#endif
#include "netdissect.h"
-#include "strtoaddr.h"
#include "extract.h"
+#ifdef HAVE_LIBCRYPTO
+#include "strtoaddr.h"
#include "ascii_strcasecmp.h"
+#endif
#include "ip.h"
#include "ip6.h"
#ifdef HAVE_LIBCRYPTO
union inaddr_u {
- struct in_addr in4;
- struct in6_addr in6;
+ nd_ipv4 in4;
+ nd_ipv6 in6;
};
struct sa_list {
struct sa_list *next;
}
#endif
-#ifdef HAVE_EVP_CIPHERINIT_EX
+#ifdef HAVE_EVP_DECRYPTINIT_EX
/*
- * Initialize the cipher by calling EVP_CipherInit_ex(), because
- * calling EVP_CipherInit() will reset the cipher context, clearing
+ * Initialize the cipher by calling EVP_DecryptInit_ex(), because
+ * calling EVP_DecryptInit() will reset the cipher context, clearing
* the cipher, so calling it twice, with the second call having a
- * null cipher, will clear the already-set cipher. EVP_CipherInit_ex(),
+ * null cipher, will clear the already-set cipher. EVP_DecryptInit_ex(),
* however, won't reset the cipher context, so you can use it to specify
- * the IV in a second call after a first call to EVP_CipherInit_ex()
+ * the IV in a second call after a first call to EVP_DecryptInit_ex()
* to set the cipher and the key.
*
* XXX - is there some reason why we need to make two calls?
static int
set_cipher_parameters(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key,
- const unsigned char *iv, int enc)
+ const unsigned char *iv)
{
- return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
+ return EVP_DecryptInit_ex(ctx, cipher, NULL, key, iv);
}
#else
/*
- * Initialize the cipher by calling EVP_CipherInit(), because we don't
- * have EVP_CipherInit_ex(); we rely on it not trashing the context.
+ * Initialize the cipher by calling EVP_DecryptInit(), because we don't
+ * have EVP_DecryptInit_ex(); we rely on it not trashing the context.
*/
static int
set_cipher_parameters(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key,
- const unsigned char *iv, int enc)
+ const unsigned char *iv)
{
- return EVP_CipherInit(ctx, cipher, key, iv, enc);
+ return EVP_DecryptInit(ctx, cipher, key, iv);
}
#endif
+static u_char *
+do_decrypt(netdissect_options *ndo, const char *caller, struct sa_list *sa,
+ const u_char *iv, const u_char *ct, unsigned int ctlen)
+{
+ EVP_CIPHER_CTX *ctx;
+ unsigned int block_size;
+ unsigned int ptlen;
+ u_char *pt;
+ int len;
+
+ ctx = EVP_CIPHER_CTX_new();
+ if (ctx == NULL) {
+ /*
+ * Failed to initialize the cipher context.
+ * From a look at the OpenSSL code, this appears to
+ * mean "couldn't allocate memory for the cipher context";
+ * note that we're not passing any parameters, so there's
+ * not much else it can mean.
+ */
+ (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
+ "%s: can't allocate memory for cipher context", caller);
+ return NULL;
+ }
+
+ if (set_cipher_parameters(ctx, sa->evp, sa->secret, NULL) < 0) {
+ EVP_CIPHER_CTX_free(ctx);
+ (*ndo->ndo_warning)(ndo, "%s: espkey init failed", caller);
+ return NULL;
+ }
+ if (set_cipher_parameters(ctx, NULL, NULL, iv) < 0) {
+ EVP_CIPHER_CTX_free(ctx);
+ (*ndo->ndo_warning)(ndo, "%s: IV init failed", caller);
+ return NULL;
+ }
+
+ /*
+ * At least as I read RFC 5996 section 3.14 and RFC 4303 section 2.4,
+ * if the cipher has a block size of which the ciphertext's size must
+ * be a multiple, the payload must be padded to make that happen, so
+ * the ciphertext length must be a multiple of the block size. Fail
+ * if that's not the case.
+ */
+ block_size = (unsigned int)EVP_CIPHER_CTX_block_size(ctx);
+ if ((ctlen % block_size) != 0) {
+ EVP_CIPHER_CTX_free(ctx);
+ (*ndo->ndo_warning)(ndo,
+ "%s: ciphertext size %u is not a multiple of the cipher block size %u",
+ caller, ctlen, block_size);
+ return NULL;
+ }
+
+ /*
+ * Attempt to allocate a buffer for the decrypted data, because
+ * we can't decrypt on top of the input buffer.
+ */
+ ptlen = ctlen;
+ pt = (u_char *)malloc(ptlen);
+ if (pt == NULL) {
+ EVP_CIPHER_CTX_free(ctx);
+ (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
+ "%s: can't allocate memory for decryption buffer", caller);
+ return NULL;
+ }
+
+ /*
+ * The size of the ciphertext handed to us is a multiple of the
+ * cipher block size, so we don't need to worry about padding.
+ */
+ if (!EVP_CIPHER_CTX_set_padding(ctx, 0)) {
+ free(pt);
+ EVP_CIPHER_CTX_free(ctx);
+ (*ndo->ndo_warning)(ndo,
+ "%s: EVP_CIPHER_CTX_set_padding failed", caller);
+ return NULL;
+ }
+ if (!EVP_DecryptUpdate(ctx, pt, &len, ct, ctlen)) {
+ free(pt);
+ EVP_CIPHER_CTX_free(ctx);
+ (*ndo->ndo_warning)(ndo, "%s: EVP_DecryptUpdate failed",
+ caller);
+ return NULL;
+ }
+ EVP_CIPHER_CTX_free(ctx);
+ return pt;
+}
+
/*
* This will allocate a new buffer containing the decrypted data.
* It returns 1 on success and 0 on failure.
* anything in the old buffer. That will free the new buffer.
*/
USES_APPLE_DEPRECATED_API
-int esp_print_decrypt_buffer_by_ikev2(netdissect_options *ndo,
+int esp_decrypt_buffer_by_ikev2_print(netdissect_options *ndo,
int initiator,
const u_char spii[8],
const u_char spir[8],
struct sa_list *sa;
const u_char *iv;
const u_char *ct;
- unsigned int len;
- EVP_CIPHER_CTX *ctx;
- unsigned int block_size, buffer_size;
- u_char *input_buffer, *output_buffer;
- const u_char *pt;
+ unsigned int ctlen;
+ u_char *pt;
/* initiator arg is any non-zero value */
if(initiator) initiator=1;
end = end - sa->authlen;
iv = buf;
ct = iv + sa->ivlen;
- len = end-ct;
+ ctlen = end-ct;
if(end <= ct) return 0;
- ctx = EVP_CIPHER_CTX_new();
- if (ctx == NULL)
- return 0;
- if (set_cipher_parameters(ctx, sa->evp, sa->secret, NULL, 0) < 0) {
- (*ndo->ndo_warning)(ndo, "espkey init failed");
- return 0;
- }
- if (set_cipher_parameters(ctx, NULL, NULL, iv, 0) < 0) {
- (*ndo->ndo_warning)(ndo, "IV init failed");
- return 0;
- }
- /*
- * Allocate buffers for the encrypted and decrypted data.
- * Both buffers' sizes must be a multiple of the cipher block
- * size, and the output buffer must be separate from the input
- * buffer.
- */
- block_size = (unsigned int)EVP_CIPHER_CTX_block_size(ctx);
- buffer_size = len + (block_size - len % block_size);
-
- /*
- * Attempt to allocate the input buffer.
- */
- input_buffer = (u_char *)malloc(buffer_size);
- if (input_buffer == NULL) {
- EVP_CIPHER_CTX_free(ctx);
- (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
- "can't allocate memory for encrypted data buffer");
- }
- /*
- * Copy the input data to the encrypted data buffer, and pad it
- * with zeroes.
- */
- memcpy(input_buffer, ct, len);
- memset(input_buffer + len, 0, buffer_size - len);
-
- /*
- * Attempt to allocate the output buffer.
- */
- output_buffer = (u_char *)malloc(buffer_size);
- if (output_buffer == NULL) {
- free(input_buffer);
- EVP_CIPHER_CTX_free(ctx);
- (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
- "can't allocate memory for decryption buffer");
- }
- if (!EVP_Cipher(ctx, output_buffer, input_buffer, len)) {
- (*ndo->ndo_warning)(ndo, "EVP_Cipher failed");
+ pt = do_decrypt(ndo, "esp_decrypt_buffer_by_ikev2_print", sa, iv,
+ ct, ctlen);
+ if (pt == NULL)
return 0;
- }
- EVP_CIPHER_CTX_free(ctx);
-
- /*
- * Free the input buffer; we no longer need it.
- */
- free(input_buffer);
-
- /*
- * Get a pointer to the plaintext.
- */
- pt = output_buffer;
/*
* Switch to the output buffer for dissection, and save it
* on the buffer stack so it can be freed; our caller must
* pop it when done.
*/
- if (!nd_push_buffer(ndo, output_buffer, pt, pt + len)) {
- free(output_buffer);
+ if (!nd_push_buffer(ndo, pt, pt, pt + ctlen)) {
+ free(pt);
return 0;
}
}
*colon = '\0';
- if(ascii_strcasecmp(colon,"sha1") == 0 ||
- ascii_strcasecmp(colon,"md5") == 0) {
+ if(ascii_strcasecmp(decode,"sha1") == 0 ||
+ ascii_strcasecmp(decode,"md5") == 0) {
sa->authlen = 12;
}
return 1;
if (decode) {
/* skip any blank spaces */
- while (isspace((unsigned char)*decode))
+ while (*decode == ' ' || *decode == '\t' || *decode == '\r' || *decode == '\n')
decode++;
if(!espprint_decode_encalgo(ndo, decode, &sa1)) {
}
USES_APPLE_RST
-void esp_print_decodesecret(netdissect_options *ndo)
+void esp_decodesecret_print(netdissect_options *ndo)
{
char *line;
char *p;
const struct ip6_hdr *ip6 = NULL;
const u_char *iv;
u_int ivlen;
+ u_int payloadlen;
const u_char *ct;
- u_int ctlen;
- EVP_CIPHER_CTX *ctx;
- unsigned int block_size, buffer_size;
- u_char *input_buffer, *output_buffer;
- const u_char *pt;
- u_int ptlen;
+ u_char *pt;
u_int padlen;
u_int nh;
#endif
if (!ndo->ndo_espsecret)
return;
- esp_print_decodesecret(ndo);
+ esp_decodesecret_print(ndo);
}
if (ndo->ndo_sa_list_head == NULL)
* the beginning of the authentication data/integrity check
* value, i.e. right past the end of the ciphertext;
*/
- ctlen = ep - ct;
+ payloadlen = ep - ct;
if (sa->evp == NULL)
return;
return;
}
- ctx = EVP_CIPHER_CTX_new();
- if (ctx == NULL) {
- /*
- * Failed to initialize the cipher context.
- * From a look at the OpenSSL code, this appears to
- * mean "couldn't allocate memory for the cipher context";
- * note that we're not passing any parameters, so there's
- * not much else it can mean.
- */
- (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
- "esp_print: can't allocate memory for cipher context");
- }
-
- if (set_cipher_parameters(ctx, sa->evp, sa->secret, NULL, 0) < 0) {
- (*ndo->ndo_warning)(ndo, "espkey init failed");
+ pt = do_decrypt(ndo, "esp_print", sa, iv, ct, payloadlen);
+ if (pt == NULL)
return;
- }
-
- if (set_cipher_parameters(ctx, NULL, NULL, iv, 0) < 0) {
- (*ndo->ndo_warning)(ndo, "IV init failed");
- return;
- }
-
- /*
- * Allocate buffers for the encrypted and decrypted
- * data. Both buffers' sizes must be a multiple of
- * the cipher block size, and the output buffer must
- * be separate from the input buffer.
- */
- block_size = (unsigned int)EVP_CIPHER_CTX_block_size(ctx);
- buffer_size = ctlen + (block_size - ctlen % block_size);
-
- /*
- * Attempt to allocate the input buffer.
- */
- input_buffer = (u_char *)malloc(buffer_size);
- if (input_buffer == NULL) {
- EVP_CIPHER_CTX_free(ctx);
- (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
- "esp_print: can't allocate memory for encrypted data buffer");
- }
- /*
- * Copy the input data to the encrypted data buffer,
- * and pad it with zeroes.
- */
- memcpy(input_buffer, ct, ctlen);
- memset(input_buffer + ctlen, 0, buffer_size - ctlen);
-
- /*
- * Attempt to allocate the output buffer.
- */
- output_buffer = (u_char *)malloc(buffer_size);
- if (output_buffer == NULL) {
- free(input_buffer);
- EVP_CIPHER_CTX_free(ctx);
- (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
- "esp_print: can't allocate memory for decryption buffer");
- }
-
- if (!EVP_Cipher(ctx, output_buffer, input_buffer, ctlen)) {
- free(input_buffer);
- (*ndo->ndo_warning)(ndo, "EVP_Cipher failed");
- return;
- }
- free(input_buffer);
- EVP_CIPHER_CTX_free(ctx);
-
- /*
- * Pointer to the plaintext.
- */
- pt = output_buffer;
-
- /*
- * Length of the plaintext, which is the same as the length
- * of the ciphertext.
- */
- ptlen = ctlen;
/*
* Switch to the output buffer for dissection, and
* save it on the buffer stack so it can be freed.
*/
- if (!nd_push_buffer(ndo, output_buffer, pt, pt + ctlen)) {
- free(output_buffer);
+ ep = pt + payloadlen;
+ if (!nd_push_buffer(ndo, pt, pt, ep)) {
+ free(pt);
(*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
"esp_print: can't push buffer on buffer stack");
}
- ep = pt + ptlen;
/*
* Sanity check for pad length; if it, plus 2 for the pad
* "plaintext" is not what was being sent.
*/
padlen = GET_U_1(ep - 2);
- if (padlen + 2 > ptlen) {
+ if (padlen + 2 > payloadlen) {
nd_print_trunc(ndo);
return;
}
ND_PRINT(": ");
/* Now dissect the plaintext. */
- ip_print_demux(ndo, pt, ptlen - (padlen + 2), ver, fragmented,
+ ip_demux_print(ndo, pt, payloadlen - (padlen + 2), ver, fragmented,
ttl_hl, nh, bp2);
/* Pop the buffer, freeing it. */