]> The Tcpdump Group git mirrors - tcpdump/blob - util-print.c
Merge branch 'master' into fix_udp_frag_badlen
[tcpdump] / util-print.c
1 /*
2 * Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 /*
23 * txtproto_print() derived from original code by Hannes Gredler
24 * (hannes@gredler.at):
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that: (1) source code
28 * distributions retain the above copyright notice and this paragraph
29 * in its entirety, and (2) distributions including binary code include
30 * the above copyright notice and this paragraph in its entirety in
31 * the documentation or other materials provided with the distribution.
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND
33 * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
34 * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE.
36 */
37
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include "netdissect-stdinc.h"
43
44 #include <sys/stat.h>
45
46 #ifdef HAVE_FCNTL_H
47 #include <fcntl.h>
48 #endif
49 #include <stdio.h>
50 #include <stdarg.h>
51 #include <stdlib.h>
52 #include <string.h>
53
54 #include "netdissect-ctype.h"
55
56 #include "netdissect.h"
57 #include "extract.h"
58 #include "ascii_strcasecmp.h"
59 #include "timeval-operations.h"
60
61 #define TOKBUFSIZE 128
62
63 enum date_flag { WITHOUT_DATE = 0, WITH_DATE = 1 };
64 enum time_flag { UTC_TIME = 0, LOCAL_TIME = 1 };
65
66 /*
67 * Print out a character, filtering out the non-printable ones
68 */
69 void
70 fn_print_char(netdissect_options *ndo, u_char c)
71 {
72 if (!ND_ISASCII(c)) {
73 c = ND_TOASCII(c);
74 ND_PRINT("M-");
75 }
76 if (!ND_ASCII_ISPRINT(c)) {
77 c ^= 0x40; /* DEL to ?, others to alpha */
78 ND_PRINT("^");
79 }
80 ND_PRINT("%c", c);
81 }
82
83 /*
84 * Print a null-terminated string, filtering out non-printable characters.
85 * DON'T USE IT with a pointer on the packet buffer because there is no
86 * truncation check. For this use, see the nd_printX() functions below.
87 */
88 void
89 fn_print_str(netdissect_options *ndo, const u_char *s)
90 {
91 while (*s != '\0') {
92 fn_print_char(ndo, *s);
93 s++;
94 }
95 }
96
97 /*
98 * Print out a null-terminated filename (or other ASCII string), part of
99 * the packet buffer.
100 * If ep is NULL, assume no truncation check is needed.
101 * Return true if truncated.
102 * Stop at ep (if given) or before the null char, whichever is first.
103 */
104 int
105 nd_print(netdissect_options *ndo,
106 const u_char *s, const u_char *ep)
107 {
108 int ret;
109 u_char c;
110
111 ret = 1; /* assume truncated */
112 while (ep == NULL || s < ep) {
113 c = GET_U_1(s);
114 s++;
115 if (c == '\0') {
116 ret = 0;
117 break;
118 }
119 fn_print_char(ndo, c);
120 }
121 return(ret);
122 }
123
124 /*
125 * Print out a null-terminated filename (or other ASCII string) from
126 * a fixed-length field in the packet buffer, or from what remains of
127 * the packet.
128 *
129 * n is the length of the fixed-length field, or the number of bytes
130 * remaining in the packet based on its on-the-network length.
131 *
132 * If ep is non-null, it should point just past the last captured byte
133 * of the packet, e.g. ndo->ndo_snapend. If ep is NULL, we assume no
134 * truncation check, other than the checks of the field length/remaining
135 * packet data length, is needed.
136 *
137 * Return the number of bytes of string processed, including the
138 * terminating null, if not truncated; as the terminating null is
139 * included in the count, and as there must be a terminating null,
140 * this will always be non-zero. Return 0 if truncated.
141 */
142 u_int
143 nd_printztn(netdissect_options *ndo,
144 const u_char *s, u_int n, const u_char *ep)
145 {
146 u_int bytes;
147 u_char c;
148
149 bytes = 0;
150 for (;;) {
151 if (n == 0 || (ep != NULL && s >= ep)) {
152 /*
153 * Truncated. This includes "no null before we
154 * got to the end of the fixed-length buffer or
155 * the end of the packet".
156 *
157 * XXX - BOOTP says "null-terminated", which
158 * means the maximum length of the string, in
159 * bytes, is 1 less than the size of the buffer,
160 * as there must always be a terminating null.
161 */
162 bytes = 0;
163 break;
164 }
165
166 c = GET_U_1(s);
167 s++;
168 bytes++;
169 n--;
170 if (c == '\0') {
171 /* End of string */
172 break;
173 }
174 fn_print_char(ndo, c);
175 }
176 return(bytes);
177 }
178
179 /*
180 * Print out a counted filename (or other ASCII string), part of
181 * the packet buffer.
182 * If ep is NULL, assume no truncation check is needed.
183 * Return true if truncated.
184 * Stop at ep (if given) or after n bytes, whichever is first.
185 */
186 int
187 nd_printn(netdissect_options *ndo,
188 const u_char *s, u_int n, const u_char *ep)
189 {
190 u_char c;
191
192 while (n > 0 && (ep == NULL || s < ep)) {
193 n--;
194 c = GET_U_1(s);
195 s++;
196 fn_print_char(ndo, c);
197 }
198 return (n == 0) ? 0 : 1;
199 }
200
201 /*
202 * Print out a null-padded filename (or other ASCII string), part of
203 * the packet buffer.
204 * If ep is NULL, assume no truncation check is needed.
205 * Return true if truncated.
206 * Stop at ep (if given) or after n bytes or before the null char,
207 * whichever is first.
208 */
209 int
210 nd_printzp(netdissect_options *ndo,
211 const u_char *s, u_int n,
212 const u_char *ep)
213 {
214 int ret;
215 u_char c;
216
217 ret = 1; /* assume truncated */
218 while (n > 0 && (ep == NULL || s < ep)) {
219 n--;
220 c = GET_U_1(s);
221 s++;
222 if (c == '\0') {
223 ret = 0;
224 break;
225 }
226 fn_print_char(ndo, c);
227 }
228 return (n == 0) ? 0 : ret;
229 }
230
231 /*
232 * Print the timestamp .FRAC part (Microseconds/nanoseconds)
233 */
234 static void
235 ts_frac_print(netdissect_options *ndo, long usec)
236 {
237 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
238 switch (ndo->ndo_tstamp_precision) {
239
240 case PCAP_TSTAMP_PRECISION_MICRO:
241 ND_PRINT(".%06u", (unsigned)usec);
242 break;
243
244 case PCAP_TSTAMP_PRECISION_NANO:
245 ND_PRINT(".%09u", (unsigned)usec);
246 break;
247
248 default:
249 ND_PRINT(".{unknown}");
250 break;
251 }
252 #else
253 ND_PRINT(".%06u", (unsigned)usec);
254 #endif
255 }
256
257 /*
258 * Print the timestamp as [YY:MM:DD] HH:MM:SS.FRAC.
259 * if time_flag == LOCAL_TIME print local time else UTC/GMT time
260 * if date_flag == WITH_DATE print YY:MM:DD before HH:MM:SS.FRAC
261 */
262 static void
263 ts_date_hmsfrac_print(netdissect_options *ndo, long sec, long usec,
264 enum date_flag date_flag, enum time_flag time_flag)
265 {
266 time_t Time = sec;
267 struct tm *tm;
268 char timestr[32];
269
270 if ((unsigned)sec & 0x80000000) {
271 ND_PRINT("[Error converting time]");
272 return;
273 }
274
275 if (time_flag == LOCAL_TIME)
276 tm = localtime(&Time);
277 else
278 tm = gmtime(&Time);
279
280 if (!tm) {
281 ND_PRINT("[Error converting time]");
282 return;
283 }
284 if (date_flag == WITH_DATE)
285 strftime(timestr, sizeof(timestr), "%Y-%m-%d %H:%M:%S", tm);
286 else
287 strftime(timestr, sizeof(timestr), "%H:%M:%S", tm);
288 ND_PRINT("%s", timestr);
289
290 ts_frac_print(ndo, usec);
291 }
292
293 /*
294 * Print the timestamp - Unix timeval style, as SECS.FRAC.
295 */
296 static void
297 ts_unix_print(netdissect_options *ndo, long sec, long usec)
298 {
299 if ((unsigned)sec & 0x80000000) {
300 ND_PRINT("[Error converting time]");
301 return;
302 }
303
304 ND_PRINT("%u", (unsigned)sec);
305 ts_frac_print(ndo, usec);
306 }
307
308 /*
309 * Print the timestamp
310 */
311 void
312 ts_print(netdissect_options *ndo,
313 const struct timeval *tvp)
314 {
315 static struct timeval tv_ref;
316 struct timeval tv_result;
317 int negative_offset;
318 int nano_prec;
319
320 switch (ndo->ndo_tflag) {
321
322 case 0: /* Default */
323 ts_date_hmsfrac_print(ndo, tvp->tv_sec, tvp->tv_usec,
324 WITHOUT_DATE, LOCAL_TIME);
325 ND_PRINT(" ");
326 break;
327
328 case 1: /* No time stamp */
329 break;
330
331 case 2: /* Unix timeval style */
332 ts_unix_print(ndo, tvp->tv_sec, tvp->tv_usec);
333 ND_PRINT(" ");
334 break;
335
336 case 3: /* Microseconds/nanoseconds since previous packet */
337 case 5: /* Microseconds/nanoseconds since first packet */
338 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
339 switch (ndo->ndo_tstamp_precision) {
340 case PCAP_TSTAMP_PRECISION_MICRO:
341 nano_prec = 0;
342 break;
343 case PCAP_TSTAMP_PRECISION_NANO:
344 nano_prec = 1;
345 break;
346 default:
347 nano_prec = 0;
348 break;
349 }
350 #else
351 nano_prec = 0;
352 #endif
353 if (!(netdissect_timevalisset(&tv_ref)))
354 tv_ref = *tvp; /* set timestamp for first packet */
355
356 negative_offset = netdissect_timevalcmp(tvp, &tv_ref, <);
357 if (negative_offset)
358 netdissect_timevalsub(&tv_ref, tvp, &tv_result, nano_prec);
359 else
360 netdissect_timevalsub(tvp, &tv_ref, &tv_result, nano_prec);
361
362 ND_PRINT((negative_offset ? "-" : " "));
363 ts_date_hmsfrac_print(ndo, tv_result.tv_sec, tv_result.tv_usec,
364 WITHOUT_DATE, UTC_TIME);
365 ND_PRINT(" ");
366
367 if (ndo->ndo_tflag == 3)
368 tv_ref = *tvp; /* set timestamp for previous packet */
369 break;
370
371 case 4: /* Date + Default */
372 ts_date_hmsfrac_print(ndo, tvp->tv_sec, tvp->tv_usec,
373 WITH_DATE, LOCAL_TIME);
374 ND_PRINT(" ");
375 break;
376 }
377 }
378
379 /*
380 * Print an unsigned relative number of seconds (e.g. hold time, prune timer)
381 * in the form 5m1s. This does no truncation, so 32230861 seconds
382 * is represented as 1y1w1d1h1m1s.
383 */
384 void
385 unsigned_relts_print(netdissect_options *ndo,
386 uint32_t secs)
387 {
388 static const char *lengths[] = {"y", "w", "d", "h", "m", "s"};
389 static const u_int seconds[] = {31536000, 604800, 86400, 3600, 60, 1};
390 const char **l = lengths;
391 const u_int *s = seconds;
392
393 if (secs == 0) {
394 ND_PRINT("0s");
395 return;
396 }
397 while (secs > 0) {
398 if (secs >= *s) {
399 ND_PRINT("%u%s", secs / *s, *l);
400 secs -= (secs / *s) * *s;
401 }
402 s++;
403 l++;
404 }
405 }
406
407 /*
408 * Print a signed relative number of seconds (e.g. hold time, prune timer)
409 * in the form 5m1s. This does no truncation, so 32230861 seconds
410 * is represented as 1y1w1d1h1m1s.
411 */
412 void
413 signed_relts_print(netdissect_options *ndo,
414 int32_t secs)
415 {
416 if (secs < 0) {
417 ND_PRINT("-");
418 if (secs == INT32_MIN) {
419 /*
420 * -2^31; you can't fit its absolute value into
421 * a 32-bit signed integer.
422 *
423 * Just directly pass said absolute value to
424 * unsigned_relts_print() directly.
425 *
426 * (XXX - does ISO C guarantee that -(-2^n),
427 * when calculated and cast to an n-bit unsigned
428 * integer type, will have the value 2^n?)
429 */
430 unsigned_relts_print(ndo, 2147483648U);
431 } else {
432 /*
433 * We now know -secs will fit into an int32_t;
434 * negate it and pass that to unsigned_relts_print().
435 */
436 unsigned_relts_print(ndo, -secs);
437 }
438 return;
439 }
440 unsigned_relts_print(ndo, secs);
441 }
442
443 /* Print the truncated string */
444 void nd_print_trunc(netdissect_options *ndo)
445 {
446 ND_PRINT(" [|%s]", ndo->ndo_protocol);
447 }
448
449 /* Print the protocol name */
450 void nd_print_protocol(netdissect_options *ndo)
451 {
452 ND_PRINT("%s", ndo->ndo_protocol);
453 }
454
455 /* Print the protocol name in caps (uppercases) */
456 void nd_print_protocol_caps(netdissect_options *ndo)
457 {
458 const char *p;
459 for (p = ndo->ndo_protocol; *p != '\0'; p++)
460 ND_PRINT("%c", ND_ASCII_TOUPPER(*p));
461 }
462
463 /* Print the invalid string */
464 void nd_print_invalid(netdissect_options *ndo)
465 {
466 ND_PRINT(" (invalid)");
467 }
468
469 /*
470 * this is a generic routine for printing unknown data;
471 * we pass on the linefeed plus indentation string to
472 * get a proper output - returns 0 on error
473 */
474
475 int
476 print_unknown_data(netdissect_options *ndo, const u_char *cp,const char *ident,int len)
477 {
478 if (len < 0) {
479 ND_PRINT("%sDissector error: print_unknown_data called with negative length",
480 ident);
481 return(0);
482 }
483 if (ndo->ndo_snapend - cp < len)
484 len = ndo->ndo_snapend - cp;
485 if (len < 0) {
486 ND_PRINT("%sDissector error: print_unknown_data called with pointer past end of packet",
487 ident);
488 return(0);
489 }
490 hex_print(ndo, ident,cp,len);
491 return(1); /* everything is ok */
492 }
493
494 /*
495 * Convert a token value to a string; use "fmt" if not found.
496 */
497 const char *
498 tok2strbuf(const struct tok *lp, const char *fmt,
499 u_int v, char *buf, size_t bufsize)
500 {
501 if (lp != NULL) {
502 while (lp->s != NULL) {
503 if (lp->v == v)
504 return (lp->s);
505 ++lp;
506 }
507 }
508 if (fmt == NULL)
509 fmt = "#%d";
510
511 (void)snprintf(buf, bufsize, fmt, v);
512 return (const char *)buf;
513 }
514
515 /*
516 * Convert a token value to a string; use "fmt" if not found.
517 * Uses tok2strbuf() on one of four local static buffers of size TOKBUFSIZE
518 * in round-robin fashion.
519 */
520 const char *
521 tok2str(const struct tok *lp, const char *fmt,
522 u_int v)
523 {
524 static char buf[4][TOKBUFSIZE];
525 static int idx = 0;
526 char *ret;
527
528 ret = buf[idx];
529 idx = (idx+1) & 3;
530 return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0]));
531 }
532
533 /*
534 * Convert a bit token value to a string; use "fmt" if not found.
535 * this is useful for parsing bitfields, the output strings are separated
536 * if the s field is positive.
537 */
538 static char *
539 bittok2str_internal(const struct tok *lp, const char *fmt,
540 u_int v, const char *sep)
541 {
542 static char buf[1024+1]; /* our string buffer */
543 char *bufp = buf;
544 size_t space_left = sizeof(buf), string_size;
545 u_int rotbit; /* this is the bit we rotate through all bitpositions */
546 u_int tokval;
547 const char * sepstr = "";
548
549 while (lp != NULL && lp->s != NULL) {
550 tokval=lp->v; /* load our first value */
551 rotbit=1;
552 while (rotbit != 0) {
553 /*
554 * lets AND the rotating bit with our token value
555 * and see if we have got a match
556 */
557 if (tokval == (v&rotbit)) {
558 /* ok we have found something */
559 if (space_left <= 1)
560 return (buf); /* only enough room left for NUL, if that */
561 string_size = strlcpy(bufp, sepstr, space_left);
562 if (string_size >= space_left)
563 return (buf); /* we ran out of room */
564 bufp += string_size;
565 space_left -= string_size;
566 if (space_left <= 1)
567 return (buf); /* only enough room left for NUL, if that */
568 string_size = strlcpy(bufp, lp->s, space_left);
569 if (string_size >= space_left)
570 return (buf); /* we ran out of room */
571 bufp += string_size;
572 space_left -= string_size;
573 sepstr = sep;
574 break;
575 }
576 rotbit=rotbit<<1; /* no match - lets shift and try again */
577 }
578 lp++;
579 }
580
581 if (bufp == buf)
582 /* bummer - lets print the "unknown" message as advised in the fmt string if we got one */
583 (void)snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v);
584 return (buf);
585 }
586
587 /*
588 * Convert a bit token value to a string; use "fmt" if not found.
589 * this is useful for parsing bitfields, the output strings are not separated.
590 */
591 char *
592 bittok2str_nosep(const struct tok *lp, const char *fmt,
593 u_int v)
594 {
595 return (bittok2str_internal(lp, fmt, v, ""));
596 }
597
598 /*
599 * Convert a bit token value to a string; use "fmt" if not found.
600 * this is useful for parsing bitfields, the output strings are comma separated.
601 */
602 char *
603 bittok2str(const struct tok *lp, const char *fmt,
604 u_int v)
605 {
606 return (bittok2str_internal(lp, fmt, v, ", "));
607 }
608
609 /*
610 * Convert a value to a string using an array; the macro
611 * tok2strary() in <netdissect.h> is the public interface to
612 * this function and ensures that the second argument is
613 * correct for bounds-checking.
614 */
615 const char *
616 tok2strary_internal(const char **lp, int n, const char *fmt,
617 int v)
618 {
619 static char buf[TOKBUFSIZE];
620
621 if (v >= 0 && v < n && lp[v] != NULL)
622 return lp[v];
623 if (fmt == NULL)
624 fmt = "#%d";
625 (void)snprintf(buf, sizeof(buf), fmt, v);
626 return (buf);
627 }
628
629 /*
630 * Convert a 32-bit netmask to prefixlen if possible
631 * the function returns the prefix-len; if plen == -1
632 * then conversion was not possible;
633 */
634
635 int
636 mask2plen(uint32_t mask)
637 {
638 uint32_t bitmasks[33] = {
639 0x00000000,
640 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000,
641 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000,
642 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000,
643 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000,
644 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000,
645 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00,
646 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0,
647 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff
648 };
649 int prefix_len = 32;
650
651 /* let's see if we can transform the mask into a prefixlen */
652 while (prefix_len >= 0) {
653 if (bitmasks[prefix_len] == mask)
654 break;
655 prefix_len--;
656 }
657 return (prefix_len);
658 }
659
660 int
661 mask62plen(const u_char *mask)
662 {
663 u_char bitmasks[9] = {
664 0x00,
665 0x80, 0xc0, 0xe0, 0xf0,
666 0xf8, 0xfc, 0xfe, 0xff
667 };
668 int byte;
669 int cidr_len = 0;
670
671 for (byte = 0; byte < 16; byte++) {
672 u_int bits;
673
674 for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) {
675 if (mask[byte] == bitmasks[bits]) {
676 cidr_len += bits;
677 break;
678 }
679 }
680
681 if (mask[byte] != 0xff)
682 break;
683 }
684 return (cidr_len);
685 }
686
687 /*
688 * Routine to print out information for text-based protocols such as FTP,
689 * HTTP, SMTP, RTSP, SIP, ....
690 */
691 #define MAX_TOKEN 128
692
693 /*
694 * Fetch a token from a packet, starting at the specified index,
695 * and return the length of the token.
696 *
697 * Returns 0 on error; yes, this is indistinguishable from an empty
698 * token, but an "empty token" isn't a valid token - it just means
699 * either a space character at the beginning of the line (this
700 * includes a blank line) or no more tokens remaining on the line.
701 */
702 static int
703 fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len,
704 u_char *tbuf, size_t tbuflen)
705 {
706 size_t toklen = 0;
707 u_char c;
708
709 for (; idx < len; idx++) {
710 if (!ND_TTEST_1(pptr + idx)) {
711 /* ran past end of captured data */
712 return (0);
713 }
714 c = GET_U_1(pptr + idx);
715 if (!ND_ISASCII(c)) {
716 /* not an ASCII character */
717 return (0);
718 }
719 if (c == ' ' || c == '\t' || c == '\r' || c == '\n') {
720 /* end of token */
721 break;
722 }
723 if (!ND_ASCII_ISPRINT(c)) {
724 /* not part of a command token or response code */
725 return (0);
726 }
727 if (toklen + 2 > tbuflen) {
728 /* no room for this character and terminating '\0' */
729 return (0);
730 }
731 tbuf[toklen] = c;
732 toklen++;
733 }
734 if (toklen == 0) {
735 /* no token */
736 return (0);
737 }
738 tbuf[toklen] = '\0';
739
740 /*
741 * Skip past any white space after the token, until we see
742 * an end-of-line (CR or LF).
743 */
744 for (; idx < len; idx++) {
745 if (!ND_TTEST_1(pptr + idx)) {
746 /* ran past end of captured data */
747 break;
748 }
749 c = GET_U_1(pptr + idx);
750 if (c == '\r' || c == '\n') {
751 /* end of line */
752 break;
753 }
754 if (!ND_ASCII_ISPRINT(c)) {
755 /* not a printable ASCII character */
756 break;
757 }
758 if (c != ' ' && c != '\t' && c != '\r' && c != '\n') {
759 /* beginning of next token */
760 break;
761 }
762 }
763 return (idx);
764 }
765
766 /*
767 * Scan a buffer looking for a line ending - LF or CR-LF.
768 * Return the index of the character after the line ending or 0 if
769 * we encounter a non-ASCII or non-printable character or don't find
770 * the line ending.
771 */
772 static u_int
773 print_txt_line(netdissect_options *ndo, const char *prefix,
774 const u_char *pptr, u_int idx, u_int len)
775 {
776 u_int startidx;
777 u_int linelen;
778 u_char c;
779
780 startidx = idx;
781 while (idx < len) {
782 ND_TCHECK_1(pptr + idx);
783 c = GET_U_1(pptr + idx);
784 if (c == '\n') {
785 /*
786 * LF without CR; end of line.
787 * Skip the LF and print the line, with the
788 * exception of the LF.
789 */
790 linelen = idx - startidx;
791 idx++;
792 goto print;
793 } else if (c == '\r') {
794 /* CR - any LF? */
795 if ((idx+1) >= len) {
796 /* not in this packet */
797 return (0);
798 }
799 ND_TCHECK_1(pptr + idx + 1);
800 if (GET_U_1(pptr + idx + 1) == '\n') {
801 /*
802 * CR-LF; end of line.
803 * Skip the CR-LF and print the line, with
804 * the exception of the CR-LF.
805 */
806 linelen = idx - startidx;
807 idx += 2;
808 goto print;
809 }
810
811 /*
812 * CR followed by something else; treat this
813 * as if it were binary data, and don't print
814 * it.
815 */
816 return (0);
817 } else if (!ND_ASCII_ISPRINT(c) && c != '\t') {
818 /*
819 * Not a printable ASCII character and not a tab;
820 * treat this as if it were binary data, and
821 * don't print it.
822 */
823 return (0);
824 }
825 idx++;
826 }
827
828 /*
829 * All printable ASCII, but no line ending after that point
830 * in the buffer; treat this as if it were truncated.
831 */
832 trunc:
833 linelen = idx - startidx;
834 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx);
835 nd_print_trunc(ndo);
836 return (0);
837
838 print:
839 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx);
840 return (idx);
841 }
842
843 /* Assign needed before calling txtproto_print(): ndo->ndo_protocol = "proto" */
844 void
845 txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len,
846 const char **cmds, u_int flags)
847 {
848 u_int idx, eol;
849 u_char token[MAX_TOKEN+1];
850 const char *cmd;
851 int print_this = 0;
852
853 if (cmds != NULL) {
854 /*
855 * This protocol has more than just request and
856 * response lines; see whether this looks like a
857 * request or response and, if so, print it and,
858 * in verbose mode, print everything after it.
859 *
860 * This is for HTTP-like protocols, where we
861 * want to print requests and responses, but
862 * don't want to print continuations of request
863 * or response bodies in packets that don't
864 * contain the request or response line.
865 */
866 idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token));
867 if (idx != 0) {
868 /* Is this a valid request name? */
869 while ((cmd = *cmds++) != NULL) {
870 if (ascii_strcasecmp((const char *)token, cmd) == 0) {
871 /* Yes. */
872 print_this = 1;
873 break;
874 }
875 }
876
877 /*
878 * No - is this a valid response code (3 digits)?
879 *
880 * Is this token the response code, or is the next
881 * token the response code?
882 */
883 if (flags & RESP_CODE_SECOND_TOKEN) {
884 /*
885 * Next token - get it.
886 */
887 idx = fetch_token(ndo, pptr, idx, len, token,
888 sizeof(token));
889 }
890 if (idx != 0) {
891 if (ND_ASCII_ISDIGIT(token[0]) && ND_ASCII_ISDIGIT(token[1]) &&
892 ND_ASCII_ISDIGIT(token[2]) && token[3] == '\0') {
893 /* Yes. */
894 print_this = 1;
895 }
896 }
897 }
898 } else {
899 /*
900 * Either:
901 *
902 * 1) This protocol has only request and response lines
903 * (e.g., FTP, where all the data goes over a different
904 * connection); assume the payload is a request or
905 * response.
906 *
907 * or
908 *
909 * 2) This protocol is just text, so that we should
910 * always, at minimum, print the first line and,
911 * in verbose mode, print all lines.
912 */
913 print_this = 1;
914 }
915
916 nd_print_protocol_caps(ndo);
917
918 if (print_this) {
919 /*
920 * In non-verbose mode, just print the protocol, followed
921 * by the first line.
922 *
923 * In verbose mode, print lines as text until we run out
924 * of characters or see something that's not a
925 * printable-ASCII line.
926 */
927 if (ndo->ndo_vflag) {
928 /*
929 * We're going to print all the text lines in the
930 * request or response; just print the length
931 * on the first line of the output.
932 */
933 ND_PRINT(", length: %u", len);
934 for (idx = 0;
935 idx < len && (eol = print_txt_line(ndo, "\n\t", pptr, idx, len)) != 0;
936 idx = eol)
937 ;
938 } else {
939 /*
940 * Just print the first text line.
941 */
942 print_txt_line(ndo, ": ", pptr, 0, len);
943 }
944 }
945 }
946
947 #if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \
948 (defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \
949 (defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \
950 (defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \
951 (defined(__s390__) || defined(__s390x__) || defined(__zarch__)) || \
952 defined(__vax__)
953 /*
954 * The procesor natively handles unaligned loads, so just use memcpy()
955 * and memcmp(), to enable those optimizations.
956 *
957 * XXX - are those all the x86 tests we need?
958 * XXX - do we need to worry about ARMv1 through ARMv5, which didn't
959 * support unaligned loads, and, if so, do we need to worry about all
960 * of them, or just some of them, e.g. ARMv5?
961 * XXX - are those the only 68k tests we need not to generated
962 * unaligned accesses if the target is the 68000 or 68010?
963 * XXX - are there any tests we don't need, because some definitions are for
964 * compilers that also predefine the GCC symbols?
965 * XXX - do we need to test for both 32-bit and 64-bit versions of those
966 * architectures in all cases?
967 */
968 #else
969 /*
970 * The processor doesn't natively handle unaligned loads,
971 * and the compiler might "helpfully" optimize memcpy()
972 * and memcmp(), when handed pointers that would normally
973 * be properly aligned, into sequences that assume proper
974 * alignment.
975 *
976 * Do copies and compares of possibly-unaligned data by
977 * calling routines that wrap memcpy() and memcmp(), to
978 * prevent that optimization.
979 */
980 void
981 unaligned_memcpy(void *p, const void *q, size_t l)
982 {
983 memcpy(p, q, l);
984 }
985
986 /* As with memcpy(), so with memcmp(). */
987 int
988 unaligned_memcmp(const void *p, const void *q, size_t l)
989 {
990 return (memcmp(p, q, l));
991 }
992 #endif
993