2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for BPF code intermediate representation.
26 #include <pcap-types.h>
33 #include <limits.h> /* for SIZE_MAX */
40 #include "diag-control.h"
42 #ifdef HAVE_OS_PROTO_H
48 * The internal "debug printout" flag for the filter expression optimizer.
49 * The code to print that stuff is present only if BDEBUG is defined, so
50 * the flag, and the routine to set it, are defined only if BDEBUG is
53 static int pcap_optimizer_debug
;
56 * Routine to set that flag.
58 * This is intended for libpcap developers, not for general use.
59 * If you want to set these in a program, you'll have to declare this
60 * routine yourself, with the appropriate DLL import attribute on Windows;
61 * it's not declared in any header file, and won't be declared in any
62 * header file provided by libpcap.
64 PCAP_API
void pcap_set_optimizer_debug(int value
);
67 pcap_set_optimizer_debug(int value
)
69 pcap_optimizer_debug
= value
;
73 * The internal "print dot graph" flag for the filter expression optimizer.
74 * The code to print that stuff is present only if BDEBUG is defined, so
75 * the flag, and the routine to set it, are defined only if BDEBUG is
78 static int pcap_print_dot_graph
;
81 * Routine to set that flag.
83 * This is intended for libpcap developers, not for general use.
84 * If you want to set these in a program, you'll have to declare this
85 * routine yourself, with the appropriate DLL import attribute on Windows;
86 * it's not declared in any header file, and won't be declared in any
87 * header file provided by libpcap.
89 PCAP_API
void pcap_set_print_dot_graph(int value
);
92 pcap_set_print_dot_graph(int value
)
94 pcap_print_dot_graph
= value
;
102 * Takes a 32-bit integer as an argument.
104 * If handed a non-zero value, returns the index of the lowest set bit,
105 * counting upwards from zero.
107 * If handed zero, the results are platform- and compiler-dependent.
108 * Keep it out of the light, don't give it any water, don't feed it
109 * after midnight, and don't pass zero to it.
111 * This is the same as the count of trailing zeroes in the word.
113 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115 * GCC 3.4 and later; we have __builtin_ctz().
117 #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
118 #elif defined(_MSC_VER)
120 * Visual Studio; we support only 2015 and later, so use
126 #pragma intrinsic(_BitScanForward)
129 static __forceinline u_int
130 lowest_set_bit(int mask
)
135 * Don't sign-extend mask if long is longer than int.
136 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138 if (_BitScanForward(&bit
, (unsigned int)mask
) == 0)
139 abort(); /* mask is zero */
144 * POSIX.1-2001 says ffs() is in <strings.h>. Every supported non-Windows OS
145 * (including Linux with musl libc and uclibc-ng) has the header and (except
146 * HP-UX) declares the function there. HP-UX declares the function in
147 * <string.h>, which has already been included.
150 #define lowest_set_bit(mask) ((u_int)(ffs((mask)) - 1))
154 * Represents a deleted instruction.
159 * Register numbers for use-def values.
160 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
161 * location. A_ATOM is the accumulator and X_ATOM is the index
164 #define A_ATOM BPF_MEMWORDS
165 #define X_ATOM (BPF_MEMWORDS+1)
168 * This define is used to represent *both* the accumulator and
169 * x register in use-def computations.
170 * Currently, the use-def code assumes only one definition per instruction.
172 #define AX_ATOM N_ATOMS
175 * These data structures are used in a Cocke and Schwartz style
176 * value numbering scheme. Since the flowgraph is acyclic,
177 * exit values can be propagated from a node's predecessors
178 * provided it is uniquely defined.
183 int val
; /* the value number */
184 struct valnode
*next
;
187 /* Integer constants mapped with the load immediate opcode. */
188 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
192 bpf_u_int32 const_val
;
197 * Place to longjmp to on an error.
202 * The buffer into which to put error message.
207 * A flag to indicate that further optimization is needed.
208 * Iterative passes are continued until a given pass yields no
209 * code simplification or branch movement.
214 * XXX - detect loops that do nothing but repeated AND/OR pullups
216 * If 100 passes in a row do nothing but that, treat that as a
217 * sign that we're in a loop that just shuffles in a cycle in
218 * which each pass just shuffles the code and we eventually
219 * get back to the original configuration.
221 * XXX - we need a non-heuristic way of detecting, or preventing,
224 int non_branch_movement_performed
;
226 u_int n_blocks
; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
227 struct block
**blocks
;
228 u_int n_edges
; /* twice n_blocks, so guaranteed to be > 0 */
232 * A bit vector set representation of the dominators.
233 * We round up the set size to the next power of two.
235 u_int nodewords
; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
236 u_int edgewords
; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
237 struct block
**levels
;
240 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
242 * True if a is in uset {p}
244 #define SET_MEMBER(p, a) \
245 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
250 #define SET_INSERT(p, a) \
251 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
254 * Delete 'a' from uset p.
256 #define SET_DELETE(p, a) \
257 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
261 * n must be guaranteed to be > 0
263 #define SET_INTERSECT(a, b, n)\
265 register bpf_u_int32 *_x = a, *_y = b;\
266 register u_int _n = n;\
267 do *_x++ &= *_y++; while (--_n != 0);\
272 * n must be guaranteed to be > 0
274 #define SET_SUBTRACT(a, b, n)\
276 register bpf_u_int32 *_x = a, *_y = b;\
277 register u_int _n = n;\
278 do *_x++ &=~ *_y++; while (--_n != 0);\
283 * n must be guaranteed to be > 0
285 #define SET_UNION(a, b, n)\
287 register bpf_u_int32 *_x = a, *_y = b;\
288 register u_int _n = n;\
289 do *_x++ |= *_y++; while (--_n != 0);\
293 uset all_closure_sets
;
297 struct valnode
*hashtbl
[MODULUS
];
301 struct vmapinfo
*vmap
;
302 struct valnode
*vnode_base
;
303 struct valnode
*next_vnode
;
308 * Place to longjmp to on an error.
313 * The buffer into which to put error message.
318 * Some pointers used to convert the basic block form of the code,
319 * into the array form that BPF requires. 'fstart' will point to
320 * the malloc'd array while 'ftail' is used during the recursive
323 struct bpf_insn
*fstart
;
324 struct bpf_insn
*ftail
;
327 static void opt_init(opt_state_t
*, struct icode
*);
328 static void opt_cleanup(opt_state_t
*);
329 static void PCAP_NORETURN
opt_error(opt_state_t
*, const char *, ...)
330 PCAP_PRINTFLIKE(2, 3);
332 static void intern_blocks(opt_state_t
*, struct icode
*);
334 static void find_inedges(opt_state_t
*, struct block
*);
336 static void opt_dump(opt_state_t
*, struct icode
*);
340 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
351 find_levels_r(opt_state
, ic
, JT(b
));
352 find_levels_r(opt_state
, ic
, JF(b
));
353 level
= max(JT(b
)->level
, JF(b
)->level
) + 1;
357 b
->link
= opt_state
->levels
[level
];
358 opt_state
->levels
[level
] = b
;
362 * Level graph. The levels go from 0 at the leaves to
363 * N_LEVELS at the root. The opt_state->levels[] array points to the
364 * first node of the level list, whose elements are linked
365 * with the 'link' field of the struct block.
368 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
370 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
372 find_levels_r(opt_state
, ic
, ic
->root
);
376 * Find dominator relationships.
377 * Assumes graph has been leveled.
380 find_dom(opt_state_t
*opt_state
, struct block
*root
)
388 * Initialize sets to contain all nodes.
390 x
= opt_state
->all_dom_sets
;
392 * In opt_init(), we've made sure the product doesn't overflow.
394 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
399 /* Root starts off empty. */
400 for (i
= opt_state
->nodewords
; i
!= 0;) {
405 /* root->level is the highest level no found. */
406 for (level
= root
->level
; level
>= 0; --level
) {
407 for (b
= opt_state
->levels
[level
]; b
; b
= b
->link
) {
408 SET_INSERT(b
->dom
, b
->id
);
411 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
412 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
418 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
420 SET_INSERT(ep
->edom
, ep
->id
);
422 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
423 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
428 * Compute edge dominators.
429 * Assumes graph has been leveled and predecessors established.
432 find_edom(opt_state_t
*opt_state
, struct block
*root
)
439 x
= opt_state
->all_edge_sets
;
441 * In opt_init(), we've made sure the product doesn't overflow.
443 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; i
!= 0; ) {
448 /* root->level is the highest level no found. */
449 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
450 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
451 for (level
= root
->level
; level
>= 0; --level
) {
452 for (b
= opt_state
->levels
[level
]; b
!= 0; b
= b
->link
) {
453 propedom(opt_state
, &b
->et
);
454 propedom(opt_state
, &b
->ef
);
460 * Find the backwards transitive closure of the flow graph. These sets
461 * are backwards in the sense that we find the set of nodes that reach
462 * a given node, not the set of nodes that can be reached by a node.
464 * Assumes graph has been leveled.
467 find_closure(opt_state_t
*opt_state
, struct block
*root
)
473 * Initialize sets to contain no nodes.
475 memset((char *)opt_state
->all_closure_sets
, 0,
476 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
478 /* root->level is the highest level no found. */
479 for (level
= root
->level
; level
>= 0; --level
) {
480 for (b
= opt_state
->levels
[level
]; b
; b
= b
->link
) {
481 SET_INSERT(b
->closure
, b
->id
);
484 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
485 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
491 * Return the register number that is used by s.
493 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
494 * are used, the scratch memory location's number if a scratch memory
495 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
497 * The implementation should probably change to an array access.
500 atomuse(struct stmt
*s
)
502 register int c
= s
->code
;
507 switch (BPF_CLASS(c
)) {
510 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
511 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
516 * As there are fewer than 2^31 memory locations,
517 * s->k should be convertible to int without problems.
519 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
520 (BPF_MODE(c
) == BPF_MEM
) ? (int)s
->k
: -1;
530 if (BPF_SRC(c
) == BPF_X
)
535 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
542 * Return the register number that is defined by 's'. We assume that
543 * a single stmt cannot define more than one register. If no register
544 * is defined, return -1.
546 * The implementation should probably change to an array access.
549 atomdef(struct stmt
*s
)
554 switch (BPF_CLASS(s
->code
)) {
568 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
574 * Compute the sets of registers used, defined, and killed by 'b'.
576 * "Used" means that a statement in 'b' uses the register before any
577 * statement in 'b' defines it, i.e. it uses the value left in
578 * that register by a predecessor block of this block.
579 * "Defined" means that a statement in 'b' defines it.
580 * "Killed" means that a statement in 'b' defines it before any
581 * statement in 'b' uses it, i.e. it kills the value left in that
582 * register by a predecessor block of this block.
585 compute_local_ud(struct block
*b
)
588 atomset def
= 0, use
= 0, killed
= 0;
591 for (s
= b
->stmts
; s
; s
= s
->next
) {
592 if (s
->s
.code
== NOP
)
594 atom
= atomuse(&s
->s
);
596 if (atom
== AX_ATOM
) {
597 if (!ATOMELEM(def
, X_ATOM
))
598 use
|= ATOMMASK(X_ATOM
);
599 if (!ATOMELEM(def
, A_ATOM
))
600 use
|= ATOMMASK(A_ATOM
);
602 else if (atom
< N_ATOMS
) {
603 if (!ATOMELEM(def
, atom
))
604 use
|= ATOMMASK(atom
);
609 atom
= atomdef(&s
->s
);
611 if (!ATOMELEM(use
, atom
))
612 killed
|= ATOMMASK(atom
);
613 def
|= ATOMMASK(atom
);
616 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
618 * XXX - what about RET?
620 atom
= atomuse(&b
->s
);
622 if (atom
== AX_ATOM
) {
623 if (!ATOMELEM(def
, X_ATOM
))
624 use
|= ATOMMASK(X_ATOM
);
625 if (!ATOMELEM(def
, A_ATOM
))
626 use
|= ATOMMASK(A_ATOM
);
628 else if (atom
< N_ATOMS
) {
629 if (!ATOMELEM(def
, atom
))
630 use
|= ATOMMASK(atom
);
643 * Assume graph is already leveled.
646 find_ud(opt_state_t
*opt_state
, struct block
*root
)
652 * root->level is the highest level no found;
653 * count down from there.
655 maxlevel
= root
->level
;
656 for (i
= maxlevel
; i
>= 0; --i
)
657 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
662 for (i
= 1; i
<= maxlevel
; ++i
) {
663 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
664 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
665 p
->in_use
|= p
->out_use
&~ p
->kill
;
670 init_val(opt_state_t
*opt_state
)
672 opt_state
->curval
= 0;
673 opt_state
->next_vnode
= opt_state
->vnode_base
;
674 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
675 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
679 * Because we really don't have an IR, this stuff is a little messy.
681 * This routine looks in the table of existing value number for a value
682 * with generated from an operation with the specified opcode and
683 * the specified values. If it finds it, it returns its value number,
684 * otherwise it makes a new entry in the table and returns the
685 * value number of that entry.
688 F(opt_state_t
*opt_state
, int code
, bpf_u_int32 v0
, bpf_u_int32 v1
)
694 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
697 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
698 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
702 * Not found. Allocate a new value, and assign it a new
705 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
706 * increment it before using it as the new value number, which
707 * means we never assign VAL_UNKNOWN.
709 * XXX - unless we overflow, but we probably won't have 2^32-1
710 * values; we treat 32 bits as effectively infinite.
712 val
= ++opt_state
->curval
;
713 if (BPF_MODE(code
) == BPF_IMM
&&
714 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
715 opt_state
->vmap
[val
].const_val
= v0
;
716 opt_state
->vmap
[val
].is_const
= 1;
718 p
= opt_state
->next_vnode
++;
723 p
->next
= opt_state
->hashtbl
[hash
];
724 opt_state
->hashtbl
[hash
] = p
;
730 vstore(struct stmt
*s
, bpf_u_int32
*valp
, bpf_u_int32 newval
, int alter
)
732 if (alter
&& newval
!= VAL_UNKNOWN
&& *valp
== newval
)
739 * Do constant-folding on binary operators.
740 * (Unary operators are handled elsewhere.)
743 fold_op(opt_state_t
*opt_state
, struct stmt
*s
, bpf_u_int32 v0
, bpf_u_int32 v1
)
747 a
= opt_state
->vmap
[v0
].const_val
;
748 b
= opt_state
->vmap
[v1
].const_val
;
750 switch (BPF_OP(s
->code
)) {
765 opt_error(opt_state
, "division by zero");
771 opt_error(opt_state
, "modulus by zero");
789 * A left shift of more than the width of the type
790 * is undefined in C; we'll just treat it as shifting
793 * XXX - the BPF interpreter doesn't check for this,
794 * so its behavior is dependent on the behavior of
795 * the processor on which it's running. There are
796 * processors on which it shifts all the bits out
797 * and processors on which it does no shift.
807 * A right shift of more than the width of the type
808 * is undefined in C; we'll just treat it as shifting
811 * XXX - the BPF interpreter doesn't check for this,
812 * so its behavior is dependent on the behavior of
813 * the processor on which it's running. There are
814 * processors on which it shifts all the bits out
815 * and processors on which it does no shift.
827 s
->code
= BPF_LD
|BPF_IMM
;
830 * XXX - optimizer loop detection.
832 opt_state
->non_branch_movement_performed
= 1;
835 static inline struct slist
*
836 this_op(struct slist
*s
)
838 while (s
!= 0 && s
->s
.code
== NOP
)
844 opt_not(struct block
*b
)
846 struct block
*tmp
= JT(b
);
853 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
856 struct slist
*next
, *last
;
864 for (/*empty*/; /*empty*/; s
= next
) {
870 break; /* nothing left in the block */
873 * Find the next real instruction after that one
876 next
= this_op(s
->next
);
878 break; /* no next instruction */
882 * st M[k] --> st M[k]
885 if (s
->s
.code
== BPF_ST
&&
886 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
887 s
->s
.k
== next
->s
.k
) {
889 next
->s
.code
= BPF_MISC
|BPF_TAX
;
891 * XXX - optimizer loop detection.
893 opt_state
->non_branch_movement_performed
= 1;
899 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
900 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
901 s
->s
.code
= BPF_LDX
|BPF_IMM
;
902 next
->s
.code
= BPF_MISC
|BPF_TXA
;
905 * XXX - optimizer loop detection.
907 opt_state
->non_branch_movement_performed
= 1;
910 * This is an ugly special case, but it happens
911 * when you say tcp[k] or udp[k] where k is a constant.
913 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
914 struct slist
*add
, *tax
, *ild
;
917 * Check that X isn't used on exit from this
918 * block (which the optimizer might cause).
919 * We know the code generator won't generate
920 * any local dependencies.
922 if (ATOMELEM(b
->out_use
, X_ATOM
))
926 * Check that the instruction following the ldi
927 * is an addx, or it's an ldxms with an addx
928 * following it (with 0 or more nops between the
931 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
934 add
= this_op(next
->next
);
935 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
939 * Check that a tax follows that (with 0 or more
940 * nops between them).
942 tax
= this_op(add
->next
);
943 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
947 * Check that an ild follows that (with 0 or more
948 * nops between them).
950 ild
= this_op(tax
->next
);
951 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
952 BPF_MODE(ild
->s
.code
) != BPF_IND
)
955 * We want to turn this sequence:
958 * (005) ldxms [14] {next} -- optional
961 * (008) ild [x+0] {ild}
963 * into this sequence:
971 * XXX We need to check that X is not
972 * subsequently used, because we want to change
973 * what'll be in it after this sequence.
975 * We know we can eliminate the accumulator
976 * modifications earlier in the sequence since
977 * it is defined by the last stmt of this sequence
978 * (i.e., the last statement of the sequence loads
979 * a value into the accumulator, so we can eliminate
980 * earlier operations on the accumulator).
988 * XXX - optimizer loop detection.
990 opt_state
->non_branch_movement_performed
= 1;
994 * If the comparison at the end of a block is an equality
995 * comparison against a constant, and nobody uses the value
996 * we leave in the A register at the end of a block, and
997 * the operation preceding the comparison is an arithmetic
998 * operation, we can sometime optimize it away.
1000 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
1001 !ATOMELEM(b
->out_use
, A_ATOM
)) {
1003 * We can optimize away certain subtractions of the
1006 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
1007 val
= b
->val
[X_ATOM
];
1008 if (opt_state
->vmap
[val
].is_const
) {
1010 * If we have a subtract to do a comparison,
1011 * and the X register is a known constant,
1012 * we can merge this value into the
1018 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
1020 opt_state
->done
= 0;
1022 * XXX - optimizer loop detection.
1024 opt_state
->non_branch_movement_performed
= 1;
1025 } else if (b
->s
.k
== 0) {
1027 * If the X register isn't a constant,
1028 * and the comparison in the test is
1029 * against 0, we can compare with the
1030 * X register, instead:
1036 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
1037 opt_state
->done
= 0;
1039 * XXX - optimizer loop detection.
1041 opt_state
->non_branch_movement_performed
= 1;
1045 * Likewise, a constant subtract can be simplified:
1048 * jeq #y -> jeq #(x+y)
1050 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
1052 b
->s
.k
+= last
->s
.k
;
1053 opt_state
->done
= 0;
1055 * XXX - optimizer loop detection.
1057 opt_state
->non_branch_movement_performed
= 1;
1060 * And, similarly, a constant AND can be simplified
1061 * if we're testing against 0, i.e.:
1066 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
1069 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
1071 opt_state
->done
= 0;
1074 * XXX - optimizer loop detection.
1076 opt_state
->non_branch_movement_performed
= 1;
1081 * jset #ffffffff -> always
1083 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
1086 if (b
->s
.k
== 0xffffffffU
)
1090 * If we're comparing against the index register, and the index
1091 * register is a known constant, we can just compare against that
1094 val
= b
->val
[X_ATOM
];
1095 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
1096 bpf_u_int32 v
= opt_state
->vmap
[val
].const_val
;
1097 b
->s
.code
&= ~BPF_X
;
1101 * If the accumulator is a known constant, we can compute the
1102 * comparison result.
1104 val
= b
->val
[A_ATOM
];
1105 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
1106 bpf_u_int32 v
= opt_state
->vmap
[val
].const_val
;
1107 switch (BPF_OP(b
->s
.code
)) {
1128 if (JF(b
) != JT(b
)) {
1129 opt_state
->done
= 0;
1131 * XXX - optimizer loop detection.
1133 opt_state
->non_branch_movement_performed
= 1;
1143 * Compute the symbolic value of expression of 's', and update
1144 * anything it defines in the value table 'val'. If 'alter' is true,
1145 * do various optimizations. This code would be cleaner if symbolic
1146 * evaluation and code transformations weren't folded together.
1149 opt_stmt(opt_state_t
*opt_state
, struct stmt
*s
, bpf_u_int32 val
[], int alter
)
1156 case BPF_LD
|BPF_ABS
|BPF_W
:
1157 case BPF_LD
|BPF_ABS
|BPF_H
:
1158 case BPF_LD
|BPF_ABS
|BPF_B
:
1159 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1160 vstore(s
, &val
[A_ATOM
], v
, alter
);
1163 case BPF_LD
|BPF_IND
|BPF_W
:
1164 case BPF_LD
|BPF_IND
|BPF_H
:
1165 case BPF_LD
|BPF_IND
|BPF_B
:
1167 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1168 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
1169 s
->k
+= opt_state
->vmap
[v
].const_val
;
1170 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1171 opt_state
->done
= 0;
1173 * XXX - optimizer loop detection.
1175 opt_state
->non_branch_movement_performed
= 1;
1178 v
= F(opt_state
, s
->code
, s
->k
, v
);
1179 vstore(s
, &val
[A_ATOM
], v
, alter
);
1182 case BPF_LD
|BPF_LEN
:
1183 v
= F(opt_state
, s
->code
, 0L, 0L);
1184 vstore(s
, &val
[A_ATOM
], v
, alter
);
1187 case BPF_LD
|BPF_IMM
:
1189 vstore(s
, &val
[A_ATOM
], v
, alter
);
1192 case BPF_LDX
|BPF_IMM
:
1194 vstore(s
, &val
[X_ATOM
], v
, alter
);
1197 case BPF_LDX
|BPF_MSH
|BPF_B
:
1198 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1199 vstore(s
, &val
[X_ATOM
], v
, alter
);
1202 case BPF_ALU
|BPF_NEG
:
1203 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1204 s
->code
= BPF_LD
|BPF_IMM
;
1206 * Do this negation as unsigned arithmetic; that's
1207 * what modern BPF engines do, and it guarantees
1208 * that all possible values can be negated. (Yeah,
1209 * negating 0x80000000, the minimum signed 32-bit
1210 * two's-complement value, results in 0x80000000,
1211 * so it's still negative, but we *should* be doing
1212 * all unsigned arithmetic here, to match what
1213 * modern BPF engines do.)
1215 * Express it as 0U - (unsigned value) so that we
1216 * don't get compiler warnings about negating an
1217 * unsigned value and don't get UBSan warnings
1218 * about the result of negating 0x80000000 being
1221 s
->k
= 0U - opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1222 val
[A_ATOM
] = K(s
->k
);
1225 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1228 case BPF_ALU
|BPF_ADD
|BPF_K
:
1229 case BPF_ALU
|BPF_SUB
|BPF_K
:
1230 case BPF_ALU
|BPF_MUL
|BPF_K
:
1231 case BPF_ALU
|BPF_DIV
|BPF_K
:
1232 case BPF_ALU
|BPF_MOD
|BPF_K
:
1233 case BPF_ALU
|BPF_AND
|BPF_K
:
1234 case BPF_ALU
|BPF_OR
|BPF_K
:
1235 case BPF_ALU
|BPF_XOR
|BPF_K
:
1236 case BPF_ALU
|BPF_LSH
|BPF_K
:
1237 case BPF_ALU
|BPF_RSH
|BPF_K
:
1238 op
= BPF_OP(s
->code
);
1242 * Optimize operations where the constant
1245 * Don't optimize away "sub #0"
1246 * as it may be needed later to
1247 * fixup the generated math code.
1249 * Fail if we're dividing by zero or taking
1250 * a modulus by zero.
1252 if (op
== BPF_ADD
||
1253 op
== BPF_LSH
|| op
== BPF_RSH
||
1254 op
== BPF_OR
|| op
== BPF_XOR
) {
1258 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1259 s
->code
= BPF_LD
|BPF_IMM
;
1260 val
[A_ATOM
] = K(s
->k
);
1264 opt_error(opt_state
,
1265 "division by zero");
1267 opt_error(opt_state
,
1270 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1271 fold_op(opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1272 val
[A_ATOM
] = K(s
->k
);
1276 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1279 case BPF_ALU
|BPF_ADD
|BPF_X
:
1280 case BPF_ALU
|BPF_SUB
|BPF_X
:
1281 case BPF_ALU
|BPF_MUL
|BPF_X
:
1282 case BPF_ALU
|BPF_DIV
|BPF_X
:
1283 case BPF_ALU
|BPF_MOD
|BPF_X
:
1284 case BPF_ALU
|BPF_AND
|BPF_X
:
1285 case BPF_ALU
|BPF_OR
|BPF_X
:
1286 case BPF_ALU
|BPF_XOR
|BPF_X
:
1287 case BPF_ALU
|BPF_LSH
|BPF_X
:
1288 case BPF_ALU
|BPF_RSH
|BPF_X
:
1289 op
= BPF_OP(s
->code
);
1290 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1291 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1292 fold_op(opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1293 val
[A_ATOM
] = K(s
->k
);
1296 s
->code
= BPF_ALU
|BPF_K
|op
;
1297 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1298 if ((op
== BPF_LSH
|| op
== BPF_RSH
) &&
1300 opt_error(opt_state
,
1301 "shift by more than 31 bits");
1302 opt_state
->done
= 0;
1304 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1306 * XXX - optimizer loop detection.
1308 opt_state
->non_branch_movement_performed
= 1;
1313 * Check if we're doing something to an accumulator
1314 * that is 0, and simplify. This may not seem like
1315 * much of a simplification but it could open up further
1317 * XXX We could also check for mul by 1, etc.
1319 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1320 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1321 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1322 s
->code
= BPF_MISC
|BPF_TXA
;
1323 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1326 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1327 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1328 s
->code
= BPF_LD
|BPF_IMM
;
1330 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1333 else if (op
== BPF_NEG
) {
1338 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1341 case BPF_MISC
|BPF_TXA
:
1342 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1345 case BPF_LD
|BPF_MEM
:
1347 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1348 s
->code
= BPF_LD
|BPF_IMM
;
1349 s
->k
= opt_state
->vmap
[v
].const_val
;
1350 opt_state
->done
= 0;
1352 * XXX - optimizer loop detection.
1354 opt_state
->non_branch_movement_performed
= 1;
1356 vstore(s
, &val
[A_ATOM
], v
, alter
);
1359 case BPF_MISC
|BPF_TAX
:
1360 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1363 case BPF_LDX
|BPF_MEM
:
1365 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1366 s
->code
= BPF_LDX
|BPF_IMM
;
1367 s
->k
= opt_state
->vmap
[v
].const_val
;
1368 opt_state
->done
= 0;
1370 * XXX - optimizer loop detection.
1372 opt_state
->non_branch_movement_performed
= 1;
1374 vstore(s
, &val
[X_ATOM
], v
, alter
);
1378 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1382 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1388 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1394 if (atom
== AX_ATOM
) {
1404 opt_state
->done
= 0;
1405 last
[atom
]->code
= NOP
;
1407 * XXX - optimizer loop detection.
1409 opt_state
->non_branch_movement_performed
= 1;
1416 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1418 register struct slist
*s
;
1420 struct stmt
*last
[N_ATOMS
];
1422 memset((char *)last
, 0, sizeof last
);
1424 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1425 deadstmt(opt_state
, &s
->s
, last
);
1426 deadstmt(opt_state
, &b
->s
, last
);
1428 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1429 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1430 last
[atom
]->code
= NOP
;
1432 * The store was removed as it's dead,
1433 * so the value stored into now has
1436 vstore(0, &b
->val
[atom
], VAL_UNKNOWN
, 0);
1437 opt_state
->done
= 0;
1439 * XXX - optimizer loop detection.
1441 opt_state
->non_branch_movement_performed
= 1;
1446 opt_blk(opt_state_t
*opt_state
, struct block
*b
, int do_stmts
)
1451 bpf_u_int32 aval
, xval
;
1454 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1455 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1462 * Initialize the atom values.
1467 * We have no predecessors, so everything is undefined
1468 * upon entry to this block.
1470 memset((char *)b
->val
, 0, sizeof(b
->val
));
1473 * Inherit values from our predecessors.
1475 * First, get the values from the predecessor along the
1476 * first edge leading to this node.
1478 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1480 * Now look at all the other nodes leading to this node.
1481 * If, for the predecessor along that edge, a register
1482 * has a different value from the one we have (i.e.,
1483 * control paths are merging, and the merging paths
1484 * assign different values to that register), give the
1485 * register the undefined value of 0.
1487 while ((p
= p
->next
) != NULL
) {
1488 for (i
= 0; i
< N_ATOMS
; ++i
)
1489 if (b
->val
[i
] != p
->pred
->val
[i
])
1493 aval
= b
->val
[A_ATOM
];
1494 xval
= b
->val
[X_ATOM
];
1495 for (s
= b
->stmts
; s
; s
= s
->next
)
1496 opt_stmt(opt_state
, &s
->s
, b
->val
, do_stmts
);
1499 * This is a special case: if we don't use anything from this
1500 * block, and we load the accumulator or index register with a
1501 * value that is already there, or if this block is a return,
1502 * eliminate all the statements.
1504 * XXX - what if it does a store? Presumably that falls under
1505 * the heading of "if we don't use anything from this block",
1506 * i.e., if we use any memory location set to a different
1507 * value by this block, then we use something from this block.
1509 * XXX - why does it matter whether we use anything from this
1510 * block? If the accumulator or index register doesn't change
1511 * its value, isn't that OK even if we use that value?
1513 * XXX - if we load the accumulator with a different value,
1514 * and the block ends with a conditional branch, we obviously
1515 * can't eliminate it, as the branch depends on that value.
1516 * For the index register, the conditional branch only depends
1517 * on the index register value if the test is against the index
1518 * register value rather than a constant; if nothing uses the
1519 * value we put into the index register, and we're not testing
1520 * against the index register's value, and there aren't any
1521 * other problems that would keep us from eliminating this
1522 * block, can we eliminate it?
1525 ((b
->out_use
== 0 &&
1526 aval
!= VAL_UNKNOWN
&& b
->val
[A_ATOM
] == aval
&&
1527 xval
!= VAL_UNKNOWN
&& b
->val
[X_ATOM
] == xval
) ||
1528 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1529 if (b
->stmts
!= 0) {
1531 opt_state
->done
= 0;
1533 * XXX - optimizer loop detection.
1535 opt_state
->non_branch_movement_performed
= 1;
1538 opt_peep(opt_state
, b
);
1539 opt_deadstores(opt_state
, b
);
1542 * Set up values for branch optimizer.
1544 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1545 b
->oval
= K(b
->s
.k
);
1547 b
->oval
= b
->val
[X_ATOM
];
1548 b
->et
.code
= b
->s
.code
;
1549 b
->ef
.code
= -b
->s
.code
;
1553 * Return true if any register that is used on exit from 'succ', has
1554 * an exit value that is different from the corresponding exit value
1558 use_conflict(struct block
*b
, struct block
*succ
)
1561 atomset use
= succ
->out_use
;
1566 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1567 if (ATOMELEM(use
, atom
))
1568 if (b
->val
[atom
] != succ
->val
[atom
])
1574 * Given a block that is the successor of an edge, and an edge that
1575 * dominates that edge, return either a pointer to a child of that
1576 * block (a block to which that block jumps) if that block is a
1577 * candidate to replace the successor of the latter edge or NULL
1578 * if neither of the children of the first block are candidates.
1580 static struct block
*
1581 fold_edge(struct block
*child
, struct edge
*ep
)
1584 bpf_u_int32 aval0
, aval1
, oval0
, oval1
;
1585 int code
= ep
->code
;
1589 * This edge is a "branch if false" edge.
1595 * This edge is a "branch if true" edge.
1601 * If the opcode for the branch at the end of the block we
1602 * were handed isn't the same as the opcode for the branch
1603 * to which the edge we were handed corresponds, the tests
1604 * for those branches aren't testing the same conditions,
1605 * so the blocks to which the first block branches aren't
1606 * candidates to replace the successor of the edge.
1608 if (child
->s
.code
!= code
)
1611 aval0
= child
->val
[A_ATOM
];
1612 oval0
= child
->oval
;
1613 aval1
= ep
->pred
->val
[A_ATOM
];
1614 oval1
= ep
->pred
->oval
;
1617 * If the A register value on exit from the successor block
1618 * isn't the same as the A register value on exit from the
1619 * predecessor of the edge, the blocks to which the first
1620 * block branches aren't candidates to replace the successor
1628 * The operands of the branch instructions are
1629 * identical, so the branches are testing the
1630 * same condition, and the result is true if a true
1631 * branch was taken to get here, otherwise false.
1633 return sense
? JT(child
) : JF(child
);
1635 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1637 * At this point, we only know the comparison if we
1638 * came down the true branch, and it was an equality
1639 * comparison with a constant.
1641 * I.e., if we came down the true branch, and the branch
1642 * was an equality comparison with a constant, we know the
1643 * accumulator contains that constant. If we came down
1644 * the false branch, or the comparison wasn't with a
1645 * constant, we don't know what was in the accumulator.
1647 * We rely on the fact that distinct constants have distinct
1656 * If we can make this edge go directly to a child of the edge's current
1660 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1662 register u_int i
, k
;
1663 register struct block
*target
;
1666 * Does this edge go to a block where, if the test
1667 * at the end of it succeeds, it goes to a block
1668 * that's a leaf node of the DAG, i.e. a return
1670 * If so, there's nothing to optimize.
1672 if (JT(ep
->succ
) == 0)
1676 * Does this edge go to a block that goes, in turn, to
1677 * the same block regardless of whether the test at the
1678 * end succeeds or fails?
1680 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1682 * Common branch targets can be eliminated, provided
1683 * there is no data dependency.
1685 * Check whether any register used on exit from the
1686 * block to which the successor of this edge goes
1687 * has a value at that point that's different from
1688 * the value it has on exit from the predecessor of
1689 * this edge. If not, the predecessor of this edge
1690 * can just go to the block to which the successor
1691 * of this edge goes, bypassing the successor of this
1692 * edge, as the successor of this edge isn't doing
1693 * any calculations whose results are different
1694 * from what the blocks before it did and isn't
1695 * doing any tests the results of which matter.
1697 if (!use_conflict(ep
->pred
, JT(ep
->succ
))) {
1700 * Make this edge go to the block to
1701 * which the successor of that edge
1704 opt_state
->done
= 0;
1705 ep
->succ
= JT(ep
->succ
);
1707 * XXX - optimizer loop detection.
1709 opt_state
->non_branch_movement_performed
= 1;
1713 * For each edge dominator that matches the successor of this
1714 * edge, promote the edge successor to the its grandchild.
1716 * XXX We violate the set abstraction here in favor a reasonably
1720 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1721 /* i'th word in the bitset of dominators */
1722 register bpf_u_int32 x
= ep
->edom
[i
];
1725 /* Find the next dominator in that word and mark it as found */
1726 k
= lowest_set_bit(x
);
1727 x
&=~ ((bpf_u_int32
)1 << k
);
1728 k
+= i
* BITS_PER_WORD
;
1730 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1732 * We have a candidate to replace the successor
1735 * Check that there is no data dependency between
1736 * nodes that will be violated if we move the edge;
1737 * i.e., if any register used on exit from the
1738 * candidate has a value at that point different
1739 * from the value it has when we exit the
1740 * predecessor of that edge, there's a data
1741 * dependency that will be violated.
1743 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1745 * It's safe to replace the successor of
1746 * ep; do so, and note that we've made
1747 * at least one change.
1749 * XXX - this is one of the operations that
1750 * happens when the optimizer gets into
1751 * one of those infinite loops.
1753 opt_state
->done
= 0;
1755 if (JT(target
) != 0)
1757 * Start over unless we hit a leaf.
1767 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1768 * "Predicate Assertion Propagation" in the BPF+ paper?
1770 * Note that this looks at block dominators, not edge dominators.
1773 * "A or B" compiles into
1786 or_pullup(opt_state_t
*opt_state
, struct block
*b
, struct block
*root
)
1791 struct block
**diffp
, **samep
;
1799 * Make sure each predecessor loads the same value.
1802 val
= ep
->pred
->val
[A_ATOM
];
1803 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1804 if (val
!= ep
->pred
->val
[A_ATOM
])
1808 * For the first edge in the list of edges coming into this block,
1809 * see whether the predecessor of that edge comes here via a true
1810 * branch or a false branch.
1812 if (JT(b
->in_edges
->pred
) == b
)
1813 diffp
= &JT(b
->in_edges
->pred
); /* jt */
1815 diffp
= &JF(b
->in_edges
->pred
); /* jf */
1818 * diffp is a pointer to a pointer to the block.
1820 * Go down the false chain looking as far as you can,
1821 * making sure that each jump-compare is doing the
1822 * same as the original block.
1824 * If you reach the bottom before you reach a
1825 * different jump-compare, just exit. There's nothing
1826 * to do here. XXX - no, this version is checking for
1827 * the value leaving the block; that's from the BPF+
1833 * Done if that's not going anywhere XXX
1839 * Done if that predecessor blah blah blah isn't
1840 * going the same place we're going XXX
1842 * Does the true edge of this block point to the same
1843 * location as the true edge of b?
1845 if (JT(*diffp
) != JT(b
))
1849 * Done if this node isn't a dominator of that
1850 * node blah blah blah XXX
1852 * Does b dominate diffp?
1854 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1858 * Break out of the loop if that node's value of A
1859 * isn't the value of A above XXX
1861 if ((*diffp
)->val
[A_ATOM
] != val
)
1865 * Get the JF for that node XXX
1866 * Go down the false path.
1868 diffp
= &JF(*diffp
);
1873 * Now that we've found a different jump-compare in a chain
1874 * below b, search further down until we find another
1875 * jump-compare that looks at the original value. This
1876 * jump-compare should get pulled up. XXX again we're
1877 * comparing values not jump-compares.
1879 samep
= &JF(*diffp
);
1882 * Done if that's not going anywhere XXX
1888 * Done if that predecessor blah blah blah isn't
1889 * going the same place we're going XXX
1891 if (JT(*samep
) != JT(b
))
1895 * Done if this node isn't a dominator of that
1896 * node blah blah blah XXX
1898 * Does b dominate samep?
1900 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1904 * Break out of the loop if that node's value of A
1905 * is the value of A above XXX
1907 if ((*samep
)->val
[A_ATOM
] == val
)
1910 /* XXX Need to check that there are no data dependencies
1911 between dp0 and dp1. Currently, the code generator
1912 will not produce such dependencies. */
1913 samep
= &JF(*samep
);
1916 /* XXX This doesn't cover everything. */
1917 for (i
= 0; i
< N_ATOMS
; ++i
)
1918 if ((*samep
)->val
[i
] != pred
->val
[i
])
1921 /* Pull up the node. */
1927 * At the top of the chain, each predecessor needs to point at the
1928 * pulled up node. Inside the chain, there is only one predecessor
1932 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1933 if (JT(ep
->pred
) == b
)
1934 JT(ep
->pred
) = pull
;
1936 JF(ep
->pred
) = pull
;
1943 * XXX - this is one of the operations that happens when the
1944 * optimizer gets into one of those infinite loops.
1946 opt_state
->done
= 0;
1949 * Recompute dominator sets as control flow graph has changed.
1951 find_dom(opt_state
, root
);
1955 and_pullup(opt_state_t
*opt_state
, struct block
*b
, struct block
*root
)
1960 struct block
**diffp
, **samep
;
1968 * Make sure each predecessor loads the same value.
1970 val
= ep
->pred
->val
[A_ATOM
];
1971 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1972 if (val
!= ep
->pred
->val
[A_ATOM
])
1975 if (JT(b
->in_edges
->pred
) == b
)
1976 diffp
= &JT(b
->in_edges
->pred
);
1978 diffp
= &JF(b
->in_edges
->pred
);
1985 if (JF(*diffp
) != JF(b
))
1988 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1991 if ((*diffp
)->val
[A_ATOM
] != val
)
1994 diffp
= &JT(*diffp
);
1997 samep
= &JT(*diffp
);
2002 if (JF(*samep
) != JF(b
))
2005 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
2008 if ((*samep
)->val
[A_ATOM
] == val
)
2011 /* XXX Need to check that there are no data dependencies
2012 between diffp and samep. Currently, the code generator
2013 will not produce such dependencies. */
2014 samep
= &JT(*samep
);
2017 /* XXX This doesn't cover everything. */
2018 for (i
= 0; i
< N_ATOMS
; ++i
)
2019 if ((*samep
)->val
[i
] != pred
->val
[i
])
2022 /* Pull up the node. */
2028 * At the top of the chain, each predecessor needs to point at the
2029 * pulled up node. Inside the chain, there is only one predecessor
2033 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
2034 if (JT(ep
->pred
) == b
)
2035 JT(ep
->pred
) = pull
;
2037 JF(ep
->pred
) = pull
;
2044 * XXX - this is one of the operations that happens when the
2045 * optimizer gets into one of those infinite loops.
2047 opt_state
->done
= 0;
2050 * Recompute dominator sets as control flow graph has changed.
2052 find_dom(opt_state
, root
);
2056 opt_blks(opt_state_t
*opt_state
, struct icode
*ic
, int do_stmts
)
2061 init_val(opt_state
);
2062 maxlevel
= ic
->root
->level
;
2064 find_inedges(opt_state
, ic
->root
);
2065 for (i
= maxlevel
; i
>= 0; --i
)
2066 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
2067 opt_blk(opt_state
, p
, do_stmts
);
2071 * No point trying to move branches; it can't possibly
2072 * make a difference at this point.
2074 * XXX - this might be after we detect a loop where
2075 * we were just looping infinitely moving branches
2076 * in such a fashion that we went through two or more
2077 * versions of the machine code, eventually returning
2078 * to the first version. (We're really not doing a
2079 * full loop detection, we're just testing for two
2080 * passes in a row where we do nothing but
2086 * Is this what the BPF+ paper describes in sections 6.1.1,
2089 for (i
= 1; i
<= maxlevel
; ++i
) {
2090 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
2091 opt_j(opt_state
, &p
->et
);
2092 opt_j(opt_state
, &p
->ef
);
2096 find_inedges(opt_state
, ic
->root
);
2097 for (i
= 1; i
<= maxlevel
; ++i
) {
2098 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
2099 or_pullup(opt_state
, p
, ic
->root
);
2100 and_pullup(opt_state
, p
, ic
->root
);
2106 link_inedge(struct edge
*parent
, struct block
*child
)
2108 parent
->next
= child
->in_edges
;
2109 child
->in_edges
= parent
;
2113 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
2119 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
2120 opt_state
->blocks
[i
]->in_edges
= 0;
2123 * Traverse the graph, adding each edge to the predecessor
2124 * list of its successors. Skip the leaves (i.e. level 0).
2126 for (level
= root
->level
; level
> 0; --level
) {
2127 for (b
= opt_state
->levels
[level
]; b
!= 0; b
= b
->link
) {
2128 link_inedge(&b
->et
, JT(b
));
2129 link_inedge(&b
->ef
, JF(b
));
2135 opt_root(struct block
**b
)
2137 struct slist
*tmp
, *s
;
2141 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
2150 * If the root node is a return, then there is no
2151 * point executing any statements (since the bpf machine
2152 * has no side effects).
2154 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
2159 opt_loop(opt_state_t
*opt_state
, struct icode
*ic
, int do_stmts
)
2163 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2164 printf("%s(root, %d) begin\n", __func__
, do_stmts
);
2165 opt_dump(opt_state
, ic
);
2170 * XXX - optimizer loop detection.
2175 * XXX - optimizer loop detection.
2177 opt_state
->non_branch_movement_performed
= 0;
2178 opt_state
->done
= 1;
2179 find_levels(opt_state
, ic
);
2180 find_dom(opt_state
, ic
->root
);
2181 find_closure(opt_state
, ic
->root
);
2182 find_ud(opt_state
, ic
->root
);
2183 find_edom(opt_state
, ic
->root
);
2184 opt_blks(opt_state
, ic
, do_stmts
);
2186 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2187 printf("%s(root, %d) bottom, done=%d\n", __func__
, do_stmts
, opt_state
->done
);
2188 opt_dump(opt_state
, ic
);
2193 * Was anything done in this optimizer pass?
2195 if (opt_state
->done
) {
2197 * No, so we've reached a fixed point.
2204 * XXX - was anything done other than branch movement
2207 if (opt_state
->non_branch_movement_performed
) {
2209 * Yes. Clear any loop-detection counter;
2210 * we're making some form of progress (assuming
2211 * we can't get into a cycle doing *other*
2212 * optimizations...).
2217 * No - increment the counter, and quit if
2221 if (loop_count
>= 100) {
2223 * We've done nothing but branch movement
2224 * for 100 passes; we're probably
2225 * in a cycle and will never reach a
2228 * XXX - yes, we really need a non-
2229 * heuristic way of detecting a cycle.
2231 opt_state
->done
= 1;
2239 * Optimize the filter code in its dag representation.
2240 * Return 0 on success, -1 on error.
2243 bpf_optimize(struct icode
*ic
, char *errbuf
)
2245 opt_state_t opt_state
;
2247 memset(&opt_state
, 0, sizeof(opt_state
));
2248 opt_state
.errbuf
= errbuf
;
2249 if (setjmp(opt_state
.top_ctx
)) {
2250 opt_cleanup(&opt_state
);
2253 opt_init(&opt_state
, ic
);
2254 opt_loop(&opt_state
, ic
, 0);
2255 opt_loop(&opt_state
, ic
, 1);
2256 intern_blocks(&opt_state
, ic
);
2258 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2259 printf("after intern_blocks()\n");
2260 opt_dump(&opt_state
, ic
);
2263 opt_root(&ic
->root
);
2265 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2266 printf("after opt_root()\n");
2267 opt_dump(&opt_state
, ic
);
2270 opt_cleanup(&opt_state
);
2275 make_marks(struct icode
*ic
, struct block
*p
)
2277 if (!isMarked(ic
, p
)) {
2279 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
2280 make_marks(ic
, JT(p
));
2281 make_marks(ic
, JF(p
));
2287 * Mark code array such that isMarked(ic->cur_mark, i) is true
2288 * only for nodes that are alive.
2291 mark_code(struct icode
*ic
)
2294 make_marks(ic
, ic
->root
);
2298 * True iff the two stmt lists load the same value from the packet into
2302 eq_slist(struct slist
*x
, struct slist
*y
)
2305 while (x
&& x
->s
.code
== NOP
)
2307 while (y
&& y
->s
.code
== NOP
)
2313 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
2321 eq_blk(struct block
*b0
, struct block
*b1
)
2323 if (b0
->s
.code
== b1
->s
.code
&&
2324 b0
->s
.k
== b1
->s
.k
&&
2325 b0
->et
.succ
== b1
->et
.succ
&&
2326 b0
->ef
.succ
== b1
->ef
.succ
)
2327 return eq_slist(b0
->stmts
, b1
->stmts
);
2332 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
2336 int done1
; /* don't shadow global */
2339 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
2340 opt_state
->blocks
[i
]->link
= 0;
2344 for (i
= opt_state
->n_blocks
- 1; i
!= 0; ) {
2346 if (!isMarked(ic
, opt_state
->blocks
[i
]))
2348 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
2349 if (!isMarked(ic
, opt_state
->blocks
[j
]))
2351 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
2352 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
2353 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
2358 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
2359 p
= opt_state
->blocks
[i
];
2364 JT(p
) = JT(p
)->link
;
2368 JF(p
) = JF(p
)->link
;
2376 opt_cleanup(opt_state_t
*opt_state
)
2378 free((void *)opt_state
->vnode_base
);
2379 free((void *)opt_state
->vmap
);
2380 free((void *)opt_state
->edges
);
2381 free((void *)opt_state
->space
);
2382 free((void *)opt_state
->levels
);
2383 free((void *)opt_state
->blocks
);
2387 * For optimizer errors.
2389 static void PCAP_NORETURN
2390 opt_error(opt_state_t
*opt_state
, const char *fmt
, ...)
2394 if (opt_state
->errbuf
!= NULL
) {
2396 (void)vsnprintf(opt_state
->errbuf
,
2397 PCAP_ERRBUF_SIZE
, fmt
, ap
);
2400 longjmp(opt_state
->top_ctx
, 1);
2408 * Return the number of stmts in 's'.
2411 slength(struct slist
*s
)
2415 for (; s
; s
= s
->next
)
2416 if (s
->s
.code
!= NOP
)
2422 * Return the number of nodes reachable by 'p'.
2423 * All nodes should be initially unmarked.
2426 count_blocks(struct icode
*ic
, struct block
*p
)
2428 if (p
== 0 || isMarked(ic
, p
))
2431 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
2435 * Do a depth first search on the flow graph, numbering the
2436 * the basic blocks, and entering them into the 'blocks' array.`
2439 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
2443 if (p
== 0 || isMarked(ic
, p
))
2447 n
= opt_state
->n_blocks
++;
2448 if (opt_state
->n_blocks
== 0) {
2452 opt_error(opt_state
, "filter is too complex to optimize");
2455 opt_state
->blocks
[n
] = p
;
2457 number_blks_r(opt_state
, ic
, JT(p
));
2458 number_blks_r(opt_state
, ic
, JF(p
));
2462 * Return the number of stmts in the flowgraph reachable by 'p'.
2463 * The nodes should be unmarked before calling.
2465 * Note that "stmts" means "instructions", and that this includes
2467 * side-effect statements in 'p' (slength(p->stmts));
2469 * statements in the true branch from 'p' (count_stmts(JT(p)));
2471 * statements in the false branch from 'p' (count_stmts(JF(p)));
2473 * the conditional jump itself (1);
2475 * an extra long jump if the true branch requires it (p->longjt);
2477 * an extra long jump if the false branch requires it (p->longjf).
2480 count_stmts(struct icode
*ic
, struct block
*p
)
2484 if (p
== 0 || isMarked(ic
, p
))
2487 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
2488 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
2492 * Allocate memory. All allocation is done before optimization
2493 * is begun. A linear bound on the size of all data structures is computed
2494 * from the total number of blocks and/or statements.
2497 opt_init(opt_state_t
*opt_state
, struct icode
*ic
)
2500 int i
, n
, max_stmts
;
2502 size_t block_memsize
, edge_memsize
;
2505 * First, count the blocks, so we can malloc an array to map
2506 * block number to block. Then, put the blocks into the array.
2509 n
= count_blocks(ic
, ic
->root
);
2510 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
2511 if (opt_state
->blocks
== NULL
)
2512 opt_error(opt_state
, "malloc");
2514 opt_state
->n_blocks
= 0;
2515 number_blks_r(opt_state
, ic
, ic
->root
);
2518 * This "should not happen".
2520 if (opt_state
->n_blocks
== 0)
2521 opt_error(opt_state
, "filter has no instructions; please report this as a libpcap issue");
2523 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
2524 if ((opt_state
->n_edges
/ 2) != opt_state
->n_blocks
) {
2528 opt_error(opt_state
, "filter is too complex to optimize");
2530 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
2531 if (opt_state
->edges
== NULL
) {
2532 opt_error(opt_state
, "malloc");
2536 * The number of levels is bounded by the number of nodes.
2538 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
2539 if (opt_state
->levels
== NULL
) {
2540 opt_error(opt_state
, "malloc");
2543 opt_state
->edgewords
= opt_state
->n_edges
/ BITS_PER_WORD
+ 1;
2544 opt_state
->nodewords
= opt_state
->n_blocks
/ BITS_PER_WORD
+ 1;
2547 * Make sure opt_state->n_blocks * opt_state->nodewords fits
2548 * in a u_int; we use it as a u_int number-of-iterations
2551 product
= opt_state
->n_blocks
* opt_state
->nodewords
;
2552 if ((product
/ opt_state
->n_blocks
) != opt_state
->nodewords
) {
2554 * XXX - just punt and don't try to optimize?
2555 * In practice, this is unlikely to happen with
2558 opt_error(opt_state
, "filter is too complex to optimize");
2562 * Make sure the total memory required for that doesn't
2565 block_memsize
= (size_t)2 * product
* sizeof(*opt_state
->space
);
2566 if ((block_memsize
/ product
) != 2 * sizeof(*opt_state
->space
)) {
2567 opt_error(opt_state
, "filter is too complex to optimize");
2571 * Make sure opt_state->n_edges * opt_state->edgewords fits
2572 * in a u_int; we use it as a u_int number-of-iterations
2575 product
= opt_state
->n_edges
* opt_state
->edgewords
;
2576 if ((product
/ opt_state
->n_edges
) != opt_state
->edgewords
) {
2577 opt_error(opt_state
, "filter is too complex to optimize");
2581 * Make sure the total memory required for that doesn't
2584 edge_memsize
= (size_t)product
* sizeof(*opt_state
->space
);
2585 if (edge_memsize
/ product
!= sizeof(*opt_state
->space
)) {
2586 opt_error(opt_state
, "filter is too complex to optimize");
2590 * Make sure the total memory required for both of them doesn't
2593 if (block_memsize
> SIZE_MAX
- edge_memsize
) {
2594 opt_error(opt_state
, "filter is too complex to optimize");
2598 opt_state
->space
= (bpf_u_int32
*)malloc(block_memsize
+ edge_memsize
);
2599 if (opt_state
->space
== NULL
) {
2600 opt_error(opt_state
, "malloc");
2602 p
= opt_state
->space
;
2603 opt_state
->all_dom_sets
= p
;
2604 for (i
= 0; i
< n
; ++i
) {
2605 opt_state
->blocks
[i
]->dom
= p
;
2606 p
+= opt_state
->nodewords
;
2608 opt_state
->all_closure_sets
= p
;
2609 for (i
= 0; i
< n
; ++i
) {
2610 opt_state
->blocks
[i
]->closure
= p
;
2611 p
+= opt_state
->nodewords
;
2613 opt_state
->all_edge_sets
= p
;
2614 for (i
= 0; i
< n
; ++i
) {
2615 register struct block
*b
= opt_state
->blocks
[i
];
2618 p
+= opt_state
->edgewords
;
2620 p
+= opt_state
->edgewords
;
2622 opt_state
->edges
[i
] = &b
->et
;
2623 b
->ef
.id
= opt_state
->n_blocks
+ i
;
2624 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
2629 for (i
= 0; i
< n
; ++i
)
2630 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
2632 * We allocate at most 3 value numbers per statement,
2633 * so this is an upper bound on the number of valnodes
2636 opt_state
->maxval
= 3 * max_stmts
;
2637 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2638 if (opt_state
->vmap
== NULL
) {
2639 opt_error(opt_state
, "malloc");
2641 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2642 if (opt_state
->vnode_base
== NULL
) {
2643 opt_error(opt_state
, "malloc");
2648 * This is only used when supporting optimizer debugging. It is
2649 * global state, so do *not* do more than one compile in parallel
2650 * and expect it to provide meaningful information.
2656 static void PCAP_NORETURN
conv_error(conv_state_t
*, const char *, ...)
2657 PCAP_PRINTFLIKE(2, 3);
2660 * Returns true if successful. Returns false if a branch has
2661 * an offset that is too large. If so, we have marked that
2662 * branch so that on a subsequent iteration, it will be treated
2666 convert_code_r(conv_state_t
*conv_state
, struct icode
*ic
, struct block
*p
)
2668 struct bpf_insn
*dst
;
2672 struct slist
**offset
= NULL
;
2674 if (p
== 0 || isMarked(ic
, p
))
2678 if (convert_code_r(conv_state
, ic
, JF(p
)) == 0)
2680 if (convert_code_r(conv_state
, ic
, JT(p
)) == 0)
2683 slen
= slength(p
->stmts
);
2684 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2685 /* inflate length by any extra jumps */
2687 p
->offset
= (int)(dst
- conv_state
->fstart
);
2689 /* generate offset[] for convenience */
2691 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2693 conv_error(conv_state
, "not enough core");
2698 for (off
= 0; off
< slen
&& src
; off
++) {
2700 printf("off=%d src=%x\n", off
, src
);
2707 for (src
= p
->stmts
; src
; src
= src
->next
) {
2708 if (src
->s
.code
== NOP
)
2710 dst
->code
= (u_short
)src
->s
.code
;
2713 /* fill block-local relative jump */
2714 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2716 if (src
->s
.jt
|| src
->s
.jf
) {
2718 conv_error(conv_state
, "illegal jmp destination");
2724 if (off
== slen
- 2) /*???*/
2730 const char ljerr
[] = "%s for block-local relative jump: off=%d";
2733 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2734 off
, src
->s
.jt
, src
->s
.jf
);
2737 if (!src
->s
.jt
|| !src
->s
.jf
) {
2739 conv_error(conv_state
, ljerr
, "no jmp destination", off
);
2744 for (i
= 0; i
< slen
; i
++) {
2745 if (offset
[i
] == src
->s
.jt
) {
2748 conv_error(conv_state
, ljerr
, "multiple matches", off
);
2752 if (i
- off
- 1 >= 256) {
2754 conv_error(conv_state
, ljerr
, "out-of-range jump", off
);
2757 dst
->jt
= (u_char
)(i
- off
- 1);
2760 if (offset
[i
] == src
->s
.jf
) {
2763 conv_error(conv_state
, ljerr
, "multiple matches", off
);
2766 if (i
- off
- 1 >= 256) {
2768 conv_error(conv_state
, ljerr
, "out-of-range jump", off
);
2771 dst
->jf
= (u_char
)(i
- off
- 1);
2777 conv_error(conv_state
, ljerr
, "no destination found", off
);
2789 if (dst
- conv_state
->fstart
< NBIDS
)
2790 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2792 dst
->code
= (u_short
)p
->s
.code
;
2795 /* number of extra jumps inserted */
2796 u_char extrajmps
= 0;
2797 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2799 /* offset too large for branch, must add a jump */
2800 if (p
->longjt
== 0) {
2801 /* mark this instruction and retry */
2805 dst
->jt
= extrajmps
;
2807 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2808 dst
[extrajmps
].k
= off
- extrajmps
;
2811 dst
->jt
= (u_char
)off
;
2812 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2814 /* offset too large for branch, must add a jump */
2815 if (p
->longjf
== 0) {
2816 /* mark this instruction and retry */
2820 /* branch if F to following jump */
2821 /* if two jumps are inserted, F goes to second one */
2822 dst
->jf
= extrajmps
;
2824 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2825 dst
[extrajmps
].k
= off
- extrajmps
;
2828 dst
->jf
= (u_char
)off
;
2835 * Convert flowgraph intermediate representation to the
2836 * BPF array representation. Set *lenp to the number of instructions.
2838 * This routine does *NOT* leak the memory pointed to by fp. It *must
2839 * not* do free(fp) before returning fp; doing so would make no sense,
2840 * as the BPF array pointed to by the return value of icode_to_fcode()
2841 * must be valid - it's being returned for use in a bpf_program structure.
2843 * If it appears that icode_to_fcode() is leaking, the problem is that
2844 * the program using pcap_compile() is failing to free the memory in
2845 * the BPF program when it's done - the leak is in the program, not in
2846 * the routine that happens to be allocating the memory. (By analogy, if
2847 * a program calls fopen() without ever calling fclose() on the FILE *,
2848 * it will leak the FILE structure; the leak is not in fopen(), it's in
2849 * the program.) Change the program to use pcap_freecode() when it's
2850 * done with the filter program. See the pcap man page.
2853 icode_to_fcode(struct icode
*ic
, struct block
*root
, u_int
*lenp
,
2857 struct bpf_insn
*fp
;
2858 conv_state_t conv_state
;
2860 conv_state
.fstart
= NULL
;
2861 conv_state
.errbuf
= errbuf
;
2862 if (setjmp(conv_state
.top_ctx
) != 0) {
2863 free(conv_state
.fstart
);
2868 * Loop doing convert_code_r() until no branches remain
2869 * with too-large offsets.
2873 n
= *lenp
= count_stmts(ic
, root
);
2875 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2877 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
2881 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2882 conv_state
.fstart
= fp
;
2883 conv_state
.ftail
= fp
+ n
;
2886 if (convert_code_r(&conv_state
, ic
, root
))
2895 * For iconv_to_fconv() errors.
2897 static void PCAP_NORETURN
2898 conv_error(conv_state_t
*conv_state
, const char *fmt
, ...)
2903 (void)vsnprintf(conv_state
->errbuf
,
2904 PCAP_ERRBUF_SIZE
, fmt
, ap
);
2906 longjmp(conv_state
->top_ctx
, 1);
2914 * Make a copy of a BPF program and put it in the "fcode" member of
2917 * If we fail to allocate memory for the copy, fill in the "errbuf"
2918 * member of the "pcap_t" with an error message, and return -1;
2919 * otherwise, return 0.
2922 pcapint_install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2927 * Validate the program.
2929 if (!pcapint_validate_filter(fp
->bf_insns
, fp
->bf_len
)) {
2930 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2931 "BPF program is not valid");
2936 * Free up any already installed program.
2938 pcap_freecode(&p
->fcode
);
2940 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2941 p
->fcode
.bf_len
= fp
->bf_len
;
2942 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2943 if (p
->fcode
.bf_insns
== NULL
) {
2944 pcapint_fmt_errmsg_for_errno(p
->errbuf
, sizeof(p
->errbuf
),
2948 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2954 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2957 int icount
, noffset
;
2960 if (block
== NULL
|| isMarked(ic
, block
))
2964 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2965 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2967 fprintf(out
, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block
->id
, block
->id
, block
->id
);
2968 for (i
= block
->offset
; i
< noffset
; i
++) {
2969 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2971 fprintf(out
, "\" tooltip=\"");
2972 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2973 if (block
->val
[i
] != VAL_UNKNOWN
)
2974 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2975 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2976 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2978 if (JT(block
) == NULL
)
2979 fprintf(out
, ", peripheries=2");
2980 fprintf(out
, "];\n");
2982 dot_dump_node(ic
, JT(block
), prog
, out
);
2983 dot_dump_node(ic
, JF(block
), prog
, out
);
2987 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
2989 if (block
== NULL
|| isMarked(ic
, block
))
2994 fprintf(out
, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
2995 block
->id
, JT(block
)->id
);
2996 fprintf(out
, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
2997 block
->id
, JF(block
)->id
);
2999 dot_dump_edge(ic
, JT(block
), out
);
3000 dot_dump_edge(ic
, JF(block
), out
);
3003 /* Output the block CFG using graphviz/DOT language
3004 * In the CFG, block's code, value index for each registers at EXIT,
3005 * and the jump relationship is show.
3007 * example DOT for BPF `ip src host 1.1.1.1' is:
3009 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
3010 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
3011 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3012 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3013 "block0":se -> "block1":n [label="T"];
3014 "block0":sw -> "block3":n [label="F"];
3015 "block1":se -> "block2":n [label="T"];
3016 "block1":sw -> "block3":n [label="F"];
3019 * After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3020 * and run `dot -Tpng -O bpf.dot' to draw the graph.
3023 dot_dump(struct icode
*ic
, char *errbuf
)
3025 struct bpf_program f
;
3028 memset(bids
, 0, sizeof bids
);
3029 f
.bf_insns
= icode_to_fcode(ic
, ic
->root
, &f
.bf_len
, errbuf
);
3030 if (f
.bf_insns
== NULL
)
3033 fprintf(out
, "digraph BPF {\n");
3035 dot_dump_node(ic
, ic
->root
, &f
, out
);
3037 dot_dump_edge(ic
, ic
->root
, out
);
3038 fprintf(out
, "}\n");
3040 free((char *)f
.bf_insns
);
3045 plain_dump(struct icode
*ic
, char *errbuf
)
3047 struct bpf_program f
;
3049 memset(bids
, 0, sizeof bids
);
3050 f
.bf_insns
= icode_to_fcode(ic
, ic
->root
, &f
.bf_len
, errbuf
);
3051 if (f
.bf_insns
== NULL
)
3055 free((char *)f
.bf_insns
);
3060 opt_dump(opt_state_t
*opt_state
, struct icode
*ic
)
3063 char errbuf
[PCAP_ERRBUF_SIZE
];
3066 * If the CFG, in DOT format, is requested, output it rather than
3067 * the code that would be generated from that graph.
3069 if (pcap_print_dot_graph
)
3070 status
= dot_dump(ic
, errbuf
);
3072 status
= plain_dump(ic
, errbuf
);
3074 opt_error(opt_state
, "%s: icode_to_fcode failed: %s", __func__
, errbuf
);