]> The Tcpdump Group git mirrors - tcpdump/blob - print-802_11.c
Add the ndo_protocol field in the netdissect_options structure
[tcpdump] / print-802_11.c
1 /*
2 * Copyright (c) 2001
3 * Fortress Technologies, Inc. All rights reserved.
4 * Charlie Lenahan (clenahan@fortresstech.com)
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 */
22
23 /* \summary: IEEE 802.11 printer */
24
25 #ifdef HAVE_CONFIG_H
26 #include <config.h>
27 #endif
28
29 #include "netdissect-stdinc.h"
30
31 #include <string.h>
32
33 #include "netdissect.h"
34 #include "addrtoname.h"
35
36 #include "extract.h"
37
38 #include "cpack.h"
39
40
41 /* Lengths of 802.11 header components. */
42 #define IEEE802_11_FC_LEN 2
43 #define IEEE802_11_DUR_LEN 2
44 #define IEEE802_11_DA_LEN 6
45 #define IEEE802_11_SA_LEN 6
46 #define IEEE802_11_BSSID_LEN 6
47 #define IEEE802_11_RA_LEN 6
48 #define IEEE802_11_TA_LEN 6
49 #define IEEE802_11_ADDR1_LEN 6
50 #define IEEE802_11_SEQ_LEN 2
51 #define IEEE802_11_CTL_LEN 2
52 #define IEEE802_11_CARRIED_FC_LEN 2
53 #define IEEE802_11_HT_CONTROL_LEN 4
54 #define IEEE802_11_IV_LEN 3
55 #define IEEE802_11_KID_LEN 1
56
57 /* Frame check sequence length. */
58 #define IEEE802_11_FCS_LEN 4
59
60 /* Lengths of beacon components. */
61 #define IEEE802_11_TSTAMP_LEN 8
62 #define IEEE802_11_BCNINT_LEN 2
63 #define IEEE802_11_CAPINFO_LEN 2
64 #define IEEE802_11_LISTENINT_LEN 2
65
66 #define IEEE802_11_AID_LEN 2
67 #define IEEE802_11_STATUS_LEN 2
68 #define IEEE802_11_REASON_LEN 2
69
70 /* Length of previous AP in reassocation frame */
71 #define IEEE802_11_AP_LEN 6
72
73 #define T_MGMT 0x0 /* management */
74 #define T_CTRL 0x1 /* control */
75 #define T_DATA 0x2 /* data */
76 #define T_RESV 0x3 /* reserved */
77
78 #define ST_ASSOC_REQUEST 0x0
79 #define ST_ASSOC_RESPONSE 0x1
80 #define ST_REASSOC_REQUEST 0x2
81 #define ST_REASSOC_RESPONSE 0x3
82 #define ST_PROBE_REQUEST 0x4
83 #define ST_PROBE_RESPONSE 0x5
84 /* RESERVED 0x6 */
85 /* RESERVED 0x7 */
86 #define ST_BEACON 0x8
87 #define ST_ATIM 0x9
88 #define ST_DISASSOC 0xA
89 #define ST_AUTH 0xB
90 #define ST_DEAUTH 0xC
91 #define ST_ACTION 0xD
92 /* RESERVED 0xE */
93 /* RESERVED 0xF */
94
95 static const struct tok st_str[] = {
96 { ST_ASSOC_REQUEST, "Assoc Request" },
97 { ST_ASSOC_RESPONSE, "Assoc Response" },
98 { ST_REASSOC_REQUEST, "ReAssoc Request" },
99 { ST_REASSOC_RESPONSE, "ReAssoc Response" },
100 { ST_PROBE_REQUEST, "Probe Request" },
101 { ST_PROBE_RESPONSE, "Probe Response" },
102 { ST_BEACON, "Beacon" },
103 { ST_ATIM, "ATIM" },
104 { ST_DISASSOC, "Disassociation" },
105 { ST_AUTH, "Authentication" },
106 { ST_DEAUTH, "DeAuthentication" },
107 { ST_ACTION, "Action" },
108 { 0, NULL }
109 };
110
111 #define CTRL_CONTROL_WRAPPER 0x7
112 #define CTRL_BAR 0x8
113 #define CTRL_BA 0x9
114 #define CTRL_PS_POLL 0xA
115 #define CTRL_RTS 0xB
116 #define CTRL_CTS 0xC
117 #define CTRL_ACK 0xD
118 #define CTRL_CF_END 0xE
119 #define CTRL_END_ACK 0xF
120
121 static const struct tok ctrl_str[] = {
122 { CTRL_CONTROL_WRAPPER, "Control Wrapper" },
123 { CTRL_BAR, "BAR" },
124 { CTRL_BA, "BA" },
125 { CTRL_PS_POLL, "Power Save-Poll" },
126 { CTRL_RTS, "Request-To-Send" },
127 { CTRL_CTS, "Clear-To-Send" },
128 { CTRL_ACK, "Acknowledgment" },
129 { CTRL_CF_END, "CF-End" },
130 { CTRL_END_ACK, "CF-End+CF-Ack" },
131 { 0, NULL }
132 };
133
134 #define DATA_DATA 0x0
135 #define DATA_DATA_CF_ACK 0x1
136 #define DATA_DATA_CF_POLL 0x2
137 #define DATA_DATA_CF_ACK_POLL 0x3
138 #define DATA_NODATA 0x4
139 #define DATA_NODATA_CF_ACK 0x5
140 #define DATA_NODATA_CF_POLL 0x6
141 #define DATA_NODATA_CF_ACK_POLL 0x7
142
143 #define DATA_QOS_DATA 0x8
144 #define DATA_QOS_DATA_CF_ACK 0x9
145 #define DATA_QOS_DATA_CF_POLL 0xA
146 #define DATA_QOS_DATA_CF_ACK_POLL 0xB
147 #define DATA_QOS_NODATA 0xC
148 #define DATA_QOS_CF_POLL_NODATA 0xE
149 #define DATA_QOS_CF_ACK_POLL_NODATA 0xF
150
151 /*
152 * The subtype field of a data frame is, in effect, composed of 4 flag
153 * bits - CF-Ack, CF-Poll, Null (means the frame doesn't actually have
154 * any data), and QoS.
155 */
156 #define DATA_FRAME_IS_CF_ACK(x) ((x) & 0x01)
157 #define DATA_FRAME_IS_CF_POLL(x) ((x) & 0x02)
158 #define DATA_FRAME_IS_NULL(x) ((x) & 0x04)
159 #define DATA_FRAME_IS_QOS(x) ((x) & 0x08)
160
161 /*
162 * Bits in the frame control field.
163 */
164 #define FC_VERSION(fc) ((fc) & 0x3)
165 #define FC_TYPE(fc) (((fc) >> 2) & 0x3)
166 #define FC_SUBTYPE(fc) (((fc) >> 4) & 0xF)
167 #define FC_TO_DS(fc) ((fc) & 0x0100)
168 #define FC_FROM_DS(fc) ((fc) & 0x0200)
169 #define FC_MORE_FLAG(fc) ((fc) & 0x0400)
170 #define FC_RETRY(fc) ((fc) & 0x0800)
171 #define FC_POWER_MGMT(fc) ((fc) & 0x1000)
172 #define FC_MORE_DATA(fc) ((fc) & 0x2000)
173 #define FC_PROTECTED(fc) ((fc) & 0x4000)
174 #define FC_ORDER(fc) ((fc) & 0x8000)
175
176 struct mgmt_header_t {
177 nd_uint16_t fc;
178 nd_uint16_t duration;
179 nd_mac_addr da;
180 nd_mac_addr sa;
181 nd_mac_addr bssid;
182 nd_uint16_t seq_ctrl;
183 };
184
185 #define MGMT_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
186 IEEE802_11_DA_LEN+IEEE802_11_SA_LEN+\
187 IEEE802_11_BSSID_LEN+IEEE802_11_SEQ_LEN)
188
189 #define CAPABILITY_ESS(cap) ((cap) & 0x0001)
190 #define CAPABILITY_IBSS(cap) ((cap) & 0x0002)
191 #define CAPABILITY_CFP(cap) ((cap) & 0x0004)
192 #define CAPABILITY_CFP_REQ(cap) ((cap) & 0x0008)
193 #define CAPABILITY_PRIVACY(cap) ((cap) & 0x0010)
194
195 struct ssid_t {
196 uint8_t element_id;
197 uint8_t length;
198 u_char ssid[33]; /* 32 + 1 for null */
199 };
200
201 struct rates_t {
202 uint8_t element_id;
203 uint8_t length;
204 uint8_t rate[16];
205 };
206
207 struct challenge_t {
208 uint8_t element_id;
209 uint8_t length;
210 uint8_t text[254]; /* 1-253 + 1 for null */
211 };
212
213 struct fh_t {
214 uint8_t element_id;
215 uint8_t length;
216 uint16_t dwell_time;
217 uint8_t hop_set;
218 uint8_t hop_pattern;
219 uint8_t hop_index;
220 };
221
222 struct ds_t {
223 uint8_t element_id;
224 uint8_t length;
225 uint8_t channel;
226 };
227
228 struct cf_t {
229 uint8_t element_id;
230 uint8_t length;
231 uint8_t count;
232 uint8_t period;
233 uint16_t max_duration;
234 uint16_t dur_remaing;
235 };
236
237 struct tim_t {
238 uint8_t element_id;
239 uint8_t length;
240 uint8_t count;
241 uint8_t period;
242 uint8_t bitmap_control;
243 uint8_t bitmap[251];
244 };
245
246 #define E_SSID 0
247 #define E_RATES 1
248 #define E_FH 2
249 #define E_DS 3
250 #define E_CF 4
251 #define E_TIM 5
252 #define E_IBSS 6
253 /* reserved 7 */
254 /* reserved 8 */
255 /* reserved 9 */
256 /* reserved 10 */
257 /* reserved 11 */
258 /* reserved 12 */
259 /* reserved 13 */
260 /* reserved 14 */
261 /* reserved 15 */
262 /* reserved 16 */
263
264 #define E_CHALLENGE 16
265 /* reserved 17 */
266 /* reserved 18 */
267 /* reserved 19 */
268 /* reserved 16 */
269 /* reserved 16 */
270
271
272 struct mgmt_body_t {
273 uint8_t timestamp[IEEE802_11_TSTAMP_LEN];
274 uint16_t beacon_interval;
275 uint16_t listen_interval;
276 uint16_t status_code;
277 uint16_t aid;
278 u_char ap[IEEE802_11_AP_LEN];
279 uint16_t reason_code;
280 uint16_t auth_alg;
281 uint16_t auth_trans_seq_num;
282 int challenge_present;
283 struct challenge_t challenge;
284 uint16_t capability_info;
285 int ssid_present;
286 struct ssid_t ssid;
287 int rates_present;
288 struct rates_t rates;
289 int ds_present;
290 struct ds_t ds;
291 int cf_present;
292 struct cf_t cf;
293 int fh_present;
294 struct fh_t fh;
295 int tim_present;
296 struct tim_t tim;
297 };
298
299 struct ctrl_control_wrapper_hdr_t {
300 nd_uint16_t fc;
301 nd_uint16_t duration;
302 nd_mac_addr addr1;
303 nd_uint16_t carried_fc[IEEE802_11_CARRIED_FC_LEN];
304 nd_uint16_t ht_control[IEEE802_11_HT_CONTROL_LEN];
305 };
306
307 #define CTRL_CONTROL_WRAPPER_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
308 IEEE802_11_ADDR1_LEN+\
309 IEEE802_11_CARRIED_FC_LEN+\
310 IEEE802_11_HT_CONTROL_LEN)
311
312 struct ctrl_rts_hdr_t {
313 nd_uint16_t fc;
314 nd_uint16_t duration;
315 nd_mac_addr ra;
316 nd_mac_addr ta;
317 };
318
319 #define CTRL_RTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
320 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN)
321
322 struct ctrl_cts_hdr_t {
323 nd_uint16_t fc;
324 nd_uint16_t duration;
325 nd_mac_addr ra;
326 };
327
328 #define CTRL_CTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
329
330 struct ctrl_ack_hdr_t {
331 nd_uint16_t fc;
332 nd_uint16_t duration;
333 nd_mac_addr ra;
334 };
335
336 #define CTRL_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
337
338 struct ctrl_ps_poll_hdr_t {
339 nd_uint16_t fc;
340 nd_uint16_t aid;
341 nd_mac_addr bssid;
342 nd_mac_addr ta;
343 };
344
345 #define CTRL_PS_POLL_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_AID_LEN+\
346 IEEE802_11_BSSID_LEN+IEEE802_11_TA_LEN)
347
348 struct ctrl_end_hdr_t {
349 nd_uint16_t fc;
350 nd_uint16_t duration;
351 nd_mac_addr ra;
352 nd_mac_addr bssid;
353 };
354
355 #define CTRL_END_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
356 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
357
358 struct ctrl_end_ack_hdr_t {
359 nd_uint16_t fc;
360 nd_uint16_t duration;
361 nd_mac_addr ra;
362 nd_mac_addr bssid;
363 };
364
365 #define CTRL_END_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
366 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
367
368 struct ctrl_ba_hdr_t {
369 nd_uint16_t fc;
370 nd_uint16_t duration;
371 nd_mac_addr ra;
372 };
373
374 #define CTRL_BA_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
375
376 struct ctrl_bar_hdr_t {
377 nd_uint16_t fc;
378 nd_uint16_t dur;
379 nd_mac_addr ra;
380 nd_mac_addr ta;
381 nd_uint16_t ctl;
382 nd_uint16_t seq;
383 };
384
385 #define CTRL_BAR_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
386 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN+\
387 IEEE802_11_CTL_LEN+IEEE802_11_SEQ_LEN)
388
389 struct meshcntl_t {
390 nd_uint8_t flags;
391 nd_uint8_t ttl;
392 nd_uint32_t seq;
393 nd_mac_addr addr4;
394 nd_mac_addr addr5;
395 nd_mac_addr addr6;
396 };
397
398 #define IV_IV(iv) ((iv) & 0xFFFFFF)
399 #define IV_PAD(iv) (((iv) >> 24) & 0x3F)
400 #define IV_KEYID(iv) (((iv) >> 30) & 0x03)
401
402 #define PRINT_SSID(p) \
403 if (p.ssid_present) { \
404 ND_PRINT(" ("); \
405 fn_print(ndo, p.ssid.ssid, NULL); \
406 ND_PRINT(")"); \
407 }
408
409 #define PRINT_RATE(_sep, _r, _suf) \
410 ND_PRINT("%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf)
411 #define PRINT_RATES(p) \
412 if (p.rates_present) { \
413 int z; \
414 const char *sep = " ["; \
415 for (z = 0; z < p.rates.length ; z++) { \
416 PRINT_RATE(sep, p.rates.rate[z], \
417 (p.rates.rate[z] & 0x80 ? "*" : "")); \
418 sep = " "; \
419 } \
420 if (p.rates.length != 0) \
421 ND_PRINT(" Mbit]"); \
422 }
423
424 #define PRINT_DS_CHANNEL(p) \
425 if (p.ds_present) \
426 ND_PRINT(" CH: %u", p.ds.channel); \
427 ND_PRINT("%s", \
428 CAPABILITY_PRIVACY(p.capability_info) ? ", PRIVACY" : "");
429
430 #define MAX_MCS_INDEX 76
431
432 /*
433 * Indices are:
434 *
435 * the MCS index (0-76);
436 *
437 * 0 for 20 MHz, 1 for 40 MHz;
438 *
439 * 0 for a long guard interval, 1 for a short guard interval.
440 */
441 static const float ieee80211_float_htrates[MAX_MCS_INDEX+1][2][2] = {
442 /* MCS 0 */
443 { /* 20 Mhz */ { 6.5f, /* SGI */ 7.2f, },
444 /* 40 Mhz */ { 13.5f, /* SGI */ 15.0f, },
445 },
446
447 /* MCS 1 */
448 { /* 20 Mhz */ { 13.0f, /* SGI */ 14.4f, },
449 /* 40 Mhz */ { 27.0f, /* SGI */ 30.0f, },
450 },
451
452 /* MCS 2 */
453 { /* 20 Mhz */ { 19.5f, /* SGI */ 21.7f, },
454 /* 40 Mhz */ { 40.5f, /* SGI */ 45.0f, },
455 },
456
457 /* MCS 3 */
458 { /* 20 Mhz */ { 26.0f, /* SGI */ 28.9f, },
459 /* 40 Mhz */ { 54.0f, /* SGI */ 60.0f, },
460 },
461
462 /* MCS 4 */
463 { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
464 /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
465 },
466
467 /* MCS 5 */
468 { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
469 /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
470 },
471
472 /* MCS 6 */
473 { /* 20 Mhz */ { 58.5f, /* SGI */ 65.0f, },
474 /* 40 Mhz */ { 121.5f, /* SGI */ 135.0f, },
475 },
476
477 /* MCS 7 */
478 { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
479 /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
480 },
481
482 /* MCS 8 */
483 { /* 20 Mhz */ { 13.0f, /* SGI */ 14.4f, },
484 /* 40 Mhz */ { 27.0f, /* SGI */ 30.0f, },
485 },
486
487 /* MCS 9 */
488 { /* 20 Mhz */ { 26.0f, /* SGI */ 28.9f, },
489 /* 40 Mhz */ { 54.0f, /* SGI */ 60.0f, },
490 },
491
492 /* MCS 10 */
493 { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
494 /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
495 },
496
497 /* MCS 11 */
498 { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
499 /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
500 },
501
502 /* MCS 12 */
503 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
504 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
505 },
506
507 /* MCS 13 */
508 { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
509 /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
510 },
511
512 /* MCS 14 */
513 { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
514 /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
515 },
516
517 /* MCS 15 */
518 { /* 20 Mhz */ { 130.0f, /* SGI */ 144.4f, },
519 /* 40 Mhz */ { 270.0f, /* SGI */ 300.0f, },
520 },
521
522 /* MCS 16 */
523 { /* 20 Mhz */ { 19.5f, /* SGI */ 21.7f, },
524 /* 40 Mhz */ { 40.5f, /* SGI */ 45.0f, },
525 },
526
527 /* MCS 17 */
528 { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
529 /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
530 },
531
532 /* MCS 18 */
533 { /* 20 Mhz */ { 58.5f, /* SGI */ 65.0f, },
534 /* 40 Mhz */ { 121.5f, /* SGI */ 135.0f, },
535 },
536
537 /* MCS 19 */
538 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
539 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
540 },
541
542 /* MCS 20 */
543 { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
544 /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
545 },
546
547 /* MCS 21 */
548 { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
549 /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
550 },
551
552 /* MCS 22 */
553 { /* 20 Mhz */ { 175.5f, /* SGI */ 195.0f, },
554 /* 40 Mhz */ { 364.5f, /* SGI */ 405.0f, },
555 },
556
557 /* MCS 23 */
558 { /* 20 Mhz */ { 195.0f, /* SGI */ 216.7f, },
559 /* 40 Mhz */ { 405.0f, /* SGI */ 450.0f, },
560 },
561
562 /* MCS 24 */
563 { /* 20 Mhz */ { 26.0f, /* SGI */ 28.9f, },
564 /* 40 Mhz */ { 54.0f, /* SGI */ 60.0f, },
565 },
566
567 /* MCS 25 */
568 { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
569 /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
570 },
571
572 /* MCS 26 */
573 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
574 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
575 },
576
577 /* MCS 27 */
578 { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
579 /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
580 },
581
582 /* MCS 28 */
583 { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
584 /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
585 },
586
587 /* MCS 29 */
588 { /* 20 Mhz */ { 208.0f, /* SGI */ 231.1f, },
589 /* 40 Mhz */ { 432.0f, /* SGI */ 480.0f, },
590 },
591
592 /* MCS 30 */
593 { /* 20 Mhz */ { 234.0f, /* SGI */ 260.0f, },
594 /* 40 Mhz */ { 486.0f, /* SGI */ 540.0f, },
595 },
596
597 /* MCS 31 */
598 { /* 20 Mhz */ { 260.0f, /* SGI */ 288.9f, },
599 /* 40 Mhz */ { 540.0f, /* SGI */ 600.0f, },
600 },
601
602 /* MCS 32 */
603 { /* 20 Mhz */ { 0.0f, /* SGI */ 0.0f, }, /* not valid */
604 /* 40 Mhz */ { 6.0f, /* SGI */ 6.7f, },
605 },
606
607 /* MCS 33 */
608 { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
609 /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
610 },
611
612 /* MCS 34 */
613 { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
614 /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
615 },
616
617 /* MCS 35 */
618 { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
619 /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
620 },
621
622 /* MCS 36 */
623 { /* 20 Mhz */ { 58.5f, /* SGI */ 65.0f, },
624 /* 40 Mhz */ { 121.5f, /* SGI */ 135.0f, },
625 },
626
627 /* MCS 37 */
628 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
629 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
630 },
631
632 /* MCS 38 */
633 { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
634 /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
635 },
636
637 /* MCS 39 */
638 { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
639 /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
640 },
641
642 /* MCS 40 */
643 { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
644 /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
645 },
646
647 /* MCS 41 */
648 { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
649 /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
650 },
651
652 /* MCS 42 */
653 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
654 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
655 },
656
657 /* MCS 43 */
658 { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
659 /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
660 },
661
662 /* MCS 44 */
663 { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
664 /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
665 },
666
667 /* MCS 45 */
668 { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
669 /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
670 },
671
672 /* MCS 46 */
673 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
674 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
675 },
676
677 /* MCS 47 */
678 { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
679 /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
680 },
681
682 /* MCS 48 */
683 { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
684 /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
685 },
686
687 /* MCS 49 */
688 { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
689 /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
690 },
691
692 /* MCS 50 */
693 { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
694 /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
695 },
696
697 /* MCS 51 */
698 { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
699 /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
700 },
701
702 /* MCS 52 */
703 { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
704 /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
705 },
706
707 /* MCS 53 */
708 { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
709 /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
710 },
711
712 /* MCS 54 */
713 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
714 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
715 },
716
717 /* MCS 55 */
718 { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
719 /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
720 },
721
722 /* MCS 56 */
723 { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
724 /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
725 },
726
727 /* MCS 57 */
728 { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
729 /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
730 },
731
732 /* MCS 58 */
733 { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
734 /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
735 },
736
737 /* MCS 59 */
738 { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
739 /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
740 },
741
742 /* MCS 60 */
743 { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
744 /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
745 },
746
747 /* MCS 61 */
748 { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
749 /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
750 },
751
752 /* MCS 62 */
753 { /* 20 Mhz */ { 130.0f, /* SGI */ 144.4f, },
754 /* 40 Mhz */ { 270.0f, /* SGI */ 300.0f, },
755 },
756
757 /* MCS 63 */
758 { /* 20 Mhz */ { 130.0f, /* SGI */ 144.4f, },
759 /* 40 Mhz */ { 270.0f, /* SGI */ 300.0f, },
760 },
761
762 /* MCS 64 */
763 { /* 20 Mhz */ { 143.0f, /* SGI */ 158.9f, },
764 /* 40 Mhz */ { 297.0f, /* SGI */ 330.0f, },
765 },
766
767 /* MCS 65 */
768 { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
769 /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
770 },
771
772 /* MCS 66 */
773 { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
774 /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
775 },
776
777 /* MCS 67 */
778 { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
779 /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
780 },
781
782 /* MCS 68 */
783 { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
784 /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
785 },
786
787 /* MCS 69 */
788 { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
789 /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
790 },
791
792 /* MCS 70 */
793 { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
794 /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
795 },
796
797 /* MCS 71 */
798 { /* 20 Mhz */ { 175.5f, /* SGI */ 195.0f, },
799 /* 40 Mhz */ { 364.5f, /* SGI */ 405.0f, },
800 },
801
802 /* MCS 72 */
803 { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
804 /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
805 },
806
807 /* MCS 73 */
808 { /* 20 Mhz */ { 175.5f, /* SGI */ 195.0f, },
809 /* 40 Mhz */ { 364.5f, /* SGI */ 405.0f, },
810 },
811
812 /* MCS 74 */
813 { /* 20 Mhz */ { 195.0f, /* SGI */ 216.7f, },
814 /* 40 Mhz */ { 405.0f, /* SGI */ 450.0f, },
815 },
816
817 /* MCS 75 */
818 { /* 20 Mhz */ { 195.0f, /* SGI */ 216.7f, },
819 /* 40 Mhz */ { 405.0f, /* SGI */ 450.0f, },
820 },
821
822 /* MCS 76 */
823 { /* 20 Mhz */ { 214.5f, /* SGI */ 238.3f, },
824 /* 40 Mhz */ { 445.5f, /* SGI */ 495.0f, },
825 },
826 };
827
828 static const char *auth_alg_text[]={"Open System","Shared Key","EAP"};
829 #define NUM_AUTH_ALGS (sizeof(auth_alg_text) / sizeof(auth_alg_text[0]))
830
831 static const char *status_text[] = {
832 "Successful", /* 0 */
833 "Unspecified failure", /* 1 */
834 "Reserved", /* 2 */
835 "Reserved", /* 3 */
836 "Reserved", /* 4 */
837 "Reserved", /* 5 */
838 "Reserved", /* 6 */
839 "Reserved", /* 7 */
840 "Reserved", /* 8 */
841 "Reserved", /* 9 */
842 "Cannot Support all requested capabilities in the Capability "
843 "Information field", /* 10 */
844 "Reassociation denied due to inability to confirm that association "
845 "exists", /* 11 */
846 "Association denied due to reason outside the scope of the "
847 "standard", /* 12 */
848 "Responding station does not support the specified authentication "
849 "algorithm ", /* 13 */
850 "Received an Authentication frame with authentication transaction "
851 "sequence number out of expected sequence", /* 14 */
852 "Authentication rejected because of challenge failure", /* 15 */
853 "Authentication rejected due to timeout waiting for next frame in "
854 "sequence", /* 16 */
855 "Association denied because AP is unable to handle additional"
856 "associated stations", /* 17 */
857 "Association denied due to requesting station not supporting all of "
858 "the data rates in BSSBasicRateSet parameter", /* 18 */
859 "Association denied due to requesting station not supporting "
860 "short preamble operation", /* 19 */
861 "Association denied due to requesting station not supporting "
862 "PBCC encoding", /* 20 */
863 "Association denied due to requesting station not supporting "
864 "channel agility", /* 21 */
865 "Association request rejected because Spectrum Management "
866 "capability is required", /* 22 */
867 "Association request rejected because the information in the "
868 "Power Capability element is unacceptable", /* 23 */
869 "Association request rejected because the information in the "
870 "Supported Channels element is unacceptable", /* 24 */
871 "Association denied due to requesting station not supporting "
872 "short slot operation", /* 25 */
873 "Association denied due to requesting station not supporting "
874 "DSSS-OFDM operation", /* 26 */
875 "Association denied because the requested STA does not support HT "
876 "features", /* 27 */
877 "Reserved", /* 28 */
878 "Association denied because the requested STA does not support "
879 "the PCO transition time required by the AP", /* 29 */
880 "Reserved", /* 30 */
881 "Reserved", /* 31 */
882 "Unspecified, QoS-related failure", /* 32 */
883 "Association denied due to QAP having insufficient bandwidth "
884 "to handle another QSTA", /* 33 */
885 "Association denied due to excessive frame loss rates and/or "
886 "poor conditions on current operating channel", /* 34 */
887 "Association (with QBSS) denied due to requesting station not "
888 "supporting the QoS facility", /* 35 */
889 "Association denied due to requesting station not supporting "
890 "Block Ack", /* 36 */
891 "The request has been declined", /* 37 */
892 "The request has not been successful as one or more parameters "
893 "have invalid values", /* 38 */
894 "The TS has not been created because the request cannot be honored. "
895 "Try again with the suggested changes to the TSPEC", /* 39 */
896 "Invalid Information Element", /* 40 */
897 "Group Cipher is not valid", /* 41 */
898 "Pairwise Cipher is not valid", /* 42 */
899 "AKMP is not valid", /* 43 */
900 "Unsupported RSN IE version", /* 44 */
901 "Invalid RSN IE Capabilities", /* 45 */
902 "Cipher suite is rejected per security policy", /* 46 */
903 "The TS has not been created. However, the HC may be capable of "
904 "creating a TS, in response to a request, after the time indicated "
905 "in the TS Delay element", /* 47 */
906 "Direct Link is not allowed in the BSS by policy", /* 48 */
907 "Destination STA is not present within this QBSS.", /* 49 */
908 "The Destination STA is not a QSTA.", /* 50 */
909
910 };
911 #define NUM_STATUSES (sizeof(status_text) / sizeof(status_text[0]))
912
913 static const char *reason_text[] = {
914 "Reserved", /* 0 */
915 "Unspecified reason", /* 1 */
916 "Previous authentication no longer valid", /* 2 */
917 "Deauthenticated because sending station is leaving (or has left) "
918 "IBSS or ESS", /* 3 */
919 "Disassociated due to inactivity", /* 4 */
920 "Disassociated because AP is unable to handle all currently "
921 " associated stations", /* 5 */
922 "Class 2 frame received from nonauthenticated station", /* 6 */
923 "Class 3 frame received from nonassociated station", /* 7 */
924 "Disassociated because sending station is leaving "
925 "(or has left) BSS", /* 8 */
926 "Station requesting (re)association is not authenticated with "
927 "responding station", /* 9 */
928 "Disassociated because the information in the Power Capability "
929 "element is unacceptable", /* 10 */
930 "Disassociated because the information in the SupportedChannels "
931 "element is unacceptable", /* 11 */
932 "Invalid Information Element", /* 12 */
933 "Reserved", /* 13 */
934 "Michael MIC failure", /* 14 */
935 "4-Way Handshake timeout", /* 15 */
936 "Group key update timeout", /* 16 */
937 "Information element in 4-Way Handshake different from (Re)Association"
938 "Request/Probe Response/Beacon", /* 17 */
939 "Group Cipher is not valid", /* 18 */
940 "AKMP is not valid", /* 20 */
941 "Unsupported RSN IE version", /* 21 */
942 "Invalid RSN IE Capabilities", /* 22 */
943 "IEEE 802.1X Authentication failed", /* 23 */
944 "Cipher suite is rejected per security policy", /* 24 */
945 "Reserved", /* 25 */
946 "Reserved", /* 26 */
947 "Reserved", /* 27 */
948 "Reserved", /* 28 */
949 "Reserved", /* 29 */
950 "Reserved", /* 30 */
951 "TS deleted because QoS AP lacks sufficient bandwidth for this "
952 "QoS STA due to a change in BSS service characteristics or "
953 "operational mode (e.g. an HT BSS change from 40 MHz channel "
954 "to 20 MHz channel)", /* 31 */
955 "Disassociated for unspecified, QoS-related reason", /* 32 */
956 "Disassociated because QoS AP lacks sufficient bandwidth for this "
957 "QoS STA", /* 33 */
958 "Disassociated because of excessive number of frames that need to be "
959 "acknowledged, but are not acknowledged for AP transmissions "
960 "and/or poor channel conditions", /* 34 */
961 "Disassociated because STA is transmitting outside the limits "
962 "of its TXOPs", /* 35 */
963 "Requested from peer STA as the STA is leaving the BSS "
964 "(or resetting)", /* 36 */
965 "Requested from peer STA as it does not want to use the "
966 "mechanism", /* 37 */
967 "Requested from peer STA as the STA received frames using the "
968 "mechanism for which a set up is required", /* 38 */
969 "Requested from peer STA due to time out", /* 39 */
970 "Reserved", /* 40 */
971 "Reserved", /* 41 */
972 "Reserved", /* 42 */
973 "Reserved", /* 43 */
974 "Reserved", /* 44 */
975 "Peer STA does not support the requested cipher suite", /* 45 */
976 "Association denied due to requesting STA not supporting HT "
977 "features", /* 46 */
978 };
979 #define NUM_REASONS (sizeof(reason_text) / sizeof(reason_text[0]))
980
981 static int
982 wep_print(netdissect_options *ndo,
983 const u_char *p)
984 {
985 uint32_t iv;
986
987 if (!ND_TTEST_LEN(p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN))
988 return 0;
989 iv = EXTRACT_LE_U_4(p);
990
991 ND_PRINT(" IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv),
992 IV_KEYID(iv));
993
994 return 1;
995 }
996
997 static int
998 parse_elements(netdissect_options *ndo,
999 struct mgmt_body_t *pbody, const u_char *p, int offset,
1000 u_int length)
1001 {
1002 u_int elementlen;
1003 struct ssid_t ssid;
1004 struct challenge_t challenge;
1005 struct rates_t rates;
1006 struct ds_t ds;
1007 struct cf_t cf;
1008 struct tim_t tim;
1009
1010 /*
1011 * We haven't seen any elements yet.
1012 */
1013 pbody->challenge_present = 0;
1014 pbody->ssid_present = 0;
1015 pbody->rates_present = 0;
1016 pbody->ds_present = 0;
1017 pbody->cf_present = 0;
1018 pbody->tim_present = 0;
1019
1020 while (length != 0) {
1021 /* Make sure we at least have the element ID and length. */
1022 if (!ND_TTEST_2(p + offset))
1023 return 0;
1024 if (length < 2)
1025 return 0;
1026 elementlen = EXTRACT_U_1(p + offset + 1);
1027
1028 /* Make sure we have the entire element. */
1029 if (!ND_TTEST_LEN(p + offset + 2, elementlen))
1030 return 0;
1031 if (length < elementlen + 2)
1032 return 0;
1033
1034 switch (EXTRACT_U_1(p + offset)) {
1035 case E_SSID:
1036 memcpy(&ssid, p + offset, 2);
1037 offset += 2;
1038 length -= 2;
1039 if (ssid.length != 0) {
1040 if (ssid.length > sizeof(ssid.ssid) - 1)
1041 return 0;
1042 memcpy(&ssid.ssid, p + offset, ssid.length);
1043 offset += ssid.length;
1044 length -= ssid.length;
1045 }
1046 ssid.ssid[ssid.length] = '\0';
1047 /*
1048 * Present and not truncated.
1049 *
1050 * If we haven't already seen an SSID IE,
1051 * copy this one, otherwise ignore this one,
1052 * so we later report the first one we saw.
1053 */
1054 if (!pbody->ssid_present) {
1055 pbody->ssid = ssid;
1056 pbody->ssid_present = 1;
1057 }
1058 break;
1059 case E_CHALLENGE:
1060 memcpy(&challenge, p + offset, 2);
1061 offset += 2;
1062 length -= 2;
1063 if (challenge.length != 0) {
1064 if (challenge.length >
1065 sizeof(challenge.text) - 1)
1066 return 0;
1067 memcpy(&challenge.text, p + offset,
1068 challenge.length);
1069 offset += challenge.length;
1070 length -= challenge.length;
1071 }
1072 challenge.text[challenge.length] = '\0';
1073 /*
1074 * Present and not truncated.
1075 *
1076 * If we haven't already seen a challenge IE,
1077 * copy this one, otherwise ignore this one,
1078 * so we later report the first one we saw.
1079 */
1080 if (!pbody->challenge_present) {
1081 pbody->challenge = challenge;
1082 pbody->challenge_present = 1;
1083 }
1084 break;
1085 case E_RATES:
1086 memcpy(&rates, p + offset, 2);
1087 offset += 2;
1088 length -= 2;
1089 if (rates.length != 0) {
1090 if (rates.length > sizeof(rates.rate))
1091 return 0;
1092 memcpy(&rates.rate, p + offset, rates.length);
1093 offset += rates.length;
1094 length -= rates.length;
1095 }
1096 /*
1097 * Present and not truncated.
1098 *
1099 * If we haven't already seen a rates IE,
1100 * copy this one if it's not zero-length,
1101 * otherwise ignore this one, so we later
1102 * report the first one we saw.
1103 *
1104 * We ignore zero-length rates IEs as some
1105 * devices seem to put a zero-length rates
1106 * IE, followed by an SSID IE, followed by
1107 * a non-zero-length rates IE into frames,
1108 * even though IEEE Std 802.11-2007 doesn't
1109 * seem to indicate that a zero-length rates
1110 * IE is valid.
1111 */
1112 if (!pbody->rates_present && rates.length != 0) {
1113 pbody->rates = rates;
1114 pbody->rates_present = 1;
1115 }
1116 break;
1117 case E_DS:
1118 memcpy(&ds, p + offset, 2);
1119 offset += 2;
1120 length -= 2;
1121 if (ds.length != 1) {
1122 offset += ds.length;
1123 length -= ds.length;
1124 break;
1125 }
1126 ds.channel = EXTRACT_U_1(p + offset);
1127 offset += 1;
1128 length -= 1;
1129 /*
1130 * Present and not truncated.
1131 *
1132 * If we haven't already seen a DS IE,
1133 * copy this one, otherwise ignore this one,
1134 * so we later report the first one we saw.
1135 */
1136 if (!pbody->ds_present) {
1137 pbody->ds = ds;
1138 pbody->ds_present = 1;
1139 }
1140 break;
1141 case E_CF:
1142 memcpy(&cf, p + offset, 2);
1143 offset += 2;
1144 length -= 2;
1145 if (cf.length != 6) {
1146 offset += cf.length;
1147 length -= cf.length;
1148 break;
1149 }
1150 memcpy(&cf.count, p + offset, 6);
1151 offset += 6;
1152 length -= 6;
1153 /*
1154 * Present and not truncated.
1155 *
1156 * If we haven't already seen a CF IE,
1157 * copy this one, otherwise ignore this one,
1158 * so we later report the first one we saw.
1159 */
1160 if (!pbody->cf_present) {
1161 pbody->cf = cf;
1162 pbody->cf_present = 1;
1163 }
1164 break;
1165 case E_TIM:
1166 memcpy(&tim, p + offset, 2);
1167 offset += 2;
1168 length -= 2;
1169 if (tim.length <= 3U) {
1170 offset += tim.length;
1171 length -= tim.length;
1172 break;
1173 }
1174 if (tim.length - 3U > sizeof(tim.bitmap))
1175 return 0;
1176 memcpy(&tim.count, p + offset, 3);
1177 offset += 3;
1178 length -= 3;
1179
1180 memcpy(tim.bitmap, p + offset, tim.length - 3);
1181 offset += tim.length - 3;
1182 length -= tim.length - 3;
1183 /*
1184 * Present and not truncated.
1185 *
1186 * If we haven't already seen a TIM IE,
1187 * copy this one, otherwise ignore this one,
1188 * so we later report the first one we saw.
1189 */
1190 if (!pbody->tim_present) {
1191 pbody->tim = tim;
1192 pbody->tim_present = 1;
1193 }
1194 break;
1195 default:
1196 #if 0
1197 ND_PRINT("(1) unhandled element_id (%u) ",
1198 EXTRACT_U_1(p + offset));
1199 #endif
1200 offset += 2 + elementlen;
1201 length -= 2 + elementlen;
1202 break;
1203 }
1204 }
1205
1206 /* No problems found. */
1207 return 1;
1208 }
1209
1210 /*********************************************************************************
1211 * Print Handle functions for the management frame types
1212 *********************************************************************************/
1213
1214 static int
1215 handle_beacon(netdissect_options *ndo,
1216 const u_char *p, u_int length)
1217 {
1218 struct mgmt_body_t pbody;
1219 int offset = 0;
1220 int ret;
1221
1222 memset(&pbody, 0, sizeof(pbody));
1223
1224 if (!ND_TTEST_LEN(p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN))
1225 return 0;
1226 if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
1227 IEEE802_11_CAPINFO_LEN)
1228 return 0;
1229 memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
1230 offset += IEEE802_11_TSTAMP_LEN;
1231 length -= IEEE802_11_TSTAMP_LEN;
1232 pbody.beacon_interval = EXTRACT_LE_U_2(p + offset);
1233 offset += IEEE802_11_BCNINT_LEN;
1234 length -= IEEE802_11_BCNINT_LEN;
1235 pbody.capability_info = EXTRACT_LE_U_2(p + offset);
1236 offset += IEEE802_11_CAPINFO_LEN;
1237 length -= IEEE802_11_CAPINFO_LEN;
1238
1239 ret = parse_elements(ndo, &pbody, p, offset, length);
1240
1241 PRINT_SSID(pbody);
1242 PRINT_RATES(pbody);
1243 ND_PRINT(" %s",
1244 CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS");
1245 PRINT_DS_CHANNEL(pbody);
1246
1247 return ret;
1248 }
1249
1250 static int
1251 handle_assoc_request(netdissect_options *ndo,
1252 const u_char *p, u_int length)
1253 {
1254 struct mgmt_body_t pbody;
1255 int offset = 0;
1256 int ret;
1257
1258 memset(&pbody, 0, sizeof(pbody));
1259
1260 if (!ND_TTEST_LEN(p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN))
1261 return 0;
1262 if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN)
1263 return 0;
1264 pbody.capability_info = EXTRACT_LE_U_2(p);
1265 offset += IEEE802_11_CAPINFO_LEN;
1266 length -= IEEE802_11_CAPINFO_LEN;
1267 pbody.listen_interval = EXTRACT_LE_U_2(p + offset);
1268 offset += IEEE802_11_LISTENINT_LEN;
1269 length -= IEEE802_11_LISTENINT_LEN;
1270
1271 ret = parse_elements(ndo, &pbody, p, offset, length);
1272
1273 PRINT_SSID(pbody);
1274 PRINT_RATES(pbody);
1275 return ret;
1276 }
1277
1278 static int
1279 handle_assoc_response(netdissect_options *ndo,
1280 const u_char *p, u_int length)
1281 {
1282 struct mgmt_body_t pbody;
1283 int offset = 0;
1284 int ret;
1285
1286 memset(&pbody, 0, sizeof(pbody));
1287
1288 if (!ND_TTEST_LEN(p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN + IEEE802_11_AID_LEN))
1289 return 0;
1290 if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
1291 IEEE802_11_AID_LEN)
1292 return 0;
1293 pbody.capability_info = EXTRACT_LE_U_2(p);
1294 offset += IEEE802_11_CAPINFO_LEN;
1295 length -= IEEE802_11_CAPINFO_LEN;
1296 pbody.status_code = EXTRACT_LE_U_2(p + offset);
1297 offset += IEEE802_11_STATUS_LEN;
1298 length -= IEEE802_11_STATUS_LEN;
1299 pbody.aid = EXTRACT_LE_U_2(p + offset);
1300 offset += IEEE802_11_AID_LEN;
1301 length -= IEEE802_11_AID_LEN;
1302
1303 ret = parse_elements(ndo, &pbody, p, offset, length);
1304
1305 ND_PRINT(" AID(%x) :%s: %s", ((uint16_t)(pbody.aid << 2 )) >> 2 ,
1306 CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "",
1307 (pbody.status_code < NUM_STATUSES
1308 ? status_text[pbody.status_code]
1309 : "n/a"));
1310
1311 return ret;
1312 }
1313
1314 static int
1315 handle_reassoc_request(netdissect_options *ndo,
1316 const u_char *p, u_int length)
1317 {
1318 struct mgmt_body_t pbody;
1319 int offset = 0;
1320 int ret;
1321
1322 memset(&pbody, 0, sizeof(pbody));
1323
1324 if (!ND_TTEST_LEN(p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN + IEEE802_11_AP_LEN))
1325 return 0;
1326 if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
1327 IEEE802_11_AP_LEN)
1328 return 0;
1329 pbody.capability_info = EXTRACT_LE_U_2(p);
1330 offset += IEEE802_11_CAPINFO_LEN;
1331 length -= IEEE802_11_CAPINFO_LEN;
1332 pbody.listen_interval = EXTRACT_LE_U_2(p + offset);
1333 offset += IEEE802_11_LISTENINT_LEN;
1334 length -= IEEE802_11_LISTENINT_LEN;
1335 memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN);
1336 offset += IEEE802_11_AP_LEN;
1337 length -= IEEE802_11_AP_LEN;
1338
1339 ret = parse_elements(ndo, &pbody, p, offset, length);
1340
1341 PRINT_SSID(pbody);
1342 ND_PRINT(" AP : %s", etheraddr_string(ndo, pbody.ap ));
1343
1344 return ret;
1345 }
1346
1347 static int
1348 handle_reassoc_response(netdissect_options *ndo,
1349 const u_char *p, u_int length)
1350 {
1351 /* Same as a Association Reponse */
1352 return handle_assoc_response(ndo, p, length);
1353 }
1354
1355 static int
1356 handle_probe_request(netdissect_options *ndo,
1357 const u_char *p, u_int length)
1358 {
1359 struct mgmt_body_t pbody;
1360 int offset = 0;
1361 int ret;
1362
1363 memset(&pbody, 0, sizeof(pbody));
1364
1365 ret = parse_elements(ndo, &pbody, p, offset, length);
1366
1367 PRINT_SSID(pbody);
1368 PRINT_RATES(pbody);
1369
1370 return ret;
1371 }
1372
1373 static int
1374 handle_probe_response(netdissect_options *ndo,
1375 const u_char *p, u_int length)
1376 {
1377 struct mgmt_body_t pbody;
1378 int offset = 0;
1379 int ret;
1380
1381 memset(&pbody, 0, sizeof(pbody));
1382
1383 if (!ND_TTEST_LEN(p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN))
1384 return 0;
1385 if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
1386 IEEE802_11_CAPINFO_LEN)
1387 return 0;
1388 memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
1389 offset += IEEE802_11_TSTAMP_LEN;
1390 length -= IEEE802_11_TSTAMP_LEN;
1391 pbody.beacon_interval = EXTRACT_LE_U_2(p + offset);
1392 offset += IEEE802_11_BCNINT_LEN;
1393 length -= IEEE802_11_BCNINT_LEN;
1394 pbody.capability_info = EXTRACT_LE_U_2(p + offset);
1395 offset += IEEE802_11_CAPINFO_LEN;
1396 length -= IEEE802_11_CAPINFO_LEN;
1397
1398 ret = parse_elements(ndo, &pbody, p, offset, length);
1399
1400 PRINT_SSID(pbody);
1401 PRINT_RATES(pbody);
1402 PRINT_DS_CHANNEL(pbody);
1403
1404 return ret;
1405 }
1406
1407 static int
1408 handle_atim(void)
1409 {
1410 /* the frame body for ATIM is null. */
1411 return 1;
1412 }
1413
1414 static int
1415 handle_disassoc(netdissect_options *ndo,
1416 const u_char *p, u_int length)
1417 {
1418 struct mgmt_body_t pbody;
1419
1420 memset(&pbody, 0, sizeof(pbody));
1421
1422 if (!ND_TTEST_LEN(p, IEEE802_11_REASON_LEN))
1423 return 0;
1424 if (length < IEEE802_11_REASON_LEN)
1425 return 0;
1426 pbody.reason_code = EXTRACT_LE_U_2(p);
1427
1428 ND_PRINT(": %s",
1429 (pbody.reason_code < NUM_REASONS)
1430 ? reason_text[pbody.reason_code]
1431 : "Reserved");
1432
1433 return 1;
1434 }
1435
1436 static int
1437 handle_auth(netdissect_options *ndo,
1438 const u_char *p, u_int length)
1439 {
1440 struct mgmt_body_t pbody;
1441 int offset = 0;
1442 int ret;
1443
1444 memset(&pbody, 0, sizeof(pbody));
1445
1446 if (!ND_TTEST_6(p))
1447 return 0;
1448 if (length < 6)
1449 return 0;
1450 pbody.auth_alg = EXTRACT_LE_U_2(p);
1451 offset += 2;
1452 length -= 2;
1453 pbody.auth_trans_seq_num = EXTRACT_LE_U_2(p + offset);
1454 offset += 2;
1455 length -= 2;
1456 pbody.status_code = EXTRACT_LE_U_2(p + offset);
1457 offset += 2;
1458 length -= 2;
1459
1460 ret = parse_elements(ndo, &pbody, p, offset, length);
1461
1462 if ((pbody.auth_alg == 1) &&
1463 ((pbody.auth_trans_seq_num == 2) ||
1464 (pbody.auth_trans_seq_num == 3))) {
1465 ND_PRINT(" (%s)-%x [Challenge Text] %s",
1466 (pbody.auth_alg < NUM_AUTH_ALGS)
1467 ? auth_alg_text[pbody.auth_alg]
1468 : "Reserved",
1469 pbody.auth_trans_seq_num,
1470 ((pbody.auth_trans_seq_num % 2)
1471 ? ((pbody.status_code < NUM_STATUSES)
1472 ? status_text[pbody.status_code]
1473 : "n/a") : ""));
1474 return ret;
1475 }
1476 ND_PRINT(" (%s)-%x: %s",
1477 (pbody.auth_alg < NUM_AUTH_ALGS)
1478 ? auth_alg_text[pbody.auth_alg]
1479 : "Reserved",
1480 pbody.auth_trans_seq_num,
1481 (pbody.auth_trans_seq_num % 2)
1482 ? ((pbody.status_code < NUM_STATUSES)
1483 ? status_text[pbody.status_code]
1484 : "n/a")
1485 : "");
1486
1487 return ret;
1488 }
1489
1490 static int
1491 handle_deauth(netdissect_options *ndo,
1492 const uint8_t *src, const u_char *p, u_int length)
1493 {
1494 struct mgmt_body_t pbody;
1495 const char *reason = NULL;
1496
1497 memset(&pbody, 0, sizeof(pbody));
1498
1499 if (!ND_TTEST_LEN(p, IEEE802_11_REASON_LEN))
1500 return 0;
1501 if (length < IEEE802_11_REASON_LEN)
1502 return 0;
1503 pbody.reason_code = EXTRACT_LE_U_2(p);
1504
1505 reason = (pbody.reason_code < NUM_REASONS)
1506 ? reason_text[pbody.reason_code]
1507 : "Reserved";
1508
1509 if (ndo->ndo_eflag) {
1510 ND_PRINT(": %s", reason);
1511 } else {
1512 ND_PRINT(" (%s): %s", etheraddr_string(ndo, src), reason);
1513 }
1514 return 1;
1515 }
1516
1517 #define PRINT_HT_ACTION(v) (\
1518 (v) == 0 ? ND_PRINT("TxChWidth"): \
1519 (v) == 1 ? ND_PRINT("MIMOPwrSave"): \
1520 ND_PRINT("Act#%u", (v)))
1521 #define PRINT_BA_ACTION(v) (\
1522 (v) == 0 ? ND_PRINT("ADDBA Request"): \
1523 (v) == 1 ? ND_PRINT("ADDBA Response"): \
1524 (v) == 2 ? ND_PRINT("DELBA"): \
1525 ND_PRINT("Act#%u", (v)))
1526 #define PRINT_MESHLINK_ACTION(v) (\
1527 (v) == 0 ? ND_PRINT("Request"): \
1528 (v) == 1 ? ND_PRINT("Report"): \
1529 ND_PRINT("Act#%u", (v)))
1530 #define PRINT_MESHPEERING_ACTION(v) (\
1531 (v) == 0 ? ND_PRINT("Open"): \
1532 (v) == 1 ? ND_PRINT("Confirm"): \
1533 (v) == 2 ? ND_PRINT("Close"): \
1534 ND_PRINT("Act#%u", (v)))
1535 #define PRINT_MESHPATH_ACTION(v) (\
1536 (v) == 0 ? ND_PRINT("Request"): \
1537 (v) == 1 ? ND_PRINT("Report"): \
1538 (v) == 2 ? ND_PRINT("Error"): \
1539 (v) == 3 ? ND_PRINT("RootAnnouncement"): \
1540 ND_PRINT("Act#%u", (v)))
1541
1542 #define PRINT_MESH_ACTION(v) (\
1543 (v) == 0 ? ND_PRINT("MeshLink"): \
1544 (v) == 1 ? ND_PRINT("HWMP"): \
1545 (v) == 2 ? ND_PRINT("Gate Announcement"): \
1546 (v) == 3 ? ND_PRINT("Congestion Control"): \
1547 (v) == 4 ? ND_PRINT("MCCA Setup Request"): \
1548 (v) == 5 ? ND_PRINT("MCCA Setup Reply"): \
1549 (v) == 6 ? ND_PRINT("MCCA Advertisement Request"): \
1550 (v) == 7 ? ND_PRINT("MCCA Advertisement"): \
1551 (v) == 8 ? ND_PRINT("MCCA Teardown"): \
1552 (v) == 9 ? ND_PRINT("TBTT Adjustment Request"): \
1553 (v) == 10 ? ND_PRINT("TBTT Adjustment Response"): \
1554 ND_PRINT("Act#%u", (v)))
1555 #define PRINT_MULTIHOP_ACTION(v) (\
1556 (v) == 0 ? ND_PRINT("Proxy Update"): \
1557 (v) == 1 ? ND_PRINT("Proxy Update Confirmation"): \
1558 ND_PRINT("Act#%u", (v)))
1559 #define PRINT_SELFPROT_ACTION(v) (\
1560 (v) == 1 ? ND_PRINT("Peering Open"): \
1561 (v) == 2 ? ND_PRINT("Peering Confirm"): \
1562 (v) == 3 ? ND_PRINT("Peering Close"): \
1563 (v) == 4 ? ND_PRINT("Group Key Inform"): \
1564 (v) == 5 ? ND_PRINT("Group Key Acknowledge"): \
1565 ND_PRINT("Act#%u", (v)))
1566
1567 static int
1568 handle_action(netdissect_options *ndo,
1569 const uint8_t *src, const u_char *p, u_int length)
1570 {
1571 if (!ND_TTEST_2(p))
1572 return 0;
1573 if (length < 2)
1574 return 0;
1575 if (ndo->ndo_eflag) {
1576 ND_PRINT(": ");
1577 } else {
1578 ND_PRINT(" (%s): ", etheraddr_string(ndo, src));
1579 }
1580 switch (EXTRACT_U_1(p)) {
1581 case 0: ND_PRINT("Spectrum Management Act#%u", EXTRACT_U_1(p + 1)); break;
1582 case 1: ND_PRINT("QoS Act#%u", EXTRACT_U_1(p + 1)); break;
1583 case 2: ND_PRINT("DLS Act#%u", EXTRACT_U_1(p + 1)); break;
1584 case 3: ND_PRINT("BA "); PRINT_BA_ACTION(EXTRACT_U_1(p + 1)); break;
1585 case 7: ND_PRINT("HT "); PRINT_HT_ACTION(EXTRACT_U_1(p + 1)); break;
1586 case 13: ND_PRINT("MeshAction "); PRINT_MESH_ACTION(EXTRACT_U_1(p + 1)); break;
1587 case 14:
1588 ND_PRINT("MultiohopAction ");
1589 PRINT_MULTIHOP_ACTION(EXTRACT_U_1(p + 1)); break;
1590 case 15:
1591 ND_PRINT("SelfprotectAction ");
1592 PRINT_SELFPROT_ACTION(EXTRACT_U_1(p + 1)); break;
1593 case 127: ND_PRINT("Vendor Act#%u", EXTRACT_U_1(p + 1)); break;
1594 default:
1595 ND_PRINT("Reserved(%u) Act#%u", EXTRACT_U_1(p), EXTRACT_U_1(p + 1));
1596 break;
1597 }
1598 return 1;
1599 }
1600
1601
1602 /*********************************************************************************
1603 * Print Body funcs
1604 *********************************************************************************/
1605
1606
1607 static int
1608 mgmt_body_print(netdissect_options *ndo,
1609 uint16_t fc, const uint8_t *src, const u_char *p, u_int length)
1610 {
1611 ND_PRINT("%s", tok2str(st_str, "Unhandled Management subtype(%x)", FC_SUBTYPE(fc)));
1612
1613 /* There may be a problem w/ AP not having this bit set */
1614 if (FC_PROTECTED(fc))
1615 return wep_print(ndo, p);
1616 switch (FC_SUBTYPE(fc)) {
1617 case ST_ASSOC_REQUEST:
1618 return handle_assoc_request(ndo, p, length);
1619 case ST_ASSOC_RESPONSE:
1620 return handle_assoc_response(ndo, p, length);
1621 case ST_REASSOC_REQUEST:
1622 return handle_reassoc_request(ndo, p, length);
1623 case ST_REASSOC_RESPONSE:
1624 return handle_reassoc_response(ndo, p, length);
1625 case ST_PROBE_REQUEST:
1626 return handle_probe_request(ndo, p, length);
1627 case ST_PROBE_RESPONSE:
1628 return handle_probe_response(ndo, p, length);
1629 case ST_BEACON:
1630 return handle_beacon(ndo, p, length);
1631 case ST_ATIM:
1632 return handle_atim();
1633 case ST_DISASSOC:
1634 return handle_disassoc(ndo, p, length);
1635 case ST_AUTH:
1636 return handle_auth(ndo, p, length);
1637 case ST_DEAUTH:
1638 return handle_deauth(ndo, src, p, length);
1639 case ST_ACTION:
1640 return handle_action(ndo, src, p, length);
1641 default:
1642 return 1;
1643 }
1644 }
1645
1646
1647 /*********************************************************************************
1648 * Handles printing all the control frame types
1649 *********************************************************************************/
1650
1651 static int
1652 ctrl_body_print(netdissect_options *ndo,
1653 uint16_t fc, const u_char *p)
1654 {
1655 ND_PRINT("%s", tok2str(ctrl_str, "Unknown Ctrl Subtype", FC_SUBTYPE(fc)));
1656 switch (FC_SUBTYPE(fc)) {
1657 case CTRL_CONTROL_WRAPPER:
1658 /* XXX - requires special handling */
1659 break;
1660 case CTRL_BAR:
1661 if (!ND_TTEST_LEN(p, CTRL_BAR_HDRLEN))
1662 return 0;
1663 if (!ndo->ndo_eflag)
1664 ND_PRINT(" RA:%s TA:%s CTL(%x) SEQ(%u) ",
1665 etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ra),
1666 etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ta),
1667 EXTRACT_LE_U_2(((const struct ctrl_bar_hdr_t *)p)->ctl),
1668 EXTRACT_LE_U_2(((const struct ctrl_bar_hdr_t *)p)->seq));
1669 break;
1670 case CTRL_BA:
1671 if (!ND_TTEST_LEN(p, CTRL_BA_HDRLEN))
1672 return 0;
1673 if (!ndo->ndo_eflag)
1674 ND_PRINT(" RA:%s ",
1675 etheraddr_string(ndo, ((const struct ctrl_ba_hdr_t *)p)->ra));
1676 break;
1677 case CTRL_PS_POLL:
1678 if (!ND_TTEST_LEN(p, CTRL_PS_POLL_HDRLEN))
1679 return 0;
1680 ND_PRINT(" AID(%x)",
1681 EXTRACT_LE_U_2(((const struct ctrl_ps_poll_hdr_t *)p)->aid));
1682 break;
1683 case CTRL_RTS:
1684 if (!ND_TTEST_LEN(p, CTRL_RTS_HDRLEN))
1685 return 0;
1686 if (!ndo->ndo_eflag)
1687 ND_PRINT(" TA:%s ",
1688 etheraddr_string(ndo, ((const struct ctrl_rts_hdr_t *)p)->ta));
1689 break;
1690 case CTRL_CTS:
1691 if (!ND_TTEST_LEN(p, CTRL_CTS_HDRLEN))
1692 return 0;
1693 if (!ndo->ndo_eflag)
1694 ND_PRINT(" RA:%s ",
1695 etheraddr_string(ndo, ((const struct ctrl_cts_hdr_t *)p)->ra));
1696 break;
1697 case CTRL_ACK:
1698 if (!ND_TTEST_LEN(p, CTRL_ACK_HDRLEN))
1699 return 0;
1700 if (!ndo->ndo_eflag)
1701 ND_PRINT(" RA:%s ",
1702 etheraddr_string(ndo, ((const struct ctrl_ack_hdr_t *)p)->ra));
1703 break;
1704 case CTRL_CF_END:
1705 if (!ND_TTEST_LEN(p, CTRL_END_HDRLEN))
1706 return 0;
1707 if (!ndo->ndo_eflag)
1708 ND_PRINT(" RA:%s ",
1709 etheraddr_string(ndo, ((const struct ctrl_end_hdr_t *)p)->ra));
1710 break;
1711 case CTRL_END_ACK:
1712 if (!ND_TTEST_LEN(p, CTRL_END_ACK_HDRLEN))
1713 return 0;
1714 if (!ndo->ndo_eflag)
1715 ND_PRINT(" RA:%s ",
1716 etheraddr_string(ndo, ((const struct ctrl_end_ack_hdr_t *)p)->ra));
1717 break;
1718 }
1719 return 1;
1720 }
1721
1722 /*
1723 * Data Frame - Address field contents
1724 *
1725 * To Ds | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4
1726 * 0 | 0 | DA | SA | BSSID | n/a
1727 * 0 | 1 | DA | BSSID | SA | n/a
1728 * 1 | 0 | BSSID | SA | DA | n/a
1729 * 1 | 1 | RA | TA | DA | SA
1730 */
1731
1732 /*
1733 * Function to get source and destination MAC addresses for a data frame.
1734 */
1735 static void
1736 get_data_src_dst_mac(uint16_t fc, const u_char *p, const uint8_t **srcp,
1737 const uint8_t **dstp)
1738 {
1739 #define ADDR1 (p + 4)
1740 #define ADDR2 (p + 10)
1741 #define ADDR3 (p + 16)
1742 #define ADDR4 (p + 24)
1743
1744 if (!FC_TO_DS(fc)) {
1745 if (!FC_FROM_DS(fc)) {
1746 /* not To DS and not From DS */
1747 *srcp = ADDR2;
1748 *dstp = ADDR1;
1749 } else {
1750 /* not To DS and From DS */
1751 *srcp = ADDR3;
1752 *dstp = ADDR1;
1753 }
1754 } else {
1755 if (!FC_FROM_DS(fc)) {
1756 /* From DS and not To DS */
1757 *srcp = ADDR2;
1758 *dstp = ADDR3;
1759 } else {
1760 /* To DS and From DS */
1761 *srcp = ADDR4;
1762 *dstp = ADDR3;
1763 }
1764 }
1765
1766 #undef ADDR1
1767 #undef ADDR2
1768 #undef ADDR3
1769 #undef ADDR4
1770 }
1771
1772 static void
1773 get_mgmt_src_dst_mac(const u_char *p, const uint8_t **srcp, const uint8_t **dstp)
1774 {
1775 const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;
1776
1777 if (srcp != NULL)
1778 *srcp = hp->sa;
1779 if (dstp != NULL)
1780 *dstp = hp->da;
1781 }
1782
1783 /*
1784 * Print Header funcs
1785 */
1786
1787 static void
1788 data_header_print(netdissect_options *ndo, uint16_t fc, const u_char *p)
1789 {
1790 u_int subtype = FC_SUBTYPE(fc);
1791
1792 if (DATA_FRAME_IS_CF_ACK(subtype) || DATA_FRAME_IS_CF_POLL(subtype) ||
1793 DATA_FRAME_IS_QOS(subtype)) {
1794 ND_PRINT("CF ");
1795 if (DATA_FRAME_IS_CF_ACK(subtype)) {
1796 if (DATA_FRAME_IS_CF_POLL(subtype))
1797 ND_PRINT("Ack/Poll");
1798 else
1799 ND_PRINT("Ack");
1800 } else {
1801 if (DATA_FRAME_IS_CF_POLL(subtype))
1802 ND_PRINT("Poll");
1803 }
1804 if (DATA_FRAME_IS_QOS(subtype))
1805 ND_PRINT("+QoS");
1806 ND_PRINT(" ");
1807 }
1808
1809 #define ADDR1 (p + 4)
1810 #define ADDR2 (p + 10)
1811 #define ADDR3 (p + 16)
1812 #define ADDR4 (p + 24)
1813
1814 if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
1815 ND_PRINT("DA:%s SA:%s BSSID:%s ",
1816 etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1817 etheraddr_string(ndo, ADDR3));
1818 } else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) {
1819 ND_PRINT("DA:%s BSSID:%s SA:%s ",
1820 etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1821 etheraddr_string(ndo, ADDR3));
1822 } else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
1823 ND_PRINT("BSSID:%s SA:%s DA:%s ",
1824 etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1825 etheraddr_string(ndo, ADDR3));
1826 } else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) {
1827 ND_PRINT("RA:%s TA:%s DA:%s SA:%s ",
1828 etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1829 etheraddr_string(ndo, ADDR3), etheraddr_string(ndo, ADDR4));
1830 }
1831
1832 #undef ADDR1
1833 #undef ADDR2
1834 #undef ADDR3
1835 #undef ADDR4
1836 }
1837
1838 static void
1839 mgmt_header_print(netdissect_options *ndo, const u_char *p)
1840 {
1841 const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;
1842
1843 ND_PRINT("BSSID:%s DA:%s SA:%s ",
1844 etheraddr_string(ndo, (hp)->bssid), etheraddr_string(ndo, (hp)->da),
1845 etheraddr_string(ndo, (hp)->sa));
1846 }
1847
1848 static void
1849 ctrl_header_print(netdissect_options *ndo, uint16_t fc, const u_char *p)
1850 {
1851 switch (FC_SUBTYPE(fc)) {
1852 case CTRL_BAR:
1853 ND_PRINT(" RA:%s TA:%s CTL(%x) SEQ(%u) ",
1854 etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ra),
1855 etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ta),
1856 EXTRACT_LE_U_2(((const struct ctrl_bar_hdr_t *)p)->ctl),
1857 EXTRACT_LE_U_2(((const struct ctrl_bar_hdr_t *)p)->seq));
1858 break;
1859 case CTRL_BA:
1860 ND_PRINT("RA:%s ",
1861 etheraddr_string(ndo, ((const struct ctrl_ba_hdr_t *)p)->ra));
1862 break;
1863 case CTRL_PS_POLL:
1864 ND_PRINT("BSSID:%s TA:%s ",
1865 etheraddr_string(ndo, ((const struct ctrl_ps_poll_hdr_t *)p)->bssid),
1866 etheraddr_string(ndo, ((const struct ctrl_ps_poll_hdr_t *)p)->ta));
1867 break;
1868 case CTRL_RTS:
1869 ND_PRINT("RA:%s TA:%s ",
1870 etheraddr_string(ndo, ((const struct ctrl_rts_hdr_t *)p)->ra),
1871 etheraddr_string(ndo, ((const struct ctrl_rts_hdr_t *)p)->ta));
1872 break;
1873 case CTRL_CTS:
1874 ND_PRINT("RA:%s ",
1875 etheraddr_string(ndo, ((const struct ctrl_cts_hdr_t *)p)->ra));
1876 break;
1877 case CTRL_ACK:
1878 ND_PRINT("RA:%s ",
1879 etheraddr_string(ndo, ((const struct ctrl_ack_hdr_t *)p)->ra));
1880 break;
1881 case CTRL_CF_END:
1882 ND_PRINT("RA:%s BSSID:%s ",
1883 etheraddr_string(ndo, ((const struct ctrl_end_hdr_t *)p)->ra),
1884 etheraddr_string(ndo, ((const struct ctrl_end_hdr_t *)p)->bssid));
1885 break;
1886 case CTRL_END_ACK:
1887 ND_PRINT("RA:%s BSSID:%s ",
1888 etheraddr_string(ndo, ((const struct ctrl_end_ack_hdr_t *)p)->ra),
1889 etheraddr_string(ndo, ((const struct ctrl_end_ack_hdr_t *)p)->bssid));
1890 break;
1891 default:
1892 /* We shouldn't get here - we should already have quit */
1893 break;
1894 }
1895 }
1896
1897 static int
1898 extract_header_length(netdissect_options *ndo,
1899 uint16_t fc)
1900 {
1901 int len;
1902
1903 switch (FC_TYPE(fc)) {
1904 case T_MGMT:
1905 return MGMT_HDRLEN;
1906 case T_CTRL:
1907 switch (FC_SUBTYPE(fc)) {
1908 case CTRL_CONTROL_WRAPPER:
1909 return CTRL_CONTROL_WRAPPER_HDRLEN;
1910 case CTRL_BAR:
1911 return CTRL_BAR_HDRLEN;
1912 case CTRL_BA:
1913 return CTRL_BA_HDRLEN;
1914 case CTRL_PS_POLL:
1915 return CTRL_PS_POLL_HDRLEN;
1916 case CTRL_RTS:
1917 return CTRL_RTS_HDRLEN;
1918 case CTRL_CTS:
1919 return CTRL_CTS_HDRLEN;
1920 case CTRL_ACK:
1921 return CTRL_ACK_HDRLEN;
1922 case CTRL_CF_END:
1923 return CTRL_END_HDRLEN;
1924 case CTRL_END_ACK:
1925 return CTRL_END_ACK_HDRLEN;
1926 default:
1927 ND_PRINT("unknown 802.11 ctrl frame subtype (%u)", FC_SUBTYPE(fc));
1928 return 0;
1929 }
1930 case T_DATA:
1931 len = (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24;
1932 if (DATA_FRAME_IS_QOS(FC_SUBTYPE(fc)))
1933 len += 2;
1934 return len;
1935 default:
1936 ND_PRINT("unknown 802.11 frame type (%u)", FC_TYPE(fc));
1937 return 0;
1938 }
1939 }
1940
1941 static int
1942 extract_mesh_header_length(const u_char *p)
1943 {
1944 return (EXTRACT_U_1(p) &~ 3) ? 0 : 6*(1 + (EXTRACT_U_1(p) & 3));
1945 }
1946
1947 /*
1948 * Print the 802.11 MAC header.
1949 */
1950 static void
1951 ieee_802_11_hdr_print(netdissect_options *ndo,
1952 uint16_t fc, const u_char *p, u_int hdrlen,
1953 u_int meshdrlen)
1954 {
1955 if (ndo->ndo_vflag) {
1956 if (FC_MORE_DATA(fc))
1957 ND_PRINT("More Data ");
1958 if (FC_MORE_FLAG(fc))
1959 ND_PRINT("More Fragments ");
1960 if (FC_POWER_MGMT(fc))
1961 ND_PRINT("Pwr Mgmt ");
1962 if (FC_RETRY(fc))
1963 ND_PRINT("Retry ");
1964 if (FC_ORDER(fc))
1965 ND_PRINT("Strictly Ordered ");
1966 if (FC_PROTECTED(fc))
1967 ND_PRINT("Protected ");
1968 if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL)
1969 ND_PRINT("%uus ",
1970 EXTRACT_LE_U_2(((const struct mgmt_header_t *)p)->duration));
1971 }
1972 if (meshdrlen != 0) {
1973 const struct meshcntl_t *mc =
1974 (const struct meshcntl_t *)(p + hdrlen - meshdrlen);
1975 u_int ae = EXTRACT_U_1(mc->flags) & 3;
1976
1977 ND_PRINT("MeshData (AE %u TTL %u seq %u", ae,
1978 EXTRACT_U_1(mc->ttl), EXTRACT_LE_U_4(mc->seq));
1979 if (ae > 0)
1980 ND_PRINT(" A4:%s", etheraddr_string(ndo, mc->addr4));
1981 if (ae > 1)
1982 ND_PRINT(" A5:%s", etheraddr_string(ndo, mc->addr5));
1983 if (ae > 2)
1984 ND_PRINT(" A6:%s", etheraddr_string(ndo, mc->addr6));
1985 ND_PRINT(") ");
1986 }
1987
1988 switch (FC_TYPE(fc)) {
1989 case T_MGMT:
1990 mgmt_header_print(ndo, p);
1991 break;
1992 case T_CTRL:
1993 ctrl_header_print(ndo, fc, p);
1994 break;
1995 case T_DATA:
1996 data_header_print(ndo, fc, p);
1997 break;
1998 default:
1999 break;
2000 }
2001 }
2002
2003 #ifndef roundup2
2004 #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */
2005 #endif
2006
2007 static const char tstr[] = "[|802.11]";
2008
2009 static u_int
2010 ieee802_11_print(netdissect_options *ndo,
2011 const u_char *p, u_int length, u_int orig_caplen, int pad,
2012 u_int fcslen)
2013 {
2014 uint16_t fc;
2015 u_int caplen, hdrlen, meshdrlen;
2016 struct lladdr_info src, dst;
2017 int llc_hdrlen;
2018
2019 ndo->ndo_protocol = "802.11";
2020 caplen = orig_caplen;
2021 /* Remove FCS, if present */
2022 if (length < fcslen) {
2023 ND_PRINT("%s", tstr);
2024 return caplen;
2025 }
2026 length -= fcslen;
2027 if (caplen > length) {
2028 /* Amount of FCS in actual packet data, if any */
2029 fcslen = caplen - length;
2030 caplen -= fcslen;
2031 ndo->ndo_snapend -= fcslen;
2032 }
2033
2034 if (caplen < IEEE802_11_FC_LEN) {
2035 ND_PRINT("%s", tstr);
2036 return orig_caplen;
2037 }
2038
2039 fc = EXTRACT_LE_U_2(p);
2040 hdrlen = extract_header_length(ndo, fc);
2041 if (hdrlen == 0) {
2042 /* Unknown frame type or control frame subtype; quit. */
2043 return (0);
2044 }
2045 if (pad)
2046 hdrlen = roundup2(hdrlen, 4);
2047 if (ndo->ndo_Hflag && FC_TYPE(fc) == T_DATA &&
2048 DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) {
2049 meshdrlen = extract_mesh_header_length(p+hdrlen);
2050 hdrlen += meshdrlen;
2051 } else
2052 meshdrlen = 0;
2053
2054 if (caplen < hdrlen) {
2055 ND_PRINT("%s", tstr);
2056 return hdrlen;
2057 }
2058
2059 if (ndo->ndo_eflag)
2060 ieee_802_11_hdr_print(ndo, fc, p, hdrlen, meshdrlen);
2061
2062 /*
2063 * Go past the 802.11 header.
2064 */
2065 length -= hdrlen;
2066 caplen -= hdrlen;
2067 p += hdrlen;
2068
2069 src.addr_string = etheraddr_string;
2070 dst.addr_string = etheraddr_string;
2071 switch (FC_TYPE(fc)) {
2072 case T_MGMT:
2073 get_mgmt_src_dst_mac(p - hdrlen, &src.addr, &dst.addr);
2074 if (!mgmt_body_print(ndo, fc, src.addr, p, length)) {
2075 ND_PRINT("%s", tstr);
2076 return hdrlen;
2077 }
2078 break;
2079 case T_CTRL:
2080 if (!ctrl_body_print(ndo, fc, p - hdrlen)) {
2081 ND_PRINT("%s", tstr);
2082 return hdrlen;
2083 }
2084 break;
2085 case T_DATA:
2086 if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc)))
2087 return hdrlen; /* no-data frame */
2088 /* There may be a problem w/ AP not having this bit set */
2089 if (FC_PROTECTED(fc)) {
2090 ND_PRINT("Data");
2091 if (!wep_print(ndo, p)) {
2092 ND_PRINT("%s", tstr);
2093 return hdrlen;
2094 }
2095 } else {
2096 get_data_src_dst_mac(fc, p - hdrlen, &src.addr, &dst.addr);
2097 llc_hdrlen = llc_print(ndo, p, length, caplen, &src, &dst);
2098 if (llc_hdrlen < 0) {
2099 /*
2100 * Some kinds of LLC packet we cannot
2101 * handle intelligently
2102 */
2103 if (!ndo->ndo_suppress_default_print)
2104 ND_DEFAULTPRINT(p, caplen);
2105 llc_hdrlen = -llc_hdrlen;
2106 }
2107 hdrlen += llc_hdrlen;
2108 }
2109 break;
2110 default:
2111 /* We shouldn't get here - we should already have quit */
2112 break;
2113 }
2114
2115 return hdrlen;
2116 }
2117
2118 /*
2119 * This is the top level routine of the printer. 'p' points
2120 * to the 802.11 header of the packet, 'h->ts' is the timestamp,
2121 * 'h->len' is the length of the packet off the wire, and 'h->caplen'
2122 * is the number of bytes actually captured.
2123 */
2124 u_int
2125 ieee802_11_if_print(netdissect_options *ndo,
2126 const struct pcap_pkthdr *h, const u_char *p)
2127 {
2128 ndo->ndo_protocol = "802.11_if";
2129 return ieee802_11_print(ndo, p, h->len, h->caplen, 0, 0);
2130 }
2131
2132
2133 /* $FreeBSD: src/sys/net80211/ieee80211_radiotap.h,v 1.5 2005/01/22 20:12:05 sam Exp $ */
2134 /* NetBSD: ieee802_11_radio.h,v 1.2 2006/02/26 03:04:03 dyoung Exp */
2135
2136 /*-
2137 * Copyright (c) 2003, 2004 David Young. All rights reserved.
2138 *
2139 * Redistribution and use in source and binary forms, with or without
2140 * modification, are permitted provided that the following conditions
2141 * are met:
2142 * 1. Redistributions of source code must retain the above copyright
2143 * notice, this list of conditions and the following disclaimer.
2144 * 2. Redistributions in binary form must reproduce the above copyright
2145 * notice, this list of conditions and the following disclaimer in the
2146 * documentation and/or other materials provided with the distribution.
2147 * 3. The name of David Young may not be used to endorse or promote
2148 * products derived from this software without specific prior
2149 * written permission.
2150 *
2151 * THIS SOFTWARE IS PROVIDED BY DAVID YOUNG ``AS IS'' AND ANY
2152 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
2153 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
2154 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DAVID
2155 * YOUNG BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
2156 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
2157 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2158 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2159 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2160 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2161 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
2162 * OF SUCH DAMAGE.
2163 */
2164
2165 /* A generic radio capture format is desirable. It must be
2166 * rigidly defined (e.g., units for fields should be given),
2167 * and easily extensible.
2168 *
2169 * The following is an extensible radio capture format. It is
2170 * based on a bitmap indicating which fields are present.
2171 *
2172 * I am trying to describe precisely what the application programmer
2173 * should expect in the following, and for that reason I tell the
2174 * units and origin of each measurement (where it applies), or else I
2175 * use sufficiently weaselly language ("is a monotonically nondecreasing
2176 * function of...") that I cannot set false expectations for lawyerly
2177 * readers.
2178 */
2179
2180 /*
2181 * The radio capture header precedes the 802.11 header.
2182 *
2183 * Note well: all radiotap fields are little-endian.
2184 */
2185 struct ieee80211_radiotap_header {
2186 nd_uint8_t it_version; /* Version 0. Only increases
2187 * for drastic changes,
2188 * introduction of compatible
2189 * new fields does not count.
2190 */
2191 nd_uint8_t it_pad;
2192 nd_uint16_t it_len; /* length of the whole
2193 * header in bytes, including
2194 * it_version, it_pad,
2195 * it_len, and data fields.
2196 */
2197 nd_uint32_t it_present; /* A bitmap telling which
2198 * fields are present. Set bit 31
2199 * (0x80000000) to extend the
2200 * bitmap by another 32 bits.
2201 * Additional extensions are made
2202 * by setting bit 31.
2203 */
2204 };
2205
2206 /* Name Data type Units
2207 * ---- --------- -----
2208 *
2209 * IEEE80211_RADIOTAP_TSFT uint64_t microseconds
2210 *
2211 * Value in microseconds of the MAC's 64-bit 802.11 Time
2212 * Synchronization Function timer when the first bit of the
2213 * MPDU arrived at the MAC. For received frames, only.
2214 *
2215 * IEEE80211_RADIOTAP_CHANNEL 2 x uint16_t MHz, bitmap
2216 *
2217 * Tx/Rx frequency in MHz, followed by flags (see below).
2218 * Note that IEEE80211_RADIOTAP_XCHANNEL must be used to
2219 * represent an HT channel as there is not enough room in
2220 * the flags word.
2221 *
2222 * IEEE80211_RADIOTAP_FHSS uint16_t see below
2223 *
2224 * For frequency-hopping radios, the hop set (first byte)
2225 * and pattern (second byte).
2226 *
2227 * IEEE80211_RADIOTAP_RATE uint8_t 500kb/s or index
2228 *
2229 * Tx/Rx data rate. If bit 0x80 is set then it represents an
2230 * an MCS index and not an IEEE rate.
2231 *
2232 * IEEE80211_RADIOTAP_DBM_ANTSIGNAL int8_t decibels from
2233 * one milliwatt (dBm)
2234 *
2235 * RF signal power at the antenna, decibel difference from
2236 * one milliwatt.
2237 *
2238 * IEEE80211_RADIOTAP_DBM_ANTNOISE int8_t decibels from
2239 * one milliwatt (dBm)
2240 *
2241 * RF noise power at the antenna, decibel difference from one
2242 * milliwatt.
2243 *
2244 * IEEE80211_RADIOTAP_DB_ANTSIGNAL uint8_t decibel (dB)
2245 *
2246 * RF signal power at the antenna, decibel difference from an
2247 * arbitrary, fixed reference.
2248 *
2249 * IEEE80211_RADIOTAP_DB_ANTNOISE uint8_t decibel (dB)
2250 *
2251 * RF noise power at the antenna, decibel difference from an
2252 * arbitrary, fixed reference point.
2253 *
2254 * IEEE80211_RADIOTAP_LOCK_QUALITY uint16_t unitless
2255 *
2256 * Quality of Barker code lock. Unitless. Monotonically
2257 * nondecreasing with "better" lock strength. Called "Signal
2258 * Quality" in datasheets. (Is there a standard way to measure
2259 * this?)
2260 *
2261 * IEEE80211_RADIOTAP_TX_ATTENUATION uint16_t unitless
2262 *
2263 * Transmit power expressed as unitless distance from max
2264 * power set at factory calibration. 0 is max power.
2265 * Monotonically nondecreasing with lower power levels.
2266 *
2267 * IEEE80211_RADIOTAP_DB_TX_ATTENUATION uint16_t decibels (dB)
2268 *
2269 * Transmit power expressed as decibel distance from max power
2270 * set at factory calibration. 0 is max power. Monotonically
2271 * nondecreasing with lower power levels.
2272 *
2273 * IEEE80211_RADIOTAP_DBM_TX_POWER int8_t decibels from
2274 * one milliwatt (dBm)
2275 *
2276 * Transmit power expressed as dBm (decibels from a 1 milliwatt
2277 * reference). This is the absolute power level measured at
2278 * the antenna port.
2279 *
2280 * IEEE80211_RADIOTAP_FLAGS uint8_t bitmap
2281 *
2282 * Properties of transmitted and received frames. See flags
2283 * defined below.
2284 *
2285 * IEEE80211_RADIOTAP_ANTENNA uint8_t antenna index
2286 *
2287 * Unitless indication of the Rx/Tx antenna for this packet.
2288 * The first antenna is antenna 0.
2289 *
2290 * IEEE80211_RADIOTAP_RX_FLAGS uint16_t bitmap
2291 *
2292 * Properties of received frames. See flags defined below.
2293 *
2294 * IEEE80211_RADIOTAP_XCHANNEL uint32_t bitmap
2295 * uint16_t MHz
2296 * uint8_t channel number
2297 * uint8_t .5 dBm
2298 *
2299 * Extended channel specification: flags (see below) followed by
2300 * frequency in MHz, the corresponding IEEE channel number, and
2301 * finally the maximum regulatory transmit power cap in .5 dBm
2302 * units. This property supersedes IEEE80211_RADIOTAP_CHANNEL
2303 * and only one of the two should be present.
2304 *
2305 * IEEE80211_RADIOTAP_MCS uint8_t known
2306 * uint8_t flags
2307 * uint8_t mcs
2308 *
2309 * Bitset indicating which fields have known values, followed
2310 * by bitset of flag values, followed by the MCS rate index as
2311 * in IEEE 802.11n.
2312 *
2313 *
2314 * IEEE80211_RADIOTAP_AMPDU_STATUS u32, u16, u8, u8 unitless
2315 *
2316 * Contains the AMPDU information for the subframe.
2317 *
2318 * IEEE80211_RADIOTAP_VHT u16, u8, u8, u8[4], u8, u8, u16
2319 *
2320 * Contains VHT information about this frame.
2321 *
2322 * IEEE80211_RADIOTAP_VENDOR_NAMESPACE
2323 * uint8_t OUI[3]
2324 * uint8_t subspace
2325 * uint16_t length
2326 *
2327 * The Vendor Namespace Field contains three sub-fields. The first
2328 * sub-field is 3 bytes long. It contains the vendor's IEEE 802
2329 * Organizationally Unique Identifier (OUI). The fourth byte is a
2330 * vendor-specific "namespace selector."
2331 *
2332 */
2333 enum ieee80211_radiotap_type {
2334 IEEE80211_RADIOTAP_TSFT = 0,
2335 IEEE80211_RADIOTAP_FLAGS = 1,
2336 IEEE80211_RADIOTAP_RATE = 2,
2337 IEEE80211_RADIOTAP_CHANNEL = 3,
2338 IEEE80211_RADIOTAP_FHSS = 4,
2339 IEEE80211_RADIOTAP_DBM_ANTSIGNAL = 5,
2340 IEEE80211_RADIOTAP_DBM_ANTNOISE = 6,
2341 IEEE80211_RADIOTAP_LOCK_QUALITY = 7,
2342 IEEE80211_RADIOTAP_TX_ATTENUATION = 8,
2343 IEEE80211_RADIOTAP_DB_TX_ATTENUATION = 9,
2344 IEEE80211_RADIOTAP_DBM_TX_POWER = 10,
2345 IEEE80211_RADIOTAP_ANTENNA = 11,
2346 IEEE80211_RADIOTAP_DB_ANTSIGNAL = 12,
2347 IEEE80211_RADIOTAP_DB_ANTNOISE = 13,
2348 IEEE80211_RADIOTAP_RX_FLAGS = 14,
2349 /* NB: gap for netbsd definitions */
2350 IEEE80211_RADIOTAP_XCHANNEL = 18,
2351 IEEE80211_RADIOTAP_MCS = 19,
2352 IEEE80211_RADIOTAP_AMPDU_STATUS = 20,
2353 IEEE80211_RADIOTAP_VHT = 21,
2354 IEEE80211_RADIOTAP_NAMESPACE = 29,
2355 IEEE80211_RADIOTAP_VENDOR_NAMESPACE = 30,
2356 IEEE80211_RADIOTAP_EXT = 31
2357 };
2358
2359 /* channel attributes */
2360 #define IEEE80211_CHAN_TURBO 0x00010 /* Turbo channel */
2361 #define IEEE80211_CHAN_CCK 0x00020 /* CCK channel */
2362 #define IEEE80211_CHAN_OFDM 0x00040 /* OFDM channel */
2363 #define IEEE80211_CHAN_2GHZ 0x00080 /* 2 GHz spectrum channel. */
2364 #define IEEE80211_CHAN_5GHZ 0x00100 /* 5 GHz spectrum channel */
2365 #define IEEE80211_CHAN_PASSIVE 0x00200 /* Only passive scan allowed */
2366 #define IEEE80211_CHAN_DYN 0x00400 /* Dynamic CCK-OFDM channel */
2367 #define IEEE80211_CHAN_GFSK 0x00800 /* GFSK channel (FHSS PHY) */
2368 #define IEEE80211_CHAN_GSM 0x01000 /* 900 MHz spectrum channel */
2369 #define IEEE80211_CHAN_STURBO 0x02000 /* 11a static turbo channel only */
2370 #define IEEE80211_CHAN_HALF 0x04000 /* Half rate channel */
2371 #define IEEE80211_CHAN_QUARTER 0x08000 /* Quarter rate channel */
2372 #define IEEE80211_CHAN_HT20 0x10000 /* HT 20 channel */
2373 #define IEEE80211_CHAN_HT40U 0x20000 /* HT 40 channel w/ ext above */
2374 #define IEEE80211_CHAN_HT40D 0x40000 /* HT 40 channel w/ ext below */
2375
2376 /* Useful combinations of channel characteristics, borrowed from Ethereal */
2377 #define IEEE80211_CHAN_A \
2378 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2379 #define IEEE80211_CHAN_B \
2380 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
2381 #define IEEE80211_CHAN_G \
2382 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
2383 #define IEEE80211_CHAN_TA \
2384 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_TURBO)
2385 #define IEEE80211_CHAN_TG \
2386 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN | IEEE80211_CHAN_TURBO)
2387
2388
2389 /* For IEEE80211_RADIOTAP_FLAGS */
2390 #define IEEE80211_RADIOTAP_F_CFP 0x01 /* sent/received
2391 * during CFP
2392 */
2393 #define IEEE80211_RADIOTAP_F_SHORTPRE 0x02 /* sent/received
2394 * with short
2395 * preamble
2396 */
2397 #define IEEE80211_RADIOTAP_F_WEP 0x04 /* sent/received
2398 * with WEP encryption
2399 */
2400 #define IEEE80211_RADIOTAP_F_FRAG 0x08 /* sent/received
2401 * with fragmentation
2402 */
2403 #define IEEE80211_RADIOTAP_F_FCS 0x10 /* frame includes FCS */
2404 #define IEEE80211_RADIOTAP_F_DATAPAD 0x20 /* frame has padding between
2405 * 802.11 header and payload
2406 * (to 32-bit boundary)
2407 */
2408 #define IEEE80211_RADIOTAP_F_BADFCS 0x40 /* does not pass FCS check */
2409
2410 /* For IEEE80211_RADIOTAP_RX_FLAGS */
2411 #define IEEE80211_RADIOTAP_F_RX_BADFCS 0x0001 /* frame failed crc check */
2412 #define IEEE80211_RADIOTAP_F_RX_PLCP_CRC 0x0002 /* frame failed PLCP CRC check */
2413
2414 /* For IEEE80211_RADIOTAP_MCS known */
2415 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN 0x01
2416 #define IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN 0x02 /* MCS index field */
2417 #define IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN 0x04
2418 #define IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN 0x08
2419 #define IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN 0x10
2420 #define IEEE80211_RADIOTAP_MCS_STBC_KNOWN 0x20
2421 #define IEEE80211_RADIOTAP_MCS_NESS_KNOWN 0x40
2422 #define IEEE80211_RADIOTAP_MCS_NESS_BIT_1 0x80
2423
2424 /* For IEEE80211_RADIOTAP_MCS flags */
2425 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK 0x03
2426 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20 0
2427 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 1
2428 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20L 2
2429 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20U 3
2430 #define IEEE80211_RADIOTAP_MCS_SHORT_GI 0x04 /* short guard interval */
2431 #define IEEE80211_RADIOTAP_MCS_HT_GREENFIELD 0x08
2432 #define IEEE80211_RADIOTAP_MCS_FEC_LDPC 0x10
2433 #define IEEE80211_RADIOTAP_MCS_STBC_MASK 0x60
2434 #define IEEE80211_RADIOTAP_MCS_STBC_1 1
2435 #define IEEE80211_RADIOTAP_MCS_STBC_2 2
2436 #define IEEE80211_RADIOTAP_MCS_STBC_3 3
2437 #define IEEE80211_RADIOTAP_MCS_STBC_SHIFT 5
2438 #define IEEE80211_RADIOTAP_MCS_NESS_BIT_0 0x80
2439
2440 /* For IEEE80211_RADIOTAP_AMPDU_STATUS */
2441 #define IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN 0x0001
2442 #define IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN 0x0002
2443 #define IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN 0x0004
2444 #define IEEE80211_RADIOTAP_AMPDU_IS_LAST 0x0008
2445 #define IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR 0x0010
2446 #define IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN 0x0020
2447
2448 /* For IEEE80211_RADIOTAP_VHT known */
2449 #define IEEE80211_RADIOTAP_VHT_STBC_KNOWN 0x0001
2450 #define IEEE80211_RADIOTAP_VHT_TXOP_PS_NA_KNOWN 0x0002
2451 #define IEEE80211_RADIOTAP_VHT_GUARD_INTERVAL_KNOWN 0x0004
2452 #define IEEE80211_RADIOTAP_VHT_SGI_NSYM_DIS_KNOWN 0x0008
2453 #define IEEE80211_RADIOTAP_VHT_LDPC_EXTRA_OFDM_SYM_KNOWN 0x0010
2454 #define IEEE80211_RADIOTAP_VHT_BEAMFORMED_KNOWN 0x0020
2455 #define IEEE80211_RADIOTAP_VHT_BANDWIDTH_KNOWN 0x0040
2456 #define IEEE80211_RADIOTAP_VHT_GROUP_ID_KNOWN 0x0080
2457 #define IEEE80211_RADIOTAP_VHT_PARTIAL_AID_KNOWN 0x0100
2458
2459 /* For IEEE80211_RADIOTAP_VHT flags */
2460 #define IEEE80211_RADIOTAP_VHT_STBC 0x01
2461 #define IEEE80211_RADIOTAP_VHT_TXOP_PS_NA 0x02
2462 #define IEEE80211_RADIOTAP_VHT_SHORT_GI 0x04
2463 #define IEEE80211_RADIOTAP_VHT_SGI_NSYM_M10_9 0x08
2464 #define IEEE80211_RADIOTAP_VHT_LDPC_EXTRA_OFDM_SYM 0x10
2465 #define IEEE80211_RADIOTAP_VHT_BEAMFORMED 0x20
2466
2467 #define IEEE80211_RADIOTAP_VHT_BANDWIDTH_MASK 0x1f
2468
2469 #define IEEE80211_RADIOTAP_VHT_NSS_MASK 0x0f
2470 #define IEEE80211_RADIOTAP_VHT_MCS_MASK 0xf0
2471 #define IEEE80211_RADIOTAP_VHT_MCS_SHIFT 4
2472
2473 #define IEEE80211_RADIOTAP_CODING_LDPC_USERn 0x01
2474
2475 #define IEEE80211_CHAN_FHSS \
2476 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
2477 #define IEEE80211_CHAN_A \
2478 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2479 #define IEEE80211_CHAN_B \
2480 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
2481 #define IEEE80211_CHAN_PUREG \
2482 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
2483 #define IEEE80211_CHAN_G \
2484 (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
2485
2486 #define IS_CHAN_FHSS(flags) \
2487 ((flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS)
2488 #define IS_CHAN_A(flags) \
2489 ((flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)
2490 #define IS_CHAN_B(flags) \
2491 ((flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)
2492 #define IS_CHAN_PUREG(flags) \
2493 ((flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG)
2494 #define IS_CHAN_G(flags) \
2495 ((flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)
2496 #define IS_CHAN_ANYG(flags) \
2497 (IS_CHAN_PUREG(flags) || IS_CHAN_G(flags))
2498
2499 static void
2500 print_chaninfo(netdissect_options *ndo,
2501 uint16_t freq, int flags, int presentflags)
2502 {
2503 ND_PRINT("%u MHz", freq);
2504 if (presentflags & (1 << IEEE80211_RADIOTAP_MCS)) {
2505 /*
2506 * We have the MCS field, so this is 11n, regardless
2507 * of what the channel flags say.
2508 */
2509 ND_PRINT(" 11n");
2510 } else {
2511 if (IS_CHAN_FHSS(flags))
2512 ND_PRINT(" FHSS");
2513 if (IS_CHAN_A(flags)) {
2514 if (flags & IEEE80211_CHAN_HALF)
2515 ND_PRINT(" 11a/10Mhz");
2516 else if (flags & IEEE80211_CHAN_QUARTER)
2517 ND_PRINT(" 11a/5Mhz");
2518 else
2519 ND_PRINT(" 11a");
2520 }
2521 if (IS_CHAN_ANYG(flags)) {
2522 if (flags & IEEE80211_CHAN_HALF)
2523 ND_PRINT(" 11g/10Mhz");
2524 else if (flags & IEEE80211_CHAN_QUARTER)
2525 ND_PRINT(" 11g/5Mhz");
2526 else
2527 ND_PRINT(" 11g");
2528 } else if (IS_CHAN_B(flags))
2529 ND_PRINT(" 11b");
2530 if (flags & IEEE80211_CHAN_TURBO)
2531 ND_PRINT(" Turbo");
2532 }
2533 /*
2534 * These apply to 11n.
2535 */
2536 if (flags & IEEE80211_CHAN_HT20)
2537 ND_PRINT(" ht/20");
2538 else if (flags & IEEE80211_CHAN_HT40D)
2539 ND_PRINT(" ht/40-");
2540 else if (flags & IEEE80211_CHAN_HT40U)
2541 ND_PRINT(" ht/40+");
2542 ND_PRINT(" ");
2543 }
2544
2545 static int
2546 print_radiotap_field(netdissect_options *ndo,
2547 struct cpack_state *s, uint32_t bit, uint8_t *flagsp,
2548 uint32_t presentflags)
2549 {
2550 u_int i;
2551 int rc;
2552
2553 switch (bit) {
2554
2555 case IEEE80211_RADIOTAP_TSFT: {
2556 uint64_t tsft;
2557
2558 rc = cpack_uint64(s, &tsft);
2559 if (rc != 0)
2560 goto trunc;
2561 ND_PRINT("%" PRIu64 "us tsft ", tsft);
2562 break;
2563 }
2564
2565 case IEEE80211_RADIOTAP_FLAGS: {
2566 uint8_t flagsval;
2567
2568 rc = cpack_uint8(s, &flagsval);
2569 if (rc != 0)
2570 goto trunc;
2571 *flagsp = flagsval;
2572 if (flagsval & IEEE80211_RADIOTAP_F_CFP)
2573 ND_PRINT("cfp ");
2574 if (flagsval & IEEE80211_RADIOTAP_F_SHORTPRE)
2575 ND_PRINT("short preamble ");
2576 if (flagsval & IEEE80211_RADIOTAP_F_WEP)
2577 ND_PRINT("wep ");
2578 if (flagsval & IEEE80211_RADIOTAP_F_FRAG)
2579 ND_PRINT("fragmented ");
2580 if (flagsval & IEEE80211_RADIOTAP_F_BADFCS)
2581 ND_PRINT("bad-fcs ");
2582 break;
2583 }
2584
2585 case IEEE80211_RADIOTAP_RATE: {
2586 uint8_t rate;
2587
2588 rc = cpack_uint8(s, &rate);
2589 if (rc != 0)
2590 goto trunc;
2591 /*
2592 * XXX On FreeBSD rate & 0x80 means we have an MCS. On
2593 * Linux and AirPcap it does not. (What about
2594 * macOS, NetBSD, OpenBSD, and DragonFly BSD?)
2595 *
2596 * This is an issue either for proprietary extensions
2597 * to 11a or 11g, which do exist, or for 11n
2598 * implementations that stuff a rate value into
2599 * this field, which also appear to exist.
2600 *
2601 * We currently handle that by assuming that
2602 * if the 0x80 bit is set *and* the remaining
2603 * bits have a value between 0 and 15 it's
2604 * an MCS value, otherwise it's a rate. If
2605 * there are cases where systems that use
2606 * "0x80 + MCS index" for MCS indices > 15,
2607 * or stuff a rate value here between 64 and
2608 * 71.5 Mb/s in here, we'll need a preference
2609 * setting. Such rates do exist, e.g. 11n
2610 * MCS 7 at 20 MHz with a long guard interval.
2611 */
2612 if (rate >= 0x80 && rate <= 0x8f) {
2613 /*
2614 * XXX - we don't know the channel width
2615 * or guard interval length, so we can't
2616 * convert this to a data rate.
2617 *
2618 * If you want us to show a data rate,
2619 * use the MCS field, not the Rate field;
2620 * the MCS field includes not only the
2621 * MCS index, it also includes bandwidth
2622 * and guard interval information.
2623 *
2624 * XXX - can we get the channel width
2625 * from XChannel and the guard interval
2626 * information from Flags, at least on
2627 * FreeBSD?
2628 */
2629 ND_PRINT("MCS %u ", rate & 0x7f);
2630 } else
2631 ND_PRINT("%2.1f Mb/s ", .5 * rate);
2632 break;
2633 }
2634
2635 case IEEE80211_RADIOTAP_CHANNEL: {
2636 uint16_t frequency;
2637 uint16_t flags;
2638
2639 rc = cpack_uint16(s, &frequency);
2640 if (rc != 0)
2641 goto trunc;
2642 rc = cpack_uint16(s, &flags);
2643 if (rc != 0)
2644 goto trunc;
2645 /*
2646 * If CHANNEL and XCHANNEL are both present, skip
2647 * CHANNEL.
2648 */
2649 if (presentflags & (1 << IEEE80211_RADIOTAP_XCHANNEL))
2650 break;
2651 print_chaninfo(ndo, frequency, flags, presentflags);
2652 break;
2653 }
2654
2655 case IEEE80211_RADIOTAP_FHSS: {
2656 uint8_t hopset;
2657 uint8_t hoppat;
2658
2659 rc = cpack_uint8(s, &hopset);
2660 if (rc != 0)
2661 goto trunc;
2662 rc = cpack_uint8(s, &hoppat);
2663 if (rc != 0)
2664 goto trunc;
2665 ND_PRINT("fhset %u fhpat %u ", hopset, hoppat);
2666 break;
2667 }
2668
2669 case IEEE80211_RADIOTAP_DBM_ANTSIGNAL: {
2670 int8_t dbm_antsignal;
2671
2672 rc = cpack_int8(s, &dbm_antsignal);
2673 if (rc != 0)
2674 goto trunc;
2675 ND_PRINT("%ddBm signal ", dbm_antsignal);
2676 break;
2677 }
2678
2679 case IEEE80211_RADIOTAP_DBM_ANTNOISE: {
2680 int8_t dbm_antnoise;
2681
2682 rc = cpack_int8(s, &dbm_antnoise);
2683 if (rc != 0)
2684 goto trunc;
2685 ND_PRINT("%ddBm noise ", dbm_antnoise);
2686 break;
2687 }
2688
2689 case IEEE80211_RADIOTAP_LOCK_QUALITY: {
2690 uint16_t lock_quality;
2691
2692 rc = cpack_uint16(s, &lock_quality);
2693 if (rc != 0)
2694 goto trunc;
2695 ND_PRINT("%u sq ", lock_quality);
2696 break;
2697 }
2698
2699 case IEEE80211_RADIOTAP_TX_ATTENUATION: {
2700 int16_t tx_attenuation;
2701
2702 rc = cpack_int16(s, &tx_attenuation);
2703 if (rc != 0)
2704 goto trunc;
2705 ND_PRINT("%d tx power ", -tx_attenuation);
2706 break;
2707 }
2708
2709 case IEEE80211_RADIOTAP_DB_TX_ATTENUATION: {
2710 int8_t db_tx_attenuation;
2711
2712 rc = cpack_int8(s, &db_tx_attenuation);
2713 if (rc != 0)
2714 goto trunc;
2715 ND_PRINT("%ddB tx attenuation ", -db_tx_attenuation);
2716 break;
2717 }
2718
2719 case IEEE80211_RADIOTAP_DBM_TX_POWER: {
2720 int8_t dbm_tx_power;
2721
2722 rc = cpack_int8(s, &dbm_tx_power);
2723 if (rc != 0)
2724 goto trunc;
2725 ND_PRINT("%ddBm tx power ", dbm_tx_power);
2726 break;
2727 }
2728
2729 case IEEE80211_RADIOTAP_ANTENNA: {
2730 uint8_t antenna;
2731
2732 rc = cpack_uint8(s, &antenna);
2733 if (rc != 0)
2734 goto trunc;
2735 ND_PRINT("antenna %u ", antenna);
2736 break;
2737 }
2738
2739 case IEEE80211_RADIOTAP_DB_ANTSIGNAL: {
2740 uint8_t db_antsignal;
2741
2742 rc = cpack_uint8(s, &db_antsignal);
2743 if (rc != 0)
2744 goto trunc;
2745 ND_PRINT("%udB signal ", db_antsignal);
2746 break;
2747 }
2748
2749 case IEEE80211_RADIOTAP_DB_ANTNOISE: {
2750 uint8_t db_antnoise;
2751
2752 rc = cpack_uint8(s, &db_antnoise);
2753 if (rc != 0)
2754 goto trunc;
2755 ND_PRINT("%udB noise ", db_antnoise);
2756 break;
2757 }
2758
2759 case IEEE80211_RADIOTAP_RX_FLAGS: {
2760 uint16_t rx_flags;
2761
2762 rc = cpack_uint16(s, &rx_flags);
2763 if (rc != 0)
2764 goto trunc;
2765 /* Do nothing for now */
2766 break;
2767 }
2768
2769 case IEEE80211_RADIOTAP_XCHANNEL: {
2770 uint32_t flags;
2771 uint16_t frequency;
2772 uint8_t channel;
2773 uint8_t maxpower;
2774
2775 rc = cpack_uint32(s, &flags);
2776 if (rc != 0)
2777 goto trunc;
2778 rc = cpack_uint16(s, &frequency);
2779 if (rc != 0)
2780 goto trunc;
2781 rc = cpack_uint8(s, &channel);
2782 if (rc != 0)
2783 goto trunc;
2784 rc = cpack_uint8(s, &maxpower);
2785 if (rc != 0)
2786 goto trunc;
2787 print_chaninfo(ndo, frequency, flags, presentflags);
2788 break;
2789 }
2790
2791 case IEEE80211_RADIOTAP_MCS: {
2792 uint8_t known;
2793 uint8_t flags;
2794 uint8_t mcs_index;
2795 static const char *ht_bandwidth[4] = {
2796 "20 MHz",
2797 "40 MHz",
2798 "20 MHz (L)",
2799 "20 MHz (U)"
2800 };
2801 float htrate;
2802
2803 rc = cpack_uint8(s, &known);
2804 if (rc != 0)
2805 goto trunc;
2806 rc = cpack_uint8(s, &flags);
2807 if (rc != 0)
2808 goto trunc;
2809 rc = cpack_uint8(s, &mcs_index);
2810 if (rc != 0)
2811 goto trunc;
2812 if (known & IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN) {
2813 /*
2814 * We know the MCS index.
2815 */
2816 if (mcs_index <= MAX_MCS_INDEX) {
2817 /*
2818 * And it's in-range.
2819 */
2820 if (known & (IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN|IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN)) {
2821 /*
2822 * And we know both the bandwidth and
2823 * the guard interval, so we can look
2824 * up the rate.
2825 */
2826 htrate =
2827 ieee80211_float_htrates
2828 [mcs_index]
2829 [((flags & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK) == IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 ? 1 : 0)]
2830 [((flags & IEEE80211_RADIOTAP_MCS_SHORT_GI) ? 1 : 0)];
2831 } else {
2832 /*
2833 * We don't know both the bandwidth
2834 * and the guard interval, so we can
2835 * only report the MCS index.
2836 */
2837 htrate = 0.0;
2838 }
2839 } else {
2840 /*
2841 * The MCS value is out of range.
2842 */
2843 htrate = 0.0;
2844 }
2845 if (htrate != 0.0) {
2846 /*
2847 * We have the rate.
2848 * Print it.
2849 */
2850 ND_PRINT("%.1f Mb/s MCS %u ", htrate, mcs_index);
2851 } else {
2852 /*
2853 * We at least have the MCS index.
2854 * Print it.
2855 */
2856 ND_PRINT("MCS %u ", mcs_index);
2857 }
2858 }
2859 if (known & IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN) {
2860 ND_PRINT("%s ",
2861 ht_bandwidth[flags & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK]);
2862 }
2863 if (known & IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN) {
2864 ND_PRINT("%s GI ",
2865 (flags & IEEE80211_RADIOTAP_MCS_SHORT_GI) ?
2866 "short" : "long");
2867 }
2868 if (known & IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN) {
2869 ND_PRINT("%s ",
2870 (flags & IEEE80211_RADIOTAP_MCS_HT_GREENFIELD) ?
2871 "greenfield" : "mixed");
2872 }
2873 if (known & IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN) {
2874 ND_PRINT("%s FEC ",
2875 (flags & IEEE80211_RADIOTAP_MCS_FEC_LDPC) ?
2876 "LDPC" : "BCC");
2877 }
2878 if (known & IEEE80211_RADIOTAP_MCS_STBC_KNOWN) {
2879 ND_PRINT("RX-STBC%u ",
2880 (flags & IEEE80211_RADIOTAP_MCS_STBC_MASK) >> IEEE80211_RADIOTAP_MCS_STBC_SHIFT);
2881 }
2882 break;
2883 }
2884
2885 case IEEE80211_RADIOTAP_AMPDU_STATUS: {
2886 uint32_t reference_num;
2887 uint16_t flags;
2888 uint8_t delim_crc;
2889 uint8_t reserved;
2890
2891 rc = cpack_uint32(s, &reference_num);
2892 if (rc != 0)
2893 goto trunc;
2894 rc = cpack_uint16(s, &flags);
2895 if (rc != 0)
2896 goto trunc;
2897 rc = cpack_uint8(s, &delim_crc);
2898 if (rc != 0)
2899 goto trunc;
2900 rc = cpack_uint8(s, &reserved);
2901 if (rc != 0)
2902 goto trunc;
2903 /* Do nothing for now */
2904 break;
2905 }
2906
2907 case IEEE80211_RADIOTAP_VHT: {
2908 uint16_t known;
2909 uint8_t flags;
2910 uint8_t bandwidth;
2911 uint8_t mcs_nss[4];
2912 uint8_t coding;
2913 uint8_t group_id;
2914 uint16_t partial_aid;
2915 static const char *vht_bandwidth[32] = {
2916 "20 MHz",
2917 "40 MHz",
2918 "20 MHz (L)",
2919 "20 MHz (U)",
2920 "80 MHz",
2921 "80 MHz (L)",
2922 "80 MHz (U)",
2923 "80 MHz (LL)",
2924 "80 MHz (LU)",
2925 "80 MHz (UL)",
2926 "80 MHz (UU)",
2927 "160 MHz",
2928 "160 MHz (L)",
2929 "160 MHz (U)",
2930 "160 MHz (LL)",
2931 "160 MHz (LU)",
2932 "160 MHz (UL)",
2933 "160 MHz (UU)",
2934 "160 MHz (LLL)",
2935 "160 MHz (LLU)",
2936 "160 MHz (LUL)",
2937 "160 MHz (UUU)",
2938 "160 MHz (ULL)",
2939 "160 MHz (ULU)",
2940 "160 MHz (UUL)",
2941 "160 MHz (UUU)",
2942 "unknown (26)",
2943 "unknown (27)",
2944 "unknown (28)",
2945 "unknown (29)",
2946 "unknown (30)",
2947 "unknown (31)"
2948 };
2949
2950 rc = cpack_uint16(s, &known);
2951 if (rc != 0)
2952 goto trunc;
2953 rc = cpack_uint8(s, &flags);
2954 if (rc != 0)
2955 goto trunc;
2956 rc = cpack_uint8(s, &bandwidth);
2957 if (rc != 0)
2958 goto trunc;
2959 for (i = 0; i < 4; i++) {
2960 rc = cpack_uint8(s, &mcs_nss[i]);
2961 if (rc != 0)
2962 goto trunc;
2963 }
2964 rc = cpack_uint8(s, &coding);
2965 if (rc != 0)
2966 goto trunc;
2967 rc = cpack_uint8(s, &group_id);
2968 if (rc != 0)
2969 goto trunc;
2970 rc = cpack_uint16(s, &partial_aid);
2971 if (rc != 0)
2972 goto trunc;
2973 for (i = 0; i < 4; i++) {
2974 u_int nss, mcs;
2975 nss = mcs_nss[i] & IEEE80211_RADIOTAP_VHT_NSS_MASK;
2976 mcs = (mcs_nss[i] & IEEE80211_RADIOTAP_VHT_MCS_MASK) >> IEEE80211_RADIOTAP_VHT_MCS_SHIFT;
2977
2978 if (nss == 0)
2979 continue;
2980
2981 ND_PRINT("User %u MCS %u ", i, mcs);
2982 ND_PRINT("%s FEC ",
2983 (coding & (IEEE80211_RADIOTAP_CODING_LDPC_USERn << i)) ?
2984 "LDPC" : "BCC");
2985 }
2986 if (known & IEEE80211_RADIOTAP_VHT_BANDWIDTH_KNOWN) {
2987 ND_PRINT("%s ",
2988 vht_bandwidth[bandwidth & IEEE80211_RADIOTAP_VHT_BANDWIDTH_MASK]);
2989 }
2990 if (known & IEEE80211_RADIOTAP_VHT_GUARD_INTERVAL_KNOWN) {
2991 ND_PRINT("%s GI ",
2992 (flags & IEEE80211_RADIOTAP_VHT_SHORT_GI) ?
2993 "short" : "long");
2994 }
2995 break;
2996 }
2997
2998 default:
2999 /* this bit indicates a field whose
3000 * size we do not know, so we cannot
3001 * proceed. Just print the bit number.
3002 */
3003 ND_PRINT("[bit %u] ", bit);
3004 return -1;
3005 }
3006
3007 return 0;
3008
3009 trunc:
3010 ND_PRINT("%s", tstr);
3011 return rc;
3012 }
3013
3014
3015 static int
3016 print_in_radiotap_namespace(netdissect_options *ndo,
3017 struct cpack_state *s, uint8_t *flags,
3018 uint32_t presentflags, int bit0)
3019 {
3020 #define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
3021 #define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
3022 #define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
3023 #define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
3024 #define BITNO_2(x) (((x) & 2) ? 1 : 0)
3025 uint32_t present, next_present;
3026 int bitno;
3027 enum ieee80211_radiotap_type bit;
3028 int rc;
3029
3030 for (present = presentflags; present; present = next_present) {
3031 /*
3032 * Clear the least significant bit that is set.
3033 */
3034 next_present = present & (present - 1);
3035
3036 /*
3037 * Get the bit number, within this presence word,
3038 * of the remaining least significant bit that
3039 * is set.
3040 */
3041 bitno = BITNO_32(present ^ next_present);
3042
3043 /*
3044 * Stop if this is one of the "same meaning
3045 * in all presence flags" bits.
3046 */
3047 if (bitno >= IEEE80211_RADIOTAP_NAMESPACE)
3048 break;
3049
3050 /*
3051 * Get the radiotap bit number of that bit.
3052 */
3053 bit = (enum ieee80211_radiotap_type)(bit0 + bitno);
3054
3055 rc = print_radiotap_field(ndo, s, bit, flags, presentflags);
3056 if (rc != 0)
3057 return rc;
3058 }
3059
3060 return 0;
3061 }
3062
3063 static u_int
3064 ieee802_11_radio_print(netdissect_options *ndo,
3065 const u_char *p, u_int length, u_int caplen)
3066 {
3067 #define BIT(n) (1U << n)
3068 #define IS_EXTENDED(__p) \
3069 (EXTRACT_LE_U_4(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0
3070
3071 struct cpack_state cpacker;
3072 const struct ieee80211_radiotap_header *hdr;
3073 uint32_t presentflags;
3074 const nd_uint32_t *presentp, *last_presentp;
3075 int vendor_namespace;
3076 uint8_t vendor_oui[3];
3077 uint8_t vendor_subnamespace;
3078 uint16_t skip_length;
3079 int bit0;
3080 u_int len;
3081 uint8_t flags;
3082 int pad;
3083 u_int fcslen;
3084
3085 ndo->ndo_protocol = "802.11_radio";
3086 if (caplen < sizeof(*hdr)) {
3087 ND_PRINT("%s", tstr);
3088 return caplen;
3089 }
3090
3091 hdr = (const struct ieee80211_radiotap_header *)p;
3092
3093 len = EXTRACT_LE_U_2(hdr->it_len);
3094
3095 /*
3096 * If we don't have the entire radiotap header, just give up.
3097 */
3098 if (caplen < len) {
3099 ND_PRINT("%s", tstr);
3100 return caplen;
3101 }
3102 cpack_init(&cpacker, (const uint8_t *)hdr, len); /* align against header start */
3103 cpack_advance(&cpacker, sizeof(*hdr)); /* includes the 1st bitmap */
3104 for (last_presentp = &hdr->it_present;
3105 (const u_char*)(last_presentp + 1) <= p + len &&
3106 IS_EXTENDED(last_presentp);
3107 last_presentp++)
3108 cpack_advance(&cpacker, sizeof(hdr->it_present)); /* more bitmaps */
3109
3110 /* are there more bitmap extensions than bytes in header? */
3111 if ((const u_char*)(last_presentp + 1) > p + len) {
3112 ND_PRINT("%s", tstr);
3113 return caplen;
3114 }
3115
3116 /*
3117 * Start out at the beginning of the default radiotap namespace.
3118 */
3119 bit0 = 0;
3120 vendor_namespace = 0;
3121 memset(vendor_oui, 0, 3);
3122 vendor_subnamespace = 0;
3123 skip_length = 0;
3124 /* Assume no flags */
3125 flags = 0;
3126 /* Assume no Atheros padding between 802.11 header and body */
3127 pad = 0;
3128 /* Assume no FCS at end of frame */
3129 fcslen = 0;
3130 for (presentp = &hdr->it_present; presentp <= last_presentp;
3131 presentp++) {
3132 presentflags = EXTRACT_LE_U_4(presentp);
3133
3134 /*
3135 * If this is a vendor namespace, we don't handle it.
3136 */
3137 if (vendor_namespace) {
3138 /*
3139 * Skip past the stuff we don't understand.
3140 * If we add support for any vendor namespaces,
3141 * it'd be added here; use vendor_oui and
3142 * vendor_subnamespace to interpret the fields.
3143 */
3144 if (cpack_advance(&cpacker, skip_length) != 0) {
3145 /*
3146 * Ran out of space in the packet.
3147 */
3148 break;
3149 }
3150
3151 /*
3152 * We've skipped it all; nothing more to
3153 * skip.
3154 */
3155 skip_length = 0;
3156 } else {
3157 if (print_in_radiotap_namespace(ndo, &cpacker,
3158 &flags, presentflags, bit0) != 0) {
3159 /*
3160 * Fatal error - can't process anything
3161 * more in the radiotap header.
3162 */
3163 break;
3164 }
3165 }
3166
3167 /*
3168 * Handle the namespace switch bits; we've already handled
3169 * the extension bit in all but the last word above.
3170 */
3171 switch (presentflags &
3172 (BIT(IEEE80211_RADIOTAP_NAMESPACE)|BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE))) {
3173
3174 case 0:
3175 /*
3176 * We're not changing namespaces.
3177 * advance to the next 32 bits in the current
3178 * namespace.
3179 */
3180 bit0 += 32;
3181 break;
3182
3183 case BIT(IEEE80211_RADIOTAP_NAMESPACE):
3184 /*
3185 * We're switching to the radiotap namespace.
3186 * Reset the presence-bitmap index to 0, and
3187 * reset the namespace to the default radiotap
3188 * namespace.
3189 */
3190 bit0 = 0;
3191 vendor_namespace = 0;
3192 memset(vendor_oui, 0, 3);
3193 vendor_subnamespace = 0;
3194 skip_length = 0;
3195 break;
3196
3197 case BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE):
3198 /*
3199 * We're switching to a vendor namespace.
3200 * Reset the presence-bitmap index to 0,
3201 * note that we're in a vendor namespace,
3202 * and fetch the fields of the Vendor Namespace
3203 * item.
3204 */
3205 bit0 = 0;
3206 vendor_namespace = 1;
3207 if ((cpack_align_and_reserve(&cpacker, 2)) == NULL) {
3208 ND_PRINT("%s", tstr);
3209 break;
3210 }
3211 if (cpack_uint8(&cpacker, &vendor_oui[0]) != 0) {
3212 ND_PRINT("%s", tstr);
3213 break;
3214 }
3215 if (cpack_uint8(&cpacker, &vendor_oui[1]) != 0) {
3216 ND_PRINT("%s", tstr);
3217 break;
3218 }
3219 if (cpack_uint8(&cpacker, &vendor_oui[2]) != 0) {
3220 ND_PRINT("%s", tstr);
3221 break;
3222 }
3223 if (cpack_uint8(&cpacker, &vendor_subnamespace) != 0) {
3224 ND_PRINT("%s", tstr);
3225 break;
3226 }
3227 if (cpack_uint16(&cpacker, &skip_length) != 0) {
3228 ND_PRINT("%s", tstr);
3229 break;
3230 }
3231 break;
3232
3233 default:
3234 /*
3235 * Illegal combination. The behavior in this
3236 * case is undefined by the radiotap spec; we
3237 * just ignore both bits.
3238 */
3239 break;
3240 }
3241 }
3242
3243 if (flags & IEEE80211_RADIOTAP_F_DATAPAD)
3244 pad = 1; /* Atheros padding */
3245 if (flags & IEEE80211_RADIOTAP_F_FCS)
3246 fcslen = 4; /* FCS at end of packet */
3247 return len + ieee802_11_print(ndo, p + len, length - len, caplen - len, pad,
3248 fcslen);
3249 #undef BITNO_32
3250 #undef BITNO_16
3251 #undef BITNO_8
3252 #undef BITNO_4
3253 #undef BITNO_2
3254 #undef BIT
3255 }
3256
3257 static u_int
3258 ieee802_11_radio_avs_print(netdissect_options *ndo,
3259 const u_char *p, u_int length, u_int caplen)
3260 {
3261 uint32_t caphdr_len;
3262
3263 ndo->ndo_protocol = "802.11_radio_avs";
3264 if (caplen < 8) {
3265 ND_PRINT("%s", tstr);
3266 return caplen;
3267 }
3268
3269 caphdr_len = EXTRACT_BE_U_4(p + 4);
3270 if (caphdr_len < 8) {
3271 /*
3272 * Yow! The capture header length is claimed not
3273 * to be large enough to include even the version
3274 * cookie or capture header length!
3275 */
3276 ND_PRINT("%s", tstr);
3277 return caplen;
3278 }
3279
3280 if (caplen < caphdr_len) {
3281 ND_PRINT("%s", tstr);
3282 return caplen;
3283 }
3284
3285 return caphdr_len + ieee802_11_print(ndo, p + caphdr_len,
3286 length - caphdr_len, caplen - caphdr_len, 0, 0);
3287 }
3288
3289 #define PRISM_HDR_LEN 144
3290
3291 #define WLANCAP_MAGIC_COOKIE_BASE 0x80211000
3292 #define WLANCAP_MAGIC_COOKIE_V1 0x80211001
3293 #define WLANCAP_MAGIC_COOKIE_V2 0x80211002
3294
3295 /*
3296 * For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header,
3297 * containing information such as radio information, which we
3298 * currently ignore.
3299 *
3300 * If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1 or
3301 * WLANCAP_MAGIC_COOKIE_V2, it's really DLT_IEEE802_11_RADIO_AVS
3302 * (currently, on Linux, there's no ARPHRD_ type for
3303 * DLT_IEEE802_11_RADIO_AVS, as there is a ARPHRD_IEEE80211_PRISM
3304 * for DLT_PRISM_HEADER, so ARPHRD_IEEE80211_PRISM is used for
3305 * the AVS header, and the first 4 bytes of the header are used to
3306 * indicate whether it's a Prism header or an AVS header).
3307 */
3308 u_int
3309 prism_if_print(netdissect_options *ndo,
3310 const struct pcap_pkthdr *h, const u_char *p)
3311 {
3312 u_int caplen = h->caplen;
3313 u_int length = h->len;
3314 uint32_t msgcode;
3315
3316 ndo->ndo_protocol = "prism_if";
3317 if (caplen < 4) {
3318 ND_PRINT("%s", tstr);
3319 return caplen;
3320 }
3321
3322 msgcode = EXTRACT_BE_U_4(p);
3323 if (msgcode == WLANCAP_MAGIC_COOKIE_V1 ||
3324 msgcode == WLANCAP_MAGIC_COOKIE_V2)
3325 return ieee802_11_radio_avs_print(ndo, p, length, caplen);
3326
3327 if (caplen < PRISM_HDR_LEN) {
3328 ND_PRINT("%s", tstr);
3329 return caplen;
3330 }
3331
3332 return PRISM_HDR_LEN + ieee802_11_print(ndo, p + PRISM_HDR_LEN,
3333 length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN, 0, 0);
3334 }
3335
3336 /*
3337 * For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra
3338 * header, containing information such as radio information.
3339 */
3340 u_int
3341 ieee802_11_radio_if_print(netdissect_options *ndo,
3342 const struct pcap_pkthdr *h, const u_char *p)
3343 {
3344 ndo->ndo_protocol = "802.11_radio_if";
3345 return ieee802_11_radio_print(ndo, p, h->len, h->caplen);
3346 }
3347
3348 /*
3349 * For DLT_IEEE802_11_RADIO_AVS; like DLT_IEEE802_11, but with an
3350 * extra header, containing information such as radio information,
3351 * which we currently ignore.
3352 */
3353 u_int
3354 ieee802_11_radio_avs_if_print(netdissect_options *ndo,
3355 const struct pcap_pkthdr *h, const u_char *p)
3356 {
3357 ndo->ndo_protocol = "802.11_radio_avs_if";
3358 return ieee802_11_radio_avs_print(ndo, p, h->len, h->caplen);
3359 }