]> The Tcpdump Group git mirrors - tcpdump/blob - util-print.c
e896a2df77784cbe45e85cf01cfbbfbfdd5230d5
[tcpdump] / util-print.c
1 /*
2 * Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 /*
23 * txtproto_print() derived from original code by Hannes Gredler
24 * (hannes@gredler.at):
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that: (1) source code
28 * distributions retain the above copyright notice and this paragraph
29 * in its entirety, and (2) distributions including binary code include
30 * the above copyright notice and this paragraph in its entirety in
31 * the documentation or other materials provided with the distribution.
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND
33 * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
34 * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE.
36 */
37
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include "netdissect-stdinc.h"
43
44 #include <sys/stat.h>
45
46 #ifdef HAVE_FCNTL_H
47 #include <fcntl.h>
48 #endif
49 #include <ctype.h>
50 #include <stdio.h>
51 #include <stdarg.h>
52 #include <stdlib.h>
53 #include <string.h>
54
55 #include "netdissect.h"
56 #include "extract.h"
57 #include "ascii_strcasecmp.h"
58 #include "timeval-operations.h"
59
60 #define TOKBUFSIZE 128
61
62 enum date_flag { WITHOUT_DATE = 0, WITH_DATE = 1 };
63 enum time_flag { UTC_TIME = 0, LOCAL_TIME = 1 };
64
65 /*
66 * Print out a character, filtering out the non-printable ones
67 */
68 void
69 fn_print_char(netdissect_options *ndo, u_char c)
70 {
71 if (!ND_ISASCII(c)) {
72 c = ND_TOASCII(c);
73 ND_PRINT("M-");
74 }
75 if (!ND_ISPRINT(c)) {
76 c ^= 0x40; /* DEL to ?, others to alpha */
77 ND_PRINT("^");
78 }
79 ND_PRINT("%c", c);
80 }
81
82 /*
83 * Print a null-terminated string, filtering out non-printable characters.
84 * DON'T USE IT with a pointer on the packet buffer because there is no
85 * truncation check. For this use, see the nd_printX() functions below.
86 */
87 void
88 fn_print_str(netdissect_options *ndo, const u_char *s)
89 {
90 while (*s != '\0') {
91 fn_print_char(ndo, *s);
92 s++;
93 }
94 }
95
96 /*
97 * Print out a null-terminated filename (or other ASCII string), part of
98 * the packet buffer.
99 * If ep is NULL, assume no truncation check is needed.
100 * Return true if truncated.
101 * Stop at ep (if given) or before the null char, whichever is first.
102 */
103 int
104 nd_print(netdissect_options *ndo,
105 const u_char *s, const u_char *ep)
106 {
107 int ret;
108 u_char c;
109
110 ret = 1; /* assume truncated */
111 while (ep == NULL || s < ep) {
112 c = GET_U_1(s);
113 s++;
114 if (c == '\0') {
115 ret = 0;
116 break;
117 }
118 fn_print_char(ndo, c);
119 }
120 return(ret);
121 }
122
123 /*
124 * Print out a null-terminated filename (or other ASCII string) from
125 * a fixed-length field in the packet buffer, or from what remains of
126 * the packet.
127 *
128 * n is the length of the fixed-length field, or the number of bytes
129 * remaining in the packet based on its on-the-network length.
130 *
131 * If ep is non-null, it should point just past the last captured byte
132 * of the packet, e.g. ndo->ndo_snapend. If ep is NULL, we assume no
133 * truncation check, other than the checks of the field length/remaining
134 * packet data length, is needed.
135 *
136 * Return the number of bytes of string processed, including the
137 * terminating null, if not truncated; as the terminating null is
138 * included in the count, and as there must be a terminating null,
139 * this will always be non-zero. Return 0 if truncated.
140 */
141 u_int
142 nd_printztn(netdissect_options *ndo,
143 const u_char *s, u_int n, const u_char *ep)
144 {
145 u_int bytes;
146 u_char c;
147
148 bytes = 0;
149 for (;;) {
150 if (n == 0 || (ep != NULL && s >= ep)) {
151 /*
152 * Truncated. This includes "no null before we
153 * got to the end of the fixed-length buffer or
154 * the end of the packet".
155 *
156 * XXX - BOOTP says "null-terminated", which
157 * means the maximum length of the string, in
158 * bytes, is 1 less than the size of the buffer,
159 * as there must always be a terminating null.
160 */
161 bytes = 0;
162 break;
163 }
164
165 c = GET_U_1(s);
166 s++;
167 bytes++;
168 n--;
169 if (c == '\0') {
170 /* End of string */
171 break;
172 }
173 fn_print_char(ndo, c);
174 }
175 return(bytes);
176 }
177
178 /*
179 * Print out a counted filename (or other ASCII string), part of
180 * the packet buffer.
181 * If ep is NULL, assume no truncation check is needed.
182 * Return true if truncated.
183 * Stop at ep (if given) or after n bytes, whichever is first.
184 */
185 int
186 nd_printn(netdissect_options *ndo,
187 const u_char *s, u_int n, const u_char *ep)
188 {
189 u_char c;
190
191 while (n > 0 && (ep == NULL || s < ep)) {
192 n--;
193 c = GET_U_1(s);
194 s++;
195 fn_print_char(ndo, c);
196 }
197 return (n == 0) ? 0 : 1;
198 }
199
200 /*
201 * Print out a null-padded filename (or other ASCII string), part of
202 * the packet buffer.
203 * If ep is NULL, assume no truncation check is needed.
204 * Return true if truncated.
205 * Stop at ep (if given) or after n bytes or before the null char,
206 * whichever is first.
207 */
208 int
209 nd_printzp(netdissect_options *ndo,
210 const u_char *s, u_int n,
211 const u_char *ep)
212 {
213 int ret;
214 u_char c;
215
216 ret = 1; /* assume truncated */
217 while (n > 0 && (ep == NULL || s < ep)) {
218 n--;
219 c = GET_U_1(s);
220 s++;
221 if (c == '\0') {
222 ret = 0;
223 break;
224 }
225 fn_print_char(ndo, c);
226 }
227 return (n == 0) ? 0 : ret;
228 }
229
230 /*
231 * Print the timestamp .FRAC part (Microseconds/nanoseconds)
232 */
233 static void
234 ts_frac_print(netdissect_options *ndo, long usec)
235 {
236 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
237 switch (ndo->ndo_tstamp_precision) {
238
239 case PCAP_TSTAMP_PRECISION_MICRO:
240 ND_PRINT(".%06u", (unsigned)usec);
241 break;
242
243 case PCAP_TSTAMP_PRECISION_NANO:
244 ND_PRINT(".%09u", (unsigned)usec);
245 break;
246
247 default:
248 ND_PRINT(".{unknown}");
249 break;
250 }
251 #else
252 ND_PRINT(".%06u", (unsigned)usec);
253 #endif
254 }
255
256 /*
257 * Print the timestamp as [YY:MM:DD] HH:MM:SS.FRAC.
258 * if time_flag == LOCAL_TIME print local time else UTC/GMT time
259 * if date_flag == WITH_DATE print YY:MM:DD before HH:MM:SS.FRAC
260 */
261 static void
262 ts_date_hmsfrac_print(netdissect_options *ndo, long sec, long usec,
263 enum date_flag date_flag, enum time_flag time_flag)
264 {
265 time_t Time = sec;
266 struct tm *tm;
267 char timestr[32];
268
269 if ((unsigned)sec & 0x80000000) {
270 ND_PRINT("[Error converting time]");
271 return;
272 }
273
274 if (time_flag == LOCAL_TIME)
275 tm = localtime(&Time);
276 else
277 tm = gmtime(&Time);
278
279 if (!tm) {
280 ND_PRINT("[Error converting time]");
281 return;
282 }
283 if (date_flag == WITH_DATE)
284 strftime(timestr, sizeof(timestr), "%Y-%m-%d %H:%M:%S", tm);
285 else
286 strftime(timestr, sizeof(timestr), "%H:%M:%S", tm);
287 ND_PRINT("%s", timestr);
288
289 ts_frac_print(ndo, usec);
290 }
291
292 /*
293 * Print the timestamp - Unix timeval style, as SECS.FRAC.
294 */
295 static void
296 ts_unix_print(netdissect_options *ndo, long sec, long usec)
297 {
298 if ((unsigned)sec & 0x80000000) {
299 ND_PRINT("[Error converting time]");
300 return;
301 }
302
303 ND_PRINT("%u", (unsigned)sec);
304 ts_frac_print(ndo, usec);
305 }
306
307 /*
308 * Print the timestamp
309 */
310 void
311 ts_print(netdissect_options *ndo,
312 const struct timeval *tvp)
313 {
314 static struct timeval tv_ref;
315 struct timeval tv_result;
316 int negative_offset;
317 int nano_prec;
318
319 switch (ndo->ndo_tflag) {
320
321 case 0: /* Default */
322 ts_date_hmsfrac_print(ndo, tvp->tv_sec, tvp->tv_usec,
323 WITHOUT_DATE, LOCAL_TIME);
324 ND_PRINT(" ");
325 break;
326
327 case 1: /* No time stamp */
328 break;
329
330 case 2: /* Unix timeval style */
331 ts_unix_print(ndo, tvp->tv_sec, tvp->tv_usec);
332 ND_PRINT(" ");
333 break;
334
335 case 3: /* Microseconds/nanoseconds since previous packet */
336 case 5: /* Microseconds/nanoseconds since first packet */
337 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
338 switch (ndo->ndo_tstamp_precision) {
339 case PCAP_TSTAMP_PRECISION_MICRO:
340 nano_prec = 0;
341 break;
342 case PCAP_TSTAMP_PRECISION_NANO:
343 nano_prec = 1;
344 break;
345 default:
346 nano_prec = 0;
347 break;
348 }
349 #else
350 nano_prec = 0;
351 #endif
352 if (!(netdissect_timevalisset(&tv_ref)))
353 tv_ref = *tvp; /* set timestamp for first packet */
354
355 negative_offset = netdissect_timevalcmp(tvp, &tv_ref, <);
356 if (negative_offset)
357 netdissect_timevalsub(&tv_ref, tvp, &tv_result, nano_prec);
358 else
359 netdissect_timevalsub(tvp, &tv_ref, &tv_result, nano_prec);
360
361 ND_PRINT((negative_offset ? "-" : " "));
362 ts_date_hmsfrac_print(ndo, tv_result.tv_sec, tv_result.tv_usec,
363 WITHOUT_DATE, UTC_TIME);
364 ND_PRINT(" ");
365
366 if (ndo->ndo_tflag == 3)
367 tv_ref = *tvp; /* set timestamp for previous packet */
368 break;
369
370 case 4: /* Date + Default */
371 ts_date_hmsfrac_print(ndo, tvp->tv_sec, tvp->tv_usec,
372 WITH_DATE, LOCAL_TIME);
373 ND_PRINT(" ");
374 break;
375 }
376 }
377
378 /*
379 * Print an unsigned relative number of seconds (e.g. hold time, prune timer)
380 * in the form 5m1s. This does no truncation, so 32230861 seconds
381 * is represented as 1y1w1d1h1m1s.
382 */
383 void
384 unsigned_relts_print(netdissect_options *ndo,
385 uint32_t secs)
386 {
387 static const char *lengths[] = {"y", "w", "d", "h", "m", "s"};
388 static const u_int seconds[] = {31536000, 604800, 86400, 3600, 60, 1};
389 const char **l = lengths;
390 const u_int *s = seconds;
391
392 if (secs == 0) {
393 ND_PRINT("0s");
394 return;
395 }
396 while (secs > 0) {
397 if (secs >= *s) {
398 ND_PRINT("%u%s", secs / *s, *l);
399 secs -= (secs / *s) * *s;
400 }
401 s++;
402 l++;
403 }
404 }
405
406 /*
407 * Print a signed relative number of seconds (e.g. hold time, prune timer)
408 * in the form 5m1s. This does no truncation, so 32230861 seconds
409 * is represented as 1y1w1d1h1m1s.
410 */
411 void
412 signed_relts_print(netdissect_options *ndo,
413 int32_t secs)
414 {
415 if (secs < 0) {
416 ND_PRINT("-");
417 if (secs == INT32_MIN) {
418 /*
419 * -2^31; you can't fit its absolute value into
420 * a 32-bit signed integer.
421 *
422 * Just directly pass said absolute value to
423 * unsigned_relts_print() directly.
424 *
425 * (XXX - does ISO C guarantee that -(-2^n),
426 * when calculated and cast to an n-bit unsigned
427 * integer type, will have the value 2^n?)
428 */
429 unsigned_relts_print(ndo, 2147483648U);
430 } else {
431 /*
432 * We now know -secs will fit into an int32_t;
433 * negate it and pass that to unsigned_relts_print().
434 */
435 unsigned_relts_print(ndo, -secs);
436 }
437 return;
438 }
439 unsigned_relts_print(ndo, secs);
440 }
441
442 /* Print the truncated string */
443 void nd_print_trunc(netdissect_options *ndo)
444 {
445 ND_PRINT(" [|%s]", ndo->ndo_protocol);
446 }
447
448 /* Print the protocol name */
449 void nd_print_protocol(netdissect_options *ndo)
450 {
451 ND_PRINT("%s", ndo->ndo_protocol);
452 }
453
454 /* Print the protocol name in caps (uppercases) */
455 void nd_print_protocol_caps(netdissect_options *ndo)
456 {
457 const char *p;
458 for (p = ndo->ndo_protocol; *p != '\0'; p++)
459 ND_PRINT("%c", ND_TOUPPER((u_char)*p));
460 }
461
462 /* Print the invalid string */
463 void nd_print_invalid(netdissect_options *ndo)
464 {
465 ND_PRINT(" (invalid)");
466 }
467
468 /*
469 * this is a generic routine for printing unknown data;
470 * we pass on the linefeed plus indentation string to
471 * get a proper output - returns 0 on error
472 */
473
474 int
475 print_unknown_data(netdissect_options *ndo, const u_char *cp,const char *ident,int len)
476 {
477 if (len < 0) {
478 ND_PRINT("%sDissector error: print_unknown_data called with negative length",
479 ident);
480 return(0);
481 }
482 if (ndo->ndo_snapend - cp < len)
483 len = ndo->ndo_snapend - cp;
484 if (len < 0) {
485 ND_PRINT("%sDissector error: print_unknown_data called with pointer past end of packet",
486 ident);
487 return(0);
488 }
489 hex_print(ndo, ident,cp,len);
490 return(1); /* everything is ok */
491 }
492
493 /*
494 * Convert a token value to a string; use "fmt" if not found.
495 */
496 const char *
497 tok2strbuf(const struct tok *lp, const char *fmt,
498 u_int v, char *buf, size_t bufsize)
499 {
500 if (lp != NULL) {
501 while (lp->s != NULL) {
502 if (lp->v == v)
503 return (lp->s);
504 ++lp;
505 }
506 }
507 if (fmt == NULL)
508 fmt = "#%d";
509
510 (void)nd_snprintf(buf, bufsize, fmt, v);
511 return (const char *)buf;
512 }
513
514 /*
515 * Convert a token value to a string; use "fmt" if not found.
516 * Uses tok2strbuf() on one of four local static buffers of size TOKBUFSIZE
517 * in round-robin fashion.
518 */
519 const char *
520 tok2str(const struct tok *lp, const char *fmt,
521 u_int v)
522 {
523 static char buf[4][TOKBUFSIZE];
524 static int idx = 0;
525 char *ret;
526
527 ret = buf[idx];
528 idx = (idx+1) & 3;
529 return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0]));
530 }
531
532 /*
533 * Convert a bit token value to a string; use "fmt" if not found.
534 * this is useful for parsing bitfields, the output strings are separated
535 * if the s field is positive.
536 */
537 static char *
538 bittok2str_internal(const struct tok *lp, const char *fmt,
539 u_int v, const char *sep)
540 {
541 static char buf[1024+1]; /* our string buffer */
542 char *bufp = buf;
543 size_t space_left = sizeof(buf), string_size;
544 u_int rotbit; /* this is the bit we rotate through all bitpositions */
545 u_int tokval;
546 const char * sepstr = "";
547
548 while (lp != NULL && lp->s != NULL) {
549 tokval=lp->v; /* load our first value */
550 rotbit=1;
551 while (rotbit != 0) {
552 /*
553 * lets AND the rotating bit with our token value
554 * and see if we have got a match
555 */
556 if (tokval == (v&rotbit)) {
557 /* ok we have found something */
558 if (space_left <= 1)
559 return (buf); /* only enough room left for NUL, if that */
560 string_size = strlcpy(bufp, sepstr, space_left);
561 if (string_size >= space_left)
562 return (buf); /* we ran out of room */
563 bufp += string_size;
564 space_left -= string_size;
565 if (space_left <= 1)
566 return (buf); /* only enough room left for NUL, if that */
567 string_size = strlcpy(bufp, lp->s, space_left);
568 if (string_size >= space_left)
569 return (buf); /* we ran out of room */
570 bufp += string_size;
571 space_left -= string_size;
572 sepstr = sep;
573 break;
574 }
575 rotbit=rotbit<<1; /* no match - lets shift and try again */
576 }
577 lp++;
578 }
579
580 if (bufp == buf)
581 /* bummer - lets print the "unknown" message as advised in the fmt string if we got one */
582 (void)nd_snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v);
583 return (buf);
584 }
585
586 /*
587 * Convert a bit token value to a string; use "fmt" if not found.
588 * this is useful for parsing bitfields, the output strings are not separated.
589 */
590 char *
591 bittok2str_nosep(const struct tok *lp, const char *fmt,
592 u_int v)
593 {
594 return (bittok2str_internal(lp, fmt, v, ""));
595 }
596
597 /*
598 * Convert a bit token value to a string; use "fmt" if not found.
599 * this is useful for parsing bitfields, the output strings are comma separated.
600 */
601 char *
602 bittok2str(const struct tok *lp, const char *fmt,
603 u_int v)
604 {
605 return (bittok2str_internal(lp, fmt, v, ", "));
606 }
607
608 /*
609 * Convert a value to a string using an array; the macro
610 * tok2strary() in <netdissect.h> is the public interface to
611 * this function and ensures that the second argument is
612 * correct for bounds-checking.
613 */
614 const char *
615 tok2strary_internal(const char **lp, int n, const char *fmt,
616 int v)
617 {
618 static char buf[TOKBUFSIZE];
619
620 if (v >= 0 && v < n && lp[v] != NULL)
621 return lp[v];
622 if (fmt == NULL)
623 fmt = "#%d";
624 (void)nd_snprintf(buf, sizeof(buf), fmt, v);
625 return (buf);
626 }
627
628 /*
629 * Convert a 32-bit netmask to prefixlen if possible
630 * the function returns the prefix-len; if plen == -1
631 * then conversion was not possible;
632 */
633
634 int
635 mask2plen(uint32_t mask)
636 {
637 uint32_t bitmasks[33] = {
638 0x00000000,
639 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000,
640 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000,
641 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000,
642 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000,
643 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000,
644 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00,
645 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0,
646 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff
647 };
648 int prefix_len = 32;
649
650 /* let's see if we can transform the mask into a prefixlen */
651 while (prefix_len >= 0) {
652 if (bitmasks[prefix_len] == mask)
653 break;
654 prefix_len--;
655 }
656 return (prefix_len);
657 }
658
659 int
660 mask62plen(const u_char *mask)
661 {
662 u_char bitmasks[9] = {
663 0x00,
664 0x80, 0xc0, 0xe0, 0xf0,
665 0xf8, 0xfc, 0xfe, 0xff
666 };
667 int byte;
668 int cidr_len = 0;
669
670 for (byte = 0; byte < 16; byte++) {
671 u_int bits;
672
673 for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) {
674 if (mask[byte] == bitmasks[bits]) {
675 cidr_len += bits;
676 break;
677 }
678 }
679
680 if (mask[byte] != 0xff)
681 break;
682 }
683 return (cidr_len);
684 }
685
686 /*
687 * Routine to print out information for text-based protocols such as FTP,
688 * HTTP, SMTP, RTSP, SIP, ....
689 */
690 #define MAX_TOKEN 128
691
692 /*
693 * Fetch a token from a packet, starting at the specified index,
694 * and return the length of the token.
695 *
696 * Returns 0 on error; yes, this is indistinguishable from an empty
697 * token, but an "empty token" isn't a valid token - it just means
698 * either a space character at the beginning of the line (this
699 * includes a blank line) or no more tokens remaining on the line.
700 */
701 static int
702 fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len,
703 u_char *tbuf, size_t tbuflen)
704 {
705 size_t toklen = 0;
706
707 for (; idx < len; idx++) {
708 if (!ND_TTEST_1(pptr + idx)) {
709 /* ran past end of captured data */
710 return (0);
711 }
712 if (!isascii(GET_U_1(pptr + idx))) {
713 /* not an ASCII character */
714 return (0);
715 }
716 if (isspace(GET_U_1(pptr + idx))) {
717 /* end of token */
718 break;
719 }
720 if (!isprint(GET_U_1(pptr + idx))) {
721 /* not part of a command token or response code */
722 return (0);
723 }
724 if (toklen + 2 > tbuflen) {
725 /* no room for this character and terminating '\0' */
726 return (0);
727 }
728 tbuf[toklen] = GET_U_1(pptr + idx);
729 toklen++;
730 }
731 if (toklen == 0) {
732 /* no token */
733 return (0);
734 }
735 tbuf[toklen] = '\0';
736
737 /*
738 * Skip past any white space after the token, until we see
739 * an end-of-line (CR or LF).
740 */
741 for (; idx < len; idx++) {
742 if (!ND_TTEST_1(pptr + idx)) {
743 /* ran past end of captured data */
744 break;
745 }
746 if (GET_U_1(pptr + idx) == '\r' || GET_U_1(pptr + idx) == '\n') {
747 /* end of line */
748 break;
749 }
750 if (!isascii(GET_U_1(pptr + idx)) || !isprint(GET_U_1(pptr + idx))) {
751 /* not a printable ASCII character */
752 break;
753 }
754 if (!isspace(GET_U_1(pptr + idx))) {
755 /* beginning of next token */
756 break;
757 }
758 }
759 return (idx);
760 }
761
762 /*
763 * Scan a buffer looking for a line ending - LF or CR-LF.
764 * Return the index of the character after the line ending or 0 if
765 * we encounter a non-ASCII or non-printable character or don't find
766 * the line ending.
767 */
768 static u_int
769 print_txt_line(netdissect_options *ndo, const char *prefix,
770 const u_char *pptr, u_int idx, u_int len)
771 {
772 u_int startidx;
773 u_int linelen;
774
775 startidx = idx;
776 while (idx < len) {
777 ND_TCHECK_1(pptr + idx);
778 if (GET_U_1(pptr + idx) == '\n') {
779 /*
780 * LF without CR; end of line.
781 * Skip the LF and print the line, with the
782 * exception of the LF.
783 */
784 linelen = idx - startidx;
785 idx++;
786 goto print;
787 } else if (GET_U_1(pptr + idx) == '\r') {
788 /* CR - any LF? */
789 if ((idx+1) >= len) {
790 /* not in this packet */
791 return (0);
792 }
793 ND_TCHECK_1(pptr + idx + 1);
794 if (GET_U_1(pptr + idx + 1) == '\n') {
795 /*
796 * CR-LF; end of line.
797 * Skip the CR-LF and print the line, with
798 * the exception of the CR-LF.
799 */
800 linelen = idx - startidx;
801 idx += 2;
802 goto print;
803 }
804
805 /*
806 * CR followed by something else; treat this
807 * as if it were binary data, and don't print
808 * it.
809 */
810 return (0);
811 } else if (!isascii(GET_U_1(pptr + idx)) ||
812 (!isprint(GET_U_1(pptr + idx)) &&
813 GET_U_1(pptr + idx) != '\t')) {
814 /*
815 * Not a printable ASCII character and not a tab;
816 * treat this as if it were binary data, and
817 * don't print it.
818 */
819 return (0);
820 }
821 idx++;
822 }
823
824 /*
825 * All printable ASCII, but no line ending after that point
826 * in the buffer; treat this as if it were truncated.
827 */
828 trunc:
829 linelen = idx - startidx;
830 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx);
831 nd_print_trunc(ndo);
832 return (0);
833
834 print:
835 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx);
836 return (idx);
837 }
838
839 /* Assign needed before calling txtproto_print(): ndo->ndo_protocol = "proto" */
840 void
841 txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len,
842 const char **cmds, u_int flags)
843 {
844 u_int idx, eol;
845 u_char token[MAX_TOKEN+1];
846 const char *cmd;
847 int print_this = 0;
848
849 if (cmds != NULL) {
850 /*
851 * This protocol has more than just request and
852 * response lines; see whether this looks like a
853 * request or response and, if so, print it and,
854 * in verbose mode, print everything after it.
855 *
856 * This is for HTTP-like protocols, where we
857 * want to print requests and responses, but
858 * don't want to print continuations of request
859 * or response bodies in packets that don't
860 * contain the request or response line.
861 */
862 idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token));
863 if (idx != 0) {
864 /* Is this a valid request name? */
865 while ((cmd = *cmds++) != NULL) {
866 if (ascii_strcasecmp((const char *)token, cmd) == 0) {
867 /* Yes. */
868 print_this = 1;
869 break;
870 }
871 }
872
873 /*
874 * No - is this a valid response code (3 digits)?
875 *
876 * Is this token the response code, or is the next
877 * token the response code?
878 */
879 if (flags & RESP_CODE_SECOND_TOKEN) {
880 /*
881 * Next token - get it.
882 */
883 idx = fetch_token(ndo, pptr, idx, len, token,
884 sizeof(token));
885 }
886 if (idx != 0) {
887 if (isdigit(token[0]) && isdigit(token[1]) &&
888 isdigit(token[2]) && token[3] == '\0') {
889 /* Yes. */
890 print_this = 1;
891 }
892 }
893 }
894 } else {
895 /*
896 * Either:
897 *
898 * 1) This protocol has only request and response lines
899 * (e.g., FTP, where all the data goes over a different
900 * connection); assume the payload is a request or
901 * response.
902 *
903 * or
904 *
905 * 2) This protocol is just text, so that we should
906 * always, at minimum, print the first line and,
907 * in verbose mode, print all lines.
908 */
909 print_this = 1;
910 }
911
912 nd_print_protocol_caps(ndo);
913
914 if (print_this) {
915 /*
916 * In non-verbose mode, just print the protocol, followed
917 * by the first line.
918 *
919 * In verbose mode, print lines as text until we run out
920 * of characters or see something that's not a
921 * printable-ASCII line.
922 */
923 if (ndo->ndo_vflag) {
924 /*
925 * We're going to print all the text lines in the
926 * request or response; just print the length
927 * on the first line of the output.
928 */
929 ND_PRINT(", length: %u", len);
930 for (idx = 0;
931 idx < len && (eol = print_txt_line(ndo, "\n\t", pptr, idx, len)) != 0;
932 idx = eol)
933 ;
934 } else {
935 /*
936 * Just print the first text line.
937 */
938 print_txt_line(ndo, ": ", pptr, 0, len);
939 }
940 }
941 }
942
943 #if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \
944 (defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \
945 (defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \
946 (defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \
947 (defined(__s390__) || defined(__s390x__) || defined(__zarch__)) || \
948 defined(__vax__)
949 /*
950 * The procesor natively handles unaligned loads, so just use memcpy()
951 * and memcmp(), to enable those optimizations.
952 *
953 * XXX - are those all the x86 tests we need?
954 * XXX - do we need to worry about ARMv1 through ARMv5, which didn't
955 * support unaligned loads, and, if so, do we need to worry about all
956 * of them, or just some of them, e.g. ARMv5?
957 * XXX - are those the only 68k tests we need not to generated
958 * unaligned accesses if the target is the 68000 or 68010?
959 * XXX - are there any tests we don't need, because some definitions are for
960 * compilers that also predefine the GCC symbols?
961 * XXX - do we need to test for both 32-bit and 64-bit versions of those
962 * architectures in all cases?
963 */
964 #else
965 /*
966 * The processor doesn't natively handle unaligned loads,
967 * and the compiler might "helpfully" optimize memcpy()
968 * and memcmp(), when handed pointers that would normally
969 * be properly aligned, into sequences that assume proper
970 * alignment.
971 *
972 * Do copies and compares of possibly-unaligned data by
973 * calling routines that wrap memcpy() and memcmp(), to
974 * prevent that optimization.
975 */
976 void
977 unaligned_memcpy(void *p, const void *q, size_t l)
978 {
979 memcpy(p, q, l);
980 }
981
982 /* As with memcpy(), so with memcmp(). */
983 int
984 unaligned_memcmp(const void *p, const void *q, size_t l)
985 {
986 return (memcmp(p, q, l));
987 }
988 #endif
989