its own
<select type="row mt-4" @bind="selectedJob"> row and give it a top margn.
<option value="Nectar Collector">Nectar Collector</option>

<option value="Honey Manufacturer">Honey Manufacturer</option>

<option value="Egg Care">Egg Care</option>

</select> r_ The .dV'OFdown uses these three
<oF'f:|on> {353 to determine the
<div class="row mt-4"> options the user ean thoose from.

<button type="button" class="col btn btn-small btn-secondary"
@onclick="() => queen.AssignBee(selectedJob)">

Assign this job to a bee W
</button> N ¢ gave ‘You {':"‘C Colfic for the two buttons.
</div> Look at the “class Fro\?er{:ics—{:\ry
experimenting with swapping them around.
<div class="row mt-4"> How does that thange the buttons?
<button type="button" class="col btn btn-1g btn-primary"
@onclick="() => queen.WorkTheNextShift()">
Work the next shift

</button> |
</div> We gave Yyou the HTML eode for this
</div> Heve’s the middle column. textavea. What happens if You change
i %he vows and tolumns properties, or
<div class="col-1" /> vemove the veadonly property?

<div class="col-7">
<h3 class="row">Queen's Report</h3>
<textarea class="row" rows="12" cols="50"
value="@queen.StatusReport" readonly />

</div>
</div>
</div>
@code { We gave you the Btode
Queen queen = new Queen(); settion and a minimal Queen
string selectedJob = "Nectar Collector"; tlass with empty methods
} so the projeet builds.

94

https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Now that I built the user interface for the
Beehive Management System, do I go back to
the book to finish the project?

Yes, exactly. The rest of the project is the same for
both the Blazor and MAUI versions—with one tweak.

Find this heading in Chapter 6:
The Beehive Management System class model

That’s where you can keep going with the project. You’ll go on to create the
Bee superclass and several subclasses, a static Constants class to hold your
constants, and you’ll do an exercise to finish building the Queen class, along
with a HoneyVault class.

You should ignore the section with this header:
Here’s the code-behind for MainPage.xaml.cs

For the NET MAUI version, we had to provide some additional code. But
you already have all of the code for your Home.razor file, so you can just skip
that section and go right to the exercise. Then you can finish the chapter.

You also need to add this code to your page disable the “Work the next shift” button
when the hive runs out of honey

The Queen.WorkTheNextShift method returns true if there is still honey in the honey vault, or false if it ran out of
honey. Add a boolean field called outOfHoney to track when the hive runs out of honey:

@code {
bool outOfHoney = false;
Queen queen = new Queen();

Then modify the HTML for the button to set the field when the button calls the WorkTheNextShift method, and use
its disabled property to disable the button when the honey vault is out of honey:

This field will be set to true when
the honc\/ vault vuns out of honey.

<div class="row mt-4">
<button type="button" class="col btn btn-lg btn-primary"

-
his property disabled="@outOfHoney"

Sirblcsfhc @onclick="() => outOfHoney = !queen.WorkTheNextShift()">
wtton i Work the next shift

ou{:O«cHonc\/ </button> I\ This is where the button calls the
is true. </div> Work TheNextShift button. This

change uses | 4o the vesponse, and sets
the ou‘{:O‘CHoncy field to that value.

you are here » 95

chapter 6 your object’s family tree

Look for a page in the book with this heading. Here’s a replacement for that page.

The Beehive Management Systew is furn-based...
now let’s convert it to real-time

A turn-based game is a game where the flow is broken down into parts—in the case of the Bechive
Management System, into shifts. The next shift doesn’t start until you click a button, so you can take all the
time you want to assign workers. We can use a timer—like the one you used in Chapter 1-—to convert it to
a real-time game where time progresses continuously...and we can do it with just a few lines of code.

o Start a timer in the Onlnitialized method. [You used a timer just like |
You've used the Onlnitialized method to run code when the app first starts: this' in Chapter 1 t? add
Now do the same thing to start a time: a timer to your animal
matching game. This code
@code { is very similar to the code
bool outOfHoney = false; you used in Chapter 1.
Queen queen = new Queen(); Take a few minutes and
string selectedJob = "Nectar Collector"; flip back to that project to
remind yourself how the
Qusing System.Timers timer works.

Timer timer;
protected override void OnInitialized()

{
timer = new Timer(1500); This method stavts a timer
t:.Lmer.E'Lapsed += Timer_Elapsed; é that calls the Timer Ela?sed
} timer.Start(); method every |.% setonds.

9 Add the Timer_Elapsed method to work the next shift on each “tick.”

We want the timer to keep the game moving forward, so we can have it automatically trigger the
next shift if the player hasn’t done it already. Here’s the code for the method:

private void Timer_Elapsed(object? sender, ElapsedEventArgs e)

{
InvokeAsync(() =>
{ - -
if (loutOfHoney) If the TlmerTlck.method
{ returr!s false., tlje timer stops
outOfHoney = !queen.WorkTheNextShift(); running. Th's if statemgnt
StateHasChanged() ; keeps the timer from trying
} ! to work the next shift if the
1) hive has run out of honey.
1
}

Now run your game. A new shift starts every 1.5 seconds, whether or not you click the button. This 1s a small
change to the mechanics, but it dramatically changes the dynamics of the game, which leads to a huge
difference in aesthetics. It’s up to you to decide if the game is better as a turn-based or real-time simulation.

96 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

I don't see any other MAUI
projects in Chapter 6.

You can head back to the book for
the rest of the chapter.

There’s one more place in Chapter 6 where you
revisit the Beehive Management System. Look for
this heading:

Abstract properties work just like
abstract methods

All of the code in that section works with the
Blazor version of the project. There’s also an
exercise in Chapter 7 where you add an interface
called IWorker to the Bechive Management
System, but that also works with the Blazor version.

Relax ...

There’s no Blazor equivalent for the .NET MAUI section in Chapter 7.

| There’s a .NET MAUI project in Chapter 7 that starts with this heading:
Pata binding updates MAUI controls automatically

That project is about data binding in .NET MAUI. It’s in that chapter because it uses an interface.
You've used data binding with Blazor since Chapter 2, so there’s no equivalent Blazor project. That
means you can skip the entire project and start again at this heading near the end of the chapter:

Polymorphism means that one object can take many different forms
Keep going until you reach this heading at the end of Chapter 8:

CollectionView is a MAUI control built for displaying collections

Then come back to the Blazor Learner’s Guide for the next Blazor project.

you are here » 97

chapter 8 organizing your data

A list box shows you a list of items that you can pick

There’s a close relative of the dropdown list called the list box. A list box lets you choose an item from a list, but
unlike a dropdown it displays the items in a box. A list box uses the same <select> tag as the dropdown that
you used to pick birds in Chapter 2 or bee jobs in Chapter 6. To turn a <select> into a list box, all you have to is
give it a size property that tells it how many items to display before showing scrolling them.

Here’s an example of a list box that could display animals in your zoo simulator from Chapter 6. It uses
<select> tag with a size="5" property to turn it into a list box that displays five items:

<selggl§tig§e:;.%:;='iion">Lion</0ption> < This size PYOFC%\/ makes the <sclect>
Sohtion value="loLf"sloLf</options appear as a list box that displays five items.

<option value="Hippo">Hippo</option>
<option value="Bobcat">Bobcat</option>
</select>

Here’s how the list box is displayed on the page—it’s only got four items, so there’s space underneath Bobcat:

Lion a
Wolf
Hippo
Bobcat
v

Let’s add two more items to the list:

<select size="5">
<option value="Lion">Lion</option>
<option value="Wolf">Wolf</option>
<option value="Hippo">Hippo</option>
<option value="Bobcat">Bobcat</option>
<option value="Tiger">Tiger</option>
<option value="Dog">Dog</option>

</select>

The <select> tag still has size="5" so the list box only displays five items at a time. Since there are six items in
the list, the list box now has a scroll bar so you can scroll down to see the list item:

Lion a

Wolf When the number of o\?{jons is
Hippo | 6 bigger than the size, the list
Bobcat box adds a sevoll bar.

Tiger v

Data binding works just like it did with the dropdown: <select size="5" @bind="animal">

Blazor uses two-way binding, which means you can change the selected item by setting the bound variable:

animal = "Dog";
The <select> is bound to the animal variable.
VHViO|fo “ Setting the variable to one of the items in the list
BoprZ:at causes the list box to select that item. If the list
Tiger | is currently scrolled so the item isn't currently

_ displayed, the list box will scroll to make it visible.

98 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Create a new Blazor Web app that uses a list box

Let’s create a new app that we’ll use to learn about how list boxes work, and get some practice
working with collections. We’ll start with a list box that displays the familiar list of birds. Later in the

chapter we’ll modify it to use your Card class to work with decks of cards instead.

®

®

o
o 1his!
Create a new Blazor Web App called BlazorCards. D tb

For now, we’ll display a familiar array of birds. But later on, we’ll replace them with cards,
so make sure you use the name BlazorCards for your app. Modify NavMenu.razor to
remove the Counter and Weather sections, and set the page title to "Blazor cards".

Replace the HTML with a page that has a list box.
Open Home.razor and delete everything. Replace it with this code:

@page u/u

@rendermode InteractiveServer The <seleet> tag in this app

<PageTitle>Blazor Cards</PageTitle> looks almost identical o the

<div class="container"> ?F: Youl uscic(-\or ° droFdown'
<h3 class="row">Pick a bird</h3> e on di erence is the
<div class="row"> size="8" property.

<select class="col-12" size="8">
@foreach (string bird in birds)

This @foreath loop is {

used in Chapter 2.

yﬁihkcfhconeyou —> <option value="@bird">@bird</option>
< /o|i:£seleCt> In Chapter 2 You used a string array for the list

</div> of birds. Now You tan use 3 List<string> instead,
but you ean skill use the same collection expression.
@code {
private List<string> birds = [
n Duckll .
"Pigeon",
"Penguin",
"Ostrich",
IIOW'L n
1;
H

Run your app.
Try clicking on different birds in the list box—it selects each bird that you clicked on.

...

Pick a bird

Duck a
Penguin

Ostrich

Owl

...

you are here » 99

chapter 8

organizing your data

Make your app work with Card objects

Let’s make your list box work with objects, not just strings—specifically, card objects. You created a Card class,
Suits and Values enums, and a CardComparerByValue class. Now you’ll reuse them in a Blazor app.

Heve are the

Add your Card class, CardComparerByValue class, Suits enum, and Values enum.
The list box automatically calls the ToString method for any item that it displays, so make sure you use the
version of the Card class that has the ToString method. Add the existing files to your project just like you
did in Chapter 3 (in Visual Studio: right-click on the project and choose Add >> Existing Item and add each
file; in VSCode: right-click on the project and choose Reveal in Explorer/Finder and drag the files onto the
project). Make sure the classes and enums are in the BlazorCards namespace.

Change your HTML to work with cards instead of birds.
Here’s the updated Home.razor file. We added a row to show the selected card and added a button that
calls the the AddBird method, which adds a random card to the list and updates selectedCard to select it:

©page ||/||

@rendermode InteractiveServer

@using BlazorCards

<PageTitle>Blazor Cards</PageTitle> Bind your list box to a new

Ffield eallde selectedCard.
<div class="container">
<h3 class="row">Pick a card</h3>

<div class="row">
<select class="col-12" size="8" @bind="selectedCard">
@foreach(Card card in cards)

{
<option value="@card">@card</option>
} PO et Add two vows to the page. The
We R ’ WO ¥O Pa9
</d .<£select> {-{::E:::;i T)‘c Vz:ablc " fivst vow is an <hd> that displays
v o0p o card the selected tard, just like you did
<ht} class="row">You selected: @selectedCard</hu> in Chapter 2 with the dropdown.

<button type="button" class="row mt-2 btn btn-primary" 43———\\
@onclick="AddCard">Add a card</button> _
</div> This vow adds a button that ealls
a new method talled AddCavd.
@code {
string? selectedCard;
private List<Card> cards = new List<Card>();

fields for binding' private void AddCard()

the selected { The AddCard method
tard, and the list cards.Add(new Card((Values)Random.Shared.Next(1, 14), adds a new random
of tards (which (Suits)Random.Shared.Next(0, 4))); card to the list, then
starts out empty). selectedCard = cards[cards.Count - 1].ToString(); sg{s the selettedCard
} : : 9t field to the string value
1 of the card that was

\)us{: added to the list.

100 https://qithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Does your list box show “BlazorCards.Card” instead of card names? Make
sure your Card class overrides the ToString method so it returns Name.

9 Run your app and add a bunch of cards.

Every time you click the button, the app adds a card to the list. But hold on—something’s wrong.

:’ (im} @ Blazor Cards x WS - - X
C O https//localhost 7231 A B @ R L/]
Blazor Cards About o We ¢elicked the Add a eavd
. button, but instead of addm5 a
A Pick a card ® ctard and strolling to the bottom
Two of Healrts a - 0£ ‘{')\C |IS‘{: our app SCICC‘{ZCd a
Seven of Diamonds
Nino of Heate ’ tard in the middle of the list.
Two of Diamonds £
King of Diamonds S
Eight of Clubs
King of Diamonds v o
You selected: Ace of Spades o
+
€3

Most of the time, clicking the card causes the list box to scroll all the way to the bottom. But
sometimes it jumps to the middle of the list. What’s going on?

S f Sleuth it Out

The Case of the Card that Jumped

You've been sleuthing out bugs throughout the book—and as Sherlock Holmes once said, “You know my methods,
Watson.” Luckily, this bug won't be hard to track down.

Start your app and keep clicking the Add a card button until the selection jumps to the middle of the list. In our
screenshot above, it selected the Ace of Spades. Now use the scroll bar to scroll to the bottom of the list box:

Plck a card

: Seven of Diamonds

.| Nine of Hearts

1| Two of Diamonds

:

.| King of Diamonds

.| Eight of Clubs

.| King of Diamonds

: Ace of Spades v

Heve's the ard that got selected

é/ when we pressed the button.

Heve's the tard H\a{: ﬁusi got added jo
s the same tar

Aha! The card that got selected in the middle of the list is the same card that was just added. When the AddCard
method updated the selectedCard field, the list box found the first card that matched the updated value. Since
there was already an Ace of Spades in the list, it selected that card instead of the one added to the end.

We have a culprit! But how will we get the list box to select a specific Ace of Spades, not just any Ace of Spades?

you are here » 101

chapter 8 organizing your data

Give options unique values so the list box can select a specific card

It’s not unusual for a list box to display two items that appear the same, but when that happens your app needs to figure
out which item it should select. To help with that problem, you can use the <option> tag’s value property to assign a
unique value to every item in the list.

This is the value that the This is the text that’s
bound variable gets set to. \/ \[displayed in the list.

All of the options you've used so far have looked like this: <option value="Lion">Lion</option> - the value
property has always been the same as the content of the tag.

You’ll fix the bug in your app by sctting the value property to something unique to that specific item in the list.
Since this is a list, you can use the index of the card in the List<Card>. We’ll introduce some new Razor markup to
help you make the change: @for lets you include a for loop in your HTML, and @if lets you add an if/else conditional.

First, change the @foreach that creates the options to a @for loop:

<select class="col-12" size="8" @bind="selectedCard"> A @for loop in Razor markup
@for(int i = 0; i < cards.Count; i++) works just like a C# for loop. Just
{ like with @foreach, any HTML

<option value="@i">@cards[il</option> inside the Ioop is repeated for
} each iteration of the loop.

</select>

Instead of setting the selectedCard field to the name of the card, the list box will set it to the index of the card in the
list. There’s a problem, though—the selectedCard field is a string? type. Change it to an int instead of a string?:

int selectedCard;

Now we’ve got another problem. The <h4> row displays the value of the selectedCard field, but now that value is a
number and not the name of a card. Try replacing @selectedCard with @cards[selectedCard] — when you run
your app, you’ll get an exception because the @cards list is empty.
Replace your <h4> row with this @if that makes sure selectedCard won'’t throw an exception:

@if (selectedCard >= cards.Count)

An @if directive lets you do a

<htd class="row">No card selected</hu> conditional test and add HTML
to the page based on the results

of the test. You can include an

<htd class="row">You selected: @cards[selectedCard]</hu> else, just like with a C# if/else.

else

Finally, update your AddCard method to set selectedCard to the index of the card that was just added:
private void AddCard()

{
cards.Add(new Card((Values)Random.Shared.Next(1, 14),
(Suits)Random.Shared.Next(0, 4)));
selectedCard = cards.Count - 1;
}

Run your app again. Click the button many times—mnow it always scrolls to the card that was just added.

102 https://qithub.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

@ U5 Exercise

= ‘Create a Deck class that extends List<Card>.

List<Card>

You learned all about inheritance in Chapter 6. Now it’s time to apply that Clear
knowledge to create a class that represents a deck of cards. Add

Add a Deck class to your project that extends List<Card> so it inherits Sort .
all of the collection-related methods, including the Clear and Add methods. | many other collection-related methods

class Deck : List<Card>

{
/// <summary>
/// The constructor resets the 52-card deck A
/// </summary> Y—_ The Deck ¢tlass is a subtlass of
public Deck() { List<Card> so it inherits many methods,
| ResetO; incluing Clear, Add, and Sort.

/// <summary>
/// Clears the deck, then loops through suits and

/// values, and adds each card to the 52-card deck Deck
/// </summary> Reset
public void Reset() { ... } Shuffle

/// <summary>
/// Creates a copy of the deck, clears the deck, and
/// uses a while loop to move a random card from
/// the copy to the deck and remove it from the copy
/// </summary>
public void Shuffle() { ... }

}

Write the code for the Reset and Shuffle methods. Carefully read the XMLDoc to see what the methods need to do.

Modify your Home.razor to use the deck add buttons to the bottom of the page that call its methods
Here's what how the buttons are laid out. Can you create the HTML so your app matches our screenshot?

--

Surround your current <button> tag with a

Pick a card i <div> that adds a row with a top margin:
Two of Hearts al .) .
Four of Diamonds : Change tll'we button S clas§ property so it
Two of Spades - contains "col-9" to make it span 9 of the
12 columns in the Bootstrap grid layout.
Queen of Hearts :

_IE_ightfoL Clubs . - The next two buttons are also contained in
en of Hearts . : —n "
Nine of Clubs . a <div class="row mt-2">. Each of those

You selected: Queen of Diamonds : buttons spans 4 columns, and there's a
: col-1 between them to add space:

<div class="col-1" />

Only the top button is a primary button.
Make the rest of the buttons secondary.

It's not cheating to peek at the solution!

you are here » 103

chapter 8 organizing your data
(Y Exercise
AP R
3 Solution

Here's the full Home.razor for your Blazor Cards page with buttons to shuffle, sort, reset, and clear the deck:

@page "/" The tard tlasses and enums are

@rendermode InteractiveServer .

@usj_ng BlazorCards n {')\C BISZOY‘CQYdS namcsyau.

<PageTitle>Blazor Cards</PageTitle> Each option displays the

name O‘F {')\c tard, bu{:

<div class="container">

<h3 class="row">Pick a card</h3> the actual value that gets
<div class="row"> . . bound to seleetedCard is
<select class="col-12" size="8" @bind="selectedCard"> @i, or the index of the

@for (int i = 0; i < cards.Count; i++)

tard in the List.

<option value="@i">@cards[il</option>

</di§£$eleCt> This @if eheeks that the selected
¢ard is a valid index in the List,
?if (selectedCard >= cards.Count) so it never tries to get the value

of eavdsCseleetedCardd if it will

<htd class="row">No card selected</hu>
throw an “out of vange” exception.

else

<htd class="row">You selected: @cards[selectedCard]</hu>

<div class="row mt-2">

<button type="button" class="col-9 mt-2 btn btn-primary" This vow has a button
@onclick="AddCard"> that spans 9 of the 12
Add a card
</button> Boo{s‘bray tolumns. We made
</div> it the primary button.

<div class="row mt-2">
<button type="button" class="col-4 btn btn-secondary"
@onclick="ShuffleDeck">

Shuffle the deck The other two rows have
</button> two buttons that span
<div class="col-1" /> 4 of the 12 Bootstrap

<button type="button" class="col-4 btn btn-secondary"

@onclick="SortDeck"> tolumns, with a [—¢tolumn

Sort the deck margin between them so
_</button> they add wp to a total of
</div> 9 columns. That will make

<div class="row mt-2"> them the same width as
<button type="button" class="col-4 btn btn-secondary" the “Add a tard” button.

@onclick="ResetDeck">
Reset the deck
</button>
<div class="col-1" />
<button type="button" class="col-4 btn btn-secondary"
@onclick="ClearDeck">
Clear the deck
</button>
</div>
</div>

104 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

Y Exercise

W Solution

@code { =
int selectedCard; ™ field ;
private Deck cards = new Deck(); &——— e tavds tield is now a Deck
ob\)c(:&, whith extends List<Cards.
F{)rivate void AddCard()
cards.Add(new Card((Values)Random.Shared.Next(1, 14),
(Suits)Random.Shared.Next(0, 4)));

selectedCard = cards.Count - 1;
} The event handler

private void ShuffleDeck() { cards.Shuffle(); } Z‘C%Zdjdf:k H\Icl
private void SortDeck() { cards.Sort(new CardComparerByValue()); } our buttons ¢a

private void ResetDeck() { cards.Reset(); } the torresponding
private void ClearDeck() { cards.Clear(); 1} methods on the
} Detk ¢lass.

Here's the Deck class that extends List<Card> and adds Reset and Shuffle methods:

namespace BlazorCards;
class Deck : List<Card>

?ublic Deck()

Reset();
public void Reset() This "FSth for loop goes through each of
the Em{s, and for each suit it loops through
Clear(); A/ all ot the tards and ad
for (int suit = 0; suit <= 3; suit++) ot the cards and adds them to the Deck

for (int value = 1; value <= 13; value++)
Add(new Card((Values)value, (Suits)suit));
}
public void Shuffle()
{

List<Card> copy = new List<Card>(this);

Clgar();

V{Vhlle (c0py.Count > 0 This while |oo‘> Yicks a vandom ctard
int index = Random.Shared.Next(copy.Count); £eom the eopy, ad.ds it to the Deck,
Card card = copylindex]; and then vemoves it from the copy,

) f\gs%ézigg\;eAt(lndex); vepeating until the copy is empty.

In the next exercise, you’ll take the ideas and tools you just used and apply
them to a new project. This is a great way to get them to stick in your brain.

you are here » 105

| Exercise

You've just used a list box control, options with unique values, @for, and @if, and you used inheritance to create a
Deck class that extends List<Card>, and you've learned more about laying out pages using the 12-clolumn Bootstrap
grid system. In this exercise, you'll use all of those things to create an app that has two decks of cards, with buttons
that let you shuffle, sort, reset, and clear the deck, and two more buttons to move cards from one deck to the other.

You can do this! Just take it step by step, and remember that it’s not cheating to peek at the solution.

Click a cavd in the left deck to
We eleared the leEt deck, seleck i, then click the Move Right
then used the “Add left button to vemove it from this deck

button to add six cards to '{-’\ / and add it to the other one.

S D @ Twobecks x + - 0

(@] 3 https://localhost:7052 Ay m = %

About

Two Decks

<
mc,oﬁx/

Ten of Diamonds \V a /P Three of Hearts a
A Home Seven of Hearts Eight of Spades]
v Ten of Spades
Ace of Diamonds = Jack of Hearts pi e
Jack of Hearts oS- Three of Diamonds
Three of Hearts — s> (]
£ King of Hearts
King of Spades v &
Left card: King of Clubs Right card: Five of Spades =

Add left

Move left

Shuffle left Sort left

Reset left

v

=
Q
LX)
~
+
Clear left Clear right
N 3

Now there are two sets of buttons to add, The “Move vight” button removes the selected card
shuffle, sort, veset, and ¢lear the decks. from the vight deck and adds it to the left deck.
The “Move lef+” button vemoves the selected card
Leom the left deck and adds it to the vight deck.

J

Add right Z Move right

Step 1: Copy the BlazorCards code and card classes, then replace the cards field with two Deck fields

Create a new project called TwoDecksBlazor. Modify NavMenu.razor to update the app name and remove the extra
menu items. Add the Deck, Card, and CardComparerByValue classes and the Suits and Values enums into your
project and add a @using directive to your Home.razor file because they're in the BlazorCards namespace.

Add a @code section to and add two Deck fields called leftDeck and RightDeck:

Deck leftDeck = new Deck(); Getting argument out of

Deck rightDeck = new Deck(); range exceptions you’re

having trouble tracking

You'll also need two fields to store the indexes of the selected left and right cards: down? Make sure you’re
int selectedCardLeft; not using selectedCardLeft
int selectedCardRight; with rightDeck or vice versa.

106 https://github.com/head-first-csharp/fifth-edition

Blazor Learner’s Guide

WK Exercise

——
Step 2. Add click event handler methods that work just like the ones in your Blazor Cards project

Your app has familiar buttons to add, shuffle, sort, reset, and clear the right decks. These buttons work just like the
ones in your Blazor Cards project. Add methods named AddCardLeft, ShuffleLeftDeck, SortLeftDeck ResetLeftDeck,
and ResetLeftDeck that work just like the ones in Blazor Cards, except they use the leftDeck field. Then add
AddCardRight, ShuffleRightDeck, SortRightDeck ResetRightDeck, and ResetRightDeck methods for the right deck.

Step 3. Create the MoveLeftToRight and MoveRightToLeft methods

Add a MoveLeftToRight event handler method for the “Move left” button that moves a card from the left deck to the
right deck. It adds leftDeck[selectedCardLeft] to the right deck, sets selectedCardRight to rightDeck.Count - 1, and
then calls LeftDeck.RemoveAt(selectedCardLeft) - that's a method inherited from List<Card> that removes an
element at a specific index. “Move right” button that moves a card from the right deck to the left deck.

Then add the MoveRightToLeft method, which does exactly the same thing except left and right are reversed.

Step 4. Add LeftCardNotSelected and RightCardNotSelected properties

Create two boolean properties called LeftCardNotSelected and RightCardNotSelected that do the same check
as the @if directive in the BlazorCards project. The LeftCardNotSelected property has a getter that returns
selectedCardLeft >= leftDeck.Count. RightCardNotSelected does the same thing, except for the right deck.

Step 5. Lay out the HTML for the page

The page has five rows, each with a top margin of 2 (<div class="row mt-2">)except for the top row, whcih
doesn’t have mt-2 in the class property. Here’s what you'll add to each row:

+ The first row has a list box for the left deck, a two-column spacer (<div class="col-2" />), and a list box for
the right deck. Both decks are 5 columns wide. They work just the list boxes in the BlazorCards project, except the
left list box @for loop reads the cards from the leftDeck field, and the right list box reads from the rightDeck field.

+ The second row has an @if for the text that displays the card selected in the left deck, a two-column spacer, and
an @if for the text that displays the card selected in the right deck. The @if directives call the properties to check
if a card is not selected (@if (LeftCardNotSelected)). They work just like the similar @if in BlazorCards,
except instead of adding <htt class="row"> they add <div class="col-5"> to the page.

+ The third row has the Add left, Move left, Add right, and Move right buttons, in that order. The buttons all are 2
columns wide. The Add buttons are primary (class="col-2 btn btn-primary"), all of the other buttons
are secondary, including the buttons in the other rows (class="col-2 btn btn-primary"). There's a
1-column spacer (<div class="col-1" />)between each pair of Add and Move buttons, and a 2-column
spacer between the buttons on the left and and the ones on the right. The Add buttons call the AddCardLeft and
AddCardRight Mehtods, and the Move buttons call the MoveLeftToRight and MoveRightToLeft methods. Add the
property disabled="@LeftCardNotSelected" to the Move left button to disable it if a card is not selected.
Add the property disabled="@RightCardNotSelected" to the Move right card too.

+ The fourth row has the Shuffle left, Sort left, Shuffle right, and Sort right buttons. They are all 2-column wide
secondary buttons, with the same spacers as in the third row. They call the ShuffleLeftDeck, SortLeftDeck,
ShuffleRightDeck, and SortRightDeck methods.

+ The fourth row has the Reset left, Clear left, Reset right, and Clear right buttons. They are all 2-column wide
secondary buttons, with the same spacers as in the third row. They call the ResetLeftDeck, ClearLeftDeck,
ResetRightDeck, and ClearRightDeck methods.

If there are more than 12 columns in a row Bootstrap will wrap to the)
next row, so if you see buttons in the wrong place, you may just be J you are here » 107

missing a <div>and <div class="row mt-2"> between two buttons

Y Exercise

-

A5 Solution

= Here's the full Home.razor file for the Two Decks app.
@page ||/||

@rendermode InteractiveServer

@using BlazorCards

<PageTitle>Two Decks</PageTitle>

<div class="container">

<div class="row">
<select class="col-5" size="8" @bind="selectedCardLeft"> <F——]
@for (int i = 0; i < leftDeck.Count; i++))
{ The list boxes for the left and vight
<option value="@i">@leftDeck[il</option> j.cks work just like the ones in your

BlazorCards app- The onl diffecence
is that they vead tards trom the
<div class="col-2"/> leftDeck and vightDeck fields.

<select class="col-5" size="8" @bind="selectedCardRight"> <§__,J
@for (int i = 0; i < rightDeck.Count; i++)

</select>

<option value="@i">@rightDeck[il</option>

</ di:éseled? The setond vow has the two @if divectives for the text
i that display the selected eard in each deck. They use
et oy rthoese the properties that vetuwen true if a tard is selected.

?if (LeftCardNotSelected)

<div class="col-5">No left card selected</div>

else

<div class="col-5">Left card: @leftDeck[selectedCardLeft]</div>

<div class="col-2" />
(gi'F (RightCardNotSelected)

<div class="col-5">No right card selected</div>

else

<div class="col-5">Right card: @rightDeck[selectedCardRight]</div>
</div>

<div class="row mt-2">

<button type="button" class="col-2 btn btn-primary"

@onclick="AddCardLeft">
Add left

</button>

<div class="col-1" />

<button type="button" class="col-2 btn btn-secondary"
@onclick="MoveLeftToRight" disabled="@LeftCardNotSelected">

/ Move left <

</button>

utton We gave You this property to disable the
<div class="col-2" /> butfon it there's no left card selected.

108

https://github.com/head-first-csharp/fifth-edition

<button type="button" class="col-2 btn btn-primary"
@onclick="AddCardRight">
Add right
</button>
<div class="col-1" />
<button type="button" class="col-2 btn btn-secondary"
@onclick="MoveRightToLeft" disabled="@RightCardNotSelected">
Move right <
</button>
</div> We gave You this property to disable the

. button it there’s no vight card selected.
<div class="row mt-2">

<button type="button" class="col-2 btn btn-secondary"
@onclick="ShuffleLeftDeck">
Shuffle left
</button>
<div class="col-1" />
<button type="button" class="col-2 btn btn-secondary"
@onclick="SortLeftDeck">
Sort left
</button>

<div class="col-2" />

<button type="button" class="col-2 btn btn-secondary"
@onclick="ShuffleRightDeck">
Shuffle right
</button>
<div class="col-1" />
<button type="button" class="col-2 btn btn-secondary"

@onclick="SortRightDeck™> These buttons all work Just like
. igrt>rlght \ the ones in the BlazorCards
utton app- The only differente is that

</div>
they all have ¢lass Properties

<div class="row mt-2"> that make them .

<button type="button" class="col-2 btn btn-secondary" ..., d:zcb i{:d“m"SV“de
@onclick="ResetLeftDeck"> ndary buttons, and

y Reset left t:c‘/' lf; eall the methods for

</button> e lett and vi

<div class="col-1" /> ght decks

<button type="button" class="col-2 btn btn-secondary"
@onclick="ClearLeftDeck">

Clear left
</button>

<div class="col-2" />

<button type="button" class="col-2 btn btn-secondary"
@onclick="ResetRightDeck">
Reset right
</button>
<div class="col-1" />
<button type="button" class="col-2 btn btn-secondary"
@onclick="ClearRightDeck">
Clear right
</button>
</div>

</div>

you are here » 109

110

[]
Solution
@COdEnE selectedCardLeft; Theve ave two sets of fields o
int selectedCardRight; track the deck and selected cards,
Deck leftDeck = new Deck(): one set for the left deck and one
Deck rightDeck = new Deck(); set for the vight deck

If MoveLeftToRight is called when there’s no card selected, it will throw an exception. We
could added an if statement that checks LeftCardNotSelected and only moves the card if itis,

» Exercise

private void AddCardLeft()

leftDeck.Add(new Card((Values)Random.Shared.Next(1l, 14),
(Suits)Random.Shared.Next (0, Ll)j);

selectedCardLeft = leftDeck.Count - 1;

}

private void ShuffleLeftDeck() { leftDeck.Shuffle(); }

private void SortLeftDeck() { leftDeck.Sort(new CardComparerByValue()); }
private void ResetLeftDeck() { leftDeck.Reset(); }
private void ClearLeftDeck() { leftDeck.Clear(); }
\Thcsc event handler methods

!:Erivate void AddCardRight() work \)us{: like the ones in
rightDeck.Add(new Card((Values)Random.Shared.Next(1, 14), the BlazorCards app, except
(Suits)Random.Shared.Next(®, 4))); they use the leftDeck and

ightDeck tields.
selectedCardRight = rightDeck.Count - 1; & iy tDeck fields

private void ShuffleRightDeck() { rightDeck.Shuffle(); 1} /

private void SortRightDeck() { rightDeck.Sort(new CardComparerByValue()); }
private void ResetRightDeck() { rightDeck.Reset(); }

private void ClearRightDeck() { rightDeck.Clear(); }

\{0id MovelLeftToRight()

rightDeck.Add(leftDeck[selectedCardLeft]);
selectedCardRight = rightDeck.Count - 1; g‘he event handler methods for the
leftDeck.RemoveAt(selectedCardLeft); uttons to move cards from one deck

to the other first add the card bcing

void MoveRightToLeft() { moved, then update the field that

leftDeck.Add(rightDeck[selectedCardRight]); tracks the seleeted card to make sure
selectedCardLeft = leftDeck.Count - 1; the moved ctavd is selected, and «cinally
rightDeck.RemoveAt(selectedCardRight); vemove the tard from the old deck.

public bool LeftCardNotSelected {
) get { return selectedCardLeft >= leftDeck.Count; }

public bool RightCardNotSelected {
) get { return selectedCardRight >= rightDeck.Count; }

These properties return true of a
valid cavd is selected in the deck.

but instead we used the disabled property to disable the button. Did we make the right choice?

There's no ¥ight or wrong answer to this question, because
https:/github.com/head-first-csharp/fifth-edition theve ave lots of ways to write code to do the same thing,

Blazor Learner’s Guide

I've built a lot of Blazor apps!

You’ve got the tools you need to build some
really great web applications with Blazor.

The last four chapters in the book don’t have .NET MAUI
projects, so...

Congratulations! You're done with the Blazor Learner’s Guude.
You can go back to the book and resume with Unity Lab 8 (or if
you’re skipping the Unity Lab projects, Chapter 9).

But you don’t have to stop your Blazor journey here. You've laid
down a great foundation. If you want to learn more, we love
Learning Blazor, a fantastic book by Blazor expert David Pine

that gives you a great in-depth guide to building web powerful
applications using Blazor.

' OREILLY’

Learning Blazor

. Build Single-Page Apps
" with WebAssembly and C#

We love this book! [£ you want ‘

to learn move about Blazov, —’% \

this is wheve to 9o next. l

David Pine
Foreword by
Steve Sanderson

you are here » 111

