3 * Fortress Technologies, Inc. All rights reserved.
4 * Charlie Lenahan (clenahan@fortresstech.com)
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 /* \summary: IEEE 802.11 printer */
29 #include "netdissect-stdinc.h"
33 #include "netdissect.h"
34 #include "addrtoname.h"
41 /* Lengths of 802.11 header components. */
42 #define IEEE802_11_FC_LEN 2
43 #define IEEE802_11_DUR_LEN 2
44 #define IEEE802_11_DA_LEN 6
45 #define IEEE802_11_SA_LEN 6
46 #define IEEE802_11_BSSID_LEN 6
47 #define IEEE802_11_RA_LEN 6
48 #define IEEE802_11_TA_LEN 6
49 #define IEEE802_11_ADDR1_LEN 6
50 #define IEEE802_11_SEQ_LEN 2
51 #define IEEE802_11_CTL_LEN 2
52 #define IEEE802_11_CARRIED_FC_LEN 2
53 #define IEEE802_11_HT_CONTROL_LEN 4
54 #define IEEE802_11_IV_LEN 3
55 #define IEEE802_11_KID_LEN 1
57 /* Frame check sequence length. */
58 #define IEEE802_11_FCS_LEN 4
60 /* Lengths of beacon components. */
61 #define IEEE802_11_TSTAMP_LEN 8
62 #define IEEE802_11_BCNINT_LEN 2
63 #define IEEE802_11_CAPINFO_LEN 2
64 #define IEEE802_11_LISTENINT_LEN 2
66 #define IEEE802_11_AID_LEN 2
67 #define IEEE802_11_STATUS_LEN 2
68 #define IEEE802_11_REASON_LEN 2
70 /* Length of previous AP in reassocation frame */
71 #define IEEE802_11_AP_LEN 6
73 #define T_MGMT 0x0 /* management */
74 #define T_CTRL 0x1 /* control */
75 #define T_DATA 0x2 /* data */
76 #define T_RESV 0x3 /* reserved */
78 #define ST_ASSOC_REQUEST 0x0
79 #define ST_ASSOC_RESPONSE 0x1
80 #define ST_REASSOC_REQUEST 0x2
81 #define ST_REASSOC_RESPONSE 0x3
82 #define ST_PROBE_REQUEST 0x4
83 #define ST_PROBE_RESPONSE 0x5
88 #define ST_DISASSOC 0xA
95 static const struct tok st_str
[] = {
96 { ST_ASSOC_REQUEST
, "Assoc Request" },
97 { ST_ASSOC_RESPONSE
, "Assoc Response" },
98 { ST_REASSOC_REQUEST
, "ReAssoc Request" },
99 { ST_REASSOC_RESPONSE
, "ReAssoc Response" },
100 { ST_PROBE_REQUEST
, "Probe Request" },
101 { ST_PROBE_RESPONSE
, "Probe Response" },
102 { ST_BEACON
, "Beacon" },
104 { ST_DISASSOC
, "Disassociation" },
105 { ST_AUTH
, "Authentication" },
106 { ST_DEAUTH
, "DeAuthentication" },
107 { ST_ACTION
, "Action" },
111 #define CTRL_CONTROL_WRAPPER 0x7
114 #define CTRL_PS_POLL 0xA
118 #define CTRL_CF_END 0xE
119 #define CTRL_END_ACK 0xF
121 static const struct tok ctrl_str
[] = {
122 { CTRL_CONTROL_WRAPPER
, "Control Wrapper" },
125 { CTRL_PS_POLL
, "Power Save-Poll" },
126 { CTRL_RTS
, "Request-To-Send" },
127 { CTRL_CTS
, "Clear-To-Send" },
128 { CTRL_ACK
, "Acknowledgment" },
129 { CTRL_CF_END
, "CF-End" },
130 { CTRL_END_ACK
, "CF-End+CF-Ack" },
134 #define DATA_DATA 0x0
135 #define DATA_DATA_CF_ACK 0x1
136 #define DATA_DATA_CF_POLL 0x2
137 #define DATA_DATA_CF_ACK_POLL 0x3
138 #define DATA_NODATA 0x4
139 #define DATA_NODATA_CF_ACK 0x5
140 #define DATA_NODATA_CF_POLL 0x6
141 #define DATA_NODATA_CF_ACK_POLL 0x7
143 #define DATA_QOS_DATA 0x8
144 #define DATA_QOS_DATA_CF_ACK 0x9
145 #define DATA_QOS_DATA_CF_POLL 0xA
146 #define DATA_QOS_DATA_CF_ACK_POLL 0xB
147 #define DATA_QOS_NODATA 0xC
148 #define DATA_QOS_CF_POLL_NODATA 0xE
149 #define DATA_QOS_CF_ACK_POLL_NODATA 0xF
152 * The subtype field of a data frame is, in effect, composed of 4 flag
153 * bits - CF-Ack, CF-Poll, Null (means the frame doesn't actually have
154 * any data), and QoS.
156 #define DATA_FRAME_IS_CF_ACK(x) ((x) & 0x01)
157 #define DATA_FRAME_IS_CF_POLL(x) ((x) & 0x02)
158 #define DATA_FRAME_IS_NULL(x) ((x) & 0x04)
159 #define DATA_FRAME_IS_QOS(x) ((x) & 0x08)
162 * Bits in the frame control field.
164 #define FC_VERSION(fc) ((fc) & 0x3)
165 #define FC_TYPE(fc) (((fc) >> 2) & 0x3)
166 #define FC_SUBTYPE(fc) (((fc) >> 4) & 0xF)
167 #define FC_TO_DS(fc) ((fc) & 0x0100)
168 #define FC_FROM_DS(fc) ((fc) & 0x0200)
169 #define FC_MORE_FLAG(fc) ((fc) & 0x0400)
170 #define FC_RETRY(fc) ((fc) & 0x0800)
171 #define FC_POWER_MGMT(fc) ((fc) & 0x1000)
172 #define FC_MORE_DATA(fc) ((fc) & 0x2000)
173 #define FC_PROTECTED(fc) ((fc) & 0x4000)
174 #define FC_ORDER(fc) ((fc) & 0x8000)
176 struct mgmt_header_t
{
178 nd_uint16_t duration
;
182 nd_uint16_t seq_ctrl
;
185 #define MGMT_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
186 IEEE802_11_DA_LEN+IEEE802_11_SA_LEN+\
187 IEEE802_11_BSSID_LEN+IEEE802_11_SEQ_LEN)
189 #define CAPABILITY_ESS(cap) ((cap) & 0x0001)
190 #define CAPABILITY_IBSS(cap) ((cap) & 0x0002)
191 #define CAPABILITY_CFP(cap) ((cap) & 0x0004)
192 #define CAPABILITY_CFP_REQ(cap) ((cap) & 0x0008)
193 #define CAPABILITY_PRIVACY(cap) ((cap) & 0x0010)
198 u_char ssid
[33]; /* 32 + 1 for null */
210 uint8_t text
[254]; /* 1-253 + 1 for null */
233 uint16_t max_duration
;
234 uint16_t dur_remaining
;
242 uint8_t bitmap_control
;
264 #define E_CHALLENGE 16
273 uint8_t timestamp
[IEEE802_11_TSTAMP_LEN
];
274 uint16_t beacon_interval
;
275 uint16_t listen_interval
;
276 uint16_t status_code
;
278 u_char ap
[IEEE802_11_AP_LEN
];
279 uint16_t reason_code
;
281 uint16_t auth_trans_seq_num
;
282 int challenge_present
;
283 struct challenge_t challenge
;
284 uint16_t capability_info
;
288 struct rates_t rates
;
299 struct ctrl_control_wrapper_hdr_t
{
301 nd_uint16_t duration
;
303 nd_uint16_t carried_fc
[IEEE802_11_CARRIED_FC_LEN
];
304 nd_uint16_t ht_control
[IEEE802_11_HT_CONTROL_LEN
];
307 #define CTRL_CONTROL_WRAPPER_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
308 IEEE802_11_ADDR1_LEN+\
309 IEEE802_11_CARRIED_FC_LEN+\
310 IEEE802_11_HT_CONTROL_LEN)
312 struct ctrl_rts_hdr_t
{
314 nd_uint16_t duration
;
319 #define CTRL_RTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
320 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN)
322 struct ctrl_cts_hdr_t
{
324 nd_uint16_t duration
;
328 #define CTRL_CTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
330 struct ctrl_ack_hdr_t
{
332 nd_uint16_t duration
;
336 #define CTRL_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
338 struct ctrl_ps_poll_hdr_t
{
345 #define CTRL_PS_POLL_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_AID_LEN+\
346 IEEE802_11_BSSID_LEN+IEEE802_11_TA_LEN)
348 struct ctrl_end_hdr_t
{
350 nd_uint16_t duration
;
355 #define CTRL_END_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
356 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
358 struct ctrl_end_ack_hdr_t
{
360 nd_uint16_t duration
;
365 #define CTRL_END_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
366 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
368 struct ctrl_ba_hdr_t
{
370 nd_uint16_t duration
;
374 #define CTRL_BA_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
376 struct ctrl_bar_hdr_t
{
385 #define CTRL_BAR_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
386 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN+\
387 IEEE802_11_CTL_LEN+IEEE802_11_SEQ_LEN)
398 #define IV_IV(iv) ((iv) & 0xFFFFFF)
399 #define IV_PAD(iv) (((iv) >> 24) & 0x3F)
400 #define IV_KEYID(iv) (((iv) >> 30) & 0x03)
402 #define PRINT_SSID(p) \
403 if (p.ssid_present) { \
405 fn_print_str(ndo, p.ssid.ssid); \
409 #define PRINT_RATE(_sep, _r, _suf) \
410 ND_PRINT("%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf)
411 #define PRINT_RATES(p) \
412 if (p.rates_present) { \
414 const char *sep = " ["; \
415 for (z = 0; z < p.rates.length ; z++) { \
416 PRINT_RATE(sep, p.rates.rate[z], \
417 (p.rates.rate[z] & 0x80 ? "*" : "")); \
420 if (p.rates.length != 0) \
421 ND_PRINT(" Mbit]"); \
424 #define PRINT_DS_CHANNEL(p) \
426 ND_PRINT(" CH: %u", p.ds.channel); \
428 CAPABILITY_PRIVACY(p.capability_info) ? ", PRIVACY" : "");
430 #define MAX_MCS_INDEX 76
435 * the MCS index (0-76);
437 * 0 for 20 MHz, 1 for 40 MHz;
439 * 0 for a long guard interval, 1 for a short guard interval.
441 static const float ieee80211_float_htrates
[MAX_MCS_INDEX
+1][2][2] = {
443 { /* 20 Mhz */ { 6.5f
, /* SGI */ 7.2f
, },
444 /* 40 Mhz */ { 13.5f
, /* SGI */ 15.0f
, },
448 { /* 20 Mhz */ { 13.0f
, /* SGI */ 14.4f
, },
449 /* 40 Mhz */ { 27.0f
, /* SGI */ 30.0f
, },
453 { /* 20 Mhz */ { 19.5f
, /* SGI */ 21.7f
, },
454 /* 40 Mhz */ { 40.5f
, /* SGI */ 45.0f
, },
458 { /* 20 Mhz */ { 26.0f
, /* SGI */ 28.9f
, },
459 /* 40 Mhz */ { 54.0f
, /* SGI */ 60.0f
, },
463 { /* 20 Mhz */ { 39.0f
, /* SGI */ 43.3f
, },
464 /* 40 Mhz */ { 81.0f
, /* SGI */ 90.0f
, },
468 { /* 20 Mhz */ { 52.0f
, /* SGI */ 57.8f
, },
469 /* 40 Mhz */ { 108.0f
, /* SGI */ 120.0f
, },
473 { /* 20 Mhz */ { 58.5f
, /* SGI */ 65.0f
, },
474 /* 40 Mhz */ { 121.5f
, /* SGI */ 135.0f
, },
478 { /* 20 Mhz */ { 65.0f
, /* SGI */ 72.2f
, },
479 /* 40 Mhz */ { 135.0f
, /* SGI */ 150.0f
, },
483 { /* 20 Mhz */ { 13.0f
, /* SGI */ 14.4f
, },
484 /* 40 Mhz */ { 27.0f
, /* SGI */ 30.0f
, },
488 { /* 20 Mhz */ { 26.0f
, /* SGI */ 28.9f
, },
489 /* 40 Mhz */ { 54.0f
, /* SGI */ 60.0f
, },
493 { /* 20 Mhz */ { 39.0f
, /* SGI */ 43.3f
, },
494 /* 40 Mhz */ { 81.0f
, /* SGI */ 90.0f
, },
498 { /* 20 Mhz */ { 52.0f
, /* SGI */ 57.8f
, },
499 /* 40 Mhz */ { 108.0f
, /* SGI */ 120.0f
, },
503 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
504 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
508 { /* 20 Mhz */ { 104.0f
, /* SGI */ 115.6f
, },
509 /* 40 Mhz */ { 216.0f
, /* SGI */ 240.0f
, },
513 { /* 20 Mhz */ { 117.0f
, /* SGI */ 130.0f
, },
514 /* 40 Mhz */ { 243.0f
, /* SGI */ 270.0f
, },
518 { /* 20 Mhz */ { 130.0f
, /* SGI */ 144.4f
, },
519 /* 40 Mhz */ { 270.0f
, /* SGI */ 300.0f
, },
523 { /* 20 Mhz */ { 19.5f
, /* SGI */ 21.7f
, },
524 /* 40 Mhz */ { 40.5f
, /* SGI */ 45.0f
, },
528 { /* 20 Mhz */ { 39.0f
, /* SGI */ 43.3f
, },
529 /* 40 Mhz */ { 81.0f
, /* SGI */ 90.0f
, },
533 { /* 20 Mhz */ { 58.5f
, /* SGI */ 65.0f
, },
534 /* 40 Mhz */ { 121.5f
, /* SGI */ 135.0f
, },
538 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
539 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
543 { /* 20 Mhz */ { 117.0f
, /* SGI */ 130.0f
, },
544 /* 40 Mhz */ { 243.0f
, /* SGI */ 270.0f
, },
548 { /* 20 Mhz */ { 156.0f
, /* SGI */ 173.3f
, },
549 /* 40 Mhz */ { 324.0f
, /* SGI */ 360.0f
, },
553 { /* 20 Mhz */ { 175.5f
, /* SGI */ 195.0f
, },
554 /* 40 Mhz */ { 364.5f
, /* SGI */ 405.0f
, },
558 { /* 20 Mhz */ { 195.0f
, /* SGI */ 216.7f
, },
559 /* 40 Mhz */ { 405.0f
, /* SGI */ 450.0f
, },
563 { /* 20 Mhz */ { 26.0f
, /* SGI */ 28.9f
, },
564 /* 40 Mhz */ { 54.0f
, /* SGI */ 60.0f
, },
568 { /* 20 Mhz */ { 52.0f
, /* SGI */ 57.8f
, },
569 /* 40 Mhz */ { 108.0f
, /* SGI */ 120.0f
, },
573 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
574 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
578 { /* 20 Mhz */ { 104.0f
, /* SGI */ 115.6f
, },
579 /* 40 Mhz */ { 216.0f
, /* SGI */ 240.0f
, },
583 { /* 20 Mhz */ { 156.0f
, /* SGI */ 173.3f
, },
584 /* 40 Mhz */ { 324.0f
, /* SGI */ 360.0f
, },
588 { /* 20 Mhz */ { 208.0f
, /* SGI */ 231.1f
, },
589 /* 40 Mhz */ { 432.0f
, /* SGI */ 480.0f
, },
593 { /* 20 Mhz */ { 234.0f
, /* SGI */ 260.0f
, },
594 /* 40 Mhz */ { 486.0f
, /* SGI */ 540.0f
, },
598 { /* 20 Mhz */ { 260.0f
, /* SGI */ 288.9f
, },
599 /* 40 Mhz */ { 540.0f
, /* SGI */ 600.0f
, },
603 { /* 20 Mhz */ { 0.0f
, /* SGI */ 0.0f
, }, /* not valid */
604 /* 40 Mhz */ { 6.0f
, /* SGI */ 6.7f
, },
608 { /* 20 Mhz */ { 39.0f
, /* SGI */ 43.3f
, },
609 /* 40 Mhz */ { 81.0f
, /* SGI */ 90.0f
, },
613 { /* 20 Mhz */ { 52.0f
, /* SGI */ 57.8f
, },
614 /* 40 Mhz */ { 108.0f
, /* SGI */ 120.0f
, },
618 { /* 20 Mhz */ { 65.0f
, /* SGI */ 72.2f
, },
619 /* 40 Mhz */ { 135.0f
, /* SGI */ 150.0f
, },
623 { /* 20 Mhz */ { 58.5f
, /* SGI */ 65.0f
, },
624 /* 40 Mhz */ { 121.5f
, /* SGI */ 135.0f
, },
628 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
629 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
633 { /* 20 Mhz */ { 97.5f
, /* SGI */ 108.3f
, },
634 /* 40 Mhz */ { 202.5f
, /* SGI */ 225.0f
, },
638 { /* 20 Mhz */ { 52.0f
, /* SGI */ 57.8f
, },
639 /* 40 Mhz */ { 108.0f
, /* SGI */ 120.0f
, },
643 { /* 20 Mhz */ { 65.0f
, /* SGI */ 72.2f
, },
644 /* 40 Mhz */ { 135.0f
, /* SGI */ 150.0f
, },
648 { /* 20 Mhz */ { 65.0f
, /* SGI */ 72.2f
, },
649 /* 40 Mhz */ { 135.0f
, /* SGI */ 150.0f
, },
653 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
654 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
658 { /* 20 Mhz */ { 91.0f
, /* SGI */ 101.1f
, },
659 /* 40 Mhz */ { 189.0f
, /* SGI */ 210.0f
, },
663 { /* 20 Mhz */ { 91.0f
, /* SGI */ 101.1f
, },
664 /* 40 Mhz */ { 189.0f
, /* SGI */ 210.0f
, },
668 { /* 20 Mhz */ { 104.0f
, /* SGI */ 115.6f
, },
669 /* 40 Mhz */ { 216.0f
, /* SGI */ 240.0f
, },
673 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
674 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
678 { /* 20 Mhz */ { 97.5f
, /* SGI */ 108.3f
, },
679 /* 40 Mhz */ { 202.5f
, /* SGI */ 225.0f
, },
683 { /* 20 Mhz */ { 97.5f
, /* SGI */ 108.3f
, },
684 /* 40 Mhz */ { 202.5f
, /* SGI */ 225.0f
, },
688 { /* 20 Mhz */ { 117.0f
, /* SGI */ 130.0f
, },
689 /* 40 Mhz */ { 243.0f
, /* SGI */ 270.0f
, },
693 { /* 20 Mhz */ { 136.5f
, /* SGI */ 151.7f
, },
694 /* 40 Mhz */ { 283.5f
, /* SGI */ 315.0f
, },
698 { /* 20 Mhz */ { 136.5f
, /* SGI */ 151.7f
, },
699 /* 40 Mhz */ { 283.5f
, /* SGI */ 315.0f
, },
703 { /* 20 Mhz */ { 156.0f
, /* SGI */ 173.3f
, },
704 /* 40 Mhz */ { 324.0f
, /* SGI */ 360.0f
, },
708 { /* 20 Mhz */ { 65.0f
, /* SGI */ 72.2f
, },
709 /* 40 Mhz */ { 135.0f
, /* SGI */ 150.0f
, },
713 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
714 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
718 { /* 20 Mhz */ { 91.0f
, /* SGI */ 101.1f
, },
719 /* 40 Mhz */ { 189.0f
, /* SGI */ 210.0f
, },
723 { /* 20 Mhz */ { 78.0f
, /* SGI */ 86.7f
, },
724 /* 40 Mhz */ { 162.0f
, /* SGI */ 180.0f
, },
728 { /* 20 Mhz */ { 91.0f
, /* SGI */ 101.1f
, },
729 /* 40 Mhz */ { 189.0f
, /* SGI */ 210.0f
, },
733 { /* 20 Mhz */ { 104.0f
, /* SGI */ 115.6f
, },
734 /* 40 Mhz */ { 216.0f
, /* SGI */ 240.0f
, },
738 { /* 20 Mhz */ { 117.0f
, /* SGI */ 130.0f
, },
739 /* 40 Mhz */ { 243.0f
, /* SGI */ 270.0f
, },
743 { /* 20 Mhz */ { 104.0f
, /* SGI */ 115.6f
, },
744 /* 40 Mhz */ { 216.0f
, /* SGI */ 240.0f
, },
748 { /* 20 Mhz */ { 117.0f
, /* SGI */ 130.0f
, },
749 /* 40 Mhz */ { 243.0f
, /* SGI */ 270.0f
, },
753 { /* 20 Mhz */ { 130.0f
, /* SGI */ 144.4f
, },
754 /* 40 Mhz */ { 270.0f
, /* SGI */ 300.0f
, },
758 { /* 20 Mhz */ { 130.0f
, /* SGI */ 144.4f
, },
759 /* 40 Mhz */ { 270.0f
, /* SGI */ 300.0f
, },
763 { /* 20 Mhz */ { 143.0f
, /* SGI */ 158.9f
, },
764 /* 40 Mhz */ { 297.0f
, /* SGI */ 330.0f
, },
768 { /* 20 Mhz */ { 97.5f
, /* SGI */ 108.3f
, },
769 /* 40 Mhz */ { 202.5f
, /* SGI */ 225.0f
, },
773 { /* 20 Mhz */ { 117.0f
, /* SGI */ 130.0f
, },
774 /* 40 Mhz */ { 243.0f
, /* SGI */ 270.0f
, },
778 { /* 20 Mhz */ { 136.5f
, /* SGI */ 151.7f
, },
779 /* 40 Mhz */ { 283.5f
, /* SGI */ 315.0f
, },
783 { /* 20 Mhz */ { 117.0f
, /* SGI */ 130.0f
, },
784 /* 40 Mhz */ { 243.0f
, /* SGI */ 270.0f
, },
788 { /* 20 Mhz */ { 136.5f
, /* SGI */ 151.7f
, },
789 /* 40 Mhz */ { 283.5f
, /* SGI */ 315.0f
, },
793 { /* 20 Mhz */ { 156.0f
, /* SGI */ 173.3f
, },
794 /* 40 Mhz */ { 324.0f
, /* SGI */ 360.0f
, },
798 { /* 20 Mhz */ { 175.5f
, /* SGI */ 195.0f
, },
799 /* 40 Mhz */ { 364.5f
, /* SGI */ 405.0f
, },
803 { /* 20 Mhz */ { 156.0f
, /* SGI */ 173.3f
, },
804 /* 40 Mhz */ { 324.0f
, /* SGI */ 360.0f
, },
808 { /* 20 Mhz */ { 175.5f
, /* SGI */ 195.0f
, },
809 /* 40 Mhz */ { 364.5f
, /* SGI */ 405.0f
, },
813 { /* 20 Mhz */ { 195.0f
, /* SGI */ 216.7f
, },
814 /* 40 Mhz */ { 405.0f
, /* SGI */ 450.0f
, },
818 { /* 20 Mhz */ { 195.0f
, /* SGI */ 216.7f
, },
819 /* 40 Mhz */ { 405.0f
, /* SGI */ 450.0f
, },
823 { /* 20 Mhz */ { 214.5f
, /* SGI */ 238.3f
, },
824 /* 40 Mhz */ { 445.5f
, /* SGI */ 495.0f
, },
828 static const char *auth_alg_text
[]={"Open System","Shared Key","EAP"};
829 #define NUM_AUTH_ALGS (sizeof(auth_alg_text) / sizeof(auth_alg_text[0]))
831 static const char *status_text
[] = {
832 "Successful", /* 0 */
833 "Unspecified failure", /* 1 */
834 "TDLS wakeup schedule rejected but alternative schedule "
836 "TDLS wakeup schedule rejected",/* 3 */
838 "Security disabled", /* 5 */
839 "Unacceptable lifetime", /* 6 */
840 "Not in same BSS", /* 7 */
843 "Cannot Support all requested capabilities in the Capability "
844 "Information field", /* 10 */
845 "Reassociation denied due to inability to confirm that association "
847 "Association denied due to reason outside the scope of this "
849 "Responding STA does not support the specified authentication "
850 "algorithm", /* 13 */
851 "Received an Authentication frame with authentication transaction "
852 "sequence number out of expected sequence", /* 14 */
853 "Authentication rejected because of challenge failure", /* 15 */
854 "Authentication rejected due to timeout waiting for next frame in "
856 "Association denied because AP is unable to handle "
857 "additional associated STAs", /* 17 */
858 "Association denied due to requesting STA not supporting "
859 "all of the data rates in the BSSBasicRateSet parameter, "
860 "the Basic HT-MCS Set field of the HT Operation "
861 "parameter, or the Basic VHT-MCS and NSS Set field in "
862 "the VHT Operation parameter", /* 18 */
863 "Association denied due to requesting STA not supporting "
864 "the short preamble option", /* 19 */
867 "Association request rejected because Spectrum Management "
868 "capability is required", /* 22 */
869 "Association request rejected because the information in the "
870 "Power Capability element is unacceptable", /* 23 */
871 "Association request rejected because the information in the "
872 "Supported Channels element is unacceptable", /* 24 */
873 "Association denied due to requesting STA not supporting "
874 "the Short Slot Time option", /* 25 */
876 "Association denied because the requested STA does not support HT "
878 "R0KH unreachable", /* 28 */
879 "Association denied because the requesting STA does not "
880 "support the phased coexistence operation (PCO) "
881 "transition time required by the AP", /* 29 */
882 "Association request rejected temporarily; try again "
884 "Robust management frame policy violation", /* 31 */
885 "Unspecified, QoS-related failure", /* 32 */
886 "Association denied because QoS AP or PCP has "
887 "insufficient bandwidth to handle another QoS "
889 "Association denied due to excessive frame loss rates and/or "
890 "poor conditions on current operating channel", /* 34 */
891 "Association (with QoS BSS) denied because the requesting STA "
892 "does not support the QoS facility", /* 35 */
894 "The request has been declined", /* 37 */
895 "The request has not been successful as one or more parameters "
896 "have invalid values", /* 38 */
897 "The allocation or TS has not been created because the request "
898 "cannot be honored; however, a suggested TSPEC/DMG TSPEC is "
899 "provided so that the initiating STA can attempt to set "
900 "another allocation or TS with the suggested changes to the "
901 "TSPEC/DMG TSPEC", /* 39 */
902 "Invalid element, i.e., an element defined in this standard "
903 "for which the content does not meet the specifications in "
905 "Invalid group cipher", /* 41 */
906 "Invalid pairwise cipher", /* 42 */
907 "Invalid AKMP", /* 43 */
908 "Unsupported RSNE version", /* 44 */
909 "Invalid RSNE capabilities", /* 45 */
910 "Cipher suite rejected because of security policy", /* 46 */
911 "The TS or allocation has not been created; however, the "
912 "HC or PCP might be capable of creating a TS or "
913 "allocation, in response to a request, after the time "
914 "indicated in the TS Delay element", /* 47 */
915 "Direct Link is not allowed in the BSS by policy", /* 48 */
916 "The Destination STA is not present within this BSS", /* 49 */
917 "The Destination STA is not a QoS STA", /* 50 */
919 "Association denied because the listen interval is "
920 "too large", /* 51 */
921 "Invalid FT Action frame count", /* 52 */
922 "Invalid pairwise master key identifier (PMKID)", /* 53 */
923 "Invalid MDE", /* 54 */
924 "Invalid FTE", /* 55 */
925 "Requested TCLAS processing is not supported by the AP "
927 "The AP or PCP has insufficient TCLAS processing "
928 "resources to satisfy the request", /* 57 */
929 "The TS has not been created because the request "
930 "cannot be honored; however, the HC or PCP suggests "
931 "that the STA transition to a different BSS to set up "
933 "GAS Advertisement Protocol not supported", /* 59 */
934 "No outstanding GAS request", /* 60 */
935 "GAS Response not received from the Advertisement "
937 "STA timed out waiting for GAS Query Response", /* 62 */
938 "LARGE GAS Response is larger than query response "
939 "length limit", /* 63 */
940 "Request refused because home network does not support "
942 "Advertisement Server in the network is not currently "
943 "reachable", /* 65 */
945 "Request refused due to permissions received via SSPN "
946 "interface", /* 67 */
947 "Request refused because the AP or PCP does not "
948 "support unauthenticated access", /* 68 */
952 "Invalid contents of RSNE", /* 72 */
953 "U-APSD coexistence is not supported", /* 73 */
954 "Requested U-APSD coexistence mode is not supported", /* 74 */
955 "Requested Interval/Duration value cannot be "
956 "supported with U-APSD coexistence", /* 75 */
957 "Authentication is rejected because an Anti-Clogging "
958 "Token is required", /* 76 */
959 "Authentication is rejected because the offered "
960 "finite cyclic group is not supported", /* 77 */
961 "The TBTT adjustment request has not been successful "
962 "because the STA could not find an alternative TBTT", /* 78 */
963 "Transmission failure", /* 79 */
964 "Requested TCLAS Not Supported", /* 80 */
965 "TCLAS Resources Exhausted", /* 81 */
966 "Rejected with Suggested BSS transition", /* 82 */
967 "Reject with recommended schedule", /* 83 */
968 "Reject because no wakeup schedule specified", /* 84 */
969 "Success, the destination STA is in power save mode", /* 85 */
970 "FST pending, in process of admitting FST session", /* 86 */
971 "Performing FST now", /* 87 */
972 "FST pending, gap(s) in block ack window", /* 88 */
973 "Reject because of U-PID setting", /* 89 */
976 "(Re)Association refused for some external reason", /* 92 */
977 "(Re)Association refused because of memory limits "
978 "at the AP", /* 93 */
979 "(Re)Association refused because emergency services "
980 "are not supported at the AP", /* 94 */
981 "GAS query response not yet received", /* 95 */
982 "Reject since the request is for transition to a "
983 "frequency band subject to DSE procedures and "
984 "FST Initiator is a dependent STA", /* 96 */
985 "Requested TCLAS processing has been terminated by "
987 "The TS schedule conflicts with an existing "
988 "schedule; an alternative schedule is provided", /* 98 */
989 "The association has been denied; however, one or "
990 "more Multi-band elements are included that can "
991 "be used by the receiving STA to join the BSS", /* 99 */
992 "The request failed due to a reservation conflict", /* 100 */
993 "The request failed due to exceeded MAF limit", /* 101 */
994 "The request failed due to exceeded MCCA track "
996 "Association denied because the information in the"
997 "Spectrum Management field is unacceptable", /* 103 */
998 "Association denied because the requesting STA "
999 "does not support VHT features", /* 104 */
1000 "Enablement denied", /* 105 */
1001 "Enablement denied due to restriction from an "
1002 "authorized GDB", /* 106 */
1003 "Authorization deenabled", /* 107 */
1005 #define NUM_STATUSES (sizeof(status_text) / sizeof(status_text[0]))
1007 static const char *reason_text
[] = {
1009 "Unspecified reason", /* 1 */
1010 "Previous authentication no longer valid", /* 2 */
1011 "Deauthenticated because sending STA is leaving (or has left) "
1012 "IBSS or ESS", /* 3 */
1013 "Disassociated due to inactivity", /* 4 */
1014 "Disassociated because AP is unable to handle all currently "
1015 " associated STAs", /* 5 */
1016 "Class 2 frame received from nonauthenticated STA", /* 6 */
1017 "Class 3 frame received from nonassociated STA", /* 7 */
1018 "Disassociated because sending STA is leaving "
1019 "(or has left) BSS", /* 8 */
1020 "STA requesting (re)association is not authenticated with "
1021 "responding STA", /* 9 */
1022 "Disassociated because the information in the Power Capability "
1023 "element is unacceptable", /* 10 */
1024 "Disassociated because the information in the Supported Channels "
1025 "element is unacceptable", /* 11 */
1026 "Disassociated due to BSS transition management", /* 12 */
1027 "Invalid element, i.e., an element defined in this standard for "
1028 "which the content does not meet the specifications "
1029 "in Clause 9", /* 13 */
1030 "Message integrity code (MIC) failure", /* 14 */
1031 "4-Way Handshake timeout", /* 15 */
1032 "Group key handshake timeout", /* 16 */
1033 "Information element in 4-Way Handshake different from (Re)Association"
1034 "Request/Probe Response/Beacon frame", /* 17 */
1035 "Invalid group cipher", /* 18 */
1036 "Invalid pairwise cipher", /* 19 */
1037 "Invalid AKMP", /* 20 */
1038 "Unsupported RSNE version", /* 21 */
1039 "Invalid RSNE capabilities", /* 22 */
1040 "IEEE 802.1X authentication failed", /* 23 */
1041 "Cipher suite rejected because of the security policy", /* 24 */
1042 "TDLS direct-link teardown due to TDLS peer STA "
1043 "unreachable via the TDLS direct link", /* 25 */
1044 "TDLS direct-link teardown for unspecified reason", /* 26 */
1045 "Disassociated because session terminated by SSP request",/* 27 */
1046 "Disassociated because of lack of SSP roaming agreement",/* 28 */
1047 "Requested service rejected because of SSP cipher suite or "
1048 "AKM requirement", /* 29 */
1049 "Requested service not authorized in this location", /* 30 */
1050 "TS deleted because QoS AP lacks sufficient bandwidth for this "
1051 "QoS STA due to a change in BSS service characteristics or "
1052 "operational mode (e.g. an HT BSS change from 40 MHz channel "
1053 "to 20 MHz channel)", /* 31 */
1054 "Disassociated for unspecified, QoS-related reason", /* 32 */
1055 "Disassociated because QoS AP lacks sufficient bandwidth for this "
1057 "Disassociated because of excessive number of frames that need to be "
1058 "acknowledged, but are not acknowledged due to AP transmissions "
1059 "and/or poor channel conditions", /* 34 */
1060 "Disassociated because STA is transmitting outside the limits "
1061 "of its TXOPs", /* 35 */
1062 "Requested from peer STA as the STA is leaving the BSS "
1063 "(or resetting)", /* 36 */
1064 "Requested from peer STA as it does not want to use the "
1065 "mechanism", /* 37 */
1066 "Requested from peer STA as the STA received frames using the "
1067 "mechanism for which a set up is required", /* 38 */
1068 "Requested from peer STA due to time out", /* 39 */
1069 "Reserved", /* 40 */
1070 "Reserved", /* 41 */
1071 "Reserved", /* 42 */
1072 "Reserved", /* 43 */
1073 "Reserved", /* 44 */
1074 "Peer STA does not support the requested cipher suite", /* 45 */
1075 "In a DLS Teardown frame: The teardown was initiated by the "
1076 "DLS peer. In a Disassociation frame: Disassociated because "
1077 "authorized access limit reached", /* 46 */
1078 "In a DLS Teardown frame: The teardown was initiated by the "
1079 "AP. In a Disassociation frame: Disassociated due to external "
1080 "service requirements", /* 47 */
1081 "Invalid FT Action frame count", /* 48 */
1082 "Invalid pairwise master key identifier (PMKID)", /* 49 */
1083 "Invalid MDE", /* 50 */
1084 "Invalid FTE", /* 51 */
1085 "Mesh peering canceled for unknown reasons", /* 52 */
1086 "The mesh STA has reached the supported maximum number of "
1087 "peer mesh STAs", /* 53 */
1088 "The received information violates the Mesh Configuration "
1089 "policy configured in the mesh STA profile", /* 54 */
1090 "The mesh STA has received a Mesh Peering Close frame "
1091 "requesting to close the mesh peering", /* 55 */
1092 "The mesh STA has resent dot11MeshMaxRetries Mesh "
1093 "Peering Open frames, without receiving a Mesh Peering "
1094 "Confirm frame", /* 56 */
1095 "The confirmTimer for the mesh peering instance times out", /* 57 */
1096 "The mesh STA fails to unwrap the GTK or the values in the "
1097 "wrapped contents do not match", /* 58 */
1098 "The mesh STA receives inconsistent information about the "
1099 "mesh parameters between mesh peering Management frames", /* 59 */
1100 "The mesh STA fails the authenticated mesh peering exchange "
1101 "because due to failure in selecting either the pairwise "
1102 "ciphersuite or group ciphersuite", /* 60 */
1103 "The mesh STA does not have proxy information for this "
1104 "external destination", /* 61 */
1105 "The mesh STA does not have forwarding information for this "
1106 "destination", /* 62 */
1107 "The mesh STA determines that the link to the next hop of an "
1108 "active path in its forwarding information is no longer "
1110 "The Deauthentication frame was sent because the MAC "
1111 "address of the STA already exists in the mesh BSS", /* 64 */
1112 "The mesh STA performs channel switch to meet regulatory "
1113 "requirements", /* 65 */
1114 "The mesh STA performs channel switching with unspecified "
1117 #define NUM_REASONS (sizeof(reason_text) / sizeof(reason_text[0]))
1120 wep_print(netdissect_options
*ndo
,
1127 ND_PRINT(" IV:%3x Pad %x KeyID %x", IV_IV(iv
), IV_PAD(iv
),
1136 parse_elements(netdissect_options
*ndo
,
1137 struct mgmt_body_t
*pbody
, const u_char
*p
, int offset
,
1142 struct challenge_t challenge
;
1143 struct rates_t rates
;
1149 * We haven't seen any elements yet.
1151 pbody
->challenge_present
= 0;
1152 pbody
->ssid_present
= 0;
1153 pbody
->rates_present
= 0;
1154 pbody
->ds_present
= 0;
1155 pbody
->cf_present
= 0;
1156 pbody
->tim_present
= 0;
1158 while (length
!= 0) {
1159 /* Make sure we at least have the element ID and length. */
1162 elementlen
= GET_U_1(p
+ offset
+ 1);
1164 /* Make sure we have the entire element. */
1165 if (length
< elementlen
+ 2)
1168 switch (GET_U_1(p
+ offset
)) {
1170 GET_CPY_BYTES(&ssid
, p
+offset
, 2);
1173 if (ssid
.length
!= 0) {
1174 if (ssid
.length
> sizeof(ssid
.ssid
) - 1)
1176 GET_CPY_BYTES(&ssid
.ssid
, p
+ offset
, ssid
.length
);
1177 offset
+= ssid
.length
;
1178 length
-= ssid
.length
;
1180 ssid
.ssid
[ssid
.length
] = '\0';
1182 * Present and not truncated.
1184 * If we haven't already seen an SSID IE,
1185 * copy this one, otherwise ignore this one,
1186 * so we later report the first one we saw.
1188 if (!pbody
->ssid_present
) {
1190 pbody
->ssid_present
= 1;
1194 GET_CPY_BYTES(&challenge
, p
+offset
, 2);
1197 if (challenge
.length
!= 0) {
1198 if (challenge
.length
>
1199 sizeof(challenge
.text
) - 1)
1201 GET_CPY_BYTES(&challenge
.text
, p
+offset
, challenge
.length
);
1202 offset
+= challenge
.length
;
1203 length
-= challenge
.length
;
1205 challenge
.text
[challenge
.length
] = '\0';
1207 * Present and not truncated.
1209 * If we haven't already seen a challenge IE,
1210 * copy this one, otherwise ignore this one,
1211 * so we later report the first one we saw.
1213 if (!pbody
->challenge_present
) {
1214 pbody
->challenge
= challenge
;
1215 pbody
->challenge_present
= 1;
1219 GET_CPY_BYTES(&challenge
.text
, p
+ offset
,
1221 GET_CPY_BYTES(&rates
, p
+ offset
, 2);
1224 if (rates
.length
!= 0) {
1225 if (rates
.length
> sizeof(rates
.rate
))
1227 GET_CPY_BYTES(&rates
.rate
, p
+ offset
, rates
.length
);
1228 offset
+= rates
.length
;
1229 length
-= rates
.length
;
1232 * Present and not truncated.
1234 * If we haven't already seen a rates IE,
1235 * copy this one if it's not zero-length,
1236 * otherwise ignore this one, so we later
1237 * report the first one we saw.
1239 * We ignore zero-length rates IEs as some
1240 * devices seem to put a zero-length rates
1241 * IE, followed by an SSID IE, followed by
1242 * a non-zero-length rates IE into frames,
1243 * even though IEEE Std 802.11-2007 doesn't
1244 * seem to indicate that a zero-length rates
1247 if (!pbody
->rates_present
&& rates
.length
!= 0) {
1248 pbody
->rates
= rates
;
1249 pbody
->rates_present
= 1;
1253 GET_CPY_BYTES(&ds
, p
+ offset
, 2);
1256 if (ds
.length
!= 1) {
1257 offset
+= ds
.length
;
1258 length
-= ds
.length
;
1261 ds
.channel
= GET_U_1(p
+ offset
);
1265 * Present and not truncated.
1267 * If we haven't already seen a DS IE,
1268 * copy this one, otherwise ignore this one,
1269 * so we later report the first one we saw.
1271 if (!pbody
->ds_present
) {
1273 pbody
->ds_present
= 1;
1277 GET_CPY_BYTES(&cf
, p
+ offset
, 2);
1280 if (cf
.length
!= 6) {
1281 offset
+= cf
.length
;
1282 length
-= cf
.length
;
1285 GET_CPY_BYTES(&cf
.count
, p
+ offset
, 6);
1289 * Present and not truncated.
1291 * If we haven't already seen a CF IE,
1292 * copy this one, otherwise ignore this one,
1293 * so we later report the first one we saw.
1295 if (!pbody
->cf_present
) {
1297 pbody
->cf_present
= 1;
1301 GET_CPY_BYTES(&tim
, p
+ offset
, 2);
1304 if (tim
.length
<= 3U) {
1305 offset
+= tim
.length
;
1306 length
-= tim
.length
;
1309 if (tim
.length
- 3U > sizeof(tim
.bitmap
))
1311 GET_CPY_BYTES(&tim
.count
, p
+ offset
, 3);
1315 GET_CPY_BYTES(tim
.bitmap
, p
+ offset
, tim
.length
- 3);
1316 offset
+= tim
.length
- 3;
1317 length
-= tim
.length
- 3;
1319 * Present and not truncated.
1321 * If we haven't already seen a TIM IE,
1322 * copy this one, otherwise ignore this one,
1323 * so we later report the first one we saw.
1325 if (!pbody
->tim_present
) {
1327 pbody
->tim_present
= 1;
1332 ND_PRINT("(1) unhandled element_id (%u) ",
1333 GET_U_1(p
+ offset
));
1335 offset
+= 2 + elementlen
;
1336 length
-= 2 + elementlen
;
1341 /* No problems found. */
1347 /*********************************************************************************
1348 * Print Handle functions for the management frame types
1349 *********************************************************************************/
1352 handle_beacon(netdissect_options
*ndo
,
1353 const u_char
*p
, u_int length
)
1355 struct mgmt_body_t pbody
;
1359 memset(&pbody
, 0, sizeof(pbody
));
1361 GET_CPY_BYTES(&pbody
.timestamp
, p
, IEEE802_11_TSTAMP_LEN
);
1362 offset
+= IEEE802_11_TSTAMP_LEN
;
1363 length
-= IEEE802_11_TSTAMP_LEN
;
1364 pbody
.beacon_interval
= GET_LE_U_2(p
+ offset
);
1365 offset
+= IEEE802_11_BCNINT_LEN
;
1366 length
-= IEEE802_11_BCNINT_LEN
;
1367 pbody
.capability_info
= GET_LE_U_2(p
+ offset
);
1368 offset
+= IEEE802_11_CAPINFO_LEN
;
1369 length
-= IEEE802_11_CAPINFO_LEN
;
1371 ret
= parse_elements(ndo
, &pbody
, p
, offset
, length
);
1376 CAPABILITY_ESS(pbody
.capability_info
) ? "ESS" : "IBSS");
1377 PRINT_DS_CHANNEL(pbody
);
1385 handle_assoc_request(netdissect_options
*ndo
,
1386 const u_char
*p
, u_int length
)
1388 struct mgmt_body_t pbody
;
1392 memset(&pbody
, 0, sizeof(pbody
));
1394 pbody
.capability_info
= GET_LE_U_2(p
);
1395 offset
+= IEEE802_11_CAPINFO_LEN
;
1396 length
-= IEEE802_11_CAPINFO_LEN
;
1397 pbody
.listen_interval
= GET_LE_U_2(p
+ offset
);
1398 offset
+= IEEE802_11_LISTENINT_LEN
;
1399 length
-= IEEE802_11_LISTENINT_LEN
;
1401 ret
= parse_elements(ndo
, &pbody
, p
, offset
, length
);
1411 handle_assoc_response(netdissect_options
*ndo
,
1412 const u_char
*p
, u_int length
)
1414 struct mgmt_body_t pbody
;
1418 memset(&pbody
, 0, sizeof(pbody
));
1420 pbody
.capability_info
= GET_LE_U_2(p
);
1421 offset
+= IEEE802_11_CAPINFO_LEN
;
1422 length
-= IEEE802_11_CAPINFO_LEN
;
1423 pbody
.status_code
= GET_LE_U_2(p
+ offset
);
1424 offset
+= IEEE802_11_STATUS_LEN
;
1425 length
-= IEEE802_11_STATUS_LEN
;
1426 pbody
.aid
= GET_LE_U_2(p
+ offset
);
1427 offset
+= IEEE802_11_AID_LEN
;
1428 length
-= IEEE802_11_AID_LEN
;
1430 ret
= parse_elements(ndo
, &pbody
, p
, offset
, length
);
1432 ND_PRINT(" AID(%x) :%s: %s", ((uint16_t)(pbody
.aid
<< 2 )) >> 2 ,
1433 CAPABILITY_PRIVACY(pbody
.capability_info
) ? " PRIVACY " : "",
1434 (pbody
.status_code
< NUM_STATUSES
1435 ? status_text
[pbody
.status_code
]
1444 handle_reassoc_request(netdissect_options
*ndo
,
1445 const u_char
*p
, u_int length
)
1447 struct mgmt_body_t pbody
;
1451 memset(&pbody
, 0, sizeof(pbody
));
1453 pbody
.capability_info
= GET_LE_U_2(p
);
1454 offset
+= IEEE802_11_CAPINFO_LEN
;
1455 length
-= IEEE802_11_CAPINFO_LEN
;
1456 pbody
.listen_interval
= GET_LE_U_2(p
+ offset
);
1457 offset
+= IEEE802_11_LISTENINT_LEN
;
1458 length
-= IEEE802_11_LISTENINT_LEN
;
1459 GET_CPY_BYTES(&pbody
.ap
, p
+offset
, IEEE802_11_AP_LEN
);
1460 offset
+= IEEE802_11_AP_LEN
;
1461 length
-= IEEE802_11_AP_LEN
;
1463 ret
= parse_elements(ndo
, &pbody
, p
, offset
, length
);
1466 ND_PRINT(" AP : %s", etheraddr_string(ndo
, pbody
.ap
));
1474 handle_reassoc_response(netdissect_options
*ndo
,
1475 const u_char
*p
, u_int length
)
1477 /* Same as a Association Response */
1478 return handle_assoc_response(ndo
, p
, length
);
1482 handle_probe_request(netdissect_options
*ndo
,
1483 const u_char
*p
, u_int length
)
1485 struct mgmt_body_t pbody
;
1489 memset(&pbody
, 0, sizeof(pbody
));
1491 ret
= parse_elements(ndo
, &pbody
, p
, offset
, length
);
1500 handle_probe_response(netdissect_options
*ndo
,
1501 const u_char
*p
, u_int length
)
1503 struct mgmt_body_t pbody
;
1507 memset(&pbody
, 0, sizeof(pbody
));
1509 GET_CPY_BYTES(&pbody
.timestamp
, p
, IEEE802_11_TSTAMP_LEN
);
1510 offset
+= IEEE802_11_TSTAMP_LEN
;
1511 length
-= IEEE802_11_TSTAMP_LEN
;
1512 pbody
.beacon_interval
= GET_LE_U_2(p
+ offset
);
1513 offset
+= IEEE802_11_BCNINT_LEN
;
1514 length
-= IEEE802_11_BCNINT_LEN
;
1515 pbody
.capability_info
= GET_LE_U_2(p
+ offset
);
1516 offset
+= IEEE802_11_CAPINFO_LEN
;
1517 length
-= IEEE802_11_CAPINFO_LEN
;
1519 ret
= parse_elements(ndo
, &pbody
, p
, offset
, length
);
1523 PRINT_DS_CHANNEL(pbody
);
1533 /* the frame body for ATIM is null. */
1538 handle_disassoc(netdissect_options
*ndo
,
1539 const u_char
*p
, u_int length
)
1541 struct mgmt_body_t pbody
;
1543 memset(&pbody
, 0, sizeof(pbody
));
1545 pbody
.reason_code
= GET_LE_U_2(p
);
1548 (pbody
.reason_code
< NUM_REASONS
)
1549 ? reason_text
[pbody
.reason_code
]
1558 handle_auth(netdissect_options
*ndo
,
1559 const u_char
*p
, u_int length
)
1561 struct mgmt_body_t pbody
;
1565 memset(&pbody
, 0, sizeof(pbody
));
1567 pbody
.auth_alg
= GET_LE_U_2(p
);
1570 pbody
.auth_trans_seq_num
= GET_LE_U_2(p
+ offset
);
1573 pbody
.status_code
= GET_LE_U_2(p
+ offset
);
1577 ret
= parse_elements(ndo
, &pbody
, p
, offset
, length
);
1579 if ((pbody
.auth_alg
== 1) &&
1580 ((pbody
.auth_trans_seq_num
== 2) ||
1581 (pbody
.auth_trans_seq_num
== 3))) {
1582 ND_PRINT(" (%s)-%x [Challenge Text] %s",
1583 (pbody
.auth_alg
< NUM_AUTH_ALGS
)
1584 ? auth_alg_text
[pbody
.auth_alg
]
1586 pbody
.auth_trans_seq_num
,
1587 ((pbody
.auth_trans_seq_num
% 2)
1588 ? ((pbody
.status_code
< NUM_STATUSES
)
1589 ? status_text
[pbody
.status_code
]
1593 ND_PRINT(" (%s)-%x: %s",
1594 (pbody
.auth_alg
< NUM_AUTH_ALGS
)
1595 ? auth_alg_text
[pbody
.auth_alg
]
1597 pbody
.auth_trans_seq_num
,
1598 (pbody
.auth_trans_seq_num
% 2)
1599 ? ((pbody
.status_code
< NUM_STATUSES
)
1600 ? status_text
[pbody
.status_code
]
1610 handle_deauth(netdissect_options
*ndo
,
1611 const uint8_t *src
, const u_char
*p
, u_int length
)
1613 struct mgmt_body_t pbody
;
1614 const char *reason
= NULL
;
1616 memset(&pbody
, 0, sizeof(pbody
));
1618 pbody
.reason_code
= GET_LE_U_2(p
);
1620 reason
= (pbody
.reason_code
< NUM_REASONS
)
1621 ? reason_text
[pbody
.reason_code
]
1624 if (ndo
->ndo_eflag
) {
1625 ND_PRINT(": %s", reason
);
1627 ND_PRINT(" (%s): %s", GET_ETHERADDR_STRING(src
), reason
);
1634 #define PRINT_HT_ACTION(v) (\
1635 (v) == 0 ? ND_PRINT("TxChWidth"): \
1636 (v) == 1 ? ND_PRINT("MIMOPwrSave"): \
1637 ND_PRINT("Act#%u", (v)))
1638 #define PRINT_BA_ACTION(v) (\
1639 (v) == 0 ? ND_PRINT("ADDBA Request"): \
1640 (v) == 1 ? ND_PRINT("ADDBA Response"): \
1641 (v) == 2 ? ND_PRINT("DELBA"): \
1642 ND_PRINT("Act#%u", (v)))
1643 #define PRINT_MESHLINK_ACTION(v) (\
1644 (v) == 0 ? ND_PRINT("Request"): \
1645 (v) == 1 ? ND_PRINT("Report"): \
1646 ND_PRINT("Act#%u", (v)))
1647 #define PRINT_MESHPEERING_ACTION(v) (\
1648 (v) == 0 ? ND_PRINT("Open"): \
1649 (v) == 1 ? ND_PRINT("Confirm"): \
1650 (v) == 2 ? ND_PRINT("Close"): \
1651 ND_PRINT("Act#%u", (v)))
1652 #define PRINT_MESHPATH_ACTION(v) (\
1653 (v) == 0 ? ND_PRINT("Request"): \
1654 (v) == 1 ? ND_PRINT("Report"): \
1655 (v) == 2 ? ND_PRINT("Error"): \
1656 (v) == 3 ? ND_PRINT("RootAnnouncement"): \
1657 ND_PRINT("Act#%u", (v)))
1659 #define PRINT_MESH_ACTION(v) (\
1660 (v) == 0 ? ND_PRINT("MeshLink"): \
1661 (v) == 1 ? ND_PRINT("HWMP"): \
1662 (v) == 2 ? ND_PRINT("Gate Announcement"): \
1663 (v) == 3 ? ND_PRINT("Congestion Control"): \
1664 (v) == 4 ? ND_PRINT("MCCA Setup Request"): \
1665 (v) == 5 ? ND_PRINT("MCCA Setup Reply"): \
1666 (v) == 6 ? ND_PRINT("MCCA Advertisement Request"): \
1667 (v) == 7 ? ND_PRINT("MCCA Advertisement"): \
1668 (v) == 8 ? ND_PRINT("MCCA Teardown"): \
1669 (v) == 9 ? ND_PRINT("TBTT Adjustment Request"): \
1670 (v) == 10 ? ND_PRINT("TBTT Adjustment Response"): \
1671 ND_PRINT("Act#%u", (v)))
1672 #define PRINT_MULTIHOP_ACTION(v) (\
1673 (v) == 0 ? ND_PRINT("Proxy Update"): \
1674 (v) == 1 ? ND_PRINT("Proxy Update Confirmation"): \
1675 ND_PRINT("Act#%u", (v)))
1676 #define PRINT_SELFPROT_ACTION(v) (\
1677 (v) == 1 ? ND_PRINT("Peering Open"): \
1678 (v) == 2 ? ND_PRINT("Peering Confirm"): \
1679 (v) == 3 ? ND_PRINT("Peering Close"): \
1680 (v) == 4 ? ND_PRINT("Group Key Inform"): \
1681 (v) == 5 ? ND_PRINT("Group Key Acknowledge"): \
1682 ND_PRINT("Act#%u", (v)))
1685 handle_action(netdissect_options
*ndo
,
1686 const uint8_t *src
, const u_char
*p
, u_int length
)
1688 if (ndo
->ndo_eflag
) {
1691 ND_PRINT(" (%s): ", GET_ETHERADDR_STRING(src
));
1693 switch (GET_U_1(p
)) {
1694 case 0: ND_PRINT("Spectrum Management Act#%u", GET_U_1(p
+ 1)); break;
1695 case 1: ND_PRINT("QoS Act#%u", GET_U_1(p
+ 1)); break;
1696 case 2: ND_PRINT("DLS Act#%u", GET_U_1(p
+ 1)); break;
1697 case 3: ND_PRINT("BA "); PRINT_BA_ACTION(GET_U_1(p
+ 1)); break;
1698 case 7: ND_PRINT("HT "); PRINT_HT_ACTION(GET_U_1(p
+ 1)); break;
1699 case 13: ND_PRINT("MeshAction "); PRINT_MESH_ACTION(GET_U_1(p
+ 1)); break;
1701 ND_PRINT("MultiohopAction ");
1702 PRINT_MULTIHOP_ACTION(GET_U_1(p
+ 1)); break;
1704 ND_PRINT("SelfprotectAction ");
1705 PRINT_SELFPROT_ACTION(GET_U_1(p
+ 1)); break;
1706 case 127: ND_PRINT("Vendor Act#%u", GET_U_1(p
+ 1)); break;
1708 ND_PRINT("Reserved(%u) Act#%u", GET_U_1(p
), GET_U_1(p
+ 1));
1717 /*********************************************************************************
1719 *********************************************************************************/
1723 mgmt_body_print(netdissect_options
*ndo
,
1724 uint16_t fc
, const uint8_t *src
, const u_char
*p
, u_int length
)
1726 ND_PRINT("%s", tok2str(st_str
, "Unhandled Management subtype(%x)", FC_SUBTYPE(fc
)));
1728 /* There may be a problem w/ AP not having this bit set */
1729 if (FC_PROTECTED(fc
))
1730 return wep_print(ndo
, p
);
1731 switch (FC_SUBTYPE(fc
)) {
1732 case ST_ASSOC_REQUEST
:
1733 return handle_assoc_request(ndo
, p
, length
);
1734 case ST_ASSOC_RESPONSE
:
1735 return handle_assoc_response(ndo
, p
, length
);
1736 case ST_REASSOC_REQUEST
:
1737 return handle_reassoc_request(ndo
, p
, length
);
1738 case ST_REASSOC_RESPONSE
:
1739 return handle_reassoc_response(ndo
, p
, length
);
1740 case ST_PROBE_REQUEST
:
1741 return handle_probe_request(ndo
, p
, length
);
1742 case ST_PROBE_RESPONSE
:
1743 return handle_probe_response(ndo
, p
, length
);
1745 return handle_beacon(ndo
, p
, length
);
1747 return handle_atim();
1749 return handle_disassoc(ndo
, p
, length
);
1751 return handle_auth(ndo
, p
, length
);
1753 return handle_deauth(ndo
, src
, p
, length
);
1755 return handle_action(ndo
, src
, p
, length
);
1762 /*********************************************************************************
1763 * Handles printing all the control frame types
1764 *********************************************************************************/
1767 ctrl_body_print(netdissect_options
*ndo
,
1768 uint16_t fc
, const u_char
*p
)
1770 ND_PRINT("%s", tok2str(ctrl_str
, "Unknown Ctrl Subtype", FC_SUBTYPE(fc
)));
1771 switch (FC_SUBTYPE(fc
)) {
1772 case CTRL_CONTROL_WRAPPER
:
1773 /* XXX - requires special handling */
1776 if (!ndo
->ndo_eflag
)
1777 ND_PRINT(" RA:%s TA:%s CTL(%x) SEQ(%u) ",
1778 GET_ETHERADDR_STRING(((const struct ctrl_bar_hdr_t
*)p
)->ra
),
1779 GET_ETHERADDR_STRING(((const struct ctrl_bar_hdr_t
*)p
)->ta
),
1780 GET_LE_U_2(((const struct ctrl_bar_hdr_t
*)p
)->ctl
),
1781 GET_LE_U_2(((const struct ctrl_bar_hdr_t
*)p
)->seq
));
1784 if (!ndo
->ndo_eflag
)
1786 GET_ETHERADDR_STRING(((const struct ctrl_ba_hdr_t
*)p
)->ra
));
1789 ND_PRINT(" AID(%x)",
1790 GET_LE_U_2(((const struct ctrl_ps_poll_hdr_t
*)p
)->aid
));
1793 if (!ndo
->ndo_eflag
)
1795 GET_ETHERADDR_STRING(((const struct ctrl_rts_hdr_t
*)p
)->ta
));
1798 if (!ndo
->ndo_eflag
)
1800 GET_ETHERADDR_STRING(((const struct ctrl_cts_hdr_t
*)p
)->ra
));
1803 if (!ndo
->ndo_eflag
)
1805 GET_ETHERADDR_STRING(((const struct ctrl_ack_hdr_t
*)p
)->ra
));
1808 if (!ndo
->ndo_eflag
)
1810 GET_ETHERADDR_STRING(((const struct ctrl_end_hdr_t
*)p
)->ra
));
1813 if (!ndo
->ndo_eflag
)
1815 GET_ETHERADDR_STRING(((const struct ctrl_end_ack_hdr_t
*)p
)->ra
));
1824 * Data Frame - Address field contents
1826 * To Ds | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4
1827 * 0 | 0 | DA | SA | BSSID | n/a
1828 * 0 | 1 | DA | BSSID | SA | n/a
1829 * 1 | 0 | BSSID | SA | DA | n/a
1830 * 1 | 1 | RA | TA | DA | SA
1834 * Function to get source and destination MAC addresses for a data frame.
1837 get_data_src_dst_mac(uint16_t fc
, const u_char
*p
, const uint8_t **srcp
,
1838 const uint8_t **dstp
)
1840 #define ADDR1 (p + 4)
1841 #define ADDR2 (p + 10)
1842 #define ADDR3 (p + 16)
1843 #define ADDR4 (p + 24)
1845 if (!FC_TO_DS(fc
)) {
1846 if (!FC_FROM_DS(fc
)) {
1847 /* not To DS and not From DS */
1851 /* not To DS and From DS */
1856 if (!FC_FROM_DS(fc
)) {
1857 /* From DS and not To DS */
1861 /* To DS and From DS */
1874 get_mgmt_src_dst_mac(const u_char
*p
, const uint8_t **srcp
, const uint8_t **dstp
)
1876 const struct mgmt_header_t
*hp
= (const struct mgmt_header_t
*) p
;
1885 * Print Header funcs
1889 data_header_print(netdissect_options
*ndo
, uint16_t fc
, const u_char
*p
)
1891 u_int subtype
= FC_SUBTYPE(fc
);
1893 if (DATA_FRAME_IS_CF_ACK(subtype
) || DATA_FRAME_IS_CF_POLL(subtype
) ||
1894 DATA_FRAME_IS_QOS(subtype
)) {
1896 if (DATA_FRAME_IS_CF_ACK(subtype
)) {
1897 if (DATA_FRAME_IS_CF_POLL(subtype
))
1898 ND_PRINT("Ack/Poll");
1902 if (DATA_FRAME_IS_CF_POLL(subtype
))
1905 if (DATA_FRAME_IS_QOS(subtype
))
1910 #define ADDR1 (p + 4)
1911 #define ADDR2 (p + 10)
1912 #define ADDR3 (p + 16)
1913 #define ADDR4 (p + 24)
1915 if (!FC_TO_DS(fc
) && !FC_FROM_DS(fc
)) {
1916 ND_PRINT("DA:%s SA:%s BSSID:%s ",
1917 GET_ETHERADDR_STRING(ADDR1
), GET_ETHERADDR_STRING(ADDR2
),
1918 GET_ETHERADDR_STRING(ADDR3
));
1919 } else if (!FC_TO_DS(fc
) && FC_FROM_DS(fc
)) {
1920 ND_PRINT("DA:%s BSSID:%s SA:%s ",
1921 GET_ETHERADDR_STRING(ADDR1
), GET_ETHERADDR_STRING(ADDR2
),
1922 GET_ETHERADDR_STRING(ADDR3
));
1923 } else if (FC_TO_DS(fc
) && !FC_FROM_DS(fc
)) {
1924 ND_PRINT("BSSID:%s SA:%s DA:%s ",
1925 GET_ETHERADDR_STRING(ADDR1
), GET_ETHERADDR_STRING(ADDR2
),
1926 GET_ETHERADDR_STRING(ADDR3
));
1927 } else if (FC_TO_DS(fc
) && FC_FROM_DS(fc
)) {
1928 ND_PRINT("RA:%s TA:%s DA:%s SA:%s ",
1929 GET_ETHERADDR_STRING(ADDR1
), GET_ETHERADDR_STRING(ADDR2
),
1930 GET_ETHERADDR_STRING(ADDR3
), GET_ETHERADDR_STRING(ADDR4
));
1940 mgmt_header_print(netdissect_options
*ndo
, const u_char
*p
)
1942 const struct mgmt_header_t
*hp
= (const struct mgmt_header_t
*) p
;
1944 ND_PRINT("BSSID:%s DA:%s SA:%s ",
1945 GET_ETHERADDR_STRING((hp
)->bssid
), GET_ETHERADDR_STRING((hp
)->da
),
1946 GET_ETHERADDR_STRING((hp
)->sa
));
1950 ctrl_header_print(netdissect_options
*ndo
, uint16_t fc
, const u_char
*p
)
1952 switch (FC_SUBTYPE(fc
)) {
1954 ND_PRINT(" RA:%s TA:%s CTL(%x) SEQ(%u) ",
1955 GET_ETHERADDR_STRING(((const struct ctrl_bar_hdr_t
*)p
)->ra
),
1956 GET_ETHERADDR_STRING(((const struct ctrl_bar_hdr_t
*)p
)->ta
),
1957 GET_LE_U_2(((const struct ctrl_bar_hdr_t
*)p
)->ctl
),
1958 GET_LE_U_2(((const struct ctrl_bar_hdr_t
*)p
)->seq
));
1962 GET_ETHERADDR_STRING(((const struct ctrl_ba_hdr_t
*)p
)->ra
));
1965 ND_PRINT("BSSID:%s TA:%s ",
1966 GET_ETHERADDR_STRING(((const struct ctrl_ps_poll_hdr_t
*)p
)->bssid
),
1967 GET_ETHERADDR_STRING(((const struct ctrl_ps_poll_hdr_t
*)p
)->ta
));
1970 ND_PRINT("RA:%s TA:%s ",
1971 GET_ETHERADDR_STRING(((const struct ctrl_rts_hdr_t
*)p
)->ra
),
1972 GET_ETHERADDR_STRING(((const struct ctrl_rts_hdr_t
*)p
)->ta
));
1976 GET_ETHERADDR_STRING(((const struct ctrl_cts_hdr_t
*)p
)->ra
));
1980 GET_ETHERADDR_STRING(((const struct ctrl_ack_hdr_t
*)p
)->ra
));
1983 ND_PRINT("RA:%s BSSID:%s ",
1984 GET_ETHERADDR_STRING(((const struct ctrl_end_hdr_t
*)p
)->ra
),
1985 GET_ETHERADDR_STRING(((const struct ctrl_end_hdr_t
*)p
)->bssid
));
1988 ND_PRINT("RA:%s BSSID:%s ",
1989 GET_ETHERADDR_STRING(((const struct ctrl_end_ack_hdr_t
*)p
)->ra
),
1990 GET_ETHERADDR_STRING(((const struct ctrl_end_ack_hdr_t
*)p
)->bssid
));
1993 /* We shouldn't get here - we should already have quit */
1999 extract_header_length(netdissect_options
*ndo
,
2004 switch (FC_TYPE(fc
)) {
2008 switch (FC_SUBTYPE(fc
)) {
2009 case CTRL_CONTROL_WRAPPER
:
2010 return CTRL_CONTROL_WRAPPER_HDRLEN
;
2012 return CTRL_BAR_HDRLEN
;
2014 return CTRL_BA_HDRLEN
;
2016 return CTRL_PS_POLL_HDRLEN
;
2018 return CTRL_RTS_HDRLEN
;
2020 return CTRL_CTS_HDRLEN
;
2022 return CTRL_ACK_HDRLEN
;
2024 return CTRL_END_HDRLEN
;
2026 return CTRL_END_ACK_HDRLEN
;
2028 ND_PRINT("unknown 802.11 ctrl frame subtype (%u)", FC_SUBTYPE(fc
));
2032 len
= (FC_TO_DS(fc
) && FC_FROM_DS(fc
)) ? 30 : 24;
2033 if (DATA_FRAME_IS_QOS(FC_SUBTYPE(fc
)))
2037 ND_PRINT("unknown 802.11 frame type (%u)", FC_TYPE(fc
));
2043 extract_mesh_header_length(netdissect_options
*ndo
, const u_char
*p
)
2045 return (GET_U_1(p
) &~ 3) ? 0 : 6*(1 + (GET_U_1(p
) & 3));
2049 * Print the 802.11 MAC header.
2052 ieee_802_11_hdr_print(netdissect_options
*ndo
,
2053 uint16_t fc
, const u_char
*p
, u_int hdrlen
,
2056 if (ndo
->ndo_vflag
) {
2057 if (FC_MORE_DATA(fc
))
2058 ND_PRINT("More Data ");
2059 if (FC_MORE_FLAG(fc
))
2060 ND_PRINT("More Fragments ");
2061 if (FC_POWER_MGMT(fc
))
2062 ND_PRINT("Pwr Mgmt ");
2066 ND_PRINT("Strictly Ordered ");
2067 if (FC_PROTECTED(fc
))
2068 ND_PRINT("Protected ");
2069 if (FC_TYPE(fc
) != T_CTRL
|| FC_SUBTYPE(fc
) != CTRL_PS_POLL
)
2071 GET_LE_U_2(((const struct mgmt_header_t
*)p
)->duration
));
2073 if (meshdrlen
!= 0) {
2074 const struct meshcntl_t
*mc
=
2075 (const struct meshcntl_t
*)(p
+ hdrlen
- meshdrlen
);
2076 u_int ae
= GET_U_1(mc
->flags
) & 3;
2078 ND_PRINT("MeshData (AE %u TTL %u seq %u", ae
,
2079 GET_U_1(mc
->ttl
), GET_LE_U_4(mc
->seq
));
2081 ND_PRINT(" A4:%s", GET_ETHERADDR_STRING(mc
->addr4
));
2083 ND_PRINT(" A5:%s", GET_ETHERADDR_STRING(mc
->addr5
));
2085 ND_PRINT(" A6:%s", GET_ETHERADDR_STRING(mc
->addr6
));
2089 switch (FC_TYPE(fc
)) {
2091 mgmt_header_print(ndo
, p
);
2094 ctrl_header_print(ndo
, fc
, p
);
2097 data_header_print(ndo
, fc
, p
);
2105 ieee802_11_print(netdissect_options
*ndo
,
2106 const u_char
*p
, u_int length
, u_int orig_caplen
, int pad
,
2110 u_int caplen
, hdrlen
, meshdrlen
;
2111 struct lladdr_info src
, dst
;
2114 ndo
->ndo_protocol
= "802.11";
2115 caplen
= orig_caplen
;
2116 /* Remove FCS, if present */
2117 if (length
< fcslen
) {
2118 nd_print_trunc(ndo
);
2122 if (caplen
> length
) {
2123 /* Amount of FCS in actual packet data, if any */
2124 fcslen
= caplen
- length
;
2126 ndo
->ndo_snapend
-= fcslen
;
2129 if (caplen
< IEEE802_11_FC_LEN
) {
2130 nd_print_trunc(ndo
);
2135 hdrlen
= extract_header_length(ndo
, fc
);
2137 /* Unknown frame type or control frame subtype; quit. */
2141 hdrlen
= roundup2(hdrlen
, 4);
2142 if (ndo
->ndo_Hflag
&& FC_TYPE(fc
) == T_DATA
&&
2143 DATA_FRAME_IS_QOS(FC_SUBTYPE(fc
))) {
2144 if(!ND_TTEST_1(p
+ hdrlen
)) {
2145 nd_print_trunc(ndo
);
2148 meshdrlen
= extract_mesh_header_length(ndo
, p
+ hdrlen
);
2149 hdrlen
+= meshdrlen
;
2153 if (caplen
< hdrlen
) {
2154 nd_print_trunc(ndo
);
2159 ieee_802_11_hdr_print(ndo
, fc
, p
, hdrlen
, meshdrlen
);
2162 * Go past the 802.11 header.
2168 src
.addr_string
= etheraddr_string
;
2169 dst
.addr_string
= etheraddr_string
;
2170 switch (FC_TYPE(fc
)) {
2172 get_mgmt_src_dst_mac(p
- hdrlen
, &src
.addr
, &dst
.addr
);
2173 if (!mgmt_body_print(ndo
, fc
, src
.addr
, p
, length
)) {
2174 nd_print_trunc(ndo
);
2179 if (!ctrl_body_print(ndo
, fc
, p
- hdrlen
)) {
2180 nd_print_trunc(ndo
);
2185 if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc
)))
2186 return hdrlen
; /* no-data frame */
2187 /* There may be a problem w/ AP not having this bit set */
2188 if (FC_PROTECTED(fc
)) {
2190 if (!wep_print(ndo
, p
)) {
2191 nd_print_trunc(ndo
);
2195 get_data_src_dst_mac(fc
, p
- hdrlen
, &src
.addr
, &dst
.addr
);
2196 llc_hdrlen
= llc_print(ndo
, p
, length
, caplen
, &src
, &dst
);
2197 if (llc_hdrlen
< 0) {
2199 * Some kinds of LLC packet we cannot
2200 * handle intelligently
2202 if (!ndo
->ndo_suppress_default_print
)
2203 ND_DEFAULTPRINT(p
, caplen
);
2204 llc_hdrlen
= -llc_hdrlen
;
2206 hdrlen
+= llc_hdrlen
;
2210 /* We shouldn't get here - we should already have quit */
2218 * This is the top level routine of the printer. 'p' points
2219 * to the 802.11 header of the packet, 'h->ts' is the timestamp,
2220 * 'h->len' is the length of the packet off the wire, and 'h->caplen'
2221 * is the number of bytes actually captured.
2224 ieee802_11_if_print(netdissect_options
*ndo
,
2225 const struct pcap_pkthdr
*h
, const u_char
*p
)
2227 ndo
->ndo_protocol
= "802.11";
2228 ndo
->ndo_ll_hdr_len
+= ieee802_11_print(ndo
, p
, h
->len
, h
->caplen
, 0, 0);
2232 /* $FreeBSD: src/sys/net80211/ieee80211_radiotap.h,v 1.5 2005/01/22 20:12:05 sam Exp $ */
2233 /* NetBSD: ieee802_11_radio.h,v 1.2 2006/02/26 03:04:03 dyoung Exp */
2236 * Copyright (c) 2003, 2004 David Young. All rights reserved.
2238 * Redistribution and use in source and binary forms, with or without
2239 * modification, are permitted provided that the following conditions
2241 * 1. Redistributions of source code must retain the above copyright
2242 * notice, this list of conditions and the following disclaimer.
2243 * 2. Redistributions in binary form must reproduce the above copyright
2244 * notice, this list of conditions and the following disclaimer in the
2245 * documentation and/or other materials provided with the distribution.
2246 * 3. The name of David Young may not be used to endorse or promote
2247 * products derived from this software without specific prior
2248 * written permission.
2250 * THIS SOFTWARE IS PROVIDED BY DAVID YOUNG ``AS IS'' AND ANY
2251 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
2252 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
2253 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DAVID
2254 * YOUNG BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
2255 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
2256 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2257 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2258 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2259 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2260 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
2264 /* A generic radio capture format is desirable. It must be
2265 * rigidly defined (e.g., units for fields should be given),
2266 * and easily extensible.
2268 * The following is an extensible radio capture format. It is
2269 * based on a bitmap indicating which fields are present.
2271 * I am trying to describe precisely what the application programmer
2272 * should expect in the following, and for that reason I tell the
2273 * units and origin of each measurement (where it applies), or else I
2274 * use sufficiently weaselly language ("is a monotonically nondecreasing
2275 * function of...") that I cannot set false expectations for lawyerly
2280 * The radio capture header precedes the 802.11 header.
2282 * Note well: all radiotap fields are little-endian.
2284 struct ieee80211_radiotap_header
{
2285 nd_uint8_t it_version
; /* Version 0. Only increases
2286 * for drastic changes,
2287 * introduction of compatible
2288 * new fields does not count.
2291 nd_uint16_t it_len
; /* length of the whole
2292 * header in bytes, including
2293 * it_version, it_pad,
2294 * it_len, and data fields.
2296 nd_uint32_t it_present
; /* A bitmap telling which
2297 * fields are present. Set bit 31
2298 * (0x80000000) to extend the
2299 * bitmap by another 32 bits.
2300 * Additional extensions are made
2301 * by setting bit 31.
2305 /* Name Data type Units
2306 * ---- --------- -----
2308 * IEEE80211_RADIOTAP_TSFT uint64_t microseconds
2310 * Value in microseconds of the MAC's 64-bit 802.11 Time
2311 * Synchronization Function timer when the first bit of the
2312 * MPDU arrived at the MAC. For received frames, only.
2314 * IEEE80211_RADIOTAP_CHANNEL 2 x uint16_t MHz, bitmap
2316 * Tx/Rx frequency in MHz, followed by flags (see below).
2317 * Note that IEEE80211_RADIOTAP_XCHANNEL must be used to
2318 * represent an HT channel as there is not enough room in
2321 * IEEE80211_RADIOTAP_FHSS uint16_t see below
2323 * For frequency-hopping radios, the hop set (first byte)
2324 * and pattern (second byte).
2326 * IEEE80211_RADIOTAP_RATE uint8_t 500kb/s or index
2328 * Tx/Rx data rate. If bit 0x80 is set then it represents an
2329 * an MCS index and not an IEEE rate.
2331 * IEEE80211_RADIOTAP_DBM_ANTSIGNAL int8_t decibels from
2332 * one milliwatt (dBm)
2334 * RF signal power at the antenna, decibel difference from
2337 * IEEE80211_RADIOTAP_DBM_ANTNOISE int8_t decibels from
2338 * one milliwatt (dBm)
2340 * RF noise power at the antenna, decibel difference from one
2343 * IEEE80211_RADIOTAP_DB_ANTSIGNAL uint8_t decibel (dB)
2345 * RF signal power at the antenna, decibel difference from an
2346 * arbitrary, fixed reference.
2348 * IEEE80211_RADIOTAP_DB_ANTNOISE uint8_t decibel (dB)
2350 * RF noise power at the antenna, decibel difference from an
2351 * arbitrary, fixed reference point.
2353 * IEEE80211_RADIOTAP_LOCK_QUALITY uint16_t unitless
2355 * Quality of Barker code lock. Unitless. Monotonically
2356 * nondecreasing with "better" lock strength. Called "Signal
2357 * Quality" in datasheets. (Is there a standard way to measure
2360 * IEEE80211_RADIOTAP_TX_ATTENUATION uint16_t unitless
2362 * Transmit power expressed as unitless distance from max
2363 * power set at factory calibration. 0 is max power.
2364 * Monotonically nondecreasing with lower power levels.
2366 * IEEE80211_RADIOTAP_DB_TX_ATTENUATION uint16_t decibels (dB)
2368 * Transmit power expressed as decibel distance from max power
2369 * set at factory calibration. 0 is max power. Monotonically
2370 * nondecreasing with lower power levels.
2372 * IEEE80211_RADIOTAP_DBM_TX_POWER int8_t decibels from
2373 * one milliwatt (dBm)
2375 * Transmit power expressed as dBm (decibels from a 1 milliwatt
2376 * reference). This is the absolute power level measured at
2379 * IEEE80211_RADIOTAP_FLAGS uint8_t bitmap
2381 * Properties of transmitted and received frames. See flags
2384 * IEEE80211_RADIOTAP_ANTENNA uint8_t antenna index
2386 * Unitless indication of the Rx/Tx antenna for this packet.
2387 * The first antenna is antenna 0.
2389 * IEEE80211_RADIOTAP_RX_FLAGS uint16_t bitmap
2391 * Properties of received frames. See flags defined below.
2393 * IEEE80211_RADIOTAP_XCHANNEL uint32_t bitmap
2395 * uint8_t channel number
2398 * Extended channel specification: flags (see below) followed by
2399 * frequency in MHz, the corresponding IEEE channel number, and
2400 * finally the maximum regulatory transmit power cap in .5 dBm
2401 * units. This property supersedes IEEE80211_RADIOTAP_CHANNEL
2402 * and only one of the two should be present.
2404 * IEEE80211_RADIOTAP_MCS uint8_t known
2408 * Bitset indicating which fields have known values, followed
2409 * by bitset of flag values, followed by the MCS rate index as
2413 * IEEE80211_RADIOTAP_AMPDU_STATUS u32, u16, u8, u8 unitless
2415 * Contains the AMPDU information for the subframe.
2417 * IEEE80211_RADIOTAP_VHT u16, u8, u8, u8[4], u8, u8, u16
2419 * Contains VHT information about this frame.
2421 * IEEE80211_RADIOTAP_VENDOR_NAMESPACE
2426 * The Vendor Namespace Field contains three sub-fields. The first
2427 * sub-field is 3 bytes long. It contains the vendor's IEEE 802
2428 * Organizationally Unique Identifier (OUI). The fourth byte is a
2429 * vendor-specific "namespace selector."
2432 enum ieee80211_radiotap_type
{
2433 IEEE80211_RADIOTAP_TSFT
= 0,
2434 IEEE80211_RADIOTAP_FLAGS
= 1,
2435 IEEE80211_RADIOTAP_RATE
= 2,
2436 IEEE80211_RADIOTAP_CHANNEL
= 3,
2437 IEEE80211_RADIOTAP_FHSS
= 4,
2438 IEEE80211_RADIOTAP_DBM_ANTSIGNAL
= 5,
2439 IEEE80211_RADIOTAP_DBM_ANTNOISE
= 6,
2440 IEEE80211_RADIOTAP_LOCK_QUALITY
= 7,
2441 IEEE80211_RADIOTAP_TX_ATTENUATION
= 8,
2442 IEEE80211_RADIOTAP_DB_TX_ATTENUATION
= 9,
2443 IEEE80211_RADIOTAP_DBM_TX_POWER
= 10,
2444 IEEE80211_RADIOTAP_ANTENNA
= 11,
2445 IEEE80211_RADIOTAP_DB_ANTSIGNAL
= 12,
2446 IEEE80211_RADIOTAP_DB_ANTNOISE
= 13,
2447 IEEE80211_RADIOTAP_RX_FLAGS
= 14,
2448 /* NB: gap for netbsd definitions */
2449 IEEE80211_RADIOTAP_XCHANNEL
= 18,
2450 IEEE80211_RADIOTAP_MCS
= 19,
2451 IEEE80211_RADIOTAP_AMPDU_STATUS
= 20,
2452 IEEE80211_RADIOTAP_VHT
= 21,
2453 IEEE80211_RADIOTAP_NAMESPACE
= 29,
2454 IEEE80211_RADIOTAP_VENDOR_NAMESPACE
= 30,
2455 IEEE80211_RADIOTAP_EXT
= 31
2458 /* channel attributes */
2459 #define IEEE80211_CHAN_TURBO 0x00010 /* Turbo channel */
2460 #define IEEE80211_CHAN_CCK 0x00020 /* CCK channel */
2461 #define IEEE80211_CHAN_OFDM 0x00040 /* OFDM channel */
2462 #define IEEE80211_CHAN_2GHZ 0x00080 /* 2 GHz spectrum channel. */
2463 #define IEEE80211_CHAN_5GHZ 0x00100 /* 5 GHz spectrum channel */
2464 #define IEEE80211_CHAN_PASSIVE 0x00200 /* Only passive scan allowed */
2465 #define IEEE80211_CHAN_DYN 0x00400 /* Dynamic CCK-OFDM channel */
2466 #define IEEE80211_CHAN_GFSK 0x00800 /* GFSK channel (FHSS PHY) */
2467 #define IEEE80211_CHAN_GSM 0x01000 /* 900 MHz spectrum channel */
2468 #define IEEE80211_CHAN_STURBO 0x02000 /* 11a static turbo channel only */
2469 #define IEEE80211_CHAN_HALF 0x04000 /* Half rate channel */
2470 #define IEEE80211_CHAN_QUARTER 0x08000 /* Quarter rate channel */
2471 #define IEEE80211_CHAN_HT20 0x10000 /* HT 20 channel */
2472 #define IEEE80211_CHAN_HT40U 0x20000 /* HT 40 channel w/ ext above */
2473 #define IEEE80211_CHAN_HT40D 0x40000 /* HT 40 channel w/ ext below */
2475 /* Useful combinations of channel characteristics, borrowed from Ethereal */
2476 #define IEEE80211_CHAN_A \
2477 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2478 #define IEEE80211_CHAN_B \
2479 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
2480 #define IEEE80211_CHAN_G \
2481 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
2482 #define IEEE80211_CHAN_TA \
2483 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_TURBO)
2484 #define IEEE80211_CHAN_TG \
2485 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN | IEEE80211_CHAN_TURBO)
2488 /* For IEEE80211_RADIOTAP_FLAGS */
2489 #define IEEE80211_RADIOTAP_F_CFP 0x01 /* sent/received
2492 #define IEEE80211_RADIOTAP_F_SHORTPRE 0x02 /* sent/received
2496 #define IEEE80211_RADIOTAP_F_WEP 0x04 /* sent/received
2497 * with WEP encryption
2499 #define IEEE80211_RADIOTAP_F_FRAG 0x08 /* sent/received
2500 * with fragmentation
2502 #define IEEE80211_RADIOTAP_F_FCS 0x10 /* frame includes FCS */
2503 #define IEEE80211_RADIOTAP_F_DATAPAD 0x20 /* frame has padding between
2504 * 802.11 header and payload
2505 * (to 32-bit boundary)
2507 #define IEEE80211_RADIOTAP_F_BADFCS 0x40 /* does not pass FCS check */
2509 /* For IEEE80211_RADIOTAP_RX_FLAGS */
2510 #define IEEE80211_RADIOTAP_F_RX_BADFCS 0x0001 /* frame failed crc check */
2511 #define IEEE80211_RADIOTAP_F_RX_PLCP_CRC 0x0002 /* frame failed PLCP CRC check */
2513 /* For IEEE80211_RADIOTAP_MCS known */
2514 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN 0x01
2515 #define IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN 0x02 /* MCS index field */
2516 #define IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN 0x04
2517 #define IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN 0x08
2518 #define IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN 0x10
2519 #define IEEE80211_RADIOTAP_MCS_STBC_KNOWN 0x20
2520 #define IEEE80211_RADIOTAP_MCS_NESS_KNOWN 0x40
2521 #define IEEE80211_RADIOTAP_MCS_NESS_BIT_1 0x80
2523 /* For IEEE80211_RADIOTAP_MCS flags */
2524 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK 0x03
2525 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20 0
2526 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 1
2527 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20L 2
2528 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20U 3
2529 #define IEEE80211_RADIOTAP_MCS_SHORT_GI 0x04 /* short guard interval */
2530 #define IEEE80211_RADIOTAP_MCS_HT_GREENFIELD 0x08
2531 #define IEEE80211_RADIOTAP_MCS_FEC_LDPC 0x10
2532 #define IEEE80211_RADIOTAP_MCS_STBC_MASK 0x60
2533 #define IEEE80211_RADIOTAP_MCS_STBC_1 1
2534 #define IEEE80211_RADIOTAP_MCS_STBC_2 2
2535 #define IEEE80211_RADIOTAP_MCS_STBC_3 3
2536 #define IEEE80211_RADIOTAP_MCS_STBC_SHIFT 5
2537 #define IEEE80211_RADIOTAP_MCS_NESS_BIT_0 0x80
2539 /* For IEEE80211_RADIOTAP_AMPDU_STATUS */
2540 #define IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN 0x0001
2541 #define IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN 0x0002
2542 #define IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN 0x0004
2543 #define IEEE80211_RADIOTAP_AMPDU_IS_LAST 0x0008
2544 #define IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR 0x0010
2545 #define IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN 0x0020
2547 /* For IEEE80211_RADIOTAP_VHT known */
2548 #define IEEE80211_RADIOTAP_VHT_STBC_KNOWN 0x0001
2549 #define IEEE80211_RADIOTAP_VHT_TXOP_PS_NA_KNOWN 0x0002
2550 #define IEEE80211_RADIOTAP_VHT_GUARD_INTERVAL_KNOWN 0x0004
2551 #define IEEE80211_RADIOTAP_VHT_SGI_NSYM_DIS_KNOWN 0x0008
2552 #define IEEE80211_RADIOTAP_VHT_LDPC_EXTRA_OFDM_SYM_KNOWN 0x0010
2553 #define IEEE80211_RADIOTAP_VHT_BEAMFORMED_KNOWN 0x0020
2554 #define IEEE80211_RADIOTAP_VHT_BANDWIDTH_KNOWN 0x0040
2555 #define IEEE80211_RADIOTAP_VHT_GROUP_ID_KNOWN 0x0080
2556 #define IEEE80211_RADIOTAP_VHT_PARTIAL_AID_KNOWN 0x0100
2558 /* For IEEE80211_RADIOTAP_VHT flags */
2559 #define IEEE80211_RADIOTAP_VHT_STBC 0x01
2560 #define IEEE80211_RADIOTAP_VHT_TXOP_PS_NA 0x02
2561 #define IEEE80211_RADIOTAP_VHT_SHORT_GI 0x04
2562 #define IEEE80211_RADIOTAP_VHT_SGI_NSYM_M10_9 0x08
2563 #define IEEE80211_RADIOTAP_VHT_LDPC_EXTRA_OFDM_SYM 0x10
2564 #define IEEE80211_RADIOTAP_VHT_BEAMFORMED 0x20
2566 #define IEEE80211_RADIOTAP_VHT_BANDWIDTH_MASK 0x1f
2568 #define IEEE80211_RADIOTAP_VHT_NSS_MASK 0x0f
2569 #define IEEE80211_RADIOTAP_VHT_MCS_MASK 0xf0
2570 #define IEEE80211_RADIOTAP_VHT_MCS_SHIFT 4
2572 #define IEEE80211_RADIOTAP_CODING_LDPC_USERn 0x01
2574 #define IEEE80211_CHAN_FHSS \
2575 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
2576 #define IEEE80211_CHAN_A \
2577 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2578 #define IEEE80211_CHAN_B \
2579 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
2580 #define IEEE80211_CHAN_PUREG \
2581 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
2582 #define IEEE80211_CHAN_G \
2583 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
2585 #define IS_CHAN_FHSS(flags) \
2586 ((flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS)
2587 #define IS_CHAN_A(flags) \
2588 ((flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)
2589 #define IS_CHAN_B(flags) \
2590 ((flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)
2591 #define IS_CHAN_PUREG(flags) \
2592 ((flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG)
2593 #define IS_CHAN_G(flags) \
2594 ((flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)
2595 #define IS_CHAN_ANYG(flags) \
2596 (IS_CHAN_PUREG(flags) || IS_CHAN_G(flags))
2599 print_chaninfo(netdissect_options
*ndo
,
2600 uint16_t freq
, uint32_t flags
, uint32_t presentflags
)
2602 ND_PRINT("%u MHz", freq
);
2603 if (presentflags
& (1 << IEEE80211_RADIOTAP_MCS
)) {
2605 * We have the MCS field, so this is 11n, regardless
2606 * of what the channel flags say.
2610 if (IS_CHAN_FHSS(flags
))
2612 if (IS_CHAN_A(flags
)) {
2613 if (flags
& IEEE80211_CHAN_HALF
)
2614 ND_PRINT(" 11a/10Mhz");
2615 else if (flags
& IEEE80211_CHAN_QUARTER
)
2616 ND_PRINT(" 11a/5Mhz");
2620 if (IS_CHAN_ANYG(flags
)) {
2621 if (flags
& IEEE80211_CHAN_HALF
)
2622 ND_PRINT(" 11g/10Mhz");
2623 else if (flags
& IEEE80211_CHAN_QUARTER
)
2624 ND_PRINT(" 11g/5Mhz");
2627 } else if (IS_CHAN_B(flags
))
2629 if (flags
& IEEE80211_CHAN_TURBO
)
2633 * These apply to 11n.
2635 if (flags
& IEEE80211_CHAN_HT20
)
2637 else if (flags
& IEEE80211_CHAN_HT40D
)
2638 ND_PRINT(" ht/40-");
2639 else if (flags
& IEEE80211_CHAN_HT40U
)
2640 ND_PRINT(" ht/40+");
2645 print_radiotap_field(netdissect_options
*ndo
,
2646 struct cpack_state
*s
, uint32_t bit
, uint8_t *flagsp
,
2647 uint32_t presentflags
)
2654 case IEEE80211_RADIOTAP_TSFT
: {
2657 rc
= cpack_uint64(ndo
, s
, &tsft
);
2660 ND_PRINT("%" PRIu64
"us tsft ", tsft
);
2664 case IEEE80211_RADIOTAP_FLAGS
: {
2667 rc
= cpack_uint8(ndo
, s
, &flagsval
);
2671 if (flagsval
& IEEE80211_RADIOTAP_F_CFP
)
2673 if (flagsval
& IEEE80211_RADIOTAP_F_SHORTPRE
)
2674 ND_PRINT("short preamble ");
2675 if (flagsval
& IEEE80211_RADIOTAP_F_WEP
)
2677 if (flagsval
& IEEE80211_RADIOTAP_F_FRAG
)
2678 ND_PRINT("fragmented ");
2679 if (flagsval
& IEEE80211_RADIOTAP_F_BADFCS
)
2680 ND_PRINT("bad-fcs ");
2684 case IEEE80211_RADIOTAP_RATE
: {
2687 rc
= cpack_uint8(ndo
, s
, &rate
);
2691 * XXX On FreeBSD rate & 0x80 means we have an MCS. On
2692 * Linux and AirPcap it does not. (What about
2693 * macOS, NetBSD, OpenBSD, and DragonFly BSD?)
2695 * This is an issue either for proprietary extensions
2696 * to 11a or 11g, which do exist, or for 11n
2697 * implementations that stuff a rate value into
2698 * this field, which also appear to exist.
2700 * We currently handle that by assuming that
2701 * if the 0x80 bit is set *and* the remaining
2702 * bits have a value between 0 and 15 it's
2703 * an MCS value, otherwise it's a rate. If
2704 * there are cases where systems that use
2705 * "0x80 + MCS index" for MCS indices > 15,
2706 * or stuff a rate value here between 64 and
2707 * 71.5 Mb/s in here, we'll need a preference
2708 * setting. Such rates do exist, e.g. 11n
2709 * MCS 7 at 20 MHz with a long guard interval.
2711 if (rate
>= 0x80 && rate
<= 0x8f) {
2713 * XXX - we don't know the channel width
2714 * or guard interval length, so we can't
2715 * convert this to a data rate.
2717 * If you want us to show a data rate,
2718 * use the MCS field, not the Rate field;
2719 * the MCS field includes not only the
2720 * MCS index, it also includes bandwidth
2721 * and guard interval information.
2723 * XXX - can we get the channel width
2724 * from XChannel and the guard interval
2725 * information from Flags, at least on
2728 ND_PRINT("MCS %u ", rate
& 0x7f);
2730 ND_PRINT("%2.1f Mb/s ", .5 * rate
);
2734 case IEEE80211_RADIOTAP_CHANNEL
: {
2738 rc
= cpack_uint16(ndo
, s
, &frequency
);
2741 rc
= cpack_uint16(ndo
, s
, &flags
);
2745 * If CHANNEL and XCHANNEL are both present, skip
2748 if (presentflags
& (1 << IEEE80211_RADIOTAP_XCHANNEL
))
2750 print_chaninfo(ndo
, frequency
, flags
, presentflags
);
2754 case IEEE80211_RADIOTAP_FHSS
: {
2758 rc
= cpack_uint8(ndo
, s
, &hopset
);
2761 rc
= cpack_uint8(ndo
, s
, &hoppat
);
2764 ND_PRINT("fhset %u fhpat %u ", hopset
, hoppat
);
2768 case IEEE80211_RADIOTAP_DBM_ANTSIGNAL
: {
2769 int8_t dbm_antsignal
;
2771 rc
= cpack_int8(ndo
, s
, &dbm_antsignal
);
2774 ND_PRINT("%ddBm signal ", dbm_antsignal
);
2778 case IEEE80211_RADIOTAP_DBM_ANTNOISE
: {
2779 int8_t dbm_antnoise
;
2781 rc
= cpack_int8(ndo
, s
, &dbm_antnoise
);
2784 ND_PRINT("%ddBm noise ", dbm_antnoise
);
2788 case IEEE80211_RADIOTAP_LOCK_QUALITY
: {
2789 uint16_t lock_quality
;
2791 rc
= cpack_uint16(ndo
, s
, &lock_quality
);
2794 ND_PRINT("%u sq ", lock_quality
);
2798 case IEEE80211_RADIOTAP_TX_ATTENUATION
: {
2799 int16_t tx_attenuation
;
2801 rc
= cpack_int16(ndo
, s
, &tx_attenuation
);
2804 ND_PRINT("%d tx power ", -tx_attenuation
);
2808 case IEEE80211_RADIOTAP_DB_TX_ATTENUATION
: {
2809 int8_t db_tx_attenuation
;
2811 rc
= cpack_int8(ndo
, s
, &db_tx_attenuation
);
2814 ND_PRINT("%ddB tx attenuation ", -db_tx_attenuation
);
2818 case IEEE80211_RADIOTAP_DBM_TX_POWER
: {
2819 int8_t dbm_tx_power
;
2821 rc
= cpack_int8(ndo
, s
, &dbm_tx_power
);
2824 ND_PRINT("%ddBm tx power ", dbm_tx_power
);
2828 case IEEE80211_RADIOTAP_ANTENNA
: {
2831 rc
= cpack_uint8(ndo
, s
, &antenna
);
2834 ND_PRINT("antenna %u ", antenna
);
2838 case IEEE80211_RADIOTAP_DB_ANTSIGNAL
: {
2839 uint8_t db_antsignal
;
2841 rc
= cpack_uint8(ndo
, s
, &db_antsignal
);
2844 ND_PRINT("%udB signal ", db_antsignal
);
2848 case IEEE80211_RADIOTAP_DB_ANTNOISE
: {
2849 uint8_t db_antnoise
;
2851 rc
= cpack_uint8(ndo
, s
, &db_antnoise
);
2854 ND_PRINT("%udB noise ", db_antnoise
);
2858 case IEEE80211_RADIOTAP_RX_FLAGS
: {
2861 rc
= cpack_uint16(ndo
, s
, &rx_flags
);
2864 /* Do nothing for now */
2868 case IEEE80211_RADIOTAP_XCHANNEL
: {
2874 rc
= cpack_uint32(ndo
, s
, &flags
);
2877 rc
= cpack_uint16(ndo
, s
, &frequency
);
2880 rc
= cpack_uint8(ndo
, s
, &channel
);
2883 rc
= cpack_uint8(ndo
, s
, &maxpower
);
2886 print_chaninfo(ndo
, frequency
, flags
, presentflags
);
2890 case IEEE80211_RADIOTAP_MCS
: {
2894 static const char *ht_bandwidth
[4] = {
2902 rc
= cpack_uint8(ndo
, s
, &known
);
2905 rc
= cpack_uint8(ndo
, s
, &flags
);
2908 rc
= cpack_uint8(ndo
, s
, &mcs_index
);
2911 if (known
& IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN
) {
2913 * We know the MCS index.
2915 if (mcs_index
<= MAX_MCS_INDEX
) {
2917 * And it's in-range.
2919 if (known
& (IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN
|IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN
)) {
2921 * And we know both the bandwidth and
2922 * the guard interval, so we can look
2926 ieee80211_float_htrates
2928 [((flags
& IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK
) == IEEE80211_RADIOTAP_MCS_BANDWIDTH_40
? 1 : 0)]
2929 [((flags
& IEEE80211_RADIOTAP_MCS_SHORT_GI
) ? 1 : 0)];
2932 * We don't know both the bandwidth
2933 * and the guard interval, so we can
2934 * only report the MCS index.
2940 * The MCS value is out of range.
2944 if (htrate
!= 0.0) {
2949 ND_PRINT("%.1f Mb/s MCS %u ", htrate
, mcs_index
);
2952 * We at least have the MCS index.
2955 ND_PRINT("MCS %u ", mcs_index
);
2958 if (known
& IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN
) {
2960 ht_bandwidth
[flags
& IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK
]);
2962 if (known
& IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN
) {
2964 (flags
& IEEE80211_RADIOTAP_MCS_SHORT_GI
) ?
2967 if (known
& IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN
) {
2969 (flags
& IEEE80211_RADIOTAP_MCS_HT_GREENFIELD
) ?
2970 "greenfield" : "mixed");
2972 if (known
& IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN
) {
2974 (flags
& IEEE80211_RADIOTAP_MCS_FEC_LDPC
) ?
2977 if (known
& IEEE80211_RADIOTAP_MCS_STBC_KNOWN
) {
2978 ND_PRINT("RX-STBC%u ",
2979 (flags
& IEEE80211_RADIOTAP_MCS_STBC_MASK
) >> IEEE80211_RADIOTAP_MCS_STBC_SHIFT
);
2984 case IEEE80211_RADIOTAP_AMPDU_STATUS
: {
2985 uint32_t reference_num
;
2990 rc
= cpack_uint32(ndo
, s
, &reference_num
);
2993 rc
= cpack_uint16(ndo
, s
, &flags
);
2996 rc
= cpack_uint8(ndo
, s
, &delim_crc
);
2999 rc
= cpack_uint8(ndo
, s
, &reserved
);
3002 /* Do nothing for now */
3006 case IEEE80211_RADIOTAP_VHT
: {
3013 uint16_t partial_aid
;
3014 static const char *vht_bandwidth
[32] = {
3049 rc
= cpack_uint16(ndo
, s
, &known
);
3052 rc
= cpack_uint8(ndo
, s
, &flags
);
3055 rc
= cpack_uint8(ndo
, s
, &bandwidth
);
3058 for (i
= 0; i
< 4; i
++) {
3059 rc
= cpack_uint8(ndo
, s
, &mcs_nss
[i
]);
3063 rc
= cpack_uint8(ndo
, s
, &coding
);
3066 rc
= cpack_uint8(ndo
, s
, &group_id
);
3069 rc
= cpack_uint16(ndo
, s
, &partial_aid
);
3072 for (i
= 0; i
< 4; i
++) {
3074 nss
= mcs_nss
[i
] & IEEE80211_RADIOTAP_VHT_NSS_MASK
;
3075 mcs
= (mcs_nss
[i
] & IEEE80211_RADIOTAP_VHT_MCS_MASK
) >> IEEE80211_RADIOTAP_VHT_MCS_SHIFT
;
3080 ND_PRINT("User %u MCS %u ", i
, mcs
);
3082 (coding
& (IEEE80211_RADIOTAP_CODING_LDPC_USERn
<< i
)) ?
3085 if (known
& IEEE80211_RADIOTAP_VHT_BANDWIDTH_KNOWN
) {
3087 vht_bandwidth
[bandwidth
& IEEE80211_RADIOTAP_VHT_BANDWIDTH_MASK
]);
3089 if (known
& IEEE80211_RADIOTAP_VHT_GUARD_INTERVAL_KNOWN
) {
3091 (flags
& IEEE80211_RADIOTAP_VHT_SHORT_GI
) ?
3098 /* this bit indicates a field whose
3099 * size we do not know, so we cannot
3100 * proceed. Just print the bit number.
3102 ND_PRINT("[bit %u] ", bit
);
3109 nd_print_trunc(ndo
);
3115 print_in_radiotap_namespace(netdissect_options
*ndo
,
3116 struct cpack_state
*s
, uint8_t *flags
,
3117 uint32_t presentflags
, int bit0
)
3119 #define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
3120 #define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
3121 #define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
3122 #define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
3123 #define BITNO_2(x) (((x) & 2) ? 1 : 0)
3124 uint32_t present
, next_present
;
3126 enum ieee80211_radiotap_type bit
;
3129 for (present
= presentflags
; present
; present
= next_present
) {
3131 * Clear the least significant bit that is set.
3133 next_present
= present
& (present
- 1);
3136 * Get the bit number, within this presence word,
3137 * of the remaining least significant bit that
3140 bitno
= BITNO_32(present
^ next_present
);
3143 * Stop if this is one of the "same meaning
3144 * in all presence flags" bits.
3146 if (bitno
>= IEEE80211_RADIOTAP_NAMESPACE
)
3150 * Get the radiotap bit number of that bit.
3152 bit
= (enum ieee80211_radiotap_type
)(bit0
+ bitno
);
3154 rc
= print_radiotap_field(ndo
, s
, bit
, flags
, presentflags
);
3163 ieee802_11_radio_print(netdissect_options
*ndo
,
3164 const u_char
*p
, u_int length
, u_int caplen
)
3166 #define BIT(n) (1U << n)
3167 #define IS_EXTENDED(__p) \
3168 (GET_LE_U_4(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0
3170 struct cpack_state cpacker
;
3171 const struct ieee80211_radiotap_header
*hdr
;
3172 uint32_t presentflags
;
3173 const nd_uint32_t
*presentp
, *last_presentp
;
3174 int vendor_namespace
;
3175 uint8_t vendor_oui
[3];
3176 uint8_t vendor_subnamespace
;
3177 uint16_t skip_length
;
3184 ndo
->ndo_protocol
= "802.11_radio";
3185 if (caplen
< sizeof(*hdr
)) {
3186 nd_print_trunc(ndo
);
3190 hdr
= (const struct ieee80211_radiotap_header
*)p
;
3192 len
= GET_LE_U_2(hdr
->it_len
);
3193 if (len
< sizeof(*hdr
)) {
3195 * The length is the length of the entire header, so
3196 * it must be as large as the fixed-length part of
3199 nd_print_trunc(ndo
);
3204 * If we don't have the entire radiotap header, just give up.
3207 nd_print_trunc(ndo
);
3210 cpack_init(&cpacker
, (const uint8_t *)hdr
, len
); /* align against header start */
3211 cpack_advance(&cpacker
, sizeof(*hdr
)); /* includes the 1st bitmap */
3212 for (last_presentp
= &hdr
->it_present
;
3213 (const u_char
*)(last_presentp
+ 1) <= p
+ len
&&
3214 IS_EXTENDED(last_presentp
);
3216 cpack_advance(&cpacker
, sizeof(hdr
->it_present
)); /* more bitmaps */
3218 /* are there more bitmap extensions than bytes in header? */
3219 if ((const u_char
*)(last_presentp
+ 1) > p
+ len
) {
3220 nd_print_trunc(ndo
);
3225 * Start out at the beginning of the default radiotap namespace.
3228 vendor_namespace
= 0;
3229 memset(vendor_oui
, 0, 3);
3230 vendor_subnamespace
= 0;
3232 /* Assume no flags */
3234 /* Assume no Atheros padding between 802.11 header and body */
3236 /* Assume no FCS at end of frame */
3238 for (presentp
= &hdr
->it_present
; presentp
<= last_presentp
;
3240 presentflags
= GET_LE_U_4(presentp
);
3243 * If this is a vendor namespace, we don't handle it.
3245 if (vendor_namespace
) {
3247 * Skip past the stuff we don't understand.
3248 * If we add support for any vendor namespaces,
3249 * it'd be added here; use vendor_oui and
3250 * vendor_subnamespace to interpret the fields.
3252 if (cpack_advance(&cpacker
, skip_length
) != 0) {
3254 * Ran out of space in the packet.
3260 * We've skipped it all; nothing more to
3265 if (print_in_radiotap_namespace(ndo
, &cpacker
,
3266 &flags
, presentflags
, bit0
) != 0) {
3268 * Fatal error - can't process anything
3269 * more in the radiotap header.
3276 * Handle the namespace switch bits; we've already handled
3277 * the extension bit in all but the last word above.
3279 switch (presentflags
&
3280 (BIT(IEEE80211_RADIOTAP_NAMESPACE
)|BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE
))) {
3284 * We're not changing namespaces.
3285 * advance to the next 32 bits in the current
3291 case BIT(IEEE80211_RADIOTAP_NAMESPACE
):
3293 * We're switching to the radiotap namespace.
3294 * Reset the presence-bitmap index to 0, and
3295 * reset the namespace to the default radiotap
3299 vendor_namespace
= 0;
3300 memset(vendor_oui
, 0, 3);
3301 vendor_subnamespace
= 0;
3305 case BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE
):
3307 * We're switching to a vendor namespace.
3308 * Reset the presence-bitmap index to 0,
3309 * note that we're in a vendor namespace,
3310 * and fetch the fields of the Vendor Namespace
3314 vendor_namespace
= 1;
3315 if ((cpack_align_and_reserve(&cpacker
, 2)) == NULL
) {
3316 nd_print_trunc(ndo
);
3319 if (cpack_uint8(ndo
, &cpacker
, &vendor_oui
[0]) != 0) {
3320 nd_print_trunc(ndo
);
3323 if (cpack_uint8(ndo
, &cpacker
, &vendor_oui
[1]) != 0) {
3324 nd_print_trunc(ndo
);
3327 if (cpack_uint8(ndo
, &cpacker
, &vendor_oui
[2]) != 0) {
3328 nd_print_trunc(ndo
);
3331 if (cpack_uint8(ndo
, &cpacker
, &vendor_subnamespace
) != 0) {
3332 nd_print_trunc(ndo
);
3335 if (cpack_uint16(ndo
, &cpacker
, &skip_length
) != 0) {
3336 nd_print_trunc(ndo
);
3343 * Illegal combination. The behavior in this
3344 * case is undefined by the radiotap spec; we
3345 * just ignore both bits.
3351 if (flags
& IEEE80211_RADIOTAP_F_DATAPAD
)
3352 pad
= 1; /* Atheros padding */
3353 if (flags
& IEEE80211_RADIOTAP_F_FCS
)
3354 fcslen
= 4; /* FCS at end of packet */
3355 return len
+ ieee802_11_print(ndo
, p
+ len
, length
- len
, caplen
- len
, pad
,
3366 ieee802_11_radio_avs_print(netdissect_options
*ndo
,
3367 const u_char
*p
, u_int length
, u_int caplen
)
3369 uint32_t caphdr_len
;
3371 ndo
->ndo_protocol
= "802.11_radio_avs";
3373 nd_print_trunc(ndo
);
3377 caphdr_len
= GET_BE_U_4(p
+ 4);
3378 if (caphdr_len
< 8) {
3380 * Yow! The capture header length is claimed not
3381 * to be large enough to include even the version
3382 * cookie or capture header length!
3384 nd_print_trunc(ndo
);
3388 if (caplen
< caphdr_len
) {
3389 nd_print_trunc(ndo
);
3393 return caphdr_len
+ ieee802_11_print(ndo
, p
+ caphdr_len
,
3394 length
- caphdr_len
, caplen
- caphdr_len
, 0, 0);
3397 #define PRISM_HDR_LEN 144
3399 #define WLANCAP_MAGIC_COOKIE_BASE 0x80211000
3400 #define WLANCAP_MAGIC_COOKIE_V1 0x80211001
3401 #define WLANCAP_MAGIC_COOKIE_V2 0x80211002
3404 * For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header,
3405 * containing information such as radio information, which we
3408 * If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1 or
3409 * WLANCAP_MAGIC_COOKIE_V2, it's really DLT_IEEE802_11_RADIO_AVS
3410 * (currently, on Linux, there's no ARPHRD_ type for
3411 * DLT_IEEE802_11_RADIO_AVS, as there is a ARPHRD_IEEE80211_PRISM
3412 * for DLT_PRISM_HEADER, so ARPHRD_IEEE80211_PRISM is used for
3413 * the AVS header, and the first 4 bytes of the header are used to
3414 * indicate whether it's a Prism header or an AVS header).
3417 prism_if_print(netdissect_options
*ndo
,
3418 const struct pcap_pkthdr
*h
, const u_char
*p
)
3420 u_int caplen
= h
->caplen
;
3421 u_int length
= h
->len
;
3424 ndo
->ndo_protocol
= "prism";
3426 nd_print_trunc(ndo
);
3427 ndo
->ndo_ll_hdr_len
+= caplen
;
3431 msgcode
= GET_BE_U_4(p
);
3432 if (msgcode
== WLANCAP_MAGIC_COOKIE_V1
||
3433 msgcode
== WLANCAP_MAGIC_COOKIE_V2
) {
3434 ndo
->ndo_ll_hdr_len
+= ieee802_11_radio_avs_print(ndo
, p
, length
, caplen
);
3438 if (caplen
< PRISM_HDR_LEN
) {
3439 nd_print_trunc(ndo
);
3440 ndo
->ndo_ll_hdr_len
+= caplen
;
3445 length
-= PRISM_HDR_LEN
;
3446 caplen
-= PRISM_HDR_LEN
;
3447 ndo
->ndo_ll_hdr_len
+= PRISM_HDR_LEN
;
3448 ndo
->ndo_ll_hdr_len
+= ieee802_11_print(ndo
, p
, length
, caplen
, 0, 0);
3452 * For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra
3453 * header, containing information such as radio information.
3456 ieee802_11_radio_if_print(netdissect_options
*ndo
,
3457 const struct pcap_pkthdr
*h
, const u_char
*p
)
3459 ndo
->ndo_protocol
= "802.11_radio";
3460 ndo
->ndo_ll_hdr_len
+= ieee802_11_radio_print(ndo
, p
, h
->len
, h
->caplen
);
3464 * For DLT_IEEE802_11_RADIO_AVS; like DLT_IEEE802_11, but with an
3465 * extra header, containing information such as radio information,
3466 * which we currently ignore.
3469 ieee802_11_radio_avs_if_print(netdissect_options
*ndo
,
3470 const struct pcap_pkthdr
*h
, const u_char
*p
)
3472 ndo
->ndo_protocol
= "802.11_radio_avs";
3473 ndo
->ndo_ll_hdr_len
+= ieee802_11_radio_avs_print(ndo
, p
, h
->len
, h
->caplen
);