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Abstract

In the exploratory programming practice, programmers iteratively ask ques-
tions and run experiments to understand and develop software systems. How-
ever, traditional exploratory programming workflows often lead to distractions
and information overload, as programmers need to handle numerous imple-
mentation artifacts. Meanwhile, semantic technologies—text generation using
large language models (LLMs) and semantic retrieval using embeddings—are
establishing themselves in other development practices to assist in writing and
searching code.

We propose an augmented exploratory programming workflow that inte-
grates semantic technologies into programming systems, allowing program-
mers to interact with them through more conceptual interfaces. Our semantic
workspace introduces three semantic programming tools for augmenting and
automating exploration: semantic suggestions anticipate the intentions of
programmers and recommend possible experiments, semantic completions
continue their plans through contextualized suggestions, and semantic con-
versations enable high-level, natural-language questions about objects.

Our semantic exploration kernel uses semantic technologies to power these
tools with a suggestion engine for recommending and contextualizing artifacts,
and with an exploratory programming agent for autonomous experiments and
conversations with programmers. We explore embedding- and term-based
strategies for searching and ranking artifacts, and we design prompts and
system interfaces for an agent based on the GPT-4o model.

We successfully used a prototype of the semantic workspace for Squeak/
Smalltalk to augment different exploratory activities. From our experience,
semantic tools show promise in streamlining the exploratory programming
workflow, but they must be further optimized to master exploratory practices
and semantic understanding and to reduce time and resource consumption.
We believe that our work is an important step toward a new era of semantic
exploratory programming, where programmers and deeply intelligent agents
collaborate effectively to comprehend and extend large systems.
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Zusammenfassung (German Abstract)

In der Praktik des explorativen Programmierens stellen Programmierer*innen
iterativ Fragen und führen Experimente durch, um Softwaresysteme zu ver-
stehen und zu entwickeln. Traditionelle Workflows im explorativen Program-
mieren führen jedoch oft zu Ablenkungen und Informationsüberflutung, da
Programmierer zahlreiche Implementierungsartefakte berücksichtigen müs-
sen. Gleichzeitig etablieren sich semantische Technologien – Textgenerierung
durch große Sprachmodelle (LLMs) und semantische Suche mit Embeddings –
in anderen Bereichen der Softwareentwicklung, um das Schreiben und Suchen
von Code zu unterstützen.

Wir schlagen einen erweiterten Workflow für das explorative Program-
mieren vor, der semantische Technologien in Programmiersysteme integriert
und es Programmierenden ermöglicht, über konzeptuelle Schnittstellen mit
diesen zu interagieren. Unser semantischer Workspace stellt drei semanti-
sche Werkzeuge zur Verfügung, um Explorationen zu augmentieren und
zu automatisieren: Semantische Vorschläge antizipieren die Intentionen von
Programmiererinnen und empfehlen mögliche Experimente, semantische Ver-
vollständigungen setzen ihre Pläne durch kontextualisierte Vorschläge fort,
und semantische Konversationen erlauben abstrakte, natürlichsprachliche Fra-
gen über Objekte.

Unser semantischer Explorationskernel nutzt semantische Technologien,
um diese Werkzeuge mit einem Vorschlagsmodul für Artefakte sowie einem
explorativen Programmieragenten für autonome Experimente und Konversa-
tionen mit Programmierern anzutreiben. Wir untersuchen embedding- und
termbasierte Strategien für das Suchen und Ranking von Artefakten und ent-
wickeln Prompts und Systemschnittstellen für einen Agenten auf Basis des
GPT-4o-Modells.

Wir haben einen Prototypen des semantischen Workspaces für Squeak/
Smalltalk erfolgreich genutzt, um verschiedene explorative Aktivitäten zu
augmentieren. Unsere Erfahrung zeigt, dass semantische Werkzeuge viel-
versprechend sind, um den Workflow des explorativen Programmierens zu
vereinfachen. Sie müssen jedoch weiter optimiert werden, um explorative Prak-
tiken und semantisches Verständnis besser zu beherrschen und den Zeit- und
Ressourcenverbrauch zu reduzieren. Wir glauben, dass unsere Arbeit einen
wichtigen Schritt in Richtung einer neuen Ära des semantischen explorativen
Programmierens darstellt, in der Programmierende und tiefgreifend intelli-
gente Agenten effektiv zusammenarbeiten, um große Systeme zu verstehen
und zu erweitern.
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1. Introduction

The important thing is not to stop questioning. Curiosity has its own
reason for existing.

— Albert Einstein

In the realm of software development, curiosity is essential for understanding
problems and finding solutions. Programmers spend a large amount of time
searching for useful interfaces, concepts, and methods—and they spend a
similar amount of time understanding systems, plugging concepts together,
and experimenting with prototypes. All of this involves raising many different
questions: which parts of this system do I need to touch to add a new feature? What
information does this object contain, and how can I access or manipulate it? Why has
this cache not been reset—how have others solved this problem? What would it look
and feel like if we placed this button there?

All this need for knowledge can be expressed as questions, and we can
say programmers have conversations with the system in which they conduct
experiments to collect the information required to answer these questions [61].
Good conversations are vivid, rapid, rich: many answers lead to new thoughts,
revised questions, alternative approaches—and with every further question,
programmers gradually develop their understanding of the systems and
problems they are working with, until they achieve a viable solution and their
curiosity is satisfied for the moment.

Exploratory programming systems [45, 54] are designed to support such con-
versations by offering several tools, through which programmers can interact
with software systems (or their parts) to answer questions. One prominent
exploratory programming system is Squeak/Smalltalk [17, 67], where objects
serve as the main building block for defining systems. Objects execute behavior
by sending messages to each other, and they handle messages by accessing and
changing their internal state. Through tools of the Smalltalk system, program-
mers can explore and develop the objects in a running system by inspecting
and modifying their state and behavior.

In Squeak, a central tool for exploratory programming is the workspace:
here, programmers can write and evaluate scripts to prototype new solutions,
browse the classes of objects to research and discover existing implementations
and protocols, or inspect particular objects and send them messages to explore
their state and capabilities.

1



1. Introduction

The Cost of Questioning

However, exploratory conversations can be expensive. Even simple questions
might demand the full attention and structured thinking from programmers:
when has this order been filed? I can find that out by inspecting this object. Ah, it has
a creationDate field, but oh no, why is this just a plain number? It could be a Unix
timestamp. How can I convert that into a human-readable representation? Is there
any method on Date that does this for me? Seems not so. Maybe DateAndTime? Yes,
DateAndTime fromUnixTime: creationDate should do the job ... but wait, surely
this order has not been created in year 56170? Is this actually a millisecond timestamp?
Okay, so I can divide it by 1000 and try again ... fix that syntax slip ... alright, so this
order has been filed on March 14th this year. What was I going to do again?

We note two major challenges in the exploratory programming workflow
that traditional exploratory programming systems have not yet found sufficient
solutions for: semantic distances and information overload. First, programmers
regularly face substantial semantic distances between their high-level intentions
and the low-level interfaces of systems. Programmers have to manually bridge
these distances by translating conceptual questions into technical operations
and interpreting technical results in terms of their mental model.

Second, they face information overload as the number of possible information
sources (such as comprehensive interfaces, documentation, and examples),
as well as the number of possible experiments and prototypes, often exceed
human capabilities for information processing within limited time. Thus,
programmers are forced to consider only a small, often less relevant fraction of
the available data. If they nevertheless decide to skim all available information,
they are frequently distracted by irrelevant artifacts while trying to filter them.

All these mental overheads and distractions impede exploratory conversa-
tions and restrain programmers from maintaining their flow [13], exhausting
expedient options, and finding feasible solutions.

AI to the Rescue?

At the same time, the recent progress of artificial intelligence (AI) and machine
learning (ML) methods has already supported users and programmers at
bridging barriers and handling extensive information in various domains.
Search and recommendation algorithms on online marketplaces, social-media
platforms, and streaming services use document embeddings [81, 97] to find
objects based on their semantics or meaning. Generative AI tools such as
ChatGPT,1 Claude,2 and others [101, 107, 112] employ large language models
(LLMs) to help people create, automate, and learn.

2



1. Introduction

In particular, many programmers have started to leverage generative AI for
software development: millions of developers generate code with the help of
code completion tools such as GitHub Copilot,3 Tabnine,4 and others, or they
use conversational agents such as GitHub Copilot Chat to explore and modify
code bases. Similarly, tools such as Microsoft IntelliCode5 and Sourcegraph6

employ embeddings to find and rank relevant source code snippets.
We subsume both technologies—semantic retrieval using document embed-

dings and text generation using LLMs—under the term semantic technologies.

Research Objective and Structure

We believe that semantic technologies have significant potential to support
exploratory programmers in processing extensive information and bridging
semantic distances. This leads us to our research question:

How can we augment the exploratory programming workflow by
integrating semantic technologies into exploratory programming
systems?

That is, we want to study possible applications of semantic technologies
for exploratory programming, investigate tool designs and interaction mech-
anisms to give programmers simple access to these technologies, and collect
practical considerations for the design and implementation of such tools.

In answer to this question, our thesis statement reads as follows:

By tightly integrating semantic interfaces into exploratory program-
ming systems through which programmers can easily delegate
flexible portions of their workflow to intelligent agents and thus
closely collaborate with semantic technologies, we can augment and
streamline the exploratory programming workflow.

For this, we propose a model for an augmented exploratory programming
workflow in which the exploratory activities of programmers are tracked and
anticipated, and in which programmers are enabled to access and interact
with AI-suggested experiments and results through a semantic workspace. We
believe that our approach will allow tool developers to design tools for ex-
ploratory programming systems that improve the experience of programmers
by enabling them to collaborate with semantic technologies.

1https://chat.openai.com/
2https://claude.ai/
3https://github.com/features/copilot
4https://www.tabnine.com/
5https://visualstudio.microsoft.com/services/intellicode/
6https://sourcegraph.com/
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1. Introduction

To study this hypothesis, we make the following contributions:

1. We propose the augmented exploratory programming workflow, which captures the
traditional process and challenges of exploratory programmers and describes
possible starting points for integrating semantic technologies.

2. We present a new semantic workspace as a conceptual design for exploratory
programming systems that support an augmented exploratory programming
workflow by providing new or enhanced semantic interfaces for programmers.

3. We describe our architecture of a semantic exploration kernel with different com-
ponents that use semantic technologies to augment exploratory programming
tools, and we implement a prototype for Squeak/Smalltalk using language
models by OpenAI.

We make all artifacts of our research available in a public GitHub repository.8
We organize the work presented in this thesis as follows:

Chapter 2 introduces theoretical foundations behind exploratory program-
ming systems and semantic technologies and describes how the challenges
of the former may be addressed by the opportunities of the latter.

Chapter 3 presents our model of the augmented exploratory programming
workflow and describes our conception of a semantic workspace.

Chapter 4 describes the high-level architecture of the semantic exploration
kernel and explains its fundamental components: a suggestion engine and a
semantic exploratory agent.

Chapter 5 discusses the application of semantic retrieval methods for sug-
gesting experiments.

Chapter 6 describes our construction of an exploratory programming agent
for implementing conversational interfaces and automating experiments.

Chapter 7 sketches the implementation of our prototype by integrating it
with the Squeak/Smalltalk programming system and our SemanticText
framework for semantic technologies that uses OpenAI’s language models.

Chapter 8 illustrates applications of the semantic workspace through differ-
ent case studies.

Chapter 9 discusses opportunities and challenges of semantic technologies
for augmenting the exploratory programming workflow regarding technical
feasibility, programming experience, and ethical concerns.

Chapter 10 provides an overview of related work in the fields of exploratory
programming and semantic technologies.

Chapter 11 summarizes our results and discusses possible directions for
future work.

8https://github.com/hpi-swa-lab/SemanticSqueak
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2. Background

In this chapter, we introduce the theoretical foundations of the exploratory
programming practice and provide a model of the exploratory programming
workflow. We describe how exploratory programming systems such as Squeak/
Smalltalk support this practice through different interaction mechanisms and
tools, and identify existing challenges related to the semantic immediacy and
information overload that current exploratory programming systems impose on
the workflow of exploratory programmers.

We explain two semantic technologies—semantic retrieval and generative large
language models—that leverage AI and ML methods to process and generate
text based on their abstract meaning. Finally, we briefly sketch how these
technologies could be used to meet the challenges of current exploratory
programming systems and augment the exploratory programming workflow.

2.1. Exploratory Programming

Exploratory programming is a software engineering practice that promotes a
notion of projects where programmers have a rather emergent than upfront
understanding of the problem domain [23, 45, 54]: for example, they might
not know how a new user interface should look and feel to achieve a good
user experience, or they might be unaware of the facilities and limitations
that an existing code base or framework provides. To acquire such knowledge,
the exploratory programming practice tightly intertwines reverse engineering,
prototyping, and testing in an iterative manner [61].

In our model of an exploratory programming workflow, we employ a metaphor
from ordinary science: exploratory programmers are like scientists in the
project domain who apply the scientific method and iteratively refine their
comprehension of both the problem domain and the solution domain. To refine
their comprehension, they ask questions and find answers to them. Figure 2.1
displays a single instance of a research process in our exploratory programming
workflow model.

Finding answers requires programmers to descend from the conceptual
level of the original questions (their mental model) into a lower abstraction
level where they can dissect questions into their underlying terms, concepts,
and technical foundations (the technical model). Here, they interact with the
underlying systems by planning, executing, and evaluating a—potentially

5



2. Background

Figure 2.1.: A single research process instance in the exploratory programming
workflow. Exploratory programmers start with a question about the system.
To answer the question, they plan one or multiple experiments, execute
them by interacting with the system through tools, and observe their results.
They repeat until they have acquired enough information and then combine
it to answer the initial question.

large—number of experiments and repeat until they are able to answer the
original question. Experiments include a wide range of activities aimed at
generating knowledge: for example, programmers can research information in
the documentation or implementation of a system or related communication
platforms; inspect objects of a system at runtime to understand their internal
state; run scripts to test interfaces and observe their effect; build and test
prototypes; and so on.

For nontrivial questions, the research process often spans multiple abstrac-
tion levels, as the experiments that programmers plan to answer high-level
questions are still too abstract to directly communicate them to the system.
Thus, programmers need to handle abstract experiments as new, subordi-
nate questions and answer them on a lower abstraction level. This leads to
a hierarchical research process in which programmers gradually descend into
the implementation details of the subjects of questions until they reach the
interfaces of the system through which they can execute technical experiments.
Figure 2.2 displays a complex research process that exploratory programmers
walk through when answering a high-level question.

6



2. Background

Figure 2.2.: A complex, hierarchical research process in the exploratory pro-
gramming workflow. To answer a high-level question about the system,
programmers need to bridge multiple levels of abstractions by incrementally
breaking down experiments into more concrete questions and answering
those until they reach the interfaces of the exploratory programming system.
The programming system consists of different low-to-medium-level tools
for interacting with the software system.

7



2. Background

Example. A programmer might wish to design a new user interface
(“How could a convenient UI look?”). To answer this question, they plan
to experiment with different UI concepts that they want to test through
small prototypes (“Let’s build a tree-based or pane-based interface and
play around with it!”).

However, to execute these experiments, the programmer needs to
perform subordinate research processes in which they conduct further
experiments to implement and test individual prototypes (“How can I
create a tree widget? How can I retrieve the required data? How many
interactions are required to navigate through this UI?”).

Recursively, some of these research processes might yield further
experiments that need to be broken down before they can be com-
municated to the system (“What classes does this package provide to
build widgets? What messages does this class understand? What usage
patterns do existing users of this class show?”).

2.2. Exploratory Programming Systems

As a consequence of our exploratory programming workflow, exploratory
programmers crucially depend on interfaces to the system under exploration
to execute experiments. For example, these interfaces allow programmers
to inspect variables, send messages to objects, or browse and write code.
We refer to the set of all interfaces and tools that provide such access to
software systems as an exploratory programming system, which serves as the
foundation and facilitation of all exploratory programming activities [15, 23,
54, 61]. These interfaces and tools can support the exploratory programming
workflow at different levels of abstraction: programmers can perform lower-
level operations by executing scripts, view and modify objects through domain-
specific representations [10], or use task-specific tools for searching and filtering
source code [62].

One important property of exploratory programming systems is liveness,
which allows programmers to explore and modify systems interactively, that
is, with short feedback cycles [32, 45, 64]. To support such live programming,
exploratory programming systems commonly include mechanisms to develop
systems at runtime without restarting or recompiling them after every change.

Examples of exploratory programming systems include operating system
shells such as the Linux Bash Shell [43], through which programmers can
dynamically navigate and configure Linux systems, computational notebooks
such as Jupyter [57], which allow programmers to explore data and proto-
type algorithms incrementally, and Smalltalk environments [17], in which
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programmers can develop and debug object-oriented systems at small and
large scales.

Smalltalk and Squeak

Smalltalk is a programming system that especially promotes exploratory pro-
gramming through its interactive programming environment and rich ecosys-
tem of tools [22].

As a language, Smalltalk pursues simplicity in syntax, code organization,
and its execution model [17]. Smalltalk is a strictly object-oriented language:
everything is an object, and everything happens through message sending
between objects. Every object is defined by its identity that distinguishes it
from all other objects in the system, its internal (encapsulated) state, and its
observable behavior that is implemented by methods that process messages.
Smalltalk is class-based, meaning that (in contrast to prototype-based languages
such as JavaScript), every object is an instance of a class (which is another
regular object), and object behavior is usually defined as methods on classes
and organized within protocols (also referred to as message categories).

As an environment, Smalltalk distinguishes itself by its interactive, image-
based, and self-sustained architecture [16]. Smalltalk systems are interactive,
allowing programmers to inspect and modify any object in the system at
runtime. They are image-based, meaning that the whole system state (i.e., the
object graph) is serializable and can be saved to and restored from a single file,
called an image. They are self-sustained, as a vast majority of system concepts
are implemented in the system itself and thus are explorable and malleable
by programmers. For example, programmers can inspect and modify the
compiler, debugging tools, or the user interface of the system at runtime [60].

Squeak is a modern, portable implementation of Smalltalk that extends the
original Smalltalk-80 system with a rich toolset and the Morphic framework
for tangible direct-manipulation user interfaces [21, 22, 67]. Through Morphic,
programmers can build and modify graphical user interfaces interactively,
explore and debug the implementation of applications, and manage multiple
tasks and projects in parallel.

The Squeak Toolset

Exploratory programming systems such as Squeak provide different kinds of
interfaces and tools, through which programmers can execute experiments in
traditional exploratory programming systems to answer questions. While we
focus on the Squeak/Smalltalk ecosystem in our overview of such tools, many
tooling concepts have also been adopted by other exploratory programming
systems, and some have been influenced by other systems.

9
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In Squeak, one central tool is the workspace, which lays the foundation
for various exploratory programming questions [16, chap. 6; 67, sec. 1.4]. In
the workspace, programmers interact with the system through a text-based
interface by typing and evaluating code snippets (so-called do-its) to send
messages to objects or retrieve variables. Similarly to read-eval-print-loop
(REPL) interfaces or computational notebooks, workspaces can preserve prior
results and objects for reuse through later do-its, fostering a conversational
interaction style between the programmer and the system [61]. Beyond that,
programmers can use workspaces to take and organize arbitrary notes such
as to-do items in their programming system.

Due to their technical nature, most do-its can be seen as experiments at a low
level of abstraction, as programmers have to write syntactically valid code and
know the technical protocols of the objects they are interacting with. However,
workspaces can also serve as a starting point for better integrated exploratory
programming sessions through an extensible set of connected tools, which
support programmers at higher levels of abstraction in their research process
through domain-specific and task-specific interfaces (fig. 2.3).

Object inspection tools Through inspection tools, programmers can explore
and modify the internal state of any object in the system. The standard
inspection tools in Squeak are the inspector and explorer, which provide low-
level access to the list of instance variables or fields in an object [16, chap. 8;
67, sec. 6.3].

However, inspection tools can also provide higher-level, domain-specific
interfaces to objects: for example, collection inspectors display and manipulate
the effective elements of different types of collection objects independently of
their internal data structure; other systems such as Glamorous Toolkit’s
moldable inspector promote domain-specific visualizations of objects such as
charts and graphs [10]. Thus, programmers can directly find answers to more
conceptual questions such as “How are these nodes connected?” without
writing technical do-it scripts on their own.

Code browsing tools Through browsing tools, programmers can explore
and modify the implementation, protocols, and documentation of classes [67,
sec. 6.2]. In Squeak, different code browsers allow programmers to navigate
and search software systems along their organization and inner relationships:
system browsers provide access to classes through package structures or class
hierarchies [16, chap. 9]; message traces and similar tools can be used to explore
methods through different usage graphs [16, chap. 10; 69]. For example, the
senders/implementors mechanism allows programmers to browse an (approxi-
mate1) static call graph of methods that send or implement a given message
name (also referred to as selector); other types of graph queries include ref-
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Figure 2.3.: A collection of different interconnected tools in the exploratory
programming system Squeak/Smalltalk. At the heart is the workspace 1 ,
through which programmers can execute do-it code snippets to retrieve in-
formation from objects. From the workspace, programmers can invoke other
tools such as object inspection tools to examine the variables ( 2a inspector)
and nested properties ( 2b explorer) of particular objects; code browsing tools
to study the implementation of methods ( 3a system browser) or their users
( 3b message trace); debugging tools to explore method behavior in context
( 4 debugger); symbolic execution tools to find messages through constraints
( 5 simulation method findera); or code completion tools to browse available
protocols in an editor context ( 6 Autocompletionb). Each of these tools
can assist programmers in different parts of their exploratory process by
providing domain- or task-specific support.

ahttps://github.com/LinqLover/SimulationStudio
bhttps://github.com/LeonMatthes/Autocompletion
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erences and assignments to variables, methods that contain certain literals
(constants), and a full-text search through source code and comments. In gen-
eral, for any code objects (such as a class or method), we employ the term users
to address its successors in a usage graph (such as its senders or dependent
classes).

Thus, code browsing tools provide means for programmers to answer
questions about the organization and implementation of systems through
task-specific views and query interfaces.

Debugging tools In the first place, (symbolic) debuggers were designed to
allow programmers to examine faulty programs by executing them step-by-
step and finding the underlying cause of a bug [17, sec. 17.4; 16, sec. 18f.].
However, debuggers have also proven to be useful tools for exploring the
behavior of software systems beyond bug-fixing, as they provide a concrete
context for comprehending abstract source code and navigating through
an actual call graph of a program [67, sec. 6.4]. Many tools also support
programming in the debugger to modify the behavior of a running program,
which allows for a “programming into existence” practice for interface-first,
iterative prototyping [52]. Babylonian programming environments promote a
similar practice by integrating the execution context of different examples into
regular code browsing tools [42].

Back-in-time debuggers (also referred to as time-travel debuggers or omniscient
debuggers) record the execution of a program or re-run it repeatedly to allow
programmers to explore it independently of the original execution order [29, 39,
40]. On top of such an omniscient perspective on programs, they offer different
interfaces for navigating programs along objects, dataflows [30], or state
changes [71, 72] or for visualizing the program execution [12, 68]. For example,
the Whyline approach provides a query interface where programmers can
combine prepared natural-language blocks to ask a range of questions about
the causes of certain events in a program [24].

Symbolic execution tools Symbolic execution engines make it possible to ex-
ecute programs and send messages to objects despite the lack of concrete
context by substituting unknown state with symbols and executing all pos-
sible code paths concurrently [9, 66]. This provides a basis for exploratory
programming tools that can search the behavior of objects through speculative
execution. Squeak’s method finder allows programmers to find unknown meth-
ods by specifying constraints over the inputs and outputs of message sends [67,

1 Messages in Smalltalk are dispatched dynamically, and traditional Smalltalk systems do
not have a typing system, preventing them from accurately predicting which methods a
message send in a code snippet might activate.
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sec. 1.8].2,3 Tools such as IntelliTest4 or SED [20] provide programmers
with an overview of different examples and code paths for methods.

Thus, symbolic execution tools allow programmers to research the methods
of objects by asking questions about their effective behavior without browsing
or manually executing them.

Code completion tools Autocompletion tools support programmers at writ-
ing code by automatically suggesting possibly relevant message names and
variables next to the text caret. Suggestions can be contextualized in various
degrees, e.g., by considering the syntactic context of existing code, usage statis-
tics from the current programming session [48], or information from runtime
or typing systems [19]. Many modern code completion tools also employ large
language models to suggest completions of entire statements or methods (see
section 2.4).

Beside accelerating typing, code completion tools also support the research
process of exploratory programmers by providing them with possible answers
to questions about the usage of protocols (“What messages can I send to
this variable?”) and making manual research through code browsing tools
superfluous in some cases [4].

*

By using and combining different kinds of tools offered by exploratory pro-
gramming systems, programmers can derive more informed answers to ques-
tions and delegate low-level parts of their research process to the system.

2.3. Challenges in Exploratory Programming Systems

Despite the existing tool support of exploratory programming systems, pro-
grammers frequently experience interruptions in their workflow as they have
to switch between different abstraction levels of the research process when
answering questions. While exploratory programming tools make it possible
to delegate different questions to the system, this support is usually limited

2While Squeak does not include a symbolic execution engine at the time of writing, the method
finder employs equivalent brute-force strategies to resolve the provided constraints.

3Another version of Squeak’s built-in method finder, which supports more generic
types of symbolic queries, is available through the SimulationStudio pack-
age. Christoph Thiede: “Method Finder 2.” The general-purpose Squeak develop-
ers list, 2022-09-20. URL: https://web.archive.org/web/20240630205751/https:
//lists.squeakfoundation.org/archives/list/squeak-dev@lists.squeakfoundation.
org/thread/N4OM3BYARXMOFDF4ONM7IZWR7727WU2M/.

4https://web.archive.org/web/20240530170603/https://learn.microsoft.com/en-
us/visualstudio/test/intellitest-manual/?view=vs-2022
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to lower levels of abstraction or to specific domains, leaving programmers to
address the majority of the research process on their own. As a consequence,
programmers are distracted by many context switches, suffer from higher
mental load, and might lose their flow [13].

To maintain the flow of programmers, exploratory programming systems
should be designed to support their experience of immediacy by reducing their
perceived distances in three dimensions [74]:

Temporal immediacy: “Human beings recognize causality without con-
scious effort only when the time between causally related events is kept to a
minimum.”

Spatial immediacy: “[...] means the physical distance between causally re-
lated events is kept to a minimum.”

Semantic immediacy: “[...] means the conceptual distance between seman-
tically related pieces of information is kept to a minimum.”

Spatial and temporal distances can often be managed by carefully and holis-
tically designing (visual) user interfaces or engineering efficient algorithms.
On the other hand, we argue that semantic distance presents a greater—and
largely unmet—challenge to tool developers. This is because traditional tools
are not capable of understanding the underlying concepts and semantics of
the information they display and process and thus are limited in their ability
to associate different pieces of information. Similarly, they lack knowledge
and comprehension of the higher-level questions and goals of programmers,
making it impossible in many situations to transfer required information into
the desired context.

The necessary mapping between the technical model of systems and the
mental model of programmers can be described as overall design challenges
through the two gulfs of execution and evaluation [37]: the gulf of execution
references the programmers’ challenges to express their questions as inputs to
the system’s interface, while the gulf of evaluation represents their challenges
to translate the outputs from the system back into their mental model. In
exploratory programming, the gulf of execution typically includes activities
such as planning and conducting experiments by using tools or writing
code, while the gulf of evaluation contains tasks such as comprehending
and summarizing technical outputs like comprehensive lists or long and
complex source code [46].
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Example. A programmer might wish to build a prototype to test a new
UI concept (“How would this UI look and feel?”). Despite they already
have a good idea of the visual appearance, they are burdened with
expensive implementation work: they have to write syntactically valid
code, browse the available packages and protocols of a UI framework
to find required class and method names, and fix any bugs that they
accidentally created in their implementation until they achieve a testable
prototype.

Analogously, researching existing solutions that solve problems simi-
lar to the current matter of programmers involves a lot of manual labor
and low-level interactions with systems. Traditional code search tools
such as Squeak’s message trace primarily provide technical interfaces
that only take a syntactic perspective on source code. For instance,
programmers might want to find methods that implement a certain
concept, but message traces only offer lexical search functions, which
cannot identify concepts or find synonyms. Programmers might want
to exclude certain kinds of solutions (such as tests or special metapro-
gramming code), but message traces can only filter methods based on
their class and package names. Programmers might want to sort results
by their conceptual relevance to their overarching question, but most
code search tools are limited to popularity- or recency-based sort func-
tions. Thus, programmers spend a lot of their research time manually
identifying results as “obviously” irrelevant rather than investigating
and learning from relevant samples.

Therefore, the answers that exploratory programmers can gain within a
limited amount of temporal and mental resources are limited in both their
quantity and quality, as the support by exploratory programming systems
is tied to the technical level of information, reducing their programming
experience. We identify a need for exploratory programming systems that
improve semantic immediacy for programmers by working more closely with
the mental model and overarching context of programmers and by providing
more conceptual, “intelligent” tools that are able to handle or support high-
level questions of programmers.

2.4. A New Opportunity: Semantic Technologies

At the same time, different AI methods for information processing have gained
popularity over the last few years, which promise better user support in various
domains—including programming—by approaching information based on
its semantics. Concretely, we use the term semantic technologies to refer to two
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methods: semantic retrieval using document embeddings and text generation
using LLMs.

Both technologies approach the semantic content of textual data through
the concept of embeddings. An embedding is a numeric representation of a
document (such as a single word, a (source) text, or also another embeddable
object such as a picture [82]) through a high-dimensional vector whose com-
ponents describe the relatedness of the document to different features [81,
97]. Features can represent arbitrary kinds of properties or topics, such as
(programming) language, sentiment, or length, but in many settings, they
are used to encode continuous combinations of various concepts through
dimensional reduction. In this setting, the distance between two embeddings
in the vector space indicates the similarity of their associated documents with
regard to the employed concepts. This lays the foundation for performing
different arithmetic operations to compare, organize, or sort documents in a
given context.

Approaching a definition. What is semantics?
Semantics (from Ancient Greek sēmantikós, giving signs) refers to

the significance or meaning of information in a document. It is often
opposed to its counterpart syntactics (from Ancient Greek sýntaxis,
assembling together), which describes the structural arrangement and
grammatical rules of a document or fragment thereof.

To understand the semantics of a document, a rational agent (whether
human or machine) typically has to employ different kinds of context: a
comprehensive understanding of the used language(s), any surround-
ing information (such as an ongoing conversation or programming
session), and relevant concepts (ranging from common sense knowledge
to domain-specific vocabulary).

In compiler theory, the term semantics is also used for semantic analysis,
which refers to a validation stage that comprises tasks such as scope
resolution and type checking after a syntax tree has been produced in a
former syntax analysis or compiling stage. However, in this work, we use
the term semantics exclusively for conceptual or common sense-based
interpretations, and thus subsume any information from traditional
code analysis tools such as type inference under the term syntax.

The Transformer Architecture

The language models that power semantic technologies—embedding models
that compute embedding representations of documents and generative LLMs
that produce plausible text (often referred to as simply LLMs)—are commonly
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Figure 2.4.: A high-level overview of the transformer architecture, which is used by many traditional language models for
translating text from one language (here: English) to another (here: Japanese). The encoder computes embeddings for each
input token and contextualizes them with each other. The decoder sequentially generates the output text based on the input
embeddings and the preceding output prefix by contextualizing them together and predicting the next token. Text embedding
models use only the encoder component of a transformer, while many text generation models use only the decoder and treat
the input text as an output prefix instead (red arrow).
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based on (different subsets of) the transformer architecture [107].5 Here, we pro-
vide a high-level overview of transformer models. As we intend to introduce a
general notion of language models to the exploratory programming commu-
nity, we focus on their conceptual operating principles and deliberately omit
mathematical and technical details.

From a macroscopic viewpoint, a transformer model employs several neural
networks to translate a text from an input language into a text in an output lan-
guage (fig. 2.4). Possible languages include natural languages, programming
languages, other formal languages, and (patchwise sequential representations
of) multimedia data such as pictures [82] and sounds [84]. The model is usu-
ally trained by supervised learning using a large set of input-output pairs.
Internally, a full transformer consists of two components (even though modern
language models rarely combine both of them): the encoder and the decoder:

The encoder converts the input text into a sequence of contextualized token
embeddings. For that, it first splits up the text into a sequence of tokens
from a finite alphabet (such as words or parts of words) and embeds
these tokens using a pre-trained lookup table. It then contextually enriches
these embeddings through multiple layers that comprise a self-attention
mechanism and a feed-forward neural network. Through self-attention, the
different input tokens are put in relation to each other based on multiple
aspects such as syntactical, lexical, and positional relationships. As a result,
the contextualized token embeddings describe the semantics of each token
in the context of the input text.

Example. In the text “Squeak image”, an encoder would embed
the token “Squeak” closer to other tokens describing programming
systems such as “Smalltalk” and “Jupyter”. However, in the sentence
“Squeak mouse”, the same token would be embedded closer to toy-
related tokens such as “noise” and “rubber”.

The decoder is invoked multiple times with a sequence of contextualized
input token embeddings to infer (i.e., generate) a likely output text or a
probability distribution of output texts. At each invocation, the transformer
predicts the next output token given the contextualized input embeddings
and all previously generated output tokens. It contextually enriches the
previous output tokens and combines them with the input embeddings

5We acknowledge the existence of alternative architectures such as long-short term memory
(LSTMs), latent semantic analysis (LSA), convolutional neural networks (CNNs), and hy-
brid approaches. Still, we restrict our focus in this short introduction to the transformer
architecture, which is used predominantly in modern large general-purpose embedding
and text generation models [98].
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through a self- and cross-attentive stack, similar to the encoder. From the
contextually enriched output token embeddings, it selects the embedding
next to the previously generated token and converts it into a probability
distribution of tokens. This process is repeated until the output sequence is
terminated with a special end token. Through a beam search, the transformer
can explore multiple paths of the (usually infinite) probability tree of possible
outputs instead of greedily considering only the most likely token at each
step.

Text inference in the decoder can be configured through several hyper-
parameters that modify the probability distributions of output tokens: for
example, a temperature factor and a nucleus sampling rate can alter or truncate
the variance of outputs, often associated with the creativity of the model [87];
frequency penalties can control the repetitiveness of outputs; or token biases
can prioritize particular tokens.6

In the following, we describe how transformers are used by embedding
models for semantic retrieval and by generative LLMs for text completions.

Semantic Retrieval with Embedding Models

To compute a document embedding of a text (also referred to as sentence embedding
or text embedding), models such as BERT (bidirectional encoder representa-
tions from transformers) use only the encoder component of transformers,
which was trained using self-supervised learning, and aggregate the result-
ing embedding sequence into a single embedding vector [81, 102]. Semantic
retrieval systems (also referred to as vector databases or vector stores) compute and
index document embeddings for objects such as web pages, files, or source
code [89, 92]. This allows them to efficiently perform a similarity search in order
to recommend semantically related objects to a given object.

Semantic retrieval systems can also offer a more general form of semantic
search by taking a free-form query from a user, embedding it, and comparing it
to the existing document embeddings. Based on the training of the embedding
model, this can even yield useful results when query and documents are in
different formats (such as questions and answers). For this use case, search
quality can be improved by transforming queries and documents into a con-
sistent representation by preprocessing them prior to computing embeddings.
For example, it is possible to generate potential questions for documents or
to generate fictitious, relevant documents for questions (hypothetical document

6OpenAI: “Text Generation Models”. OpenAI API Reference. URL: http://archive.today/2024.
05.30-211619/https://platform.openai.com/docs/guides/text-generation/text-
generation-models.
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embeddings, HyDE) [83, 95] by using static heuristics or another language
model.

Other popular applications of document embeddings include clustering
tasks (for unsupervised grouping and anomaly detection) and classification
tasks (for supervised grouping, e.g., based on languages or sentiments).

Text Generation with LLMs

Modern generative LLMs such as GPT (generative pre-trained transformer),
LLaMA, and PaLM use only the decoder component of transformers: in-
stead of encoding and transforming an input text, they treat it as a part of
the output text and generate a likely completion of that [99, 101]. They are
usually trained using a combination of self-supervised learning with large text
corpora and reinforcement learning from human feedback (RLHF) to fine-tune
completions [100].

One of the earliest practical applications of LLMs that had a wider impact
on the programming community was integrated semantic code completion tools
such as GitHub Copilot, Tabnine, CodeWhisperer, and others [4, 80], which
suggest additions to the code a programmer has typed in an editor.

Beyond simple text completion, LLMs can also be trained to adhere to certain
text formats and patterns and follow instructions in the prompt, allowing the
construction of specialized agents with different characteristics:

Conversational agents engage in conversations with human users by
generating messages (that complete a conversation history) on behalf of a
virtual assistant [76]. Optionally, system messages can be used to provide
further instructions to agents. For example, OpenAI’s ChatGPT, Anthropic
Claude, and GitHub Copilot Chat allow users to write, edit, review, or
summarize text or source code, or discuss a wide range of topics through a
chat interface [99].

Autonomous agents are designed to generate inner monologues that mimic
structured thinking, resulting in basic capabilities for self-organized problem
solving such as step-by-step analysis [111].

Additionally, they can be enabled via pre-training or instructions to access
external systems through function calls: an LLM emits a special output
sequence that requests the invocation of a system function with a set of
arguments, a handler executes this invocation and passes back the result
to the LLM, and the LLM continues the generation based on the result [85,
96, 111]. For instance, when presented with a mathematical word problem,
GPT-4o can break down the task, plan a solution approach, and delegate
primitive arithmetic tasks to an external calculator function [99].
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Building on the concept of autonomous agents, multi-agent frameworks such
as MetaGPT and ChatDev orchestrate multiple agents that cooperate to
solve complex problems such as software development [88, 41].

Being statistical models without an actual understanding of matters in
human terms, LLMs suffer from several weaknesses such as limited logical
reasoning, not adhering to instructions, and hallucinations where false informa-
tion is generated [99]. To mitigate these problems in parts, several techniques
have been established:

Fine-tuning: Adjust the output style and behavior of models by training a
base model on a set of positive examples of texts or conversations [90, 108].

Prompt engineering: Adjust the output style and behavior by strategically
developing prompts and instructions that are (more) likely to influence
models in an intended way [110]. For example, chain-of-thought prompting
instructs models to explicate thoughts through inner monologue (“think
out loud”) or express upfront plans in a certain structure, which has been
shown to improve their problem-solving abilities [109].

Unlike fine-tuning, prompt engineering can be applied to any model
without retraining, but the prompt must be presented to the LLM for each
generation, often affecting its performance [112],7 and often several iterations
are required to develop effective prompts [110].

Retrieval-augmented generation (RAG): To mitigate the limited abil-
ities of LLMs to recall rarely seen information, or to provide them with
new information, gather excerpts from external sources through traditional
algorithms (such as database lookups and full-text searches) and include
them in the prompt [92]. This often includes semantic retrieval methods.

For example, the Microsoft Copilot integration in Bing performs one or
a few web searches based on the query of the user, feeds the result into a
GPT-4o model, and instructs it to answer the query based on the provided
information.8 Alternatively, agents can proactively call functions to retrieve
required information. Thus, RAG addresses the challenge of information
recall and moves it from training a model to searching and using information
presented in the prompt.

*
Due to their foundation in machine learning methods and training on exten-
sive data, semantic technologies make it possible to process and synthesize

7While it is possible to cache the contextualized input embeddings produced in the decoder,
only few cloud-based LLMs such as Anthropic Claude currently support this functionality
through their API.

8Microsoft. 2023-11-21. How Copilot Works. URL: http://archive.today/2024.05.30-235455/
https://www.microsoft.com/en-us/bing/do-more-with-ai/how-bing-chat-works.
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information based on its context and semantics. We believe that this creates an
opportunity to tackle the limitations of traditional exploratory programming
systems, which are restricted to technical interfaces at lower abstraction levels.

Example. A programmer seeks help with the task of building a UI
prototype from page 15. A traditional tool could support them merely by
suggesting lexically related names or systematically testing all permuta-
tions or modifications of a code snippet. On the other hand, a semantic
tool could understand9the underlying intent of the programmer, find
contextually relevant classes and names, apply them in plausible com-
binations, or research and fix runtime errors autonomously along the
way.

By integrating semantic technologies into exploratory programming sys-
tems, we envision providing broader, conceptual, and contextual support for
programmers within their exploratory workflow.

Chapter Summary

In the exploratory programming workflow, programmers ask questions
about software systems and answer them by incrementally decompos-
ing abstractions and conducting experiments. Exploratory programming
systems support this research process by providing access to the soft-
ware system through low- to intermediate-level (domain-specific or
task-specific) tools.

However, traditional systems cannot understand the context and in-
tentions of programmers, and when programmers translate conceptual
questions to technical interfaces manually, they are distracted, over-
whelmed, and find only limited answers. Semantic technologies provide
new AI-based opportunities for processing and synthesizing informa-
tion and could allow to construct semantic exploratory programming
systems to augment the exploratory programming workflow.

9We acknowledge the fundamental technical differences between human thinking and machine
reasoning. However, contemporary generative LLMs have demonstrated good approxima-
tions of human thought processes in several specific domains. Therefore, in this thesis, we
use the terms understanding and thinking in reference to machine agents without consistently
putting them in italics or quotation marks. We remain mindful, though, of the limited
abilities of artificial agents, particularly in areas such as logical reasoning, common-sense
knowledge, and “intuitive” ideas of concepts.
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In this chapter, we introduce our model of an augmented exploratory programming
workflow. This model integrates semantic technologies into exploratory pro-
gramming systems to support programmers in their research process through
more conceptual and contextual interfaces. Second, we present our concept of
a semantic workspace, which applies our workflow by defining three different
kinds of novel semantic tools for exploratory programming systems.

3.1. The Augmented Exploratory Programming

Workflow

In the traditional exploratory programming workflow, programmers receive
limited support from programming systems, which causes semantic distances,
information overload, and frequent interruptions. To address these challenges,

Figure 3.1.: Our model of an augmented exploratory programming workflow.
Programmers can exchange conceptual artifacts with a semantic exploratory
programming system (red) through high-level semantic interfaces. Based on
the shared artifacts, the programming system continues the research process
and suggests new artifacts to the programmer.
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we propose a new augmented exploratory programming workflow, which describes
collaborations between programmers and systems at higher abstraction levels
and introduces the notion of semantic exploratory programming systems, which in-
tegrate semantic technologies to support programmers in conceptual research
steps such as planning and understanding (fig. 3.1).

In our augmented workflow, programmers can provide semantic context
from their research process to the exploratory programming system, such
as questions, plans, and previous experiments. The system builds on this
context to “think along” and continue the research process on its own: it
attempts to conduct next likely steps such as planning and executing exper-
iments, deducing results, or answering questions and shares its work with
the programmer at different granularities. For example, a programmer could
provide a high-level question to the system and receive a list of suggested
experiments to execute; or they could perform their own experiments and
receive an automated summary of deduced results from the system. Thus,
programmers can either delegate tasks to the system to avoid interruptions, or
they can cooperate with it to benefit from semantic technologies and augment
their workflow with additional context.

To support this workflow, we propose semantic exploratory programming sys-
tems: these systems build upon traditional exploratory programming systems
and connect them with semantic technologies to gain access to the semantic
context at higher abstraction levels of the research process. For example, this
connection allows exploratory programming systems to interpret questions
and plans, contextualize and analyze experiments, or summarize results and
answer questions. Using this context, semantic exploratory programming sys-
tems can replicate the previous research steps of programmers and suggest
possible next steps.

To access and contribute to the exploratory research process of programmers,
semantic exploratory programming systems require new semantic interfaces,
through which programmers can provide contextual artifacts as inputs and
retrieve semantic suggestions and answers as outputs. Concretely, we propose
three types of semantic interface mechanisms:

Anticipated experiments: The semantic exploratory programming sys-
tem observes the experiments that the programmer executes through tra-
ditional interfaces. Based on these observations, it attempts to reconstruct
their underlying plans and uses these plans to anticipate and suggest further
experiments to the programmer.

Semantic inputs: The semantic exploratory programming system reinter-
prets existing or introduces new interfaces, through which programmers can
express their current plans. For example, this involves reading quick notes of
programmers (such as to-do lists kept in a workspace), observing the setup
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of experiments before the programmer executes them, or—hypothetically—
even listening to programmers thinking out loud during their work. Based
on these inputs, the system can develop a more precise understanding of
the programmer’s plans and provide more relevant suggestions to them.

Furthermore, the system can also attempt to reconstruct the overarching
question of the programmer based on the provided plans. This serves as a
base for anticipating further plans and developing suggestions for them
even before programmers express these plans to the system.

Finally, the system can offer new interfaces, through which programmers
can explicitly express high-level questions. The system can use these to
refine existing and new plans and provide more contextualized suggestions.

Semantic outputs: Based on conceptualized ideas and questions, the se-
mantic exploratory programming system can provide suggestions to pro-
grammers through new output interfaces at different abstraction levels. It
can suggest low-level experiments or execute them on its own and auto-
matically deduce and summarize results. If the system knows the original
question of the programmer, it can also consolidate and contextualize results
to provide a direct answer to this question.

Internally, semantic technologies are used to reconstruct plans and ques-
tions of programmers, make suggestions, and deduce results and answers.
Chapter 5 describes how text embeddings and semantic retrieval are employed
to anticipate plans and experiments, and chapter 6 explains how systems can
use generative LLMs to interpret questions, generate experiments, and deduce
answers.

3.2. The Semantic Workspace

To study our concept of an augmented exploratory programming workflow,
we describe the semantic workspace as a conceptual framework for semantic
exploratory programming systems that contain different semantic exploratory
programming tools. Within this framework, we investigate different manifesta-
tions of the augmented exploratory programming workflow through semantic
tools that support programmers at different levels of abstraction in their
research process and use different types of semantic interfaces.

All of these manifestations can be arranged along a spectrum based on their
degree of support between two extremes (fig. 3.2):

Augmentation: At one extreme of the spectrum are tools that operate at
a lower level of abstraction and provide narrow support to programmers.
Low-level semantic tools primarily employ technical interfaces and artifacts
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such as experiments and augment the research process of programmers by
providing suggestions for smaller parts of their workflow, such as further
experiments.

Automation: At the other extreme are tools that provide wide-ranging,
more conceptual semantic support. In contrast to low-level semantic tools,
they often employ new semantic interfaces to exchange conceptual artifacts
with programmers. Rather than augmenting the exploratory programming
workflow, they tend to automate parts of it and provide programmers with
aggregated results and answers instead of low-level suggestions.

Figure 3.2.: The support spectrum of different tools in the semantic workspace.
Low-level semantic tools collect context from tracking the actions of program-
mers in the programming system and augment their exploration through
new suggestions. High-level semantic tools retrieve explicit conceptual de-
scriptions from programmers and automate a larger part of the research
process.

Orthogonally to their degree of support, semantic tools can exhibit reactive
or proactive interaction mechanisms: reactive tools expect an explicit question
or invocation by the programmer, while proactive tools observe the steps of
programmers in the background and make suggestions before a programmer
explicitly requests support. Similar to the degree of support, semantic tools
can combine characteristics of both interaction mechanisms.

The choice between augmenting and automating, or between reactive and
proactive semantic tools, relates to the current objectives of programmers and
has different implications for their overall programming experience, trust, and
learning curve, which we will discuss in chapter 9.

In the semantic workspace, we propose three concepts for novel semantic
tools that can be added on top of traditional exploratory programming systems
and that together provide different means for exploratory programmers to
augment and partially automate their workflow:

Semantic suggestions anticipate the plans of programmers by continuous-
ly monitoring their experimental activities and proactively suggesting fur-
ther experiments as well as optional summaries.
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Semantic completions monitor the planning activities of programmers
as they draft code or text in editors, automatically generate and conduct
experiments, and proactively provide contextualized suggestions such as
code snippets in the editor.

Semantic conversations provide an interface through which program-
mers can express conceptual questions about objects (such as domain objects
or classes) in natural language and retrieve answers at the same abstraction
level. Internally, an exploratory programming agent conducts the necessary
plans, experiments, and deductions to generate answers.

In the following, we describe each semantic tool concept in detail.

3.2.1. Semantic Suggestions

The approach of semantic suggestions is to augment the research process of
exploratory programmers by providing them with possible experiments based
on their previous experimental activities. For this, the semantic workspace
tracks the experiments that programmers execute through the interfaces of
traditional exploratory programming systems such as do-its, code browsers,
and method finders. Based on these observed experiments, it attempts to
reconstruct the plans of programmers, such as an intention to understand the
(scattered) implementation of a concept or to develop a new prototype for a
user interface. Using this reconstructed plan, the semantic workspace then
generates further potentially relevant experiments and suggests them to the
programmer.

Suggestions are proactively generated and presented in a list-like interface,
such as a dock that is placed next to other tools in the system through which
programmers conduct experiments (fig. 3.3).

Semantic suggestions exploit the ability of semantic technologies to process
information at a larger scale than human beings, albeit with reduced precision
and recall. For this reason, the number of generated suggestions is usually
in the two- to three-digit range. This necessitates a structured and ranked
presentation of suggestions, which is achieved by grouping them based on
their type (such as classes versus methods) and ranking them based on their
relevance, similarity, and diversity (see section 5.3).

Optionally, semantic suggestions can include summaries and deduced re-
sults of all experiments. For example, the central aspects of a complex im-
plementation or lengthy documentation could be briefly summarized in the
context of the anticipated plans of programmers as a natural-language synop-
sis.

Semantic suggestions can be applied for different types of plans and experi-
mental activities, including but not limited to the following use cases:
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Figure 3.3.: Our concept of a semantic suggestions tool in the semantic workspace.
The augmented programming system tracks the experimental actions of
the programmer through traditional programming tools (gray), anticipates
the possible next steps of the programmer, and provides them with a list of
suggestions for further experiments as well as an optional summary of their
results (red).

Code browsing To understand the implementation of a concept, a program-
mer is reading one or multiple methods through traditional code browsers.
The semantic workspace anticipates this intention and thus suggests further
methods and code artifacts that the programmer might want to browse next.
This includes:

senders of the currently viewed methods: methods that (possibly) invoke the
current methods;

implementors of messages that the current methods send, displayed with
their comment and implementation;

classes that the current methods reference, displayed with their comment
and definition;

similar methods, such as methods that pursue the same goal or implement
common strategies.

Beyond code artifacts, the system could also suggest other types of semantic
suggestions in this context, such as relevant excerpts from related documenta-
tion artifacts, design documents, and specifications.

Depending on the quantity and complexity of related artifacts, the sys-
tem might also summarize all suggestions; for example, by describing the
implementation of a scattered concept or shortening and paraphrasing docu-
mentation artifacts.
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Prototyping While programmers write and repeatedly save a new method
as part of creating a prototype, the semantic workspace anticipates the type
and shape of the desired prototype. To support this activity, it provides the
programmer with potentially relevant suggestions for related resources:

similar methods, such as methods that pursue the same goal or implement
similar strategies to the current unfinished method;

correlated methods and classes that are used by those similar methods
and that the programmer thus might consider using in the current proto-
type method as well (resembling the concept of collaborative filtering, i.e.,
“programmers who have sent this message have also sent that message”),
displayed with their comment and usage samples;

documentation artifacts that describe the concept and intended usage
of present and suggested classes and methods.

Debugging Semantic suggestions can support programmers who are expe-
riencing an error while using the software system and are investigating it in
a debugger to understand its causes and solve it. To this end, the semantic
workspace automatically searches different sources to provide several types
of suggestions:

bug reports on bug trackers or other communication platforms that refer to
the same error message;

documentation artifacts that describe causes or solutions for this error;
exception handlers for this and similar errors in the software system.

Additionally, the system might also summarize the results to extract and
suggest particular debugging and solution strategies (such as checking the
state of an object, running a script to repair it, or inserting a missing exception
handler).

*

Thus, semantic suggestions support exploratory programmers in their re-
search process by providing them with further possible experiments and
automated deductions. This not only accelerates specific research activities
but also augments the insights of programmers, as they can gain inspiration
from suggestions that might not have occurred to them or would have been
associated with too high a manual research cost.
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Figure 3.4.: Our concept of a semantic completions tool in the semantic workspace.
While programmers gradually express their plan to the system, e.g., by draft-
ing a script in a traditional workspace (gray), the augmented programming
system reconstructs their underlying intentions and suggests contextualized
experiments as completions of their existing inputs (red).

3.2.2. Semantic Completions

Similarly to semantic suggestions, semantic completions observe the activity
of programmers in the system and proactively provide them with further
contextually relevant suggestions. However, semantic completions support
programmers at higher levels of abstraction in their research process: instead
of tracking manual experiments of programmers and reconstructing their
possible plans from these, semantic completions exploit existing interfaces of
exploratory programming systems through which programmers can express
their plans, and derive an understanding of these plans directly. Concretely,
these interfaces involve different types of editors through which programmers
create and edit text, code, or domain-specific objects (fig. 3.4). The semantic
workspace does not wait until the programmer finishes their input and submits
it to the system but tracks their editing activity continuously (e.g., as they type
or click) to follow along with their plans.

Feedback from semantic completions is provided to programmers through
conceptual, highly contextualized results instead of single experiment sugges-
tions. This manifests as a list of completions, which are integrated into the
editor interface and represent possible continuations of the preliminary plan
that programmers have typed into the editor.

To generate these completions, the semantic workspace internally predicts,
executes, and evaluates possible experiments of programmers based on their
observed plans, similarly to semantic suggestions. After that, results are filtered,
aggregated, and transformed into the input context of the programmer.

Semantic completions can be applied to different types of planning activities
that exploratory programmers conduct as part of their research process, for
example:
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Prototyping While programmers write or edit the code of a script or method
(e.g., through a textual or visual editor), the system observes their activity and
derives their plans. It automatically researches similar methods, correlated
class and method names, and relevant documentation artifacts. Based on this
information, it synthesizes possible code snippets (that may range from single
expressions to entire methods) and suggests them as contextually adjusted
completions to the programmer in their editor.

Optionally, these contextualized suggestions can also be dynamically en-
riched. For example, the system can present a completed code expression
together with the result of evaluating it (using available context such as call
stacks, Babylonian examples, or symbolic execution, see page 9) or display the
effect of a completed method, such as a preview of a graphical prototype.

Human communication Another frequent activity of programmers is writ-
ing text to communicate with other programmers, such as documentation
artifacts, bug reports, and commit messages. This can be considered another
type of plans and experiments that programmers conduct to express their in-
tentions to the system and benefit from the outputs of the system (e.g., through
answers to their questions from other programmers or through reminders to
their “future selves” about their original intentions).1

Semantic completions can assist programmers with writing such natural-
language text. To this end, they can automatically browse and suggest relevant
classes, methods, or other artifacts such as bug reports and commits; generate
example experiments; and complete the sentences started by programmers
to fill in the collected information. For example, when a programmer creates
a bug report, the system could automatically summarize prior notes and
experiments from other workspaces into a consolidated text and insert a test
to reproduce the bug.

*

Thus, semantic completions can support programmers in creating and real-
izing plans by directly following their intentions, generating and conducting
likely experiments, and contributing results to the programmers’ planning
activity in a contextualized form. This allows programmers to interact with
the programming system at a more conceptual level, accelerate their workflow
for trivial tasks, and explore different solutions based on an extended, diverse
amount of information.

1Arguably, this perspective can also be applied to source code which “must be written for
people to read, and only incidentally for machines to execute” [1, p. xxii].
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Figure 3.5.: Our concept of a semantic conversations tool in the semantic
workspace. Programmers express their abstract, contextual questions to
the augmented programming system by interacting with an object in the
software system through messages in natural language. Internally, the pro-
gramming system conducts all steps of the required research process for
answering the questions autonomously and returns a conceptual, natural-
language answer to the programmer.

3.2.3. Semantic Conversations

Semantic conversations support exploratory programmers at high abstraction
levels in their research process. For this, a programmer can ask a conceptual
question about the software system, and the semantic workspace will return an
answer to that question in a similar conceptual, natural-language form (fig. 3.5).
The programmer can ask follow-up questions based on the system’s answer,
and the system may also ask questions back to the programmer to clarify their
intentions, resulting in a conversational interaction style.

Internally, the system executes an entire instance of the (potentially nested)
research process on its own: it generates a plan to answer the question, gener-
ates, executes, and analyzes one or several experiments, repeats as necessary,
and finally creates an answer to the question based on the gathered results.

Following the object-oriented philosophy of many exploratory programming
systems such as Smalltalk systems, we define one reference object from the
system for each semantic conversation. Thus, just like programmers can send
messages to objects to inspect and interact with them, they can also ask them
natural-language questions through semantic conversations.
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Example. A programmer inspects an order object from a shopping
system and wants to know when the order was created. To find this out,
they ask the object “when were you created” through a conversational
interface. In response, the system internally conducts multiple experi-
ments to explore the inner structure and protocols of the order’s class,
inspect the internal state of the order object or send messages to it, and
run further scripts to convert a retrieved value into a proper format.
Finally, the system answers the question of the programmer with an
answer like: “I was created on March 14th this year.”

Reference objects can be arbitrary objects from the system: domain objects,
code objects such as classes and methods, or derived artifacts of software
systems such as test results, program traces, and views from other tools.

Thus, semantic conversations provide an abstract, reactive interface through
which programmers can express questions about objects and communicate
with the system in natural language. This allows them to avoid context switches
and distractions and handle overarching research processes more efficiently.
At the same time, the system is able to process more information than the
programmer within the same time, creating an opportunity to provide a
more extensive overview of a part of the software system within a single
conversation.

Chapter Summary

We have proposed the augmented exploratory programming workflow, in
which programmers collaborate on high-level steps of their research
process with semantic exploratory programming systems. These systems
offer semantic interfaces for exchanging conceptual artifacts with pro-
grammers and can anticipate and augment their workflow. Our semantic
workspace provides three tool concepts for such systems at different
levels of support: semantic suggestions, semantic completions, and semantic
conversations.
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In this chapter, we describe the design of our semantic exploration kernel, which
connects the interfaces of the different semantic workspace tools to a traditional
exploratory programming system and to semantic technologies. The semantic
exploration kernel consists of two central components: a suggestion engine for
processing context from the programming system and developing suggestions,
and an exploratory programming agent for natural-language communication,
machine reasoning, and autonomous experimentation. In the following, we
elaborate on our architecture of the semantic exploration kernel and describe
the general operating principles of the suggestion engine and the exploratory
programming agent.

4.1. Architecture

Figure 4.1 displays the high-level architecture of the semantic exploration ker-
nel and its environment. The overarching semantic exploratory programming
system can be divided into three layers: the semantic workspace for (graphical)
programming tooling, the semantic exploration kernel for the domain logic of
the system, and the infrastructure layer for required packages and integrations.

The semantic workspace provides different semantic tools, through which
programmers can interact with the system (section 3.2). The semantic explo-
ration kernel consists of two components for processing the semantic context
of the programming session and augmenting it: the suggestion engine and the
exploratory programming agent.

The suggestion engine captures the implicit concept of programmers from
their previous experiments, reconstructs their plans and intentions, and cre-
ates new suggestions. For this, it defines a blackboard framework, which man-
ages various artifacts such as methods, classes, and scripts and orchestrates
strategies for suggesting new artifacts based on existing ones (section 4.2).
Next to the generic framework, the suggestion engine also provides several
types of artifacts and strategies that employ semantic retrieval methods
for searching objects, generating experiments, and structuring and ranking
results (chapter 5).

The exploratory programming agent receives explicit questions and
answers them by autonomously conducting exploratory research processes.
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Figure 4.1.: The high-level architecture of the semantic exploration kernel and
its environment. The architecture is structured in three layers for semantic
tools, domain concepts, and underlying infrastructure.
Legend. New components are colorful and existing components are gray.
Arrows indicate dependencies from a higher-level component to a lower-
level component. Numbers reference the chapter, section, or appendix in
this thesis that further describes a component.
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It connects to its environment through semantic object interfaces, which allow
programmers to ask semantic questions to objects in the system (section 4.3).
Internally, it employs a generative LLM to support natural-language con-
versations and machine reasoning. The agent is configured through a set
of policies, which define its behavior, and a set of system functions, through
which the agent can interact with objects in the system (chapter 6).

The suggestion engine and the exploratory programming agent can inter-
act with each other: particular strategies that require reasoning about other
artifacts or code generation invoke the exploratory programming agent. In the
other direction, when the agent needs a broader overview of system parts, it
will employ the suggestion engine to retrieve relevant artifacts.

Both the semantic workspace and the semantic exploration kernel require
a traditional exploratory programming system (chapter 7). The semantic
workspace integrates semantic interfaces for its tools into the existing pro-
gramming system, for example, through a completion menu in code editors or
a conversational interface in several exploration tools. Similarly, it also hooks
into the existing user interface to observe experiments through artifacts such
as opened tabs and windows. The exploration kernel interacts with the tradi-
tional system to access classes, methods, and objects for retrieving suggestions
or executing experiments.

In our implementation, the semantic workspace and the exploration kernel
also depend on a couple of other packages:

SemanticText: The exploration kernel uses our SemanticText frame-
work,1 which provides access to semantic technologies for retrieving docu-
ments, generating text with conversational LLMs, and implementing spe-
cialized agents (appendix A). This framework also provides a graphical user
interface component for conversational agents, which is employed by the
semantic workspace for semantic conversations.

SimulationStudio: Furthermore, the exploration kernel uses our Simula-
tionStudio framework for instrumented code interpretation2 to construct
a dynamic call graph about suggested methods (method harvesting, page 50)
and execute experiments from the agent in an isolated sandbox (section 6.2).

Autocompletion: Finally, we use and extend the Autocompletion pack-
age3 to integrate semantic completions into the programming system (sec-
tion 7.2).

1https://github.com/hpi-swa-lab/Squeak-SemanticText
2https://github.com/LinqLover/SimulationStudio
3https://github.com/LeonMatthes/Autocompletion
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Figure 4.2.: The general object model of our blackboard framework for creating
suggestions (UML class diagram with Smalltalk-styled method signatures).
A central board maintains many artifacts of different types and roles, and it has
access to strategies, which consume existing artifacts to produce new artifacts.
When asked for suggestion artifacts of certain roles, the board identifies and
schedules all required strategies and returns the new suggestions to the
requestor.

In the following sections, we introduce our blackboard framework for the
suggestion engine and semantic object interfaces for the exploratory program-
ming agent.

4.2. A Blackboard Framework for Managing Suggestions

When the suggestion engine is invoked, it first captures the implicit context
of programmers as artifacts—for example, currently viewed methods, recent
experiments, or notes. It then executes different strategies to suggest further
artifacts based on the former. For example, given a currently viewed method,
different strategies could suggest senders of this method, similar methods, or
related documentation artifacts. To anticipate larger parts of the programmer’s
research process, suggestions are not limited to initial input artifacts but can
also be derived from prior suggestions. In our example, a fourth strategy could
extract and suggest popular message sends from similar methods.

These requirements create a high complexity in the suggestion engine, which
has to manage different types of artifacts, strategies, and a convoluted dataflow.
To handle this complexity and maintain flexibility in the design of new artifacts
and strategies, we define a blackboard framework, which organizes artifacts and
orchestrates strategies.

The framework defines a central board on which different artifacts can be
arranged. Each artifact is specified with a role (such as input artifact, similar
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artifact, or method sender) and a type (such as class, method, or documentation).
Additionally, the board contains a set of strategies, each of which is able to
consume given artifacts and produce more artifacts. Each strategy can specify
a set of required roles for the artifacts it consumes as well as a set of output
roles for the artifacts it produces. Figure 4.2 displays our object model of the
blackboard framework.

After the board has been configured with a concrete set of input artifacts
and strategies, it can be invoked to provide suggestions of certain roles. Once
invoked, the board determines all available strategies that can produce the re-
quested artifact roles and schedules them. If any strategy defines requirements,
the board first checks whether they are met by the current set of artifacts, or
otherwise attempts to determine and schedule further strategies that produce
artifacts of the required role. This process continues recursively until all possi-
ble strategies that are directly or indirectly required to fulfill the request have
been scheduled. All scheduled strategies are executed concurrently as soon as
their requirements have been resolved, and each running strategy adds new
artifacts to the board. Finally, the requestor can access or stream the resulting
artifacts from the board.

The board framework also provides strategies for organizing artifacts: for
example, identical or equivalent artifacts that have been produced by multiple
strategies can be merged, artifacts can be grouped based on their role, type, or
metadata, and they can be sorted based on ranks provided by prior strategies.

To support debugging and observability, strategies can also be executed
synchronously, and a provenance mechanism remembers the original strategy
and its input artifacts for every produced artifact.

Example. A programmer has drafted a new method and a short list
of to-do notes in their programming system. To provide them with
further possibly relevant message sends for their method draft, the
semantic workspace invokes the suggestion engine with both artifacts
and requests suggestions of the role “correlated message” (fig. 4.3).

Once invoked, the suggestion engine identifies two strategies that can
suggest correlated messages: a correlated selectors strategy and a method
harvester strategy (see page 50). Both strategies require artifacts of the
role “similar method”, which are currently not present on the board.
For this reason, the suggestion engine finds two other strategies that
can produce similar method artifacts: a semantic method search strategy
and a TF-IDF selector search strategy. Both these search strategies require
artifacts of the role “input”, thus their requirements are met and the
engine schedules them.

38



4. The Semantic Exploration Kernel

Figure 4.3.: The involved artifacts and scheduled strategies for invoking
the blackboard framework with our example.

Once the search strategies have finished and placed similar method
artifacts on the board, the engine also executes the correlating strategies,
leading to the addition of correlated messages and correlated methods
to the board. The suggestion engine now merges both artifact types
by attempting to associate all method artifacts with the same method
name with a corresponding correlated message artifact. Finally, the
resulting artifacts are ranked based on the original similarity scores and
the correlation scores.

Thus, our blackboard framework shares characteristics from two existing
approaches: blackboard systems and data orchestration pipelines. First, it resembles
the blackboard architecture pattern [8, p. 71ff.] and blackboard systems from early
expert systems [86], where different knowledge sources successively populate a
blackboard orchestrated by a control shell. Second, it is related to data orchestration
pipelines, which model and execute a directed acyclic graph of tasks [63].

However, our blackboard framework follows a more structured approach
than traditional blackboard systems in that all strategies define static output
roles, allowing to predict the dataflow in advance and schedule strategies
in a top-down manner (as opposed to the bottom-up method of blackboard
systems). At the same time, the blackboard framework offers greater flexibility
than data orchestration pipelines, which typically model direct dependencies
between tasks rather than data roles, and thus allows for the implicit choice
and combination of different strategies.

4.3. Semantic Object Interfaces for Exploratory

Programming

To delegate parts of the research process to the exploratory programming
system, we construct an exploratory programming agent, which uses a generative
LLM for planning, generating experiments, and communicating with the
programmer in natural language. To connect the agent with the programming
system, we propose the design of semantic object interfaces, which describes the
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Figure 4.4.: Our approach of semantic object interfaces for semantic exploratory
programming systems. The programmer expresses high-level, contextual,
and often natural-language questions about an object to the interface and
receives answers on the same abstraction level. Internally, an exploratory
programming agent (red) translates these questions and interacts with the
system to perform low-level experiments.

communication between the programmer, the agent, and the system [70]. This
design follows the object-oriented paradigm of many programming systems
in that semantic object interfaces focus on a single object from the running
system. Thus, semantic object interfaces resemble traditional message sending
to objects, and programmers can interact with objects via the agent by means
of natural-language and semantic questions.

As part of this framework, the agent takes high-level and context-dependent
semantic questions from the programmer and translates them into low-level
technical experiments to answer the questions (fig. 4.4). Our framework com-
prises three fundamental actors:

The programmer conducts a larger exploratory research process, from
which different questions will arise. The programmer asks such questions
about an object in a system and expects answers on a similar level of
abstraction. These questions are semantic and conceptual, meaning that they
are expressed in the programmer’s mental model and vocabulary, typically
have an informal or natural-language style, and often depend on the context
of previous questions and answers.

The object is any object in the system, for example a particular domain
object, a code object (such as a class or method), or an artifact from the
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programming system (such as a call graph, a benchmark, or a program
trace). It is part of an object graph, which embeds it into a larger context of
the system. It is also linked to an implementation, which describes the object’s
behavior through further objects and may be specified using code, tests, or
other forms such as contracts.

Objects can be accessed either by sending them messages or through reflec-
tion interfaces that expose their internal state, implementation, or location in
the object graph.

The exploratory programming agent is an intelligent mediator between
the programmer and the object in the system. It automatically translates
conceptual questions from the programmer into interactions with the system
and translates the results of these interactions back into answers for the
programmer.

Internally, the agent conducts research processes autonomously: it inter-
prets the programmer’s question, develops a plan, designs and conducts
experiments, evaluates their results, and repeats as necessary (until all re-
quired information has been collected) before delivering a reasoned answer
to the questions and returning it to the programmer.

The agent uses two resources: a set of policies and a conversation history.
Policies define abstract agent behavior, such as the types and frequency of
experiments and the format of answers. The conversation history consists
of past communications with the programmer and experiments from the
current conversation. It serves as a context for handling subsequent requests.
Thus, the programmer does not need to repeatedly explicate their intentions
in every question but grows a shared vocabulary and knowledge with the
agent as the conversation evolves.

Answering Questions through Automated Experiments

Our framework allows programmers to ask arbitrary questions about objects
in a system, which can reference two different aspects:

Functional questions (or “what” questions) refer to the state of objects
and the actual things in the domain they represent. They typically constitute
inquiries that are or could be covered by regular (analytical) system features
or objects’ behavior.

For example, in a sales system, typical functional questions could be “How
many customers are there?”, “Which product in this category has generated
the highest profit in the last quarter?”, or “What is the age distribution of
weekend customers?”.

Epistemic questions (or “how” questions) refer to the behavior of objects, do-
main concepts, and their implementation. Programmers ask these questions
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to explore the capabilities of a system, understand the technical foundations,
or ideate and prototype new applications.

For example, in a sales system, epistemic questions could include “What
information do we store about customers?”, “How is the tagging system
for products modeled?”, or “How can we analyze the shopping behavior of
customers?”.

Note that given the uniform object model of many programming systems,
epistemic questions about a domain object equal functional questions about
a code object from the implementation of the domain; however, the former
perspective provides additional context about the system through a concrete
example.

To answer both functional and epistemic questions, the agent automatically
conducts experiments by utilizing three types of interfaces that most existing
programming systems already offer:

State inspection allows the internal information of objects to be explored.
For example, the agent can look up a variable or enumerate all properties of
an object.

Implementation browsing explores the specified behavior of objects
through their protocols, implementation, and documentation. Protocols refer
to the set of messages an object understands. Implementation includes the
source code of objects or classes, but also their integration within the global
system through call graphs or related concepts (e.g., senders or program
traces) for understanding the usage of objects by example. Documentation
can be provided through comments, examples, or alternative system de-
scriptions.

Following the singularity of objects and meta objects noted above, im-
plementation browsing of domain objects equals state inspection of their
classes, but is associated with a different connotation by adhering to the con-
text of the original object. For example, using symbolic execution methods,
both the state and effective behavior of objects can be explored at once.

Message sending constitutes regular communication with objects to activate
their behavior. As opposed to state inspection and implementation browsing,
normal messages can be sent without requiring reflective capabilities.4

Note that the agent generally does not require any manual preparation
for specific systems and packages from domain experts or programmers but
will learn about the system on its own. Thus, even to answer simple func-

4From our classification, we exclude special reflective messages such as #instVarNamed: in
Smalltalk as well as restricted visibility of messages such as the private access modifiers in
Java.

42



4. The Semantic Exploration Kernel

tional questions, the agent will internally ask and answer epistemic questions
to understand the system and domain concepts and preserve the collected
knowledge in its internal conversation history. Analogously, every message
send to a previously unknown system is preceded by browsing its implemen-
tation, through which the agent discovers the relevant protocols and messages
to use.

Example. A programmer asks “Which product has generated the
highest profit?” about a selected shop object. In response, the agent first
executes a series of experiments by browsing the shop’s implementation
to explore several messages, classes, and their documentation related to
the concepts “product” and “profit” to understand what these concepts
mean and how they are represented in the system.

After identifying relevant messages such as Shop»orders, Order»
productItems, and Product»price, it plans how to combine this infor-
mation to compute the most profitable product and runs a script that
queries the system for this information as another experiment.

Finally, the agent evaluates the results of this experiment and returns
a summarized answer in natural language to the programmer. The
question was answered and the programmer can continue by asking
another question to the agent or performing another exploratory activity.

Integrating Semantic Object Interfaces into Exploratory

Programming Systems

To support immediate access to semantic object interfaces from within ex-
ploratory programming systems, we aim for tight integration with traditional
tools. For this, we identify two primary interfaces in such systems through
which programmers explore objects: object inspection tools and message sending
through scripts. We propose to extend these interfaces with semantic capabili-
ties: object inspection tools with a conversation mode and message sending with
a language extension for semantic messaging.

A conversation mode for object inspection tools Inspection tools allow
programmers to explore and manipulate the internal state of objects through
a list of variables or properties. We propose a new conversation mode for
inspection tools, which allows programmers to ask semantic questions about
an object (fig. 4.5). Thus, in addition to usual technical state inspection, they
can also chat with an object through the exploratory programming agent.

Through the chat interface, programmers can express questions in natural
language without needing to know the vocabulary and protocols of the object’s
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Figure 4.5.: Possible integration of a conversational semantic interface into a
traditional object inspection tool. Programmers can ask conceptual questions
about objects in natural languages besides inspecting their internal state.

domain. Additionally, they can ask follow-up questions in the context of a
conversation without repeating or editing their original thoughts, like in a
real-life conversation between two programmers.

Semantic messaging in scripts Scripting is another popular starting point for
exploration. Especially programmers who are proficient in the programming
language and familiar with the protocols of a system often prefer message
sending through scripts to manually exploring object graphs through inspec-
tion tools. For example, the following Smalltalk script retrieves the product
with the highest quantity from a list of order items:

(self orderItems detectMax: #quantity) product.

We propose an extension to object-oriented scripting languages that allows
for semantic messaging: similar to pseudocode, programmers can write semantic
messages with fictitious names (that do not even have to match the vocabulary
of an object) to express their intents but send these messages to objects just like
regular messages. Unlike regular messages, semantic messages do not require
an implementation at the receiver object but get processed by an exploratory
programming agent, which interprets the message as a question and internally
inspects the object or sends it regular messages to determine a return value.
For instance, the above example could be expressed as any of the following:

self mostOftenBoughtArticle.

self orderItems theOneWithHighestAmount.

Like regular messages, semantic messages can also pass arguments, such as:

aProduct numberOfSalesTo: aCustomer.

aProduct numberOfSalesFrom: 'Q3 2023' to: 'Q4 2023'.
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Thus, programmers can maintain their scripting flow when asking questions
even if they are unaware of certain protocols, and they do not have to express
questions using specific protocols and syntax or implement algorithms for
more complex problems.

*

Semantic object interfaces allow programmers to delegate parts of their re-
search process to the programming system by expressing conceptual questions,
letting an exploratory programming agent research them autonomously and
map them to low-level experiments, and receiving conceptual answers in
natural language.

Chapter Summary

We have presented the design and architecture of the semantic exploration
kernel, which powers the semantic workspace by providing different
functionalities based on semantic technologies. We have described
the suggestion engine, which uses a blackboard framework for organizing
suggestion artifacts and strategies, and the exploratory programming agent,
which provides semantic object interfaces for asking semantic questions
and autonomously reasons and experiments to answer these questions.
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Semantic Retrieval

In this chapter, we describe how the suggestion engine creates different types
of experiments to augment the exploratory research process of programmers.
We provide an overview of the different types of artifacts and strategies in
the suggestion engine. We explain how it implements several strategies for
searching artifacts by using semantic retrieval, compare different ranking ap-
proaches for sorting and filtering suggestions, and describe how the suggestion
engine incorporates the exploratory programming agent for suggesting code
expressions.

5.1. Artifacts and Strategies

The suggestion engine defines several types and roles of artifacts and several
strategies for recording and linking different kinds of information from the
programming system.

We distinguish between three groups of artifacts:

Input artifacts are captured from the original exploratory session and
experiments of the programmer.

This includes code artifacts such as methods and classes that the program-
mer is browsing or editing, do-it scripts that they are writing or executing,
and other types of information such as notes and bug reports that they are
interacting with.

Retrieved artifacts refer to any piece of information that is available in the
programming system and has been identified by the suggestion engine as
potentially relevant for the next steps of the programmer’s research process.

Most retrieved artifacts relate to the implementation of systems: users of
code artifacts such as message senders, class users, and variable references
provide context about their tasks and interfaces. Similar code artifacts exem-
plify how other methods and classes solve related problems, use similar
protocols, or implement similar interfaces. From the latter, correlated code
artifacts can be extracted to summarize common building blocks of similar
solutions, such as frequently sent messages, executed methods, instantiated
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Figure 5.1.: Merge graph of all available artifact types and strategies in the
suggestion engine. Gray boxes represent artifact types (grouped by their
rolesa), colorful boxes represent strategies, and arrows display possible
inputs and outputs. Arrows starting or ending in a group of artifacts or
strategies refer to all of its items. For sake of simplicity, we do not distinguish
optional and required inputs in this figure.

aTechnically, each gray box represents a tuple of an artifact type and an artifact role. For
example, “open method”, “sender”, and “similar method” are all artifacts of the type
“method” in different roles.

classes, and referenced variables. A programmer who is editing a method
has a higher probability to use some of these correlated artifacts.

Beyond code artifacts, the suggestion engine might also find documentation
artifacts, revision notes, bug reports, or other forms of communication from
information sources that are related to the development of the software
system.

Generated artifacts are new experiments that the suggestion engine has
synthesized.

This includes generated and contextualized code expressions based on sim-
ilar and correlated artifacts. Generated code expressions can range from
single message sends to entire class definitions and method implementa-
tions. However, the suggestion engine might also generate other types of
artifacts to outline cluttered implementations, summarize long documen-
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tation artifacts, or suggest a list of steps to debug an error based on prior
developer communications.

For each suggestable role of artifact, the suggestion engine defines one
or multiple strategies that process and combine prior artifacts and produce
new artifacts. For example, we (i) implement multiple strategies for searching
similar methods based on their intentions and interface usage; (ii) provide
different ways to extract correlated messages from methods based on static and
dynamic call graphs; and (iii) employ different LLMs and heuristics through
the exploratory programming agent for combining retrieved artifacts into new
code expressions. Figure 5.1 provides an overview of all available types of
artifacts and strategies in our prototype.

5.2. Semantic Search

In the following, we describe multiple strategies for finding similar artifacts
(such as similar methods) and correlated artifacts that are based on the former
(such as messages that are frequently sent by similar methods).

Similarity Search

A central strategy for similarity search in the suggestion engine is semantic
search using document embeddings [92, 97]. For this, we embed each query (i.e.,
each input artifact) using a text embedding model,1 search a vector database
of all other available artifacts (such as methods in the system) for documents
with nearby embeddings, and return the top 𝑘 most similar results. Thus,
we reconstruct the programmers’ intentions by mapping their experimental
artifacts into an embedding space, and we anticipate their next steps by finding
similar artifacts in this space.

However, embedding-based search is only applicable to a limited extent:
first, computing and storing embeddings involves noticeable costs in terms of
time, storage, and financial expenses. Second, the embedding search might
be too sensitive to the syntactical format of documents unless the model is
specifically trained or documents are preprocessed, which can reduce the
recall when comparing heterogeneous artifacts (such as the implementation
and documentation of the same method). Similarly, when queried with an
unfinished draft of a method or script, embedding-based search will primarily
find artifacts of a similar length—such as stub methods—rather than fully
implemented methods.

1In our prototype, we use OpenAI’s text-embedding-3-large model for embedding any
artifacts and choose a reduced dimension size of 256 (see page 87).
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To overcome these limitations, we provide another search strategy based
on the TF-IDF (term frequency and inverse document frequency) metric [103].
This metric is based on the assumption that the less often a term occurs in
a corpus of documents, the more important each occurrence of this term in
a particular document is for the semantics of this document. For example,
stopwords in natural language (e.g., common words such as “and” or “is”)
or keywords and general-purpose identifiers from standard frameworks in
programming languages (e.g., self or ifTrue: in Smalltalk) generally have a
low significance for specific documents, while rare words or method names
are more commonly associated with specific domain concepts.

Thus, we can estimate the similarity of two documents by comparing the
occurrences of each term (or term frequencies) in both documents, weighted by
their rareness (or inverse document frequencies). For this, the term frequency of
a term 𝑡 in a document 𝑑, the inverse document frequency of a document 𝑑 in
a corpus 𝐷, and the TF-IDF score are commonly defined as follows, with 𝑑(𝑡)

indicating the number of occurrences of 𝑡 in 𝑑:

tf(𝑡 , 𝑑) = 𝑑(𝑡)

∑𝑡′∈𝑑 𝑑(𝑡′)
(5.1)

idf(𝑡 , 𝐷) = log ∣𝐷∣

∣{𝑑 ∈ 𝐷 ∣ 𝑑(𝑡) > 0}∣
(5.2)

tfidf(𝑡 , 𝑑, 𝐷) = tf(𝑡 , 𝑑) ⋅ idf(𝑡 , 𝐷) (5.3)

By combining the TF-IDF scores of a document for all terms in the corpus
into a vector, we can embed the document into a high-dimensional embed-
ding space. This allows us to compare two documents based on their cosine
similarity analogously to other types of embeddings.

Other than transformer-based embeddings, TF-IDF vectors are sparse and
ignore the mutual relation of words in a document as well as the semantics of
words (such as synonyms and homonyms). However, they can be simpler to
calculate, especially in the context of ranking similar documents to a reference
document, where TF-IDF scores do not need to be calculated for every term.

Example. In a corpus with the three documents “Squeak is a system
for programmers”, “Smalltalk is a programming language”, and “The
squeak mouse is a birthday present for the dog”, a TF-IDF search will
consider the first and the third document most similar to each other
due to their shared use of the term “Squeak”. No pair of documents
will be considered more similar due to their shared use of the terms “is”
and “a”, because these terms appear in every document of the corpus.
Since they use different inflection forms and hyponyms, the first two
documents will not be considered similar.
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In our prototype, we use TF-IDF search for methods based on the selectors
and references to classes and variables in a method retrieved from its bytecode.
We apply a binary weighting scheme for term frequencies (simplifying their
definition to tf(𝑡 , 𝑑) = 1{𝑑(𝑡)>0}) and exponentially weight inverse document
frequencies with a power of 4. In our experiments, this approach commonly
yielded relevant results and showed a sufficient performance (typically 250
milliseconds for 25 MB of source code) even without maintaining an index.

Correlation Search for Code Artifacts

After finding similar artifacts to a set of input artifacts, we can extract frequent
parts from them. In statistical terms, we say each of these parts correlates with
the functional—or semantic—characteristics of artifacts like the input artifact.
For code-related artifacts such as methods or documentation, their parts are
the different code artifacts used by the similar artifacts, such as invoked meth-
ods, instantiated classes, or referenced variables. Their cumulative occurrence
suggests a higher probability that programmers might also want to consider
them for the input artifacts they are writing. This resembles the concept of col-
laborative filtering (“customers who liked this also liked...”), though this studies
interactions of users with artifacts, while our approach analyzes dependencies
between (different types of) artifacts [105].

To extract used artifacts from a given method, we employ two different data
sources: a static dependency graph and a dynamic dependency graph.

The static dependency graph is modeled from the terms in a method, which
are accessible from the abstract syntax tree (AST) or bytecode of the method.
In our prototype for Smalltalk, we extract all literals from the bytecode of a
method and filter them for message selectors, local variable references, and
bindings to classes and global variables.

However, this approach only offers limited insight into the actual methods
that are executed through message sends due to the dynamic dispatching of
late binding programming languages (see footnote 2.1 on page 12). Using a
dynamic dependency graph, we enrich this information with the execution context
from Babylonian examples for each similar method artifact. In our prototype,
we employ a method harvester, which runs all examples in an instrumented
interpreter using SimulationStudio to construct this graph.2 Thus, we can
suggest a set of concrete methods that are executed by many similar methods.

We rank correlated artifacts based on their number of occurrences in the
similar artifacts, weighted by the relevance of the latter.

2Inspired by the type harvesting approach of [19].
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Example. A programmer is writing a script to create a red circle. Their
incomplete draft looks like this:

circle := Circle new.
color := Color red.

Based on the used names, the suggestion engine identifies similar
methods such as:

• High similarity (3 common terms):
circle := Circle new.
circle color: Color green.
circle border: #thick.

• Moderate similarity (2 common terms):
triangle := Triangle new.
triangle color: Color green.
triangle shadow: true.

• Low similarity (1 common term):
rectangle := Rectangle newSquare.
rectangle borderColor: Color blue.

From these similar methods, the suggestion engine suggests the follow-
ing most relevant new correlated artifacts:

• #color: (used in 1 highly similar and 1 moderately similar method)
• #green (used in 1 highly similar and 1 moderately similar method)
• #border: (used in 1 highly similar method)
• #shadow: (used in 1 moderately similar method)

Thus, the programmer can complete their script by choose from the
most likely suggestions.

5.3. Semantic Ranking

Many strategies produce a number of suggestions that is neither manage-
able for human programmers nor for exploratory programming agents using
state-of-the-art LLMs. This is because semantic search methods, unlike tra-
ditional search methods, usually do not provide a binary classifier for the
relevance of a document but compute a continuous score (e.g., the cosine
distance in embedding-based search). Thus, we need to sort and filter sugges-
tions before returning them to the requestor. We address both requirements
through a ranker in the suggestion engine, which computes a ranking order
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for all suggestions and returns the first 𝑘 suggestions from this ranking to the
requestor.

The requirements for ranking orders are various and depend on the context
of the suggestions. Some roles of suggestion artifacts, such as similar or
correlated artifacts, have a relevance score to a reference artifact, which should
influence their ranking (e.g., to select the most similar artifacts). In other
situations, such as when suggesting users of a class or method, suggestions
should explicitly provide a broad overview of all available data and not respect
any reference artifact. Between both extremes, gradations exist: for example,
the exploratory programming agent might request senders of a method in the
context of a broader topic, such as users of the WriteStream»nextPut: method
in Squeak that are related to date-formatting tasks. In this situation, both
suggestions relevant to the problem and suggestions exemplifying different
uses of the protocol are desired.

We identify four objectives for ranking suggestions, which must be balanced
differently depending on the context in which the suggestion engine is invoked.
While we describe each objective with a formula, we have not used these
formulas for a rigorous quantitative evaluation of different ranking methods
but only provide them for mathematical intuition.

Relevance A ranking must contain the most relevant suggestions from the
corpus, such as those that are most similar to the reference artifact.

Formally, we operationalize this objective by requiring that for every prefix
𝐿 of the ranking, a ranking method must maximize the sum of relevance
scores 𝑅𝑖 from all contained artifacts:

Relevance(𝐿) = ∑
𝑖∈𝐿

𝑅𝑖 (5.4)

Irredundancy A ranking must not contain multiple highly similar sugges-
tions that do not add value to the exploration, such as different almost
identical versions of a method.

We measure this objective by counting the number of suggestion pairs
(𝑖 , 𝑗) in the ranking that do not deceed a small threshold 𝜃 for their mutual
similarity 𝑆(𝑖 , 𝑗):

Irredundancy(𝐿) = ∣{𝑖 , 𝑗 ∈ 𝐿 ∣ 𝑆(𝑖 , 𝑗) > 𝜃}∣ (5.5)

Diversity A ranking must contain diverse suggestions that display highly
different types and topics from the corpus.

We formalize the diversity of a ranking by summing up all mutual dis-
tances between two suggestions. Unlike irredundancy, which merely avoids
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duplicates, this objective explicitly promotes outliers from different regions
of the embedding space:

Diversity(𝐿) = ∑
𝑖 , 𝑗∈𝐿

1 − 𝑆(𝑖 , 𝑗) (5.6)

Representativeness A ranking must represent the full corpus to the best
possible extent by containing suggestions that cover the entire distribution
of the corpus.

While a comprehensive operationalization of this objective would provide
little intuition, we can approach it by comparing statistical properties (such
as the mean and standard deviation) of the ranking to that of the corpus
and requiring the difference to be minimal. For a more elaborated measure,
we could require a minimal Kantorovich distance [106], which indicates the
cost of transforming the distribution of the corpus into that of the ranking.

To meet all requirements, we present four ranking methods and discuss how
they balance all objectives differently (fig. 5.2): top-k selection, probabilistic
sampling, clustering, and probabilistic sampling from clusters.

Top-k selection We sort all suggestions based on their relevance score and
select the 𝑘 most relevant artifacts. This approach maximizes the relevance of
the ranking. However, it can also maximize the redundancy of results if the
relevance score depends on the (transitive) similarity of artifacts. At the same
time, diversity and representativeness are typically minimized because the
selection explicitly focuses on most similar artifacts.

Probabilistic sampling We convert the relevance scores of the corpus into
a probability distribution by scaling each relevance score exponentially to a
probability 𝑝𝑖 :

𝑝𝑖 =
exp 𝑅𝑖

𝑇

∑𝑗 exp 𝑅 𝑗

𝑇

(5.7)

Based on this probability distribution, we randomly sample 𝑘 unique arti-
facts. Through a temperature parameter 𝑇, the probability distribution can
be sharpened or flattened, modeling the ranking closer to top-k selection or
uniform random selection, respectively. This approach corresponds to the
softmax function used in several machine learning applications [107].

In comparison with all other discussed methods, probabilistic sampling
maximizes the diversity of the ranking if a medium to high temperature is
used. Similarly, the irredundancy or representativeness of results is slightly
better than for top-k selection. However, results are significantly less relevant
to the query.
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Figure 5.2.: The discussed methods for semantic ranking achieve different
trade-offs between our defined objectives. Top-k selection (red) delivers
the most relevant ranking but selects redundant, homogeneous, and non-
representative items. Probabilistic sampling (yellow) maximizes diversity,
while clustering (green) can improve the irredundancy and representative-
ness of items. With probabilistic sampling from clusters (blue), we find an
acceptable balance of all objectives.
Note that this sketch shows a broad comparison of methods only, and exact
metrics would heavily depend on the distribution of original suggestions and
on the choice of hyperparameters (such as temperature) for each method.

Clustering We cluster the corpus into 𝑘 groups by using a partition-based
algorithm such as k-means. From each cluster, we select the most representative
artifact (i.e., the center of the cluster).

Cluster-based selection maximizes the irredundancy and improves the
representativeness of the ranking. However, it does not honor the relevance
of artifacts. Also, cluster centers present a lower diversity than probabilistic
sampling as they neglect outliers.

Probabilistic sampling from clusters We group the corpus into 𝑘 clusters,
assign a probability to each cluster based on the relevance score of its center,
and sample random clusters. For each occurrence of a cluster, we select the
next most relevant artifact from it. Similar to plain probabilistic sampling, this
method can be controlled through a temperature parameter.

Cluster-based probabilistic sampling provides a trade-off between the other
discussed methods with respect to all considered objectives: in our experi-
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ments, it yielded a moderate relevance of suggestions that is between that of
top-k selection and plain probabilistic sampling, a moderate diversity close to
clustering, and a sufficient irredundancy and representativeness.

Failed attempts. We also experimented with two other ranking meth-
ods that did not yield usable results for us:

Explicitly amplifying diversity We computed a diversity score for
each artifact as its average distance to all other artifacts and added
that to the artifact score. Despite experimenting with different weights
and scalings, we were not able to create rankings that would combine
relevance and diversity in a useful way.

Clustering from an RBF-transformed embedding space We transformed
the embedding space of the corpus using a radial basis function (RBF)
centered around the reference artifact before clustering it. We could not
confirm our hypothesis that this approach would balance relevance and
representativeness. In our experiments, the complexity and sensitivity
of parameters rendered this approach impractical.

In our prototype, we found probabilistic sampling from clusters to balance
the different objectives in the most useful way and to be versatile for most
applications. For some use cases where no reference artifact has been specified,
we use the plain clustering method instead.

5.4. Semantic Generation

Another group of strategies in the suggestion engine implements the gener-
ation of semantic completions, that is, synthesized artifacts that continue a
programmer’s draft of a code artifact, documentation artifact, or a similar
artifact. These synthesized artifacts are based on other types of artifacts such
as similar methods, correlated classes, or documentation excerpts. The actual
generation is delegated to the exploratory programming agent, which employs
generative LLMs for creating semantically relevant completions (see chapter 6).

However, the requirement for interactive completions conflicts with the high
latencies and monetary costs of the exploratory programming agent: on the
one hand, semantic completions should not introduce temporal distances in
the research process of programmers but be updated with a high frequency
to always reflect the latest input from the programmer. On the other hand, the
agent fundamentally depends on invocations of resource-intensive generative
LLMs that typically involve latencies of several seconds for complex requests.

To solve this conflict, we divide the generation of semantic completions
into two stages. In the first stage, the agent performs a full generation of
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completions based on extensive context from other suggested artifacts and a
comprehensive chain of thought. In the second stage, the prior generations
are recontextualized to adjust them to minor changes in the original draft. For
example, recontextualization would remove prefixes from the completions that
the programmer has already typed manually, apply recent renamings in the
draft to completions, or align them with other recent restructurings or updates
by the programmer. This second stage requires less context (only the prior
completion and the new draft) and reduced reasoning. This allows the agent
to minimize the request to the LLM and employ a smaller model. Additionally,
recontextualization can be implemented (partially) through non-semantic
heuristics such as substring matching and AST merging.

Through this separation, the suggestion engine executes the first genera-
tion stage with a low frequency only when the programmer performs larger
changes to a draft (such as adding several new lines) or manually requests new
generations, while the second stage can be executed with a high frequency but
lower latencies and costs.

Chapter Summary

The suggestion engine anticipates experiments of programmers by cap-
turing the context and actions of programmers as artifacts and defining
strategies that create further artifacts based on the former. We have
detailed different strategies to search the system for similar artifacts
based on document embeddings and the TF-IDF metric as well as for
correlated artifacts based on frequent parts of similar artifacts. We have
discussed different objectives and methods for ranking artifacts. To op-
timize the suggestion of semantic completions, we have proposed a
two-stage generation approach based on the change rate of programmers.
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Programming Agent with GPT-4o

In this chapter, we describe our implementation of semantic object inter-
faces through a conversational autonomous agent. In our prototype, we use
OpenAI’s LLM GPT-4o,1 which ranks among the state-of-the-art models for
our required capabilities such as problem solving and code writing at the time
of writing [99].

We implement the agent’s policies through prompt engineering and map
the system interface to a set of functions that the LLM can call.2 Finally, we
optimize the agent’s performance for generating semantic code completions.

6.1. Implementing Policies through Prompts

We define a set of policies, which define the behavior and the communication
styles of the exploratory agent:

Identity and context: The agent shall identify as an exploratory program-
ming agent who supports the programmer in exploring an object in a system.
In conversation mode, the assistant shall also identify as the reference object
itself, allowing users to address the object in the second person within the
chat and thus increasing the experienced semantic immediacy.3

Traits for problem solving and tool usage: The agent shall adopt a
structured problem-solving approach by explicating ideas and steps in ad-
vance. It shall check the results of experiments and iterate as necessary before
providing a final answer to the programmer. When referring to object proto-
cols, the agent shall automatically browse the implementation or senders of
messages whose behavior is unclear, and it shall automatically test message
sends by executing them before suggesting them to the programmer.

Output format: The agent shall provide brief and concise answers and
avoid long sentences unless requested otherwise. When addressed through

1Used in the version gpt-4o-2024-05-13.
2We provide a full conversation including all system prompts and function calls for the

example from fig. 8.5 in appendix B.
3This follows the conversation style of message sends which are usually named in imperative

or interrogative speech (such as the cascade-terminating message #yourself in Smalltalk).
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semantic messages, the agent shall answer an object instead of natural-
language text. Objects can be fetched from the system or be created by the
agent; in particular, primitive values (such as numbers and booleans) or
dynamically structured JSON objects are preferred.

To configure the agent to follow these policies, we describe them compre-
hensively in the system prompt of the agent conversation (fig. 6.1). While we
iterated our prompt design several times, we did not conduct a systematic,
evaluation-based approach to prompt engineering [113]; yet our prototypical
agent already showed promising results.

Bootstrapping the exploration We initialize the internal conversation of
the agent with a sequence of pre-generated messages that demonstrate the
intended behavior of the agent. These pre-generated messages feature inner
monologue and (resolved) function calls by the assistant. By this, they illustrate
the agent’s steps for getting a first overview of the object. For example, our
default pre-generated conversation prefix shows how the agent retrieves a
textual representation of the provided object and enumerates its instance
variables (see the “bootstrapping the exploration” region in fig. 6.1).

Additionally, we inject hardcoded semantic context about the object into the pre-
generated conversation prefix through system messages in natural language.
This context includes information about the role or particular messages of an
object. For example, for the class Context, which represents a stack frame in a
debugger (see fig. 8.8), we provide a brief situational explanation and point
the agent to relevant protocols for querying the entire debugger stack.

This pre-generated conversation prefix serves several purposes: first, it
provides some broad context about the object to the agent within the first
invocation, which serves as the base for further experiments by the agent
or maybe contains the necessary information already. Second, the first likely
actions of the agent are anticipated, improving the average response time
of the agent. Third, the prefix “stimulates” the agent toward an exploratory
mindset, engagement in inner monologue, and eagerness to perform several
experiments. Thus, pre-generated conversation prefixes present a hybrid of
zero-shot chain-of-thought prompting [90], few-shot prompting [77], and
retrieval-augmented generation [92].

6.2. Designing System Interfaces for Automatic Agent

Experiments

To define a set of functions through which the agent can access the system,
we imitate the actions that programmers can take in traditional exploratory
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HEADER
Exploratory programming agent

System: You are an exploratory programming agent... • identity
System: You can call the following functions... • interface description
System: To solve a task, you should... • rules and traits for problem solving

Conversation mode (optional)
System: You are an object... • object identity
System: Keep your answers brief... • output format

Semantic messaging (optional)
System: You must call the evalAndReturn function... • output formatSystem: Format the return value as...

Bootstrapping the exploration
System: This object represents... • hardcoded semantic context
Assistant: To understand this object, I will first... • zero-shot chain-of-thought
Assistant: eval("self printString")

• initial object contextResult: an Object(12345)
Assistant: eval("self allInstVarNames")
Result: #('foo' 'bar')

BODY
User: What does this object...? • user question

Figure 6.1.: Schematic prompt design for conversations of the exploratory
programming agent with the user and the system. We translate policies
for the identity, strategies, and output formats of the agent into detailed
instructions. Through pre-generated assistant messages and tool calls, we
stimulate the agent to engage in inner monologue and several experiments.

programming systems. For example, we allow the agent to inspect the state of
an object similarly to an inspector tool by requesting variable values; browse the
source code of the system similarly to a code browser by requesting its packages,
classes, and methods; or send messages to objects by evaluating scripts. Table 6.2
shows the complete function interface of our prototypical agent for Squeak/
Smalltalk. Below, we discuss two challenges in designing these functions: the
granularity of function calls and the programming language proficiency of
the agent for evaluating code.

Granularity of function calls An important trade-off regards the amount of
information that is requested through a single function call: for example, when
browsing a class, the agent could either first request a list of protocols in a
class and then request the message names within relevant protocols, or request
the entire list of message names for all protocols at once. In our prototype,
we generally choose a medium-to-coarse-grained function design because for
many cloud-based LLMs such as OpenAI’s GPT models, the cost of processed
tokens is quadratic in the number of sequentially requested function calls
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Table 6.2.: The function interface that connects our exploratory programming
agent to the Squeak/Smalltalk system. Most browsing functions are de-
signed to return extensive information, reducing the need for subsequent
function calls.

Function Description

eval(expression)
Example: eval("self customer")

Evaluate a Smalltalk expression in the context of the
explored object and return the result or error. Can be
executed in isolation.

evalAndReturn(expression) Evaluate a Smalltalk expression in the context of the
explored object and pass back the result to the sender
of the original semantic message. Only available if the
agent was invoked through a semantic message.

browsePackage(packageName) Return a hierarchical list of classes within a package.
browseClass(className) Enumerate all methods defined on a class or one of

its superclasses or their metaclasses, grouped by the
defining class and the method category (protocol)
within the class organization.

browseMethod(className, selector) Retrieve the source code of a method defined in a
class.

browseSenders(selector[, query])
Examples:
browseSender("printOn:")
browseSender("printOn:",
Ç "date yyy-mm-dd")

Search the system for all methods that send messages
with the name of a selector and return a representa-
tive sample of these methods. If an optional query
argument has been provided, rank the methods based
on their relevance to the query (see section 5.3).

(because every newly requested function call requires a new API request and
processing of the prior conversation).

Evaluating code Unspecialized LLMs are not always proficient in particular
programming languages: for example, when writing Smalltalk code, GPT-4o
often produces syntax errors and shows insufficient knowledge of standard
libraries such as the Collections package. To support the model in correcting
its own errors, we extend a small number of built-in error messages of a
system with practical suggestions based on typical faults of the model [73]:
for example, because GPT-4o often forgets necessary brackets when chaining
message sends, we extend all MessageNotUnderstood errors from the system
with an explaining comment and provide an example of correcting an incorrect
message chain, which the model then considers in the next attempt.

We reduce the dependency of the agent on language proficiency by exposing
most interfaces through dedicated functions instead of instructing the model
to access them through evaluating reflection code. For example, while it
could be elegant to have the agent retrieve the protocols of a class by calling
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eval("(Smalltalk at: aClassName) organization categories"),4 we offer
a dedicated browseClass() function for this purpose instead.

To avoid dangerous side effects of AI-generated code such as data loss
and system crashes, it is also possible to evaluate all requested scripts in
a lightweight sandbox or only apply their side effects after manual review.
However, this imposes the additional complexity of managing “different
realities” on the agent [44], and the isolation layer can impact the overall
performance of experiments. In our prototype, we provided an option to
disable the sandbox and left it disabled most of the time, as we only observed
a small number of unintended side effects (see page 83).

6.3. Optimizing for Semantic Completions

As described in section 5.4, resource consumption and pecuniary cost are
particularly critical for generating semantic completions. Because up-to-date
and immediate completions are desired throughout the entire programming
session, this even holds true when following the two-stage generation approach
described there.

To optimize the exploratory programming agent for this use case, we provide
the LLM with an extensive pre-generated context but disable its function
interfaces and limit the research process of the agent to a single invocation
of the model. That is, we eliminate the autonomy of the agent to improve its
performance.

In our prototype for semantic code completions, we statically (i.e., at develop-
ment time) anticipate a range of likely experiments required by the agent and
dynamically (i.e., prior to the only invocation of the LLM) execute them and
present their results to the agent for stage-1 generations. These pre-generated
experiments include browsing the definition, protocols, and messages of the
receiver class of the current draft, correlated classes provided with the same
information, and the source code of correlated methods. If a current receiver
object is available (e.g., when the programmer is typing their draft into the
script pane of an inspector), we also include its full state (i.e., all instance
variables and truncated variable fields).

Similarly, we attempt to provide dynamic context for all displayed classes
by including previews for their message results through a form of speculative
execution (i.e., we locate sample instances of each class in the image and send
each unary message to them in a sandbox). To improve the ability of the agent
to follow the given task, we provide it with a one-shot prompt of processing a
similar request. To mitigate the limited proficiency of GPT-4o regarding the

4At the time of writing, a similar technique is used in ChatGPT when browsing long documents.
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Code completion agent
System: You are a code completion agent... • identity
System: You will complete a method... • task and rules
System: Use the following information... • data description

Example
User: DateAndTime»yyyymmddString

^
• draft

User: self: 2024-06-22T00:30:37.216061+02:00
class: DateAndTime
utcMicroseconds: 1719009070988843
...

• receiver object state

User: Magnitude subclass: #DateAndTime...
('accessing' getSeconds -> 1870 setSeconds:...

• receiver class: definition and proto-
cols with preview results

User: Related classes and methods:
ArrayedCollection subclass: #String...
example: 'hi'
('accessing' byteAt: byteSize -> 2 ...

• correlated classes: definition and
protocols with preview results

User: SequenceableCollection»streamContents:
blockWithArg

^ self new...
Text class»exampleWithNumber: x

<primitive: ”primitiveCopyBits”...

• correlated methods: definition and
implementation

Assistant: DateAndTime»yyyymmddString
^ String streamContents: [:stream | self...

• completion

Task
User: <information about task in the same format as above>
System: Now complete this: • repetition of the task contextUser: <draft again>

Figure 6.3.: Optimized prompt design of the exploratory programming agent
for generating stage-1 code completions. Instead of enabling the agent to
perform different experiments autonomously, we provide it with extensive
pre-generated information and request a final answer in a single invocation
of the LLM. (Fields with ellipsis (...) have been abbreviated for this figure
but appear untruncated in the LLM context.)

Smalltalk programming language, this shot also includes an extensive example
of the Smalltalk syntax.

As for other invocations of the agent, we instruct it to engage in inner
monologue before returning a single code completion. We request the LLM
to return 𝑘 ∈ [5, 20] completions in parallel, which multiplies the cost for the
outputs but not for the provided context, while latencies are typically not
increased due to elastic scaling of the API service. Figure 6.3 displays the full
prompt schema of our agent for generating a semantic code completion.

For stage-2 generations (recontextualizations), we invoke the smaller, more
efficient GPT-4o mini model5 once for each previously generated stage-1

5Used in version gpt-4o-mini-2024-07-18.
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Task
System: Use the following code snippet... • task and rules (brief)
User: <stage-1 expression> • previously generated code completion
System: Now complete this: • task contextUser: <updated draft>

Figure 6.4.: Optimized prompt design of the exploratory programming agent
for generating stage-2 code completions. We use a smaller LLM to recontex-
tualize the previous stage-1 expression based on the updated draft of the
programmer.

completion, provide it with the previous completion expression as well as
the updated draft of the programmer, and instruct it to adjust the previous
expression (fig. 6.4).

Chapter Summary

We have implemented an exploratory programming agent for semantic
object interfaces by prompting a GPT-4o model with a set of behavioral
policies and initial research steps, connecting it to the system through
functions for executing experiments, and pre-generating statically struc-
tured prompts to efficiently generate code completions.
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into Squeak

In this chapter, we describe how we integrate our prototypical implementation
of the semantic workspace with the required semantic technologies and the
Squeak/Smalltalk exploratory programming system.

To make semantic technologies accessible in Squeak, we use our Seman-
ticText framework, which provides a domain model for semantic retrieval
and text generation, integrates different language models from the OpenAI
API, and offers fundamental tooling for prototyping semantic applications.
We provide a detailed presentation of the framework in appendix A.

In the following, we briefly address particular design and implementation
considerations regarding the feasibility and usability of each semantic tool
in the semantic workspace: semantic suggestions, semantic completions, and
semantic conversations.

7.1. Semantic Suggestions

We implement semantic suggestions through a suggestion space window that
is placed as a vertical docking bar at the edge of the screen (fig. 7.1). To track
the experiments of programmers, we observe their mouse and keyboard focus
by using Morphic’s event filter mechanism. From the focused windows, we
extract the currently browsed classes and methods or drafted scripts and notes
as input artifacts for the suggestion engine.

In the suggestion space, we display similar code and documentation artifacts,
correlated code artifacts, and an optional summary of them. Suggestions
are updated continuously in the background as the programmer conducts
experiments by browsing methods or writing code or notes.

To enable semantic retrieval of all classes and methods in the image, we
maintain either of them in a semantic corpus (i.e., a vector store of Se-
manticText).1 We subscribe to the SystemChangeNotifier interface to in-
corporate updates from the system. We compute embeddings for new doc-

1We truncate methods to their first 10 000 characters to exclude “data methods” that define
constants such as multimedia data, since they might exceed the context window of the
embedding model and rarely contain interesting, human-readable information. While a
typical Smalltalk image still contains many shorter data methods, this heuristic already
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Figure 7.1.: The user interface of our suggestion space for displaying seman-
tic suggestions in Squeak. It is docked to the side of the screen, tracks
browsing and editing activities of programmers, and automatically displays
suggested artifacts in separate panes. Programmers can derive inspiration
from suggestions for their own applications or use the “browse” buttons to
explore individual artifacts. Through the “⋯” menu, they can customize
used strategies and displayed types of artifacts in the suggestion space.
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uments asynchronously in the background after the current world cycle has
ended (i.e., [aCorpus computeEmbeddings] future forkAt: Processor sys-
temBackgroundPriority). This strategy allows for bulk-updating the corpus
and avoiding the overhead of multiple requests to the OpenAI API after many
code changes have been applied as part of a single operation (such as installing
a package). At the same time, corpus updates are run in the background
without noticeable lags.

7.2. Semantic Completions

Our implementation of semantic completions reuses the framework of the
suggestion space for tracking the experiments of programmers.

For the user interface of completions, we use the Autocompletion pack-
age2 and employ its ECEntryHook interface (fig. 7.2). We contribute two new
types of completion entries: correlated names and generated expressions.

First, we provide regular selectors and variable names based on correlated
suggestion artifacts from the suggestion space and merge them with traditional
Autocompletion entries. This considers the original ranking of entries,
which is only based on alphabetical order and most recently used date, and
enhances it with their semantic relevance. We hook into the presentation of

reduced the token consumption of the embedding model by approximated 13% in our
experiments.

2https://github.com/LeonMatthes/Autocompletion

Figure 7.2.: Our integration of semantic completions into the Autocomple-
tion tool for Squeak, here invoked from an inspector on a DateAndTime
object. Correlated names are displayed with a blue star and generated ex-
pressions are displayed with an orange star. Programmers can select an
entry to read details such as documentation, usage examples, and a preview
of its result, and press Tab to insert it into their editor.
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entries to enrich suggested names with usage information mined from their
preceding similar code artifacts as well as related documentation.

Second, we include contextualized generated expressions (see section 5.4)
into the completion menu. Analogously to the suggestion space, semantic com-
pletions are computed asynchronously in the background to avoid noticeable
delays in the user interface.

To generate a preview of the result of generated expressions, we run them
in the editor context inside an isolated sandbox of SimulationStudio and
include the results in the presentation of each entry.

7.3. Semantic Conversations

To implement the exploratory programming agent in our prototype, we define
several specializations of the SemanticAgent class from SemanticText (see
section A.1). Each version of the agent contains instructions for a different type
of semantic object interface as discussed in section 4.3: a conversation mode
for object inspectors and a language extension for semantic messaging.

To add a new conversation mode to Squeak’s inspector tools, we redirect
all requests to the Inspector class by the toolset to a decorator. This decorator
inserts a new chat item at the beginning of the inspector’s field list, which ref-
erences a conversation with our exploratory programming agent. Second, the
decorator embeds a minimal version of the conversation editor GUI (graphical
user interface) from SemanticText when this field is selected (fig. 7.3).

Figure 7.3.: Our integration of semantic conversations into Squeak’s inspector
(here: “chat” item in the field list on the left). In this example, the user chats
with an archive of the Squeak mailing lista to identify exceptionally large
posts.

ahttps://github.com/hpi-swa-lab/squeak-inbox-talk
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To implement semantic messages in Squeak, we use the dynamic message-
dispatch mechanism of Smalltalk’s meta-object protocol by patching the
method Object»#doesNotUnderstand: [22, sec. 5.11] and forwarding all un-
known messages to the agent. Through an additional policy and a change in the
function design (that is, by requiring an eventual call of the evalAndReturn()
function from table 6.2), we configure the agent to return Smalltalk objects
instead of natural-language text. Because we desired a distinction between
regular and semantic messages during our experiments, we also implemented
two alternative forms for expressing semantic messages:

Semantic proxies are constructed explicitly and override #doesNotUnder-
stand: to handle semantic messages:

self semanticProxy mostOftenBoughtArticle.
aProduct semanticProxy numberOfSalesTo: aCustomer.

The ? and ! operators take the semantic message as an argument selec-
tor:

self ? #mostOftenBoughtArticle.
pendingOrders ! #cancelItemsFromSpringSeries.

Here, the ? operator indicates a declarative query for information. In contrast,
the ! operator permits side effects, allowing programmers to modify the
state of objects in a semantic style.

While the ? and ! operators do not support additional arguments by design,
we usually preferred them to semantic proxies in our experiments due to their
reduced typing effort.

Chapter Summary

We have implemented the three tools of the semantic workspace in
Squeak by using our SemanticText framework for accessing semantic
technologies. We have described several design decisions and imple-
mentation details for integrating suggestions, completions, and conver-
sations into the programming interface of Squeak.
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In this chapter, we illustrate how programmers can benefit from the different
tools of the semantic workspace for augmenting typical exploratory activities.
To this end, we describe two case studies: in the first one, a programmer uses
semantic suggestions and semantic completions to prototype a GUI application.
In the second case study, a programmer conducts a semantic conversation
with a text object to explore its state, capabilities, and implementation details.
Finally, we describe how semantic conversations can be integrated more deeply
into traditional exploratory programming systems by leveraging the object-
oriented interfaces of existing programming tools.

8.1. Prototyping User Interfaces with Semantic

Suggestions and Completions

In this case study, we describe how a programmer builds a prototype for a
simple counter application in the Morphic framework of Squeak with the help
of semantic suggestions and completions.

To start the exploration, the programmer opens a workspace, types in a
simple do-it for creating and showing a simple morph (i.e., a graphical object),
and executes it:

Figure 8.1.: Bootstrapping the prototyping of a Morphic counter application
in a workspace.

As the programmer is viewing the plain default morph and the workspace
is ready for further experiments, the programmer wonders about the different
possibilities for visual customization that the morph offers. Traditionally,
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answering this question would require them to browse the available protocols
of the morph, check out the documentation of the class, or research different
samples of similar existing Morphic applications.

However, once the programmer has entered the do-it, the suggestion space
has already conducted plenty of such research in the background and now
displays a summary of information about the morph’s interface: in a list, the
programmer can view different common selectors for modifying the appear-
ance, layout, or composition of the morph. For each selector, the suggestion
space displays the parameter signature of the message, any available docu-
mentation from the Morph class, and a short list of example usage snippets
from other packages in the system:

Figure 8.2.: Using the suggestion space to browse relevant protocols of the
class Morph for prototyping a user interface (shortened for figure).
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Within this list, the programmer discovers the #color: selector and decides
to adjust the color of their counter morph. To achieve that, they simply reuse
one of the included usage examples and apply it in the workspace (counter
color: Color gray). Analogously, they change the size of the morph by
adding an #extent: message send. Thus, the programmer was able to answer
their question about relevant protocols of the morph without searching the
interfaces of the Morph class manually, seek inspiration from automatically
collected examples, and understand how to use these protocols through the
context of the provided documentation and usage snippets.

Next, the programmer wishes to add a border to the morph. From the
examples in the suggestion space, they understand that borders can be config-
ured through the #borderStyle: selector, but they do not yet comprehend all
the different options that are available through the argument of this selector.
Nevertheless, they begin by already typing an incomplete message send with
that selector into their workspace. Traditionally, they now would be required
to browse further examples or documentation related to this selector to learn
more about possible arguments that can be passed.

However, the semantic autocompletion has detected the intent of the program-
mer through their typed prefix and automatically suggests different possible
border styles in the completion menu of the text interface. Each border style
is given through a different argument expression, exhibits different visual
features such as width, dashes, and skeuomorphisms, and is displayed with a
graphical preview of applying this style to the counter morph:

Figure 8.3.: Using the semantic autocompletion to explore different customiza-
tion possibilities for borders of our Morphic UI prototype.

The programmer can browse these completion suggestions to examine the
generated code, related documentation from the used classes and messages,
and their effect, and accept one of the completions to insert it into the workspace.
Thus, the programmer could explore and compare different possible designs
based on the available interfaces while avoiding to manually browse existing
usage samples, combine them, or transfer them to the context of their own
script.
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In a similar manner, the programmer can also proceed to add a label and a
button to the counter morph. As the general overview in the suggestion space
currently does not show any suggestions to these specific widgets, they start by
explicating their intent through a comment in the workspace ("add label and
button"). In response, the suggestion space and the semantic autocompletion
provide them with suggestions for different types and layouts of labels and
buttons for the counter morph.

After the programmer has chosen and applied any of these suggestions, the
final step is to make their prototype functional by adding behavior to the button.
To this end, they start by defining a new counter variable. Automatically, the
semantic autocompletion scans the available protocols of the used widgets and
suggests different code snippets that will trigger an increment of the counter
variable and an update in the label for every click on the button. Again, the
programmer compares the different implementations, chooses their preferred
option, and executes it in the workspace to complete their first prototype of
the counter application:

Figure 8.4.: The complete prototype of our counter application in Squeak.

In summary, the programmer could build a UI prototype in a more fluent
process, spend less time, and achieve a better-grounded result by using seman-
tic suggestions and semantic completions. They could remain in their flow of
conceptualizing a UI design without being disrupted by having to manually
research extensive interfaces and documentation or read and comprehend
many incoherent and redundant examples. They could improve the quality
of their prototype by considering suggestions based on a larger number of
sources and comparing multiple distilled, distinct options with regard to their
inner (code) quality and their visible effect.
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8.2. Exploring Text Formatting through Semantic

Conversations

In this case study, we describe how a programmer uses a semantic conversation
to explore Squeak’s programming interface for creating formatted texts. In
Squeak, the Text class represents a formatted text that is modeled through
a string and a run-length encoded array of nested sets of instances of a
TextAttribute class hierarchy that provide different instructions to the text
renderer.

To start their exploration, the programmer discovers an existing Text object
in the system that looks like this:

ABCDE 1

To understand its design and behavior related to formatting, the programmer
invokes an inspector on this text (fig. 8.5). First, they wonder what attributes
are contained in the text. As the internal structure of nested collections looks
slightly overwhelming, they switch to the semantic conversation mode of the
inspector instead. Here, they enter the following question:

“What attributes are in this text?”

In response, the exploratory programming agent automatically inspects the
internal structure of the text, iterates over the nested collections, and finally
lists both present attributes correctly in the chat: a “TextEmphasis with code
1” and a “TextEmphasis with code 2”. This points our programmer to the
TextEmphasis class but also motivates them to learn more about its features
and representation. Thus, they type a follow-up question into the chat:

“What do these codes mean?”

Note that they can ask this within the context of the conversation—without
needing to respecify the actual codes they are referring to or the class that
defines them. The agent processes this question by automatically browsing the
documentation of the TextEmphasis class, locating the relevant information in
its class comment, and printing the correct list of all emphasis codes into the
chat.

Finally, the programmer wonders how they can add other emphases to
the text, so they ask for several code examples to italicize the entire object.
In response, the agent automatically browses the protocols of the Text class,

1Alternative description for accessibility: The first three letters are emphasized in bold, and
the last letter is underlined.
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Figure 8.5.: Using the semantic conversation mode in an inspector to chat with
a formatted Text object. Through the chat, the programmer can understand
the attributes used for formatting and explore the available protocols for
applying other formats to texts.

identifies and tests several possible messages, and provides three valid snippets
to the programmer that would achieve the desired behavior. The programmer
can work with these snippets, adjust them with the help of the agent or by
themselves, or integrate them into their own program.

This case study shows that the conversation mode in inspection tools can
be used to answer a wide range of questions: through functional questions,
programmers can access, search, or summarize domain information. Another
example of this is filtering items in a task management system based on
their content (fig. 8.6). Through epistemic questions, programmers can get
familiar with domains, explore systems and interfaces, and prototype ideas
as working applications. In other settings, this could be used to study the
different sorting protocols of collections, brainstorm and compare different
options for formatting dates, or iteratively create visualizations.

In summary, programmers can use semantic conversations to ask semantic
questions about objects, which the agent attempts to answer by extracting,
analyzing, and synthesizing information. Thus, programmers can maintain
their flow of exploring a domain from a conceptual perspective for a longer
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Figure 8.6.: Sending a semantic message to search and filter a small project
management system for common-sense questions. The exploratory pro-
gramming agent automatically explores the available protocols of the project
management systems to retrieve items from the lanes of the project board
and then filters them.

period of time without being overwhelmed or distracted by performing manual
technical experiments.

8.3. Toward a Semantic Toolset for Exploratory

Programming

In the following, we describe another application of semantic conversations
that aims at a broader adoption of semantic tools in exploratory programming
systems. Our approach is based on the observation that many exploratory
programming systems employ object-oriented user interfaces. An object-oriented
user interface (OOUI) is a—predominantly graphical—type of user interface
that employs an object-oriented metaphor and an injective mapping from (com-
plex) domain objects to visual elements [11]. Examples of OOUIs can be found
in several domains, including graphical editors such as Microsoft PowerPoint,
project management software such as Jira, and also several programming
environments such as Eclipse, Scratch, and Smalltalk systems [38].

We propose a simple mechanism for OOUI frameworks that integrates
semantic object interfaces with the visual mapping of OOUIs. This allows users
to select domain objects on their screen to talk to them in natural language. At
the same time, domain developers are not required to put manual effort into
writing prompts or preparing contextual information for LLMs, as the agent
still fetches all required information by itself through automated experiments.
For example, in a project management system that organizes task items in
boards and lanes, a user could select a lane and ask for a semantic filtration or
summary of the items it contains (fig. 8.7).
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Figure 8.7.: Through the generic integration of semantic object interfaces into
object-oriented user interfaces, users can select arbitrary domain objects
from the UI and start a natural-language conversation with them. Here, a
user talks to a lane in a project management system to filter its items.

We apply this concept to graphical, object-oriented programming systems
such as Squeak/Smalltalk, where tools such as code browsers, (projectional)
editors, (back-in-time) debuggers, and profilers represent views on underlying
code objects and artifacts derived from them such as classes in packages, code
blocks in methods, and call stacks or program traces. In this way, programmers
can chat with code objects to ask for the responsibilities or collaborators of a
class (fig. 8.9), explain or refactor a code block (fig. 8.10), search for the origin
of values or cause of state changes in a program stack or slice (fig. 8.8), identify
the bottlenecks in a program trace, and more.

Thus, we effectively upgrade existing programming tools to semantic tools
by extending them with a conversational interface for an agent that will au-
tonomously explore the programming artifacts shown in a tool. This allows
programmers to express their questions and intents about programming arti-
facts in natural language and in the context of their exploratory session (which
is captured in the conversation history of the agent). While the efficacy of
this approach still hinges on the advancements in LLM capabilities and the
precision of prompt engineering, this integration into exploratory program-
ming systems promises a noticeable reduction in semantic distance, thereby
supporting programmers’ conceptual focus and enhancing their interaction
with systems at a high level of abstraction.
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Figure 8.8.: In a semantic debugger (here: the Squeak debugger), programmers
can ask for the origin and meaning of values on the program stack.
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Figure 8.9.: In a semantic code browser (here: the default system browser of Squeak 6.1Alpha), programmers can engage in
natural-language conversations with classes to explore them, for example, by asking for their responsibilities or collaborators.
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Figure 8.10.: In a semantic projectional editor (here: Sandblocks [6]), programmers can chat with single code blocks to explain,
refactor, or execute them.

79



8. Applications

Chapter Summary

Through different case studies, we have demonstrated how program-
mers can use semantic suggestions and completions to create prototypes
without conducting all experiments and research on their own, and how
they can use semantic conversations to explore the state and behavior of
objects through natural-language questions. We have illustrated that by
generically enhancing existing programming tools with semantic object
interfaces, we can allow programmers to access different artifacts in the
programming systems in a more conceptual, high-level style.
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In this chapter, we discuss the opportunities and challenges of semantic inter-
faces for augmenting exploratory programming by reporting on our experience
with our prototype of the semantic workspace. To this end, we examine the
potential of semantic technologies for our applications in the semantic explo-
ration kernel and evaluate their performance. We then discuss the impact of
semantic interfaces on the experience of exploratory programmers. Finally, we
address ethical considerations regarding the use of semantic technologies.

In appendix C, we provide distilled recommendations for other tool devel-
opers who plan to integrate semantic technologies into programming systems.

9.1. Potential of Semantic Technologies

To deliver relevant suggestions and conversations for semantic tools, the se-
mantic exploration kernel hinges on the capabilities of the underlying semantic
technologies. Here, we provide insights on using language models and other
suggestion strategies for powering the suggestion engine and the exploratory
programming agent of our prototype.

Over the past six months, we have successfully used our prototype of
semantic suggestions and semantic conversations for several tasks of a similar
size to that of the examples in chapter 8 and figs. 7.1 to 7.3. At the same
time, semantic interfaces have not yet become part of our daily used toolset,
which we mainly trace back to the high monetary cost, limited accuracy, and
noticeable delays of our current prototype as discussed below. Still, we believe
that these observations are no fundamental limitations to our approach but
can be improved through the onward evolution of faster and more powerful
language models and systematic prompt engineering or fine-tuning.

Remark. This thesis presents our exploratory research on the integra-
tion of semantic technologies into programming systems. To test the
general feasibility of our approach, we implemented a proof-of-concept
prototype for central ideas. However, we did not make any system-
atic efforts such as tuning hyperparameters or prompts to improve the
quality or performance of our semantic applications. Thus, any limita-
tions noted in this discussion only refer to our prototype and do not
necessarily indicate fundamental issues with the overall approach.
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Semantic Retrieval

In our prototype of the suggestion engine, we implemented semantic retrieval
for method and class artifacts. For semantic suggestions and ranking, our im-
plementation employs document embeddings as well as term-based methods
(TF-IDF and correlation search).

In our experiments, we mostly experienced suggestions from embedding-
based search as helpful. For example, we could reuse suggested similar im-
plementations in many situations, discovered some unexpected duplications
during code browsing, and were able to understand documentation com-
mentary that was scattered across multiple methods in context. However,
the text-embedding-3-large model by OpenAI that we used offers limited
capabilities for encoding abstract concepts of source code but overempha-
sizes specific vocabulary and document size. This impedes semantic similarity
search and semantic ranking, in particular reducing the relevance and irredun-
dancy of ranked suggestions. We believe that the fitness of embeddings could
be improved by fine-tuning an embedding model exclusively for conceptual
similarity, using ad-hoc fine-tuned text embeddings [104], or preprocessing
documents with the help of another LLM prior to embedding them.

Being too sensitive to the document size, semantic search using embeddings
also cannot be used to find related methods to an early unfinished draft of
the programmer (see page 48). For this purpose, our TF-IDF search strategy
yielded better results. However, as TF-IDF only compares isolated literals,
it does not support synonymous or homonymous identifiers, causing false
negatives (missing suggestions) for similar implementations that use different
names and false positives for implementations that overload names. The same
limitations apply to our (also term-based) correlation search. We believe that by
representing individual literals using concept-aware embeddings that include
their semantics or reference graph [31] instead of sparse TF-IDF embeddings,
false negatives from synonyms could be reduced.

Semantic ranking using probabilistic sampling from clusters showed mixed
results in our experiments. In general, this strategy balanced relevance, ir-
redundancy, diversity, and representativeness better than other approaches
such as top-k selection (see section 5.3). However, we noted an insufficient
accuracy of relevance scores in many situations: first, relevance scores from
semantic similarity search underrepresent conceptual relevance in the rank-
ing as described above. Second, relevance scores from TF-IDF search are too
imprecise for methods with few literals—for example, a method with a single
selector that is also contained in the query will receive a perfect score of 100%.
To create a global ranking of artifacts from different search strategies, their
relevance scores need to be normalized to a common scale.
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Exploratory Programming Agent

Due to their statistical foundations, LLMs and thus agents based on them are
inherently subject to the risk of erring or failing. To err means to provide wrong
answers, either caused by limited reasoning abilities or by the tendency of
LLMs to hallucinate: for instance, our agent was unable in some cases to write
executable scripts based on given source code or error messages, and it would
occasionally send fictitious messages to objects. To fail means to terminate
without finding a solution: sometimes, our agent would stop after conducting
a couple of unsuccessful experiments, stating that further knowledge about
a system would be required. In one example, the agent explicitly rejected the
task of extracting an API key from the object graph of a version control system
because it would be “not allowed to provide confidential information”.

Examples. To quantify the abilities of our current agent, a larger evalua-
tion based on representative data from actual exploratory programming
sessions would be required, which is outside the scope of this work.
However, we can illustrate its current state through a few anecdotal
examples.

For the questions about the Text object from section 8.2, the agent de-
livered correct and useful answers in approximately 80% of all requests.
In the remaining cases, it would fail to locate the required interface
for retrieving all attributes of the text but only return the attributes for
the first character; reinvent the wheel and spend many times tokens
and seconds more manually accessing the underlying data; or suggest
non-functional or idiosyncratic code snippets for the third question.

In the semantic debugger (see fig. 8.8), the agent would sometimes
be lazy and only answer the first part of our question until we insisted.

We were able to research and apply different methods of Squeak’s
graphics framework Morphic through the agent to create, alter, and
decorate a graphical widget. When we requested to add an animation,
the agent would in some cases generate the correct code but store it
under the wrong hook; in one attempt, it added an erroneous method
to the widget that caused the Morphic environment to crash.

On one occasion, we used the agent successfully to extract the daily
activity on the squeak-dev mailing lista and export it to a CSV file. When
we asked it to render the results as a scatter plot manually (Squeak
does not provide a built-in diagram framework at the time of writing),
it made a conversion mistake that corrupted the x-coordinates of all
points in the plot. After we asked it to fix the mistake, it entangled
itself into a never-ending chain of thought, questioning basics of the
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Smalltalk syntax, researching unrelated protocols, and modifying and
complicating other parts of its scripts, before we stopped it after several
minutes and $10 spent (which significantly exceeds the usual costs of
typical questions).

aUsing Squeak Inbox Talk, see fig. 7.3.

In general, the agent operated most competently for smaller tasks related
to popular domains. However, in most situations, we could send follow-up
messages to the conversation to retrieve the correct answer by refining the
task, telling the agent what it did wrong, and providing it guidance through
the solution with a varying degree of detail.

Several weaknesses of our agent are due to two limited capabilities of
the GPT-4o model we used: first, this model showed a limited proficiency
regarding the Smalltalk programming language and standard libraries, and
it often mixed up protocols from different Smalltalk dialects such as Squeak
and Pharo. Second and more importantly, despite our prompt, the model
only applied the exploratory paradigm to a limited degree and was not eager
enough to consider and try out a larger number of different classes and
messages. We believe that by training a model on an extended set of Squeak/
Smalltalk source code and fine-tuning it for exploratory practices, both these
capabilities could be further improved.1 Alternatively, even a more systematic
approach to prompt engineering with extended chain-of-thought or few-shot
prompts might improve the agent’s behavior.

The limited language proficiency of the model was also a critical limitation
when generating semantic completions: despite being presented extensive
examples of the syntax and relevant interfaces, the agent produced invalid
completions in 50%–75% of all cases. While we could filter out these errors by
dynamically testing completions, this reduces the quantity and the effective
performance of suggestions substantially. Completions generally exhibited an
acceptable diversity over the different provided examples even with a naive
prompt design. Still, by chaining multiple prompts or increasing the tempera-
ture of the model, it would be possible to generate more diverse completions
while sacrificing the performance or correctness of results. During stage-2
generations, the agent usually provided satisfactory results for recontextual-
izing completions to a similar user input even when using the less powerful
model GPT-4o mini; only if the distance between stage-1 generations and user

1For comparison, ChatGPT’s code interpreter shows a higher proficiency in writing Python
code for computational notebooks, using proprietary libraries to summarize documents,
and correcting its own coding errors. We argue that these are similar and trainable traits to
the typical system interactions in exploratory programming.
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Semantic interface Response time

Monetary cost

per query

Monetary cost

per hour

Semantic suggestions 0.5 s – 0.9 s $0.0001 – $0.001 $0.08
Semantic completions

Stage-1 generations 10 s – 15 s $0.15 $18
Stage-2 generations 1.1 s – 1.3 s $0.0005 $1.8
Total 11 s – 16.3 s $20

Semantic conversations

Simple to moderate

tasks

2 s – 4 s $0.1 – $0.5 $1 – $60

Complex tasks 5 s – 10 s $0.5 – $5 $5 – $30

Table 9.1.: Main response times and memory consumptions for the tools in our
prototype of the semantic workspace. Scattering of values is caused by the
varying complexity of tasks, different suggestion strategies employed, and
the uncertain frequency with which programmers may use tools.

inputs grew too large (because we did not re-run stage-1 generations frequently
enough), the model would tend to hallucinate fictitious names again.

9.2. Performance of Semantic Tools

In our setting with cloud-based language models and local vector stores, re-
source consumption mainly manifests as response times in semantic retrieval
and the exploratory programming agent, memory consumption for semantic
corpora (vector stores), and monetary costs for using language model ser-
vices. While memory consumption did not exceed 100 MB in our experiments,
response times and monetary costs of our prototype indicate that semantic
completions and conversations demand further optimizations (table 9.1).

Response Times

Semantic retrieval For semantic retrieval, response times occur in two situa-
tions: searching similar artifacts and embedding new artifacts in a semantic
corpus. While our implementation of similarity search in the SemanticText
framework currently employs a linear in-memory search and does not use any
indexes, it already performs fast enough for most use cases. We conducted
our experiments in a Squeak 6.1Alpha image without additional packages
installed,2 which contains about 65 000 methods and 3000 classes. Here, search-

2Testing environment: Squeak6.1alpha #23073 64-bit, SistaV1; OpenSmalltalk VM 20231218-
1441 (2.5G bytecodes/sec, 170M sends/sec); Ubuntu 22.04 (virtualized in VirtualBox); AMD
Ryzen 7 2700X @ 3.7 GHz.

85



9. Discussion

ing for the 𝑘 = 100 most similar methods to an existing method took not longer
than 150 milliseconds; searching for similar classes took about 10 milliseconds.

When performing a semantic search with an arbitrary query such as the con-
tents of a workspace, the query needs to be embedded first, adding a latency
between 400 milliseconds for short scripts (1 SLOC3) and 750 milliseconds for
long scripts (200 SLOC) in our experiments. Analogously, embedding new or
changed methods and classes in a corpus involves similar latencies, but these
are performed in the background and are usually invisible to programmers.
After changing larger amounts of code, such as when installing a new pack-
age, we can embed many documents in a single API request and parallelize
requests to balance elastic scaling and possible rate limits. For example, in
our (not perfectly balanced) prototype implementation, embedding the full
Collections package of Squeak (about 3100 classes and 1900 SLOC) takes 7
seconds in the background; embedding all methods in the standard image
(when installing our prototype initially) takes about three minutes.

Our implementation of TF-IDF search for similar methods takes about 15
milliseconds per literal of the query method (correlation strength: 𝑅2 = 0.99) in
the standard image. Since 75% of methods in the standard image contain not
more than 6 literals, most queries will take fewer than 100 milliseconds; 99%
of methods contain not more than 34 literals and can be queried for similar
methods within less than 900 milliseconds. However, a few methods may
contain more than 500 literals (usually “data methods” that contain serialized
objects such as images or sounds), causing query times of 10 seconds or more.

Correlation search and ranking typically consume 2–5 milliseconds only.
In total, a full pass of creating semantic suggestions for an open workspace
typically requires between 500 and 700 milliseconds. To reduce these latencies,
we could use local, smaller embedding models and maintain indices for
semantic and TF-IDF search.

Exploratory programming agent Generating semantic completions took
between 10 and 15 seconds in our experiments, which is mainly caused by the
large context we pass to the exploratory programming agent. By optimizing
the prompt, varying the amount of contextual information depending on
the complexity of the problem, or pre-training an LLM for Smalltalk code
completions, these latencies could be reduced. While it would be possible to
stream completions similarly to agent responses in semantic conversations,
we generally cannot validate incomplete expressions or preview their results,
which would hinder effective filtering of noise in the completion menu. Stage-
2 generations for recontextualization took between 1.1 and 1.3 seconds in
our experiments due to their lower complexity. This makes it realistic to

3SLOC: Source lines of code (excluding empty lines).
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recontextualize completions whenever programmers add or change a few
words; however, for a higher interactivity, it would be necessary to employ
even smaller, preferably local models for this stage or complement LLM-based
recontextualization with non-semantic heuristics as proposed in section 5.4.

Response times for semantic conversations largely depend on the amount
of context provided, such as previous messages in the conversation and
required experiments: for simple questions (e.g., the first two messages in
fig. 8.5), response times usually vary between 2 and 4 seconds, while complex
questions that involve sequential experiments (especially those caused by
internal trial and error of the agent) can result in response times between 5
to 15 seconds or more in a few cases. By streaming responses character-wise
from the API, we reduce the delay before the start of the answer by factors
between 20% and 80%.

Memory Consumption

Maintaining embeddings for larger corpora of documents can require sub-
stantial amounts of storage. In the current implementation of SemanticText,
we store embeddings in the image memory and do not maintain additional
indexes (but instead perform a linear search). To balance memory consumption
against precision, we shorten all document embeddings of OpenAI’s text-
embedding-3-large model (which supports truncating embedding vectors
through Matryoshka Representation Learning [91]) from 3072 to 256 dimen-
sions (each encoded as a 32-bit float). This reduces the accuracy of semantic
retrieval compared to the full embedding size by an average loss in relevance
scores of about ±0.05.4

Using this configuration, a semantic corpus of all methods in the standard
image consumes about 90 MB, and a corpus of all classes consumes about 4 MB.
It would be possible to further improve memory consumption while trading
off accuracy or speed by further reducing embedding sizes or offloading
embeddings to disk (and maintaining an index for them in the image memory).
Alternatively, training a smaller embedding model for our particular use case
of conceptual similarity of Smalltalk code could allow to reduce memory
consumption while maintaining a high accuracy.

4Christoph Thiede and Curt Kennedy: Discussion on the quality loss in similarity search
when shortening embeddings. In: It Looks Like text-embedding-3 Embeddings Are Truncat-
ed/Scaled Versions from Higher Dim Version. OpenAI Developer Forum, 2024-02-07. URL:
https://web.archive.org/web/20240413011050/https://community.openai.com/t/it-
looks-like-text-embedding-3-embeddings-are-truncated-scaled-versions-from-
higher-dim-version/602276#post_14.
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Monetary Cost

When using a cloud embedding model, monetary cost for semantic suggestions
occurs when updating semantic corpora or embedding inputs such as current
workspace contents for querying corpora. Using OpenAI’s text-embedding-3-
large model, embedding all methods and classes in the standard image costs
approximately $0.85 (US dollars). During our experiments within the last six
months, regular code changes that we performed ourselves or installed as
updates of the Squeak Trunk image accounted for less than $0.05 per month.
Embedding an average method draft or workspace script for querying averaged
to 0.01 ¢ (US cents), and even long scripts (200 SLOC) never exceeded costs of
0.1 ¢. Assuming a programmer would type continuously into a workspace and
we would update suggestions every 5 seconds, this would generate costs of
fewer than $0.08 per hour.

Generating semantic completions is generally more expensive than creating
suggestions because many generative language models require more resources
than embedding models. Using our unoptimized prompt design, generating
𝑘 = 10 stage-1 completions costs about 15 ¢ and generating stage-2 comple-
tions for them costs about 0.05 ¢. If a programmer typed continuously into a
workspace, we could update stage-1 completions every 30 seconds and recon-
textualize them every second for a price of $0.08 (for suggestions, see above)+
$18+$1.8 ≈ $20 per hour. These costs would be considered impractical in most
settings and emphasize the need for optimizing completions through prompt
tuning or smaller, fine-tuned models as noted above.

Monetary costs for semantic conversations vary depending on the complex-
ity of questions and answers, ranging from $0.10 to $0.50 for simple questions
but rising to several dollars when encountering a lot of trial and error for
more challenging questions. For a programmer who adopts semantic object
interfaces in their everyday toolset, this would involve expenses of at least
$5 per hour even when estimating the number of questions a programmer
expresses very conservatively as 10 per hour [26]; following Jevon’s paradox,
the actual cost could be many times higher as programmers might become
negligent of their expenses.5

*

Considering the ongoing trend of more powerful, faster, and less energy-
consuming language models being developed, we assume that the latencies

5We also experimented with OpenAI’s gpt-3.5-0125 model instead of gpt-4o-2024-05-13.
While this would improve response times and reduce costs by 5 to 10 times, GPT-3.5 models
are noticeably less capable, requiring us to ask questions five times or more (due to the
non-deterministic behavior of LLMs) before we would get a helpful answer, if at all.
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and expenses for invoking the suggestion engine and the exploratory pro-
gramming agent could become small enough to no longer pose a practical
barrier for programmers and organizations with more affluent budgets.6 For
illustration, during the last twelve months, OpenAI’s respective flagship LLM
(from gpt-4-0613 to gpt-4o-2024-08-06) has improved by a factor of at least
two in speed and by a factor of six in monetary cost. At the same time, we
see small language models as a promising alternative to cloud-based models, as
they could be trained to handle particular tasks such as generating Smalltalk
code completions or engaging in exploratory programming competently and
efficiently and could be run on commodity hardware with reduced response
times [94].

9.3. Exploratory Programming Experience

In the following, we discuss how semantic tools can support exploratory
programmers in maintaining their workflow. For this, we analyze the main
influences of the semantic workspace on the experienced immediacy of pro-
grammers [74]: how well it supports programmers in the hierarchical research
process, how closely it is integrated in the surrounding programming system,
and how existing performance limitations may disrupt programmers in their
flow.

Improved Support of the Research Process

We propose semantic interfaces for programming in this thesis because we
intend to assist programmers in handling the—typically hierarchical—research
process of common exploratory practices and thus improve their experience
of semantic immediacy. This experience crucially depends on the quality of
cooperation between programmers and the semantic programming system.
The quality of cooperation consists of effective communication, division of
labor, and trust in the system.

Level of abstraction Semantic interfaces allow programmers to express their
questions on higher abstraction levels while delegating lower-level experiments
to the exploratory programming system. Thus, they help to bridge the gulfs
of execution and evaluation to the software system [37], reduce distractions
and cognitive load in programmers, and support them in maintaining their

6We acknowledge the high variance in budgets worldwide. For example, a senior developer in
Silicon Valley with a three-digit hourly wage might regularly afford semantic conversations
or even semantic completions today, while an entry-level programmer in a developing
economy who earns less than $1 per hour could likely not even afford semantic suggestions.
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flow [13]. Furthermore, this abstraction can facilitate the learning curve for
programmers who are exploring an unknown system, and we believe that
it could also support programming novices in their educational process by
separating domain concepts from programming language concepts.

On the other hand, the streamlined exploration process can also result in
some kind of “tunnel vision” for programmers. For example, while browsing
a class to find protocols for a certain subproblem in a manual research process,
programmers might encounter other protocols by chance that give them a
peripheral impression of a system’s domain concepts and capabilities, or they
even might find an unanticipated method that directly solves their overar-
ching problem. As semantic tools can automatically answer those questions,
they reduce such manual experiments, and programmers will make fewer
serendipitous discoveries.

Natural language interfaces Semantic interfaces allow programmers to com-
municate questions and intentions without translating them into a formal
(programming) language, just by expressing them “as they come through their
mind”. For example, instead of typing DateAndTime fromUnixTime: anOrder
creationDate / 1000 into an inspector or editor, a programmer can type (or
even speak7) “when was the order filed?” into a chat interface or as a comment
into their code. To ask follow-up questions, programmers do not have to repeat
or modify existing inputs but can express them in the semantic context of an
existing conversation.

Analogously, answers of semantic conversations are provided in natural
language that programmers usually do not have to “decode” into familiar
concepts. Finally, answers can be customized and personalized based on the
intentions and preferences of programmers: for example, novice programmers
could ask the exploratory programming agent to explain its proposed solutions
step-by-step, while experts might prefer concise outputs that align closer with
their own mental model. Thus, semantic interfaces reduce the gulfs of execution
and evaluation and contribute to the semantic immediacy of programmers.

At the same time, natural language interfaces can remove incentives for
programmers to precisely explicate their thoughts, as conversational agents
are rather good at resolving uncertainties and ambiguities in questions au-
tonomously. However, explication of thought is a critical part of common
problem-solving strategies. While programmers will usually wish to delegate
a problem to the exploratory programming system when they use a semantic
interface, explicating particular questions can also help them better under-
stand overarching questions and problems. So, by commonly relying on vague

7SemanticText supports experimental voice conversations, which can further help to bridge
semantic distances in human-computer interaction.
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natural language questions, programmers may impede their own research
activities in the short or long term.

Example. A programmer might ask “when an order was filed” while
they are creating a user interface for a shop system. Only when they
are forced to manually translate “filed” into technical terms of the order
interface—such as creationDate, submissionDate, or receiptDate—
might they realize that there are multiple options and start thinking
about what information exactly they want to display to users. If the
programming system is tasked to answer this question, it may lack the
overarching context of the intended user interface and make a decision
on its own that does not necessarily align with the—yet undeveloped—
goals of the programmer.

Delegation of control When programmers remain on a conceptual level
of abstraction, they have to delegate control to another instance, namely the
exploratory programming system. If responsibilities are clearly separated
and temporal immediacy is maintained, this can be an effective division of
labor. However, as contemporary semantic technologies—and thus semantic
tools based on them—are still prone to provide incorrect or no answers,
programmers’ trust in these tools might diminish. If semantic tools err or fail
or programmers suspect them thereof, semantic abstractions become leaky [58,
chap. 26]: programmers have to intervene and fall back to traditional low-level
practices and experiments. During this, they need to either understand the
previous attempts of the system and correct them or discard the system’s work
and make most of the effort again.

Realizing that trust in current semantic technologies is limited, we empha-
size that the behavior of semantic programming tools must be explainable,
so that programmers can verify answers or build upon their experiments
and developers of semantic tools can debug problems. For semantic sugges-
tions and completions, we have implemented a provenance mechanism in
the suggestion engine, which allows programmers to understand the context
of suggestions (see page 38). For semantic conversations, we have included
an option for displaying all experiments and thought processes of the ex-
ploratory agent. Despite these approaches, explaining the representations of
large embedding models for semantic search and the decisions and attention
of generative LLMs for autonomous agents are evolving challenges [79; 112,
sec. 8.1.3], and large parts of the semantic workspace effectively remain gray
boxes. In addition, even when the internal steps of the system are explained
conceptually, we acknowledge the intrinsic complexity programmers face
when switching between abstraction levels to understand these concepts.
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Level of support In our concept of the semantic workspace, we explored
different gradations between augmentation and automation for semantic tools,
both of which intend different cooperation styles between the programmer
and the system.

Automation interfaces are designed for programmers to maintain a high-
level flow and avoid descending into subordinate research processes. When
tools meet these expectations, this can substantially reduce distractions in
programmers, streamline their workflow, and make them more efficient, lead-
ing to an improved semantic programming experience. However, for every
interaction with a high-level semantic tool, programmers are required to invest
some effort by explicating their questions or intentions and using a separate
interface. If the tool fails to deliver a helpful answer due to the limitations
discussed earlier, the investment is lost and the expectations of programmers
are not met, exposing the semantic interface as a leaky abstraction. Then, the
flow of programmers is broken as they have to switch their approach and han-
dle lower-level details such as browsing protocols and writing code manually.
Even when the accuracy of semantic technologies evolves in the future, the
law of leaky abstraction suggests that the success of semantic tools will remain
uncertain.

On the other hand, augmentation interfaces do not involve a fundamental
change in the workflow of programmers but allow them to retain their familiar
methods. In this setting, suggestions by semantic tools are rather optional
and not strictly expected, making their failures less drastic or disruptive. For
example, suggestions for similar methods or code completions only provide
selective inspirations for programmers but are never exhaustive, so program-
mers will still commonly conduct their own research beyond the provided
recommendations. In addition, programmers may actively seek to engage
in subordinate research processes on their own for educational purposes or
intrinsic motivation to low-level coding [65].

Integration into Programming System

In our prototype of the semantic workspace, we attempt to minimize spatial
and semantic distances by integrating semantic tools as closely as possible
into the existing programming system. To this end, we integrate semantic
conversations directly into object inspectors and other exploration tools, so
programmers can ask semantic questions as easily as they can select traditional
elements (such as variables or menu commands) in these tools. Semantic
messages further reduce spatial and semantic distances when programmers
are currently interacting with objects through scripts, since they allow asking
high-level questions through the same scripting interface.
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We place semantic completions into the autocompletion menu of workspaces,
code browsers, and related tools to assure that they are not farther away than
a few lines from the text cursor of the programmer, thus minimizing spatial
distances.

On the other hand, semantic suggestions are more comprehensive, so we
collect them in a suggestion space that is located in a separate docking bar at
the edge of the screen and thus more distant to the current focus window of the
programmer. This reduces the chance of programmers discovering relevant
suggestions unless they are actively looking at the suggestion space. However,
this placement is our trade-off to avoid disrupting programmers with many
possibly irrelevant suggestions closer to their cursor. Finally, the traditional
equivalent to the suggestion space—opening multiple code browsers or mes-
sage traces—involves even larger spatial distances due to the typical layout
and size of these tools.

Performance Limitations

A noticeable resource consumption can impede the programming experience
in different ways: large response times can reduce the experience of temporal
immediacy, but programmers usually accept delays of up to 4 seconds for
common tasks, though delays below 1–2 seconds are preferred for frequent
tasks [56, p. 473]. These thresholds are usually met by our prototypes for
semantic completions and simple semantic suggestions. However, the delays
of semantic completions and some semantic conversations for complex ques-
tions might challenge the patience of programmers, until LLMs are further
accelerated.

Beyond the three conventional dimensions of immediacy proposed by [74],
we observed a fourth kind of “psychological distance” when dealing with
monetary costs in our experiments. When using semantic completions and
conversations, we were constantly afraid of causing expenses (“How expensive
will this completion be? Could that answer really be worth two dollars?”),
which frequently kept us from using them more frequently, even though
we did not exhaust our available research budget. We have tried to mitigate
this effect by displaying a prominent expense watcher in the programming
system and defining quotas for each semantic question (see section A.3). Still,
we couldn’t completely shake off the uneasy feeling whenever we wished to
complete a statement or talk to an object.
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9.4. Ethical Considerations of Semantic Technologies

We are concerned about several ethical issues regarding the use of (cloud-
based) language models in exploratory programming systems. These include
the concentration of economic and political power, high energy intake and
water consumption (a typical question to our exploratory programming agent
might use 0.05 kWh and between 50 ml and 750 ml water [93]8), and the
training of models based on the intellectual property of unconsulted content
creators and labor of inadequately provided click workers.9 Language models
can also exhibit potentially unsafe biases, which are poorly understood and
could impact the accessibility, internationalization, or safety of data analyses
or recommended solutions [99].

Before adopting semantic programming tools in practice, we advise to
consider these implications and evaluate possible measures. For example,
tool developers should favor language models that were trained on fair and
open-source datasets, run them locally if possible (e.g., in the case of small
language models), or host them in trusted and ecological compute clusters.
More generally, we emphasize the need for future research on explainable and
efficient language models, evaluation and mitigation of biases, and political
regulations regarding training and operation of language models.

Chapter Summary

Semantic interfaces show strong promise for improving the program-
ming experience in our experiments by streamlining the exploratory
research process. However, programmers could miss opportunities for
learning and decision-making when overusing high-level support tools,
and they might not trust semantic tools that fail too often and do not ex-
plain their answers. To improve the accuracy and correctness of semantic
tools, tool developers should invest in better training and prompting of
language models, particularly for conceptual understanding of source
code and exploratory programming practices. Similarly, high response
times, monetary costs, and environmental and social impacts of cur-
rent LLMs prevent programmers from using semantic completions and
conversations easily and frequently, so further work is required to tune
prompts, optimize models, and ideally scale them down for sustainable
on-device usage.

8Actual numbers might vary because the data in [93] refers to the older model GPT-3, depends
on the region of compute clusters, and relies on ambiguous estimates by Microsoft.

9Billy Perrigo. 2023-01-18. OpenAI Used Kenyan Workers on Less Than $2 per Hour to Make
ChatGPT Less Toxic. Time. URL: https://web.archive.org/web/20240704034409/https:
//time.com/6247678/openai-chatgpt-kenya-workers/.
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10. Related Work

In this chapter, we provide an overview of related work in the areas of sug-
gestion mechanisms for programming systems and high-level programming
interfaces. This complements our introduction of exploratory programming
practices, tools, and semantic technologies presented in chapter 2.

Our concept of a semantic exploratory programming system to which a
programmer can delegate tasks shares similarities to a pair-programming
setup [5], where a navigator gives directions to a driver, the driver executes
them, and the navigator reviews the results. Several approaches have been
proposed to mimic the role of the driver through programming tools. Still, to
our knowledge, the semantic workspace is the first work to enable conceptual
collaboration of exploratory programmers and an intelligent programming
system with a variable degree of automation versus augmentation.

10.1. Suggestions in Programming Systems

Traditionally, programmers can search source code through code browsers or
other tools that retrieve methods based on call graphs [16, chap. 10; 25, sec. 6.2;
67], semantic similarity [89], or runtime behavior [67, sec. 1.8]. To improve the
discoverability of relevant solutions, many approaches have been proposed
that provide programmers with proactive suggestions of existing or new code.

One of the most established recommender systems for source code is tra-
ditional code completion tools, which are integrated in many programming
systems and usually suggest single contextually relevant identifiers while pro-
grammers are typing code. To make contextually relevant suggestions, they
typically incorporate the call graph or usage statistics of software systems [69],
typing and runtime information, or previous changes of programmers [48].
Examples of traditional code completion tools include Microsoft IntelliSense
in Visual Studio and Visual Studio Code1 as well as the Autocompletion
package for Squeak we used in our prototype. Other tools also suggest possi-
ble methods for exploratory code browsing [7, 50] or even use recommender
systems to assist programmers in navigating through complex user interfaces
of programming systems [35].

1https://code.visualstudio.com/docs/editor/intellisense
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Similarly to code completion tools, visual programming editors such as
Etoys or Scratch [47] offer palettes through which programmers can list and
apply different relevant methods for their programs.

Beyond recommending existing source code, contemporary suggestion tools
also offer new code that they synthesize with the help of LLMs based on the
existing code context. Popular tools of this kind such as GitHub Copilot,2 Tab-
nine,3 and IntelliCode Compose [59] provide code completions through two
different interfaces: either they insert a ghost text in the editor after the existing
code typed by programmers, or they display a separate suggestion pane, from
where programmers can compare multiple completions and insert them in
the editor. Most programmers use generated code completions to accelerate
their typing and to explore different interfaces and solution approaches [4].
Other code suggestion tools also recommend code changes to fix bugs, ad-
here to coding styles (often based on the annotations of linters), or continue
refactorings that programmers have begun [75].

10.2. High-Level Programming Interfaces

While suggestion tools usually contribute small portions of work to program-
mers, high-level interfaces provide new means for programmers through
which they can explicitly delegate tasks to particular tools.

Question-based debugging tools Different tools have been proposed to
support programmers during debugging sessions by answering high-level
questions [14, 36]. For example, the Whyline approach allows programmers
to ask questions about the causes of certain events in their program [24].
While these questions are limited to a rigid box of building blocks that can
be combined to form queries of predefined patterns, this approach already
abstracts away from low-level interactions and queries to the system [39].

ChatDBG provides an LLM-based agent to answer natural-language ques-
tions about an errored program in a debugger [28]. It automatically conducts
small experiments by inspecting different parts of the stack and executing
scripts in the program context to identify the root causes of errors and recom-
mend possible fixes.

Natural-language prototyping tools Tools such as Spellburst [3] and
OpenUI4 facilitate iterative prototyping of visualizations and user interfaces
by allowing programmers to provide natural-language instructions. Spell-

2https://github.com/features/copilot
3https://www.tabnine.com/
4https://github.com/wandb/openui
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burst also offers a node-based visual programming interface for managing
derivations and alternatives of prototypes.

Natural-language programming interfaces The vision of natural-language
programming is to enable programmers to write entire programs in natural
language and refrain from technical details. Past approaches to this vision em-
ploy rule-based grammatical heuristics or LLMs to translate natural-language
descriptions into code [34]. Different metaphors such as tools5 and operating
systems [33] were discussed to structure natural-language directives and scale
them to larger no-code applications.

Navā is an extension to traditional programming languages that allows for
finding and invoking methods on components through declarative queries by
using an extensive ontology of domain-specific, programming-related, and
common-sense knowledge [53]. While component developers and users are
still required to express intentions in a formal language to maintain and access
detailed specifications, this approach enables programmers to communicate
with software systems in a semantic, interface-agnostic style.

Conversational programming agents Conversational agents such as GitHub
Copilot Chat, Tabnine Chat, and Sourcegraph Cody [18] allow programmers to
ask questions across a wide range of topics: programmers can chat with them
in natural language to explore and understand code bases or to learn about
other libraries and general programming practices; ask them to explain and
fix errors in their code; or request refactorings or additions to their code [27,
49, 51]. However, these agents typically only have access to the static context
of a code base and are unable to conduct experiments or research about other
packages on their own.

Chapter Summary

Existing suggestion tools recommend identifiers, methods, or gener-
ated code snippets that programmers can apply to their program or
use for further exploration. Other high-level programming interfaces
provide conceptual, often natural-language interfaces, through which
programmers can automate smaller search and programming tasks to
facilitate programming activities such as refactoring, prototyping, and
debugging.

5GPTScript: https://github.com/gptscript-ai/gptscript

97

https://github.com/gptscript-ai/gptscript


11. Conclusion

At the beginning of this work, we have asked the following question:

How can we augment the exploratory programming workflow by
integrating semantic technologies into exploratory programming
systems?

To answer this question, we have started by investigating the nature of
exploratory programming and modeling it as a hierarchical research workflow
of recursive questions and answers (chapter 2). Based on this model, we have
identified two major challenges: large semantic distances and information
overload, which arise from handling questions and experiments at different
abstraction levels and which disrupt programmers in their flow. We have in-
troduced semantic technologies as a possible remedy: semantic retrieval, which
embeds domain artifacts into a numeric space and allows to search and com-
pare them based on their position and distance in that space, and LLMs, which
can process and generate unstructured text and code, conduct conversations
with human beings, and solve problems through inner monologue.

To address the challenges of exploratory programmers, we have proposed
our model of the augmented exploratory programming workflow, in which semantic
technologies are integrated into programming systems to support program-
mers at different stages of their research (chapter 3). In our concept of the
semantic workspace, we have proposed three different tools for such integrations
along a level-of-support spectrum ranging from augmentation to automation
interfaces: (i) semantic suggestions, for which the system follows the steps and
experiments of programmers and suggests new artifacts or experiments such
as methods to browse; (ii) semantic completions, which continue the plans of
programmers through contextually generated text insertions; and (iii) seman-
tic conversations, through which programmers can ask conceptual questions
about objects by using a natural-language chat interface or an extension to the
programming language.

We have described our design of a semantic exploration kernel (chapter 4)
to harness semantic technologies for programming tools through two main
components: a suggestion engine, which collects artifacts and experiments of
programmers in our blackboard framework and defines different retrieval
strategies for searching and recommending further artifacts; and an exploratory
programming agent, which employs LLMs to plan and conduct experiments,
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interacts with the system through technical interfaces and generated code,
and communicates with programmers through high-level interfaces. To create
suggestions, we have explored different approaches for finding similar and
correlated artifacts based on semantic embeddings and call graphs; and we
have compared different ranking methods such as top-k selection, probabilistic
sampling, and clustering to optimize for the relevance, diversity, irredundancy,
and representativeness of results, finding that probabilistic sampling from clus-
ters balanced all objectives most effectively (chapter 5). To construct a viable
exploratory programming agent based on the GPT-4o model, we have de-
fined behavioral policies through prompts and designed system functions
for automated experiments (chapter 6). Finally, we have implemented these
ideas in a prototype for the Squeak/Smalltalk environment by using our
SemanticText framework and the OpenAI API (chapter 7).

In our experiments (chapter 8), we have successfully used the semantic
workspace to prototype a UI with the help of semantic suggestions and
completions for available protocols and usage patterns of the UI framework,
as well as to understand the design and usage of Squeak’s text-formatting
package by having a semantic conversation with an example object. Beyond
that, we have illustrated how semantic object interfaces can be integrated
into further programming tools such as code browsers and debuggers to
broaden our vision of a semantic exploratory programming system. While our
preliminary experiences were promising, semantic tools currently produce
many irrelevant or incorrect outputs due to the low accuracy of semantic
technologies, and semantic completions and conversations are too expensive,
unsustainable, and slow to use them frequently and interactively (chapter 9).
Despite that, we think that semantic tools have much potential for improving
the exploratory programming experience, since they allow programmers to
delegate flexible parts of their research process and thus better maintain their
high-level flow.

*

In the future, we want to pinpoint the systematic limitations of our approach
by investing efforts in tuning our prompts and hyperparameters as well
as fine-tuning or down-scaling language models. To this end, we will also
consider compiling datasets for training and evaluating models by mining and
annotating data from real exploratory programming sessions [2].1

1The fact that contemporary LLMs are unfamiliar with exploratory programming also suggests
that they have seen few examples of this practice during training. This leads us to another
insight: we appeal to the exploratory programming community to put more effort in
documenting their exploratory workflows and practices publicly. Not only could this help
to make exploratory programming more popular amongst developers but also serve as
training data for future LLMs.
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Another opportunity would be the conduction of a quantitative user study
to determine the optimal degree of augmentation versus automation tools
for maximizing the productivity and experience of exploratory programmers.
Within this study, we could also attempt to identify types of semantic interfaces
that programmers prefer for delegating parts of their work to the system.

Finally, we want to explore further means for enabling and fostering a
broader collaboration of programmers and semantic exploratory program-
ming systems. On the one hand, this could be achieved by tracking more
exploratory activities of programmers to capture their context for semantic
tools. On the other hand, we want to improve means for keeping program-
mers “in the loop” while semantic agents conduct research on their own.
This involves finding better ways to explain the results and steps of seman-
tic technologies, including technical model interpretability [79] and tools or
visualizations for human-readable explanations. Furthermore, we want to
define scope policies for the experiments and decisions of agents and estab-
lish an explicit channel for inquiries from systems back to programmers. By
integrating semantic suggestions into different programming tools—such as
relevance-based ranking in code search tools and contextual stack-trace filters
in (omniscient) debuggers—, we also want to expand fine-grained, proactive
support of semantic technologies in exploratory programming systems. Ulti-
mately, we envision a form of semantic exploratory programming in which
the system continuously “thinks along” the actions of a programmer (like a
helpful pair programmer) by anticipating their intentions, exploring different
ways to fulfill them through deep reasoning and research, and offering distilled
results to allow programmers stay in their flow.

*

Much about the future of programming in an era of evolving AI technologies
and possibly artificial general intelligence [78] remains uncertain [65]. While it
is likely that low-level programming tasks will be further automated, analyzing
domains and conceptualizing possible solutions have proven to be two of the
hardest—and possibly hardest to automate—parts of software engineering. We
believe that on the journey toward a “generational shift” in programming [55]
and beyond, semantic tools can play a crucial role in supporting programmers
to focus on high-level problems while communicating with running systems
in a more natural way for an expedient, exploratory programming practice.
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A. Accessing Semantic Technologies

through the SemanticText

Framework

In this appendix, we describe our design and implementation of the Seman-
ticText framework for accessing semantic technologies in Squeak. Seman-
ticText provides an object-oriented domain model for semantic retrieval
using document embeddings and for text generation and machine reasoning
using conversational agents.1 It also implements a client for relevant language
models of the OpenAI API. Finally, it offers several tools to support prototyping
of semantic applications.

In the following, we describe the three central parts of the framework:
domain model, providers for different language models, and tool support.

A.1. Domain Model

We describe our domain model of semantic technologies for programming
semantic retrieval systems and conversational agents.

Semantic Retrieval

To model semantic retrieval in the context of the Squeak ecosystem, Seman-
ticText defines the central class SemanticCorpus as a specialization of the
Set class from the Collections package (fig. A.1). This class extends the re-
sponsibilities of a regular collection for containing any number of (domain)
objects with those of a vector store for searching and filtering objects based on
document embeddings.

For each object, the corpus computes and stores an embedding vector that is
represented by a FloatArray, allowing for efficient comparison, memory con-
sumption, and serialization. To compute embeddings, the corpus is provided
with an EmbeddingModel (which may be implemented by different providers,
see section A.2) and an EmbeddingConfig for controlling the embedding prop-
erties such as the length of embedding vectors. To embed non-textual object

1https://github.com/hpi-swa-lab/Squeak-SemanticText
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Figure A.1.: The general object model for semantic retrieval in SemanticText
(UML class diagram with Smalltalk-styled method signatures; default mul-
tiplicities are 1; dashed arrows indicate the return class of message sends).
Programmers can use the entry class SemanticCorpus (red) to index domain
objects with an embedding model and search, rank, or cluster them (gray

classes are provided by the Squak base system).

elements, the corpus can be provided with a text conversion function through
composition or specialization (e.g., by registering an evaluable block or over-
riding a method).2

The semantic corpus provides methods for searching objects that are similar
to a reference object or to a natural-language query string. For each search, it
answers a SearchResultSet, which contains a relevance score for each object
in the corpus.3 A result set can be ranked into a SearchResultRanking of a
finite length using the different ranking methods discussed in section 5.3,
such as top-k selection and probabilistic sampling. Additionally, the semantic
corpus also supports cluster-based selection of representative objects without
a reference object.

2Currently accessible through SemanticPluggableCorpus.
3At the time of writing, these classes have not yet been extracted from the SemanticCorpus in

our public implementation.
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Example. A programmer wants to find classes in the system that im-
plement means for semantic search. For this, they can create a semantic
corpus of all classes based on their names and comments, perform a
search, and rank the results:

corpus := self systemNavigation allClasses
asSemanticCorpusWithTitle: #name
content: #comment.

results := corpus findObjectsForQuery: 'semantic
search database'.
ranking := results top: 5.
ranking →a a SearchResultRanking(
#SemanticCorpus->0.533
#SemanticHelpSearchTopic->0.442
#SemanticText->0.385 #SemanticAgentParser->0.364
#SemanticMathAgent->0.338)

aWe use the notation <expr> → <result> to indicate a print-it evaluation [67, p. 13].

Conversations

To support text generation and machine reasoning, we integrate different
conversational LLMs into SemanticText. To this end, the framework defines
a SemanticConversation class (fig. A.2). A conversation consists of a sequence
of Messages, each of which is specified with a role (either system, user, or
assistant) and a text. A programmer can set up a conversation with a sequence
of initial messages, such as a system message for providing instructions and
a user message for the first question of the user, and ask the conversation
to complete itself, which will request the (stateless) LLM and append a new
generated assistant message to the conversation.

To allow for the construction of agents, the conversation can also be equipped
with a FunctionSpec that provides one or multiple Functions. Each function
has a name, can specify an optional list of arguments and their constraints
as well as a description, and contains an action object (e.g., a block closure).
When the LLM is invoked, it can issue one or multiple FunctionCalls based
on the function specification as part of the generated assistant message. The
conversation automatically resolves these function calls by calling each issued
function with the generated arguments, storing the result in a new Function-
Message, and providing all function messages to the LLM in another request,
which uses the results for generating the next assistant message.

Analogously to semantic corpora, each conversation is configured through
a ConversationModel reference and a ConversationConfig for controlling the
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Figure A.2.: The general object model for conversational agents in Seman-
ticText (UML class diagram with same semantics as before). Programmers
can create a SemanticConversation (red) with a set of messages and request
an answer from a conversation model or implement an Agent class (blue)
and declare callable functions via pragmas on it.

generation behavior through parameters such as the model temperature and
the maximum number of tokens to generate.

Example. A programmer wants to create a chatbot that can retrieve
the current time and date. For this, they define a conversation with an
appropriate configuration for the LLM, define the necessary functions,
and provide the question of the user:

SemanticConversation new
withConfigDo: [:config |

config temperature: 0.2];
addFunction: #getTime action: [Time now];
addUserMessage: 'What time is it?';
getAssistantReply → 'The current time is

13:59.'

Additionally, SemanticText supports the construction of class-based
agents through the base class SemanticAgent, which clients can specialize to
provide custom instructions and functions. It provides a custom DSL (domain-
specific language) for specifying function signatures with its arguments, their
constraints (such as argument types and optional arguments), and their descrip-
tions through method pragmas. The agent class will automatically dispatch
function calls and handle errors from called functions.
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Example. A programmer wants to build a chatbot that can access the
running Squeak image to assist the user. To achieve this, they create
a subclass of SemanticAgent, initialize the conversation, and define an
#eval: method:

SemanticAgent subclass: #SemanticSqueakAgent
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'SemanticText-Model-Agents'

SemanticSqueakAgent»initializeConversation:
aConversation

super initializeConversation: aConversation.
aConversation addSystemMessage: 'You are a

Squeak/Smalltalk assistant.'.

SemanticSqueakAgent»eval: aString
"Evaluate a Smalltalk expression in the running

Squeak image."
<function: eval(

expression: string "e.g. '(8 nthRoot: 3)-1'"
)>
^ Compiler evaluate: aString

Finally, the programmer invokes the agent:

SemanticSqueakAgent makeNewConversation
addUserMessage: 'how many windows are open';
getAssistantReply → 'You currently have 138

open windows in your Squeak environment.'

A.2. Language Providers

SemanticText defines interfaces for text embedding and generation models
that can be implemented by different providers. As the default provider, we
implemented a basic client for the OpenAI API.4 The client accesses the
HTTP endpoints using Squeak’s WebClient package and supports token-based
authentication and rate limits.

4OpenAI API. URL: http://archive.today/2024.06.30-211140/https://platform.openai.
com/docs/overview
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To support receiving generated text chunks incrementally and avoid delays,
the client can handle server-sent events5 emitted by the API, transform them
into an internal Generator, and update the returned SemanticMessage asyn-
chronously for each new chunk. Clients that request streamed completions
initially receive an empty SemanticMessage and can subscribe to observer sig-
nals for incorporating each appended chunk into their data model or interface
(such as a graphical display).

Next to the OpenAI provider, SemanticText also implements a mocking
provider for simulating real language models (see section A.3).

A.3. Tool Support

Developing semantic applications (i.e., programs that rely on semantic tech-
nologies) presents particular challenges to programmers, including nondeter-
ministic behavior, latencies, and cost of language models.

First, language models behave nondeterministically in many settings, which
can impede testing. In addition, generative LLMs exhibit characteristics of
a chaotic system, meaning that small changes in the provided input might
cause large changes in their outputs. For example, if the user phrases the same
question using slightly different words, an agent might interpret the task very
differently and fail to solve it appropriately. Thus, the behavior of LLMs is
often poorly predictable.

Second, requesting language models to process large amounts of information
can involve notable latencies, which result from the intrinsic speed of models
and possible rate limits of APIs. For example, embedding or describing all
methods in a typical Squeak image using contemporary OpenAI models might
take several minutes (see section 9.2). These delays can reduce the experience
of temporal immediacy for programmers who are prototyping or testing
semantic applications.

Third, pecuniary costs often arise when using cloud models. Sending a single
message to an object or evaluating a simple script during prototyping might
suddenly involve expenses of several (US) cents or sometimes even dollars.
These expenses are largely unexpected, invisible, and difficult to track. This can
result not only in unintended invoices but also overcautiousness in developers,
forming a new kind of psychological barrier to the experienced immediacy of
programmers.

Through the SemanticText framework, we provide different tools for
addressing these challenges and thus improving the development experience

5“Server-Sent Events”. In: HTML Living Standard, section 9.2. WHATWG, 2024-06-26. URL:
https://html.spec.whatwg.org/commit-snapshots/25aaad7f6a10785efe041fb05a597400e
700ef10/#server-sent-events.
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of semantic-application programmers: a conversation editor for prototyping
generative agents, a mocking provider for replacing slow and expensive language
models, and means for price estimation and expense watching.

Conversation Editor

The conversation editor is a graphical tool through which programmers can
prototype and debug generative agents. It allows programmers to inspect and
modify all parts of a conversation, such as messages, functions, and function
calls, using a text-based WYSIWYG6 interface and a custom DSL.

For example, programmers can engage in prompt engineering by draft-
ing different versions of system instructions and function specifications and
comparing their effects (by duplicating the conversation window using the
eponymous Morphic halo handle in Squeak). Moreover, they can simulate
the behavior of certain function calls or former assistant replies without im-
plementing them. Thus, the conversation editor allows programmers to test
agents and explore the efficacy of different prompts.7

The GUI of the conversation editor provides two modes (fig. A.3): the
default mode only shows user and assistant messages, whereas the advanced
mode also provides read and write access to system messages as well as
function specifications, function calls, and function results. So, while the
advanced mode is intended for prototyping and debugging, the former mode
functions as an interface for end users. The conversation editor also constitutes
a composable UI component that can be reused by semantic applications such
as our conversational prototype for the semantic workspace (see section 7.3).

Mocking Provider

SemanticText implements a mocking provider with different mocking models,
which simulate the behavior of real language models through simple heuristics.
The MockingConversationModel answers a static assistant message for each
request (which can be adjusted through parameters in the SemanticConversa-
tionConfig). The MockingEmbeddingModel embeds each document as a small
vector based on the term frequencies of a short hard-coded list of words.

6WYSIWYG: What you see is what you get.
7Similar possibilities are offered by several other tools such as the OpenAI chat playground

(https://platform.openai.com/playground/chat). However, existing tools are typically
not integrated into the live programming system, which impedes prototyping, since pro-
grammers need to connect language models with other artifacts and logic. In addition,
our conversation editor can also be used for post-mortem debugging and exploring actual
conversations from a semantic application.
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(a) In the default mode, end users can en-
gage in conversations with the assis-
tant.

(b) In the advanced mode, developers can
declare prompts and functions and in-
spect or simulate function calls of the
model.

Figure A.3.: The conversation editor for accessing and manipulating conversa-
tions with LLM agents.

By temporarily using mocking models, programmers can ensure the deter-
ministic behavior of semantic applications while testing them or developing
other parts of a system. Finally, they can avoid additional latencies or costs.

Price Estimation and Expense Watching

To facilitate planning of expenses, model providers offer means for estimating
the prices of requests before actually submitting them to an API. Additionally,
they log the expenses from submitted requests. For this, they use a combina-
tion of usage statistics returned from API responses (such as the number of
processed tokens) and local (approximating) cost models.

This allows for the construction of expense watchers, which display the
expenses for semantic operations in single tools such as the conversation
editor or in the global system (fig. A.4).8 Thus, programmers gain improved
trust and transparency regarding pecuniary costs of language models.

8This resembles common usage dashboards of cloud services such as OpenAI (https:
//platform.openai.com/usage). However, expense watchers in SemanticText detail costs
with a finer granularity and improve visibility through direct integration into the program-
ming system.
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(a) A global expense watcher attached to the
world’s main docking bar displays all ex-
penses in the system.

(b) A tooltip in the conversation editor
provides detailed information on
the prior costs of a conversation and
estimates the tokens and price for
answering the next user message.

Figure A.4.: Through expense watchers, programmers can track the costs of
semantic expenses within the programming system.

Appendix Summary

We have described the SemanticText framework for accessing seman-
tic technologies in Squeak. SemanticText models a semantic corpus
that can emit (ranked) search results for embedding searches and a con-
versation with messages and functions to implement conversational agents.
Searches and conversations can be powered using different language
model providers such as the built-in OpenAI API client. To facilitate proto-
typing of semantic applications despite the nondeterminism, latencies,
and cost of LLMs, SemanticText offers different tools for editing
conversations, mocking LLMs, and estimating or tracking expenses.
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B. Example Conversation Log of the

Exploratory Programming Agent

Here, we provide a full conversation log with our prototype of the exploratory
programming agent based on the example from fig. 8.5, including all (unopti-
mized) system prompts and function calls.

The conversation log has been generated by the SemanticConversationEd-
itor of SemanticText (see section A.3). For better readability, we have
inserted additional spaces in the tool messages of the system and adjusted
colors.

Available tools:
- browsePackage "get all classes in the package" (packageName: string)
- browseClass "get the definition, comment, and all method names ('selectors') of
the class" (className: string)
- browseMethod "get the full source code of the method className»selector"
(className: string "e.g., 'Object' or 'Object class' (for static class-side methods)",
selector: string "e.g., 'copy', 'at:put:', or '='")
- eval "evaluate a Smalltalk expression (aka 'do it'). Note that all temporary
variables from the expression are local to this evaluation and cannot be accessed
again in later expressions." (expression: string)
- browseSenders "get a list of methods in the system that use this selector (i.e., call
a method with that name). useful to find examples that teach you how you can
invoke a method." (selector: string, query?: string "Optional brief description in a
few words in natural language of what the selector should be used for. Useful to
rank the results based on the relevance for a given context.")

System: You are a helpful assistant for exploratory programming in a
Squeak/Smalltalk image. You assist the user to solve problems by searching
existing code and writing new code. When answering questions about or working
with existing frameworks, ALWAYS do extensive research in the system by
browsing relevant classes, methods, and their senders. Depending on the
complexity of the task and uncertainty of the possible outcome, "extensive" means
that you should always do a broad source, pursue multiple alternatives, and
browse about 3x up to 5x as many classes/methods/senders as actually might be
relevant in the final conclusion. When asked coding questions, include an example
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in your reply (that you have run before). DO NOT tell the user to run the code
manually, but DO always and eagerly run the code by yourself (using eval())!

You have access to a couple of different functions to explore the Squeak image
and try things out:
- To get an overview of the capabilities of a class, browse its protocol (using
browseClass()).
- Sometimes, you may also need to enumerate all the classes in a package (using
browsePackage()).
- To find out how a method selector can be used (e.g., how the provided arguments
should look like), explore some of it references (using browseSenders()).
- To get the full signature of a method of a method (including all argument names)
and its comment (if available), read its source code (using browseMethod()).
- Analogously, to find out how a method is implemented, read its source code as
well (using browseMethod()).
- You can also run Smalltalk code (using eval()) to test things out (e.g., to look at
objects, acquire information, or test whether your code works). IMPORTANT: If you
write any new Smalltalk code, you MUST ALWAYS run it by yourself (using eval())
to make sure it is functioning BEFORE sending the code to the user. This also
applies if the user asks a question like "how can i do x?".

DO NOT browse the same thing twice since it won't get better but can be
expensive.

If you have trouble getting your code to work, try the following:
- Browse methods on the error stack to understand how they work and have to be
used.
- Browse senders of the methods you want to use to understand how they are
usually used in other contexts.

You can perform up to 25 browse/eval requests per message. Generously use that
quota if the task is not trivial.

System: You are now an object (a Text) being explored by the user inside an
object inspector, ready to answer questions about yourself (`self`).

To solve the task, you are encouraged to browse code (using the browse functions)
and run your own code proactively (using the `eval()` function). You may run
`eval()` many times until you have found a solution. When calling `eval()`, refer to
the object as `self`. To retrieve an instance variable in Smalltalk code, use `(self
instVarNamed: 'variableName')`. If the question is of programmatic nature, it is
usally best to fully translate the problem into a working code expression for the
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`eval()` function and return the result of evaluating that expression. Critically reflect
whether the solution makes sense before you decide that you are done.

Keep your answers as short as possible unless instructed otherwise. When
possible, just answer a single word, number, or print string only. Instead of "the
result is X", just say "X". DO NOT write prosa like "there are several ways" but just
like the ways briefly. If the user asks longer or more open questions, you can
provide more detailed answers. Provide code in your reply ifthe user asks for it
(e.g., when they ask "how can i do X", print out a tested code snippet to the chat).

Assistant:

[call_fc404ee2-9c96-4980-8160-c3cfa47fb9f9] eval(expression="self")
[call_7b41cd9e-7d54-4d04-9451-fbee10fbdcc3] eval(expression="self class")
[call_1c0f6794-97de-42b8-b9ec-27634c4e3054] eval(expression="self
longPrintStringLimitedTo: 100")
[call_c704c70d-70fb-4dab-a45f-2ba446634556] browseClass(className="Text")

Tool: [call_fc404ee2-9c96-4980-8160-c3cfa47fb9f9] {"result": "a Text for 'ABCDE'"}

Tool: [call_7b41cd9e-7d54-4d04-9451-fbee10fbdcc3] {"result": "Text"}

Tool: [call_1c0f6794-97de-42b8-b9ec-27634c4e3054] {"result": "'string:
\t''ABCDE''\rruns: \ta RunArray runs: #(3 1 1) values: {{a TextEmphasis code: 1}.
#() . {a TextEmphasis code: 2}}...etc...\r'"}

Tool: [call_c704c70d-70fb-4dab-a45f-2ba446634556] {"className": "Text",
"definition": "ArrayedCollection subclass: #Text\n\tinstanceVariableNames: 'string
runs'\n\tclassVariableNames: 'IgnoreStyleIfOnlyBold'\n\tpoolDictionaries:
'TextConstants'\n\tcategory: 'Collections-Text'", "comment": "I represent a character
string that has been marked with abstract changes in character appearance.
Actual display is performed in the presence of a TextStyle which indicates, for each
abstract code, an actual font to be used. A Text associates a set of TextAttributes
with each character in its character string. These attributes may be font numbers,
emphases such as bold or italic, or hyperling actions. Font numbers are interpreted
relative to whatever textStyle appears, along with the text, in a Paragraph. Since
most characters have the same attributes as their neighbors, the attributes are
stored in a RunArray for efficiency. Each of my instances has\n\tstring\t\ta String\n
\truns\t\ta RunArray", "categorizedSelectors": {"accessing": ["#append:",
"#applyLanguageInformation:", "#at:", "#at:put:", "#findString:startingAt:",
"#findString:startingAt:caseSensitive:", "#lineCorrespondingToIndex:",
"#lineCount", "#lineIndicesDo:", "#lineNumber:", "#lines", "#linesDo:", "#prepend:",
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"#rangeOf:startingAt:", "#replaceFrom:to:with:", "#runs:", "#size", "#string"], "as yet
unclassified": ["#formattedToPlainDiffText", "#truncateWithEllipsisTo:"], "attributes":
["#couldDeriveFromPrettyPrinting", "#indentationAmountAt:"], "comparing": ["#=",
"#hash", "#hashWithInitialHash:", "#howManyMatch:"], "converting":
["#asDisplayText", "#asNumber", "#asOctetStringText", "#asPlainText", "#asString",
"#asStringOrText", "#asStringToHtml", "#asSymbol", "#asText", "#isoToSqueak",
"#macToSqueak", "#removeAllAttributes", "#removeAttributesThat:",
"#removeAttributesThat:replaceAttributesThat:by:", "#replaceAttributesThat:by:",
"#replaceFrom:to:with:startingAt:", "#reversed", "#squeakToIso", "#squeakToMac",
"#withBlanksTrimmed", "#withNoLineLongerThan:", "#withSqueakLineEndings",
"#withoutLeadingBlanks", "#withoutTrailingBlanks"], "copying": ["#copyFrom:to:",
"#copyReplaceFrom:to:with:", "#copyReplaceTokens:with:", "#deepCopy",
"#postCopy"], "emphasis": ["#addAllAttributes:", "#addAllAttributes:from:to:",
"#addAttribute:", "#addAttribute:from:to:", "#addAttribute:unless:",
"#alignmentAt:ifAbsent:", "#allBold", "#attributesAt:", "#attributesAt:do:",
"#attributesAt:forStyle:", "#colorAt:", "#colorAt:ifNone:", "#emphasisAt:", "#find:",
"#fontAt:withDefault:", "#fontAt:withStyle:", "#fontNumberAt:", "#makeBoldFrom:to:",
"#makeSelectorBold", "#makeSelectorBoldIn:", "#removeAttribute:from:to:",
"#runLengthFor:"], "formatting": ["#format:", "#format:attributes:",
"#formatAttributes:"], "html": ["#printHtmlOn:", "#printHtmlOn:breakLines:",
"#printHtmlString"], "printing": ["#printOn:", "#storeOn:"], "private":
["#removeAttributesForPlainText", "#runs", "#setString:setRuns:",
"#setString:setRunsChecking:"], "sorting": ["#<=>"], "testing": ["#hasAnyAttribute",
"#hasAttributeThat:", "#hasClickableAttribute", "#hasColorAttribute",
"#hasFontAttribute", "#isPlainText", "#isText", "#unembellished"]}, "superclass":
{"className": "ArrayedCollection", "definition": "SequenceableCollection subclass:
#ArrayedCollection\n\tinstanceVariableNames: ''\n\tclassVariableNames: ''\n
\tpoolDictionaries: ''\n\tcategory: 'Collections-Abstract'", "comment": "I am an
abstract collection of elements with a fixed range of integers (from 1 to n>=0) as
external keys.", "categorizedSelectors": {"accessing": ["#size"], "adding": ["#add:"],
"converting": ["#asSortedArray"], "enumerating": ["#inject:into:", "#occurrencesOf:"],
"filter streaming": ["#flattenOnStream:"], "objects from disk": ["#byteSize",
"#bytesPerBasicElement", "#bytesPerElement", "#restoreEndianness",
"#swapHalves", "#writeOn:", "#writeOnGZIPByteStream:"], "printing": ["#storeOn:"],
"private": ["#defaultElement", "#fillFrom:with:", "#storeElementsFrom:to:on:"],
"removing": ["#removeAll"], "sorting": ["#isSorted", "#isSortedBetween:and:",
"#isSortedBy:", "#isSortedBy:between:and:", "#mergeFirst:middle:last:into:by:",
"#mergeSortFrom:to:by:", "#mergeSortFrom:to:into:by:", "#quickSort",
"#quickSort:", "#quickSortFrom:to:by:", "#sort", "#sort:"], "testing": ["#isEmpty"]},
"superclass": {"className": "SequenceableCollection", "definition": "Collection
subclass: #SequenceableCollection\n\tinstanceVariableNames: ''\n
\tclassVariableNames: ''\n\tpoolDictionaries: ''\n\tcategory: 'Collections-Abstract'",
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"comment": "I am an abstract superclass for collections that have a well-defined
order associated with their elements. Thus each element is externally-named by
integers referred to as indices.", "categorizedSelectors": {"accessing": ["#after:",
"#after:ifAbsent:", "#allButFirst", "#allButFirst:", "#allButLast", "#allButLast:",
"#any:", "#anyOne", "#at:ifAbsent:", "#at:ifPresent:", "#at:ifPresent:ifAbsent:",
"#at:incrementBy:", "#atAll:", "#atAll:put:", "#atAll:putAll:", "#atAllPut:", "#atLast:",
"#atLast:ifAbsent:", "#atLast:ifPresent:", "#atLast:ifPresent:ifAbsent:",
"#atLast:put:", "#atPin:", "#atRandom:", "#atWrap:", "#atWrap:put:", "#before:",
"#before:ifAbsent:", "#eighth", "#fifth", "#first", "#first:", "#fourth", "#from:to:put:",
"#identityIndexOf:", "#identityIndexOf:ifAbsent:", "#identityIndexOf:startingAt:",
"#identityIndexOf:startingAt:ifAbsent:", "#indexOf:", "#indexOf:ifAbsent:",
"#indexOf:startingAt:", "#indexOf:startingAt:ifAbsent:", "#indexOfAnyOf:",
"#indexOfAnyOf:ifAbsent:", "#indexOfAnyOf:startingAt:",
"#indexOfAnyOf:startingAt:ifAbsent:", "#indexOfSubCollection:",
"#indexOfSubCollection:startingAt:", "#indexOfSubCollection:startingAt:ifAbsent:",
"#indicesOfSubCollection:", "#indicesOfSubCollection:startingAt:", "#integerAt:",
"#integerAt:put:", "#last", "#last:", "#lastIndexOf:", "#lastIndexOf:ifAbsent:",
"#lastIndexOf:startingAt:", "#lastIndexOf:startingAt:ifAbsent:",
"#lastIndexOfAnyOf:", "#lastIndexOfAnyOf:ifAbsent:",
"#lastIndexOfAnyOf:startingAt:", "#lastIndexOfAnyOf:startingAt:ifAbsent:",
"#middle", "#ninth", "#replaceAll:with:", "#replaceFrom:to:with:",
"#replaceFrom:to:with:startingAt:", "#second", "#seventh", "#sixth", "#size",
"#swap:with:", "#third"], "adding": ["#addAllFirstTo:"], "comparing": ["#=",
"#hasEqualElements:", "#hash"], "converting": ["#@", "#asArray", "#asByteArray",
"#asColorArray", "#asFloat32Array", "#asFloat64Array", "#asFloatArray",
"#asIntegerArray", "#asStringWithCr", "#asWordArray", "#concatenation",
"#flatten", "#flattened", "#join", "#joinSeparatedBy:", "#readStream",
"#readStreamWithProgress", "#reverse", "#reverseInPlace", "#reversed",
"#subsequences:", "#writeStream"], "copying": ["#,", "#copyAfter:",
"#copyAfterLast:", "#copyEmpty", "#copyFrom:to:", "#copyLast:",
"#copyReplaceAll:with:", "#copyReplaceFrom:to:with:", "#copyUpThrough:",
"#copyUpTo:", "#copyUpToLast:", "#copyWith:", "#copyWithFirst:",
"#copyWithoutIndex:", "#forceTo:paddingStartWith:", "#forceTo:paddingWith:",
"#grownBy:"], "enumerating": ["#allButFirstDo:", "#allButLastDo:",
"#asDigitsToPower:do:", "#collect:", "#collect:from:to:",
"#combinations:atATimeDo:", "#do:", "#do:separatedBy:", "#do:without:",
"#findBinary:", "#findBinary:do:ifNone:", "#findBinary:ifNone:",
"#findBinaryIndex:", "#findBinaryIndex:do:ifNone:", "#findBinaryIndex:ifNone:",
"#findFirst:", "#findFirst:startingAt:", "#findLast:", "#findLast:startingAt:",
"#findNearbyBinaryIndex:", "#from:to:do:", "#groupsCollect:", "#groupsDo:",
"#groupsOf:atATimeCollect:", "#groupsOf:atATimeDo:", "#keysAndValuesDo:",
"#nextToLast", "#overlappingPairsCollect:", "#overlappingPairsDo:",
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"#overlappingPairsWithIndexDo:", "#paddedWith:do:", "#pairsCollect:", "#pairsDo:",
"#permutationsDo:", "#piecesCutWhere:", "#piecesCutWhere:do:",
"#polynomialEval:", "#replace:", "#reverseDo:", "#reverseWith:do:", "#select:",
"#sesqIndexedVariables", "#splitBy:", "#splitBy:do:", "#upTo:", "#with:collect:",
"#with:do:", "#withIndexCollect:", "#withIndexDo:", "#withIndexDo:separatedBy:"],
"filter streaming": ["#putOn:"], "printing": ["#joinOn:", "#joinOn:separatedBy:"],
"private": ["#asDigitsAt:in:do:", "#combinationsAt:in:after:do:",
"#copyReplaceAll:with:asTokens:", "#errorFirstObject:", "#errorLastObject:",
"#errorOutOfBounds", "#permutationsStartingAt:do:"], "removing":
["#remove:ifAbsent:"], "shuffling": ["#shuffle", "#shuffleBy:", "#shuffled",
"#shuffledBy:"], "testing": ["#beginsWith:", "#beginsWithAnyOf:", "#endsWith:",
"#endsWithAnyOf:", "#includes:", "#isSequenceable"]}, "superclass":
{"className": "Collection", "definition": "Object subclass: #Collection\n
\tinstanceVariableNames: ''\n\tclassVariableNames: ''\n\tpoolDictionaries: ''\n
\tcategory: 'Collections-Abstract'", "comment": "I am the abstract superclass of all
classes that represent a group of elements.", "categorizedSelectors": {"accessing":
["#any:", "#any:as:", "#anyOne", "#atRandom", "#atRandom:", "#capacity",
"#removeAtRandom", "#size", "#skip:", "#take:"], "adapting":
["#adaptToCollection:andSend:", "#adaptToComplex:andSend:",
"#adaptToNumber:andSend:", "#adaptToPoint:andSend:",
"#adaptToString:andSend:"], "adding": ["#add:", "#add:withOccurrences:",
"#addAll:", "#addAllFirstTo:", "#addIfNotPresent:"], "arithmetic": ["#*", "#**", "#+",
"#-", "#\/", "#\/\/", "#\\\\", "#raisedTo:"], "as yet unclassified":
["#browseMethodVersions", "#browseMethods", "#browseRankedMethods",
"#closeTo:", "#random:sample:", "#randomSample:", "#sesqIndexedVariables"],
"comparing": ["#hash"], "converting": ["#asArray", "#asBag", "#asByteArray",
"#asCharacterSet", "#asCollection", "#asIdentitySet", "#asOrderedCollection",
"#asSet", "#asSortedArray", "#asSortedCollection", "#asSortedCollection:",
"#histogramOf:", "#topologicallySortedUsing:"], "copying": ["#,", "#copyWith:",
"#copyWithDependent:", "#copyWithout:", "#copyWithoutAll:",
"#copyWithoutDuplicates", "#withoutDuplicates"], "enumerating": ["#allSatisfy:",
"#anySatisfy:", "#associationsDo:", "#collect:", "#collect:as:", "#collect:into:",
"#collect:thenDo:", "#collect:thenSelect:", "#concurrentCollect:", "#count:",
"#detect:", "#detect:ifFound:", "#detect:ifFound:ifNone:", "#detect:ifNone:",
"#detectMax:", "#detectMin:", "#detectSum:", "#do:", "#do:displayingProgress:",
"#do:displayingProgress:every:", "#do:separatedBy:", "#do:without:",
"#findFirstInByteString:startingAt:", "#fold:", "#gather:", "#groupBy:",
"#groupBy:having:", "#inject:into:", "#noneSatisfy:", "#occurrencesOf:",
"#orderedGroupBy:", "#orderedGroupBy:having:", "#reduce:", "#reject:",
"#reject:thenDo:", "#select:", "#select:thenCollect:", "#select:thenDo:", "#try:",
"#try:ignore:", "#try:ignore:ifException:", "#try:ignore:logged:"], "filter streaming":
["#contents", "#flattenOnStream:", "#write:"], "math functions": ["#abs", "#arcCos",
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"#arcSin", "#arcTan", "#average", "#ceiling", "#cos", "#degreeCos", "#degreeSin",
"#exp", "#floor", "#ln", "#log", "#log2", "#max", "#min", "#minMax", "#negated",
"#range", "#reciprocal", "#roundTo:", "#rounded", "#sign", "#sin", "#sqrt",
"#squared", "#sum", "#tan", "#truncated"], "printing": ["#name",
"#printElementsOn:", "#printElementsOn:separatedBy:", "#printNameOn:",
"#printOn:", "#storeOn:"], "printing - obsolete": ["#asCommaString",
"#asCommaStringAnd", "#asStringOn:delimiter:", "#asStringOn:delimiter:last:",
"#printOn:delimiter:", "#printOn:delimiter:last:"], "private": ["#emptyCheck",
"#errorDifferentSize", "#errorEmptyCollection", "#errorKeyNotFound:",
"#errorNoMatch", "#errorNotFound:", "#errorNotKeyed", "#fillFrom:with:",
"#isOfSameSizeCheck:"], "removing": ["#remove:", "#remove:ifAbsent:",
"#removeAll", "#removeAll:", "#removeAllFoundIn:", "#removeAllSuchThat:"], "set
logic": ["#difference:", "#intersection:", "#symmetricDifference:", "#union:"],
"sorting": ["#sorted", "#sorted:", "#sortedSafely"], "testing": ["#contains:",
"#identityIncludes:", "#ifEmpty:", "#ifEmpty:ifNotEmpty:", "#ifEmpty:ifNotEmptyDo:",
"#ifNotEmpty:", "#ifNotEmpty:ifEmpty:", "#ifNotEmptyDo:",
"#ifNotEmptyDo:ifEmpty:", "#includes:", "#includesAllOf:", "#includesAnyOf:",
"#includesSubstringAnywhere:", "#isCollection", "#isEmpty", "#isEmptyOrNil",
"#isSequenceable", "#isSignedIntegerArray", "#isUnsignedIntegerArray", "#isZero",
"#notEmpty"]}, "superclass": {"className": "Object"}, "classSide": {"className":
"Collection class", "definition": "Collection class\n\tinstanceVariableNames: ''",
"categorizedSelectors": {"class initialization": ["#initialize"], "instance creation":
["#ofSize:", "#with:", "#with:with:", "#with:with:with:", "#with:with:with:with:",
"#with:with:with:with:with:", "#with:with:with:with:with:with:", "#withAll:"], "testing":
["#isAbstract"]}}}, "classSide": {"className": "SequenceableCollection class",
"definition": "SequenceableCollection class\n\tinstanceVariableNames: ''",
"categorizedSelectors": {"stream creation": ["#new:streamContents:",
"#streamContents:", "#streamContents:limitedTo:"], "testing": ["#isAbstract"]}}},
"classSide": {"className": "ArrayedCollection class", "definition":
"ArrayedCollection class\n\tinstanceVariableNames: ''", "categorizedSelectors":
{"instance creation": ["#new", "#new:withAll:", "#newFrom:", "#newFromStream:",
"#with:", "#with:with:", "#with:with:with:", "#with:with:with:with:",
"#with:with:with:with:with:", "#with:with:with:with:with:with:", "#withAll:"], "testing":
["#isAbstract"]}}}, "classSide": {"className": "Text class", "definition": "Text class\n
\tinstanceVariableNames: ''", "categorizedSelectors": {"class initialization":
["#initTextConstants", "#initialize", "#unload"], "file services":
["#fileReaderServicesForFile:suffix:", "#openFromHtmlStream:",
"#serviceOpenHtmlFile", "#services"], "filler text": ["#THEQUICKBROWNFOX",
"#allDigits", "#codeSample", "#forssmanSample", "#hamburgefonstiv",
"#loremIpsum", "#melvilleSample", "#symbolSample", "#textSample",
"#theQuickBrownFox"], "instance creation": ["#empty", "#fromString:", "#new:",
"#new:streamContents:", "#streamContents:", "#string:attribute:",
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"#string:attributes:", "#string:emphasis:"], "preferences": ["#ignoreStyleIfOnlyBold",
"#ignoreStyleIfOnlyBold:"], "private": ["#addAttribute:toArray:", "#string:runs:"]}}}

Assistant: How can I help you?

User: what attributes are in this text

Assistant:

[call_8A3JIAZ0NVQNHpQJRXSk9k5y] eval(expression="self runs collect: [:each |
each attributes]")

Tool: [call_8A3JIAZ0NVQNHpQJRXSk9k5y] {"error": {"description":
"MessageNotUnderstood: Array»attributes", "stack":
["Array(Object)»doesNotUnderstand: #attributes", "[] in Text»DoIt",
"RunArray(SequenceableCollection)»collect:", "Text»DoIt",
"Compiler»evaluateCue:ifFail:logged:", "Compiler»evaluateCue:ifFail:",
"Compiler»evaluate:in:to:notifying:ifFail:", "Compiler class»evaluate:for:notifying:",
"Compiler class»evaluate:for:"]}, "note": "A common source of
MessageNotUnderstood errors is that some brackets were missed to separate
messages from each other. E.g., `myArray select: [:x | x notNil] collect: [:x | x
customer]` must be corrected to `(myArray select: [:x | x notNil]) collect: [:x | x
customer]`, and `myArray select: [:x | x notNil] , otherArray` must be corrected to
`(myArray select: [:x | x notNil]) , otherArray`."}

Assistant:

[call_Jn24LniveyZexVuGH1xwYpJm] eval(expression="self runs collect: [:each |
each values collect: [:value | value printString]]")

Tool: [call_Jn24LniveyZexVuGH1xwYpJm] {"error": {"description":
"MessageNotUnderstood: Array»values", "stack":
["Array(Object)»doesNotUnderstand: #values", "[] in Text»DoIt",
"RunArray(SequenceableCollection)»collect:", "Text»DoIt",
"Compiler»evaluateCue:ifFail:logged:", "Compiler»evaluateCue:ifFail:",
"Compiler»evaluate:in:to:notifying:ifFail:", "Compiler class»evaluate:for:notifying:",
"Compiler class»evaluate:for:"]}, "note": "A common source of
MessageNotUnderstood errors is that some brackets were missed to separate
messages from each other. E.g., `myArray select: [:x | x notNil] collect: [:x | x
customer]` must be corrected to `(myArray select: [:x | x notNil]) collect: [:x | x
customer]`, and `myArray select: [:x | x notNil] , otherArray` must be corrected to
`(myArray select: [:x | x notNil]) , otherArray`."}
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Assistant:

[call_VIwTxLDqag8Hi1Bec9za9ekY] eval(expression="self runs runs collect:
[:each | each printString]")

Tool: [call_VIwTxLDqag8Hi1Bec9za9ekY] {"result": "#('3' '1' '1')"}

Assistant:

[call_xfLI0uvtnVxobImm6ZxacNCT] eval(expression="self runs values collect:
[:each | each printString]")

Tool: [call_xfLI0uvtnVxobImm6ZxacNCT] {"result": "#('{a TextEmphasis code: 1}'
'#()' '{a TextEmphasis code: 2}')"}

Assistant: The text contains the following attributes:
- TextEmphasis with code 1
- An empty attribute set
- TextEmphasis with code 2

User: what do the codes mean

Assistant:

[call_6g7ppl95rzkaM4slw83iiSBw] browseClass(className="TextEmphasis")

Tool: [call_6g7ppl95rzkaM4slw83iiSBw] {"className": "TextEmphasis",
"definition": "TextAttribute subclass: #TextEmphasis\n\tinstanceVariableNames:
'emphasisCode setMode'\n\tclassVariableNames: ''\n\tpoolDictionaries: ''\n
\tcategory: 'Collections-Text'", "comment": "A TextEmphasis, encodes a
characteristic applicable to all fonts. The encoding is as follows:\n\t1\tbold\n\t2
\titallic\n\t4\tunderlined\n\t8\tnarrow\n\t16\tstruck out", "categorizedSelectors":
{"accessing": ["#emphasisCode", "#emphasizeScanner:", "#set"], "comparing":
["#=", "#hash"], "fileIn\/fileOut": ["#writeScanOn:"], "html": ["#closeHtmlOn:",
"#openHtmlOn:"], "initialize-release": ["#emphasisCode:", "#turnOff"], "printing":
["#printOn:"], "testing": ["#dominatedByCmd0", "#dominates:"]}, "superclass":
{"className": "TextAttribute", "definition": "Object subclass: #TextAttribute\n
\tinstanceVariableNames: ''\n\tclassVariableNames: ''\n\tpoolDictionaries: ''\n
\tcategory: 'Collections-Text'", "comment": "Tells a piece of text to be a certain way.
\n\nSelect text, press Command-6, choose a attribute. If selected text is of the form
\n\tHi There<Smalltalk beep>\nthe part in angle brackets is saved for action, and
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the Hi There appears in the paragraph. If selection has no angle brackets, use the
whole thing as both the text and the action.\n\nTextDoIt – eval as a Smalltalk
expression (the part in angle brackets)\n\nTextLink – Show a method, class
comment, class hierarchy, or class defintion.\n\t<Point extent:>, <Point Comment>,
<Point Hierarchy>, or <Point Defintion> are what you type.\n\nTextURL – Show the
web page. <www.disney.com>\n\nThese attributes of text need to be stored on the
disk in a regular file-out. It is done in this form: \tHi There \n\tin the text, and a Run
containing dSmalltalk beep;;\n\tClick here to see the extent: \n\tin the text, and a
Run containing method LPoint extent:;\nSee RunArray class scanFrom: where
decoding is done.\n", "categorizedSelectors": {"accessing": ["#anchoredMorph",
"#emphasisCode", "#emphasizeScanner:", "#menu", "#menuFor:",
"#oldEmphasisCode:", "#set"], "fileIn\/fileOut": ["#writeScanOn:"], "html":
["#closeHtmlOn:", "#openHtmlOn:", "#shouldFormBlocks"], "initialize-release":
["#reset", "#turnOff"], "mouse events": ["#actOnClickFor:", "#actOnClickFor:in:",
"#actOnClickFor:in:at:", "#actOnClickFor:in:at:editor:"], "private":
["#forFontInStyle:do:"], "testing": ["#couldDeriveFromPrettyPrinting",
"#dominatedByCmd0", "#dominates:", "#isKern", "#isOblivious",
"#isTextAlignment", "#isTextFontChange", "#isTextIndent", "#mayActOnClick",
"#mayBeExtended"]}, "superclass": {"className": "Object"}, "classSide":
{"className": "TextAttribute class", "definition": "TextAttribute class\n
\tinstanceVariableNames: ''", "categorizedSelectors": {"fileIn\/Out": ["#classFor:",
"#consumeIdentifierFrom:", "#scanCharacter", "#scanCharacters", "#scanFrom:"],
"instance creation": ["#newFrom:"]}}}, "classSide": {"className": "TextEmphasis
class", "definition": "TextEmphasis class\n\tinstanceVariableNames: ''",
"categorizedSelectors": {"fileIn\/Out": ["#consumeIdentifierFrom:",
"#scanCharacters", "#scanFrom:"], "instance creation": ["#bold", "#italic",
"#narrow", "#normal", "#struckOut", "#underlined"]}}}

Assistant: The codes for TextEmphasis mean the following:
- 1: bold
- 2: italic
- 4: underlined
- 8: narrow
- 16: struck out

User: multiple different ways to make self all italic? answer only code!

Assistant:

[call_NY8slOsAYQrCmiCgRD89Pvk7] eval(expression="self asText addAttribute:
TextEmphasis italic")
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B. Example Conversation Log of the Exploratory Programming Agent

[call_5G9LNqbEmziGhP36kJXhHMRI] eval(expression="self addAttribute:
TextEmphasis italic from: 1 to: self size")
[call_J3VFBGnQaDUU8FaFAtqdIS4W] eval(expression="Text string: self string
attribute: TextEmphasis italic")

Tool: [call_NY8slOsAYQrCmiCgRD89Pvk7] {"result": "a Text for 'ABCDE'"}

Tool: [call_5G9LNqbEmziGhP36kJXhHMRI] {"result": "a Text for 'ABCDE'"}

Tool: [call_J3VFBGnQaDUU8FaFAtqdIS4W] {"result": "a Text for 'ABCDE'"}

Assistant:
- self addAttribute: TextEmphasis italic
- self addAttribute: TextEmphasis italic from: 1 to: self size
- Text string: self string attribute: TextEmphasis italic
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C. Recommendations for Tool

Developers

Here, we provide practical recommendations for tool developers who consider
integrating semantic technologies or AI into programming systems.

Remark. Note that this collection is based solely on our subjective
experiences and challenges from this work. It does not aim to be ex-
haustive, align with best practices, or rely on significant evidence from
other work.

1. Consider the limited accuracy of semantic technologies. Before designing a
new tool or interaction, prototype critical invocations of language models in a
playground and approximate a minimum viable configuration there (such as
input data, prompts, or hyperparameters).

Make sure to evaluate whether model responses are sufficiently reasonable,
correct, and useful for the intended applications. Communicate the risk of
hallucinations to programmers.

2. Design means for bidirectional cooperation. Share comprehensive context
and artifacts of programmers with semantic technologies to enable conceptual
support by the system. Allow programmers to intervene in the work of seman-
tic agents by letting them inspect their internal steps (such as inner monologue,
function calling, and selected context), provide feedback or request changes,
and choose between multiple options.

Explaining the behavior of large language models at different levels may
be challenging, but it can benefit both programmers (for validating responses
and building up on them) and tool developers (for evaluating and debugging
semantic applications).

3. Display the progress and cost of semantic operations. Show progress bars or
stream responses from LLMs continuously to reduce visible latencies. Provide
easy access to monitor or predict the financial cost of semantic tools, or
implement rate limits to avoid fear of unforeseen expenses.

4. Optimize semantic applications. Favor smaller, more efficient, and open-
source language models when possible. Systematically tune LLM prompts
and preprocess documents before embedding them to improve structure and
reduce size. Consider fine-tuning language models for specific use cases.
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C. Recommendations for Tool Developers

5. Collect data for training and evaluation early on. Logging all requests and
responses from language models or semantic tools even in an early stage of
prototypes can create a valuable asset for discussing prompt-tuning decisions,
avoiding model drift, or fine-tuning models later.

6. Pay attention to ethical and legal concerns. Bear in mind disadvantages of
large language models such as unsafe biases, high resource consumption, and
unfair practices along their supply chain, and favor responsible and sustainable
options. Respect applicable laws and liabilities such as privacy, intellectual
property, and accountability by requiring programmers to opt in for semantic
features, informing them about data collection, transfer, and usage and their
rights, and anonymizing any collected data.

In the practice of many programming tools, tool developers can avoid most
legal responsibilities by requiring programmers to build or run applications
from source and bring their own API keys.

7. Consider traditional implementations. While ideating and prototyping new
tools or features, see semantic technologies as a placeholder for any type of
implementation. Discuss whether required functionalities can be best served
by traditional algorithms and heuristics (such as parsers or decision trees),
human interactions (e.g., by requesting brief annotations from programmers),
or semantic technologies (when complex reasoning, creativity, or common-
sense knowledge is required).
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