#define JMP(c) ((c)|BPF_JMP|BPF_K)
-/* Locals */
-static jmp_buf top_ctx;
-static pcap_t *bpf_pcap;
-
-/* Hack for handling VLAN and MPLS stacks. */
-#ifdef _WIN32
-static u_int label_stack_depth = (u_int)-1, vlan_stack_depth = (u_int)-1;
-#else
-static u_int label_stack_depth = -1U, vlan_stack_depth = -1U;
-#endif
-
-/* XXX */
-static int pcap_fddipad;
-
-/* VARARGS */
-void
-bpf_error(const char *fmt, ...)
-{
- va_list ap;
-
- va_start(ap, fmt);
- if (bpf_pcap != NULL)
- (void)pcap_vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
- fmt, ap);
- va_end(ap);
- longjmp(top_ctx, 1);
- /* NOTREACHED */
+/*
+ * "Push" the current value of the link-layer header type and link-layer
+ * header offset onto a "stack", and set a new value. (It's not a
+ * full-blown stack; we keep only the top two items.)
+ */
+#define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
+{ \
+ (cs)->prevlinktype = (cs)->linktype; \
+ (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
+ (cs)->linktype = (new_linktype); \
+ (cs)->off_linkhdr.is_variable = (new_is_variable); \
+ (cs)->off_linkhdr.constant_part = (new_constant_part); \
+ (cs)->off_linkhdr.reg = (new_reg); \
+ (cs)->is_geneve = 0; \
}
-static void init_linktype(pcap_t *);
-
-static void init_regs(void);
-static int alloc_reg(void);
-static void free_reg(int);
-
-static struct block *root;
-
/*
* Absolute offsets, which are offsets from the beginning of the raw
* packet data, are, in the general case, the sum of a variable value
OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
};
-#ifdef INET6
-/*
- * As errors are handled by a longjmp, anything allocated must be freed
- * in the longjmp handler, so it must be reachable from that handler.
- * One thing that's allocated is the result of pcap_nametoaddrinfo();
- * it must be freed with freeaddrinfo(). This variable points to any
- * addrinfo structure that would need to be freed.
- */
-static struct addrinfo *ai;
-#endif
-
/*
* We divy out chunks of memory rather than call malloc each time so
* we don't have to worry about leaking memory. It's probably
void *m;
};
-static struct chunk chunks[NCHUNKS];
-static int cur_chunk;
+/* Code generator state */
+
+struct _compiler_state {
+ jmp_buf top_ctx;
+ pcap_t *bpf_pcap;
+
+ struct icode ic;
+
+ int snaplen;
+
+ int linktype;
+ int prevlinktype;
+ int outermostlinktype;
-static void *newchunk(size_t);
-static void freechunks(void);
-static inline struct block *new_block(int);
-static inline struct slist *new_stmt(int);
-static struct block *gen_retblk(int);
-static inline void syntax(void);
+ bpf_u_int32 netmask;
+ int no_optimize;
+
+ /* Hack for handling VLAN and MPLS stacks. */
+ u_int label_stack_depth;
+ u_int vlan_stack_depth;
+
+ /* XXX */
+ int pcap_fddipad;
+
+#ifdef INET6
+ /*
+ * As errors are handled by a longjmp, anything allocated must
+ * be freed in the longjmp handler, so it must be reachable
+ * from that handler.
+ *
+ * One thing that's allocated is the result of pcap_nametoaddrinfo();
+ * it must be freed with freeaddrinfo(). This variable points to
+ * any addrinfo structure that would need to be freed.
+ */
+ struct addrinfo *ai;
+#endif
+
+ /*
+ * Various code constructs need to know the layout of the packet.
+ * These values give the necessary offsets from the beginning
+ * of the packet data.
+ */
+
+ /*
+ * Absolute offset of the beginning of the link-layer header.
+ */
+ bpf_abs_offset off_linkhdr;
+
+ /*
+ * If we're checking a link-layer header for a packet encapsulated
+ * in another protocol layer, this is the equivalent information
+ * for the previous layers' link-layer header from the beginning
+ * of the raw packet data.
+ */
+ bpf_abs_offset off_prevlinkhdr;
+
+ /*
+ * This is the equivalent information for the outermost layers'
+ * link-layer header.
+ */
+ bpf_abs_offset off_outermostlinkhdr;
+
+ /*
+ * Absolute offset of the beginning of the link-layer payload.
+ */
+ bpf_abs_offset off_linkpl;
+
+ /*
+ * "off_linktype" is the offset to information in the link-layer
+ * header giving the packet type. This is an absolute offset
+ * from the beginning of the packet.
+ *
+ * For Ethernet, it's the offset of the Ethernet type field; this
+ * means that it must have a value that skips VLAN tags.
+ *
+ * For link-layer types that always use 802.2 headers, it's the
+ * offset of the LLC header; this means that it must have a value
+ * that skips VLAN tags.
+ *
+ * For PPP, it's the offset of the PPP type field.
+ *
+ * For Cisco HDLC, it's the offset of the CHDLC type field.
+ *
+ * For BSD loopback, it's the offset of the AF_ value.
+ *
+ * For Linux cooked sockets, it's the offset of the type field.
+ *
+ * off_linktype.constant_part is set to -1 for no encapsulation,
+ * in which case, IP is assumed.
+ */
+ bpf_abs_offset off_linktype;
+
+ /*
+ * TRUE if the link layer includes an ATM pseudo-header.
+ */
+ int is_atm;
+
+ /*
+ * TRUE if "geneve" appeared in the filter; it causes us to
+ * generate code that checks for a Geneve header and assume
+ * that later filters apply to the encapsulated payload.
+ */
+ int is_geneve;
+
+ /*
+ * These are offsets for the ATM pseudo-header.
+ */
+ u_int off_vpi;
+ u_int off_vci;
+ u_int off_proto;
+
+ /*
+ * These are offsets for the MTP2 fields.
+ */
+ u_int off_li;
+ u_int off_li_hsl;
+
+ /*
+ * These are offsets for the MTP3 fields.
+ */
+ u_int off_sio;
+ u_int off_opc;
+ u_int off_dpc;
+ u_int off_sls;
+
+ /*
+ * This is the offset of the first byte after the ATM pseudo_header,
+ * or -1 if there is no ATM pseudo-header.
+ */
+ u_int off_payload;
+
+ /*
+ * These are offsets to the beginning of the network-layer header.
+ * They are relative to the beginning of the link-layer payload
+ * (i.e., they don't include off_linkhdr.constant_part or
+ * off_linkpl.constant_part).
+ *
+ * If the link layer never uses 802.2 LLC:
+ *
+ * "off_nl" and "off_nl_nosnap" are the same.
+ *
+ * If the link layer always uses 802.2 LLC:
+ *
+ * "off_nl" is the offset if there's a SNAP header following
+ * the 802.2 header;
+ *
+ * "off_nl_nosnap" is the offset if there's no SNAP header.
+ *
+ * If the link layer is Ethernet:
+ *
+ * "off_nl" is the offset if the packet is an Ethernet II packet
+ * (we assume no 802.3+802.2+SNAP);
+ *
+ * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
+ * with an 802.2 header following it.
+ */
+ u_int off_nl;
+ u_int off_nl_nosnap;
+
+ /*
+ * Here we handle simple allocation of the scratch registers.
+ * If too many registers are alloc'd, the allocator punts.
+ */
+ int regused[BPF_MEMWORDS];
+ int curreg;
+
+ /*
+ * Memory chunks.
+ */
+ struct chunk chunks[NCHUNKS];
+ int cur_chunk;
+};
+
+void
+bpf_syntax_error(compiler_state_t *cstate, const char *msg)
+{
+ bpf_error(cstate, "syntax error in filter expression: %s", msg);
+ /* NOTREACHED */
+}
+
+/* VARARGS */
+void
+bpf_error(compiler_state_t *cstate, const char *fmt, ...)
+{
+ va_list ap;
+
+ va_start(ap, fmt);
+ if (cstate->bpf_pcap != NULL)
+ (void)pcap_vsnprintf(pcap_geterr(cstate->bpf_pcap),
+ PCAP_ERRBUF_SIZE, fmt, ap);
+ va_end(ap);
+ longjmp(cstate->top_ctx, 1);
+ /* NOTREACHED */
+}
+
+static void init_linktype(compiler_state_t *, pcap_t *);
+
+static void init_regs(compiler_state_t *);
+static int alloc_reg(compiler_state_t *);
+static void free_reg(compiler_state_t *, int);
+
+static void initchunks(compiler_state_t *cstate);
+static void *newchunk(compiler_state_t *cstate, size_t);
+static void freechunks(compiler_state_t *cstate);
+static inline struct block *new_block(compiler_state_t *cstate, int);
+static inline struct slist *new_stmt(compiler_state_t *cstate, int);
+static struct block *gen_retblk(compiler_state_t *cstate, int);
+static inline void syntax(compiler_state_t *cstate);
static void backpatch(struct block *, struct block *);
static void merge(struct block *, struct block *);
-static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
-static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
-static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
-static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
-static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
-static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
- bpf_u_int32);
-static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
-static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
- bpf_u_int32, bpf_u_int32, int, bpf_int32);
-static struct slist *gen_load_absoffsetrel(bpf_abs_offset *, u_int, u_int);
-static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
-static struct slist *gen_loadx_iphdrlen(void);
-static struct block *gen_uncond(int);
-static inline struct block *gen_true(void);
-static inline struct block *gen_false(void);
-static struct block *gen_ether_linktype(int);
-static struct block *gen_ipnet_linktype(int);
-static struct block *gen_linux_sll_linktype(int);
-static struct slist *gen_load_prism_llprefixlen(void);
-static struct slist *gen_load_avs_llprefixlen(void);
-static struct slist *gen_load_radiotap_llprefixlen(void);
-static struct slist *gen_load_ppi_llprefixlen(void);
-static void insert_compute_vloffsets(struct block *);
-static struct slist *gen_abs_offset_varpart(bpf_abs_offset *);
+static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
+ u_int, bpf_int32);
+static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
+ u_int, bpf_int32);
+static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
+ u_int, bpf_int32);
+static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
+ u_int, bpf_int32);
+static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
+ u_int, bpf_int32);
+static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
+ u_int, bpf_int32, bpf_u_int32);
+static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
+ u_int, const u_char *);
+static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32,
+ bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32);
+static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
+ u_int, u_int);
+static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
+ u_int);
+static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
+static struct block *gen_uncond(compiler_state_t *, int);
+static inline struct block *gen_true(compiler_state_t *);
+static inline struct block *gen_false(compiler_state_t *);
+static struct block *gen_ether_linktype(compiler_state_t *, int);
+static struct block *gen_ipnet_linktype(compiler_state_t *, int);
+static struct block *gen_linux_sll_linktype(compiler_state_t *, int);
+static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
+static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
+static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
+static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
+static void insert_compute_vloffsets(compiler_state_t *, struct block *);
+static struct slist *gen_abs_offset_varpart(compiler_state_t *,
+ bpf_abs_offset *);
static int ethertype_to_ppptype(int);
-static struct block *gen_linktype(int);
-static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
-static struct block *gen_llc_linktype(int);
-static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
+static struct block *gen_linktype(compiler_state_t *, int);
+static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
+static struct block *gen_llc_linktype(compiler_state_t *, int);
+static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
+ int, int, u_int, u_int);
#ifdef INET6
-static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
+static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
+ struct in6_addr *, int, int, u_int, u_int);
#endif
-static struct block *gen_ahostop(const u_char *, int);
-static struct block *gen_ehostop(const u_char *, int);
-static struct block *gen_fhostop(const u_char *, int);
-static struct block *gen_thostop(const u_char *, int);
-static struct block *gen_wlanhostop(const u_char *, int);
-static struct block *gen_ipfchostop(const u_char *, int);
-static struct block *gen_dnhostop(bpf_u_int32, int);
-static struct block *gen_mpls_linktype(int);
-static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
+static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
+static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
+static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
+static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
+static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
+static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
+static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
+static struct block *gen_mpls_linktype(compiler_state_t *, int);
+static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
+ int, int, int);
#ifdef INET6
-static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
+static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
+ struct in6_addr *, int, int, int);
#endif
#ifndef INET6
static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
#endif
-static struct block *gen_ipfrag(void);
-static struct block *gen_portatom(int, bpf_int32);
-static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
-static struct block *gen_portatom6(int, bpf_int32);
-static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
-struct block *gen_portop(int, int, int);
-static struct block *gen_port(int, int, int);
-struct block *gen_portrangeop(int, int, int, int);
-static struct block *gen_portrange(int, int, int, int);
-struct block *gen_portop6(int, int, int);
-static struct block *gen_port6(int, int, int);
-struct block *gen_portrangeop6(int, int, int, int);
-static struct block *gen_portrange6(int, int, int, int);
-static int lookup_proto(const char *, int);
-static struct block *gen_protochain(int, int, int);
-static struct block *gen_proto(int, int, int);
-static struct slist *xfer_to_x(struct arth *);
-static struct slist *xfer_to_a(struct arth *);
-static struct block *gen_mac_multicast(int);
-static struct block *gen_len(int, int);
-static struct block *gen_check_802_11_data_frame(void);
-static struct block *gen_geneve_ll_check(void);
-
-static struct block *gen_ppi_dlt_check(void);
-static struct block *gen_msg_abbrev(int type);
+static struct block *gen_ipfrag(compiler_state_t *);
+static struct block *gen_portatom(compiler_state_t *, int, bpf_int32);
+static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32,
+ bpf_int32);
+static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32);
+static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32,
+ bpf_int32);
+struct block *gen_portop(compiler_state_t *, int, int, int);
+static struct block *gen_port(compiler_state_t *, int, int, int);
+struct block *gen_portrangeop(compiler_state_t *, int, int, int, int);
+static struct block *gen_portrange(compiler_state_t *, int, int, int, int);
+struct block *gen_portop6(compiler_state_t *, int, int, int);
+static struct block *gen_port6(compiler_state_t *, int, int, int);
+struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int);
+static struct block *gen_portrange6(compiler_state_t *, int, int, int, int);
+static int lookup_proto(compiler_state_t *, const char *, int);
+static struct block *gen_protochain(compiler_state_t *, int, int, int);
+static struct block *gen_proto(compiler_state_t *, int, int, int);
+static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
+static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
+static struct block *gen_mac_multicast(compiler_state_t *, int);
+static struct block *gen_len(compiler_state_t *, int, int);
+static struct block *gen_check_802_11_data_frame(compiler_state_t *);
+static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
+
+static struct block *gen_ppi_dlt_check(compiler_state_t *);
+static struct block *gen_msg_abbrev(compiler_state_t *, int type);
+
+static void
+initchunks(compiler_state_t *cstate)
+{
+ int i;
+
+ for (i = 0; i < NCHUNKS; i++)
+ cstate->chunks[i].m = NULL;
+ cstate->cur_chunk = 0;
+}
static void *
-newchunk(size_t n)
+newchunk(compiler_state_t *cstate, size_t n)
{
struct chunk *cp;
int k;
n = ALIGN(n);
#endif
- cp = &chunks[cur_chunk];
+ cp = &cstate->chunks[cstate->cur_chunk];
if (n > cp->n_left) {
- ++cp, k = ++cur_chunk;
+ ++cp, k = ++cstate->cur_chunk;
if (k >= NCHUNKS)
- bpf_error("out of memory");
+ bpf_error(cstate, "out of memory");
size = CHUNK0SIZE << k;
cp->m = (void *)malloc(size);
if (cp->m == NULL)
- bpf_error("out of memory");
+ bpf_error(cstate, "out of memory");
memset((char *)cp->m, 0, size);
cp->n_left = size;
if (n > size)
- bpf_error("out of memory");
+ bpf_error(cstate, "out of memory");
}
cp->n_left -= n;
return (void *)((char *)cp->m + cp->n_left);
}
static void
-freechunks()
+freechunks(compiler_state_t *cstate)
{
int i;
- cur_chunk = 0;
for (i = 0; i < NCHUNKS; ++i)
- if (chunks[i].m != NULL) {
- free(chunks[i].m);
- chunks[i].m = NULL;
- }
+ if (cstate->chunks[i].m != NULL)
+ free(cstate->chunks[i].m);
}
/*
* A strdup whose allocations are freed after code generation is over.
*/
char *
-sdup(s)
- register const char *s;
+sdup(compiler_state_t *cstate, const char *s)
{
size_t n = strlen(s) + 1;
- char *cp = newchunk(n);
+ char *cp = newchunk(cstate, n);
strlcpy(cp, s, n);
return (cp);
}
static inline struct block *
-new_block(code)
- int code;
+new_block(compiler_state_t *cstate, int code)
{
struct block *p;
- p = (struct block *)newchunk(sizeof(*p));
+ p = (struct block *)newchunk(cstate, sizeof(*p));
p->s.code = code;
p->head = p;
}
static inline struct slist *
-new_stmt(code)
- int code;
+new_stmt(compiler_state_t *cstate, int code)
{
struct slist *p;
- p = (struct slist *)newchunk(sizeof(*p));
+ p = (struct slist *)newchunk(cstate, sizeof(*p));
p->s.code = code;
return p;
}
static struct block *
-gen_retblk(v)
- int v;
+gen_retblk(compiler_state_t *cstate, int v)
{
- struct block *b = new_block(BPF_RET|BPF_K);
+ struct block *b = new_block(cstate, BPF_RET|BPF_K);
b->s.k = v;
return b;
}
static inline void
-syntax()
+syntax(compiler_state_t *cstate)
{
- bpf_error("syntax error in filter expression");
+ bpf_error(cstate, "syntax error in filter expression");
}
-static bpf_u_int32 netmask;
-static int snaplen;
-int no_optimize;
-
int
pcap_compile(pcap_t *p, struct bpf_program *program,
const char *buf, int optimize, bpf_u_int32 mask)
{
- extern int n_errors;
+ compiler_state_t cstate;
const char * volatile xbuf = buf;
yyscan_t scanner = NULL;
YY_BUFFER_STATE in_buffer = NULL;
if (!done)
pcap_wsockinit();
done = 1;
- EnterCriticalSection(&g_PcapCompileCriticalSection);
#endif
/*
rc = -1;
goto quit;
}
- no_optimize = 0;
- n_errors = 0;
- root = NULL;
- bpf_pcap = p;
- init_regs();
-
- if (setjmp(top_ctx)) {
+ initchunks(&cstate);
+ cstate.no_optimize = 0;
+ cstate.ai = NULL;
+ cstate.ic.root = NULL;
+ cstate.ic.cur_mark = 0;
+ cstate.bpf_pcap = p;
+ init_regs(&cstate);
+
+ if (setjmp(cstate.top_ctx)) {
#ifdef INET6
- if (ai != NULL) {
- freeaddrinfo(ai);
- ai = NULL;
- }
+ if (cstate.ai != NULL)
+ freeaddrinfo(cstate.ai);
#endif
rc = -1;
goto quit;
}
- netmask = mask;
+ cstate.netmask = mask;
- snaplen = pcap_snapshot(p);
- if (snaplen == 0) {
+ cstate.snaplen = pcap_snapshot(p);
+ if (cstate.snaplen == 0) {
pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"snaplen of 0 rejects all packets");
rc = -1;
}
if (pcap_lex_init(&scanner) != 0)
- bpf_error("can't initialize scanner: %s", pcap_strerror(errno));
+ bpf_error(&cstate, "can't initialize scanner: %s", pcap_strerror(errno));
in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
- init_linktype(p);
- (void)pcap_parse(scanner);
- if (n_errors)
- syntax();
+ /*
+ * Associate the compiler state with the lexical analyzer
+ * state.
+ */
+ pcap_set_extra(&cstate, scanner);
- if (root == NULL)
- root = gen_retblk(snaplen);
+ init_linktype(&cstate, p);
+ (void)pcap_parse(scanner, &cstate);
- if (optimize && !no_optimize) {
- bpf_optimize(&root);
- if (root == NULL ||
- (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
- bpf_error("expression rejects all packets");
+ if (cstate.ic.root == NULL)
+ cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
+
+ if (optimize && !cstate.no_optimize) {
+ bpf_optimize(&cstate, &cstate.ic);
+ if (cstate.ic.root == NULL ||
+ (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0))
+ bpf_error(&cstate, "expression rejects all packets");
}
- program->bf_insns = icode_to_fcode(root, &len);
+ program->bf_insns = icode_to_fcode(&cstate, &cstate.ic, cstate.ic.root, &len);
program->bf_len = len;
rc = 0; /* We're all okay */
/*
* Clean up our own allocated memory.
*/
- freechunks();
-
-#ifdef _WIN32
- LeaveCriticalSection(&g_PcapCompileCriticalSection);
-#endif
+ freechunks(&cstate);
return (rc);
}
}
void
-finish_parse(p)
- struct block *p;
+finish_parse(compiler_state_t *cstate, struct block *p)
{
struct block *ppi_dlt_check;
* for tests that fail early, and it's not clear that's
* worth the effort.
*/
- insert_compute_vloffsets(p->head);
+ insert_compute_vloffsets(cstate, p->head);
/*
* For DLT_PPI captures, generate a check of the per-packet
* 802.11 code (*and* anything else for which PPI is used)
* and choose between them early in the BPF program?
*/
- ppi_dlt_check = gen_ppi_dlt_check();
+ ppi_dlt_check = gen_ppi_dlt_check(cstate);
if (ppi_dlt_check != NULL)
gen_and(ppi_dlt_check, p);
- backpatch(p, gen_retblk(snaplen));
+ backpatch(p, gen_retblk(cstate, cstate->snaplen));
p->sense = !p->sense;
- backpatch(p, gen_retblk(0));
- root = p->head;
+ backpatch(p, gen_retblk(cstate, 0));
+ cstate->ic.root = p->head;
}
void
}
static struct block *
-gen_cmp(offrel, offset, size, v)
- enum e_offrel offrel;
- u_int offset, size;
- bpf_int32 v;
+gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size, bpf_int32 v)
{
- return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
+ return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
}
static struct block *
-gen_cmp_gt(offrel, offset, size, v)
- enum e_offrel offrel;
- u_int offset, size;
- bpf_int32 v;
+gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size, bpf_int32 v)
{
- return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
+ return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
}
static struct block *
-gen_cmp_ge(offrel, offset, size, v)
- enum e_offrel offrel;
- u_int offset, size;
- bpf_int32 v;
+gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size, bpf_int32 v)
{
- return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
+ return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
}
static struct block *
-gen_cmp_lt(offrel, offset, size, v)
- enum e_offrel offrel;
- u_int offset, size;
- bpf_int32 v;
+gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size, bpf_int32 v)
{
- return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
+ return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
}
static struct block *
-gen_cmp_le(offrel, offset, size, v)
- enum e_offrel offrel;
- u_int offset, size;
- bpf_int32 v;
+gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size, bpf_int32 v)
{
- return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
+ return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
}
static struct block *
-gen_mcmp(offrel, offset, size, v, mask)
- enum e_offrel offrel;
- u_int offset, size;
- bpf_int32 v;
- bpf_u_int32 mask;
+gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size, bpf_int32 v, bpf_u_int32 mask)
{
- return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
+ return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
}
static struct block *
-gen_bcmp(offrel, offset, size, v)
- enum e_offrel offrel;
- register u_int offset, size;
- register const u_char *v;
+gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size, const u_char *v)
{
register struct block *b, *tmp;
bpf_int32 w = ((bpf_int32)p[0] << 24) |
((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
- tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
+ tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W, w);
if (b != NULL)
gen_and(b, tmp);
b = tmp;
register const u_char *p = &v[size - 2];
bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
- tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
+ tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H, w);
if (b != NULL)
gen_and(b, tmp);
b = tmp;
size -= 2;
}
if (size > 0) {
- tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
+ tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]);
if (b != NULL)
gen_and(b, tmp);
b = tmp;
* should test the opposite of "jtype".
*/
static struct block *
-gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
- enum e_offrel offrel;
- bpf_int32 v;
- bpf_u_int32 offset, size, mask, jtype;
- int reverse;
+gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset,
+ bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse,
+ bpf_int32 v)
{
struct slist *s, *s2;
struct block *b;
- s = gen_load_a(offrel, offset, size);
+ s = gen_load_a(cstate, offrel, offset, size);
if (mask != 0xffffffff) {
- s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
s2->s.k = mask;
sappend(s, s2);
}
- b = new_block(JMP(jtype));
+ b = new_block(cstate, JMP(jtype));
b->stmts = s;
b->s.k = v;
if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
return b;
}
-/*
- * Various code constructs need to know the layout of the packet.
- * These variables give the necessary offsets from the beginning
- * of the packet data.
- */
-
-/*
- * Absolute offset of the beginning of the link-layer header.
- */
-static bpf_abs_offset off_linkhdr;
-
-/*
- * If we're checking a link-layer header for a packet encapsulated in
- * another protocol layer, this is the equivalent information for the
- * previous layers' link-layer header from the beginning of the raw
- * packet data.
- */
-static bpf_abs_offset off_prevlinkhdr;
-
-/*
- * This is the equivalent information for the outermost layers' link-layer
- * header.
- */
-static bpf_abs_offset off_outermostlinkhdr;
-
-/*
- * "Push" the current value of the link-layer header type and link-layer
- * header offset onto a "stack", and set a new value. (It's not a
- * full-blown stack; we keep only the top two items.)
- */
-#define PUSH_LINKHDR(new_linktype, new_is_variable, new_constant_part, new_reg) \
-{ \
- prevlinktype = new_linktype; \
- off_prevlinkhdr = off_linkhdr; \
- linktype = new_linktype; \
- off_linkhdr.is_variable = new_is_variable; \
- off_linkhdr.constant_part = new_constant_part; \
- off_linkhdr.reg = new_reg; \
- is_geneve = 0; \
-}
-
-/*
- * Absolute offset of the beginning of the link-layer payload.
- */
-static bpf_abs_offset off_linkpl;
-
-/*
- * "off_linktype" is the offset to information in the link-layer header
- * giving the packet type. This is an absolute offset from the beginning
- * of the packet.
- *
- * For Ethernet, it's the offset of the Ethernet type field; this
- * means that it must have a value that skips VLAN tags.
- *
- * For link-layer types that always use 802.2 headers, it's the
- * offset of the LLC header; this means that it must have a value
- * that skips VLAN tags.
- *
- * For PPP, it's the offset of the PPP type field.
- *
- * For Cisco HDLC, it's the offset of the CHDLC type field.
- *
- * For BSD loopback, it's the offset of the AF_ value.
- *
- * For Linux cooked sockets, it's the offset of the type field.
- *
- * off_linktype.constant_part is set to -1 for no encapsulation,
- * in which case, IP is assumed.
- */
-static bpf_abs_offset off_linktype;
-
-/*
- * TRUE if the link layer includes an ATM pseudo-header.
- */
-static int is_atm = 0;
-
-/*
- * TRUE if "geneve" appeared in the filter; it causes us to generate
- * code that checks for a Geneve header and assume that later filters
- * apply to the encapsulated payload.
- */
-static int is_geneve = 0;
-
-/*
- * These are offsets for the ATM pseudo-header.
- */
-static u_int off_vpi;
-static u_int off_vci;
-static u_int off_proto;
-
-/*
- * These are offsets for the MTP2 fields.
- */
-static u_int off_li;
-static u_int off_li_hsl;
-
-/*
- * These are offsets for the MTP3 fields.
- */
-static u_int off_sio;
-static u_int off_opc;
-static u_int off_dpc;
-static u_int off_sls;
-
-/*
- * This is the offset of the first byte after the ATM pseudo_header,
- * or -1 if there is no ATM pseudo-header.
- */
-static u_int off_payload;
-
-/*
- * These are offsets to the beginning of the network-layer header.
- * They are relative to the beginning of the link-layer payload (i.e.,
- * they don't include off_linkhdr.constant_part or off_linkpl.constant_part).
- *
- * If the link layer never uses 802.2 LLC:
- *
- * "off_nl" and "off_nl_nosnap" are the same.
- *
- * If the link layer always uses 802.2 LLC:
- *
- * "off_nl" is the offset if there's a SNAP header following
- * the 802.2 header;
- *
- * "off_nl_nosnap" is the offset if there's no SNAP header.
- *
- * If the link layer is Ethernet:
- *
- * "off_nl" is the offset if the packet is an Ethernet II packet
- * (we assume no 802.3+802.2+SNAP);
- *
- * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
- * with an 802.2 header following it.
- */
-static u_int off_nl;
-static u_int off_nl_nosnap;
-
-static int linktype;
-static int prevlinktype;
-static int outermostlinktype;
-
static void
-init_linktype(p)
- pcap_t *p;
+init_linktype(compiler_state_t *cstate, pcap_t *p)
{
- pcap_fddipad = p->fddipad;
+ cstate->pcap_fddipad = p->fddipad;
/*
* We start out with only one link-layer header.
*/
- outermostlinktype = pcap_datalink(p);
- off_outermostlinkhdr.constant_part = 0;
- off_outermostlinkhdr.is_variable = 0;
- off_outermostlinkhdr.reg = -1;
+ cstate->outermostlinktype = pcap_datalink(p);
+ cstate->off_outermostlinkhdr.constant_part = 0;
+ cstate->off_outermostlinkhdr.is_variable = 0;
+ cstate->off_outermostlinkhdr.reg = -1;
- prevlinktype = outermostlinktype;
- off_prevlinkhdr.constant_part = 0;
- off_prevlinkhdr.is_variable = 0;
- off_prevlinkhdr.reg = -1;
+ cstate->prevlinktype = cstate->outermostlinktype;
+ cstate->off_prevlinkhdr.constant_part = 0;
+ cstate->off_prevlinkhdr.is_variable = 0;
+ cstate->off_prevlinkhdr.reg = -1;
- linktype = outermostlinktype;
- off_linkhdr.constant_part = 0;
- off_linkhdr.is_variable = 0;
- off_linkhdr.reg = -1;
+ cstate->linktype = cstate->outermostlinktype;
+ cstate->off_linkhdr.constant_part = 0;
+ cstate->off_linkhdr.is_variable = 0;
+ cstate->off_linkhdr.reg = -1;
/*
* XXX
*/
- off_linkpl.constant_part = 0;
- off_linkpl.is_variable = 0;
- off_linkpl.reg = -1;
+ cstate->off_linkpl.constant_part = 0;
+ cstate->off_linkpl.is_variable = 0;
+ cstate->off_linkpl.reg = -1;
- off_linktype.constant_part = 0;
- off_linktype.is_variable = 0;
- off_linktype.reg = -1;
+ cstate->off_linktype.constant_part = 0;
+ cstate->off_linktype.is_variable = 0;
+ cstate->off_linktype.reg = -1;
/*
* Assume it's not raw ATM with a pseudo-header, for now.
*/
- is_atm = 0;
- off_vpi = -1;
- off_vci = -1;
- off_proto = -1;
- off_payload = -1;
+ cstate->is_atm = 0;
+ cstate->off_vpi = -1;
+ cstate->off_vci = -1;
+ cstate->off_proto = -1;
+ cstate->off_payload = -1;
/*
* And not Geneve.
*/
- is_geneve = 0;
+ cstate->is_geneve = 0;
/*
* And assume we're not doing SS7.
*/
- off_li = -1;
- off_li_hsl = -1;
- off_sio = -1;
- off_opc = -1;
- off_dpc = -1;
- off_sls = -1;
+ cstate->off_li = -1;
+ cstate->off_li_hsl = -1;
+ cstate->off_sio = -1;
+ cstate->off_opc = -1;
+ cstate->off_dpc = -1;
+ cstate->off_sls = -1;
- label_stack_depth = 0;
- vlan_stack_depth = 0;
+ cstate->label_stack_depth = 0;
+ cstate->vlan_stack_depth = 0;
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_ARCNET:
- off_linktype.constant_part = 2;
- off_linkpl.constant_part = 6;
- off_nl = 0; /* XXX in reality, variable! */
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 2;
+ cstate->off_linkpl.constant_part = 6;
+ cstate->off_nl = 0; /* XXX in reality, variable! */
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_ARCNET_LINUX:
- off_linktype.constant_part = 4;
- off_linkpl.constant_part = 8;
- off_nl = 0; /* XXX in reality, variable! */
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 4;
+ cstate->off_linkpl.constant_part = 8;
+ cstate->off_nl = 0; /* XXX in reality, variable! */
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_EN10MB:
- off_linktype.constant_part = 12;
- off_linkpl.constant_part = 14; /* Ethernet header length */
- off_nl = 0; /* Ethernet II */
- off_nl_nosnap = 3; /* 802.3+802.2 */
+ cstate->off_linktype.constant_part = 12;
+ cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
+ cstate->off_nl = 0; /* Ethernet II */
+ cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
break;
case DLT_SLIP:
* SLIP doesn't have a link level type. The 16 byte
* header is hacked into our SLIP driver.
*/
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = 16;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = 16;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_SLIP_BSDOS:
/* XXX this may be the same as the DLT_PPP_BSDOS case */
- off_linktype.constant_part = -1;
+ cstate->off_linktype.constant_part = -1;
/* XXX end */
- off_linkpl.constant_part = 24;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linkpl.constant_part = 24;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_NULL:
case DLT_LOOP:
- off_linktype.constant_part = 0;
- off_linkpl.constant_part = 4;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 0;
+ cstate->off_linkpl.constant_part = 4;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_ENC:
- off_linktype.constant_part = 0;
- off_linkpl.constant_part = 12;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 0;
+ cstate->off_linkpl.constant_part = 12;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_PPP:
case DLT_PPP_PPPD:
case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
- off_linktype.constant_part = 2; /* skip HDLC-like framing */
- off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
+ cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_PPP_ETHER:
* This does no include the Ethernet header, and
* only covers session state.
*/
- off_linktype.constant_part = 6;
- off_linkpl.constant_part = 8;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 6;
+ cstate->off_linkpl.constant_part = 8;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_PPP_BSDOS:
- off_linktype.constant_part = 5;
- off_linkpl.constant_part = 24;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 5;
+ cstate->off_linkpl.constant_part = 24;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_FDDI:
* is being used and pick out the encapsulated Ethernet type.
* XXX - should we generate code to check for SNAP?
*/
- off_linktype.constant_part = 13;
- off_linktype.constant_part += pcap_fddipad;
- off_linkpl.constant_part = 13; /* FDDI MAC header length */
- off_linkpl.constant_part += pcap_fddipad;
- off_nl = 8; /* 802.2+SNAP */
- off_nl_nosnap = 3; /* 802.2 */
+ cstate->off_linktype.constant_part = 13;
+ cstate->off_linktype.constant_part += cstate->pcap_fddipad;
+ cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
+ cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
+ cstate->off_nl = 8; /* 802.2+SNAP */
+ cstate->off_nl_nosnap = 3; /* 802.2 */
break;
case DLT_IEEE802:
* the 16-bit value at an offset of 14 (shifted right
* 8 - figure out which byte that is).
*/
- off_linktype.constant_part = 14;
- off_linkpl.constant_part = 14; /* Token Ring MAC header length */
- off_nl = 8; /* 802.2+SNAP */
- off_nl_nosnap = 3; /* 802.2 */
+ cstate->off_linktype.constant_part = 14;
+ cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
+ cstate->off_nl = 8; /* 802.2+SNAP */
+ cstate->off_nl_nosnap = 3; /* 802.2 */
break;
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
case DLT_IEEE802_11_RADIO:
- off_linkhdr.is_variable = 1;
+ cstate->off_linkhdr.is_variable = 1;
/* Fall through, 802.11 doesn't have a variable link
* prefix but is otherwise the same. */
* header or an AVS header, so, in practice, it's
* variable-length.
*/
- off_linktype.constant_part = 24;
- off_linkpl.constant_part = 0; /* link-layer header is variable-length */
- off_linkpl.is_variable = 1;
- off_nl = 8; /* 802.2+SNAP */
- off_nl_nosnap = 3; /* 802.2 */
+ cstate->off_linktype.constant_part = 24;
+ cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
+ cstate->off_linkpl.is_variable = 1;
+ cstate->off_nl = 8; /* 802.2+SNAP */
+ cstate->off_nl_nosnap = 3; /* 802.2 */
break;
case DLT_PPI:
* the encapsulated DLT should be DLT_IEEE802_11) we
* generate code to check for this too.
*/
- off_linktype.constant_part = 24;
- off_linkpl.constant_part = 0; /* link-layer header is variable-length */
- off_linkpl.is_variable = 1;
- off_linkhdr.is_variable = 1;
- off_nl = 8; /* 802.2+SNAP */
- off_nl_nosnap = 3; /* 802.2 */
+ cstate->off_linktype.constant_part = 24;
+ cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
+ cstate->off_linkpl.is_variable = 1;
+ cstate->off_linkhdr.is_variable = 1;
+ cstate->off_nl = 8; /* 802.2+SNAP */
+ cstate->off_nl_nosnap = 3; /* 802.2 */
break;
case DLT_ATM_RFC1483:
* or "pppoa and tcp port 80" and have it check for
* PPPo{A,E} and a PPP protocol of IP and....
*/
- off_linktype.constant_part = 0;
- off_linkpl.constant_part = 0; /* packet begins with LLC header */
- off_nl = 8; /* 802.2+SNAP */
- off_nl_nosnap = 3; /* 802.2 */
+ cstate->off_linktype.constant_part = 0;
+ cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
+ cstate->off_nl = 8; /* 802.2+SNAP */
+ cstate->off_nl_nosnap = 3; /* 802.2 */
break;
case DLT_SUNATM:
* Full Frontal ATM; you get AALn PDUs with an ATM
* pseudo-header.
*/
- is_atm = 1;
- off_vpi = SUNATM_VPI_POS;
- off_vci = SUNATM_VCI_POS;
- off_proto = PROTO_POS;
- off_payload = SUNATM_PKT_BEGIN_POS;
- off_linktype.constant_part = off_payload;
- off_linkpl.constant_part = off_payload; /* if LLC-encapsulated */
- off_nl = 8; /* 802.2+SNAP */
- off_nl_nosnap = 3; /* 802.2 */
+ cstate->is_atm = 1;
+ cstate->off_vpi = SUNATM_VPI_POS;
+ cstate->off_vci = SUNATM_VCI_POS;
+ cstate->off_proto = PROTO_POS;
+ cstate->off_payload = SUNATM_PKT_BEGIN_POS;
+ cstate->off_linktype.constant_part = cstate->off_payload;
+ cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
+ cstate->off_nl = 8; /* 802.2+SNAP */
+ cstate->off_nl_nosnap = 3; /* 802.2 */
break;
case DLT_RAW:
case DLT_IPV4:
case DLT_IPV6:
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = 0;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = 0;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
- off_linktype.constant_part = 14;
- off_linkpl.constant_part = 16;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 14;
+ cstate->off_linkpl.constant_part = 16;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_LTALK:
* but really it just indicates whether there is a "short" or
* "long" DDP packet following.
*/
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = 0;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = 0;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_IP_OVER_FC:
* XXX - should we generate code to check for SNAP? RFC
* 2625 says SNAP should be used.
*/
- off_linktype.constant_part = 16;
- off_linkpl.constant_part = 16;
- off_nl = 8; /* 802.2+SNAP */
- off_nl_nosnap = 3; /* 802.2 */
+ cstate->off_linktype.constant_part = 16;
+ cstate->off_linkpl.constant_part = 16;
+ cstate->off_nl = 8; /* 802.2+SNAP */
+ cstate->off_nl_nosnap = 3; /* 802.2 */
break;
case DLT_FRELAY:
* XXX - we should set this to handle SNAP-encapsulated
* frames (NLPID of 0x80).
*/
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = 0;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = 0;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
/*
* so lets start with offset 4 for now and increments later on (FIXME);
*/
case DLT_MFR:
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = 0;
- off_nl = 4;
- off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = 0;
+ cstate->off_nl = 4;
+ cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
break;
case DLT_APPLE_IP_OVER_IEEE1394:
- off_linktype.constant_part = 16;
- off_linkpl.constant_part = 18;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 16;
+ cstate->off_linkpl.constant_part = 18;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
case DLT_SYMANTEC_FIREWALL:
- off_linktype.constant_part = 6;
- off_linkpl.constant_part = 44;
- off_nl = 0; /* Ethernet II */
- off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
+ cstate->off_linktype.constant_part = 6;
+ cstate->off_linkpl.constant_part = 44;
+ cstate->off_nl = 0; /* Ethernet II */
+ cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
break;
#ifdef HAVE_NET_PFVAR_H
case DLT_PFLOG:
- off_linktype.constant_part = 0;
- off_linkpl.constant_part = PFLOG_HDRLEN;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 0;
+ cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
break;
#endif
case DLT_JUNIPER_PPP:
case DLT_JUNIPER_CHDLC:
case DLT_JUNIPER_FRELAY:
- off_linktype.constant_part = 4;
- off_linkpl.constant_part = 4;
- off_nl = 0;
- off_nl_nosnap = -1; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 4;
+ cstate->off_linkpl.constant_part = 4;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
break;
case DLT_JUNIPER_ATM1:
- off_linktype.constant_part = 4; /* in reality variable between 4-8 */
- off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
- off_nl = 0;
- off_nl_nosnap = 10;
+ cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
+ cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 10;
break;
case DLT_JUNIPER_ATM2:
- off_linktype.constant_part = 8; /* in reality variable between 8-12 */
- off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
- off_nl = 0;
- off_nl_nosnap = 10;
+ cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
+ cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 10;
break;
/* frames captured on a Juniper PPPoE service PIC
* contain raw ethernet frames */
case DLT_JUNIPER_PPPOE:
case DLT_JUNIPER_ETHER:
- off_linkpl.constant_part = 14;
- off_linktype.constant_part = 16;
- off_nl = 18; /* Ethernet II */
- off_nl_nosnap = 21; /* 802.3+802.2 */
+ cstate->off_linkpl.constant_part = 14;
+ cstate->off_linktype.constant_part = 16;
+ cstate->off_nl = 18; /* Ethernet II */
+ cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
break;
case DLT_JUNIPER_PPPOE_ATM:
- off_linktype.constant_part = 4;
- off_linkpl.constant_part = 6;
- off_nl = 0;
- off_nl_nosnap = -1; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 4;
+ cstate->off_linkpl.constant_part = 6;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
break;
case DLT_JUNIPER_GGSN:
- off_linktype.constant_part = 6;
- off_linkpl.constant_part = 12;
- off_nl = 0;
- off_nl_nosnap = -1; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 6;
+ cstate->off_linkpl.constant_part = 12;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
break;
case DLT_JUNIPER_ES:
- off_linktype.constant_part = 6;
- off_linkpl.constant_part = -1; /* not really a network layer but raw IP addresses */
- off_nl = -1; /* not really a network layer but raw IP addresses */
- off_nl_nosnap = -1; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 6;
+ cstate->off_linkpl.constant_part = -1; /* not really a network layer but raw IP addresses */
+ cstate->off_nl = -1; /* not really a network layer but raw IP addresses */
+ cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
break;
case DLT_JUNIPER_MONITOR:
- off_linktype.constant_part = 12;
- off_linkpl.constant_part = 12;
- off_nl = 0; /* raw IP/IP6 header */
- off_nl_nosnap = -1; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 12;
+ cstate->off_linkpl.constant_part = 12;
+ cstate->off_nl = 0; /* raw IP/IP6 header */
+ cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
break;
case DLT_BACNET_MS_TP:
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_JUNIPER_SERVICES:
- off_linktype.constant_part = 12;
- off_linkpl.constant_part = -1; /* L3 proto location dep. on cookie type */
- off_nl = -1; /* L3 proto location dep. on cookie type */
- off_nl_nosnap = -1; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = 12;
+ cstate->off_linkpl.constant_part = -1; /* L3 proto location dep. on cookie type */
+ cstate->off_nl = -1; /* L3 proto location dep. on cookie type */
+ cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
break;
case DLT_JUNIPER_VP:
- off_linktype.constant_part = 18;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_linktype.constant_part = 18;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_JUNIPER_ST:
- off_linktype.constant_part = 18;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_linktype.constant_part = 18;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_JUNIPER_ISM:
- off_linktype.constant_part = 8;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_linktype.constant_part = 8;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_JUNIPER_VS:
case DLT_JUNIPER_SRX_E2E:
case DLT_JUNIPER_FIBRECHANNEL:
case DLT_JUNIPER_ATM_CEMIC:
- off_linktype.constant_part = 8;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_linktype.constant_part = 8;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_MTP2:
- off_li = 2;
- off_li_hsl = 4;
- off_sio = 3;
- off_opc = 4;
- off_dpc = 4;
- off_sls = 7;
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_li = 2;
+ cstate->off_li_hsl = 4;
+ cstate->off_sio = 3;
+ cstate->off_opc = 4;
+ cstate->off_dpc = 4;
+ cstate->off_sls = 7;
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_MTP2_WITH_PHDR:
- off_li = 6;
- off_li_hsl = 8;
- off_sio = 7;
- off_opc = 8;
- off_dpc = 8;
- off_sls = 11;
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_li = 6;
+ cstate->off_li_hsl = 8;
+ cstate->off_sio = 7;
+ cstate->off_opc = 8;
+ cstate->off_dpc = 8;
+ cstate->off_sls = 11;
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_ERF:
- off_li = 22;
- off_li_hsl = 24;
- off_sio = 23;
- off_opc = 24;
- off_dpc = 24;
- off_sls = 27;
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ cstate->off_li = 22;
+ cstate->off_li_hsl = 24;
+ cstate->off_sio = 23;
+ cstate->off_opc = 24;
+ cstate->off_dpc = 24;
+ cstate->off_sls = 27;
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_PFSYNC:
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = 4;
- off_nl = 0;
- off_nl_nosnap = 0;
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = 4;
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0;
break;
case DLT_AX25_KISS:
/*
* Currently, only raw "link[N:M]" filtering is supported.
*/
- off_linktype.constant_part = -1; /* variable, min 15, max 71 steps of 7 */
- off_linkpl.constant_part = -1;
- off_nl = -1; /* variable, min 16, max 71 steps of 7 */
- off_nl_nosnap = -1; /* no 802.2 LLC */
+ cstate->off_linktype.constant_part = -1; /* variable, min 15, max 71 steps of 7 */
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1; /* variable, min 16, max 71 steps of 7 */
+ cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
break;
case DLT_IPNET:
- off_linktype.constant_part = 1;
- off_linkpl.constant_part = 24; /* ipnet header length */
- off_nl = 0;
- off_nl_nosnap = -1;
+ cstate->off_linktype.constant_part = 1;
+ cstate->off_linkpl.constant_part = 24; /* ipnet header length */
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = -1;
break;
case DLT_NETANALYZER:
- off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
- off_linktype.constant_part = off_linkhdr.constant_part + 12;
- off_linkpl.constant_part = off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
- off_nl = 0; /* Ethernet II */
- off_nl_nosnap = 3; /* 802.3+802.2 */
+ cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
+ cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
+ cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
+ cstate->off_nl = 0; /* Ethernet II */
+ cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
break;
case DLT_NETANALYZER_TRANSPARENT:
- off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
- off_linktype.constant_part = off_linkhdr.constant_part + 12;
- off_linkpl.constant_part = off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
- off_nl = 0; /* Ethernet II */
- off_nl_nosnap = 3; /* 802.3+802.2 */
+ cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
+ cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
+ cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
+ cstate->off_nl = 0; /* Ethernet II */
+ cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
break;
default:
* For values in the range in which we've assigned new
* DLT_ values, only raw "link[N:M]" filtering is supported.
*/
- if (linktype >= DLT_MATCHING_MIN &&
- linktype <= DLT_MATCHING_MAX) {
- off_linktype.constant_part = -1;
- off_linkpl.constant_part = -1;
- off_nl = -1;
- off_nl_nosnap = -1;
+ if (cstate->linktype >= DLT_MATCHING_MIN &&
+ cstate->linktype <= DLT_MATCHING_MAX) {
+ cstate->off_linktype.constant_part = -1;
+ cstate->off_linkpl.constant_part = -1;
+ cstate->off_nl = -1;
+ cstate->off_nl_nosnap = -1;
} else {
- bpf_error("unknown data link type %d", linktype);
+ bpf_error(cstate, "unknown data link type %d", cstate->linktype);
}
break;
}
- off_outermostlinkhdr = off_prevlinkhdr = off_linkhdr;
+ cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
}
/*
* Load a value relative to the specified absolute offset.
*/
static struct slist *
-gen_load_absoffsetrel(bpf_abs_offset *abs_offset, u_int offset, u_int size)
+gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
+ u_int offset, u_int size)
{
struct slist *s, *s2;
- s = gen_abs_offset_varpart(abs_offset);
+ s = gen_abs_offset_varpart(cstate, abs_offset);
/*
* If "s" is non-null, it has code to arrange that the X register
* variable part of the absolute offset into the X register.
* Do an indirect load, to use the X register as an offset.
*/
- s2 = new_stmt(BPF_LD|BPF_IND|size);
+ s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
s2->s.k = abs_offset->constant_part + offset;
sappend(s, s2);
} else {
* There is no variable part of the absolute offset, so
* just do an absolute load.
*/
- s = new_stmt(BPF_LD|BPF_ABS|size);
+ s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
s->s.k = abs_offset->constant_part + offset;
}
return s;
* Load a value relative to the beginning of the specified header.
*/
static struct slist *
-gen_load_a(offrel, offset, size)
- enum e_offrel offrel;
- u_int offset, size;
+gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
+ u_int size)
{
struct slist *s, *s2;
switch (offrel) {
case OR_PACKET:
- s = new_stmt(BPF_LD|BPF_ABS|size);
+ s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
s->s.k = offset;
break;
case OR_LINKHDR:
- s = gen_load_absoffsetrel(&off_linkhdr, offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
break;
case OR_PREVLINKHDR:
- s = gen_load_absoffsetrel(&off_prevlinkhdr, offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
break;
case OR_LLC:
- s = gen_load_absoffsetrel(&off_linkpl, offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
break;
case OR_PREVMPLSHDR:
- s = gen_load_absoffsetrel(&off_linkpl, off_nl - 4 + offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
break;
case OR_LINKPL:
- s = gen_load_absoffsetrel(&off_linkpl, off_nl + offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
break;
case OR_LINKPL_NOSNAP:
- s = gen_load_absoffsetrel(&off_linkpl, off_nl_nosnap + offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
break;
case OR_LINKTYPE:
- s = gen_load_absoffsetrel(&off_linktype, offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
break;
case OR_TRAN_IPV4:
* preceded by a variable-length header such as a radio
* header), in bytes.
*/
- s = gen_loadx_iphdrlen();
+ s = gen_loadx_iphdrlen(cstate);
/*
* Load the item at {offset of the link-layer payload} +
* value in the X register, and we include the constant
* part in the offset of the load.
*/
- s2 = new_stmt(BPF_LD|BPF_IND|size);
- s2->s.k = off_linkpl.constant_part + off_nl + offset;
+ s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
+ s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
sappend(s, s2);
break;
case OR_TRAN_IPV6:
- s = gen_load_absoffsetrel(&off_linkpl, off_nl + 40 + offset, size);
+ s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
break;
default:
* payload.
*/
static struct slist *
-gen_loadx_iphdrlen()
+gen_loadx_iphdrlen(compiler_state_t *cstate)
{
struct slist *s, *s2;
- s = gen_abs_offset_varpart(&off_linkpl);
+ s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
if (s != NULL) {
/*
* The offset of the link-layer payload has a variable
* value in question into the A register and add to it
* the value from the X register.
*/
- s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
- s2->s.k = off_linkpl.constant_part + off_nl;
+ s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
+ s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
sappend(s, s2);
- s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
s2->s.k = 0xf;
sappend(s, s2);
- s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
s2->s.k = 2;
sappend(s, s2);
* the link-layer payload, which is still in the X
* register, and move the result into the X register.
*/
- sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
- sappend(s, new_stmt(BPF_MISC|BPF_TAX));
+ sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
+ sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
} else {
/*
* The offset of the link-layer payload is a constant,
*
* This means we can use the 4*([k]&0xf) addressing
* mode. Load the length of the IPv4 header, which
- * is at an offset of off_nl from the beginning of
+ * is at an offset of cstate->off_nl from the beginning of
* the link-layer payload, and thus at an offset of
- * off_linkpl.constant_part + off_nl from the beginning
+ * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
* of the raw packet data, using that addressing mode.
*/
- s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
- s->s.k = off_linkpl.constant_part + off_nl;
+ s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
+ s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
}
return s;
}
static struct block *
-gen_uncond(rsense)
- int rsense;
+gen_uncond(compiler_state_t *cstate, int rsense)
{
struct block *b;
struct slist *s;
- s = new_stmt(BPF_LD|BPF_IMM);
+ s = new_stmt(cstate, BPF_LD|BPF_IMM);
s->s.k = !rsense;
- b = new_block(JMP(BPF_JEQ));
+ b = new_block(cstate, JMP(BPF_JEQ));
b->stmts = s;
return b;
}
static inline struct block *
-gen_true()
+gen_true(compiler_state_t *cstate)
{
- return gen_uncond(1);
+ return gen_uncond(cstate, 1);
}
static inline struct block *
-gen_false()
+gen_false(compiler_state_t *cstate)
{
- return gen_uncond(0);
+ return gen_uncond(cstate, 0);
}
/*
* the appropriate test.
*/
static struct block *
-gen_ether_linktype(proto)
- register int proto;
+gen_ether_linktype(compiler_state_t *cstate, int proto)
{
struct block *b0, *b1;
* DSAP, as we do for other types <= ETHERMTU
* (i.e., other SAP values)?
*/
- b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
+ b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
gen_not(b0);
- b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)
+ b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
((proto << 8) | proto));
gen_and(b0, b1);
return b1;
* This generates code to check both for the
* IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
*/
- b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
- b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
+ b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
+ b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
gen_or(b0, b1);
/*
* Now we add code to check for SNAP frames with
* ETHERTYPE_IPX, i.e. Ethernet_SNAP.
*/
- b0 = gen_snap(0x000000, ETHERTYPE_IPX);
+ b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
gen_or(b0, b1);
/*
* Now we generate code to check for 802.3
* frames in general.
*/
- b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
+ b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
gen_not(b0);
/*
* do that before checking for the other frame
* types.
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
gen_or(b0, b1);
return b1;
* we check for an Ethernet type field less than
* 1500, which means it's an 802.3 length field.
*/
- b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
+ b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
gen_not(b0);
/*
* type of ETHERTYPE_AARP (Appletalk ARP).
*/
if (proto == ETHERTYPE_ATALK)
- b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
+ b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
else /* proto == ETHERTYPE_AARP */
- b1 = gen_snap(0x000000, ETHERTYPE_AARP);
+ b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
gen_and(b0, b1);
/*
* phase 1?); we just check for the Ethernet
* protocol type.
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
gen_or(b0, b1);
return b1;
* a length field, <= ETHERMTU) and
* then check the DSAP.
*/
- b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
+ b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
gen_not(b0);
- b1 = gen_cmp(OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
+ b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
gen_and(b0, b1);
return b1;
} else {
* will fail and the frame won't match,
* which is what we want).
*/
- return gen_cmp(OR_LINKTYPE, 0, BPF_H,
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
(bpf_int32)proto);
}
}
* or IPv6 then we have an error.
*/
static struct block *
-gen_ipnet_linktype(proto)
- register int proto;
+gen_ipnet_linktype(compiler_state_t *cstate, int proto)
{
switch (proto) {
case ETHERTYPE_IP:
- return gen_cmp(OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
/* NOTREACHED */
case ETHERTYPE_IPV6:
- return gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)IPH_AF_INET6);
/* NOTREACHED */
break;
}
- return gen_false();
+ return gen_false(cstate);
}
/*
* LINUX_SLL_P_802_2 value and then do the appropriate test.
*/
static struct block *
-gen_linux_sll_linktype(proto)
- register int proto;
+gen_linux_sll_linktype(compiler_state_t *cstate, int proto)
{
struct block *b0, *b1;
* DSAP, as we do for other types <= ETHERMTU
* (i.e., other SAP values)?
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
- b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
+ b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
((proto << 8) | proto));
gen_and(b0, b1);
return b1;
* then put a check for LINUX_SLL_P_802_2 frames
* before it.
*/
- b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
- b1 = gen_snap(0x000000, ETHERTYPE_IPX);
+ b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
+ b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
gen_or(b0, b1);
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
gen_and(b0, b1);
/*
* Now check for 802.3 frames and OR that with
* the previous test.
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
gen_or(b0, b1);
/*
* do that before checking for the other frame
* types.
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
gen_or(b0, b1);
return b1;
* we check for the 802.2 protocol type in the
* "Ethernet type" field.
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
/*
* 802.2-encapsulated ETHERTYPE_ATALK packets are
* type of ETHERTYPE_AARP (Appletalk ARP).
*/
if (proto == ETHERTYPE_ATALK)
- b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
+ b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
else /* proto == ETHERTYPE_AARP */
- b1 = gen_snap(0x000000, ETHERTYPE_AARP);
+ b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
gen_and(b0, b1);
/*
* phase 1?); we just check for the Ethernet
* protocol type.
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
gen_or(b0, b1);
return b1;
* in the "Ethernet type" field, and
* then check the DSAP.
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
- b1 = gen_cmp(OR_LINKHDR, off_linkpl.constant_part, BPF_B,
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
+ b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
(bpf_int32)proto);
gen_and(b0, b1);
return b1;
* will fail and the frame won't match,
* which is what we want).
*/
- return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
}
}
}
static struct slist *
-gen_load_prism_llprefixlen()
+gen_load_prism_llprefixlen(compiler_state_t *cstate)
{
struct slist *s1, *s2;
struct slist *sjeq_avs_cookie;
* we are generating jmp instructions within a normal
* slist of instructions
*/
- no_optimize = 1;
+ cstate->no_optimize = 1;
/*
* Generate code to load the length of the radio header into
* but no known software generates headers that aren't 144
* bytes long.
*/
- if (off_linkhdr.reg != -1) {
+ if (cstate->off_linkhdr.reg != -1) {
/*
* Load the cookie.
*/
- s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
+ s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
s1->s.k = 0;
/*
* AND it with 0xFFFFF000.
*/
- s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
s2->s.k = 0xFFFFF000;
sappend(s1, s2);
/*
* Compare with 0x80211000.
*/
- sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
+ sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
sjeq_avs_cookie->s.k = 0x80211000;
sappend(s1, sjeq_avs_cookie);
* the AVS header are the length of the AVS header.
* That field is big-endian.
*/
- s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
+ s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
s2->s.k = 4;
sappend(s1, s2);
sjeq_avs_cookie->s.jt = s2;
* it's added to the PC, so, as we're jumping
* over a single instruction, it should be 1.)
*/
- sjcommon = new_stmt(JMP(BPF_JA));
+ sjcommon = new_stmt(cstate, JMP(BPF_JA));
sjcommon->s.k = 1;
sappend(s1, sjcommon);
* into the A register. Have the test for an AVS
* header branch here if we don't have an AVS header.
*/
- s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
+ s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
s2->s.k = 144;
sappend(s1, s2);
sjeq_avs_cookie->s.jf = s2;
* it. The code for the AVS header will jump here after
* loading the length of the AVS header.
*/
- s2 = new_stmt(BPF_ST);
- s2->s.k = off_linkhdr.reg;
+ s2 = new_stmt(cstate, BPF_ST);
+ s2->s.k = cstate->off_linkhdr.reg;
sappend(s1, s2);
sjcommon->s.jf = s2;
/*
* Now move it into the X register.
*/
- s2 = new_stmt(BPF_MISC|BPF_TAX);
+ s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s1, s2);
return (s1);
}
static struct slist *
-gen_load_avs_llprefixlen()
+gen_load_avs_llprefixlen(compiler_state_t *cstate)
{
struct slist *s1, *s2;
* generated uses that prefix, so we don't need to generate any
* code to load it.)
*/
- if (off_linkhdr.reg != -1) {
+ if (cstate->off_linkhdr.reg != -1) {
/*
* The 4 bytes at an offset of 4 from the beginning of
* the AVS header are the length of the AVS header.
* That field is big-endian.
*/
- s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
+ s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
s1->s.k = 4;
/*
* Now allocate a register to hold that value and store
* it.
*/
- s2 = new_stmt(BPF_ST);
- s2->s.k = off_linkhdr.reg;
+ s2 = new_stmt(cstate, BPF_ST);
+ s2->s.k = cstate->off_linkhdr.reg;
sappend(s1, s2);
/*
* Now move it into the X register.
*/
- s2 = new_stmt(BPF_MISC|BPF_TAX);
+ s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s1, s2);
return (s1);
}
static struct slist *
-gen_load_radiotap_llprefixlen()
+gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
{
struct slist *s1, *s2;
* generated uses that prefix, so we don't need to generate any
* code to load it.)
*/
- if (off_linkhdr.reg != -1) {
+ if (cstate->off_linkhdr.reg != -1) {
/*
* The 2 bytes at offsets of 2 and 3 from the beginning
* of the radiotap header are the length of the radiotap
* Load the high-order byte, at an offset of 3, shift it
* left a byte, and put the result in the X register.
*/
- s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
+ s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
s1->s.k = 3;
- s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
sappend(s1, s2);
s2->s.k = 8;
- s2 = new_stmt(BPF_MISC|BPF_TAX);
+ s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s1, s2);
/*
* Load the next byte, at an offset of 2, and OR the
* value from the X register into it.
*/
- s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
+ s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
sappend(s1, s2);
s2->s.k = 2;
- s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
sappend(s1, s2);
/*
* Now allocate a register to hold that value and store
* it.
*/
- s2 = new_stmt(BPF_ST);
- s2->s.k = off_linkhdr.reg;
+ s2 = new_stmt(cstate, BPF_ST);
+ s2->s.k = cstate->off_linkhdr.reg;
sappend(s1, s2);
/*
* Now move it into the X register.
*/
- s2 = new_stmt(BPF_MISC|BPF_TAX);
+ s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s1, s2);
return (s1);
* that's done in finish_parse().
*/
static struct slist *
-gen_load_ppi_llprefixlen()
+gen_load_ppi_llprefixlen(compiler_state_t *cstate)
{
struct slist *s1, *s2;
* into the register assigned to hold that length, if one has
* been assigned.
*/
- if (off_linkhdr.reg != -1) {
+ if (cstate->off_linkhdr.reg != -1) {
/*
* The 2 bytes at offsets of 2 and 3 from the beginning
* of the radiotap header are the length of the radiotap
* Load the high-order byte, at an offset of 3, shift it
* left a byte, and put the result in the X register.
*/
- s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
+ s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
s1->s.k = 3;
- s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
sappend(s1, s2);
s2->s.k = 8;
- s2 = new_stmt(BPF_MISC|BPF_TAX);
+ s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s1, s2);
/*
* Load the next byte, at an offset of 2, and OR the
* value from the X register into it.
*/
- s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
+ s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
sappend(s1, s2);
s2->s.k = 2;
- s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
sappend(s1, s2);
/*
* Now allocate a register to hold that value and store
* it.
*/
- s2 = new_stmt(BPF_ST);
- s2->s.k = off_linkhdr.reg;
+ s2 = new_stmt(cstate, BPF_ST);
+ s2->s.k = cstate->off_linkhdr.reg;
sappend(s1, s2);
/*
* Now move it into the X register.
*/
- s2 = new_stmt(BPF_MISC|BPF_TAX);
+ s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s1, s2);
return (s1);
* radio information.
*/
static struct slist *
-gen_load_802_11_header_len(struct slist *s, struct slist *snext)
+gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
{
struct slist *s2;
struct slist *sjset_data_frame_1;
struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
struct slist *s_roundup;
- if (off_linkpl.reg == -1) {
+ if (cstate->off_linkpl.reg == -1) {
/*
* No register has been assigned to the offset of
* the link-layer payload, which means nobody needs
* we are generating jmp instructions within a normal
* slist of instructions
*/
- no_optimize = 1;
+ cstate->no_optimize = 1;
/*
* If "s" is non-null, it has code to arrange that the X register
*
* Load the length of the fixed-length prefix preceding
* the link-layer header (if any) into the X register,
- * and store it in the off_linkpl.reg register.
+ * and store it in the cstate->off_linkpl.reg register.
* That length is off_outermostlinkhdr.constant_part.
*/
- s = new_stmt(BPF_LDX|BPF_IMM);
- s->s.k = off_outermostlinkhdr.constant_part;
+ s = new_stmt(cstate, BPF_LDX|BPF_IMM);
+ s->s.k = cstate->off_outermostlinkhdr.constant_part;
}
/*
* The X register contains the offset of the beginning of the
* link-layer header; add 24, which is the minimum length
* of the MAC header for a data frame, to that, and store it
- * in off_linkpl.reg, and then load the Frame Control field,
+ * in cstate->off_linkpl.reg, and then load the Frame Control field,
* which is at the offset in the X register, with an indexed load.
*/
- s2 = new_stmt(BPF_MISC|BPF_TXA);
+ s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
sappend(s, s2);
- s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s2->s.k = 24;
sappend(s, s2);
- s2 = new_stmt(BPF_ST);
- s2->s.k = off_linkpl.reg;
+ s2 = new_stmt(cstate, BPF_ST);
+ s2->s.k = cstate->off_linkpl.reg;
sappend(s, s2);
- s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
+ s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
s2->s.k = 0;
sappend(s, s2);
* a data frame has the 0x08 bit (b3) in that field set and the
* 0x04 bit (b2) clear.
*/
- sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
+ sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
sjset_data_frame_1->s.k = 0x08;
sappend(s, sjset_data_frame_1);
* If b3 is set, test b2, otherwise go to the first statement of
* the rest of the program.
*/
- sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
+ sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
sjset_data_frame_2->s.k = 0x04;
sappend(s, sjset_data_frame_2);
sjset_data_frame_1->s.jf = snext;
* program.
*/
sjset_data_frame_2->s.jt = snext;
- sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
+ sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
sjset_qos->s.k = 0x80; /* QoS bit */
sappend(s, sjset_qos);
/*
- * If it's set, add 2 to off_linkpl.reg, to skip the QoS
+ * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
* field.
* Otherwise, go to the first statement of the rest of the
* program.
*/
- sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
- s2->s.k = off_linkpl.reg;
+ sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
+ s2->s.k = cstate->off_linkpl.reg;
sappend(s, s2);
- s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
s2->s.k = 2;
sappend(s, s2);
- s2 = new_stmt(BPF_ST);
- s2->s.k = off_linkpl.reg;
+ s2 = new_stmt(cstate, BPF_ST);
+ s2->s.k = cstate->off_linkpl.reg;
sappend(s, s2);
/*
* annoying padding don't have multiple antennae and therefore
* do not generate radiotap headers with multiple presence words.
*/
- if (linktype == DLT_IEEE802_11_RADIO) {
+ if (cstate->linktype == DLT_IEEE802_11_RADIO) {
/*
* Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
* in the first presence flag word?
*/
- sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
+ sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
s2->s.k = 4;
sappend(s, s2);
- sjset_radiotap_flags_present = new_stmt(JMP(BPF_JSET));
+ sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
sappend(s, sjset_radiotap_flags_present);
/*
* Otherwise, is the "extension" bit set in that word?
*/
- sjset_radiotap_ext_present = new_stmt(JMP(BPF_JSET));
+ sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
sappend(s, sjset_radiotap_ext_present);
sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
/*
* Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
*/
- sjset_radiotap_tsft_present = new_stmt(JMP(BPF_JSET));
+ sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
sappend(s, sjset_radiotap_tsft_present);
sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
* Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
* is set.
*/
- s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
+ s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
s2->s.k = 16;
sappend(s, s2);
sjset_radiotap_tsft_present->s.jt = s2;
- sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
+ sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
sjset_tsft_datapad->s.k = 0x20;
sappend(s, sjset_tsft_datapad);
* Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
* is set.
*/
- s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
+ s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
s2->s.k = 8;
sappend(s, s2);
sjset_radiotap_tsft_present->s.jf = s2;
- sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
+ sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
sjset_notsft_datapad->s.k = 0x20;
sappend(s, sjset_notsft_datapad);
* dividing by and multiplying by 4, which we do by
* ANDing with ~3.
*/
- s_roundup = new_stmt(BPF_LD|BPF_MEM);
- s_roundup->s.k = off_linkpl.reg;
+ s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
+ s_roundup->s.k = cstate->off_linkpl.reg;
sappend(s, s_roundup);
- s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
s2->s.k = 3;
sappend(s, s2);
- s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
s2->s.k = ~3;
sappend(s, s2);
- s2 = new_stmt(BPF_ST);
- s2->s.k = off_linkpl.reg;
+ s2 = new_stmt(cstate, BPF_ST);
+ s2->s.k = cstate->off_linkpl.reg;
sappend(s, s2);
sjset_tsft_datapad->s.jt = s_roundup;
}
static void
-insert_compute_vloffsets(b)
- struct block *b;
+insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
{
struct slist *s;
* includes the variable part of the header. Therefore,
* if nobody else has allocated a register for the link
* header and we need it, do it now. */
- if (off_linkpl.reg != -1 && off_linkhdr.is_variable &&
- off_linkhdr.reg == -1)
- off_linkhdr.reg = alloc_reg();
+ if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
+ cstate->off_linkhdr.reg == -1)
+ cstate->off_linkhdr.reg = alloc_reg(cstate);
/*
* For link-layer types that have a variable-length header
* some other protocol stack. That's significantly more
* complicated.
*/
- switch (outermostlinktype) {
+ switch (cstate->outermostlinktype) {
case DLT_PRISM_HEADER:
- s = gen_load_prism_llprefixlen();
+ s = gen_load_prism_llprefixlen(cstate);
break;
case DLT_IEEE802_11_RADIO_AVS:
- s = gen_load_avs_llprefixlen();
+ s = gen_load_avs_llprefixlen(cstate);
break;
case DLT_IEEE802_11_RADIO:
- s = gen_load_radiotap_llprefixlen();
+ s = gen_load_radiotap_llprefixlen(cstate);
break;
case DLT_PPI:
- s = gen_load_ppi_llprefixlen();
+ s = gen_load_ppi_llprefixlen(cstate);
break;
default:
* header, generate code to load the offset of the link-layer
* payload into the register assigned to that offset, if any.
*/
- switch (outermostlinktype) {
+ switch (cstate->outermostlinktype) {
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
case DLT_IEEE802_11_RADIO:
case DLT_PPI:
- s = gen_load_802_11_header_len(s, b->stmts);
+ s = gen_load_802_11_header_len(cstate, s, b->stmts);
break;
}
}
static struct block *
-gen_ppi_dlt_check(void)
+gen_ppi_dlt_check(compiler_state_t *cstate)
{
struct slist *s_load_dlt;
struct block *b;
- if (linktype == DLT_PPI)
+ if (cstate->linktype == DLT_PPI)
{
/* Create the statements that check for the DLT
*/
- s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
+ s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
s_load_dlt->s.k = 4;
- b = new_block(JMP(BPF_JEQ));
+ b = new_block(cstate, JMP(BPF_JEQ));
b->stmts = s_load_dlt;
b->s.k = SWAPLONG(DLT_IEEE802_11);
* be placed earlier in the code sequence.)
*/
static struct slist *
-gen_abs_offset_varpart(bpf_abs_offset *off)
+gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
{
struct slist *s;
* variable part of the offset of the link-layer
* header; allocate one.
*/
- off->reg = alloc_reg();
+ off->reg = alloc_reg(cstate);
}
/*
* Load the register containing the variable part of the
* offset of the link-layer header into the X register.
*/
- s = new_stmt(BPF_LDX|BPF_MEM);
+ s = new_stmt(cstate, BPF_LDX|BPF_MEM);
s->s.k = off->reg;
return s;
} else {
* for that encapsulation).
*/
static struct block *
-gen_prevlinkhdr_check(void)
+gen_prevlinkhdr_check(compiler_state_t *cstate)
{
struct block *b0;
- if (is_geneve)
- return gen_geneve_ll_check();
+ if (cstate->is_geneve)
+ return gen_geneve_ll_check(cstate);
- switch (prevlinktype) {
+ switch (cstate->prevlinktype) {
case DLT_SUNATM:
/*
*
* (We've already generated a test for LANE.)
*/
- b0 = gen_cmp(OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
+ b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
gen_not(b0);
return b0;
* value, if <= ETHERMTU.
*/
static struct block *
-gen_linktype(proto)
- register int proto;
+gen_linktype(compiler_state_t *cstate, int proto)
{
struct block *b0, *b1, *b2;
const char *description;
/* are we checking MPLS-encapsulated packets? */
- if (label_stack_depth > 0) {
+ if (cstate->label_stack_depth > 0) {
switch (proto) {
case ETHERTYPE_IP:
case PPP_IP:
/* FIXME add other L3 proto IDs */
- return gen_mpls_linktype(Q_IP);
+ return gen_mpls_linktype(cstate, Q_IP);
case ETHERTYPE_IPV6:
case PPP_IPV6:
/* FIXME add other L3 proto IDs */
- return gen_mpls_linktype(Q_IPV6);
+ return gen_mpls_linktype(cstate, Q_IPV6);
default:
- bpf_error("unsupported protocol over mpls");
+ bpf_error(cstate, "unsupported protocol over mpls");
/* NOTREACHED */
}
}
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
/* Geneve has an EtherType regardless of whether there is an
* L2 header. */
- if (!is_geneve)
- b0 = gen_prevlinkhdr_check();
+ if (!cstate->is_geneve)
+ b0 = gen_prevlinkhdr_check(cstate);
else
b0 = NULL;
- b1 = gen_ether_linktype(proto);
+ b1 = gen_ether_linktype(cstate, proto);
if (b0 != NULL)
gen_and(b0, b1);
return b1;
/* fall through */
default:
- return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
/*NOTREACHED*/
break;
}
/*
* Check that we have a data frame.
*/
- b0 = gen_check_802_11_data_frame();
+ b0 = gen_check_802_11_data_frame(cstate);
/*
* Now check for the specified link-layer type.
*/
- b1 = gen_llc_linktype(proto);
+ b1 = gen_llc_linktype(cstate, proto);
gen_and(b0, b1);
return b1;
/*NOTREACHED*/
/*
* XXX - check for LLC frames.
*/
- return gen_llc_linktype(proto);
+ return gen_llc_linktype(cstate, proto);
/*NOTREACHED*/
break;
/*
* XXX - check for LLC PDUs, as per IEEE 802.5.
*/
- return gen_llc_linktype(proto);
+ return gen_llc_linktype(cstate, proto);
/*NOTREACHED*/
break;
case DLT_ATM_RFC1483:
case DLT_ATM_CLIP:
case DLT_IP_OVER_FC:
- return gen_llc_linktype(proto);
+ return gen_llc_linktype(cstate, proto);
/*NOTREACHED*/
break;
*
* Check for LLC encapsulation and then check the protocol.
*/
- b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
- b1 = gen_llc_linktype(proto);
+ b0 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
+ b1 = gen_llc_linktype(cstate, proto);
gen_and(b0, b1);
return b1;
/*NOTREACHED*/
break;
case DLT_LINUX_SLL:
- return gen_linux_sll_linktype(proto);
+ return gen_linux_sll_linktype(cstate, proto);
/*NOTREACHED*/
break;
case ETHERTYPE_IP:
/* Check for a version number of 4. */
- return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
+ return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
case ETHERTYPE_IPV6:
/* Check for a version number of 6. */
- return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
+ return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
default:
- return gen_false(); /* always false */
+ return gen_false(cstate); /* always false */
}
/*NOTREACHED*/
break;
* Raw IPv4, so no type field.
*/
if (proto == ETHERTYPE_IP)
- return gen_true(); /* always true */
+ return gen_true(cstate); /* always true */
/* Checking for something other than IPv4; always false */
- return gen_false();
+ return gen_false(cstate);
/*NOTREACHED*/
break;
* Raw IPv6, so no type field.
*/
if (proto == ETHERTYPE_IPV6)
- return gen_true(); /* always true */
+ return gen_true(cstate); /* always true */
/* Checking for something other than IPv6; always false */
- return gen_false();
+ return gen_false(cstate);
/*NOTREACHED*/
break;
* map them to the corresponding PPP protocol types.
*/
proto = ethertype_to_ppptype(proto);
- return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
/*NOTREACHED*/
break;
* Also check for Van Jacobson-compressed IP.
* XXX - do this for other forms of PPP?
*/
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_IP);
- b1 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJC);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
+ b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
gen_or(b0, b1);
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
gen_or(b1, b0);
return b0;
default:
proto = ethertype_to_ppptype(proto);
- return gen_cmp(OR_LINKTYPE, 0, BPF_H,
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
(bpf_int32)proto);
}
/*NOTREACHED*/
* XXX - support those that have AF_ values
* #defined on this platform, at least?
*/
- return gen_false();
+ return gen_false(cstate);
}
- if (linktype == DLT_NULL || linktype == DLT_ENC) {
+ if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
/*
* The AF_ value is in host byte order, but
* the BPF interpreter will convert it to
* Then we run it through "htonl()", and
* generate code to compare against the result.
*/
- if (bpf_pcap->rfile != NULL && bpf_pcap->swapped)
+ if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
proto = SWAPLONG(proto);
proto = htonl(proto);
}
- return (gen_cmp(OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
+ return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
#ifdef HAVE_NET_PFVAR_H
case DLT_PFLOG:
* the packet.
*/
if (proto == ETHERTYPE_IP)
- return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af),
+ return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
BPF_B, (bpf_int32)AF_INET));
else if (proto == ETHERTYPE_IPV6)
- return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af),
+ return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
BPF_B, (bpf_int32)AF_INET6));
else
- return gen_false();
+ return gen_false(cstate);
/*NOTREACHED*/
break;
#endif /* HAVE_NET_PFVAR_H */
switch (proto) {
default:
- return gen_false();
+ return gen_false(cstate);
case ETHERTYPE_IPV6:
- return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)ARCTYPE_INET6));
case ETHERTYPE_IP:
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)ARCTYPE_IP);
- b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)ARCTYPE_IP_OLD);
gen_or(b0, b1);
return (b1);
case ETHERTYPE_ARP:
- b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)ARCTYPE_ARP);
- b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)ARCTYPE_ARP_OLD);
gen_or(b0, b1);
return (b1);
case ETHERTYPE_REVARP:
- return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)ARCTYPE_REVARP));
case ETHERTYPE_ATALK:
- return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
+ return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
(bpf_int32)ARCTYPE_ATALK));
}
/*NOTREACHED*/
case DLT_LTALK:
switch (proto) {
case ETHERTYPE_ATALK:
- return gen_true();
+ return gen_true(cstate);
default:
- return gen_false();
+ return gen_false(cstate);
}
/*NOTREACHED*/
break;
/*
* Check for the special NLPID for IP.
*/
- return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
+ return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
case ETHERTYPE_IPV6:
/*
* Check for the special NLPID for IPv6.
*/
- return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
+ return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
case LLCSAP_ISONS:
/*
* control field of UI, i.e. 0x03 followed
* by the NLPID.
*/
- b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
- b1 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
- b2 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
+ b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
+ b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
+ b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
gen_or(b1, b2);
gen_or(b0, b2);
return b2;
default:
- return gen_false();
+ return gen_false(cstate);
}
/*NOTREACHED*/
break;
case DLT_MFR:
- bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
+ bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
case DLT_JUNIPER_MFR:
case DLT_JUNIPER_MLFR:
*
* FIXME encapsulation specific BPF_ filters
*/
- return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
+ return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
case DLT_BACNET_MS_TP:
- return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
+ return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
case DLT_IPNET:
- return gen_ipnet_linktype(proto);
+ return gen_ipnet_linktype(cstate, proto);
case DLT_LINUX_IRDA:
- bpf_error("IrDA link-layer type filtering not implemented");
+ bpf_error(cstate, "IrDA link-layer type filtering not implemented");
case DLT_DOCSIS:
- bpf_error("DOCSIS link-layer type filtering not implemented");
+ bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
case DLT_MTP2:
case DLT_MTP2_WITH_PHDR:
- bpf_error("MTP2 link-layer type filtering not implemented");
+ bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
case DLT_ERF:
- bpf_error("ERF link-layer type filtering not implemented");
+ bpf_error(cstate, "ERF link-layer type filtering not implemented");
case DLT_PFSYNC:
- bpf_error("PFSYNC link-layer type filtering not implemented");
+ bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
case DLT_LINUX_LAPD:
- bpf_error("LAPD link-layer type filtering not implemented");
+ bpf_error(cstate, "LAPD link-layer type filtering not implemented");
case DLT_USB:
case DLT_USB_LINUX:
case DLT_USB_LINUX_MMAPPED:
- bpf_error("USB link-layer type filtering not implemented");
+ bpf_error(cstate, "USB link-layer type filtering not implemented");
case DLT_BLUETOOTH_HCI_H4:
case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
- bpf_error("Bluetooth link-layer type filtering not implemented");
+ bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
case DLT_CAN20B:
case DLT_CAN_SOCKETCAN:
- bpf_error("CAN link-layer type filtering not implemented");
+ bpf_error(cstate, "CAN link-layer type filtering not implemented");
case DLT_IEEE802_15_4:
case DLT_IEEE802_15_4_LINUX:
case DLT_IEEE802_15_4_NONASK_PHY:
case DLT_IEEE802_15_4_NOFCS:
- bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
+ bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
case DLT_IEEE802_16_MAC_CPS_RADIO:
- bpf_error("IEEE 802.16 link-layer type filtering not implemented");
+ bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
case DLT_SITA:
- bpf_error("SITA link-layer type filtering not implemented");
+ bpf_error(cstate, "SITA link-layer type filtering not implemented");
case DLT_RAIF1:
- bpf_error("RAIF1 link-layer type filtering not implemented");
+ bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
case DLT_IPMB:
- bpf_error("IPMB link-layer type filtering not implemented");
+ bpf_error(cstate, "IPMB link-layer type filtering not implemented");
case DLT_AX25_KISS:
- bpf_error("AX.25 link-layer type filtering not implemented");
+ bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
case DLT_NFLOG:
/* Using the fixed-size NFLOG header it is possible to tell only
* the address family of the packet, other meaningful data is
* either missing or behind TLVs.
*/
- bpf_error("NFLOG link-layer type filtering not implemented");
+ bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
default:
/*
* so, off_linktype.constant_part will be the offset of that
* field in the packet; if not, it will be -1.
*/
- if (off_linktype.constant_part != (u_int)-1) {
+ if (cstate->off_linktype.constant_part != (u_int)-1) {
/*
* Yes; assume it's an Ethernet type. (If
* it's not, it needs to be handled specially
* above.)
*/
- return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
+ return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
} else {
/*
* No; report an error.
*/
- description = pcap_datalink_val_to_description(linktype);
+ description = pcap_datalink_val_to_description(cstate->linktype);
if (description != NULL) {
- bpf_error("%s link-layer type filtering not implemented",
+ bpf_error(cstate, "%s link-layer type filtering not implemented",
description);
} else {
- bpf_error("DLT %u link-layer type filtering not implemented",
- linktype);
+ bpf_error(cstate, "DLT %u link-layer type filtering not implemented",
+ cstate->linktype);
}
}
break;
* code and protocol type in the SNAP header.
*/
static struct block *
-gen_snap(orgcode, ptype)
- bpf_u_int32 orgcode;
- bpf_u_int32 ptype;
+gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
{
u_char snapblock[8];
snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
- return gen_bcmp(OR_LLC, 0, 8, snapblock);
+ return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
}
/*
* Generate code to match frames with an LLC header.
*/
struct block *
-gen_llc(void)
+gen_llc(compiler_state_t *cstate)
{
struct block *b0, *b1;
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_EN10MB:
/*
* We check for an Ethernet type field less than
* 1500, which means it's an 802.3 length field.
*/
- b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
+ b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
gen_not(b0);
/*
* Now check for the purported DSAP and SSAP not being
* 0xFF, to rule out NetWare-over-802.3.
*/
- b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
+ b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
gen_not(b1);
gen_and(b0, b1);
return b1;
/*
* We check for LLC traffic.
*/
- b0 = gen_atmtype_abbrev(A_LLC);
+ b0 = gen_atmtype_abbrev(cstate, A_LLC);
return b0;
case DLT_IEEE802: /* Token Ring */
/*
* XXX - check for LLC frames.
*/
- return gen_true();
+ return gen_true(cstate);
case DLT_FDDI:
/*
* XXX - check for LLC frames.
*/
- return gen_true();
+ return gen_true(cstate);
case DLT_ATM_RFC1483:
/*
* way to check for that; the protocol used on the VC
* is negotiated out of band.
*/
- return gen_true();
+ return gen_true(cstate);
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
/*
* Check that we have a data frame.
*/
- b0 = gen_check_802_11_data_frame();
+ b0 = gen_check_802_11_data_frame(cstate);
return b0;
default:
- bpf_error("'llc' not supported for linktype %d", linktype);
+ bpf_error(cstate, "'llc' not supported for linktype %d", cstate->linktype);
/* NOTREACHED */
}
}
struct block *
-gen_llc_i(void)
+gen_llc_i(compiler_state_t *cstate)
{
struct block *b0, *b1;
struct slist *s;
/*
* Check whether this is an LLC frame.
*/
- b0 = gen_llc();
+ b0 = gen_llc(cstate);
/*
* Load the control byte and test the low-order bit; it must
* be clear for I frames.
*/
- s = gen_load_a(OR_LLC, 2, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x01;
b1->stmts = s;
gen_not(b1);
}
struct block *
-gen_llc_s(void)
+gen_llc_s(compiler_state_t *cstate)
{
struct block *b0, *b1;
/*
* Check whether this is an LLC frame.
*/
- b0 = gen_llc();
+ b0 = gen_llc(cstate);
/*
* Now compare the low-order 2 bit of the control byte against
* the appropriate value for S frames.
*/
- b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
+ b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
gen_and(b0, b1);
return b1;
}
struct block *
-gen_llc_u(void)
+gen_llc_u(compiler_state_t *cstate)
{
struct block *b0, *b1;
/*
* Check whether this is an LLC frame.
*/
- b0 = gen_llc();
+ b0 = gen_llc(cstate);
/*
* Now compare the low-order 2 bit of the control byte against
* the appropriate value for U frames.
*/
- b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
+ b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
gen_and(b0, b1);
return b1;
}
struct block *
-gen_llc_s_subtype(bpf_u_int32 subtype)
+gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
{
struct block *b0, *b1;
/*
* Check whether this is an LLC frame.
*/
- b0 = gen_llc();
+ b0 = gen_llc(cstate);
/*
* Now check for an S frame with the appropriate type.
*/
- b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
+ b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
gen_and(b0, b1);
return b1;
}
struct block *
-gen_llc_u_subtype(bpf_u_int32 subtype)
+gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
{
struct block *b0, *b1;
/*
* Check whether this is an LLC frame.
*/
- b0 = gen_llc();
+ b0 = gen_llc(cstate);
/*
* Now check for a U frame with the appropriate type.
*/
- b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
+ b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
gen_and(b0, b1);
return b1;
}
* protocol ID in a SNAP header.
*/
static struct block *
-gen_llc_linktype(proto)
- int proto;
+gen_llc_linktype(compiler_state_t *cstate, int proto)
{
/*
* XXX - handle token-ring variable-length header.
* SSAP, like this, or should we check just the
* DSAP, as we do for other SAP values?
*/
- return gen_cmp(OR_LLC, 0, BPF_H, (bpf_u_int32)
+ return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
((proto << 8) | proto));
case LLCSAP_IPX:
* XXX - are there ever SNAP frames for IPX on
* non-Ethernet 802.x networks?
*/
- return gen_cmp(OR_LLC, 0, BPF_B,
+ return gen_cmp(cstate, OR_LLC, 0, BPF_B,
(bpf_int32)LLCSAP_IPX);
case ETHERTYPE_ATALK:
* XXX - check for an organization code of
* encapsulated Ethernet as well?
*/
- return gen_snap(0x080007, ETHERTYPE_ATALK);
+ return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
default:
/*
* This is an LLC SAP value, so check
* the DSAP.
*/
- return gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)proto);
+ return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto);
} else {
/*
* This is an Ethernet type; we assume that it's
* organization code of 0x000000 (encapsulated
* Ethernet), we'd do
*
- * return gen_snap(0x000000, proto);
+ * return gen_snap(cstate, 0x000000, proto);
*
* here; for now, we don't, as per the above.
* I don't know whether it's worth the extra CPU
* time to do the right check or not.
*/
- return gen_cmp(OR_LLC, 6, BPF_H, (bpf_int32)proto);
+ return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto);
}
}
}
static struct block *
-gen_hostop(addr, mask, dir, proto, src_off, dst_off)
- bpf_u_int32 addr;
- bpf_u_int32 mask;
- int dir, proto;
- u_int src_off, dst_off;
+gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
+ int dir, int proto, u_int src_off, u_int dst_off)
{
struct block *b0, *b1;
u_int offset;
break;
case Q_AND:
- b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
- b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
+ b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
+ b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
gen_and(b0, b1);
return b1;
case Q_OR:
case Q_DEFAULT:
- b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
- b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
+ b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
+ b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
gen_or(b0, b1);
return b1;
default:
abort();
}
- b0 = gen_linktype(proto);
- b1 = gen_mcmp(OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
+ b0 = gen_linktype(cstate, proto);
+ b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
gen_and(b0, b1);
return b1;
}
#ifdef INET6
static struct block *
-gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
- struct in6_addr *addr;
- struct in6_addr *mask;
- int dir, proto;
- u_int src_off, dst_off;
+gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
+ struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off)
{
struct block *b0, *b1;
u_int offset;
break;
case Q_AND:
- b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
- b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
+ b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
+ b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
gen_and(b0, b1);
return b1;
case Q_OR:
case Q_DEFAULT:
- b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
- b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
+ b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
+ b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
gen_or(b0, b1);
return b1;
/* this order is important */
a = (u_int32_t *)addr;
m = (u_int32_t *)mask;
- b1 = gen_mcmp(OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
- b0 = gen_mcmp(OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
+ b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
+ b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
gen_and(b0, b1);
- b0 = gen_mcmp(OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
+ b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
gen_and(b0, b1);
- b0 = gen_mcmp(OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
+ b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
gen_and(b0, b1);
- b0 = gen_linktype(proto);
+ b0 = gen_linktype(cstate, proto);
gen_and(b0, b1);
return b1;
}
#endif
static struct block *
-gen_ehostop(eaddr, dir)
- register const u_char *eaddr;
- register int dir;
+gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
register struct block *b0, *b1;
switch (dir) {
case Q_SRC:
- return gen_bcmp(OR_LINKHDR, 6, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
case Q_DST:
- return gen_bcmp(OR_LINKHDR, 0, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
case Q_AND:
- b0 = gen_ehostop(eaddr, Q_SRC);
- b1 = gen_ehostop(eaddr, Q_DST);
+ b0 = gen_ehostop(cstate, eaddr, Q_SRC);
+ b1 = gen_ehostop(cstate, eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
- b0 = gen_ehostop(eaddr, Q_SRC);
- b1 = gen_ehostop(eaddr, Q_DST);
+ b0 = gen_ehostop(cstate, eaddr, Q_SRC);
+ b1 = gen_ehostop(cstate, eaddr, Q_DST);
gen_or(b0, b1);
return b1;
case Q_ADDR1:
- bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
+ bpf_error(cstate, "'addr1' is only supported on 802.11 with 802.11 headers");
break;
case Q_ADDR2:
- bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
+ bpf_error(cstate, "'addr2' is only supported on 802.11 with 802.11 headers");
break;
case Q_ADDR3:
- bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
+ bpf_error(cstate, "'addr3' is only supported on 802.11 with 802.11 headers");
break;
case Q_ADDR4:
- bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
+ bpf_error(cstate, "'addr4' is only supported on 802.11 with 802.11 headers");
break;
case Q_RA:
- bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
+ bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
break;
case Q_TA:
- bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
+ bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
break;
}
abort();
* Like gen_ehostop, but for DLT_FDDI
*/
static struct block *
-gen_fhostop(eaddr, dir)
- register const u_char *eaddr;
- register int dir;
+gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
struct block *b0, *b1;
switch (dir) {
case Q_SRC:
- return gen_bcmp(OR_LINKHDR, 6 + 1 + pcap_fddipad, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
case Q_DST:
- return gen_bcmp(OR_LINKHDR, 0 + 1 + pcap_fddipad, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
case Q_AND:
- b0 = gen_fhostop(eaddr, Q_SRC);
- b1 = gen_fhostop(eaddr, Q_DST);
+ b0 = gen_fhostop(cstate, eaddr, Q_SRC);
+ b1 = gen_fhostop(cstate, eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
- b0 = gen_fhostop(eaddr, Q_SRC);
- b1 = gen_fhostop(eaddr, Q_DST);
+ b0 = gen_fhostop(cstate, eaddr, Q_SRC);
+ b1 = gen_fhostop(cstate, eaddr, Q_DST);
gen_or(b0, b1);
return b1;
case Q_ADDR1:
- bpf_error("'addr1' is only supported on 802.11");
+ bpf_error(cstate, "'addr1' is only supported on 802.11");
break;
case Q_ADDR2:
- bpf_error("'addr2' is only supported on 802.11");
+ bpf_error(cstate, "'addr2' is only supported on 802.11");
break;
case Q_ADDR3:
- bpf_error("'addr3' is only supported on 802.11");
+ bpf_error(cstate, "'addr3' is only supported on 802.11");
break;
case Q_ADDR4:
- bpf_error("'addr4' is only supported on 802.11");
+ bpf_error(cstate, "'addr4' is only supported on 802.11");
break;
case Q_RA:
- bpf_error("'ra' is only supported on 802.11");
+ bpf_error(cstate, "'ra' is only supported on 802.11");
break;
case Q_TA:
- bpf_error("'ta' is only supported on 802.11");
+ bpf_error(cstate, "'ta' is only supported on 802.11");
break;
}
abort();
* Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
*/
static struct block *
-gen_thostop(eaddr, dir)
- register const u_char *eaddr;
- register int dir;
+gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
register struct block *b0, *b1;
switch (dir) {
case Q_SRC:
- return gen_bcmp(OR_LINKHDR, 8, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
case Q_DST:
- return gen_bcmp(OR_LINKHDR, 2, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
case Q_AND:
- b0 = gen_thostop(eaddr, Q_SRC);
- b1 = gen_thostop(eaddr, Q_DST);
+ b0 = gen_thostop(cstate, eaddr, Q_SRC);
+ b1 = gen_thostop(cstate, eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
- b0 = gen_thostop(eaddr, Q_SRC);
- b1 = gen_thostop(eaddr, Q_DST);
+ b0 = gen_thostop(cstate, eaddr, Q_SRC);
+ b1 = gen_thostop(cstate, eaddr, Q_DST);
gen_or(b0, b1);
return b1;
case Q_ADDR1:
- bpf_error("'addr1' is only supported on 802.11");
+ bpf_error(cstate, "'addr1' is only supported on 802.11");
break;
case Q_ADDR2:
- bpf_error("'addr2' is only supported on 802.11");
+ bpf_error(cstate, "'addr2' is only supported on 802.11");
break;
case Q_ADDR3:
- bpf_error("'addr3' is only supported on 802.11");
+ bpf_error(cstate, "'addr3' is only supported on 802.11");
break;
case Q_ADDR4:
- bpf_error("'addr4' is only supported on 802.11");
+ bpf_error(cstate, "'addr4' is only supported on 802.11");
break;
case Q_RA:
- bpf_error("'ra' is only supported on 802.11");
+ bpf_error(cstate, "'ra' is only supported on 802.11");
break;
case Q_TA:
- bpf_error("'ta' is only supported on 802.11");
+ bpf_error(cstate, "'ta' is only supported on 802.11");
break;
}
abort();
* various 802.11 + radio headers.
*/
static struct block *
-gen_wlanhostop(eaddr, dir)
- register const u_char *eaddr;
- register int dir;
+gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
register struct block *b0, *b1, *b2;
register struct slist *s;
* and wipes out some LD instructions generated by the below
* code to validate the Frame Control bits
*/
- no_optimize = 1;
+ cstate->no_optimize = 1;
#endif /* ENABLE_WLAN_FILTERING_PATCH */
switch (dir) {
*
* First, check for To DS set, i.e. check "link[1] & 0x01".
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x01; /* To DS */
b1->stmts = s;
/*
* If To DS is set, the SA is at 24.
*/
- b0 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr);
+ b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
gen_and(b1, b0);
/*
* Now, check for To DS not set, i.e. check
* "!(link[1] & 0x01)".
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b2 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b2 = new_block(cstate, JMP(BPF_JSET));
b2->s.k = 0x01; /* To DS */
b2->stmts = s;
gen_not(b2);
/*
* If To DS is not set, the SA is at 16.
*/
- b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
gen_and(b2, b1);
/*
* Now check for From DS being set, and AND that with
* the ORed-together checks.
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x02; /* From DS */
b1->stmts = s;
gen_and(b1, b0);
/*
* Now check for data frames with From DS not set.
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b2 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b2 = new_block(cstate, JMP(BPF_JSET));
b2->s.k = 0x02; /* From DS */
b2->stmts = s;
gen_not(b2);
/*
* If From DS isn't set, the SA is at 10.
*/
- b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
gen_and(b2, b1);
/*
* Now check for a data frame.
* I.e, check "link[0] & 0x08".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x08;
b1->stmts = s;
* is a management frame.
* I.e, check "!(link[0] & 0x08)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b2 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b2 = new_block(cstate, JMP(BPF_JSET));
b2->s.k = 0x08;
b2->stmts = s;
gen_not(b2);
/*
* For management frames, the SA is at 10.
*/
- b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
gen_and(b2, b1);
/*
*
* I.e., check "!(link[0] & 0x04)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x04;
b1->stmts = s;
gen_not(b1);
*
* First, check for To DS set, i.e. "link[1] & 0x01".
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x01; /* To DS */
b1->stmts = s;
/*
* If To DS is set, the DA is at 16.
*/
- b0 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
+ b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
gen_and(b1, b0);
/*
* Now, check for To DS not set, i.e. check
* "!(link[1] & 0x01)".
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b2 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b2 = new_block(cstate, JMP(BPF_JSET));
b2->s.k = 0x01; /* To DS */
b2->stmts = s;
gen_not(b2);
/*
* If To DS is not set, the DA is at 4.
*/
- b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
gen_and(b2, b1);
/*
* Now check for a data frame.
* I.e, check "link[0] & 0x08".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x08;
b1->stmts = s;
* is a management frame.
* I.e, check "!(link[0] & 0x08)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b2 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b2 = new_block(cstate, JMP(BPF_JSET));
b2->s.k = 0x08;
b2->stmts = s;
gen_not(b2);
/*
* For management frames, the DA is at 4.
*/
- b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
gen_and(b2, b1);
/*
*
* I.e., check "!(link[0] & 0x04)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x04;
b1->stmts = s;
gen_not(b1);
* is a management frame.
* I.e, check "(link[0] & 0x08)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x08;
b1->stmts = s;
/*
* Check addr1.
*/
- b0 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
+ b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
/*
* AND that with the check of addr1.
/*
* Not present in CTS or ACK control frames.
*/
- b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
IEEE80211_FC0_TYPE_MASK);
gen_not(b0);
- b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
+ b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
IEEE80211_FC0_SUBTYPE_MASK);
gen_not(b1);
- b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
+ b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
IEEE80211_FC0_SUBTYPE_MASK);
gen_not(b2);
gen_and(b1, b2);
* is a management frame.
* I.e, check "(link[0] & 0x08)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x08;
b1->stmts = s;
/*
* Check addr2.
*/
- b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
gen_and(b2, b1);
return b1;
* XXX - add BSSID keyword?
*/
case Q_ADDR1:
- return (gen_bcmp(OR_LINKHDR, 4, 6, eaddr));
+ return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
case Q_ADDR2:
/*
* Not present in CTS or ACK control frames.
*/
- b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
IEEE80211_FC0_TYPE_MASK);
gen_not(b0);
- b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
+ b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
IEEE80211_FC0_SUBTYPE_MASK);
gen_not(b1);
- b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
+ b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
IEEE80211_FC0_SUBTYPE_MASK);
gen_not(b2);
gen_and(b1, b2);
gen_or(b0, b2);
- b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
gen_and(b2, b1);
return b1;
/*
* Not present in control frames.
*/
- b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
IEEE80211_FC0_TYPE_MASK);
gen_not(b0);
- b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
gen_and(b0, b1);
return b1;
* frames should have both of those set, so we don't
* check the frame type.
*/
- b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B,
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
- b1 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr);
+ b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
gen_and(b0, b1);
return b1;
case Q_AND:
- b0 = gen_wlanhostop(eaddr, Q_SRC);
- b1 = gen_wlanhostop(eaddr, Q_DST);
+ b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
+ b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
- b0 = gen_wlanhostop(eaddr, Q_SRC);
- b1 = gen_wlanhostop(eaddr, Q_DST);
+ b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
+ b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
gen_or(b0, b1);
return b1;
}
* as the RFC states.)
*/
static struct block *
-gen_ipfchostop(eaddr, dir)
- register const u_char *eaddr;
- register int dir;
+gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
register struct block *b0, *b1;
switch (dir) {
case Q_SRC:
- return gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
case Q_DST:
- return gen_bcmp(OR_LINKHDR, 2, 6, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
case Q_AND:
- b0 = gen_ipfchostop(eaddr, Q_SRC);
- b1 = gen_ipfchostop(eaddr, Q_DST);
+ b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
+ b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
- b0 = gen_ipfchostop(eaddr, Q_SRC);
- b1 = gen_ipfchostop(eaddr, Q_DST);
+ b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
+ b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
gen_or(b0, b1);
return b1;
case Q_ADDR1:
- bpf_error("'addr1' is only supported on 802.11");
+ bpf_error(cstate, "'addr1' is only supported on 802.11");
break;
case Q_ADDR2:
- bpf_error("'addr2' is only supported on 802.11");
+ bpf_error(cstate, "'addr2' is only supported on 802.11");
break;
case Q_ADDR3:
- bpf_error("'addr3' is only supported on 802.11");
+ bpf_error(cstate, "'addr3' is only supported on 802.11");
break;
case Q_ADDR4:
- bpf_error("'addr4' is only supported on 802.11");
+ bpf_error(cstate, "'addr4' is only supported on 802.11");
break;
case Q_RA:
- bpf_error("'ra' is only supported on 802.11");
+ bpf_error(cstate, "'ra' is only supported on 802.11");
break;
case Q_TA:
- bpf_error("'ta' is only supported on 802.11");
+ bpf_error(cstate, "'ta' is only supported on 802.11");
break;
}
abort();
* and not generate masking instructions if the mask is 0xFFFF.
*/
static struct block *
-gen_dnhostop(addr, dir)
- bpf_u_int32 addr;
- int dir;
+gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
{
struct block *b0, *b1, *b2, *tmp;
u_int offset_lh; /* offset if long header is received */
case Q_AND:
/* Inefficient because we do our Calvinball dance twice */
- b0 = gen_dnhostop(addr, Q_SRC);
- b1 = gen_dnhostop(addr, Q_DST);
+ b0 = gen_dnhostop(cstate, addr, Q_SRC);
+ b1 = gen_dnhostop(cstate, addr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_OR:
case Q_DEFAULT:
/* Inefficient because we do our Calvinball dance twice */
- b0 = gen_dnhostop(addr, Q_SRC);
- b1 = gen_dnhostop(addr, Q_DST);
+ b0 = gen_dnhostop(cstate, addr, Q_SRC);
+ b1 = gen_dnhostop(cstate, addr, Q_DST);
gen_or(b0, b1);
return b1;
case Q_ISO:
- bpf_error("ISO host filtering not implemented");
+ bpf_error(cstate, "ISO host filtering not implemented");
default:
abort();
}
- b0 = gen_linktype(ETHERTYPE_DN);
+ b0 = gen_linktype(cstate, ETHERTYPE_DN);
/* Check for pad = 1, long header case */
- tmp = gen_mcmp(OR_LINKPL, 2, BPF_H,
+ tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
(bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
- b1 = gen_cmp(OR_LINKPL, 2 + 1 + offset_lh,
+ b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
BPF_H, (bpf_int32)ntohs((u_short)addr));
gen_and(tmp, b1);
/* Check for pad = 0, long header case */
- tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
- b2 = gen_cmp(OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
+ tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
+ b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
gen_and(tmp, b2);
gen_or(b2, b1);
/* Check for pad = 1, short header case */
- tmp = gen_mcmp(OR_LINKPL, 2, BPF_H,
+ tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
(bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
- b2 = gen_cmp(OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
+ b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
gen_and(tmp, b2);
gen_or(b2, b1);
/* Check for pad = 0, short header case */
- tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
- b2 = gen_cmp(OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
+ tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
+ b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
gen_and(tmp, b2);
gen_or(b2, b1);
- /* Combine with test for linktype */
+ /* Combine with test for cstate->linktype */
gen_and(b0, b1);
return b1;
}
* field in the IP header.
*/
static struct block *
-gen_mpls_linktype(proto)
- int proto;
+gen_mpls_linktype(compiler_state_t *cstate, int proto)
{
struct block *b0, *b1;
case Q_IP:
/* match the bottom-of-stack bit */
- b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01);
+ b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
/* match the IPv4 version number */
- b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
+ b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
gen_and(b0, b1);
return b1;
case Q_IPV6:
/* match the bottom-of-stack bit */
- b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01);
+ b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
/* match the IPv4 version number */
- b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
+ b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
gen_and(b0, b1);
return b1;
}
static struct block *
-gen_host(addr, mask, proto, dir, type)
- bpf_u_int32 addr;
- bpf_u_int32 mask;
- int proto;
- int dir;
- int type;
+gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
+ int proto, int dir, int type)
{
struct block *b0, *b1;
const char *typestr;
switch (proto) {
case Q_DEFAULT:
- b0 = gen_host(addr, mask, Q_IP, dir, type);
+ b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
/*
* Only check for non-IPv4 addresses if we're not
* checking MPLS-encapsulated packets.
*/
- if (label_stack_depth == 0) {
- b1 = gen_host(addr, mask, Q_ARP, dir, type);
+ if (cstate->label_stack_depth == 0) {
+ b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
gen_or(b0, b1);
- b0 = gen_host(addr, mask, Q_RARP, dir, type);
+ b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
gen_or(b1, b0);
}
return b0;
case Q_IP:
- return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
+ return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
case Q_RARP:
- return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
+ return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
case Q_ARP:
- return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
+ return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
case Q_TCP:
- bpf_error("'tcp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
case Q_SCTP:
- bpf_error("'sctp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
case Q_UDP:
- bpf_error("'udp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'udp' modifier applied to %s", typestr);
case Q_ICMP:
- bpf_error("'icmp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
case Q_IGMP:
- bpf_error("'igmp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
case Q_IGRP:
- bpf_error("'igrp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
case Q_PIM:
- bpf_error("'pim' modifier applied to %s", typestr);
+ bpf_error(cstate, "'pim' modifier applied to %s", typestr);
case Q_VRRP:
- bpf_error("'vrrp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
case Q_CARP:
- bpf_error("'carp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'carp' modifier applied to %s", typestr);
case Q_ATALK:
- bpf_error("ATALK host filtering not implemented");
+ bpf_error(cstate, "ATALK host filtering not implemented");
case Q_AARP:
- bpf_error("AARP host filtering not implemented");
+ bpf_error(cstate, "AARP host filtering not implemented");
case Q_DECNET:
- return gen_dnhostop(addr, dir);
+ return gen_dnhostop(cstate, addr, dir);
case Q_SCA:
- bpf_error("SCA host filtering not implemented");
+ bpf_error(cstate, "SCA host filtering not implemented");
case Q_LAT:
- bpf_error("LAT host filtering not implemented");
+ bpf_error(cstate, "LAT host filtering not implemented");
case Q_MOPDL:
- bpf_error("MOPDL host filtering not implemented");
+ bpf_error(cstate, "MOPDL host filtering not implemented");
case Q_MOPRC:
- bpf_error("MOPRC host filtering not implemented");
+ bpf_error(cstate, "MOPRC host filtering not implemented");
case Q_IPV6:
- bpf_error("'ip6' modifier applied to ip host");
+ bpf_error(cstate, "'ip6' modifier applied to ip host");
case Q_ICMPV6:
- bpf_error("'icmp6' modifier applied to %s", typestr);
+ bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
case Q_AH:
- bpf_error("'ah' modifier applied to %s", typestr);
+ bpf_error(cstate, "'ah' modifier applied to %s", typestr);
case Q_ESP:
- bpf_error("'esp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'esp' modifier applied to %s", typestr);
case Q_ISO:
- bpf_error("ISO host filtering not implemented");
+ bpf_error(cstate, "ISO host filtering not implemented");
case Q_ESIS:
- bpf_error("'esis' modifier applied to %s", typestr);
+ bpf_error(cstate, "'esis' modifier applied to %s", typestr);
case Q_ISIS:
- bpf_error("'isis' modifier applied to %s", typestr);
+ bpf_error(cstate, "'isis' modifier applied to %s", typestr);
case Q_CLNP:
- bpf_error("'clnp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
case Q_STP:
- bpf_error("'stp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'stp' modifier applied to %s", typestr);
case Q_IPX:
- bpf_error("IPX host filtering not implemented");
+ bpf_error(cstate, "IPX host filtering not implemented");
case Q_NETBEUI:
- bpf_error("'netbeui' modifier applied to %s", typestr);
+ bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
case Q_RADIO:
- bpf_error("'radio' modifier applied to %s", typestr);
+ bpf_error(cstate, "'radio' modifier applied to %s", typestr);
default:
abort();
#ifdef INET6
static struct block *
-gen_host6(addr, mask, proto, dir, type)
- struct in6_addr *addr;
- struct in6_addr *mask;
- int proto;
- int dir;
- int type;
+gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
+ struct in6_addr *mask, int proto, int dir, int type)
{
const char *typestr;
switch (proto) {
case Q_DEFAULT:
- return gen_host6(addr, mask, Q_IPV6, dir, type);
+ return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
case Q_LINK:
- bpf_error("link-layer modifier applied to ip6 %s", typestr);
+ bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
case Q_IP:
- bpf_error("'ip' modifier applied to ip6 %s", typestr);
+ bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
case Q_RARP:
- bpf_error("'rarp' modifier applied to ip6 %s", typestr);
+ bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
case Q_ARP:
- bpf_error("'arp' modifier applied to ip6 %s", typestr);
+ bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
case Q_SCTP:
- bpf_error("'sctp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
case Q_TCP:
- bpf_error("'tcp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
case Q_UDP:
- bpf_error("'udp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'udp' modifier applied to %s", typestr);
case Q_ICMP:
- bpf_error("'icmp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
case Q_IGMP:
- bpf_error("'igmp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
case Q_IGRP:
- bpf_error("'igrp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
case Q_PIM:
- bpf_error("'pim' modifier applied to %s", typestr);
+ bpf_error(cstate, "'pim' modifier applied to %s", typestr);
case Q_VRRP:
- bpf_error("'vrrp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
case Q_CARP:
- bpf_error("'carp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'carp' modifier applied to %s", typestr);
case Q_ATALK:
- bpf_error("ATALK host filtering not implemented");
+ bpf_error(cstate, "ATALK host filtering not implemented");
case Q_AARP:
- bpf_error("AARP host filtering not implemented");
+ bpf_error(cstate, "AARP host filtering not implemented");
case Q_DECNET:
- bpf_error("'decnet' modifier applied to ip6 %s", typestr);
+ bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
case Q_SCA:
- bpf_error("SCA host filtering not implemented");
+ bpf_error(cstate, "SCA host filtering not implemented");
case Q_LAT:
- bpf_error("LAT host filtering not implemented");
+ bpf_error(cstate, "LAT host filtering not implemented");
case Q_MOPDL:
- bpf_error("MOPDL host filtering not implemented");
+ bpf_error(cstate, "MOPDL host filtering not implemented");
case Q_MOPRC:
- bpf_error("MOPRC host filtering not implemented");
+ bpf_error(cstate, "MOPRC host filtering not implemented");
case Q_IPV6:
- return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
+ return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
case Q_ICMPV6:
- bpf_error("'icmp6' modifier applied to %s", typestr);
+ bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
case Q_AH:
- bpf_error("'ah' modifier applied to %s", typestr);
+ bpf_error(cstate, "'ah' modifier applied to %s", typestr);
case Q_ESP:
- bpf_error("'esp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'esp' modifier applied to %s", typestr);
case Q_ISO:
- bpf_error("ISO host filtering not implemented");
+ bpf_error(cstate, "ISO host filtering not implemented");
case Q_ESIS:
- bpf_error("'esis' modifier applied to %s", typestr);
+ bpf_error(cstate, "'esis' modifier applied to %s", typestr);
case Q_ISIS:
- bpf_error("'isis' modifier applied to %s", typestr);
+ bpf_error(cstate, "'isis' modifier applied to %s", typestr);
case Q_CLNP:
- bpf_error("'clnp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
case Q_STP:
- bpf_error("'stp' modifier applied to %s", typestr);
+ bpf_error(cstate, "'stp' modifier applied to %s", typestr);
case Q_IPX:
- bpf_error("IPX host filtering not implemented");
+ bpf_error(cstate, "IPX host filtering not implemented");
case Q_NETBEUI:
- bpf_error("'netbeui' modifier applied to %s", typestr);
+ bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
case Q_RADIO:
- bpf_error("'radio' modifier applied to %s", typestr);
+ bpf_error(cstate, "'radio' modifier applied to %s", typestr);
default:
abort();
struct block *b0, *b1, *tmp;
if (dir != 0)
- bpf_error("direction applied to 'gateway'");
+ bpf_error(cstate, "direction applied to 'gateway'");
switch (proto) {
case Q_DEFAULT:
case Q_IP:
case Q_ARP:
case Q_RARP:
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
- b1 = gen_prevlinkhdr_check();
- b0 = gen_ehostop(eaddr, Q_OR);
+ b1 = gen_prevlinkhdr_check(cstate);
+ b0 = gen_ehostop(cstate, eaddr, Q_OR);
if (b1 != NULL)
gen_and(b1, b0);
break;
case DLT_FDDI:
- b0 = gen_fhostop(eaddr, Q_OR);
+ b0 = gen_fhostop(cstate, eaddr, Q_OR);
break;
case DLT_IEEE802:
- b0 = gen_thostop(eaddr, Q_OR);
+ b0 = gen_thostop(cstate, eaddr, Q_OR);
break;
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
case DLT_IEEE802_11_RADIO:
case DLT_PPI:
- b0 = gen_wlanhostop(eaddr, Q_OR);
+ b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
break;
case DLT_SUNATM:
/*
* This is LLC-multiplexed traffic; if it were
- * LANE, linktype would have been set to
+ * LANE, cstate->linktype would have been set to
* DLT_EN10MB.
*/
- bpf_error(
+ bpf_error(cstate,
"'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
break;
case DLT_IP_OVER_FC:
- b0 = gen_ipfchostop(eaddr, Q_OR);
+ b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
break;
default:
- bpf_error(
+ bpf_error(cstate,
"'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
}
- b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
+ b1 = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR, Q_HOST);
while (*alist) {
- tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
+ tmp = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR,
Q_HOST);
gen_or(b1, tmp);
b1 = tmp;
gen_and(b0, b1);
return b1;
}
- bpf_error("illegal modifier of 'gateway'");
+ bpf_error(cstate, "illegal modifier of 'gateway'");
/* NOTREACHED */
}
#endif
struct block *
-gen_proto_abbrev(proto)
- int proto;
+gen_proto_abbrev(compiler_state_t *cstate, int proto)
{
struct block *b0;
struct block *b1;
switch (proto) {
case Q_SCTP:
- b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
- b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
+ b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_TCP:
- b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
- b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
+ b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_UDP:
- b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
- b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
+ b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ICMP:
- b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
break;
#ifndef IPPROTO_IGMP
#endif
case Q_IGMP:
- b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
break;
#ifndef IPPROTO_IGRP
#define IPPROTO_IGRP 9
#endif
case Q_IGRP:
- b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
break;
#ifndef IPPROTO_PIM
#endif
case Q_PIM:
- b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
- b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
+ b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
break;
#endif
case Q_VRRP:
- b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
break;
#ifndef IPPROTO_CARP
#endif
case Q_CARP:
- b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
break;
case Q_IP:
- b1 = gen_linktype(ETHERTYPE_IP);
+ b1 = gen_linktype(cstate, ETHERTYPE_IP);
break;
case Q_ARP:
- b1 = gen_linktype(ETHERTYPE_ARP);
+ b1 = gen_linktype(cstate, ETHERTYPE_ARP);
break;
case Q_RARP:
- b1 = gen_linktype(ETHERTYPE_REVARP);
+ b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
break;
case Q_LINK:
- bpf_error("link layer applied in wrong context");
+ bpf_error(cstate, "link layer applied in wrong context");
case Q_ATALK:
- b1 = gen_linktype(ETHERTYPE_ATALK);
+ b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
break;
case Q_AARP:
- b1 = gen_linktype(ETHERTYPE_AARP);
+ b1 = gen_linktype(cstate, ETHERTYPE_AARP);
break;
case Q_DECNET:
- b1 = gen_linktype(ETHERTYPE_DN);
+ b1 = gen_linktype(cstate, ETHERTYPE_DN);
break;
case Q_SCA:
- b1 = gen_linktype(ETHERTYPE_SCA);
+ b1 = gen_linktype(cstate, ETHERTYPE_SCA);
break;
case Q_LAT:
- b1 = gen_linktype(ETHERTYPE_LAT);
+ b1 = gen_linktype(cstate, ETHERTYPE_LAT);
break;
case Q_MOPDL:
- b1 = gen_linktype(ETHERTYPE_MOPDL);
+ b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
break;
case Q_MOPRC:
- b1 = gen_linktype(ETHERTYPE_MOPRC);
+ b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
break;
case Q_IPV6:
- b1 = gen_linktype(ETHERTYPE_IPV6);
+ b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
break;
#ifndef IPPROTO_ICMPV6
#define IPPROTO_ICMPV6 58
#endif
case Q_ICMPV6:
- b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
break;
#ifndef IPPROTO_AH
#define IPPROTO_AH 51
#endif
case Q_AH:
- b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
- b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
+ b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
break;
#define IPPROTO_ESP 50
#endif
case Q_ESP:
- b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
- b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
+ b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
+ b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ISO:
- b1 = gen_linktype(LLCSAP_ISONS);
+ b1 = gen_linktype(cstate, LLCSAP_ISONS);
break;
case Q_ESIS:
- b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
break;
case Q_ISIS:
- b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
break;
case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
- b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
- b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
+ b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
- b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
- b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
+ b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
- b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
- b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
- b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ISIS_LSP:
- b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
- b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ISIS_SNP:
- b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
- b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
- b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ISIS_CSNP:
- b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
- b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_ISIS_PSNP:
- b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
- b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
gen_or(b0, b1);
break;
case Q_CLNP:
- b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
+ b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
break;
case Q_STP:
- b1 = gen_linktype(LLCSAP_8021D);
+ b1 = gen_linktype(cstate, LLCSAP_8021D);
break;
case Q_IPX:
- b1 = gen_linktype(LLCSAP_IPX);
+ b1 = gen_linktype(cstate, LLCSAP_IPX);
break;
case Q_NETBEUI:
- b1 = gen_linktype(LLCSAP_NETBEUI);
+ b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
break;
case Q_RADIO:
- bpf_error("'radio' is not a valid protocol type");
+ bpf_error(cstate, "'radio' is not a valid protocol type");
default:
abort();
}
static struct block *
-gen_ipfrag()
+gen_ipfrag(compiler_state_t *cstate)
{
struct slist *s;
struct block *b;
/* not IPv4 frag other than the first frag */
- s = gen_load_a(OR_LINKPL, 6, BPF_H);
- b = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
+ b = new_block(cstate, JMP(BPF_JSET));
b->s.k = 0x1fff;
b->stmts = s;
gen_not(b);
* headers).
*/
static struct block *
-gen_portatom(off, v)
- int off;
- bpf_int32 v;
+gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v)
{
- return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
+ return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
}
static struct block *
-gen_portatom6(off, v)
- int off;
- bpf_int32 v;
+gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v)
{
- return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
+ return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
}
struct block *
-gen_portop(port, proto, dir)
- int port, proto, dir;
+gen_portop(compiler_state_t *cstate, int port, int proto, int dir)
{
struct block *b0, *b1, *tmp;
/* ip proto 'proto' and not a fragment other than the first fragment */
- tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
- b0 = gen_ipfrag();
+ tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
+ b0 = gen_ipfrag(cstate);
gen_and(tmp, b0);
switch (dir) {
case Q_SRC:
- b1 = gen_portatom(0, (bpf_int32)port);
+ b1 = gen_portatom(cstate, 0, (bpf_int32)port);
break;
case Q_DST:
- b1 = gen_portatom(2, (bpf_int32)port);
+ b1 = gen_portatom(cstate, 2, (bpf_int32)port);
break;
case Q_OR:
case Q_DEFAULT:
- tmp = gen_portatom(0, (bpf_int32)port);
- b1 = gen_portatom(2, (bpf_int32)port);
+ tmp = gen_portatom(cstate, 0, (bpf_int32)port);
+ b1 = gen_portatom(cstate, 2, (bpf_int32)port);
gen_or(tmp, b1);
break;
case Q_AND:
- tmp = gen_portatom(0, (bpf_int32)port);
- b1 = gen_portatom(2, (bpf_int32)port);
+ tmp = gen_portatom(cstate, 0, (bpf_int32)port);
+ b1 = gen_portatom(cstate, 2, (bpf_int32)port);
gen_and(tmp, b1);
break;
}
static struct block *
-gen_port(port, ip_proto, dir)
- int port;
- int ip_proto;
- int dir;
+gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir)
{
struct block *b0, *b1, *tmp;
*
* So we always check for ETHERTYPE_IP.
*/
- b0 = gen_linktype(ETHERTYPE_IP);
+ b0 = gen_linktype(cstate, ETHERTYPE_IP);
switch (ip_proto) {
case IPPROTO_UDP:
case IPPROTO_TCP:
case IPPROTO_SCTP:
- b1 = gen_portop(port, ip_proto, dir);
+ b1 = gen_portop(cstate, port, ip_proto, dir);
break;
case PROTO_UNDEF:
- tmp = gen_portop(port, IPPROTO_TCP, dir);
- b1 = gen_portop(port, IPPROTO_UDP, dir);
+ tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
+ b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
gen_or(tmp, b1);
- tmp = gen_portop(port, IPPROTO_SCTP, dir);
+ tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
gen_or(tmp, b1);
break;
}
struct block *
-gen_portop6(port, proto, dir)
- int port, proto, dir;
+gen_portop6(compiler_state_t *cstate, int port, int proto, int dir)
{
struct block *b0, *b1, *tmp;
/* ip6 proto 'proto' */
/* XXX - catch the first fragment of a fragmented packet? */
- b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
+ b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
switch (dir) {
case Q_SRC:
- b1 = gen_portatom6(0, (bpf_int32)port);
+ b1 = gen_portatom6(cstate, 0, (bpf_int32)port);
break;
case Q_DST:
- b1 = gen_portatom6(2, (bpf_int32)port);
+ b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
break;
case Q_OR:
case Q_DEFAULT:
- tmp = gen_portatom6(0, (bpf_int32)port);
- b1 = gen_portatom6(2, (bpf_int32)port);
+ tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
+ b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
gen_or(tmp, b1);
break;
case Q_AND:
- tmp = gen_portatom6(0, (bpf_int32)port);
- b1 = gen_portatom6(2, (bpf_int32)port);
+ tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
+ b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
gen_and(tmp, b1);
break;
}
static struct block *
-gen_port6(port, ip_proto, dir)
- int port;
- int ip_proto;
- int dir;
+gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir)
{
struct block *b0, *b1, *tmp;
/* link proto ip6 */
- b0 = gen_linktype(ETHERTYPE_IPV6);
+ b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
switch (ip_proto) {
case IPPROTO_UDP:
case IPPROTO_TCP:
case IPPROTO_SCTP:
- b1 = gen_portop6(port, ip_proto, dir);
+ b1 = gen_portop6(cstate, port, ip_proto, dir);
break;
case PROTO_UNDEF:
- tmp = gen_portop6(port, IPPROTO_TCP, dir);
- b1 = gen_portop6(port, IPPROTO_UDP, dir);
+ tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
+ b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
gen_or(tmp, b1);
- tmp = gen_portop6(port, IPPROTO_SCTP, dir);
+ tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
gen_or(tmp, b1);
break;
/* gen_portrange code */
static struct block *
-gen_portrangeatom(off, v1, v2)
- int off;
- bpf_int32 v1, v2;
+gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1,
+ bpf_int32 v2)
{
struct block *b1, *b2;
v2 = vtemp;
}
- b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
- b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
+ b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
+ b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
gen_and(b1, b2);
}
struct block *
-gen_portrangeop(port1, port2, proto, dir)
- int port1, port2;
- int proto;
- int dir;
+gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto,
+ int dir)
{
struct block *b0, *b1, *tmp;
/* ip proto 'proto' and not a fragment other than the first fragment */
- tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
- b0 = gen_ipfrag();
+ tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
+ b0 = gen_ipfrag(cstate);
gen_and(tmp, b0);
switch (dir) {
case Q_SRC:
- b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
break;
case Q_DST:
- b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
break;
case Q_OR:
case Q_DEFAULT:
- tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
- b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
+ tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
gen_or(tmp, b1);
break;
case Q_AND:
- tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
- b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
+ tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
gen_and(tmp, b1);
break;
}
static struct block *
-gen_portrange(port1, port2, ip_proto, dir)
- int port1, port2;
- int ip_proto;
- int dir;
+gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto,
+ int dir)
{
struct block *b0, *b1, *tmp;
/* link proto ip */
- b0 = gen_linktype(ETHERTYPE_IP);
+ b0 = gen_linktype(cstate, ETHERTYPE_IP);
switch (ip_proto) {
case IPPROTO_UDP:
case IPPROTO_TCP:
case IPPROTO_SCTP:
- b1 = gen_portrangeop(port1, port2, ip_proto, dir);
+ b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir);
break;
case PROTO_UNDEF:
- tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
- b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
+ tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
+ b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
gen_or(tmp, b1);
- tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
+ tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
gen_or(tmp, b1);
break;
}
static struct block *
-gen_portrangeatom6(off, v1, v2)
- int off;
- bpf_int32 v1, v2;
+gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1,
+ bpf_int32 v2)
{
struct block *b1, *b2;
v2 = vtemp;
}
- b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
- b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
+ b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
+ b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
gen_and(b1, b2);
}
struct block *
-gen_portrangeop6(port1, port2, proto, dir)
- int port1, port2;
- int proto;
- int dir;
+gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto,
+ int dir)
{
struct block *b0, *b1, *tmp;
/* ip6 proto 'proto' */
/* XXX - catch the first fragment of a fragmented packet? */
- b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
+ b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
switch (dir) {
case Q_SRC:
- b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
break;
case Q_DST:
- b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
break;
case Q_OR:
case Q_DEFAULT:
- tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
- b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
+ tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
gen_or(tmp, b1);
break;
case Q_AND:
- tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
- b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
+ tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
+ b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
gen_and(tmp, b1);
break;
}
static struct block *
-gen_portrange6(port1, port2, ip_proto, dir)
- int port1, port2;
- int ip_proto;
- int dir;
+gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto,
+ int dir)
{
struct block *b0, *b1, *tmp;
/* link proto ip6 */
- b0 = gen_linktype(ETHERTYPE_IPV6);
+ b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
switch (ip_proto) {
case IPPROTO_UDP:
case IPPROTO_TCP:
case IPPROTO_SCTP:
- b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
+ b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir);
break;
case PROTO_UNDEF:
- tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
- b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
+ tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
+ b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
gen_or(tmp, b1);
- tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
+ tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
gen_or(tmp, b1);
break;
}
static int
-lookup_proto(name, proto)
- register const char *name;
- register int proto;
+lookup_proto(compiler_state_t *cstate, const char *name, int proto)
{
register int v;
case Q_IPV6:
v = pcap_nametoproto(name);
if (v == PROTO_UNDEF)
- bpf_error("unknown ip proto '%s'", name);
+ bpf_error(cstate, "unknown ip proto '%s'", name);
break;
case Q_LINK:
- /* XXX should look up h/w protocol type based on linktype */
+ /* XXX should look up h/w protocol type based on cstate->linktype */
v = pcap_nametoeproto(name);
if (v == PROTO_UNDEF) {
v = pcap_nametollc(name);
if (v == PROTO_UNDEF)
- bpf_error("unknown ether proto '%s'", name);
+ bpf_error(cstate, "unknown ether proto '%s'", name);
}
break;
else if (strcmp(name, "clnp") == 0)
v = ISO8473_CLNP;
else
- bpf_error("unknown osi proto '%s'", name);
+ bpf_error(cstate, "unknown osi proto '%s'", name);
break;
default:
#endif
static struct block *
-gen_protochain(v, proto, dir)
- int v;
- int proto;
- int dir;
+gen_protochain(compiler_state_t *cstate, int v, int proto, int dir)
{
#ifdef NO_PROTOCHAIN
- return gen_proto(v, proto, dir);
+ return gen_proto(cstate, v, proto, dir);
#else
struct block *b0, *b;
struct slist *s[100];
int fix2, fix3, fix4, fix5;
int ahcheck, again, end;
int i, max;
- int reg2 = alloc_reg();
+ int reg2 = alloc_reg(cstate);
memset(s, 0, sizeof(s));
fix3 = fix4 = fix5 = 0;
case Q_IPV6:
break;
case Q_DEFAULT:
- b0 = gen_protochain(v, Q_IP, dir);
- b = gen_protochain(v, Q_IPV6, dir);
+ b0 = gen_protochain(cstate, v, Q_IP, dir);
+ b = gen_protochain(cstate, v, Q_IPV6, dir);
gen_or(b0, b);
return b;
default:
- bpf_error("bad protocol applied for 'protochain'");
+ bpf_error(cstate, "bad protocol applied for 'protochain'");
/*NOTREACHED*/
}
* branches, and backward branch support is unlikely to appear
* in kernel BPF engines.)
*/
- if (off_linkpl.is_variable)
- bpf_error("'protochain' not supported with variable length headers");
+ if (cstate->off_linkpl.is_variable)
+ bpf_error(cstate, "'protochain' not supported with variable length headers");
- no_optimize = 1; /*this code is not compatible with optimzer yet */
+ cstate->no_optimize = 1; /*this code is not compatible with optimzer yet */
/*
* s[0] is a dummy entry to protect other BPF insn from damage
* hard to find interdependency made by jump table fixup.
*/
i = 0;
- s[i] = new_stmt(0); /*dummy*/
+ s[i] = new_stmt(cstate, 0); /*dummy*/
i++;
switch (proto) {
case Q_IP:
- b0 = gen_linktype(ETHERTYPE_IP);
+ b0 = gen_linktype(cstate, ETHERTYPE_IP);
/* A = ip->ip_p */
- s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
- s[i]->s.k = off_linkpl.constant_part + off_nl + 9;
+ s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
+ s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
i++;
/* X = ip->ip_hl << 2 */
- s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
- s[i]->s.k = off_linkpl.constant_part + off_nl;
+ s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
+ s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
i++;
break;
case Q_IPV6:
- b0 = gen_linktype(ETHERTYPE_IPV6);
+ b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
/* A = ip6->ip_nxt */
- s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
- s[i]->s.k = off_linkpl.constant_part + off_nl + 6;
+ s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
+ s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
i++;
/* X = sizeof(struct ip6_hdr) */
- s[i] = new_stmt(BPF_LDX|BPF_IMM);
+ s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
s[i]->s.k = 40;
i++;
break;
default:
- bpf_error("unsupported proto to gen_protochain");
+ bpf_error(cstate, "unsupported proto to gen_protochain");
/*NOTREACHED*/
}
/* again: if (A == v) goto end; else fall through; */
again = i;
- s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
+ s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.k = v;
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
#define IPPROTO_NONE 59
#endif
/* if (A == IPPROTO_NONE) goto end */
- s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
+ s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_NONE;
v6start = i;
/* if (A == IPPROTO_HOPOPTS) goto v6advance */
- s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
+ s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_HOPOPTS;
s[fix2]->s.jf = s[i];
i++;
/* if (A == IPPROTO_DSTOPTS) goto v6advance */
- s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
+ s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_DSTOPTS;
i++;
/* if (A == IPPROTO_ROUTING) goto v6advance */
- s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
+ s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_ROUTING;
i++;
/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
- s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
+ s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*later*/
s[i]->s.k = IPPROTO_FRAGMENT;
* X = X + (P[X + packet head + 1] + 1) * 8;
*/
/* A = P[X + packet head] */
- s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
- s[i]->s.k = off_linkpl.constant_part + off_nl;
+ s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
+ s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
i++;
/* MEM[reg2] = A */
- s[i] = new_stmt(BPF_ST);
+ s[i] = new_stmt(cstate, BPF_ST);
s[i]->s.k = reg2;
i++;
/* A = P[X + packet head + 1]; */
- s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
- s[i]->s.k = off_linkpl.constant_part + off_nl + 1;
+ s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
+ s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
i++;
/* A += 1 */
- s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 1;
i++;
/* A *= 8 */
- s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
s[i]->s.k = 8;
i++;
/* A += X */
- s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
s[i]->s.k = 0;
i++;
/* X = A; */
- s[i] = new_stmt(BPF_MISC|BPF_TAX);
+ s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
i++;
/* A = MEM[reg2] */
- s[i] = new_stmt(BPF_LD|BPF_MEM);
+ s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
s[i]->s.k = reg2;
i++;
/* goto again; (must use BPF_JA for backward jump) */
- s[i] = new_stmt(BPF_JMP|BPF_JA);
+ s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
s[i]->s.k = again - i - 1;
s[i - 1]->s.jf = s[i];
i++;
s[j]->s.jt = s[v6advance];
} else {
/* nop */
- s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 0;
s[fix2]->s.jf = s[i];
i++;
/* ahcheck: */
ahcheck = i;
/* if (A == IPPROTO_AH) then fall through; else goto end; */
- s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
+ s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*later*/
s[i]->s.k = IPPROTO_AH;
* X = X + (P[X + 1] + 2) * 4;
*/
/* A = X */
- s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
+ s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
i++;
/* A = P[X + packet head]; */
- s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
- s[i]->s.k = off_linkpl.constant_part + off_nl;
+ s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
+ s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
i++;
/* MEM[reg2] = A */
- s[i] = new_stmt(BPF_ST);
+ s[i] = new_stmt(cstate, BPF_ST);
s[i]->s.k = reg2;
i++;
/* A = X */
- s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
+ s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
i++;
/* A += 1 */
- s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 1;
i++;
/* X = A */
- s[i] = new_stmt(BPF_MISC|BPF_TAX);
+ s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
i++;
/* A = P[X + packet head] */
- s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
- s[i]->s.k = off_linkpl.constant_part + off_nl;
+ s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
+ s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
i++;
/* A += 2 */
- s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 2;
i++;
/* A *= 4 */
- s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
s[i]->s.k = 4;
i++;
/* X = A; */
- s[i] = new_stmt(BPF_MISC|BPF_TAX);
+ s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
i++;
/* A = MEM[reg2] */
- s[i] = new_stmt(BPF_LD|BPF_MEM);
+ s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
s[i]->s.k = reg2;
i++;
/* goto again; (must use BPF_JA for backward jump) */
- s[i] = new_stmt(BPF_JMP|BPF_JA);
+ s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
s[i]->s.k = again - i - 1;
i++;
/* end: nop */
end = i;
- s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 0;
s[fix2]->s.jt = s[end];
s[fix4]->s.jf = s[end];
/*
* emit final check
*/
- b = new_block(JMP(BPF_JEQ));
+ b = new_block(cstate, JMP(BPF_JEQ));
b->stmts = s[1]; /*remember, s[0] is dummy*/
b->s.k = v;
- free_reg(reg2);
+ free_reg(cstate, reg2);
gen_and(b0, b);
return b;
}
static struct block *
-gen_check_802_11_data_frame()
+gen_check_802_11_data_frame(compiler_state_t *cstate)
{
struct slist *s;
struct block *b0, *b1;
* A data frame has the 0x08 bit (b3) in the frame control field set
* and the 0x04 bit (b2) clear.
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b0 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b0 = new_block(cstate, JMP(BPF_JSET));
b0->s.k = 0x08;
b0->stmts = s;
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x04;
b1->stmts = s;
gen_not(b1);
* against Q_IP and Q_IPV6.
*/
static struct block *
-gen_proto(v, proto, dir)
- int v;
- int proto;
- int dir;
+gen_proto(compiler_state_t *cstate, int v, int proto, int dir)
{
struct block *b0, *b1;
#ifndef CHASE_CHAIN
#endif
if (dir != Q_DEFAULT)
- bpf_error("direction applied to 'proto'");
+ bpf_error(cstate, "direction applied to 'proto'");
switch (proto) {
case Q_DEFAULT:
- b0 = gen_proto(v, Q_IP, dir);
- b1 = gen_proto(v, Q_IPV6, dir);
+ b0 = gen_proto(cstate, v, Q_IP, dir);
+ b1 = gen_proto(cstate, v, Q_IPV6, dir);
gen_or(b0, b1);
return b1;
*
* So we always check for ETHERTYPE_IP.
*/
- b0 = gen_linktype(ETHERTYPE_IP);
+ b0 = gen_linktype(cstate, ETHERTYPE_IP);
#ifndef CHASE_CHAIN
- b1 = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)v);
+ b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v);
#else
- b1 = gen_protochain(v, Q_IP);
+ b1 = gen_protochain(cstate, v, Q_IP);
#endif
gen_and(b0, b1);
return b1;
case Q_ISO:
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_FRELAY:
/*
* Frame Relay packets typically have an OSI
- * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
+ * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
* generates code to check for all the OSI
* NLPIDs, so calling it and then adding a check
* for the particular NLPID for which we're
*
* XXX - what about SNAP-encapsulated frames?
*/
- return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
+ return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
/*NOTREACHED*/
break;
* Cisco uses an Ethertype lookalike - for OSI,
* it's 0xfefe.
*/
- b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
+ b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
/* OSI in C-HDLC is stuffed with a fudge byte */
- b1 = gen_cmp(OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
+ b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
gen_and(b0, b1);
return b1;
default:
- b0 = gen_linktype(LLCSAP_ISONS);
- b1 = gen_cmp(OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
+ b0 = gen_linktype(cstate, LLCSAP_ISONS);
+ b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
gen_and(b0, b1);
return b1;
}
case Q_ISIS:
- b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
+ b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
/*
* 4 is the offset of the PDU type relative to the IS-IS
* header.
*/
- b1 = gen_cmp(OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
+ b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
gen_and(b0, b1);
return b1;
case Q_ARP:
- bpf_error("arp does not encapsulate another protocol");
+ bpf_error(cstate, "arp does not encapsulate another protocol");
/* NOTREACHED */
case Q_RARP:
- bpf_error("rarp does not encapsulate another protocol");
+ bpf_error(cstate, "rarp does not encapsulate another protocol");
/* NOTREACHED */
case Q_ATALK:
- bpf_error("atalk encapsulation is not specifiable");
+ bpf_error(cstate, "atalk encapsulation is not specifiable");
/* NOTREACHED */
case Q_DECNET:
- bpf_error("decnet encapsulation is not specifiable");
+ bpf_error(cstate, "decnet encapsulation is not specifiable");
/* NOTREACHED */
case Q_SCA:
- bpf_error("sca does not encapsulate another protocol");
+ bpf_error(cstate, "sca does not encapsulate another protocol");
/* NOTREACHED */
case Q_LAT:
- bpf_error("lat does not encapsulate another protocol");
+ bpf_error(cstate, "lat does not encapsulate another protocol");
/* NOTREACHED */
case Q_MOPRC:
- bpf_error("moprc does not encapsulate another protocol");
+ bpf_error(cstate, "moprc does not encapsulate another protocol");
/* NOTREACHED */
case Q_MOPDL:
- bpf_error("mopdl does not encapsulate another protocol");
+ bpf_error(cstate, "mopdl does not encapsulate another protocol");
/* NOTREACHED */
case Q_LINK:
- return gen_linktype(v);
+ return gen_linktype(cstate, v);
case Q_UDP:
- bpf_error("'udp proto' is bogus");
+ bpf_error(cstate, "'udp proto' is bogus");
/* NOTREACHED */
case Q_TCP:
- bpf_error("'tcp proto' is bogus");
+ bpf_error(cstate, "'tcp proto' is bogus");
/* NOTREACHED */
case Q_SCTP:
- bpf_error("'sctp proto' is bogus");
+ bpf_error(cstate, "'sctp proto' is bogus");
/* NOTREACHED */
case Q_ICMP:
- bpf_error("'icmp proto' is bogus");
+ bpf_error(cstate, "'icmp proto' is bogus");
/* NOTREACHED */
case Q_IGMP:
- bpf_error("'igmp proto' is bogus");
+ bpf_error(cstate, "'igmp proto' is bogus");
/* NOTREACHED */
case Q_IGRP:
- bpf_error("'igrp proto' is bogus");
+ bpf_error(cstate, "'igrp proto' is bogus");
/* NOTREACHED */
case Q_PIM:
- bpf_error("'pim proto' is bogus");
+ bpf_error(cstate, "'pim proto' is bogus");
/* NOTREACHED */
case Q_VRRP:
- bpf_error("'vrrp proto' is bogus");
+ bpf_error(cstate, "'vrrp proto' is bogus");
/* NOTREACHED */
case Q_CARP:
- bpf_error("'carp proto' is bogus");
+ bpf_error(cstate, "'carp proto' is bogus");
/* NOTREACHED */
case Q_IPV6:
- b0 = gen_linktype(ETHERTYPE_IPV6);
+ b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
#ifndef CHASE_CHAIN
/*
* Also check for a fragment header before the final
* header.
*/
- b2 = gen_cmp(OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
- b1 = gen_cmp(OR_LINKPL, 40, BPF_B, (bpf_int32)v);
+ b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
+ b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v);
gen_and(b2, b1);
- b2 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)v);
+ b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v);
gen_or(b2, b1);
#else
- b1 = gen_protochain(v, Q_IPV6);
+ b1 = gen_protochain(cstate, v, Q_IPV6);
#endif
gen_and(b0, b1);
return b1;
case Q_ICMPV6:
- bpf_error("'icmp6 proto' is bogus");
+ bpf_error(cstate, "'icmp6 proto' is bogus");
case Q_AH:
- bpf_error("'ah proto' is bogus");
+ bpf_error(cstate, "'ah proto' is bogus");
case Q_ESP:
- bpf_error("'ah proto' is bogus");
+ bpf_error(cstate, "'ah proto' is bogus");
case Q_STP:
- bpf_error("'stp proto' is bogus");
+ bpf_error(cstate, "'stp proto' is bogus");
case Q_IPX:
- bpf_error("'ipx proto' is bogus");
+ bpf_error(cstate, "'ipx proto' is bogus");
case Q_NETBEUI:
- bpf_error("'netbeui proto' is bogus");
+ bpf_error(cstate, "'netbeui proto' is bogus");
case Q_RADIO:
- bpf_error("'radio proto' is bogus");
+ bpf_error(cstate, "'radio proto' is bogus");
default:
abort();
}
struct block *
-gen_scode(name, q)
- register const char *name;
- struct qual q;
+gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
{
int proto = q.proto;
int dir = q.dir;
case Q_NET:
addr = pcap_nametonetaddr(name);
if (addr == 0)
- bpf_error("unknown network '%s'", name);
+ bpf_error(cstate, "unknown network '%s'", name);
/* Left justify network addr and calculate its network mask */
mask = 0xffffffff;
while (addr && (addr & 0xff000000) == 0) {
addr <<= 8;
mask <<= 8;
}
- return gen_host(addr, mask, proto, dir, q.addr);
+ return gen_host(cstate, addr, mask, proto, dir, q.addr);
case Q_DEFAULT:
case Q_HOST:
if (proto == Q_LINK) {
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
- bpf_error(
+ bpf_error(cstate,
"unknown ether host '%s'", name);
- tmp = gen_prevlinkhdr_check();
- b = gen_ehostop(eaddr, dir);
+ tmp = gen_prevlinkhdr_check(cstate);
+ b = gen_ehostop(cstate, eaddr, dir);
if (tmp != NULL)
gen_and(tmp, b);
free(eaddr);
case DLT_FDDI:
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
- bpf_error(
+ bpf_error(cstate,
"unknown FDDI host '%s'", name);
- b = gen_fhostop(eaddr, dir);
+ b = gen_fhostop(cstate, eaddr, dir);
free(eaddr);
return b;
case DLT_IEEE802:
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
- bpf_error(
+ bpf_error(cstate,
"unknown token ring host '%s'", name);
- b = gen_thostop(eaddr, dir);
+ b = gen_thostop(cstate, eaddr, dir);
free(eaddr);
return b;
case DLT_PPI:
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
- bpf_error(
+ bpf_error(cstate,
"unknown 802.11 host '%s'", name);
- b = gen_wlanhostop(eaddr, dir);
+ b = gen_wlanhostop(cstate, eaddr, dir);
free(eaddr);
return b;
case DLT_IP_OVER_FC:
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
- bpf_error(
+ bpf_error(cstate,
"unknown Fibre Channel host '%s'", name);
- b = gen_ipfchostop(eaddr, dir);
+ b = gen_ipfchostop(cstate, eaddr, dir);
free(eaddr);
return b;
}
- bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
+ bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
} else if (proto == Q_DECNET) {
- unsigned short dn_addr = __pcap_nametodnaddr(name);
+ unsigned short dn_addr;
+
+ if (!__pcap_nametodnaddr(name, &dn_addr)) {
+#ifdef DECNETLIB
+ bpf_error(cstate, "unknown decnet host name '%s'\n", name);
+#else
+ bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
+ name);
+#endif
+ }
/*
* I don't think DECNET hosts can be multihomed, so
* there is no need to build up a list of addresses
*/
- return (gen_host(dn_addr, 0, proto, dir, q.addr));
+ return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
} else {
#ifndef INET6
alist = pcap_nametoaddr(name);
if (alist == NULL || *alist == NULL)
- bpf_error("unknown host '%s'", name);
+ bpf_error(cstate, "unknown host '%s'", name);
tproto = proto;
- if (off_linktype.constant_part == (u_int)-1 &&
+ if (cstate->off_linktype.constant_part == (u_int)-1 &&
tproto == Q_DEFAULT)
tproto = Q_IP;
- b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
+ b = gen_host(cstate, **alist++, 0xffffffff, tproto, dir, q.addr);
while (*alist) {
- tmp = gen_host(**alist++, 0xffffffff,
+ tmp = gen_host(cstate, **alist++, 0xffffffff,
tproto, dir, q.addr);
gen_or(b, tmp);
b = tmp;
memset(&mask128, 0xff, sizeof(mask128));
res0 = res = pcap_nametoaddrinfo(name);
if (res == NULL)
- bpf_error("unknown host '%s'", name);
- ai = res;
+ bpf_error(cstate, "unknown host '%s'", name);
+ cstate->ai = res;
b = tmp = NULL;
tproto = tproto6 = proto;
- if (off_linktype.constant_part == -1 &&
+ if (cstate->off_linktype.constant_part == -1 &&
tproto == Q_DEFAULT) {
tproto = Q_IP;
tproto6 = Q_IPV6;
sin4 = (struct sockaddr_in *)
res->ai_addr;
- tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
+ tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
0xffffffff, tproto, dir, q.addr);
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)
res->ai_addr;
- tmp = gen_host6(&sin6->sin6_addr,
+ tmp = gen_host6(cstate, &sin6->sin6_addr,
&mask128, tproto6, dir, q.addr);
break;
default:
gen_or(b, tmp);
b = tmp;
}
- ai = NULL;
+ cstate->ai = NULL;
freeaddrinfo(res0);
if (b == NULL) {
- bpf_error("unknown host '%s'%s", name,
+ bpf_error(cstate, "unknown host '%s'%s", name,
(proto == Q_DEFAULT)
? ""
: " for specified address family");
case Q_PORT:
if (proto != Q_DEFAULT &&
proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
- bpf_error("illegal qualifier of 'port'");
+ bpf_error(cstate, "illegal qualifier of 'port'");
if (pcap_nametoport(name, &port, &real_proto) == 0)
- bpf_error("unknown port '%s'", name);
+ bpf_error(cstate, "unknown port '%s'", name);
if (proto == Q_UDP) {
if (real_proto == IPPROTO_TCP)
- bpf_error("port '%s' is tcp", name);
+ bpf_error(cstate, "port '%s' is tcp", name);
else if (real_proto == IPPROTO_SCTP)
- bpf_error("port '%s' is sctp", name);
+ bpf_error(cstate, "port '%s' is sctp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_UDP;
}
if (proto == Q_TCP) {
if (real_proto == IPPROTO_UDP)
- bpf_error("port '%s' is udp", name);
+ bpf_error(cstate, "port '%s' is udp", name);
else if (real_proto == IPPROTO_SCTP)
- bpf_error("port '%s' is sctp", name);
+ bpf_error(cstate, "port '%s' is sctp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_TCP;
}
if (proto == Q_SCTP) {
if (real_proto == IPPROTO_UDP)
- bpf_error("port '%s' is udp", name);
+ bpf_error(cstate, "port '%s' is udp", name);
else if (real_proto == IPPROTO_TCP)
- bpf_error("port '%s' is tcp", name);
+ bpf_error(cstate, "port '%s' is tcp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_SCTP;
}
if (port < 0)
- bpf_error("illegal port number %d < 0", port);
+ bpf_error(cstate, "illegal port number %d < 0", port);
if (port > 65535)
- bpf_error("illegal port number %d > 65535", port);
- b = gen_port(port, real_proto, dir);
- gen_or(gen_port6(port, real_proto, dir), b);
+ bpf_error(cstate, "illegal port number %d > 65535", port);
+ b = gen_port(cstate, port, real_proto, dir);
+ gen_or(gen_port6(cstate, port, real_proto, dir), b);
return b;
case Q_PORTRANGE:
if (proto != Q_DEFAULT &&
proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
- bpf_error("illegal qualifier of 'portrange'");
+ bpf_error(cstate, "illegal qualifier of 'portrange'");
if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
- bpf_error("unknown port in range '%s'", name);
+ bpf_error(cstate, "unknown port in range '%s'", name);
if (proto == Q_UDP) {
if (real_proto == IPPROTO_TCP)
- bpf_error("port in range '%s' is tcp", name);
+ bpf_error(cstate, "port in range '%s' is tcp", name);
else if (real_proto == IPPROTO_SCTP)
- bpf_error("port in range '%s' is sctp", name);
+ bpf_error(cstate, "port in range '%s' is sctp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_UDP;
}
if (proto == Q_TCP) {
if (real_proto == IPPROTO_UDP)
- bpf_error("port in range '%s' is udp", name);
+ bpf_error(cstate, "port in range '%s' is udp", name);
else if (real_proto == IPPROTO_SCTP)
- bpf_error("port in range '%s' is sctp", name);
+ bpf_error(cstate, "port in range '%s' is sctp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_TCP;
}
if (proto == Q_SCTP) {
if (real_proto == IPPROTO_UDP)
- bpf_error("port in range '%s' is udp", name);
+ bpf_error(cstate, "port in range '%s' is udp", name);
else if (real_proto == IPPROTO_TCP)
- bpf_error("port in range '%s' is tcp", name);
+ bpf_error(cstate, "port in range '%s' is tcp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_SCTP;
}
if (port1 < 0)
- bpf_error("illegal port number %d < 0", port1);
+ bpf_error(cstate, "illegal port number %d < 0", port1);
if (port1 > 65535)
- bpf_error("illegal port number %d > 65535", port1);
+ bpf_error(cstate, "illegal port number %d > 65535", port1);
if (port2 < 0)
- bpf_error("illegal port number %d < 0", port2);
+ bpf_error(cstate, "illegal port number %d < 0", port2);
if (port2 > 65535)
- bpf_error("illegal port number %d > 65535", port2);
+ bpf_error(cstate, "illegal port number %d > 65535", port2);
- b = gen_portrange(port1, port2, real_proto, dir);
- gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
+ b = gen_portrange(cstate, port1, port2, real_proto, dir);
+ gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
return b;
case Q_GATEWAY:
#ifndef INET6
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
- bpf_error("unknown ether host: %s", name);
+ bpf_error(cstate, "unknown ether host: %s", name);
alist = pcap_nametoaddr(name);
if (alist == NULL || *alist == NULL)
- bpf_error("unknown host '%s'", name);
+ bpf_error(cstate, "unknown host '%s'", name);
b = gen_gateway(eaddr, alist, proto, dir);
free(eaddr);
return b;
#else
- bpf_error("'gateway' not supported in this configuration");
+ bpf_error(cstate, "'gateway' not supported in this configuration");
#endif /*INET6*/
case Q_PROTO:
- real_proto = lookup_proto(name, proto);
+ real_proto = lookup_proto(cstate, name, proto);
if (real_proto >= 0)
- return gen_proto(real_proto, proto, dir);
+ return gen_proto(cstate, real_proto, proto, dir);
else
- bpf_error("unknown protocol: %s", name);
+ bpf_error(cstate, "unknown protocol: %s", name);
case Q_PROTOCHAIN:
- real_proto = lookup_proto(name, proto);
+ real_proto = lookup_proto(cstate, name, proto);
if (real_proto >= 0)
- return gen_protochain(real_proto, proto, dir);
+ return gen_protochain(cstate, real_proto, proto, dir);
else
- bpf_error("unknown protocol: %s", name);
+ bpf_error(cstate, "unknown protocol: %s", name);
case Q_UNDEF:
- syntax();
+ syntax(cstate);
/* NOTREACHED */
}
abort();
}
struct block *
-gen_mcode(s1, s2, masklen, q)
- register const char *s1, *s2;
- register unsigned int masklen;
- struct qual q;
+gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
+ unsigned int masklen, struct qual q)
{
register int nlen, mlen;
bpf_u_int32 n, m;
/* Promote short ipaddr */
m <<= 32 - mlen;
if ((n & ~m) != 0)
- bpf_error("non-network bits set in \"%s mask %s\"",
+ bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
s1, s2);
} else {
/* Convert mask len to mask */
if (masklen > 32)
- bpf_error("mask length must be <= 32");
+ bpf_error(cstate, "mask length must be <= 32");
if (masklen == 0) {
/*
* X << 32 is not guaranteed by C to be 0; it's
} else
m = 0xffffffff << (32 - masklen);
if ((n & ~m) != 0)
- bpf_error("non-network bits set in \"%s/%d\"",
+ bpf_error(cstate, "non-network bits set in \"%s/%d\"",
s1, masklen);
}
switch (q.addr) {
case Q_NET:
- return gen_host(n, m, q.proto, q.dir, q.addr);
+ return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
default:
- bpf_error("Mask syntax for networks only");
+ bpf_error(cstate, "Mask syntax for networks only");
/* NOTREACHED */
}
/* NOTREACHED */
}
struct block *
-gen_ncode(s, v, q)
- register const char *s;
- bpf_u_int32 v;
- struct qual q;
+gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
{
bpf_u_int32 mask;
int proto = q.proto;
if (s == NULL)
vlen = 32;
- else if (q.proto == Q_DECNET)
+ else if (q.proto == Q_DECNET) {
vlen = __pcap_atodn(s, &v);
- else
+ if (vlen == 0)
+ bpf_error(cstate, "malformed decnet address '%s'", s);
+ } else
vlen = __pcap_atoin(s, &v);
switch (q.addr) {
case Q_HOST:
case Q_NET:
if (proto == Q_DECNET)
- return gen_host(v, 0, proto, dir, q.addr);
+ return gen_host(cstate, v, 0, proto, dir, q.addr);
else if (proto == Q_LINK) {
- bpf_error("illegal link layer address");
+ bpf_error(cstate, "illegal link layer address");
} else {
mask = 0xffffffff;
if (s == NULL && q.addr == Q_NET) {
} else {
/* Promote short ipaddr */
v <<= 32 - vlen;
- mask <<= 32 - vlen;
+ mask <<= 32 - vlen ;
}
- return gen_host(v, mask, proto, dir, q.addr);
+ return gen_host(cstate, v, mask, proto, dir, q.addr);
}
case Q_PORT:
else if (proto == Q_DEFAULT)
proto = PROTO_UNDEF;
else
- bpf_error("illegal qualifier of 'port'");
+ bpf_error(cstate, "illegal qualifier of 'port'");
if (v > 65535)
- bpf_error("illegal port number %u > 65535", v);
+ bpf_error(cstate, "illegal port number %u > 65535", v);
{
struct block *b;
- b = gen_port((int)v, proto, dir);
- gen_or(gen_port6((int)v, proto, dir), b);
+ b = gen_port(cstate, (int)v, proto, dir);
+ gen_or(gen_port6(cstate, (int)v, proto, dir), b);
return b;
}
else if (proto == Q_DEFAULT)
proto = PROTO_UNDEF;
else
- bpf_error("illegal qualifier of 'portrange'");
+ bpf_error(cstate, "illegal qualifier of 'portrange'");
if (v > 65535)
- bpf_error("illegal port number %u > 65535", v);
+ bpf_error(cstate, "illegal port number %u > 65535", v);
{
struct block *b;
- b = gen_portrange((int)v, (int)v, proto, dir);
- gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
+ b = gen_portrange(cstate, (int)v, (int)v, proto, dir);
+ gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b);
return b;
}
case Q_GATEWAY:
- bpf_error("'gateway' requires a name");
+ bpf_error(cstate, "'gateway' requires a name");
/* NOTREACHED */
case Q_PROTO:
- return gen_proto((int)v, proto, dir);
+ return gen_proto(cstate, (int)v, proto, dir);
case Q_PROTOCHAIN:
- return gen_protochain((int)v, proto, dir);
+ return gen_protochain(cstate, (int)v, proto, dir);
case Q_UNDEF:
- syntax();
+ syntax(cstate);
/* NOTREACHED */
default:
#ifdef INET6
struct block *
-gen_mcode6(s1, s2, masklen, q)
- register const char *s1, *s2;
- register unsigned int masklen;
- struct qual q;
+gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
+ unsigned int masklen, struct qual q)
{
struct addrinfo *res;
struct in6_addr *addr;
u_int32_t *a, *m;
if (s2)
- bpf_error("no mask %s supported", s2);
+ bpf_error(cstate, "no mask %s supported", s2);
res = pcap_nametoaddrinfo(s1);
if (!res)
- bpf_error("invalid ip6 address %s", s1);
- ai = res;
+ bpf_error(cstate, "invalid ip6 address %s", s1);
+ cstate->ai = res;
if (res->ai_next)
- bpf_error("%s resolved to multiple address", s1);
+ bpf_error(cstate, "%s resolved to multiple address", s1);
addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
if (sizeof(mask) * 8 < masklen)
- bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
+ bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
memset(&mask, 0, sizeof(mask));
memset(&mask, 0xff, masklen / 8);
if (masklen % 8) {
m = (u_int32_t *)&mask;
if ((a[0] & ~m[0]) || (a[1] & ~m[1])
|| (a[2] & ~m[2]) || (a[3] & ~m[3])) {
- bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
+ bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
}
switch (q.addr) {
case Q_DEFAULT:
case Q_HOST:
if (masklen != 128)
- bpf_error("Mask syntax for networks only");
+ bpf_error(cstate, "Mask syntax for networks only");
/* FALLTHROUGH */
case Q_NET:
- b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
- ai = NULL;
+ b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
+ cstate->ai = NULL;
freeaddrinfo(res);
return b;
default:
- bpf_error("invalid qualifier against IPv6 address");
+ bpf_error(cstate, "invalid qualifier against IPv6 address");
/* NOTREACHED */
}
return NULL;
#endif /*INET6*/
struct block *
-gen_ecode(eaddr, q)
- register const u_char *eaddr;
- struct qual q;
+gen_ecode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
{
struct block *b, *tmp;
if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
- tmp = gen_prevlinkhdr_check();
- b = gen_ehostop(eaddr, (int)q.dir);
+ tmp = gen_prevlinkhdr_check(cstate);
+ b = gen_ehostop(cstate, eaddr, (int)q.dir);
if (tmp != NULL)
gen_and(tmp, b);
return b;
case DLT_FDDI:
- return gen_fhostop(eaddr, (int)q.dir);
+ return gen_fhostop(cstate, eaddr, (int)q.dir);
case DLT_IEEE802:
- return gen_thostop(eaddr, (int)q.dir);
+ return gen_thostop(cstate, eaddr, (int)q.dir);
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
case DLT_IEEE802_11_RADIO:
case DLT_PPI:
- return gen_wlanhostop(eaddr, (int)q.dir);
+ return gen_wlanhostop(cstate, eaddr, (int)q.dir);
case DLT_IP_OVER_FC:
- return gen_ipfchostop(eaddr, (int)q.dir);
+ return gen_ipfchostop(cstate, eaddr, (int)q.dir);
default:
- bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
+ bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
break;
}
}
- bpf_error("ethernet address used in non-ether expression");
+ bpf_error(cstate, "ethernet address used in non-ether expression");
/* NOTREACHED */
return NULL;
}
}
static struct slist *
-xfer_to_x(a)
- struct arth *a;
+xfer_to_x(compiler_state_t *cstate, struct arth *a)
{
struct slist *s;
- s = new_stmt(BPF_LDX|BPF_MEM);
+ s = new_stmt(cstate, BPF_LDX|BPF_MEM);
s->s.k = a->regno;
return s;
}
static struct slist *
-xfer_to_a(a)
- struct arth *a;
+xfer_to_a(compiler_state_t *cstate, struct arth *a)
{
struct slist *s;
- s = new_stmt(BPF_LD|BPF_MEM);
+ s = new_stmt(cstate, BPF_LD|BPF_MEM);
s->s.k = a->regno;
return s;
}
* for "index".
*/
struct arth *
-gen_load(proto, inst, size)
- int proto;
- struct arth *inst;
- int size;
+gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size)
{
struct slist *s, *tmp;
struct block *b;
- int regno = alloc_reg();
+ int regno = alloc_reg(cstate);
- free_reg(inst->regno);
+ free_reg(cstate, inst->regno);
switch (size) {
default:
- bpf_error("data size must be 1, 2, or 4");
+ bpf_error(cstate, "data size must be 1, 2, or 4");
case 1:
size = BPF_B;
}
switch (proto) {
default:
- bpf_error("unsupported index operation");
+ bpf_error(cstate, "unsupported index operation");
case Q_RADIO:
/*
* data, if we have a radio header. (If we don't, this
* is an error.)
*/
- if (linktype != DLT_IEEE802_11_RADIO_AVS &&
- linktype != DLT_IEEE802_11_RADIO &&
- linktype != DLT_PRISM_HEADER)
- bpf_error("radio information not present in capture");
+ if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
+ cstate->linktype != DLT_IEEE802_11_RADIO &&
+ cstate->linktype != DLT_PRISM_HEADER)
+ bpf_error(cstate, "radio information not present in capture");
/*
* Load into the X register the offset computed into the
* register specified by "index".
*/
- s = xfer_to_x(inst);
+ s = xfer_to_x(cstate, inst);
/*
* Load the item at that offset.
*/
- tmp = new_stmt(BPF_LD|BPF_IND|size);
+ tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
sappend(s, tmp);
sappend(inst->s, s);
break;
* frame, so that 0 refers, for Ethernet LANE, to
* the beginning of the destination address?
*/
- s = gen_abs_offset_varpart(&off_linkhdr);
+ s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
/*
* If "s" is non-null, it has code to arrange that the
* by "index".
*/
if (s != NULL) {
- sappend(s, xfer_to_a(inst));
- sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
- sappend(s, new_stmt(BPF_MISC|BPF_TAX));
+ sappend(s, xfer_to_a(cstate, inst));
+ sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
+ sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
} else
- s = xfer_to_x(inst);
+ s = xfer_to_x(cstate, inst);
/*
* Load the item at the sum of the offset we've put in the
* variable-length; that header length is what we put
* into the X register and then added to the index).
*/
- tmp = new_stmt(BPF_LD|BPF_IND|size);
- tmp->s.k = off_linkhdr.constant_part;
+ tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
+ tmp->s.k = cstate->off_linkhdr.constant_part;
sappend(s, tmp);
sappend(inst->s, s);
break;
* The offset is relative to the beginning of
* the network-layer header.
* XXX - are there any cases where we want
- * off_nl_nosnap?
+ * cstate->off_nl_nosnap?
*/
- s = gen_abs_offset_varpart(&off_linkpl);
+ s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
/*
* If "s" is non-null, it has code to arrange that the
* the register specified by "index".
*/
if (s != NULL) {
- sappend(s, xfer_to_a(inst));
- sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
- sappend(s, new_stmt(BPF_MISC|BPF_TAX));
+ sappend(s, xfer_to_a(cstate, inst));
+ sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
+ sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
} else
- s = xfer_to_x(inst);
+ s = xfer_to_x(cstate, inst);
/*
* Load the item at the sum of the offset we've put in the
* payload, and the constant part of the offset of the
* start of the link-layer payload.
*/
- tmp = new_stmt(BPF_LD|BPF_IND|size);
- tmp->s.k = off_linkpl.constant_part + off_nl;
+ tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
+ tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
sappend(s, tmp);
sappend(inst->s, s);
* Do the computation only if the packet contains
* the protocol in question.
*/
- b = gen_proto_abbrev(proto);
+ b = gen_proto_abbrev(cstate, proto);
if (inst->b)
gen_and(inst->b, b);
inst->b = b;
* a variable-length header), in bytes.
*
* XXX - are there any cases where we want
- * off_nl_nosnap?
+ * cstate->off_nl_nosnap?
* XXX - we should, if we're built with
* IPv6 support, generate code to load either
* IPv4, IPv6, or both, as appropriate.
*/
- s = gen_loadx_iphdrlen();
+ s = gen_loadx_iphdrlen(cstate);
/*
* The X register now contains the sum of the variable
* relative to the beginning of the link-layer payload,
* of the network-layer header.
*/
- sappend(s, xfer_to_a(inst));
- sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
- sappend(s, new_stmt(BPF_MISC|BPF_TAX));
- sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
- tmp->s.k = off_linkpl.constant_part + off_nl;
+ sappend(s, xfer_to_a(cstate, inst));
+ sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
+ sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
+ sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size));
+ tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
sappend(inst->s, s);
/*
* if this is an IP datagram and is the first or
* only fragment of that datagram.
*/
- gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
+ gen_and(gen_proto_abbrev(cstate, proto), b = gen_ipfrag(cstate));
if (inst->b)
gen_and(inst->b, b);
- gen_and(gen_proto_abbrev(Q_IP), b);
+ gen_and(gen_proto_abbrev(cstate, Q_IP), b);
inst->b = b;
break;
case Q_ICMPV6:
- bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
+ bpf_error(cstate, "IPv6 upper-layer protocol is not supported by proto[x]");
/*NOTREACHED*/
}
inst->regno = regno;
- s = new_stmt(BPF_ST);
+ s = new_stmt(cstate, BPF_ST);
s->s.k = regno;
sappend(inst->s, s);
}
struct block *
-gen_relation(code, a0, a1, reversed)
- int code;
- struct arth *a0, *a1;
- int reversed;
+gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
+ struct arth *a1, int reversed)
{
struct slist *s0, *s1, *s2;
struct block *b, *tmp;
- s0 = xfer_to_x(a1);
- s1 = xfer_to_a(a0);
+ s0 = xfer_to_x(cstate, a1);
+ s1 = xfer_to_a(cstate, a0);
if (code == BPF_JEQ) {
- s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
- b = new_block(JMP(code));
+ s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
+ b = new_block(cstate, JMP(code));
sappend(s1, s2);
}
else
- b = new_block(BPF_JMP|code|BPF_X);
+ b = new_block(cstate, BPF_JMP|code|BPF_X);
if (reversed)
gen_not(b);
b->stmts = a0->s;
- free_reg(a0->regno);
- free_reg(a1->regno);
+ free_reg(cstate, a0->regno);
+ free_reg(cstate, a1->regno);
/* 'and' together protocol checks */
if (a0->b) {
}
struct arth *
-gen_loadlen()
+gen_loadlen(compiler_state_t *cstate)
{
- int regno = alloc_reg();
- struct arth *a = (struct arth *)newchunk(sizeof(*a));
+ int regno = alloc_reg(cstate);
+ struct arth *a = (struct arth *)newchunk(cstate, sizeof(*a));
struct slist *s;
- s = new_stmt(BPF_LD|BPF_LEN);
- s->next = new_stmt(BPF_ST);
+ s = new_stmt(cstate, BPF_LD|BPF_LEN);
+ s->next = new_stmt(cstate, BPF_ST);
s->next->s.k = regno;
a->s = s;
a->regno = regno;
}
struct arth *
-gen_loadi(val)
- int val;
+gen_loadi(compiler_state_t *cstate, int val)
{
struct arth *a;
struct slist *s;
int reg;
- a = (struct arth *)newchunk(sizeof(*a));
+ a = (struct arth *)newchunk(cstate, sizeof(*a));
- reg = alloc_reg();
+ reg = alloc_reg(cstate);
- s = new_stmt(BPF_LD|BPF_IMM);
+ s = new_stmt(cstate, BPF_LD|BPF_IMM);
s->s.k = val;
- s->next = new_stmt(BPF_ST);
+ s->next = new_stmt(cstate, BPF_ST);
s->next->s.k = reg;
a->s = s;
a->regno = reg;
}
struct arth *
-gen_neg(a)
- struct arth *a;
+gen_neg(compiler_state_t *cstate, struct arth *a)
{
struct slist *s;
- s = xfer_to_a(a);
+ s = xfer_to_a(cstate, a);
sappend(a->s, s);
- s = new_stmt(BPF_ALU|BPF_NEG);
+ s = new_stmt(cstate, BPF_ALU|BPF_NEG);
s->s.k = 0;
sappend(a->s, s);
- s = new_stmt(BPF_ST);
+ s = new_stmt(cstate, BPF_ST);
s->s.k = a->regno;
sappend(a->s, s);
}
struct arth *
-gen_arth(code, a0, a1)
- int code;
- struct arth *a0, *a1;
+gen_arth(compiler_state_t *cstate, int code, struct arth *a0,
+ struct arth *a1)
{
struct slist *s0, *s1, *s2;
*/
if (code == BPF_DIV) {
if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
- bpf_error("division by zero");
+ bpf_error(cstate, "division by zero");
} else if (code == BPF_MOD) {
if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
- bpf_error("modulus by zero");
+ bpf_error(cstate, "modulus by zero");
}
- s0 = xfer_to_x(a1);
- s1 = xfer_to_a(a0);
- s2 = new_stmt(BPF_ALU|BPF_X|code);
+ s0 = xfer_to_x(cstate, a1);
+ s1 = xfer_to_a(cstate, a0);
+ s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
sappend(s1, s2);
sappend(s0, s1);
sappend(a1->s, s0);
sappend(a0->s, a1->s);
- free_reg(a0->regno);
- free_reg(a1->regno);
+ free_reg(cstate, a0->regno);
+ free_reg(cstate, a1->regno);
- s0 = new_stmt(BPF_ST);
- a0->regno = s0->s.k = alloc_reg();
+ s0 = new_stmt(cstate, BPF_ST);
+ a0->regno = s0->s.k = alloc_reg(cstate);
sappend(a0->s, s0);
return a0;
}
-/*
- * Here we handle simple allocation of the scratch registers.
- * If too many registers are alloc'd, the allocator punts.
- */
-static int regused[BPF_MEMWORDS];
-static int curreg;
-
/*
* Initialize the table of used registers and the current register.
*/
static void
-init_regs()
+init_regs(compiler_state_t *cstate)
{
- curreg = 0;
- memset(regused, 0, sizeof regused);
+ cstate->curreg = 0;
+ memset(cstate->regused, 0, sizeof cstate->regused);
}
/*
* Return the next free register.
*/
static int
-alloc_reg()
+alloc_reg(compiler_state_t *cstate)
{
int n = BPF_MEMWORDS;
while (--n >= 0) {
- if (regused[curreg])
- curreg = (curreg + 1) % BPF_MEMWORDS;
+ if (cstate->regused[cstate->curreg])
+ cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
else {
- regused[curreg] = 1;
- return curreg;
+ cstate->regused[cstate->curreg] = 1;
+ return cstate->curreg;
}
}
- bpf_error("too many registers needed to evaluate expression");
+ bpf_error(cstate, "too many registers needed to evaluate expression");
/* NOTREACHED */
return 0;
}
* be used later.
*/
static void
-free_reg(n)
- int n;
+free_reg(compiler_state_t *cstate, int n)
{
- regused[n] = 0;
+ cstate->regused[n] = 0;
}
static struct block *
-gen_len(jmp, n)
- int jmp, n;
+gen_len(compiler_state_t *cstate, int jmp, int n)
{
struct slist *s;
struct block *b;
- s = new_stmt(BPF_LD|BPF_LEN);
- b = new_block(JMP(jmp));
+ s = new_stmt(cstate, BPF_LD|BPF_LEN);
+ b = new_block(cstate, JMP(jmp));
b->stmts = s;
b->s.k = n;
}
struct block *
-gen_greater(n)
- int n;
+gen_greater(compiler_state_t *cstate, int n)
{
- return gen_len(BPF_JGE, n);
+ return gen_len(cstate, BPF_JGE, n);
}
/*
* Actually, this is less than or equal.
*/
struct block *
-gen_less(n)
- int n;
+gen_less(compiler_state_t *cstate, int n)
{
struct block *b;
- b = gen_len(BPF_JGT, n);
+ b = gen_len(cstate, BPF_JGT, n);
gen_not(b);
return b;
* would generate code appropriate to the radio header in question.
*/
struct block *
-gen_byteop(op, idx, val)
- int op, idx, val;
+gen_byteop(compiler_state_t *cstate, int op, int idx, int val)
{
struct block *b;
struct slist *s;
abort();
case '=':
- return gen_cmp(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
+ return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
case '<':
- b = gen_cmp_lt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
+ b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
return b;
case '>':
- b = gen_cmp_gt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
+ b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
return b;
case '|':
- s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
+ s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
break;
case '&':
- s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
+ s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
break;
}
s->s.k = val;
- b = new_block(JMP(BPF_JEQ));
+ b = new_block(cstate, JMP(BPF_JEQ));
b->stmts = s;
gen_not(b);
return b;
}
-static u_char abroadcast[] = { 0x0 };
+static const u_char abroadcast[] = { 0x0 };
struct block *
-gen_broadcast(proto)
- int proto;
+gen_broadcast(compiler_state_t *cstate, int proto)
{
bpf_u_int32 hostmask;
struct block *b0, *b1, *b2;
- static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
+ static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
switch (proto) {
case Q_DEFAULT:
case Q_LINK:
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_ARCNET:
case DLT_ARCNET_LINUX:
- return gen_ahostop(abroadcast, Q_DST);
+ return gen_ahostop(cstate, abroadcast, Q_DST);
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
- b1 = gen_prevlinkhdr_check();
- b0 = gen_ehostop(ebroadcast, Q_DST);
+ b1 = gen_prevlinkhdr_check(cstate);
+ b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
if (b1 != NULL)
gen_and(b1, b0);
return b0;
case DLT_FDDI:
- return gen_fhostop(ebroadcast, Q_DST);
+ return gen_fhostop(cstate, ebroadcast, Q_DST);
case DLT_IEEE802:
- return gen_thostop(ebroadcast, Q_DST);
+ return gen_thostop(cstate, ebroadcast, Q_DST);
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
case DLT_IEEE802_11_RADIO:
case DLT_PPI:
- return gen_wlanhostop(ebroadcast, Q_DST);
+ return gen_wlanhostop(cstate, ebroadcast, Q_DST);
case DLT_IP_OVER_FC:
- return gen_ipfchostop(ebroadcast, Q_DST);
+ return gen_ipfchostop(cstate, ebroadcast, Q_DST);
default:
- bpf_error("not a broadcast link");
+ bpf_error(cstate, "not a broadcast link");
}
break;
* as an indication that we don't know the netmask, and fail
* in that case.
*/
- if (netmask == PCAP_NETMASK_UNKNOWN)
- bpf_error("netmask not known, so 'ip broadcast' not supported");
- b0 = gen_linktype(ETHERTYPE_IP);
- hostmask = ~netmask;
- b1 = gen_mcmp(OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
- b2 = gen_mcmp(OR_LINKPL, 16, BPF_W,
+ if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
+ bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
+ b0 = gen_linktype(cstate, ETHERTYPE_IP);
+ hostmask = ~cstate->netmask;
+ b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
+ b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
(bpf_int32)(~0 & hostmask), hostmask);
gen_or(b1, b2);
gen_and(b0, b2);
return b2;
}
- bpf_error("only link-layer/IP broadcast filters supported");
+ bpf_error(cstate, "only link-layer/IP broadcast filters supported");
/* NOTREACHED */
return NULL;
}
* the bottom bit of the *first* byte).
*/
static struct block *
-gen_mac_multicast(offset)
- int offset;
+gen_mac_multicast(compiler_state_t *cstate, int offset)
{
register struct block *b0;
register struct slist *s;
/* link[offset] & 1 != 0 */
- s = gen_load_a(OR_LINKHDR, offset, BPF_B);
- b0 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
+ b0 = new_block(cstate, JMP(BPF_JSET));
b0->s.k = 1;
b0->stmts = s;
return b0;
}
struct block *
-gen_multicast(proto)
- int proto;
+gen_multicast(compiler_state_t *cstate, int proto)
{
register struct block *b0, *b1, *b2;
register struct slist *s;
case Q_DEFAULT:
case Q_LINK:
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_ARCNET:
case DLT_ARCNET_LINUX:
/* all ARCnet multicasts use the same address */
- return gen_ahostop(abroadcast, Q_DST);
+ return gen_ahostop(cstate, abroadcast, Q_DST);
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
- b1 = gen_prevlinkhdr_check();
+ b1 = gen_prevlinkhdr_check(cstate);
/* ether[0] & 1 != 0 */
- b0 = gen_mac_multicast(0);
+ b0 = gen_mac_multicast(cstate, 0);
if (b1 != NULL)
gen_and(b1, b0);
return b0;
* XXX - was that referring to bit-order issues?
*/
/* fddi[1] & 1 != 0 */
- return gen_mac_multicast(1);
+ return gen_mac_multicast(cstate, 1);
case DLT_IEEE802:
/* tr[2] & 1 != 0 */
- return gen_mac_multicast(2);
+ return gen_mac_multicast(cstate, 2);
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
*
* First, check for To DS set, i.e. "link[1] & 0x01".
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x01; /* To DS */
b1->stmts = s;
/*
* If To DS is set, the DA is at 16.
*/
- b0 = gen_mac_multicast(16);
+ b0 = gen_mac_multicast(cstate, 16);
gen_and(b1, b0);
/*
* Now, check for To DS not set, i.e. check
* "!(link[1] & 0x01)".
*/
- s = gen_load_a(OR_LINKHDR, 1, BPF_B);
- b2 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
+ b2 = new_block(cstate, JMP(BPF_JSET));
b2->s.k = 0x01; /* To DS */
b2->stmts = s;
gen_not(b2);
/*
* If To DS is not set, the DA is at 4.
*/
- b1 = gen_mac_multicast(4);
+ b1 = gen_mac_multicast(cstate, 4);
gen_and(b2, b1);
/*
* Now check for a data frame.
* I.e, check "link[0] & 0x08".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x08;
b1->stmts = s;
* is a management frame.
* I.e, check "!(link[0] & 0x08)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b2 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b2 = new_block(cstate, JMP(BPF_JSET));
b2->s.k = 0x08;
b2->stmts = s;
gen_not(b2);
/*
* For management frames, the DA is at 4.
*/
- b1 = gen_mac_multicast(4);
+ b1 = gen_mac_multicast(cstate, 4);
gen_and(b2, b1);
/*
*
* I.e., check "!(link[0] & 0x04)".
*/
- s = gen_load_a(OR_LINKHDR, 0, BPF_B);
- b1 = new_block(JMP(BPF_JSET));
+ s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
+ b1 = new_block(cstate, JMP(BPF_JSET));
b1->s.k = 0x04;
b1->stmts = s;
gen_not(b1);
gen_and(b1, b0);
return b0;
case DLT_IP_OVER_FC:
- b0 = gen_mac_multicast(2);
+ b0 = gen_mac_multicast(cstate, 2);
return b0;
default:
break;
break;
case Q_IP:
- b0 = gen_linktype(ETHERTYPE_IP);
- b1 = gen_cmp_ge(OR_LINKPL, 16, BPF_B, (bpf_int32)224);
+ b0 = gen_linktype(cstate, ETHERTYPE_IP);
+ b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224);
gen_and(b0, b1);
return b1;
case Q_IPV6:
- b0 = gen_linktype(ETHERTYPE_IPV6);
- b1 = gen_cmp(OR_LINKPL, 24, BPF_B, (bpf_int32)255);
+ b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
+ b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255);
gen_and(b0, b1);
return b1;
}
- bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
+ bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
/* NOTREACHED */
return NULL;
}
* better accomplished using a higher-layer filter.
*/
struct block *
-gen_inbound(dir)
- int dir;
+gen_inbound(compiler_state_t *cstate, int dir)
{
register struct block *b0;
/*
* Only some data link types support inbound/outbound qualifiers.
*/
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_SLIP:
- b0 = gen_relation(BPF_JEQ,
- gen_load(Q_LINK, gen_loadi(0), 1),
- gen_loadi(0),
+ b0 = gen_relation(cstate, BPF_JEQ,
+ gen_load(cstate, Q_LINK, gen_loadi(cstate, 0), 1),
+ gen_loadi(cstate, 0),
dir);
break;
case DLT_IPNET:
if (dir) {
/* match outgoing packets */
- b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
+ b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
} else {
/* match incoming packets */
- b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
+ b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
}
break;
case DLT_LINUX_SLL:
/* match outgoing packets */
- b0 = gen_cmp(OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
+ b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
if (!dir) {
/* to filter on inbound traffic, invert the match */
gen_not(b0);
#ifdef HAVE_NET_PFVAR_H
case DLT_PFLOG:
- b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
+ b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
(bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
break;
#endif
case DLT_PPP_PPPD:
if (dir) {
/* match outgoing packets */
- b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
+ b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
} else {
/* match incoming packets */
- b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
+ b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
}
break;
* the byte after the 3-byte magic number */
if (dir) {
/* match outgoing packets */
- b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 0, 0x01);
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
} else {
/* match incoming packets */
- b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 1, 0x01);
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
}
break;
* special meta-data in the filter expression;
* if it's a savefile, we can't.
*/
- if (bpf_pcap->rfile != NULL) {
+ if (cstate->bpf_pcap->rfile != NULL) {
/* We have a FILE *, so this is a savefile */
- bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
- linktype);
+ bpf_error(cstate, "inbound/outbound not supported on linktype %d when reading savefiles",
+ cstate->linktype);
b0 = NULL;
/* NOTREACHED */
}
/* match outgoing packets */
- b0 = gen_cmp(OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
+ b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
PACKET_OUTGOING);
if (!dir) {
/* to filter on inbound traffic, invert the match */
gen_not(b0);
}
#else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
- bpf_error("inbound/outbound not supported on linktype %d",
- linktype);
+ bpf_error(cstate, "inbound/outbound not supported on linktype %d",
+ cstate->linktype);
b0 = NULL;
/* NOTREACHED */
#endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
#ifdef HAVE_NET_PFVAR_H
/* PF firewall log matched interface */
struct block *
-gen_pf_ifname(const char *ifname)
+gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
{
struct block *b0;
u_int len, off;
- if (linktype != DLT_PFLOG) {
- bpf_error("ifname supported only on PF linktype");
+ if (cstate->linktype != DLT_PFLOG) {
+ bpf_error(cstate, "ifname supported only on PF linktype");
/* NOTREACHED */
}
len = sizeof(((struct pfloghdr *)0)->ifname);
off = offsetof(struct pfloghdr, ifname);
if (strlen(ifname) >= len) {
- bpf_error("ifname interface names can only be %d characters",
+ bpf_error(cstate, "ifname interface names can only be %d characters",
len-1);
/* NOTREACHED */
}
- b0 = gen_bcmp(OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
+ b0 = gen_bcmp(cstate, OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
return (b0);
}
/* PF firewall log ruleset name */
struct block *
-gen_pf_ruleset(char *ruleset)
+gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
{
struct block *b0;
- if (linktype != DLT_PFLOG) {
- bpf_error("ruleset supported only on PF linktype");
+ if (cstate->linktype != DLT_PFLOG) {
+ bpf_error(cstate, "ruleset supported only on PF linktype");
/* NOTREACHED */
}
if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
- bpf_error("ruleset names can only be %ld characters",
+ bpf_error(cstate, "ruleset names can only be %ld characters",
(long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
/* NOTREACHED */
}
- b0 = gen_bcmp(OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
+ b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
strlen(ruleset), (const u_char *)ruleset);
return (b0);
}
/* PF firewall log rule number */
struct block *
-gen_pf_rnr(int rnr)
+gen_pf_rnr(compiler_state_t *cstate, int rnr)
{
struct block *b0;
- if (linktype != DLT_PFLOG) {
- bpf_error("rnr supported only on PF linktype");
+ if (cstate->linktype != DLT_PFLOG) {
+ bpf_error(cstate, "rnr supported only on PF linktype");
/* NOTREACHED */
}
- b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
+ b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
(bpf_int32)rnr);
return (b0);
}
/* PF firewall log sub-rule number */
struct block *
-gen_pf_srnr(int srnr)
+gen_pf_srnr(compiler_state_t *cstate, int srnr)
{
struct block *b0;
- if (linktype != DLT_PFLOG) {
- bpf_error("srnr supported only on PF linktype");
+ if (cstate->linktype != DLT_PFLOG) {
+ bpf_error(cstate, "srnr supported only on PF linktype");
/* NOTREACHED */
}
- b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
+ b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
(bpf_int32)srnr);
return (b0);
}
/* PF firewall log reason code */
struct block *
-gen_pf_reason(int reason)
+gen_pf_reason(compiler_state_t *cstate, int reason)
{
struct block *b0;
- if (linktype != DLT_PFLOG) {
- bpf_error("reason supported only on PF linktype");
+ if (cstate->linktype != DLT_PFLOG) {
+ bpf_error(cstate, "reason supported only on PF linktype");
/* NOTREACHED */
}
- b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
+ b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
(bpf_int32)reason);
return (b0);
}
/* PF firewall log action */
struct block *
-gen_pf_action(int action)
+gen_pf_action(compiler_state_t *cstate, int action)
{
struct block *b0;
- if (linktype != DLT_PFLOG) {
- bpf_error("action supported only on PF linktype");
+ if (cstate->linktype != DLT_PFLOG) {
+ bpf_error(cstate, "action supported only on PF linktype");
/* NOTREACHED */
}
- b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
+ b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
(bpf_int32)action);
return (b0);
}
#else /* !HAVE_NET_PFVAR_H */
struct block *
-gen_pf_ifname(const char *ifname)
+gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
{
- bpf_error("libpcap was compiled without pf support");
+ bpf_error(cstate, "libpcap was compiled without pf support");
/* NOTREACHED */
return (NULL);
}
struct block *
-gen_pf_ruleset(char *ruleset)
+gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
{
- bpf_error("libpcap was compiled on a machine without pf support");
+ bpf_error(cstate, "libpcap was compiled on a machine without pf support");
/* NOTREACHED */
return (NULL);
}
struct block *
-gen_pf_rnr(int rnr)
+gen_pf_rnr(compiler_state_t *cstate, int rnr)
{
- bpf_error("libpcap was compiled on a machine without pf support");
+ bpf_error(cstate, "libpcap was compiled on a machine without pf support");
/* NOTREACHED */
return (NULL);
}
struct block *
-gen_pf_srnr(int srnr)
+gen_pf_srnr(compiler_state_t *cstate, int srnr)
{
- bpf_error("libpcap was compiled on a machine without pf support");
+ bpf_error(cstate, "libpcap was compiled on a machine without pf support");
/* NOTREACHED */
return (NULL);
}
struct block *
-gen_pf_reason(int reason)
+gen_pf_reason(compiler_state_t *cstate, int reason)
{
- bpf_error("libpcap was compiled on a machine without pf support");
+ bpf_error(cstate, "libpcap was compiled on a machine without pf support");
/* NOTREACHED */
return (NULL);
}
struct block *
-gen_pf_action(int action)
+gen_pf_action(compiler_state_t *cstate, int action)
{
- bpf_error("libpcap was compiled on a machine without pf support");
+ bpf_error(cstate, "libpcap was compiled on a machine without pf support");
/* NOTREACHED */
return (NULL);
}
/* IEEE 802.11 wireless header */
struct block *
-gen_p80211_type(int type, int mask)
+gen_p80211_type(compiler_state_t *cstate, int type, int mask)
{
struct block *b0;
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
case DLT_IEEE802_11_RADIO:
- b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
(bpf_int32)mask);
break;
default:
- bpf_error("802.11 link-layer types supported only on 802.11");
+ bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
/* NOTREACHED */
}
}
struct block *
-gen_p80211_fcdir(int fcdir)
+gen_p80211_fcdir(compiler_state_t *cstate, int fcdir)
{
struct block *b0;
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
break;
default:
- bpf_error("frame direction supported only with 802.11 headers");
+ bpf_error(cstate, "frame direction supported only with 802.11 headers");
/* NOTREACHED */
}
- b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
+ b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
return (b0);
}
struct block *
-gen_acode(eaddr, q)
- register const u_char *eaddr;
- struct qual q;
+gen_acode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
{
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_ARCNET:
case DLT_ARCNET_LINUX:
if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
q.proto == Q_LINK)
- return (gen_ahostop(eaddr, (int)q.dir));
+ return (gen_ahostop(cstate, eaddr, (int)q.dir));
else {
- bpf_error("ARCnet address used in non-arc expression");
+ bpf_error(cstate, "ARCnet address used in non-arc expression");
/* NOTREACHED */
}
break;
default:
- bpf_error("aid supported only on ARCnet");
+ bpf_error(cstate, "aid supported only on ARCnet");
/* NOTREACHED */
}
- bpf_error("ARCnet address used in non-arc expression");
+ bpf_error(cstate, "ARCnet address used in non-arc expression");
/* NOTREACHED */
return NULL;
}
static struct block *
-gen_ahostop(eaddr, dir)
- register const u_char *eaddr;
- register int dir;
+gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
register struct block *b0, *b1;
switch (dir) {
/* src comes first, different from Ethernet */
case Q_SRC:
- return gen_bcmp(OR_LINKHDR, 0, 1, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
case Q_DST:
- return gen_bcmp(OR_LINKHDR, 1, 1, eaddr);
+ return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
case Q_AND:
- b0 = gen_ahostop(eaddr, Q_SRC);
- b1 = gen_ahostop(eaddr, Q_DST);
+ b0 = gen_ahostop(cstate, eaddr, Q_SRC);
+ b1 = gen_ahostop(cstate, eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
- b0 = gen_ahostop(eaddr, Q_SRC);
- b1 = gen_ahostop(eaddr, Q_DST);
+ b0 = gen_ahostop(cstate, eaddr, Q_SRC);
+ b1 = gen_ahostop(cstate, eaddr, Q_DST);
gen_or(b0, b1);
return b1;
case Q_ADDR1:
- bpf_error("'addr1' is only supported on 802.11");
+ bpf_error(cstate, "'addr1' is only supported on 802.11");
break;
case Q_ADDR2:
- bpf_error("'addr2' is only supported on 802.11");
+ bpf_error(cstate, "'addr2' is only supported on 802.11");
break;
case Q_ADDR3:
- bpf_error("'addr3' is only supported on 802.11");
+ bpf_error(cstate, "'addr3' is only supported on 802.11");
break;
case Q_ADDR4:
- bpf_error("'addr4' is only supported on 802.11");
+ bpf_error(cstate, "'addr4' is only supported on 802.11");
break;
case Q_RA:
- bpf_error("'ra' is only supported on 802.11");
+ bpf_error(cstate, "'ra' is only supported on 802.11");
break;
case Q_TA:
- bpf_error("'ta' is only supported on 802.11");
+ bpf_error(cstate, "'ta' is only supported on 802.11");
break;
}
abort();
/* generate new filter code based on extracting packet
* metadata */
- s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
+ s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
- b0 = new_block(JMP(BPF_JEQ));
+ b0 = new_block(cstate, JMP(BPF_JEQ));
b0->stmts = s;
b0->s.k = 1;
if (vlan_num >= 0) {
- s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
+ s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
- b1 = new_block(JMP(BPF_JEQ));
+ b1 = new_block(cstate, JMP(BPF_JEQ));
b1->stmts = s;
b1->s.k = (bpf_int32) vlan_num;
#endif
static struct block *
-gen_vlan_no_bpf_extensions(int vlan_num)
+gen_vlan_no_bpf_extensions(compiler_state_t *cstate, int vlan_num)
{
struct block *b0, *b1;
/* check for VLAN, including QinQ */
- b0 = gen_linktype(ETHERTYPE_8021Q);
- b1 = gen_linktype(ETHERTYPE_8021AD);
+ b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
+ b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
gen_or(b0,b1);
b0 = b1;
- b1 = gen_linktype(ETHERTYPE_8021QINQ);
+ b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
gen_or(b0,b1);
b0 = b1;
/* If a specific VLAN is requested, check VLAN id */
if (vlan_num >= 0) {
- b1 = gen_mcmp(OR_LINKPL, 0, BPF_H,
+ b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_H,
(bpf_int32)vlan_num, 0x0fff);
gen_and(b0, b1);
b0 = b1;
* The payload follows the full header, including the
* VLAN tags, so skip past this VLAN tag.
*/
- off_linkpl.constant_part += 4;
+ cstate->off_linkpl.constant_part += 4;
/*
* The link-layer type information follows the VLAN tags, so
* skip past this VLAN tag.
*/
- off_linktype.constant_part += 4;
+ cstate->off_linktype.constant_part += 4;
return b0;
}
* support IEEE 802.1Q VLAN trunk over ethernet
*/
struct block *
-gen_vlan(vlan_num)
- int vlan_num;
+gen_vlan(compiler_state_t *cstate, int vlan_num)
{
struct block *b0;
/* can't check for VLAN-encapsulated packets inside MPLS */
- if (label_stack_depth > 0)
- bpf_error("no VLAN match after MPLS");
+ if (cstate->label_stack_depth > 0)
+ bpf_error(cstate, "no VLAN match after MPLS");
/*
* Check for a VLAN packet, and then change the offsets to point
* be done assuming a VLAN, even though the "or" could be viewed
* as meaning "or, if this isn't a VLAN packet...".
*/
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_EN10MB:
case DLT_NETANALYZER:
#if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
/* Verify that this is the outer part of the packet and
* not encapsulated somehow. */
- if (vlan_stack_depth == 0 && !off_linkhdr.is_variable &&
- off_linkhdr.constant_part ==
+ if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
+ cstate->off_linkhdr.constant_part ==
off_outermostlinkhdr.constant_part) {
/*
* Do we need special VLAN handling?
*/
- if (bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
+ if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
b0 = gen_vlan_bpf_extensions(vlan_num);
else
- b0 = gen_vlan_no_bpf_extensions(vlan_num);
+ b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
} else
#endif
- b0 = gen_vlan_no_bpf_extensions(vlan_num);
+ b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
break;
case DLT_IEEE802_11:
case DLT_PRISM_HEADER:
case DLT_IEEE802_11_RADIO_AVS:
case DLT_IEEE802_11_RADIO:
- b0 = gen_vlan_no_bpf_extensions(vlan_num);
+ b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
break;
default:
- bpf_error("no VLAN support for data link type %d",
- linktype);
+ bpf_error(cstate, "no VLAN support for data link type %d",
+ cstate->linktype);
/*NOTREACHED*/
}
- vlan_stack_depth++;
+ cstate->vlan_stack_depth++;
return (b0);
}
* support for MPLS
*/
struct block *
-gen_mpls(label_num)
- int label_num;
+gen_mpls(compiler_state_t *cstate, int label_num)
{
struct block *b0, *b1;
- if (label_stack_depth > 0) {
+ if (cstate->label_stack_depth > 0) {
/* just match the bottom-of-stack bit clear */
- b0 = gen_mcmp(OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
+ b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
} else {
/*
* We're not in an MPLS stack yet, so check the link-layer
* type against MPLS.
*/
- switch (linktype) {
+ switch (cstate->linktype) {
case DLT_C_HDLC: /* fall through */
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
- b0 = gen_linktype(ETHERTYPE_MPLS);
+ b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
break;
case DLT_PPP:
- b0 = gen_linktype(PPP_MPLS_UCAST);
+ b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
break;
/* FIXME add other DLT_s ...
* leave it for now */
default:
- bpf_error("no MPLS support for data link type %d",
- linktype);
+ bpf_error(cstate, "no MPLS support for data link type %d",
+ cstate->linktype);
b0 = NULL;
/*NOTREACHED*/
break;
/* If a specific MPLS label is requested, check it */
if (label_num >= 0) {
label_num = label_num << 12; /* label is shifted 12 bits on the wire */
- b1 = gen_mcmp(OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
+ b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
0xfffff000); /* only compare the first 20 bits */
gen_and(b0, b1);
b0 = b1;
*
* XXX - this is a bit of a kludge. See comments in gen_vlan().
*/
- off_nl_nosnap += 4;
- off_nl += 4;
- label_stack_depth++;
+ cstate->off_nl_nosnap += 4;
+ cstate->off_nl += 4;
+ cstate->label_stack_depth++;
return (b0);
}
* Support PPPOE discovery and session.
*/
struct block *
-gen_pppoed()
+gen_pppoed(compiler_state_t *cstate)
{
/* check for PPPoE discovery */
- return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
+ return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED);
}
struct block *
-gen_pppoes(sess_num)
- int sess_num;
+gen_pppoes(compiler_state_t *cstate, int sess_num)
{
struct block *b0, *b1;
/*
* Test against the PPPoE session link-layer type.
*/
- b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
+ b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES);
/* If a specific session is requested, check PPPoE session id */
if (sess_num >= 0) {
- b1 = gen_mcmp(OR_LINKPL, 0, BPF_W,
+ b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W,
(bpf_int32)sess_num, 0x0000ffff);
gen_and(b0, b1);
b0 = b1;
* starts at the first byte of the PPP packet. For PPPoE,
* that offset is relative to the beginning of the total
* link-layer payload, including any 802.2 LLC header, so
- * it's 6 bytes past off_nl.
+ * it's 6 bytes past cstate->off_nl.
*/
- PUSH_LINKHDR(DLT_PPP, off_linkpl.is_variable,
- off_linkpl.constant_part + off_nl + 6, /* 6 bytes past the PPPoE header */
- off_linkpl.reg);
+ PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
+ cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
+ cstate->off_linkpl.reg);
- off_linktype = off_linkhdr;
- off_linkpl.constant_part = off_linkhdr.constant_part + 2;
+ cstate->off_linktype = cstate->off_linkhdr;
+ cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
- off_nl = 0;
- off_nl_nosnap = 0; /* no 802.2 LLC */
+ cstate->off_nl = 0;
+ cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
return b0;
}
/* Check that this is Geneve and the VNI is correct if
* specified. Parameterized to handle both IPv4 and IPv6. */
static struct block *
-gen_geneve_check(struct block *(*gen_portfn)(int, int, int),
- enum e_offrel offrel, int vni)
+gen_geneve_check(compiler_state_t *cstate,
+ struct block *(*gen_portfn)(compiler_state_t *, int, int, int),
+ enum e_offrel offrel, int vni)
{
struct block *b0, *b1;
- b0 = gen_portfn(GENEVE_PORT, IPPROTO_UDP, Q_DST);
+ b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
/* Check that we are operating on version 0. Otherwise, we
* can't decode the rest of the fields. The version is 2 bits
* in the first byte of the Geneve header. */
- b1 = gen_mcmp(offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
+ b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
gen_and(b0, b1);
b0 = b1;
if (vni >= 0) {
vni <<= 8; /* VNI is in the upper 3 bytes */
- b1 = gen_mcmp(offrel, 12, BPF_W, (bpf_int32)vni,
+ b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni,
0xffffff00);
gen_and(b0, b1);
b0 = b1;
* needed) into register A to be used later to compute
* the inner packet offsets. */
static struct block *
-gen_geneve4(int vni)
+gen_geneve4(compiler_state_t *cstate, int vni)
{
struct block *b0, *b1;
struct slist *s, *s1;
- b0 = gen_geneve_check(gen_port, OR_TRAN_IPV4, vni);
+ b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni);
/* Load the IP header length into A. */
- s = gen_loadx_iphdrlen();
+ s = gen_loadx_iphdrlen(cstate);
- s1 = new_stmt(BPF_MISC|BPF_TXA);
+ s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
sappend(s, s1);
/* Forcibly append these statements to the true condition
* of the protocol check by creating a new block that is
* always true and ANDing them. */
- b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
+ b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
b1->stmts = s;
b1->s.k = 0;
}
static struct block *
-gen_geneve6(int vni)
+gen_geneve6(compiler_state_t *cstate, int vni)
{
struct block *b0, *b1;
struct slist *s, *s1;
- b0 = gen_geneve_check(gen_port6, OR_TRAN_IPV6, vni);
+ b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni);
/* Load the IP header length. We need to account for a
* variable length link prefix if there is one. */
- s = gen_abs_offset_varpart(&off_linkpl);
+ s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
if (s) {
- s1 = new_stmt(BPF_LD|BPF_IMM);
+ s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
s1->s.k = 40;
sappend(s, s1);
- s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
s1->s.k = 0;
sappend(s, s1);
} else {
- s = new_stmt(BPF_LD|BPF_IMM);
+ s = new_stmt(cstate, BPF_LD|BPF_IMM);
s->s.k = 40;
}
/* Forcibly append these statements to the true condition
* of the protocol check by creating a new block that is
* always true and ANDing them. */
- s1 = new_stmt(BPF_MISC|BPF_TAX);
+ s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s, s1);
- b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
+ b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
b1->stmts = s;
b1->s.k = 0;
* - The offset of the end of the Geneve header.
* - The offset of the end of the encapsulated MAC header. */
static struct slist *
-gen_geneve_offsets(void)
+gen_geneve_offsets(compiler_state_t *cstate)
{
struct slist *s, *s1, *s_proto;
* (include any variable link prefix) and stored in A plus the
* fixed sized headers (fixed link prefix, MAC length, and UDP
* header). */
- s = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
- s->s.k = off_linkpl.constant_part + off_nl + 8;
+ s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
+ s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
/* Stash this in X since we'll need it later. */
- s1 = new_stmt(BPF_MISC|BPF_TAX);
+ s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s, s1);
/* The EtherType in Geneve is 2 bytes in. Calculate this and
* store it. */
- s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s1->s.k = 2;
sappend(s, s1);
- off_linktype.reg = alloc_reg();
- off_linktype.is_variable = 1;
- off_linktype.constant_part = 0;
+ cstate->off_linktype.reg = alloc_reg(cstate);
+ cstate->off_linktype.is_variable = 1;
+ cstate->off_linktype.constant_part = 0;
- s1 = new_stmt(BPF_ST);
- s1->s.k = off_linktype.reg;
+ s1 = new_stmt(cstate, BPF_ST);
+ s1->s.k = cstate->off_linktype.reg;
sappend(s, s1);
/* Load the Geneve option length and mask and shift to get the
* number of bytes. It is stored in the first byte of the Geneve
* header. */
- s1 = new_stmt(BPF_LD|BPF_IND|BPF_B);
+ s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
s1->s.k = 0;
sappend(s, s1);
- s1 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
s1->s.k = 0x3f;
sappend(s, s1);
- s1 = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
s1->s.k = 4;
sappend(s, s1);
/* Add in the rest of the Geneve base header. */
- s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s1->s.k = 8;
sappend(s, s1);
/* Add the Geneve header length to its offset and store. */
- s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
s1->s.k = 0;
sappend(s, s1);
* - The only link layer that we have specific support for is
* Ethernet. We will confirm that the packet actually is
* Ethernet at runtime before executing these checks. */
- PUSH_LINKHDR(DLT_EN10MB, 1, 0, alloc_reg());
+ PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
- s1 = new_stmt(BPF_ST);
- s1->s.k = off_linkhdr.reg;
+ s1 = new_stmt(cstate, BPF_ST);
+ s1->s.k = cstate->off_linkhdr.reg;
sappend(s, s1);
/* Calculate whether we have an Ethernet header or just raw IP/
* seamlessly. Otherwise, keep what we've calculated already. */
/* We have a bare jmp so we can't use the optimizer. */
- no_optimize = 1;
+ cstate->no_optimize = 1;
/* Load the EtherType in the Geneve header, 2 bytes in. */
- s1 = new_stmt(BPF_LD|BPF_IND|BPF_H);
+ s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
s1->s.k = 2;
sappend(s, s1);
/* Load X with the end of the Geneve header. */
- s1 = new_stmt(BPF_LDX|BPF_MEM);
- s1->s.k = off_linkhdr.reg;
+ s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
+ s1->s.k = cstate->off_linkhdr.reg;
sappend(s, s1);
/* Check if the EtherType is Transparent Ethernet Bridging. At the
* end of this check, we should have the total length in X. In
* the non-Ethernet case, it's already there. */
- s_proto = new_stmt(JMP(BPF_JEQ));
+ s_proto = new_stmt(cstate, JMP(BPF_JEQ));
s_proto->s.k = ETHERTYPE_TEB;
sappend(s, s_proto);
- s1 = new_stmt(BPF_MISC|BPF_TXA);
+ s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
sappend(s, s1);
s_proto->s.jt = s1;
/* Since this is Ethernet, use the EtherType of the payload
* directly as the linktype. Overwrite what we already have. */
- s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s1->s.k = 12;
sappend(s, s1);
- s1 = new_stmt(BPF_ST);
- s1->s.k = off_linktype.reg;
+ s1 = new_stmt(cstate, BPF_ST);
+ s1->s.k = cstate->off_linktype.reg;
sappend(s, s1);
/* Advance two bytes further to get the end of the Ethernet
* header. */
- s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
s1->s.k = 2;
sappend(s, s1);
/* Move the result to X. */
- s1 = new_stmt(BPF_MISC|BPF_TAX);
+ s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
sappend(s, s1);
/* Store the final result of our linkpl calculation. */
- off_linkpl.reg = alloc_reg();
- off_linkpl.is_variable = 1;
- off_linkpl.constant_part = 0;
+ cstate->off_linkpl.reg = alloc_reg(cstate);
+ cstate->off_linkpl.is_variable = 1;
+ cstate->off_linkpl.constant_part = 0;
- s1 = new_stmt(BPF_STX);
- s1->s.k = off_linkpl.reg;
+ s1 = new_stmt(cstate, BPF_STX);
+ s1->s.k = cstate->off_linkpl.reg;
sappend(s, s1);
s_proto->s.jf = s1;
- off_nl = 0;
+ cstate->off_nl = 0;
return s;
}
/* Check to see if this is a Geneve packet. */
struct block *
-gen_geneve(int vni)
+gen_geneve(compiler_state_t *cstate, int vni)
{
struct block *b0, *b1;
struct slist *s;
- b0 = gen_geneve4(vni);
- b1 = gen_geneve6(vni);
+ b0 = gen_geneve4(cstate, vni);
+ b1 = gen_geneve6(cstate, vni);
gen_or(b0, b1);
b0 = b1;
/* Later filters should act on the payload of the Geneve frame,
* update all of the header pointers. Attach this code so that
* it gets executed in the event that the Geneve filter matches. */
- s = gen_geneve_offsets();
+ s = gen_geneve_offsets(cstate);
- b1 = gen_true();
+ b1 = gen_true(cstate);
sappend(s, b1->stmts);
b1->stmts = s;
gen_and(b0, b1);
- is_geneve = 1;
+ cstate->is_geneve = 1;
return b1;
}
/* Check that the encapsulated frame has a link layer header
* for Ethernet filters. */
static struct block *
-gen_geneve_ll_check()
+gen_geneve_ll_check(compiler_state_t *cstate)
{
struct block *b0;
struct slist *s, *s1;
/* Geneve always generates pure variable offsets so we can
* compare only the registers. */
- s = new_stmt(BPF_LD|BPF_MEM);
- s->s.k = off_linkhdr.reg;
+ s = new_stmt(cstate, BPF_LD|BPF_MEM);
+ s->s.k = cstate->off_linkhdr.reg;
- s1 = new_stmt(BPF_LDX|BPF_MEM);
- s1->s.k = off_linkpl.reg;
+ s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
+ s1->s.k = cstate->off_linkpl.reg;
sappend(s, s1);
- b0 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
+ b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
b0->stmts = s;
b0->s.k = 0;
gen_not(b0);
}
struct block *
-gen_atmfield_code(atmfield, jvalue, jtype, reverse)
- int atmfield;
- bpf_int32 jvalue;
- bpf_u_int32 jtype;
- int reverse;
+gen_atmfield_code(compiler_state_t *cstate, int atmfield, bpf_int32 jvalue,
+ bpf_u_int32 jtype, int reverse)
{
struct block *b0;
switch (atmfield) {
case A_VPI:
- if (!is_atm)
- bpf_error("'vpi' supported only on raw ATM");
- if (off_vpi == (u_int)-1)
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'vpi' supported only on raw ATM");
+ if (cstate->off_vpi == (u_int)-1)
abort();
- b0 = gen_ncmp(OR_LINKHDR, off_vpi, BPF_B, 0xffffffff, jtype,
+ b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype,
reverse, jvalue);
break;
case A_VCI:
- if (!is_atm)
- bpf_error("'vci' supported only on raw ATM");
- if (off_vci == (u_int)-1)
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'vci' supported only on raw ATM");
+ if (cstate->off_vci == (u_int)-1)
abort();
- b0 = gen_ncmp(OR_LINKHDR, off_vci, BPF_H, 0xffffffff, jtype,
+ b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype,
reverse, jvalue);
break;
case A_PROTOTYPE:
- if (off_proto == (u_int)-1)
+ if (cstate->off_proto == (u_int)-1)
abort(); /* XXX - this isn't on FreeBSD */
- b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0x0f, jtype,
+ b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype,
reverse, jvalue);
break;
case A_MSGTYPE:
- if (off_payload == (u_int)-1)
+ if (cstate->off_payload == (u_int)-1)
abort();
- b0 = gen_ncmp(OR_LINKHDR, off_payload + MSG_TYPE_POS, BPF_B,
+ b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
0xffffffff, jtype, reverse, jvalue);
break;
case A_CALLREFTYPE:
- if (!is_atm)
- bpf_error("'callref' supported only on raw ATM");
- if (off_proto == (u_int)-1)
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'callref' supported only on raw ATM");
+ if (cstate->off_proto == (u_int)-1)
abort();
- b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0xffffffff,
+ b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff,
jtype, reverse, jvalue);
break;
}
struct block *
-gen_atmtype_abbrev(type)
- int type;
+gen_atmtype_abbrev(compiler_state_t *cstate, int type)
{
struct block *b0, *b1;
case A_METAC:
/* Get all packets in Meta signalling Circuit */
- if (!is_atm)
- bpf_error("'metac' supported only on raw ATM");
- b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
- b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'metac' supported only on raw ATM");
+ b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_VCI, 1, BPF_JEQ, 0);
gen_and(b0, b1);
break;
case A_BCC:
/* Get all packets in Broadcast Circuit*/
- if (!is_atm)
- bpf_error("'bcc' supported only on raw ATM");
- b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
- b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'bcc' supported only on raw ATM");
+ b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_VCI, 2, BPF_JEQ, 0);
gen_and(b0, b1);
break;
case A_OAMF4SC:
/* Get all cells in Segment OAM F4 circuit*/
- if (!is_atm)
- bpf_error("'oam4sc' supported only on raw ATM");
- b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
- b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'oam4sc' supported only on raw ATM");
+ b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
gen_and(b0, b1);
break;
case A_OAMF4EC:
/* Get all cells in End-to-End OAM F4 Circuit*/
- if (!is_atm)
- bpf_error("'oam4ec' supported only on raw ATM");
- b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
- b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'oam4ec' supported only on raw ATM");
+ b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
gen_and(b0, b1);
break;
case A_SC:
/* Get all packets in connection Signalling Circuit */
- if (!is_atm)
- bpf_error("'sc' supported only on raw ATM");
- b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
- b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'sc' supported only on raw ATM");
+ b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_VCI, 5, BPF_JEQ, 0);
gen_and(b0, b1);
break;
case A_ILMIC:
/* Get all packets in ILMI Circuit */
- if (!is_atm)
- bpf_error("'ilmic' supported only on raw ATM");
- b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
- b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'ilmic' supported only on raw ATM");
+ b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_VCI, 16, BPF_JEQ, 0);
gen_and(b0, b1);
break;
case A_LANE:
/* Get all LANE packets */
- if (!is_atm)
- bpf_error("'lane' supported only on raw ATM");
- b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'lane' supported only on raw ATM");
+ b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
/*
* Arrange that all subsequent tests assume LANE
*
* We assume LANE means Ethernet, not Token Ring.
*/
- PUSH_LINKHDR(DLT_EN10MB, 0,
- off_payload + 2, /* Ethernet header */
+ PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
+ cstate->off_payload + 2, /* Ethernet header */
-1);
- off_linktype.constant_part = off_linkhdr.constant_part + 12;
- off_linkpl.constant_part = off_linkhdr.constant_part + 14; /* Ethernet */
- off_nl = 0; /* Ethernet II */
- off_nl_nosnap = 3; /* 802.3+802.2 */
+ cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
+ cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
+ cstate->off_nl = 0; /* Ethernet II */
+ cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
break;
case A_LLC:
/* Get all LLC-encapsulated packets */
- if (!is_atm)
- bpf_error("'llc' supported only on raw ATM");
- b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
- linktype = prevlinktype;
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'llc' supported only on raw ATM");
+ b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
+ cstate->linktype = cstate->prevlinktype;
break;
default:
* For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
*/
struct block *
-gen_mtp2type_abbrev(type)
- int type;
+gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
{
struct block *b0, *b1;
switch (type) {
case M_FISU:
- if ( (linktype != DLT_MTP2) &&
- (linktype != DLT_ERF) &&
- (linktype != DLT_MTP2_WITH_PHDR) )
- bpf_error("'fisu' supported only on MTP2");
- /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
- b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
+ if ( (cstate->linktype != DLT_MTP2) &&
+ (cstate->linktype != DLT_ERF) &&
+ (cstate->linktype != DLT_MTP2_WITH_PHDR) )
+ bpf_error(cstate, "'fisu' supported only on MTP2");
+ /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
+ b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
break;
case M_LSSU:
- if ( (linktype != DLT_MTP2) &&
- (linktype != DLT_ERF) &&
- (linktype != DLT_MTP2_WITH_PHDR) )
- bpf_error("'lssu' supported only on MTP2");
- b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
- b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
+ if ( (cstate->linktype != DLT_MTP2) &&
+ (cstate->linktype != DLT_ERF) &&
+ (cstate->linktype != DLT_MTP2_WITH_PHDR) )
+ bpf_error(cstate, "'lssu' supported only on MTP2");
+ b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
+ b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
gen_and(b1, b0);
break;
case M_MSU:
- if ( (linktype != DLT_MTP2) &&
- (linktype != DLT_ERF) &&
- (linktype != DLT_MTP2_WITH_PHDR) )
- bpf_error("'msu' supported only on MTP2");
- b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
+ if ( (cstate->linktype != DLT_MTP2) &&
+ (cstate->linktype != DLT_ERF) &&
+ (cstate->linktype != DLT_MTP2_WITH_PHDR) )
+ bpf_error(cstate, "'msu' supported only on MTP2");
+ b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
break;
case MH_FISU:
- if ( (linktype != DLT_MTP2) &&
- (linktype != DLT_ERF) &&
- (linktype != DLT_MTP2_WITH_PHDR) )
- bpf_error("'hfisu' supported only on MTP2_HSL");
- /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
- b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
+ if ( (cstate->linktype != DLT_MTP2) &&
+ (cstate->linktype != DLT_ERF) &&
+ (cstate->linktype != DLT_MTP2_WITH_PHDR) )
+ bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
+ /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
+ b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
break;
case MH_LSSU:
- if ( (linktype != DLT_MTP2) &&
- (linktype != DLT_ERF) &&
- (linktype != DLT_MTP2_WITH_PHDR) )
- bpf_error("'hlssu' supported only on MTP2_HSL");
- b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
- b1 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
+ if ( (cstate->linktype != DLT_MTP2) &&
+ (cstate->linktype != DLT_ERF) &&
+ (cstate->linktype != DLT_MTP2_WITH_PHDR) )
+ bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
+ b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
+ b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
gen_and(b1, b0);
break;
case MH_MSU:
- if ( (linktype != DLT_MTP2) &&
- (linktype != DLT_ERF) &&
- (linktype != DLT_MTP2_WITH_PHDR) )
- bpf_error("'hmsu' supported only on MTP2_HSL");
- b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
+ if ( (cstate->linktype != DLT_MTP2) &&
+ (cstate->linktype != DLT_ERF) &&
+ (cstate->linktype != DLT_MTP2_WITH_PHDR) )
+ bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
+ b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
break;
default:
}
struct block *
-gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
- int mtp3field;
- bpf_u_int32 jvalue;
- bpf_u_int32 jtype;
- int reverse;
+gen_mtp3field_code(compiler_state_t *cstate, int mtp3field, bpf_u_int32 jvalue,
+ bpf_u_int32 jtype, int reverse)
{
struct block *b0;
bpf_u_int32 val1 , val2 , val3;
- u_int newoff_sio=off_sio;
- u_int newoff_opc=off_opc;
- u_int newoff_dpc=off_dpc;
- u_int newoff_sls=off_sls;
+ u_int newoff_sio = cstate->off_sio;
+ u_int newoff_opc = cstate->off_opc;
+ u_int newoff_dpc = cstate->off_dpc;
+ u_int newoff_sls = cstate->off_sls;
switch (mtp3field) {
/* FALLTHROUGH */
case M_SIO:
- if (off_sio == (u_int)-1)
- bpf_error("'sio' supported only on SS7");
+ if (cstate->off_sio == (u_int)-1)
+ bpf_error(cstate, "'sio' supported only on SS7");
/* sio coded on 1 byte so max value 255 */
if(jvalue > 255)
- bpf_error("sio value %u too big; max value = 255",
+ bpf_error(cstate, "sio value %u too big; max value = 255",
jvalue);
- b0 = gen_ncmp(OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
+ b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
(u_int)jtype, reverse, (u_int)jvalue);
break;
case MH_OPC:
newoff_opc+=3;
case M_OPC:
- if (off_opc == (u_int)-1)
- bpf_error("'opc' supported only on SS7");
+ if (cstate->off_opc == (u_int)-1)
+ bpf_error(cstate, "'opc' supported only on SS7");
/* opc coded on 14 bits so max value 16383 */
if (jvalue > 16383)
- bpf_error("opc value %u too big; max value = 16383",
+ bpf_error(cstate, "opc value %u too big; max value = 16383",
jvalue);
/* the following instructions are made to convert jvalue
* to the form used to write opc in an ss7 message*/
val3 = jvalue & 0x00000003;
val3 = val3 <<22;
jvalue = val1 + val2 + val3;
- b0 = gen_ncmp(OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
+ b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
(u_int)jtype, reverse, (u_int)jvalue);
break;
/* FALLTHROUGH */
case M_DPC:
- if (off_dpc == (u_int)-1)
- bpf_error("'dpc' supported only on SS7");
+ if (cstate->off_dpc == (u_int)-1)
+ bpf_error(cstate, "'dpc' supported only on SS7");
/* dpc coded on 14 bits so max value 16383 */
if (jvalue > 16383)
- bpf_error("dpc value %u too big; max value = 16383",
+ bpf_error(cstate, "dpc value %u too big; max value = 16383",
jvalue);
/* the following instructions are made to convert jvalue
* to the forme used to write dpc in an ss7 message*/
val2 = jvalue & 0x00003f00;
val2 = val2 << 8;
jvalue = val1 + val2;
- b0 = gen_ncmp(OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
+ b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
(u_int)jtype, reverse, (u_int)jvalue);
break;
case MH_SLS:
newoff_sls+=3;
case M_SLS:
- if (off_sls == (u_int)-1)
- bpf_error("'sls' supported only on SS7");
+ if (cstate->off_sls == (u_int)-1)
+ bpf_error(cstate, "'sls' supported only on SS7");
/* sls coded on 4 bits so max value 15 */
if (jvalue > 15)
- bpf_error("sls value %u too big; max value = 15",
+ bpf_error(cstate, "sls value %u too big; max value = 15",
jvalue);
/* the following instruction is made to convert jvalue
* to the forme used to write sls in an ss7 message*/
jvalue = jvalue << 4;
- b0 = gen_ncmp(OR_PACKET, newoff_sls, BPF_B, 0xf0,
+ b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0,
(u_int)jtype,reverse, (u_int)jvalue);
break;
}
static struct block *
-gen_msg_abbrev(type)
- int type;
+gen_msg_abbrev(compiler_state_t *cstate, int type)
{
struct block *b1;
switch (type) {
case A_SETUP:
- b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
break;
case A_CALLPROCEED:
- b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
break;
case A_CONNECT:
- b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
break;
case A_CONNECTACK:
- b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
break;
case A_RELEASE:
- b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
break;
case A_RELEASE_DONE:
- b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
break;
default:
}
struct block *
-gen_atmmulti_abbrev(type)
- int type;
+gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
{
struct block *b0, *b1;
switch (type) {
case A_OAM:
- if (!is_atm)
- bpf_error("'oam' supported only on raw ATM");
- b1 = gen_atmmulti_abbrev(A_OAMF4);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'oam' supported only on raw ATM");
+ b1 = gen_atmmulti_abbrev(cstate, A_OAMF4);
break;
case A_OAMF4:
- if (!is_atm)
- bpf_error("'oamf4' supported only on raw ATM");
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'oamf4' supported only on raw ATM");
/* OAM F4 type */
- b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
- b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
+ b0 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
+ b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
gen_or(b0, b1);
- b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
+ b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
gen_and(b0, b1);
break;
* Get Q.2931 signalling messages for switched
* virtual connection
*/
- if (!is_atm)
- bpf_error("'connectmsg' supported only on raw ATM");
- b0 = gen_msg_abbrev(A_SETUP);
- b1 = gen_msg_abbrev(A_CALLPROCEED);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'connectmsg' supported only on raw ATM");
+ b0 = gen_msg_abbrev(cstate, A_SETUP);
+ b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
gen_or(b0, b1);
- b0 = gen_msg_abbrev(A_CONNECT);
+ b0 = gen_msg_abbrev(cstate, A_CONNECT);
gen_or(b0, b1);
- b0 = gen_msg_abbrev(A_CONNECTACK);
+ b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
gen_or(b0, b1);
- b0 = gen_msg_abbrev(A_RELEASE);
+ b0 = gen_msg_abbrev(cstate, A_RELEASE);
gen_or(b0, b1);
- b0 = gen_msg_abbrev(A_RELEASE_DONE);
+ b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
gen_or(b0, b1);
- b0 = gen_atmtype_abbrev(A_SC);
+ b0 = gen_atmtype_abbrev(cstate, A_SC);
gen_and(b0, b1);
break;
case A_METACONNECT:
- if (!is_atm)
- bpf_error("'metaconnect' supported only on raw ATM");
- b0 = gen_msg_abbrev(A_SETUP);
- b1 = gen_msg_abbrev(A_CALLPROCEED);
+ if (!cstate->is_atm)
+ bpf_error(cstate, "'metaconnect' supported only on raw ATM");
+ b0 = gen_msg_abbrev(cstate, A_SETUP);
+ b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
gen_or(b0, b1);
- b0 = gen_msg_abbrev(A_CONNECT);
+ b0 = gen_msg_abbrev(cstate, A_CONNECT);
gen_or(b0, b1);
- b0 = gen_msg_abbrev(A_RELEASE);
+ b0 = gen_msg_abbrev(cstate, A_RELEASE);
gen_or(b0, b1);
- b0 = gen_msg_abbrev(A_RELEASE_DONE);
+ b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
gen_or(b0, b1);
- b0 = gen_atmtype_abbrev(A_METAC);
+ b0 = gen_atmtype_abbrev(cstate, A_METAC);
gen_and(b0, b1);
break;