#include "config.h"
#endif
-#ifdef WIN32
+#ifdef _WIN32
#include <pcap-stdinc.h>
-#else /* WIN32 */
+#else /* _WIN32 */
#if HAVE_INTTYPES_H
#include <inttypes.h>
#elif HAVE_STDINT_H
#endif
#include <sys/types.h>
#include <sys/socket.h>
-#endif /* WIN32 */
+#endif /* _WIN32 */
-/*
- * XXX - why was this included even on UNIX?
- */
-#ifdef __MINGW32__
-#include "ip6_misc.h"
-#endif
-
-#ifndef WIN32
+#ifndef _WIN32
#ifdef __NetBSD__
#include <sys/param.h>
#include <netinet/in.h>
#include <arpa/inet.h>
-#endif /* WIN32 */
+#endif /* _WIN32 */
#include <stdlib.h>
#include <string.h>
#include "pcap/sll.h"
#include "pcap/ipnet.h"
#include "arcnet.h"
+
+#include "grammar.h"
+#include "scanner.h"
+
#if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
#include <linux/types.h>
#include <linux/if_packet.h>
#include <linux/filter.h>
#endif
+
#ifdef HAVE_NET_PFVAR_H
#include <sys/socket.h>
#include <net/if.h>
#include <net/pfvar.h>
#include <net/if_pflog.h>
#endif
+
#ifndef offsetof
#define offsetof(s, e) ((size_t)&((s *)0)->e)
#endif
+
#ifdef INET6
-#ifndef WIN32
+#ifdef _WIN32
+#if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
+/* IPv6 address */
+struct in6_addr
+ {
+ union
+ {
+ u_int8_t u6_addr8[16];
+ u_int16_t u6_addr16[8];
+ u_int32_t u6_addr32[4];
+ } in6_u;
+#define s6_addr in6_u.u6_addr8
+#define s6_addr16 in6_u.u6_addr16
+#define s6_addr32 in6_u.u6_addr32
+#define s6_addr64 in6_u.u6_addr64
+ };
+
+typedef unsigned short sa_family_t;
+
+#define __SOCKADDR_COMMON(sa_prefix) \
+ sa_family_t sa_prefix##family
+
+/* Ditto, for IPv6. */
+struct sockaddr_in6
+ {
+ __SOCKADDR_COMMON (sin6_);
+ u_int16_t sin6_port; /* Transport layer port # */
+ u_int32_t sin6_flowinfo; /* IPv6 flow information */
+ struct in6_addr sin6_addr; /* IPv6 address */
+ };
+
+#ifndef EAI_ADDRFAMILY
+struct addrinfo {
+ int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
+ int ai_family; /* PF_xxx */
+ int ai_socktype; /* SOCK_xxx */
+ int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
+ size_t ai_addrlen; /* length of ai_addr */
+ char *ai_canonname; /* canonical name for hostname */
+ struct sockaddr *ai_addr; /* binary address */
+ struct addrinfo *ai_next; /* next structure in linked list */
+};
+#endif /* EAI_ADDRFAMILY */
+#endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
+#else /* _WIN32 */
#include <netdb.h> /* for "struct addrinfo" */
-#endif /* WIN32 */
-#endif /*INET6*/
+#endif /* _WIN32 */
+#endif /* INET6 */
#include <pcap/namedb.h>
+#include "nametoaddr.h"
+
#define ETHERMTU 1500
+#ifndef ETHERTYPE_TEB
+#define ETHERTYPE_TEB 0x6558
+#endif
+
#ifndef IPPROTO_HOPOPTS
#define IPPROTO_HOPOPTS 0
#endif
#define IPPROTO_SCTP 132
#endif
+#define GENEVE_PORT 6081
+
#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif
static pcap_t *bpf_pcap;
/* Hack for handling VLAN and MPLS stacks. */
-#ifdef WIN32
+#ifdef _WIN32
static u_int label_stack_depth = (u_int)-1, vlan_stack_depth = (u_int)-1;
#else
static u_int label_stack_depth = -1U, vlan_stack_depth = -1U;
va_start(ap, fmt);
if (bpf_pcap != NULL)
- (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
+ (void)pcap_vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
fmt, ap);
va_end(ap);
longjmp(top_ctx, 1);
#define NCHUNKS 16
#define CHUNK0SIZE 1024
struct chunk {
- u_int n_left;
+ size_t n_left;
void *m;
};
static struct chunk chunks[NCHUNKS];
static int cur_chunk;
-static void *newchunk(u_int);
+static void *newchunk(size_t);
static void freechunks(void);
static inline struct block *new_block(int);
static inline struct slist *new_stmt(int);
static struct block *gen_mac_multicast(int);
static struct block *gen_len(int, int);
static struct block *gen_check_802_11_data_frame(void);
+static struct block *gen_geneve_ll_check(void);
static struct block *gen_ppi_dlt_check(void);
static struct block *gen_msg_abbrev(int type);
static void *
-newchunk(n)
- u_int n;
+newchunk(size_t n)
{
struct chunk *cp;
int k;
sdup(s)
register const char *s;
{
- int n = strlen(s) + 1;
+ size_t n = strlen(s) + 1;
char *cp = newchunk(n);
strlcpy(cp, s, n);
{
extern int n_errors;
const char * volatile xbuf = buf;
+ yyscan_t scanner = NULL;
+ YY_BUFFER_STATE in_buffer = NULL;
u_int len;
int rc;
* UN*X, if the platform supports pthreads? If that requires
* a separate -lpthread, we might not want to do that.
*/
-#ifdef WIN32
- extern int wsockinit (void);
+#ifdef _WIN32
static int done = 0;
if (!done)
- wsockinit();
+ pcap_wsockinit();
done = 1;
EnterCriticalSection(&g_PcapCompileCriticalSection);
#endif
* link-layer type, so we can't use it.
*/
if (!p->activated) {
- snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
+ pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"not-yet-activated pcap_t passed to pcap_compile");
rc = -1;
goto quit;
ai = NULL;
}
#endif
- lex_cleanup();
- freechunks();
rc = -1;
goto quit;
}
snaplen = pcap_snapshot(p);
if (snaplen == 0) {
- snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
+ pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"snaplen of 0 rejects all packets");
rc = -1;
goto quit;
}
- lex_init(xbuf ? xbuf : "");
+ if (pcap_lex_init(&scanner) != 0)
+ bpf_error("can't initialize scanner: %s", pcap_strerror(errno));
+ in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
init_linktype(p);
- (void)pcap_parse();
+ (void)pcap_parse(scanner);
if (n_errors)
syntax();
program->bf_insns = icode_to_fcode(root, &len);
program->bf_len = len;
- lex_cleanup();
- freechunks();
-
rc = 0; /* We're all okay */
quit:
+ /*
+ * Clean up everything for the lexical analyzer.
+ */
+ if (in_buffer != NULL)
+ pcap__delete_buffer(in_buffer, scanner);
+ if (scanner != NULL)
+ pcap_lex_destroy(scanner);
+
+ /*
+ * Clean up our own allocated memory.
+ */
+ freechunks();
-#ifdef WIN32
+#ifdef _WIN32
LeaveCriticalSection(&g_PcapCompileCriticalSection);
#endif
/*
* For DLT_PPI captures, generate a check of the per-packet
* DLT value to make sure it's DLT_IEEE802_11.
+ *
+ * XXX - TurboCap cards use DLT_PPI for Ethernet.
+ * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
+ * with appropriate Ethernet information and use that rather
+ * than using something such as DLT_PPI where you don't know
+ * the link-layer header type until runtime, which, in the
+ * general case, would force us to generate both Ethernet *and*
+ * 802.11 code (*and* anything else for which PPI is used)
+ * and choose between them early in the BPF program?
*/
ppi_dlt_check = gen_ppi_dlt_check();
if (ppi_dlt_check != NULL)
off_linkhdr.is_variable = new_is_variable; \
off_linkhdr.constant_part = new_constant_part; \
off_linkhdr.reg = new_reg; \
+ is_geneve = 0; \
}
/*
*/
static int is_atm = 0;
+/*
+ * TRUE if "geneve" appeared in the filter; it causes us to generate
+ * code that checks for a Geneve header and assume that later filters
+ * apply to the encapsulated payload.
+ */
+static int is_geneve = 0;
+
/*
* These are offsets for the ATM pseudo-header.
*/
off_proto = -1;
off_payload = -1;
+ /*
+ * And not Geneve.
+ */
+ is_geneve = 0;
+
/*
* And assume we're not doing SS7.
*/
{
struct block *b0;
+ if (is_geneve)
+ return gen_geneve_ll_check();
+
switch (prevlinktype) {
case DLT_SUNATM:
case DLT_EN10MB:
case DLT_NETANALYZER:
case DLT_NETANALYZER_TRANSPARENT:
- b0 = gen_prevlinkhdr_check();
+ /* Geneve has an EtherType regardless of whether there is an
+ * L2 header. */
+ if (!is_geneve)
+ b0 = gen_prevlinkhdr_check();
+ else
+ b0 = NULL;
+
b1 = gen_ether_linktype(proto);
if (b0 != NULL)
gen_and(b0, b1);
int reg2 = alloc_reg();
memset(s, 0, sizeof(s));
- fix2 = fix3 = fix4 = fix5 = 0;
+ fix3 = fix4 = fix5 = 0;
switch (proto) {
case Q_IP:
{
struct slist *s0, *s1, *s2;
+ /*
+ * Disallow division by, or modulus by, zero; we do this here
+ * so that it gets done even if the optimizer is disabled.
+ */
+ if (code == BPF_DIV) {
+ if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
+ bpf_error("division by zero");
+ } else if (code == BPF_MOD) {
+ if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
+ bpf_error("modulus by zero");
+ }
s0 = xfer_to_x(a1);
s1 = xfer_to_a(a0);
s2 = new_stmt(BPF_ALU|BPF_X|code);
/* check for VLAN, including QinQ */
b0 = gen_linktype(ETHERTYPE_8021Q);
+ b1 = gen_linktype(ETHERTYPE_8021AD);
+ gen_or(b0,b1);
+ b0 = b1;
b1 = gen_linktype(ETHERTYPE_8021QINQ);
gen_or(b0,b1);
b0 = b1;
return b0;
}
+/* Check that this is Geneve and the VNI is correct if
+ * specified. Parameterized to handle both IPv4 and IPv6. */
+static struct block *
+gen_geneve_check(struct block *(*gen_portfn)(int, int, int),
+ enum e_offrel offrel, int vni)
+{
+ struct block *b0, *b1;
+
+ b0 = gen_portfn(GENEVE_PORT, IPPROTO_UDP, Q_DST);
+
+ /* Check that we are operating on version 0. Otherwise, we
+ * can't decode the rest of the fields. The version is 2 bits
+ * in the first byte of the Geneve header. */
+ b1 = gen_mcmp(offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
+ gen_and(b0, b1);
+ b0 = b1;
+
+ if (vni >= 0) {
+ vni <<= 8; /* VNI is in the upper 3 bytes */
+ b1 = gen_mcmp(offrel, 12, BPF_W, (bpf_int32)vni,
+ 0xffffff00);
+ gen_and(b0, b1);
+ b0 = b1;
+ }
+
+ return b0;
+}
+
+/* The IPv4 and IPv6 Geneve checks need to do two things:
+ * - Verify that this actually is Geneve with the right VNI.
+ * - Place the IP header length (plus variable link prefix if
+ * needed) into register A to be used later to compute
+ * the inner packet offsets. */
+static struct block *
+gen_geneve4(int vni)
+{
+ struct block *b0, *b1;
+ struct slist *s, *s1;
+
+ b0 = gen_geneve_check(gen_port, OR_TRAN_IPV4, vni);
+
+ /* Load the IP header length into A. */
+ s = gen_loadx_iphdrlen();
+
+ s1 = new_stmt(BPF_MISC|BPF_TXA);
+ sappend(s, s1);
+
+ /* Forcibly append these statements to the true condition
+ * of the protocol check by creating a new block that is
+ * always true and ANDing them. */
+ b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
+ b1->stmts = s;
+ b1->s.k = 0;
+
+ gen_and(b0, b1);
+
+ return b1;
+}
+
+static struct block *
+gen_geneve6(int vni)
+{
+ struct block *b0, *b1;
+ struct slist *s, *s1;
+
+ b0 = gen_geneve_check(gen_port6, OR_TRAN_IPV6, vni);
+
+ /* Load the IP header length. We need to account for a
+ * variable length link prefix if there is one. */
+ s = gen_abs_offset_varpart(&off_linkpl);
+ if (s) {
+ s1 = new_stmt(BPF_LD|BPF_IMM);
+ s1->s.k = 40;
+ sappend(s, s1);
+
+ s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
+ s1->s.k = 0;
+ sappend(s, s1);
+ } else {
+ s = new_stmt(BPF_LD|BPF_IMM);
+ s->s.k = 40;
+ }
+
+ /* Forcibly append these statements to the true condition
+ * of the protocol check by creating a new block that is
+ * always true and ANDing them. */
+ s1 = new_stmt(BPF_MISC|BPF_TAX);
+ sappend(s, s1);
+
+ b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
+ b1->stmts = s;
+ b1->s.k = 0;
+
+ gen_and(b0, b1);
+
+ return b1;
+}
+
+/* We need to store three values based on the Geneve header::
+ * - The offset of the linktype.
+ * - The offset of the end of the Geneve header.
+ * - The offset of the end of the encapsulated MAC header. */
+static struct slist *
+gen_geneve_offsets(void)
+{
+ struct slist *s, *s1, *s_proto;
+
+ /* First we need to calculate the offset of the Geneve header
+ * itself. This is composed of the IP header previously calculated
+ * (include any variable link prefix) and stored in A plus the
+ * fixed sized headers (fixed link prefix, MAC length, and UDP
+ * header). */
+ s = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s->s.k = off_linkpl.constant_part + off_nl + 8;
+
+ /* Stash this in X since we'll need it later. */
+ s1 = new_stmt(BPF_MISC|BPF_TAX);
+ sappend(s, s1);
+
+ /* The EtherType in Geneve is 2 bytes in. Calculate this and
+ * store it. */
+ s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1->s.k = 2;
+ sappend(s, s1);
+
+ off_linktype.reg = alloc_reg();
+ off_linktype.is_variable = 1;
+ off_linktype.constant_part = 0;
+
+ s1 = new_stmt(BPF_ST);
+ s1->s.k = off_linktype.reg;
+ sappend(s, s1);
+
+ /* Load the Geneve option length and mask and shift to get the
+ * number of bytes. It is stored in the first byte of the Geneve
+ * header. */
+ s1 = new_stmt(BPF_LD|BPF_IND|BPF_B);
+ s1->s.k = 0;
+ sappend(s, s1);
+
+ s1 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
+ s1->s.k = 0x3f;
+ sappend(s, s1);
+
+ s1 = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
+ s1->s.k = 4;
+ sappend(s, s1);
+
+ /* Add in the rest of the Geneve base header. */
+ s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1->s.k = 8;
+ sappend(s, s1);
+
+ /* Add the Geneve header length to its offset and store. */
+ s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
+ s1->s.k = 0;
+ sappend(s, s1);
+
+ /* Set the encapsulated type as Ethernet. Even though we may
+ * not actually have Ethernet inside there are two reasons this
+ * is useful:
+ * - The linktype field is always in EtherType format regardless
+ * of whether it is in Geneve or an inner Ethernet frame.
+ * - The only link layer that we have specific support for is
+ * Ethernet. We will confirm that the packet actually is
+ * Ethernet at runtime before executing these checks. */
+ PUSH_LINKHDR(DLT_EN10MB, 1, 0, alloc_reg());
+
+ s1 = new_stmt(BPF_ST);
+ s1->s.k = off_linkhdr.reg;
+ sappend(s, s1);
+
+ /* Calculate whether we have an Ethernet header or just raw IP/
+ * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
+ * and linktype by 14 bytes so that the network header can be found
+ * seamlessly. Otherwise, keep what we've calculated already. */
+
+ /* We have a bare jmp so we can't use the optimizer. */
+ no_optimize = 1;
+
+ /* Load the EtherType in the Geneve header, 2 bytes in. */
+ s1 = new_stmt(BPF_LD|BPF_IND|BPF_H);
+ s1->s.k = 2;
+ sappend(s, s1);
+
+ /* Load X with the end of the Geneve header. */
+ s1 = new_stmt(BPF_LDX|BPF_MEM);
+ s1->s.k = off_linkhdr.reg;
+ sappend(s, s1);
+
+ /* Check if the EtherType is Transparent Ethernet Bridging. At the
+ * end of this check, we should have the total length in X. In
+ * the non-Ethernet case, it's already there. */
+ s_proto = new_stmt(JMP(BPF_JEQ));
+ s_proto->s.k = ETHERTYPE_TEB;
+ sappend(s, s_proto);
+
+ s1 = new_stmt(BPF_MISC|BPF_TXA);
+ sappend(s, s1);
+ s_proto->s.jt = s1;
+
+ /* Since this is Ethernet, use the EtherType of the payload
+ * directly as the linktype. Overwrite what we already have. */
+ s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1->s.k = 12;
+ sappend(s, s1);
+
+ s1 = new_stmt(BPF_ST);
+ s1->s.k = off_linktype.reg;
+ sappend(s, s1);
+
+ /* Advance two bytes further to get the end of the Ethernet
+ * header. */
+ s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
+ s1->s.k = 2;
+ sappend(s, s1);
+
+ /* Move the result to X. */
+ s1 = new_stmt(BPF_MISC|BPF_TAX);
+ sappend(s, s1);
+
+ /* Store the final result of our linkpl calculation. */
+ off_linkpl.reg = alloc_reg();
+ off_linkpl.is_variable = 1;
+ off_linkpl.constant_part = 0;
+
+ s1 = new_stmt(BPF_STX);
+ s1->s.k = off_linkpl.reg;
+ sappend(s, s1);
+ s_proto->s.jf = s1;
+
+ off_nl = 0;
+
+ return s;
+}
+
+/* Check to see if this is a Geneve packet. */
+struct block *
+gen_geneve(int vni)
+{
+ struct block *b0, *b1;
+ struct slist *s;
+
+ b0 = gen_geneve4(vni);
+ b1 = gen_geneve6(vni);
+
+ gen_or(b0, b1);
+ b0 = b1;
+
+ /* Later filters should act on the payload of the Geneve frame,
+ * update all of the header pointers. Attach this code so that
+ * it gets executed in the event that the Geneve filter matches. */
+ s = gen_geneve_offsets();
+
+ b1 = gen_true();
+ sappend(s, b1->stmts);
+ b1->stmts = s;
+
+ gen_and(b0, b1);
+
+ is_geneve = 1;
+
+ return b1;
+}
+
+/* Check that the encapsulated frame has a link layer header
+ * for Ethernet filters. */
+static struct block *
+gen_geneve_ll_check()
+{
+ struct block *b0;
+ struct slist *s, *s1;
+
+ /* The easiest way to see if there is a link layer present
+ * is to check if the link layer header and payload are not
+ * the same. */
+
+ /* Geneve always generates pure variable offsets so we can
+ * compare only the registers. */
+ s = new_stmt(BPF_LD|BPF_MEM);
+ s->s.k = off_linkhdr.reg;
+
+ s1 = new_stmt(BPF_LDX|BPF_MEM);
+ s1->s.k = off_linkpl.reg;
+ sappend(s, s1);
+
+ b0 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
+ b0->stmts = s;
+ b0->s.k = 0;
+ gen_not(b0);
+
+ return b0;
+}
+
struct block *
gen_atmfield_code(atmfield, jvalue, jtype, reverse)
int atmfield;