]> The Tcpdump Group git mirrors - tcpdump/blob - util-print.c
Use a less cryptic message for packet timestamp overflow
[tcpdump] / util-print.c
1 /*
2 * Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 /*
23 * txtproto_print() derived from original code by Hannes Gredler
24 * (hannes@gredler.at):
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that: (1) source code
28 * distributions retain the above copyright notice and this paragraph
29 * in its entirety, and (2) distributions including binary code include
30 * the above copyright notice and this paragraph in its entirety in
31 * the documentation or other materials provided with the distribution.
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND
33 * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
34 * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE.
36 */
37
38 #include <config.h>
39
40 #include "netdissect-stdinc.h"
41
42 #include <sys/stat.h>
43
44 #include <stdio.h>
45 #include <stdarg.h>
46 #include <stdlib.h>
47 #include <string.h>
48
49 #include "netdissect-ctype.h"
50
51 #include "netdissect.h"
52 #include "extract.h"
53 #include "ascii_strcasecmp.h"
54 #include "timeval-operations.h"
55
56 #define TOKBUFSIZE 128
57
58 enum date_flag { WITHOUT_DATE = 0, WITH_DATE = 1 };
59 enum time_flag { UTC_TIME = 0, LOCAL_TIME = 1 };
60
61 /*
62 * Print out a character, filtering out the non-printable ones
63 */
64 void
65 fn_print_char(netdissect_options *ndo, u_char c)
66 {
67 if (!ND_ISASCII(c)) {
68 c = ND_TOASCII(c);
69 ND_PRINT("M-");
70 }
71 if (!ND_ASCII_ISPRINT(c)) {
72 c ^= 0x40; /* DEL to ?, others to alpha */
73 ND_PRINT("^");
74 }
75 ND_PRINT("%c", c);
76 }
77
78 /*
79 * Print a null-terminated string, filtering out non-printable characters.
80 * DON'T USE IT with a pointer on the packet buffer because there is no
81 * truncation check. For this use, see the nd_printX() functions below.
82 */
83 void
84 fn_print_str(netdissect_options *ndo, const u_char *s)
85 {
86 while (*s != '\0') {
87 fn_print_char(ndo, *s);
88 s++;
89 }
90 }
91
92 /*
93 * Print out a null-terminated filename (or other ASCII string) from
94 * a fixed-length field in the packet buffer, or from what remains of
95 * the packet.
96 *
97 * n is the length of the fixed-length field, or the number of bytes
98 * remaining in the packet based on its on-the-network length.
99 *
100 * If ep is non-null, it should point just past the last captured byte
101 * of the packet, e.g. ndo->ndo_snapend. If ep is NULL, we assume no
102 * truncation check, other than the checks of the field length/remaining
103 * packet data length, is needed.
104 *
105 * Return the number of bytes of string processed, including the
106 * terminating null, if not truncated; as the terminating null is
107 * included in the count, and as there must be a terminating null,
108 * this will always be non-zero. Return 0 if truncated.
109 */
110 u_int
111 nd_printztn(netdissect_options *ndo,
112 const u_char *s, u_int n, const u_char *ep)
113 {
114 u_int bytes;
115 u_char c;
116
117 bytes = 0;
118 for (;;) {
119 if (n == 0 || (ep != NULL && s >= ep)) {
120 /*
121 * Truncated. This includes "no null before we
122 * got to the end of the fixed-length buffer or
123 * the end of the packet".
124 *
125 * XXX - BOOTP says "null-terminated", which
126 * means the maximum length of the string, in
127 * bytes, is 1 less than the size of the buffer,
128 * as there must always be a terminating null.
129 */
130 bytes = 0;
131 break;
132 }
133
134 c = GET_U_1(s);
135 s++;
136 bytes++;
137 n--;
138 if (c == '\0') {
139 /* End of string */
140 break;
141 }
142 fn_print_char(ndo, c);
143 }
144 return(bytes);
145 }
146
147 /*
148 * Print out a counted filename (or other ASCII string), part of
149 * the packet buffer.
150 * If ep is NULL, assume no truncation check is needed.
151 * Return true if truncated.
152 * Stop at ep (if given) or after n bytes, whichever is first.
153 */
154 int
155 nd_printn(netdissect_options *ndo,
156 const u_char *s, u_int n, const u_char *ep)
157 {
158 u_char c;
159
160 while (n > 0 && (ep == NULL || s < ep)) {
161 n--;
162 c = GET_U_1(s);
163 s++;
164 fn_print_char(ndo, c);
165 }
166 return (n == 0) ? 0 : 1;
167 }
168
169 /*
170 * Print a counted filename (or other ASCII string), part of
171 * the packet buffer, filtering out non-printable characters.
172 * Stop if truncated (via GET_U_1/longjmp) or after n bytes,
173 * whichever is first.
174 * The suffix comes from: j:longJmp, n:after N bytes.
175 */
176 void
177 nd_printjn(netdissect_options *ndo, const u_char *s, u_int n)
178 {
179 while (n > 0) {
180 fn_print_char(ndo, GET_U_1(s));
181 n--;
182 s++;
183 }
184 }
185
186 /*
187 * Print a null-padded filename (or other ASCII string), part of
188 * the packet buffer, filtering out non-printable characters.
189 * Stop if truncated (via GET_U_1/longjmp) or after n bytes or before
190 * the null char, whichever occurs first.
191 * The suffix comes from: j:longJmp, n:after N bytes, p:null-Padded.
192 */
193 void
194 nd_printjnp(netdissect_options *ndo, const u_char *s, u_int n)
195 {
196 u_char c;
197
198 while (n > 0) {
199 c = GET_U_1(s);
200 if (c == '\0')
201 break;
202 fn_print_char(ndo, c);
203 n--;
204 s++;
205 }
206 }
207
208 /*
209 * Print the timestamp .FRAC part (Microseconds/nanoseconds)
210 */
211 static void
212 ts_frac_print(netdissect_options *ndo, const struct timeval *tv)
213 {
214 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
215 switch (ndo->ndo_tstamp_precision) {
216
217 case PCAP_TSTAMP_PRECISION_MICRO:
218 ND_PRINT(".%06u", (unsigned)tv->tv_usec);
219 if ((unsigned)tv->tv_usec > ND_MICRO_PER_SEC - 1)
220 ND_PRINT(" (invalid ms)");
221 break;
222
223 case PCAP_TSTAMP_PRECISION_NANO:
224 ND_PRINT(".%09u", (unsigned)tv->tv_usec);
225 if ((unsigned)tv->tv_usec > ND_NANO_PER_SEC - 1)
226 ND_PRINT(" (invalid ns)");
227 break;
228
229 default:
230 ND_PRINT(".{unknown}");
231 break;
232 }
233 #else
234 ND_PRINT(".%06u", (unsigned)tv->tv_usec);
235 if ((unsigned)tv->tv_usec > ND_MICRO_PER_SEC - 1)
236 ND_PRINT(" (invalid ms)");
237 #endif
238 }
239
240 /*
241 * Print the timestamp as [YY:MM:DD] HH:MM:SS.FRAC.
242 * if time_flag == LOCAL_TIME print local time else UTC/GMT time
243 * if date_flag == WITH_DATE print YY:MM:DD before HH:MM:SS.FRAC
244 */
245 static void
246 ts_date_hmsfrac_print(netdissect_options *ndo, const struct timeval *tv,
247 enum date_flag date_flag, enum time_flag time_flag)
248 {
249 struct tm *tm;
250 char timebuf[32];
251 const char *timestr;
252
253 if (tv->tv_sec < 0) {
254 ND_PRINT("[timestamp overflow]");
255 return;
256 }
257
258 if (time_flag == LOCAL_TIME)
259 tm = localtime(&tv->tv_sec);
260 else
261 tm = gmtime(&tv->tv_sec);
262
263 if (date_flag == WITH_DATE) {
264 timestr = nd_format_time(timebuf, sizeof(timebuf),
265 "%Y-%m-%d %H:%M:%S", tm);
266 } else {
267 timestr = nd_format_time(timebuf, sizeof(timebuf),
268 "%H:%M:%S", tm);
269 }
270 ND_PRINT("%s", timestr);
271
272 ts_frac_print(ndo, tv);
273 }
274
275 /*
276 * Print the timestamp - Unix timeval style, as SECS.FRAC.
277 */
278 static void
279 ts_unix_print(netdissect_options *ndo, const struct timeval *tv)
280 {
281 if (tv->tv_sec < 0) {
282 ND_PRINT("[timestamp overflow]");
283 return;
284 }
285
286 ND_PRINT("%" PRId64, (int64_t)tv->tv_sec);
287 ts_frac_print(ndo, tv);
288 }
289
290 /*
291 * Print the timestamp
292 */
293 void
294 ts_print(netdissect_options *ndo,
295 const struct timeval *tvp)
296 {
297 static struct timeval tv_ref;
298 struct timeval tv_result;
299 int negative_offset;
300 int nano_prec;
301
302 switch (ndo->ndo_tflag) {
303
304 case 0: /* Default */
305 ts_date_hmsfrac_print(ndo, tvp, WITHOUT_DATE, LOCAL_TIME);
306 ND_PRINT(" ");
307 break;
308
309 case 1: /* No time stamp */
310 break;
311
312 case 2: /* Unix timeval style */
313 ts_unix_print(ndo, tvp);
314 ND_PRINT(" ");
315 break;
316
317 case 3: /* Microseconds/nanoseconds since previous packet */
318 case 5: /* Microseconds/nanoseconds since first packet */
319 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
320 switch (ndo->ndo_tstamp_precision) {
321 case PCAP_TSTAMP_PRECISION_MICRO:
322 nano_prec = 0;
323 break;
324 case PCAP_TSTAMP_PRECISION_NANO:
325 nano_prec = 1;
326 break;
327 default:
328 nano_prec = 0;
329 break;
330 }
331 #else
332 nano_prec = 0;
333 #endif
334 if (!(netdissect_timevalisset(&tv_ref)))
335 tv_ref = *tvp; /* set timestamp for first packet */
336
337 negative_offset = netdissect_timevalcmp(tvp, &tv_ref, <);
338 if (negative_offset)
339 netdissect_timevalsub(&tv_ref, tvp, &tv_result, nano_prec);
340 else
341 netdissect_timevalsub(tvp, &tv_ref, &tv_result, nano_prec);
342
343 ND_PRINT((negative_offset ? "-" : " "));
344 ts_date_hmsfrac_print(ndo, &tv_result, WITHOUT_DATE, UTC_TIME);
345 ND_PRINT(" ");
346
347 if (ndo->ndo_tflag == 3)
348 tv_ref = *tvp; /* set timestamp for previous packet */
349 break;
350
351 case 4: /* Date + Default */
352 ts_date_hmsfrac_print(ndo, tvp, WITH_DATE, LOCAL_TIME);
353 ND_PRINT(" ");
354 break;
355 }
356 }
357
358 /*
359 * Print an unsigned relative number of seconds (e.g. hold time, prune timer)
360 * in the form 5m1s. This does no truncation, so 32230861 seconds
361 * is represented as 1y1w1d1h1m1s.
362 */
363 void
364 unsigned_relts_print(netdissect_options *ndo,
365 uint32_t secs)
366 {
367 static const char *lengths[] = {"y", "w", "d", "h", "m", "s"};
368 static const u_int seconds[] = {31536000, 604800, 86400, 3600, 60, 1};
369 const char **l = lengths;
370 const u_int *s = seconds;
371
372 if (secs == 0) {
373 ND_PRINT("0s");
374 return;
375 }
376 while (secs > 0) {
377 if (secs >= *s) {
378 ND_PRINT("%u%s", secs / *s, *l);
379 secs -= (secs / *s) * *s;
380 }
381 s++;
382 l++;
383 }
384 }
385
386 /*
387 * Print a signed relative number of seconds (e.g. hold time, prune timer)
388 * in the form 5m1s. This does no truncation, so 32230861 seconds
389 * is represented as 1y1w1d1h1m1s.
390 */
391 void
392 signed_relts_print(netdissect_options *ndo,
393 int32_t secs)
394 {
395 if (secs < 0) {
396 ND_PRINT("-");
397 if (secs == INT32_MIN) {
398 /*
399 * -2^31; you can't fit its absolute value into
400 * a 32-bit signed integer.
401 *
402 * Just directly pass said absolute value to
403 * unsigned_relts_print() directly.
404 *
405 * (XXX - does ISO C guarantee that -(-2^n),
406 * when calculated and cast to an n-bit unsigned
407 * integer type, will have the value 2^n?)
408 */
409 unsigned_relts_print(ndo, 2147483648U);
410 } else {
411 /*
412 * We now know -secs will fit into an int32_t;
413 * negate it and pass that to unsigned_relts_print().
414 */
415 unsigned_relts_print(ndo, -secs);
416 }
417 return;
418 }
419 unsigned_relts_print(ndo, secs);
420 }
421
422 /*
423 * Format a struct tm with strftime().
424 * If the pointer to the struct tm is null, that means that the
425 * routine to convert a time_t to a struct tm failed; the localtime()
426 * and gmtime() in the Microsoft Visual Studio C library will fail,
427 * returning null, if the value is before the UNIX Epoch.
428 */
429 const char *
430 nd_format_time(char *buf, size_t bufsize, const char *format,
431 const struct tm *timeptr)
432 {
433 if (timeptr != NULL) {
434 if (strftime(buf, bufsize, format, timeptr) != 0)
435 return (buf);
436 else
437 return ("[nd_format_time() buffer is too small]");
438 } else
439 return ("[localtime() or gmtime() couldn't convert the date and time]");
440 }
441
442 /* Print the truncated string */
443 void nd_print_trunc(netdissect_options *ndo)
444 {
445 ND_PRINT(" [|%s]", ndo->ndo_protocol);
446 }
447
448 /* Print the protocol name */
449 void nd_print_protocol(netdissect_options *ndo)
450 {
451 ND_PRINT("%s", ndo->ndo_protocol);
452 }
453
454 /* Print the protocol name in caps (uppercases) */
455 void nd_print_protocol_caps(netdissect_options *ndo)
456 {
457 const char *p;
458 for (p = ndo->ndo_protocol; *p != '\0'; p++)
459 ND_PRINT("%c", ND_ASCII_TOUPPER(*p));
460 }
461
462 /* Print the invalid string */
463 void nd_print_invalid(netdissect_options *ndo)
464 {
465 ND_PRINT(" (invalid)");
466 }
467
468 /*
469 * this is a generic routine for printing unknown data;
470 * we pass on the linefeed plus indentation string to
471 * get a proper output - returns 0 on error
472 */
473
474 int
475 print_unknown_data(netdissect_options *ndo, const u_char *cp,
476 const char *ident, u_int len)
477 {
478 u_int len_to_print;
479
480 len_to_print = len;
481 if (!ND_TTEST_LEN(cp, 0)) {
482 ND_PRINT("%sDissector error: print_unknown_data called with pointer past end of packet",
483 ident);
484 return(0);
485 }
486 if (ND_BYTES_AVAILABLE_AFTER(cp) < len_to_print)
487 len_to_print = ND_BYTES_AVAILABLE_AFTER(cp);
488 hex_print(ndo, ident, cp, len_to_print);
489 return(1); /* everything is ok */
490 }
491
492 /*
493 * Convert a token value to a string; use "fmt" if not found.
494 */
495 static const char *
496 tok2strbuf(const struct tok *lp, const char *fmt,
497 u_int v, char *buf, size_t bufsize)
498 {
499 if (lp != NULL) {
500 while (lp->s != NULL) {
501 if (lp->v == v)
502 return (lp->s);
503 ++lp;
504 }
505 }
506 if (fmt == NULL)
507 fmt = "#%d";
508
509 (void)snprintf(buf, bufsize, fmt, v);
510 return (const char *)buf;
511 }
512
513 /*
514 * Convert a token value to a string; use "fmt" if not found.
515 * Uses tok2strbuf() on one of four local static buffers of size TOKBUFSIZE
516 * in round-robin fashion.
517 */
518 const char *
519 tok2str(const struct tok *lp, const char *fmt,
520 u_int v)
521 {
522 static char buf[4][TOKBUFSIZE];
523 static int idx = 0;
524 char *ret;
525
526 ret = buf[idx];
527 idx = (idx+1) & 3;
528 return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0]));
529 }
530
531 /*
532 * Convert a bit token value to a string; use "fmt" if not found.
533 * this is useful for parsing bitfields, the output strings are separated
534 * if the s field is positive.
535 *
536 * A token matches iff it has one or more bits set and every bit that is set
537 * in the token is set in v. Consequently, a 0 token never matches.
538 */
539 static char *
540 bittok2str_internal(const struct tok *lp, const char *fmt,
541 u_int v, const char *sep)
542 {
543 static char buf[1024+1]; /* our string buffer */
544 char *bufp = buf;
545 size_t space_left = sizeof(buf), string_size;
546 const char * sepstr = "";
547
548 while (lp != NULL && lp->s != NULL) {
549 if (lp->v && (v & lp->v) == lp->v) {
550 /* ok we have found something */
551 if (space_left <= 1)
552 return (buf); /* only enough room left for NUL, if that */
553 string_size = strlcpy(bufp, sepstr, space_left);
554 if (string_size >= space_left)
555 return (buf); /* we ran out of room */
556 bufp += string_size;
557 space_left -= string_size;
558 if (space_left <= 1)
559 return (buf); /* only enough room left for NUL, if that */
560 string_size = strlcpy(bufp, lp->s, space_left);
561 if (string_size >= space_left)
562 return (buf); /* we ran out of room */
563 bufp += string_size;
564 space_left -= string_size;
565 sepstr = sep;
566 }
567 lp++;
568 }
569
570 if (bufp == buf)
571 /* bummer - lets print the "unknown" message as advised in the fmt string if we got one */
572 (void)snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v);
573 return (buf);
574 }
575
576 /*
577 * Convert a bit token value to a string; use "fmt" if not found.
578 * this is useful for parsing bitfields, the output strings are not separated.
579 */
580 char *
581 bittok2str_nosep(const struct tok *lp, const char *fmt,
582 u_int v)
583 {
584 return (bittok2str_internal(lp, fmt, v, ""));
585 }
586
587 /*
588 * Convert a bit token value to a string; use "fmt" if not found.
589 * this is useful for parsing bitfields, the output strings are comma separated.
590 */
591 char *
592 bittok2str(const struct tok *lp, const char *fmt,
593 u_int v)
594 {
595 return (bittok2str_internal(lp, fmt, v, ", "));
596 }
597
598 /*
599 * Convert a value to a string using an array; the macro
600 * tok2strary() in <netdissect.h> is the public interface to
601 * this function and ensures that the second argument is
602 * correct for bounds-checking.
603 */
604 const char *
605 tok2strary_internal(const char **lp, int n, const char *fmt,
606 int v)
607 {
608 static char buf[TOKBUFSIZE];
609
610 if (v >= 0 && v < n && lp[v] != NULL)
611 return lp[v];
612 if (fmt == NULL)
613 fmt = "#%d";
614 (void)snprintf(buf, sizeof(buf), fmt, v);
615 return (buf);
616 }
617
618 const struct tok *
619 uint2tokary_internal(const struct uint_tokary dict[], const size_t size,
620 const u_int val)
621 {
622 size_t i;
623 /* Try a direct lookup before the full scan. */
624 if (val < size && dict[val].uintval == val)
625 return dict[val].tokary; /* OK if NULL */
626 for (i = 0; i < size; i++)
627 if (dict[i].uintval == val)
628 return dict[i].tokary; /* OK if NULL */
629 return NULL;
630 }
631
632 /*
633 * Convert a 32-bit netmask to prefixlen if possible
634 * the function returns the prefix-len; if plen == -1
635 * then conversion was not possible;
636 */
637
638 int
639 mask2plen(uint32_t mask)
640 {
641 const uint32_t bitmasks[33] = {
642 0x00000000,
643 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000,
644 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000,
645 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000,
646 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000,
647 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000,
648 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00,
649 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0,
650 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff
651 };
652 int prefix_len = 32;
653
654 /* let's see if we can transform the mask into a prefixlen */
655 while (prefix_len >= 0) {
656 if (bitmasks[prefix_len] == mask)
657 break;
658 prefix_len--;
659 }
660 return (prefix_len);
661 }
662
663 int
664 mask62plen(const u_char *mask)
665 {
666 u_char bitmasks[9] = {
667 0x00,
668 0x80, 0xc0, 0xe0, 0xf0,
669 0xf8, 0xfc, 0xfe, 0xff
670 };
671 int byte;
672 int cidr_len = 0;
673
674 for (byte = 0; byte < 16; byte++) {
675 u_int bits;
676
677 for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) {
678 if (mask[byte] == bitmasks[bits]) {
679 cidr_len += bits;
680 break;
681 }
682 }
683
684 if (mask[byte] != 0xff)
685 break;
686 }
687 return (cidr_len);
688 }
689
690 /*
691 * Routine to print out information for text-based protocols such as FTP,
692 * HTTP, SMTP, RTSP, SIP, ....
693 */
694 #define MAX_TOKEN 128
695
696 /*
697 * Fetch a token from a packet, starting at the specified index,
698 * and return the length of the token.
699 *
700 * Returns 0 on error; yes, this is indistinguishable from an empty
701 * token, but an "empty token" isn't a valid token - it just means
702 * either a space character at the beginning of the line (this
703 * includes a blank line) or no more tokens remaining on the line.
704 */
705 static int
706 fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len,
707 u_char *tbuf, size_t tbuflen)
708 {
709 size_t toklen = 0;
710 u_char c;
711
712 for (; idx < len; idx++) {
713 if (!ND_TTEST_1(pptr + idx)) {
714 /* ran past end of captured data */
715 return (0);
716 }
717 c = GET_U_1(pptr + idx);
718 if (!ND_ISASCII(c)) {
719 /* not an ASCII character */
720 return (0);
721 }
722 if (c == ' ' || c == '\t' || c == '\r' || c == '\n') {
723 /* end of token */
724 break;
725 }
726 if (!ND_ASCII_ISPRINT(c)) {
727 /* not part of a command token or response code */
728 return (0);
729 }
730 if (toklen + 2 > tbuflen) {
731 /* no room for this character and terminating '\0' */
732 return (0);
733 }
734 tbuf[toklen] = c;
735 toklen++;
736 }
737 if (toklen == 0) {
738 /* no token */
739 return (0);
740 }
741 tbuf[toklen] = '\0';
742
743 /*
744 * Skip past any white space after the token, until we see
745 * an end-of-line (CR or LF).
746 */
747 for (; idx < len; idx++) {
748 if (!ND_TTEST_1(pptr + idx)) {
749 /* ran past end of captured data */
750 break;
751 }
752 c = GET_U_1(pptr + idx);
753 if (c == '\r' || c == '\n') {
754 /* end of line */
755 break;
756 }
757 if (!ND_ASCII_ISPRINT(c)) {
758 /* not a printable ASCII character */
759 break;
760 }
761 if (c != ' ' && c != '\t' && c != '\r' && c != '\n') {
762 /* beginning of next token */
763 break;
764 }
765 }
766 return (idx);
767 }
768
769 /*
770 * Scan a buffer looking for a line ending - LF or CR-LF.
771 * Return the index of the character after the line ending or 0 if
772 * we encounter a non-ASCII or non-printable character or don't find
773 * the line ending.
774 */
775 static u_int
776 print_txt_line(netdissect_options *ndo, const char *prefix,
777 const u_char *pptr, u_int idx, u_int len)
778 {
779 u_int startidx;
780 u_int linelen;
781 u_char c;
782
783 startidx = idx;
784 while (idx < len) {
785 c = GET_U_1(pptr + idx);
786 if (c == '\n') {
787 /*
788 * LF without CR; end of line.
789 * Skip the LF and print the line, with the
790 * exception of the LF.
791 */
792 linelen = idx - startidx;
793 idx++;
794 goto print;
795 } else if (c == '\r') {
796 /* CR - any LF? */
797 if ((idx+1) >= len) {
798 /* not in this packet */
799 return (0);
800 }
801 if (GET_U_1(pptr + idx + 1) == '\n') {
802 /*
803 * CR-LF; end of line.
804 * Skip the CR-LF and print the line, with
805 * the exception of the CR-LF.
806 */
807 linelen = idx - startidx;
808 idx += 2;
809 goto print;
810 }
811
812 /*
813 * CR followed by something else; treat this
814 * as if it were binary data, and don't print
815 * it.
816 */
817 return (0);
818 } else if (!ND_ASCII_ISPRINT(c) && c != '\t') {
819 /*
820 * Not a printable ASCII character and not a tab;
821 * treat this as if it were binary data, and
822 * don't print it.
823 */
824 return (0);
825 }
826 idx++;
827 }
828
829 /*
830 * All printable ASCII, but no line ending after that point
831 * in the buffer.
832 */
833 linelen = idx - startidx;
834 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx);
835 return (0);
836
837 print:
838 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx);
839 return (idx);
840 }
841
842 /* Assign needed before calling txtproto_print(): ndo->ndo_protocol = "proto" */
843 void
844 txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len,
845 const char **cmds, u_int flags)
846 {
847 u_int idx, eol;
848 u_char token[MAX_TOKEN+1];
849 const char *cmd;
850 int print_this = 0;
851
852 if (cmds != NULL) {
853 /*
854 * This protocol has more than just request and
855 * response lines; see whether this looks like a
856 * request or response and, if so, print it and,
857 * in verbose mode, print everything after it.
858 *
859 * This is for HTTP-like protocols, where we
860 * want to print requests and responses, but
861 * don't want to print continuations of request
862 * or response bodies in packets that don't
863 * contain the request or response line.
864 */
865 idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token));
866 if (idx != 0) {
867 /* Is this a valid request name? */
868 while ((cmd = *cmds++) != NULL) {
869 if (ascii_strcasecmp((const char *)token, cmd) == 0) {
870 /* Yes. */
871 print_this = 1;
872 break;
873 }
874 }
875
876 /*
877 * No - is this a valid response code (3 digits)?
878 *
879 * Is this token the response code, or is the next
880 * token the response code?
881 */
882 if (flags & RESP_CODE_SECOND_TOKEN) {
883 /*
884 * Next token - get it.
885 */
886 idx = fetch_token(ndo, pptr, idx, len, token,
887 sizeof(token));
888 }
889 if (idx != 0) {
890 if (ND_ASCII_ISDIGIT(token[0]) && ND_ASCII_ISDIGIT(token[1]) &&
891 ND_ASCII_ISDIGIT(token[2]) && token[3] == '\0') {
892 /* Yes. */
893 print_this = 1;
894 }
895 }
896 }
897 } else {
898 /*
899 * Either:
900 *
901 * 1) This protocol has only request and response lines
902 * (e.g., FTP, where all the data goes over a different
903 * connection); assume the payload is a request or
904 * response.
905 *
906 * or
907 *
908 * 2) This protocol is just text, so that we should
909 * always, at minimum, print the first line and,
910 * in verbose mode, print all lines.
911 */
912 print_this = 1;
913 }
914
915 nd_print_protocol_caps(ndo);
916
917 if (print_this) {
918 /*
919 * In non-verbose mode, just print the protocol, followed
920 * by the first line.
921 *
922 * In verbose mode, print lines as text until we run out
923 * of characters or see something that's not a
924 * printable-ASCII line.
925 */
926 if (ndo->ndo_vflag) {
927 /*
928 * We're going to print all the text lines in the
929 * request or response; just print the length
930 * on the first line of the output.
931 */
932 ND_PRINT(", length: %u", len);
933 for (idx = 0;
934 idx < len && (eol = print_txt_line(ndo, "\n\t", pptr, idx, len)) != 0;
935 idx = eol)
936 ;
937 } else {
938 /*
939 * Just print the first text line.
940 */
941 print_txt_line(ndo, ": ", pptr, 0, len);
942 }
943 }
944 }
945
946 #if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \
947 (defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \
948 (defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \
949 (defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \
950 (defined(__s390__) || defined(__s390x__) || defined(__zarch__)) || \
951 defined(__vax__)
952 /*
953 * The processor natively handles unaligned loads, so just use memcpy()
954 * and memcmp(), to enable those optimizations.
955 *
956 * XXX - are those all the x86 tests we need?
957 * XXX - do we need to worry about ARMv1 through ARMv5, which didn't
958 * support unaligned loads, and, if so, do we need to worry about all
959 * of them, or just some of them, e.g. ARMv5?
960 * XXX - are those the only 68k tests we need not to generated
961 * unaligned accesses if the target is the 68000 or 68010?
962 * XXX - are there any tests we don't need, because some definitions are for
963 * compilers that also predefine the GCC symbols?
964 * XXX - do we need to test for both 32-bit and 64-bit versions of those
965 * architectures in all cases?
966 */
967 #else
968 /*
969 * The processor doesn't natively handle unaligned loads,
970 * and the compiler might "helpfully" optimize memcpy()
971 * and memcmp(), when handed pointers that would normally
972 * be properly aligned, into sequences that assume proper
973 * alignment.
974 *
975 * Do copies and compares of possibly-unaligned data by
976 * calling routines that wrap memcpy() and memcmp(), to
977 * prevent that optimization.
978 */
979 void
980 unaligned_memcpy(void *p, const void *q, size_t l)
981 {
982 memcpy(p, q, l);
983 }
984
985 /* As with memcpy(), so with memcmp(). */
986 int
987 unaligned_memcmp(const void *p, const void *q, size_t l)
988 {
989 return (memcmp(p, q, l));
990 }
991 #endif
992