]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Link-layer type for 802.15.4 with PHY-level preamble, SFD, and frame
[libpcap] / gencode.c
1 /*#define CHASE_CHAIN*/
2 /*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 */
22 #ifndef lint
23 static const char rcsid[] _U_ =
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.290.2.16 2008-09-22 20:16:01 guy Exp $ (LBL)";
25 #endif
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #include <sys/types.h>
35 #include <sys/socket.h>
36 #endif /* WIN32 */
37
38 /*
39 * XXX - why was this included even on UNIX?
40 */
41 #ifdef __MINGW32__
42 #include "IP6_misc.h"
43 #endif
44
45 #ifndef WIN32
46
47 #ifdef __NetBSD__
48 #include <sys/param.h>
49 #endif
50
51 #include <netinet/in.h>
52
53 #endif /* WIN32 */
54
55 #include <stdlib.h>
56 #include <string.h>
57 #include <memory.h>
58 #include <setjmp.h>
59 #include <stdarg.h>
60
61 #ifdef MSDOS
62 #include "pcap-dos.h"
63 #endif
64
65 #include "pcap-int.h"
66
67 #include "ethertype.h"
68 #include "nlpid.h"
69 #include "llc.h"
70 #include "gencode.h"
71 #include "ieee80211.h"
72 #include "atmuni31.h"
73 #include "sunatmpos.h"
74 #include "ppp.h"
75 #include "pcap/sll.h"
76 #include "arcnet.h"
77 #ifdef HAVE_NET_PFVAR_H
78 #include <sys/socket.h>
79 #include <net/if.h>
80 #include <net/pfvar.h>
81 #include <net/if_pflog.h>
82 #endif
83 #ifndef offsetof
84 #define offsetof(s, e) ((size_t)&((s *)0)->e)
85 #endif
86 #ifdef INET6
87 #ifndef WIN32
88 #include <netdb.h> /* for "struct addrinfo" */
89 #endif /* WIN32 */
90 #endif /*INET6*/
91 #include <pcap/namedb.h>
92
93 #define ETHERMTU 1500
94
95 #ifndef IPPROTO_SCTP
96 #define IPPROTO_SCTP 132
97 #endif
98
99 #ifdef HAVE_OS_PROTO_H
100 #include "os-proto.h"
101 #endif
102
103 #define JMP(c) ((c)|BPF_JMP|BPF_K)
104
105 /* Locals */
106 static jmp_buf top_ctx;
107 static pcap_t *bpf_pcap;
108
109 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
110 #ifdef WIN32
111 static u_int orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
112 #else
113 static u_int orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
114 #endif
115
116 /* XXX */
117 #ifdef PCAP_FDDIPAD
118 static int pcap_fddipad;
119 #endif
120
121 /* VARARGS */
122 void
123 bpf_error(const char *fmt, ...)
124 {
125 va_list ap;
126
127 va_start(ap, fmt);
128 if (bpf_pcap != NULL)
129 (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
130 fmt, ap);
131 va_end(ap);
132 longjmp(top_ctx, 1);
133 /* NOTREACHED */
134 }
135
136 static void init_linktype(pcap_t *);
137
138 static void init_regs(void);
139 static int alloc_reg(void);
140 static void free_reg(int);
141
142 static struct block *root;
143
144 /*
145 * Value passed to gen_load_a() to indicate what the offset argument
146 * is relative to.
147 */
148 enum e_offrel {
149 OR_PACKET, /* relative to the beginning of the packet */
150 OR_LINK, /* relative to the beginning of the link-layer header */
151 OR_MACPL, /* relative to the end of the MAC-layer header */
152 OR_NET, /* relative to the network-layer header */
153 OR_NET_NOSNAP, /* relative to the network-layer header, with no SNAP header at the link layer */
154 OR_TRAN_IPV4, /* relative to the transport-layer header, with IPv4 network layer */
155 OR_TRAN_IPV6 /* relative to the transport-layer header, with IPv6 network layer */
156 };
157
158 /*
159 * We divy out chunks of memory rather than call malloc each time so
160 * we don't have to worry about leaking memory. It's probably
161 * not a big deal if all this memory was wasted but if this ever
162 * goes into a library that would probably not be a good idea.
163 *
164 * XXX - this *is* in a library....
165 */
166 #define NCHUNKS 16
167 #define CHUNK0SIZE 1024
168 struct chunk {
169 u_int n_left;
170 void *m;
171 };
172
173 static struct chunk chunks[NCHUNKS];
174 static int cur_chunk;
175
176 static void *newchunk(u_int);
177 static void freechunks(void);
178 static inline struct block *new_block(int);
179 static inline struct slist *new_stmt(int);
180 static struct block *gen_retblk(int);
181 static inline void syntax(void);
182
183 static void backpatch(struct block *, struct block *);
184 static void merge(struct block *, struct block *);
185 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
186 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
187 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
188 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
189 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
190 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
191 bpf_u_int32);
192 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
193 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
194 bpf_u_int32, bpf_u_int32, int, bpf_int32);
195 static struct slist *gen_load_llrel(u_int, u_int);
196 static struct slist *gen_load_macplrel(u_int, u_int);
197 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
198 static struct slist *gen_loadx_iphdrlen(void);
199 static struct block *gen_uncond(int);
200 static inline struct block *gen_true(void);
201 static inline struct block *gen_false(void);
202 static struct block *gen_ether_linktype(int);
203 static struct block *gen_linux_sll_linktype(int);
204 static struct slist *gen_load_prism_llprefixlen(void);
205 static struct slist *gen_load_avs_llprefixlen(void);
206 static struct slist *gen_load_radiotap_llprefixlen(void);
207 static struct slist *gen_load_ppi_llprefixlen(void);
208 static void insert_compute_vloffsets(struct block *);
209 static struct slist *gen_llprefixlen(void);
210 static struct slist *gen_off_macpl(void);
211 static int ethertype_to_ppptype(int);
212 static struct block *gen_linktype(int);
213 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
214 static struct block *gen_llc_linktype(int);
215 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
216 #ifdef INET6
217 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
218 #endif
219 static struct block *gen_ahostop(const u_char *, int);
220 static struct block *gen_ehostop(const u_char *, int);
221 static struct block *gen_fhostop(const u_char *, int);
222 static struct block *gen_thostop(const u_char *, int);
223 static struct block *gen_wlanhostop(const u_char *, int);
224 static struct block *gen_ipfchostop(const u_char *, int);
225 static struct block *gen_dnhostop(bpf_u_int32, int);
226 static struct block *gen_mpls_linktype(int);
227 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
228 #ifdef INET6
229 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
230 #endif
231 #ifndef INET6
232 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
233 #endif
234 static struct block *gen_ipfrag(void);
235 static struct block *gen_portatom(int, bpf_int32);
236 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
237 #ifdef INET6
238 static struct block *gen_portatom6(int, bpf_int32);
239 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
240 #endif
241 struct block *gen_portop(int, int, int);
242 static struct block *gen_port(int, int, int);
243 struct block *gen_portrangeop(int, int, int, int);
244 static struct block *gen_portrange(int, int, int, int);
245 #ifdef INET6
246 struct block *gen_portop6(int, int, int);
247 static struct block *gen_port6(int, int, int);
248 struct block *gen_portrangeop6(int, int, int, int);
249 static struct block *gen_portrange6(int, int, int, int);
250 #endif
251 static int lookup_proto(const char *, int);
252 static struct block *gen_protochain(int, int, int);
253 static struct block *gen_proto(int, int, int);
254 static struct slist *xfer_to_x(struct arth *);
255 static struct slist *xfer_to_a(struct arth *);
256 static struct block *gen_mac_multicast(int);
257 static struct block *gen_len(int, int);
258 static struct block *gen_check_802_11_data_frame(void);
259
260 static struct block *gen_ppi_dlt_check(void);
261 static struct block *gen_msg_abbrev(int type);
262
263 static void *
264 newchunk(n)
265 u_int n;
266 {
267 struct chunk *cp;
268 int k;
269 size_t size;
270
271 #ifndef __NetBSD__
272 /* XXX Round up to nearest long. */
273 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
274 #else
275 /* XXX Round up to structure boundary. */
276 n = ALIGN(n);
277 #endif
278
279 cp = &chunks[cur_chunk];
280 if (n > cp->n_left) {
281 ++cp, k = ++cur_chunk;
282 if (k >= NCHUNKS)
283 bpf_error("out of memory");
284 size = CHUNK0SIZE << k;
285 cp->m = (void *)malloc(size);
286 if (cp->m == NULL)
287 bpf_error("out of memory");
288 memset((char *)cp->m, 0, size);
289 cp->n_left = size;
290 if (n > size)
291 bpf_error("out of memory");
292 }
293 cp->n_left -= n;
294 return (void *)((char *)cp->m + cp->n_left);
295 }
296
297 static void
298 freechunks()
299 {
300 int i;
301
302 cur_chunk = 0;
303 for (i = 0; i < NCHUNKS; ++i)
304 if (chunks[i].m != NULL) {
305 free(chunks[i].m);
306 chunks[i].m = NULL;
307 }
308 }
309
310 /*
311 * A strdup whose allocations are freed after code generation is over.
312 */
313 char *
314 sdup(s)
315 register const char *s;
316 {
317 int n = strlen(s) + 1;
318 char *cp = newchunk(n);
319
320 strlcpy(cp, s, n);
321 return (cp);
322 }
323
324 static inline struct block *
325 new_block(code)
326 int code;
327 {
328 struct block *p;
329
330 p = (struct block *)newchunk(sizeof(*p));
331 p->s.code = code;
332 p->head = p;
333
334 return p;
335 }
336
337 static inline struct slist *
338 new_stmt(code)
339 int code;
340 {
341 struct slist *p;
342
343 p = (struct slist *)newchunk(sizeof(*p));
344 p->s.code = code;
345
346 return p;
347 }
348
349 static struct block *
350 gen_retblk(v)
351 int v;
352 {
353 struct block *b = new_block(BPF_RET|BPF_K);
354
355 b->s.k = v;
356 return b;
357 }
358
359 static inline void
360 syntax()
361 {
362 bpf_error("syntax error in filter expression");
363 }
364
365 static bpf_u_int32 netmask;
366 static int snaplen;
367 int no_optimize;
368
369 int
370 pcap_compile(pcap_t *p, struct bpf_program *program,
371 const char *buf, int optimize, bpf_u_int32 mask)
372 {
373 extern int n_errors;
374 const char * volatile xbuf = buf;
375 int len;
376
377 no_optimize = 0;
378 n_errors = 0;
379 root = NULL;
380 bpf_pcap = p;
381 init_regs();
382 if (setjmp(top_ctx)) {
383 lex_cleanup();
384 freechunks();
385 return (-1);
386 }
387
388 netmask = mask;
389
390 snaplen = pcap_snapshot(p);
391 if (snaplen == 0) {
392 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
393 "snaplen of 0 rejects all packets");
394 return -1;
395 }
396
397 lex_init(xbuf ? xbuf : "");
398 init_linktype(p);
399 (void)pcap_parse();
400
401 if (n_errors)
402 syntax();
403
404 if (root == NULL)
405 root = gen_retblk(snaplen);
406
407 if (optimize && !no_optimize) {
408 bpf_optimize(&root);
409 if (root == NULL ||
410 (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
411 bpf_error("expression rejects all packets");
412 }
413 program->bf_insns = icode_to_fcode(root, &len);
414 program->bf_len = len;
415
416 lex_cleanup();
417 freechunks();
418 return (0);
419 }
420
421 /*
422 * entry point for using the compiler with no pcap open
423 * pass in all the stuff that is needed explicitly instead.
424 */
425 int
426 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
427 struct bpf_program *program,
428 const char *buf, int optimize, bpf_u_int32 mask)
429 {
430 pcap_t *p;
431 int ret;
432
433 p = pcap_open_dead(linktype_arg, snaplen_arg);
434 if (p == NULL)
435 return (-1);
436 ret = pcap_compile(p, program, buf, optimize, mask);
437 pcap_close(p);
438 return (ret);
439 }
440
441 /*
442 * Clean up a "struct bpf_program" by freeing all the memory allocated
443 * in it.
444 */
445 void
446 pcap_freecode(struct bpf_program *program)
447 {
448 program->bf_len = 0;
449 if (program->bf_insns != NULL) {
450 free((char *)program->bf_insns);
451 program->bf_insns = NULL;
452 }
453 }
454
455 /*
456 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
457 * which of the jt and jf fields has been resolved and which is a pointer
458 * back to another unresolved block (or nil). At least one of the fields
459 * in each block is already resolved.
460 */
461 static void
462 backpatch(list, target)
463 struct block *list, *target;
464 {
465 struct block *next;
466
467 while (list) {
468 if (!list->sense) {
469 next = JT(list);
470 JT(list) = target;
471 } else {
472 next = JF(list);
473 JF(list) = target;
474 }
475 list = next;
476 }
477 }
478
479 /*
480 * Merge the lists in b0 and b1, using the 'sense' field to indicate
481 * which of jt and jf is the link.
482 */
483 static void
484 merge(b0, b1)
485 struct block *b0, *b1;
486 {
487 register struct block **p = &b0;
488
489 /* Find end of list. */
490 while (*p)
491 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
492
493 /* Concatenate the lists. */
494 *p = b1;
495 }
496
497 void
498 finish_parse(p)
499 struct block *p;
500 {
501 struct block *ppi_dlt_check;
502
503 /*
504 * Insert before the statements of the first (root) block any
505 * statements needed to load the lengths of any variable-length
506 * headers into registers.
507 *
508 * XXX - a fancier strategy would be to insert those before the
509 * statements of all blocks that use those lengths and that
510 * have no predecessors that use them, so that we only compute
511 * the lengths if we need them. There might be even better
512 * approaches than that.
513 *
514 * However, those strategies would be more complicated, and
515 * as we don't generate code to compute a length if the
516 * program has no tests that use the length, and as most
517 * tests will probably use those lengths, we would just
518 * postpone computing the lengths so that it's not done
519 * for tests that fail early, and it's not clear that's
520 * worth the effort.
521 */
522 insert_compute_vloffsets(p->head);
523
524 /*
525 * For DLT_PPI captures, generate a check of the per-packet
526 * DLT value to make sure it's DLT_IEEE802_11.
527 */
528 ppi_dlt_check = gen_ppi_dlt_check();
529 if (ppi_dlt_check != NULL)
530 gen_and(ppi_dlt_check, p);
531
532 backpatch(p, gen_retblk(snaplen));
533 p->sense = !p->sense;
534 backpatch(p, gen_retblk(0));
535 root = p->head;
536 }
537
538 void
539 gen_and(b0, b1)
540 struct block *b0, *b1;
541 {
542 backpatch(b0, b1->head);
543 b0->sense = !b0->sense;
544 b1->sense = !b1->sense;
545 merge(b1, b0);
546 b1->sense = !b1->sense;
547 b1->head = b0->head;
548 }
549
550 void
551 gen_or(b0, b1)
552 struct block *b0, *b1;
553 {
554 b0->sense = !b0->sense;
555 backpatch(b0, b1->head);
556 b0->sense = !b0->sense;
557 merge(b1, b0);
558 b1->head = b0->head;
559 }
560
561 void
562 gen_not(b)
563 struct block *b;
564 {
565 b->sense = !b->sense;
566 }
567
568 static struct block *
569 gen_cmp(offrel, offset, size, v)
570 enum e_offrel offrel;
571 u_int offset, size;
572 bpf_int32 v;
573 {
574 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
575 }
576
577 static struct block *
578 gen_cmp_gt(offrel, offset, size, v)
579 enum e_offrel offrel;
580 u_int offset, size;
581 bpf_int32 v;
582 {
583 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
584 }
585
586 static struct block *
587 gen_cmp_ge(offrel, offset, size, v)
588 enum e_offrel offrel;
589 u_int offset, size;
590 bpf_int32 v;
591 {
592 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
593 }
594
595 static struct block *
596 gen_cmp_lt(offrel, offset, size, v)
597 enum e_offrel offrel;
598 u_int offset, size;
599 bpf_int32 v;
600 {
601 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
602 }
603
604 static struct block *
605 gen_cmp_le(offrel, offset, size, v)
606 enum e_offrel offrel;
607 u_int offset, size;
608 bpf_int32 v;
609 {
610 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
611 }
612
613 static struct block *
614 gen_mcmp(offrel, offset, size, v, mask)
615 enum e_offrel offrel;
616 u_int offset, size;
617 bpf_int32 v;
618 bpf_u_int32 mask;
619 {
620 return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
621 }
622
623 static struct block *
624 gen_bcmp(offrel, offset, size, v)
625 enum e_offrel offrel;
626 register u_int offset, size;
627 register const u_char *v;
628 {
629 register struct block *b, *tmp;
630
631 b = NULL;
632 while (size >= 4) {
633 register const u_char *p = &v[size - 4];
634 bpf_int32 w = ((bpf_int32)p[0] << 24) |
635 ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
636
637 tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
638 if (b != NULL)
639 gen_and(b, tmp);
640 b = tmp;
641 size -= 4;
642 }
643 while (size >= 2) {
644 register const u_char *p = &v[size - 2];
645 bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
646
647 tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
648 if (b != NULL)
649 gen_and(b, tmp);
650 b = tmp;
651 size -= 2;
652 }
653 if (size > 0) {
654 tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
655 if (b != NULL)
656 gen_and(b, tmp);
657 b = tmp;
658 }
659 return b;
660 }
661
662 /*
663 * AND the field of size "size" at offset "offset" relative to the header
664 * specified by "offrel" with "mask", and compare it with the value "v"
665 * with the test specified by "jtype"; if "reverse" is true, the test
666 * should test the opposite of "jtype".
667 */
668 static struct block *
669 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
670 enum e_offrel offrel;
671 bpf_int32 v;
672 bpf_u_int32 offset, size, mask, jtype;
673 int reverse;
674 {
675 struct slist *s, *s2;
676 struct block *b;
677
678 s = gen_load_a(offrel, offset, size);
679
680 if (mask != 0xffffffff) {
681 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
682 s2->s.k = mask;
683 sappend(s, s2);
684 }
685
686 b = new_block(JMP(jtype));
687 b->stmts = s;
688 b->s.k = v;
689 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
690 gen_not(b);
691 return b;
692 }
693
694 /*
695 * Various code constructs need to know the layout of the data link
696 * layer. These variables give the necessary offsets from the beginning
697 * of the packet data.
698 */
699
700 /*
701 * This is the offset of the beginning of the link-layer header from
702 * the beginning of the raw packet data.
703 *
704 * It's usually 0, except for 802.11 with a fixed-length radio header.
705 * (For 802.11 with a variable-length radio header, we have to generate
706 * code to compute that offset; off_ll is 0 in that case.)
707 */
708 static u_int off_ll;
709
710 /*
711 * If there's a variable-length header preceding the link-layer header,
712 * "reg_off_ll" is the register number for a register containing the
713 * length of that header, and therefore the offset of the link-layer
714 * header from the beginning of the raw packet data. Otherwise,
715 * "reg_off_ll" is -1.
716 */
717 static int reg_off_ll;
718
719 /*
720 * This is the offset of the beginning of the MAC-layer header from
721 * the beginning of the link-layer header.
722 * It's usually 0, except for ATM LANE, where it's the offset, relative
723 * to the beginning of the raw packet data, of the Ethernet header.
724 */
725 static u_int off_mac;
726
727 /*
728 * This is the offset of the beginning of the MAC-layer payload,
729 * from the beginning of the raw packet data.
730 *
731 * I.e., it's the sum of the length of the link-layer header (without,
732 * for example, any 802.2 LLC header, so it's the MAC-layer
733 * portion of that header), plus any prefix preceding the
734 * link-layer header.
735 */
736 static u_int off_macpl;
737
738 /*
739 * This is 1 if the offset of the beginning of the MAC-layer payload
740 * from the beginning of the link-layer header is variable-length.
741 */
742 static int off_macpl_is_variable;
743
744 /*
745 * If the link layer has variable_length headers, "reg_off_macpl"
746 * is the register number for a register containing the length of the
747 * link-layer header plus the length of any variable-length header
748 * preceding the link-layer header. Otherwise, "reg_off_macpl"
749 * is -1.
750 */
751 static int reg_off_macpl;
752
753 /*
754 * "off_linktype" is the offset to information in the link-layer header
755 * giving the packet type. This offset is relative to the beginning
756 * of the link-layer header (i.e., it doesn't include off_ll).
757 *
758 * For Ethernet, it's the offset of the Ethernet type field.
759 *
760 * For link-layer types that always use 802.2 headers, it's the
761 * offset of the LLC header.
762 *
763 * For PPP, it's the offset of the PPP type field.
764 *
765 * For Cisco HDLC, it's the offset of the CHDLC type field.
766 *
767 * For BSD loopback, it's the offset of the AF_ value.
768 *
769 * For Linux cooked sockets, it's the offset of the type field.
770 *
771 * It's set to -1 for no encapsulation, in which case, IP is assumed.
772 */
773 static u_int off_linktype;
774
775 /*
776 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
777 * checks to check the PPP header, assumed to follow a LAN-style link-
778 * layer header and a PPPoE session header.
779 */
780 static int is_pppoes = 0;
781
782 /*
783 * TRUE if the link layer includes an ATM pseudo-header.
784 */
785 static int is_atm = 0;
786
787 /*
788 * TRUE if "lane" appeared in the filter; it causes us to generate
789 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
790 */
791 static int is_lane = 0;
792
793 /*
794 * These are offsets for the ATM pseudo-header.
795 */
796 static u_int off_vpi;
797 static u_int off_vci;
798 static u_int off_proto;
799
800 /*
801 * These are offsets for the MTP2 fields.
802 */
803 static u_int off_li;
804
805 /*
806 * These are offsets for the MTP3 fields.
807 */
808 static u_int off_sio;
809 static u_int off_opc;
810 static u_int off_dpc;
811 static u_int off_sls;
812
813 /*
814 * This is the offset of the first byte after the ATM pseudo_header,
815 * or -1 if there is no ATM pseudo-header.
816 */
817 static u_int off_payload;
818
819 /*
820 * These are offsets to the beginning of the network-layer header.
821 * They are relative to the beginning of the MAC-layer payload (i.e.,
822 * they don't include off_ll or off_macpl).
823 *
824 * If the link layer never uses 802.2 LLC:
825 *
826 * "off_nl" and "off_nl_nosnap" are the same.
827 *
828 * If the link layer always uses 802.2 LLC:
829 *
830 * "off_nl" is the offset if there's a SNAP header following
831 * the 802.2 header;
832 *
833 * "off_nl_nosnap" is the offset if there's no SNAP header.
834 *
835 * If the link layer is Ethernet:
836 *
837 * "off_nl" is the offset if the packet is an Ethernet II packet
838 * (we assume no 802.3+802.2+SNAP);
839 *
840 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
841 * with an 802.2 header following it.
842 */
843 static u_int off_nl;
844 static u_int off_nl_nosnap;
845
846 static int linktype;
847
848 static void
849 init_linktype(p)
850 pcap_t *p;
851 {
852 linktype = pcap_datalink(p);
853 #ifdef PCAP_FDDIPAD
854 pcap_fddipad = p->fddipad;
855 #endif
856
857 /*
858 * Assume it's not raw ATM with a pseudo-header, for now.
859 */
860 off_mac = 0;
861 is_atm = 0;
862 is_lane = 0;
863 off_vpi = -1;
864 off_vci = -1;
865 off_proto = -1;
866 off_payload = -1;
867
868 /*
869 * And that we're not doing PPPoE.
870 */
871 is_pppoes = 0;
872
873 /*
874 * And assume we're not doing SS7.
875 */
876 off_li = -1;
877 off_sio = -1;
878 off_opc = -1;
879 off_dpc = -1;
880 off_sls = -1;
881
882 /*
883 * Also assume it's not 802.11.
884 */
885 off_ll = 0;
886 off_macpl = 0;
887 off_macpl_is_variable = 0;
888
889 orig_linktype = -1;
890 orig_nl = -1;
891 label_stack_depth = 0;
892
893 reg_off_ll = -1;
894 reg_off_macpl = -1;
895
896 switch (linktype) {
897
898 case DLT_ARCNET:
899 off_linktype = 2;
900 off_macpl = 6;
901 off_nl = 0; /* XXX in reality, variable! */
902 off_nl_nosnap = 0; /* no 802.2 LLC */
903 return;
904
905 case DLT_ARCNET_LINUX:
906 off_linktype = 4;
907 off_macpl = 8;
908 off_nl = 0; /* XXX in reality, variable! */
909 off_nl_nosnap = 0; /* no 802.2 LLC */
910 return;
911
912 case DLT_EN10MB:
913 off_linktype = 12;
914 off_macpl = 14; /* Ethernet header length */
915 off_nl = 0; /* Ethernet II */
916 off_nl_nosnap = 3; /* 802.3+802.2 */
917 return;
918
919 case DLT_SLIP:
920 /*
921 * SLIP doesn't have a link level type. The 16 byte
922 * header is hacked into our SLIP driver.
923 */
924 off_linktype = -1;
925 off_macpl = 16;
926 off_nl = 0;
927 off_nl_nosnap = 0; /* no 802.2 LLC */
928 return;
929
930 case DLT_SLIP_BSDOS:
931 /* XXX this may be the same as the DLT_PPP_BSDOS case */
932 off_linktype = -1;
933 /* XXX end */
934 off_macpl = 24;
935 off_nl = 0;
936 off_nl_nosnap = 0; /* no 802.2 LLC */
937 return;
938
939 case DLT_NULL:
940 case DLT_LOOP:
941 off_linktype = 0;
942 off_macpl = 4;
943 off_nl = 0;
944 off_nl_nosnap = 0; /* no 802.2 LLC */
945 return;
946
947 case DLT_ENC:
948 off_linktype = 0;
949 off_macpl = 12;
950 off_nl = 0;
951 off_nl_nosnap = 0; /* no 802.2 LLC */
952 return;
953
954 case DLT_PPP:
955 case DLT_PPP_PPPD:
956 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
957 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
958 off_linktype = 2;
959 off_macpl = 4;
960 off_nl = 0;
961 off_nl_nosnap = 0; /* no 802.2 LLC */
962 return;
963
964 case DLT_PPP_ETHER:
965 /*
966 * This does no include the Ethernet header, and
967 * only covers session state.
968 */
969 off_linktype = 6;
970 off_macpl = 8;
971 off_nl = 0;
972 off_nl_nosnap = 0; /* no 802.2 LLC */
973 return;
974
975 case DLT_PPP_BSDOS:
976 off_linktype = 5;
977 off_macpl = 24;
978 off_nl = 0;
979 off_nl_nosnap = 0; /* no 802.2 LLC */
980 return;
981
982 case DLT_FDDI:
983 /*
984 * FDDI doesn't really have a link-level type field.
985 * We set "off_linktype" to the offset of the LLC header.
986 *
987 * To check for Ethernet types, we assume that SSAP = SNAP
988 * is being used and pick out the encapsulated Ethernet type.
989 * XXX - should we generate code to check for SNAP?
990 */
991 off_linktype = 13;
992 #ifdef PCAP_FDDIPAD
993 off_linktype += pcap_fddipad;
994 #endif
995 off_macpl = 13; /* FDDI MAC header length */
996 #ifdef PCAP_FDDIPAD
997 off_macpl += pcap_fddipad;
998 #endif
999 off_nl = 8; /* 802.2+SNAP */
1000 off_nl_nosnap = 3; /* 802.2 */
1001 return;
1002
1003 case DLT_IEEE802:
1004 /*
1005 * Token Ring doesn't really have a link-level type field.
1006 * We set "off_linktype" to the offset of the LLC header.
1007 *
1008 * To check for Ethernet types, we assume that SSAP = SNAP
1009 * is being used and pick out the encapsulated Ethernet type.
1010 * XXX - should we generate code to check for SNAP?
1011 *
1012 * XXX - the header is actually variable-length.
1013 * Some various Linux patched versions gave 38
1014 * as "off_linktype" and 40 as "off_nl"; however,
1015 * if a token ring packet has *no* routing
1016 * information, i.e. is not source-routed, the correct
1017 * values are 20 and 22, as they are in the vanilla code.
1018 *
1019 * A packet is source-routed iff the uppermost bit
1020 * of the first byte of the source address, at an
1021 * offset of 8, has the uppermost bit set. If the
1022 * packet is source-routed, the total number of bytes
1023 * of routing information is 2 plus bits 0x1F00 of
1024 * the 16-bit value at an offset of 14 (shifted right
1025 * 8 - figure out which byte that is).
1026 */
1027 off_linktype = 14;
1028 off_macpl = 14; /* Token Ring MAC header length */
1029 off_nl = 8; /* 802.2+SNAP */
1030 off_nl_nosnap = 3; /* 802.2 */
1031 return;
1032
1033 case DLT_IEEE802_11:
1034 case DLT_PRISM_HEADER:
1035 case DLT_IEEE802_11_RADIO_AVS:
1036 case DLT_IEEE802_11_RADIO:
1037 /*
1038 * 802.11 doesn't really have a link-level type field.
1039 * We set "off_linktype" to the offset of the LLC header.
1040 *
1041 * To check for Ethernet types, we assume that SSAP = SNAP
1042 * is being used and pick out the encapsulated Ethernet type.
1043 * XXX - should we generate code to check for SNAP?
1044 *
1045 * We also handle variable-length radio headers here.
1046 * The Prism header is in theory variable-length, but in
1047 * practice it's always 144 bytes long. However, some
1048 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1049 * sometimes or always supply an AVS header, so we
1050 * have to check whether the radio header is a Prism
1051 * header or an AVS header, so, in practice, it's
1052 * variable-length.
1053 */
1054 off_linktype = 24;
1055 off_macpl = 0; /* link-layer header is variable-length */
1056 off_macpl_is_variable = 1;
1057 off_nl = 8; /* 802.2+SNAP */
1058 off_nl_nosnap = 3; /* 802.2 */
1059 return;
1060
1061 case DLT_PPI:
1062 /*
1063 * At the moment we treat PPI the same way that we treat
1064 * normal Radiotap encoded packets. The difference is in
1065 * the function that generates the code at the beginning
1066 * to compute the header length. Since this code generator
1067 * of PPI supports bare 802.11 encapsulation only (i.e.
1068 * the encapsulated DLT should be DLT_IEEE802_11) we
1069 * generate code to check for this too.
1070 */
1071 off_linktype = 24;
1072 off_macpl = 0; /* link-layer header is variable-length */
1073 off_macpl_is_variable = 1;
1074 off_nl = 8; /* 802.2+SNAP */
1075 off_nl_nosnap = 3; /* 802.2 */
1076 return;
1077
1078 case DLT_ATM_RFC1483:
1079 case DLT_ATM_CLIP: /* Linux ATM defines this */
1080 /*
1081 * assume routed, non-ISO PDUs
1082 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1083 *
1084 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1085 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1086 * latter would presumably be treated the way PPPoE
1087 * should be, so you can do "pppoe and udp port 2049"
1088 * or "pppoa and tcp port 80" and have it check for
1089 * PPPo{A,E} and a PPP protocol of IP and....
1090 */
1091 off_linktype = 0;
1092 off_macpl = 0; /* packet begins with LLC header */
1093 off_nl = 8; /* 802.2+SNAP */
1094 off_nl_nosnap = 3; /* 802.2 */
1095 return;
1096
1097 case DLT_SUNATM:
1098 /*
1099 * Full Frontal ATM; you get AALn PDUs with an ATM
1100 * pseudo-header.
1101 */
1102 is_atm = 1;
1103 off_vpi = SUNATM_VPI_POS;
1104 off_vci = SUNATM_VCI_POS;
1105 off_proto = PROTO_POS;
1106 off_mac = -1; /* assume LLC-encapsulated, so no MAC-layer header */
1107 off_payload = SUNATM_PKT_BEGIN_POS;
1108 off_linktype = off_payload;
1109 off_macpl = off_payload; /* if LLC-encapsulated */
1110 off_nl = 8; /* 802.2+SNAP */
1111 off_nl_nosnap = 3; /* 802.2 */
1112 return;
1113
1114 case DLT_RAW:
1115 off_linktype = -1;
1116 off_macpl = 0;
1117 off_nl = 0;
1118 off_nl_nosnap = 0; /* no 802.2 LLC */
1119 return;
1120
1121 case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
1122 off_linktype = 14;
1123 off_macpl = 16;
1124 off_nl = 0;
1125 off_nl_nosnap = 0; /* no 802.2 LLC */
1126 return;
1127
1128 case DLT_LTALK:
1129 /*
1130 * LocalTalk does have a 1-byte type field in the LLAP header,
1131 * but really it just indicates whether there is a "short" or
1132 * "long" DDP packet following.
1133 */
1134 off_linktype = -1;
1135 off_macpl = 0;
1136 off_nl = 0;
1137 off_nl_nosnap = 0; /* no 802.2 LLC */
1138 return;
1139
1140 case DLT_IP_OVER_FC:
1141 /*
1142 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1143 * link-level type field. We set "off_linktype" to the
1144 * offset of the LLC header.
1145 *
1146 * To check for Ethernet types, we assume that SSAP = SNAP
1147 * is being used and pick out the encapsulated Ethernet type.
1148 * XXX - should we generate code to check for SNAP? RFC
1149 * 2625 says SNAP should be used.
1150 */
1151 off_linktype = 16;
1152 off_macpl = 16;
1153 off_nl = 8; /* 802.2+SNAP */
1154 off_nl_nosnap = 3; /* 802.2 */
1155 return;
1156
1157 case DLT_FRELAY:
1158 /*
1159 * XXX - we should set this to handle SNAP-encapsulated
1160 * frames (NLPID of 0x80).
1161 */
1162 off_linktype = -1;
1163 off_macpl = 0;
1164 off_nl = 0;
1165 off_nl_nosnap = 0; /* no 802.2 LLC */
1166 return;
1167
1168 /*
1169 * the only BPF-interesting FRF.16 frames are non-control frames;
1170 * Frame Relay has a variable length link-layer
1171 * so lets start with offset 4 for now and increments later on (FIXME);
1172 */
1173 case DLT_MFR:
1174 off_linktype = -1;
1175 off_macpl = 0;
1176 off_nl = 4;
1177 off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1178 return;
1179
1180 case DLT_APPLE_IP_OVER_IEEE1394:
1181 off_linktype = 16;
1182 off_macpl = 18;
1183 off_nl = 0;
1184 off_nl_nosnap = 0; /* no 802.2 LLC */
1185 return;
1186
1187 case DLT_LINUX_IRDA:
1188 /*
1189 * Currently, only raw "link[N:M]" filtering is supported.
1190 */
1191 off_linktype = -1;
1192 off_macpl = -1;
1193 off_nl = -1;
1194 off_nl_nosnap = -1;
1195 return;
1196
1197 case DLT_DOCSIS:
1198 /*
1199 * Currently, only raw "link[N:M]" filtering is supported.
1200 */
1201 off_linktype = -1;
1202 off_macpl = -1;
1203 off_nl = -1;
1204 off_nl_nosnap = -1;
1205 return;
1206
1207 case DLT_SYMANTEC_FIREWALL:
1208 off_linktype = 6;
1209 off_macpl = 44;
1210 off_nl = 0; /* Ethernet II */
1211 off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1212 return;
1213
1214 #ifdef HAVE_NET_PFVAR_H
1215 case DLT_PFLOG:
1216 off_linktype = 0;
1217 off_macpl = PFLOG_HDRLEN;
1218 off_nl = 0;
1219 off_nl_nosnap = 0; /* no 802.2 LLC */
1220 return;
1221 #endif
1222
1223 case DLT_JUNIPER_MFR:
1224 case DLT_JUNIPER_MLFR:
1225 case DLT_JUNIPER_MLPPP:
1226 case DLT_JUNIPER_PPP:
1227 case DLT_JUNIPER_CHDLC:
1228 case DLT_JUNIPER_FRELAY:
1229 off_linktype = 4;
1230 off_macpl = 4;
1231 off_nl = 0;
1232 off_nl_nosnap = -1; /* no 802.2 LLC */
1233 return;
1234
1235 case DLT_JUNIPER_ATM1:
1236 off_linktype = 4; /* in reality variable between 4-8 */
1237 off_macpl = 4; /* in reality variable between 4-8 */
1238 off_nl = 0;
1239 off_nl_nosnap = 10;
1240 return;
1241
1242 case DLT_JUNIPER_ATM2:
1243 off_linktype = 8; /* in reality variable between 8-12 */
1244 off_macpl = 8; /* in reality variable between 8-12 */
1245 off_nl = 0;
1246 off_nl_nosnap = 10;
1247 return;
1248
1249 /* frames captured on a Juniper PPPoE service PIC
1250 * contain raw ethernet frames */
1251 case DLT_JUNIPER_PPPOE:
1252 case DLT_JUNIPER_ETHER:
1253 off_macpl = 14;
1254 off_linktype = 16;
1255 off_nl = 18; /* Ethernet II */
1256 off_nl_nosnap = 21; /* 802.3+802.2 */
1257 return;
1258
1259 case DLT_JUNIPER_PPPOE_ATM:
1260 off_linktype = 4;
1261 off_macpl = 6;
1262 off_nl = 0;
1263 off_nl_nosnap = -1; /* no 802.2 LLC */
1264 return;
1265
1266 case DLT_JUNIPER_GGSN:
1267 off_linktype = 6;
1268 off_macpl = 12;
1269 off_nl = 0;
1270 off_nl_nosnap = -1; /* no 802.2 LLC */
1271 return;
1272
1273 case DLT_JUNIPER_ES:
1274 off_linktype = 6;
1275 off_macpl = -1; /* not really a network layer but raw IP addresses */
1276 off_nl = -1; /* not really a network layer but raw IP addresses */
1277 off_nl_nosnap = -1; /* no 802.2 LLC */
1278 return;
1279
1280 case DLT_JUNIPER_MONITOR:
1281 off_linktype = 12;
1282 off_macpl = 12;
1283 off_nl = 0; /* raw IP/IP6 header */
1284 off_nl_nosnap = -1; /* no 802.2 LLC */
1285 return;
1286
1287 case DLT_JUNIPER_SERVICES:
1288 off_linktype = 12;
1289 off_macpl = -1; /* L3 proto location dep. on cookie type */
1290 off_nl = -1; /* L3 proto location dep. on cookie type */
1291 off_nl_nosnap = -1; /* no 802.2 LLC */
1292 return;
1293
1294 case DLT_JUNIPER_VP:
1295 off_linktype = 18;
1296 off_macpl = -1;
1297 off_nl = -1;
1298 off_nl_nosnap = -1;
1299 return;
1300
1301 case DLT_JUNIPER_ST:
1302 off_linktype = 18;
1303 off_macpl = -1;
1304 off_nl = -1;
1305 off_nl_nosnap = -1;
1306 return;
1307
1308 case DLT_JUNIPER_ISM:
1309 off_linktype = 8;
1310 off_macpl = -1;
1311 off_nl = -1;
1312 off_nl_nosnap = -1;
1313 return;
1314
1315 case DLT_MTP2:
1316 off_li = 2;
1317 off_sio = 3;
1318 off_opc = 4;
1319 off_dpc = 4;
1320 off_sls = 7;
1321 off_linktype = -1;
1322 off_macpl = -1;
1323 off_nl = -1;
1324 off_nl_nosnap = -1;
1325 return;
1326
1327 case DLT_MTP2_WITH_PHDR:
1328 off_li = 6;
1329 off_sio = 7;
1330 off_opc = 8;
1331 off_dpc = 8;
1332 off_sls = 11;
1333 off_linktype = -1;
1334 off_macpl = -1;
1335 off_nl = -1;
1336 off_nl_nosnap = -1;
1337 return;
1338
1339 case DLT_ERF:
1340 off_li = 22;
1341 off_sio = 23;
1342 off_opc = 24;
1343 off_dpc = 24;
1344 off_sls = 27;
1345 off_linktype = -1;
1346 off_macpl = -1;
1347 off_nl = -1;
1348 off_nl_nosnap = -1;
1349 return;
1350
1351 #ifdef DLT_PFSYNC
1352 case DLT_PFSYNC:
1353 off_linktype = -1;
1354 off_macpl = 4;
1355 off_nl = 0;
1356 off_nl_nosnap = 0;
1357 return;
1358 #endif
1359
1360 case DLT_LINUX_LAPD:
1361 /*
1362 * Currently, only raw "link[N:M]" filtering is supported.
1363 */
1364 off_linktype = -1;
1365 off_macpl = -1;
1366 off_nl = -1;
1367 off_nl_nosnap = -1;
1368 return;
1369
1370 case DLT_USB:
1371 /*
1372 * Currently, only raw "link[N:M]" filtering is supported.
1373 */
1374 off_linktype = -1;
1375 off_macpl = -1;
1376 off_nl = -1;
1377 off_nl_nosnap = -1;
1378 return;
1379
1380 case DLT_BLUETOOTH_HCI_H4:
1381 /*
1382 * Currently, only raw "link[N:M]" filtering is supported.
1383 */
1384 off_linktype = -1;
1385 off_macpl = -1;
1386 off_nl = -1;
1387 off_nl_nosnap = -1;
1388 return;
1389
1390 case DLT_USB_LINUX:
1391 /*
1392 * Currently, only raw "link[N:M]" filtering is supported.
1393 */
1394 off_linktype = -1;
1395 off_macpl = -1;
1396 off_nl = -1;
1397 off_nl_nosnap = -1;
1398 return;
1399
1400 case DLT_CAN20B:
1401 /*
1402 * Currently, only raw "link[N:M]" filtering is supported.
1403 */
1404 off_linktype = -1;
1405 off_macpl = -1;
1406 off_nl = -1;
1407 off_nl_nosnap = -1;
1408 return;
1409
1410 case DLT_IEEE802_15_4_LINUX:
1411 /*
1412 * Currently, only raw "link[N:M]" filtering is supported.
1413 */
1414 off_linktype = -1;
1415 off_macpl = -1;
1416 off_nl = -1;
1417 off_nl_nosnap = -1;
1418 return;
1419
1420 case DLT_IEEE802_16_MAC_CPS_RADIO:
1421 /*
1422 * Currently, only raw "link[N:M]" filtering is supported.
1423 */
1424 off_linktype = -1;
1425 off_macpl = -1;
1426 off_nl = -1;
1427 off_nl_nosnap = -1;
1428 return;
1429
1430 case DLT_IEEE802_15_4:
1431 /*
1432 * Currently, only raw "link[N:M]" filtering is supported.
1433 */
1434 off_linktype = -1;
1435 off_macpl = -1;
1436 off_nl = -1;
1437 off_nl_nosnap = -1;
1438 return;
1439
1440 case DLT_SITA:
1441 /*
1442 * Currently, only raw "link[N:M]" filtering is supported.
1443 */
1444 off_linktype = -1;
1445 off_macpl = -1;
1446 off_nl = -1;
1447 off_nl_nosnap = -1;
1448 return;
1449
1450 case DLT_RAIF1:
1451 /*
1452 * Currently, only raw "link[N:M]" filtering is supported.
1453 */
1454 off_linktype = -1;
1455 off_macpl = -1;
1456 off_nl = -1;
1457 off_nl_nosnap = -1;
1458 return;
1459
1460 case DLT_IPMB:
1461 /*
1462 * Currently, only raw "link[N:M]" filtering is supported.
1463 */
1464 off_linktype = -1;
1465 off_macpl = -1;
1466 off_nl = -1;
1467 off_nl_nosnap = -1;
1468 return;
1469
1470 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
1471 /*
1472 * Currently, only raw "link[N:M]" filtering is supported.
1473 */
1474 off_linktype = -1;
1475 off_macpl = -1;
1476 off_nl = -1;
1477 off_nl_nosnap = -1;
1478 return;
1479
1480 case DLT_AX25_KISS:
1481 /*
1482 * Currently, only raw "link[N:M]" filtering is supported.
1483 */
1484 off_linktype = -1; /* variable, min 15, max 71 steps of 7 */
1485 off_macpl = -1;
1486 off_nl = -1; /* variable, min 16, max 71 steps of 7 */
1487 off_nl_nosnap = -1; /* no 802.2 LLC */
1488 off_mac = 1; /* step over the kiss length byte */
1489 return;
1490
1491 case DLT_IEEE802_15_4_NONASK_PHY:
1492 /*
1493 * Currently, only raw "link[N:M]" filtering is supported.
1494 */
1495 off_linktype = -1;
1496 off_macpl = -1;
1497 off_nl = -1;
1498 off_nl_nosnap = -1;
1499 return;
1500 }
1501 bpf_error("unknown data link type %d", linktype);
1502 /* NOTREACHED */
1503 }
1504
1505 /*
1506 * Load a value relative to the beginning of the link-layer header.
1507 * The link-layer header doesn't necessarily begin at the beginning
1508 * of the packet data; there might be a variable-length prefix containing
1509 * radio information.
1510 */
1511 static struct slist *
1512 gen_load_llrel(offset, size)
1513 u_int offset, size;
1514 {
1515 struct slist *s, *s2;
1516
1517 s = gen_llprefixlen();
1518
1519 /*
1520 * If "s" is non-null, it has code to arrange that the X register
1521 * contains the length of the prefix preceding the link-layer
1522 * header.
1523 *
1524 * Otherwise, the length of the prefix preceding the link-layer
1525 * header is "off_ll".
1526 */
1527 if (s != NULL) {
1528 /*
1529 * There's a variable-length prefix preceding the
1530 * link-layer header. "s" points to a list of statements
1531 * that put the length of that prefix into the X register.
1532 * do an indirect load, to use the X register as an offset.
1533 */
1534 s2 = new_stmt(BPF_LD|BPF_IND|size);
1535 s2->s.k = offset;
1536 sappend(s, s2);
1537 } else {
1538 /*
1539 * There is no variable-length header preceding the
1540 * link-layer header; add in off_ll, which, if there's
1541 * a fixed-length header preceding the link-layer header,
1542 * is the length of that header.
1543 */
1544 s = new_stmt(BPF_LD|BPF_ABS|size);
1545 s->s.k = offset + off_ll;
1546 }
1547 return s;
1548 }
1549
1550 /*
1551 * Load a value relative to the beginning of the MAC-layer payload.
1552 */
1553 static struct slist *
1554 gen_load_macplrel(offset, size)
1555 u_int offset, size;
1556 {
1557 struct slist *s, *s2;
1558
1559 s = gen_off_macpl();
1560
1561 /*
1562 * If s is non-null, the offset of the MAC-layer payload is
1563 * variable, and s points to a list of instructions that
1564 * arrange that the X register contains that offset.
1565 *
1566 * Otherwise, the offset of the MAC-layer payload is constant,
1567 * and is in off_macpl.
1568 */
1569 if (s != NULL) {
1570 /*
1571 * The offset of the MAC-layer payload is in the X
1572 * register. Do an indirect load, to use the X register
1573 * as an offset.
1574 */
1575 s2 = new_stmt(BPF_LD|BPF_IND|size);
1576 s2->s.k = offset;
1577 sappend(s, s2);
1578 } else {
1579 /*
1580 * The offset of the MAC-layer payload is constant,
1581 * and is in off_macpl; load the value at that offset
1582 * plus the specified offset.
1583 */
1584 s = new_stmt(BPF_LD|BPF_ABS|size);
1585 s->s.k = off_macpl + offset;
1586 }
1587 return s;
1588 }
1589
1590 /*
1591 * Load a value relative to the beginning of the specified header.
1592 */
1593 static struct slist *
1594 gen_load_a(offrel, offset, size)
1595 enum e_offrel offrel;
1596 u_int offset, size;
1597 {
1598 struct slist *s, *s2;
1599
1600 switch (offrel) {
1601
1602 case OR_PACKET:
1603 s = new_stmt(BPF_LD|BPF_ABS|size);
1604 s->s.k = offset;
1605 break;
1606
1607 case OR_LINK:
1608 s = gen_load_llrel(offset, size);
1609 break;
1610
1611 case OR_MACPL:
1612 s = gen_load_macplrel(offset, size);
1613 break;
1614
1615 case OR_NET:
1616 s = gen_load_macplrel(off_nl + offset, size);
1617 break;
1618
1619 case OR_NET_NOSNAP:
1620 s = gen_load_macplrel(off_nl_nosnap + offset, size);
1621 break;
1622
1623 case OR_TRAN_IPV4:
1624 /*
1625 * Load the X register with the length of the IPv4 header
1626 * (plus the offset of the link-layer header, if it's
1627 * preceded by a variable-length header such as a radio
1628 * header), in bytes.
1629 */
1630 s = gen_loadx_iphdrlen();
1631
1632 /*
1633 * Load the item at {offset of the MAC-layer payload} +
1634 * {offset, relative to the start of the MAC-layer
1635 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1636 * {specified offset}.
1637 *
1638 * (If the offset of the MAC-layer payload is variable,
1639 * it's included in the value in the X register, and
1640 * off_macpl is 0.)
1641 */
1642 s2 = new_stmt(BPF_LD|BPF_IND|size);
1643 s2->s.k = off_macpl + off_nl + offset;
1644 sappend(s, s2);
1645 break;
1646
1647 case OR_TRAN_IPV6:
1648 s = gen_load_macplrel(off_nl + 40 + offset, size);
1649 break;
1650
1651 default:
1652 abort();
1653 return NULL;
1654 }
1655 return s;
1656 }
1657
1658 /*
1659 * Generate code to load into the X register the sum of the length of
1660 * the IPv4 header and any variable-length header preceding the link-layer
1661 * header.
1662 */
1663 static struct slist *
1664 gen_loadx_iphdrlen()
1665 {
1666 struct slist *s, *s2;
1667
1668 s = gen_off_macpl();
1669 if (s != NULL) {
1670 /*
1671 * There's a variable-length prefix preceding the
1672 * link-layer header, or the link-layer header is itself
1673 * variable-length. "s" points to a list of statements
1674 * that put the offset of the MAC-layer payload into
1675 * the X register.
1676 *
1677 * The 4*([k]&0xf) addressing mode can't be used, as we
1678 * don't have a constant offset, so we have to load the
1679 * value in question into the A register and add to it
1680 * the value from the X register.
1681 */
1682 s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1683 s2->s.k = off_nl;
1684 sappend(s, s2);
1685 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1686 s2->s.k = 0xf;
1687 sappend(s, s2);
1688 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1689 s2->s.k = 2;
1690 sappend(s, s2);
1691
1692 /*
1693 * The A register now contains the length of the
1694 * IP header. We need to add to it the offset of
1695 * the MAC-layer payload, which is still in the X
1696 * register, and move the result into the X register.
1697 */
1698 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1699 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1700 } else {
1701 /*
1702 * There is no variable-length header preceding the
1703 * link-layer header, and the link-layer header is
1704 * fixed-length; load the length of the IPv4 header,
1705 * which is at an offset of off_nl from the beginning
1706 * of the MAC-layer payload, and thus at an offset
1707 * of off_mac_pl + off_nl from the beginning of the
1708 * raw packet data.
1709 */
1710 s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1711 s->s.k = off_macpl + off_nl;
1712 }
1713 return s;
1714 }
1715
1716 static struct block *
1717 gen_uncond(rsense)
1718 int rsense;
1719 {
1720 struct block *b;
1721 struct slist *s;
1722
1723 s = new_stmt(BPF_LD|BPF_IMM);
1724 s->s.k = !rsense;
1725 b = new_block(JMP(BPF_JEQ));
1726 b->stmts = s;
1727
1728 return b;
1729 }
1730
1731 static inline struct block *
1732 gen_true()
1733 {
1734 return gen_uncond(1);
1735 }
1736
1737 static inline struct block *
1738 gen_false()
1739 {
1740 return gen_uncond(0);
1741 }
1742
1743 /*
1744 * Byte-swap a 32-bit number.
1745 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1746 * big-endian platforms.)
1747 */
1748 #define SWAPLONG(y) \
1749 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1750
1751 /*
1752 * Generate code to match a particular packet type.
1753 *
1754 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1755 * value, if <= ETHERMTU. We use that to determine whether to
1756 * match the type/length field or to check the type/length field for
1757 * a value <= ETHERMTU to see whether it's a type field and then do
1758 * the appropriate test.
1759 */
1760 static struct block *
1761 gen_ether_linktype(proto)
1762 register int proto;
1763 {
1764 struct block *b0, *b1;
1765
1766 switch (proto) {
1767
1768 case LLCSAP_ISONS:
1769 case LLCSAP_IP:
1770 case LLCSAP_NETBEUI:
1771 /*
1772 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1773 * so we check the DSAP and SSAP.
1774 *
1775 * LLCSAP_IP checks for IP-over-802.2, rather
1776 * than IP-over-Ethernet or IP-over-SNAP.
1777 *
1778 * XXX - should we check both the DSAP and the
1779 * SSAP, like this, or should we check just the
1780 * DSAP, as we do for other types <= ETHERMTU
1781 * (i.e., other SAP values)?
1782 */
1783 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1784 gen_not(b0);
1785 b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1786 ((proto << 8) | proto));
1787 gen_and(b0, b1);
1788 return b1;
1789
1790 case LLCSAP_IPX:
1791 /*
1792 * Check for;
1793 *
1794 * Ethernet_II frames, which are Ethernet
1795 * frames with a frame type of ETHERTYPE_IPX;
1796 *
1797 * Ethernet_802.3 frames, which are 802.3
1798 * frames (i.e., the type/length field is
1799 * a length field, <= ETHERMTU, rather than
1800 * a type field) with the first two bytes
1801 * after the Ethernet/802.3 header being
1802 * 0xFFFF;
1803 *
1804 * Ethernet_802.2 frames, which are 802.3
1805 * frames with an 802.2 LLC header and
1806 * with the IPX LSAP as the DSAP in the LLC
1807 * header;
1808 *
1809 * Ethernet_SNAP frames, which are 802.3
1810 * frames with an LLC header and a SNAP
1811 * header and with an OUI of 0x000000
1812 * (encapsulated Ethernet) and a protocol
1813 * ID of ETHERTYPE_IPX in the SNAP header.
1814 *
1815 * XXX - should we generate the same code both
1816 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1817 */
1818
1819 /*
1820 * This generates code to check both for the
1821 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1822 */
1823 b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1824 b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1825 gen_or(b0, b1);
1826
1827 /*
1828 * Now we add code to check for SNAP frames with
1829 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1830 */
1831 b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1832 gen_or(b0, b1);
1833
1834 /*
1835 * Now we generate code to check for 802.3
1836 * frames in general.
1837 */
1838 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1839 gen_not(b0);
1840
1841 /*
1842 * Now add the check for 802.3 frames before the
1843 * check for Ethernet_802.2 and Ethernet_802.3,
1844 * as those checks should only be done on 802.3
1845 * frames, not on Ethernet frames.
1846 */
1847 gen_and(b0, b1);
1848
1849 /*
1850 * Now add the check for Ethernet_II frames, and
1851 * do that before checking for the other frame
1852 * types.
1853 */
1854 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1855 (bpf_int32)ETHERTYPE_IPX);
1856 gen_or(b0, b1);
1857 return b1;
1858
1859 case ETHERTYPE_ATALK:
1860 case ETHERTYPE_AARP:
1861 /*
1862 * EtherTalk (AppleTalk protocols on Ethernet link
1863 * layer) may use 802.2 encapsulation.
1864 */
1865
1866 /*
1867 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1868 * we check for an Ethernet type field less than
1869 * 1500, which means it's an 802.3 length field.
1870 */
1871 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1872 gen_not(b0);
1873
1874 /*
1875 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1876 * SNAP packets with an organization code of
1877 * 0x080007 (Apple, for Appletalk) and a protocol
1878 * type of ETHERTYPE_ATALK (Appletalk).
1879 *
1880 * 802.2-encapsulated ETHERTYPE_AARP packets are
1881 * SNAP packets with an organization code of
1882 * 0x000000 (encapsulated Ethernet) and a protocol
1883 * type of ETHERTYPE_AARP (Appletalk ARP).
1884 */
1885 if (proto == ETHERTYPE_ATALK)
1886 b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1887 else /* proto == ETHERTYPE_AARP */
1888 b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1889 gen_and(b0, b1);
1890
1891 /*
1892 * Check for Ethernet encapsulation (Ethertalk
1893 * phase 1?); we just check for the Ethernet
1894 * protocol type.
1895 */
1896 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1897
1898 gen_or(b0, b1);
1899 return b1;
1900
1901 default:
1902 if (proto <= ETHERMTU) {
1903 /*
1904 * This is an LLC SAP value, so the frames
1905 * that match would be 802.2 frames.
1906 * Check that the frame is an 802.2 frame
1907 * (i.e., that the length/type field is
1908 * a length field, <= ETHERMTU) and
1909 * then check the DSAP.
1910 */
1911 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1912 gen_not(b0);
1913 b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1914 (bpf_int32)proto);
1915 gen_and(b0, b1);
1916 return b1;
1917 } else {
1918 /*
1919 * This is an Ethernet type, so compare
1920 * the length/type field with it (if
1921 * the frame is an 802.2 frame, the length
1922 * field will be <= ETHERMTU, and, as
1923 * "proto" is > ETHERMTU, this test
1924 * will fail and the frame won't match,
1925 * which is what we want).
1926 */
1927 return gen_cmp(OR_LINK, off_linktype, BPF_H,
1928 (bpf_int32)proto);
1929 }
1930 }
1931 }
1932
1933 /*
1934 * Generate code to match a particular packet type.
1935 *
1936 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1937 * value, if <= ETHERMTU. We use that to determine whether to
1938 * match the type field or to check the type field for the special
1939 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1940 */
1941 static struct block *
1942 gen_linux_sll_linktype(proto)
1943 register int proto;
1944 {
1945 struct block *b0, *b1;
1946
1947 switch (proto) {
1948
1949 case LLCSAP_ISONS:
1950 case LLCSAP_IP:
1951 case LLCSAP_NETBEUI:
1952 /*
1953 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1954 * so we check the DSAP and SSAP.
1955 *
1956 * LLCSAP_IP checks for IP-over-802.2, rather
1957 * than IP-over-Ethernet or IP-over-SNAP.
1958 *
1959 * XXX - should we check both the DSAP and the
1960 * SSAP, like this, or should we check just the
1961 * DSAP, as we do for other types <= ETHERMTU
1962 * (i.e., other SAP values)?
1963 */
1964 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1965 b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1966 ((proto << 8) | proto));
1967 gen_and(b0, b1);
1968 return b1;
1969
1970 case LLCSAP_IPX:
1971 /*
1972 * Ethernet_II frames, which are Ethernet
1973 * frames with a frame type of ETHERTYPE_IPX;
1974 *
1975 * Ethernet_802.3 frames, which have a frame
1976 * type of LINUX_SLL_P_802_3;
1977 *
1978 * Ethernet_802.2 frames, which are 802.3
1979 * frames with an 802.2 LLC header (i.e, have
1980 * a frame type of LINUX_SLL_P_802_2) and
1981 * with the IPX LSAP as the DSAP in the LLC
1982 * header;
1983 *
1984 * Ethernet_SNAP frames, which are 802.3
1985 * frames with an LLC header and a SNAP
1986 * header and with an OUI of 0x000000
1987 * (encapsulated Ethernet) and a protocol
1988 * ID of ETHERTYPE_IPX in the SNAP header.
1989 *
1990 * First, do the checks on LINUX_SLL_P_802_2
1991 * frames; generate the check for either
1992 * Ethernet_802.2 or Ethernet_SNAP frames, and
1993 * then put a check for LINUX_SLL_P_802_2 frames
1994 * before it.
1995 */
1996 b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1997 b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1998 gen_or(b0, b1);
1999 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2000 gen_and(b0, b1);
2001
2002 /*
2003 * Now check for 802.3 frames and OR that with
2004 * the previous test.
2005 */
2006 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2007 gen_or(b0, b1);
2008
2009 /*
2010 * Now add the check for Ethernet_II frames, and
2011 * do that before checking for the other frame
2012 * types.
2013 */
2014 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2015 (bpf_int32)ETHERTYPE_IPX);
2016 gen_or(b0, b1);
2017 return b1;
2018
2019 case ETHERTYPE_ATALK:
2020 case ETHERTYPE_AARP:
2021 /*
2022 * EtherTalk (AppleTalk protocols on Ethernet link
2023 * layer) may use 802.2 encapsulation.
2024 */
2025
2026 /*
2027 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2028 * we check for the 802.2 protocol type in the
2029 * "Ethernet type" field.
2030 */
2031 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2032
2033 /*
2034 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2035 * SNAP packets with an organization code of
2036 * 0x080007 (Apple, for Appletalk) and a protocol
2037 * type of ETHERTYPE_ATALK (Appletalk).
2038 *
2039 * 802.2-encapsulated ETHERTYPE_AARP packets are
2040 * SNAP packets with an organization code of
2041 * 0x000000 (encapsulated Ethernet) and a protocol
2042 * type of ETHERTYPE_AARP (Appletalk ARP).
2043 */
2044 if (proto == ETHERTYPE_ATALK)
2045 b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2046 else /* proto == ETHERTYPE_AARP */
2047 b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2048 gen_and(b0, b1);
2049
2050 /*
2051 * Check for Ethernet encapsulation (Ethertalk
2052 * phase 1?); we just check for the Ethernet
2053 * protocol type.
2054 */
2055 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2056
2057 gen_or(b0, b1);
2058 return b1;
2059
2060 default:
2061 if (proto <= ETHERMTU) {
2062 /*
2063 * This is an LLC SAP value, so the frames
2064 * that match would be 802.2 frames.
2065 * Check for the 802.2 protocol type
2066 * in the "Ethernet type" field, and
2067 * then check the DSAP.
2068 */
2069 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2070 LINUX_SLL_P_802_2);
2071 b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2072 (bpf_int32)proto);
2073 gen_and(b0, b1);
2074 return b1;
2075 } else {
2076 /*
2077 * This is an Ethernet type, so compare
2078 * the length/type field with it (if
2079 * the frame is an 802.2 frame, the length
2080 * field will be <= ETHERMTU, and, as
2081 * "proto" is > ETHERMTU, this test
2082 * will fail and the frame won't match,
2083 * which is what we want).
2084 */
2085 return gen_cmp(OR_LINK, off_linktype, BPF_H,
2086 (bpf_int32)proto);
2087 }
2088 }
2089 }
2090
2091 static struct slist *
2092 gen_load_prism_llprefixlen()
2093 {
2094 struct slist *s1, *s2;
2095 struct slist *sjeq_avs_cookie;
2096 struct slist *sjcommon;
2097
2098 /*
2099 * This code is not compatible with the optimizer, as
2100 * we are generating jmp instructions within a normal
2101 * slist of instructions
2102 */
2103 no_optimize = 1;
2104
2105 /*
2106 * Generate code to load the length of the radio header into
2107 * the register assigned to hold that length, if one has been
2108 * assigned. (If one hasn't been assigned, no code we've
2109 * generated uses that prefix, so we don't need to generate any
2110 * code to load it.)
2111 *
2112 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2113 * or always use the AVS header rather than the Prism header.
2114 * We load a 4-byte big-endian value at the beginning of the
2115 * raw packet data, and see whether, when masked with 0xFFFFF000,
2116 * it's equal to 0x80211000. If so, that indicates that it's
2117 * an AVS header (the masked-out bits are the version number).
2118 * Otherwise, it's a Prism header.
2119 *
2120 * XXX - the Prism header is also, in theory, variable-length,
2121 * but no known software generates headers that aren't 144
2122 * bytes long.
2123 */
2124 if (reg_off_ll != -1) {
2125 /*
2126 * Load the cookie.
2127 */
2128 s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2129 s1->s.k = 0;
2130
2131 /*
2132 * AND it with 0xFFFFF000.
2133 */
2134 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2135 s2->s.k = 0xFFFFF000;
2136 sappend(s1, s2);
2137
2138 /*
2139 * Compare with 0x80211000.
2140 */
2141 sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2142 sjeq_avs_cookie->s.k = 0x80211000;
2143 sappend(s1, sjeq_avs_cookie);
2144
2145 /*
2146 * If it's AVS:
2147 *
2148 * The 4 bytes at an offset of 4 from the beginning of
2149 * the AVS header are the length of the AVS header.
2150 * That field is big-endian.
2151 */
2152 s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2153 s2->s.k = 4;
2154 sappend(s1, s2);
2155 sjeq_avs_cookie->s.jt = s2;
2156
2157 /*
2158 * Now jump to the code to allocate a register
2159 * into which to save the header length and
2160 * store the length there. (The "jump always"
2161 * instruction needs to have the k field set;
2162 * it's added to the PC, so, as we're jumping
2163 * over a single instruction, it should be 1.)
2164 */
2165 sjcommon = new_stmt(JMP(BPF_JA));
2166 sjcommon->s.k = 1;
2167 sappend(s1, sjcommon);
2168
2169 /*
2170 * Now for the code that handles the Prism header.
2171 * Just load the length of the Prism header (144)
2172 * into the A register. Have the test for an AVS
2173 * header branch here if we don't have an AVS header.
2174 */
2175 s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2176 s2->s.k = 144;
2177 sappend(s1, s2);
2178 sjeq_avs_cookie->s.jf = s2;
2179
2180 /*
2181 * Now allocate a register to hold that value and store
2182 * it. The code for the AVS header will jump here after
2183 * loading the length of the AVS header.
2184 */
2185 s2 = new_stmt(BPF_ST);
2186 s2->s.k = reg_off_ll;
2187 sappend(s1, s2);
2188 sjcommon->s.jf = s2;
2189
2190 /*
2191 * Now move it into the X register.
2192 */
2193 s2 = new_stmt(BPF_MISC|BPF_TAX);
2194 sappend(s1, s2);
2195
2196 return (s1);
2197 } else
2198 return (NULL);
2199 }
2200
2201 static struct slist *
2202 gen_load_avs_llprefixlen()
2203 {
2204 struct slist *s1, *s2;
2205
2206 /*
2207 * Generate code to load the length of the AVS header into
2208 * the register assigned to hold that length, if one has been
2209 * assigned. (If one hasn't been assigned, no code we've
2210 * generated uses that prefix, so we don't need to generate any
2211 * code to load it.)
2212 */
2213 if (reg_off_ll != -1) {
2214 /*
2215 * The 4 bytes at an offset of 4 from the beginning of
2216 * the AVS header are the length of the AVS header.
2217 * That field is big-endian.
2218 */
2219 s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2220 s1->s.k = 4;
2221
2222 /*
2223 * Now allocate a register to hold that value and store
2224 * it.
2225 */
2226 s2 = new_stmt(BPF_ST);
2227 s2->s.k = reg_off_ll;
2228 sappend(s1, s2);
2229
2230 /*
2231 * Now move it into the X register.
2232 */
2233 s2 = new_stmt(BPF_MISC|BPF_TAX);
2234 sappend(s1, s2);
2235
2236 return (s1);
2237 } else
2238 return (NULL);
2239 }
2240
2241 static struct slist *
2242 gen_load_radiotap_llprefixlen()
2243 {
2244 struct slist *s1, *s2;
2245
2246 /*
2247 * Generate code to load the length of the radiotap header into
2248 * the register assigned to hold that length, if one has been
2249 * assigned. (If one hasn't been assigned, no code we've
2250 * generated uses that prefix, so we don't need to generate any
2251 * code to load it.)
2252 */
2253 if (reg_off_ll != -1) {
2254 /*
2255 * The 2 bytes at offsets of 2 and 3 from the beginning
2256 * of the radiotap header are the length of the radiotap
2257 * header; unfortunately, it's little-endian, so we have
2258 * to load it a byte at a time and construct the value.
2259 */
2260
2261 /*
2262 * Load the high-order byte, at an offset of 3, shift it
2263 * left a byte, and put the result in the X register.
2264 */
2265 s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2266 s1->s.k = 3;
2267 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2268 sappend(s1, s2);
2269 s2->s.k = 8;
2270 s2 = new_stmt(BPF_MISC|BPF_TAX);
2271 sappend(s1, s2);
2272
2273 /*
2274 * Load the next byte, at an offset of 2, and OR the
2275 * value from the X register into it.
2276 */
2277 s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2278 sappend(s1, s2);
2279 s2->s.k = 2;
2280 s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2281 sappend(s1, s2);
2282
2283 /*
2284 * Now allocate a register to hold that value and store
2285 * it.
2286 */
2287 s2 = new_stmt(BPF_ST);
2288 s2->s.k = reg_off_ll;
2289 sappend(s1, s2);
2290
2291 /*
2292 * Now move it into the X register.
2293 */
2294 s2 = new_stmt(BPF_MISC|BPF_TAX);
2295 sappend(s1, s2);
2296
2297 return (s1);
2298 } else
2299 return (NULL);
2300 }
2301
2302 /*
2303 * At the moment we treat PPI as normal Radiotap encoded
2304 * packets. The difference is in the function that generates
2305 * the code at the beginning to compute the header length.
2306 * Since this code generator of PPI supports bare 802.11
2307 * encapsulation only (i.e. the encapsulated DLT should be
2308 * DLT_IEEE802_11) we generate code to check for this too;
2309 * that's done in finish_parse().
2310 */
2311 static struct slist *
2312 gen_load_ppi_llprefixlen()
2313 {
2314 struct slist *s1, *s2;
2315
2316 /*
2317 * Generate code to load the length of the radiotap header
2318 * into the register assigned to hold that length, if one has
2319 * been assigned.
2320 */
2321 if (reg_off_ll != -1) {
2322 /*
2323 * The 2 bytes at offsets of 2 and 3 from the beginning
2324 * of the radiotap header are the length of the radiotap
2325 * header; unfortunately, it's little-endian, so we have
2326 * to load it a byte at a time and construct the value.
2327 */
2328
2329 /*
2330 * Load the high-order byte, at an offset of 3, shift it
2331 * left a byte, and put the result in the X register.
2332 */
2333 s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2334 s1->s.k = 3;
2335 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2336 sappend(s1, s2);
2337 s2->s.k = 8;
2338 s2 = new_stmt(BPF_MISC|BPF_TAX);
2339 sappend(s1, s2);
2340
2341 /*
2342 * Load the next byte, at an offset of 2, and OR the
2343 * value from the X register into it.
2344 */
2345 s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2346 sappend(s1, s2);
2347 s2->s.k = 2;
2348 s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2349 sappend(s1, s2);
2350
2351 /*
2352 * Now allocate a register to hold that value and store
2353 * it.
2354 */
2355 s2 = new_stmt(BPF_ST);
2356 s2->s.k = reg_off_ll;
2357 sappend(s1, s2);
2358
2359 /*
2360 * Now move it into the X register.
2361 */
2362 s2 = new_stmt(BPF_MISC|BPF_TAX);
2363 sappend(s1, s2);
2364
2365 return (s1);
2366 } else
2367 return (NULL);
2368 }
2369
2370 /*
2371 * Load a value relative to the beginning of the link-layer header after the 802.11
2372 * header, i.e. LLC_SNAP.
2373 * The link-layer header doesn't necessarily begin at the beginning
2374 * of the packet data; there might be a variable-length prefix containing
2375 * radio information.
2376 */
2377 static struct slist *
2378 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2379 {
2380 struct slist *s2;
2381 struct slist *sjset_data_frame_1;
2382 struct slist *sjset_data_frame_2;
2383 struct slist *sjset_qos;
2384 struct slist *sjset_radiotap_flags;
2385 struct slist *sjset_radiotap_tsft;
2386 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2387 struct slist *s_roundup;
2388
2389 if (reg_off_macpl == -1) {
2390 /*
2391 * No register has been assigned to the offset of
2392 * the MAC-layer payload, which means nobody needs
2393 * it; don't bother computing it - just return
2394 * what we already have.
2395 */
2396 return (s);
2397 }
2398
2399 /*
2400 * This code is not compatible with the optimizer, as
2401 * we are generating jmp instructions within a normal
2402 * slist of instructions
2403 */
2404 no_optimize = 1;
2405
2406 /*
2407 * If "s" is non-null, it has code to arrange that the X register
2408 * contains the length of the prefix preceding the link-layer
2409 * header.
2410 *
2411 * Otherwise, the length of the prefix preceding the link-layer
2412 * header is "off_ll".
2413 */
2414 if (s == NULL) {
2415 /*
2416 * There is no variable-length header preceding the
2417 * link-layer header.
2418 *
2419 * Load the length of the fixed-length prefix preceding
2420 * the link-layer header (if any) into the X register,
2421 * and store it in the reg_off_macpl register.
2422 * That length is off_ll.
2423 */
2424 s = new_stmt(BPF_LDX|BPF_IMM);
2425 s->s.k = off_ll;
2426 }
2427
2428 /*
2429 * The X register contains the offset of the beginning of the
2430 * link-layer header; add 24, which is the minimum length
2431 * of the MAC header for a data frame, to that, and store it
2432 * in reg_off_macpl, and then load the Frame Control field,
2433 * which is at the offset in the X register, with an indexed load.
2434 */
2435 s2 = new_stmt(BPF_MISC|BPF_TXA);
2436 sappend(s, s2);
2437 s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2438 s2->s.k = 24;
2439 sappend(s, s2);
2440 s2 = new_stmt(BPF_ST);
2441 s2->s.k = reg_off_macpl;
2442 sappend(s, s2);
2443
2444 s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2445 s2->s.k = 0;
2446 sappend(s, s2);
2447
2448 /*
2449 * Check the Frame Control field to see if this is a data frame;
2450 * a data frame has the 0x08 bit (b3) in that field set and the
2451 * 0x04 bit (b2) clear.
2452 */
2453 sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2454 sjset_data_frame_1->s.k = 0x08;
2455 sappend(s, sjset_data_frame_1);
2456
2457 /*
2458 * If b3 is set, test b2, otherwise go to the first statement of
2459 * the rest of the program.
2460 */
2461 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2462 sjset_data_frame_2->s.k = 0x04;
2463 sappend(s, sjset_data_frame_2);
2464 sjset_data_frame_1->s.jf = snext;
2465
2466 /*
2467 * If b2 is not set, this is a data frame; test the QoS bit.
2468 * Otherwise, go to the first statement of the rest of the
2469 * program.
2470 */
2471 sjset_data_frame_2->s.jt = snext;
2472 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2473 sjset_qos->s.k = 0x80; /* QoS bit */
2474 sappend(s, sjset_qos);
2475
2476 /*
2477 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2478 * field.
2479 * Otherwise, go to the first statement of the rest of the
2480 * program.
2481 */
2482 sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2483 s2->s.k = reg_off_macpl;
2484 sappend(s, s2);
2485 s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2486 s2->s.k = 2;
2487 sappend(s, s2);
2488 s2 = new_stmt(BPF_ST);
2489 s2->s.k = reg_off_macpl;
2490 sappend(s, s2);
2491
2492 /*
2493 * If we have a radiotap header, look at it to see whether
2494 * there's Atheros padding between the MAC-layer header
2495 * and the payload.
2496 *
2497 * Note: all of the fields in the radiotap header are
2498 * little-endian, so we byte-swap all of the values
2499 * we test against, as they will be loaded as big-endian
2500 * values.
2501 */
2502 if (linktype == DLT_IEEE802_11_RADIO) {
2503 /*
2504 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2505 * in the presence flag?
2506 */
2507 sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2508 s2->s.k = 4;
2509 sappend(s, s2);
2510
2511 sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2512 sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2513 sappend(s, sjset_radiotap_flags);
2514
2515 /*
2516 * If not, skip all of this.
2517 */
2518 sjset_radiotap_flags->s.jf = snext;
2519
2520 /*
2521 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2522 */
2523 sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2524 new_stmt(JMP(BPF_JSET));
2525 sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2526 sappend(s, sjset_radiotap_tsft);
2527
2528 /*
2529 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2530 * at an offset of 16 from the beginning of the raw packet
2531 * data (8 bytes for the radiotap header and 8 bytes for
2532 * the TSFT field).
2533 *
2534 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2535 * is set.
2536 */
2537 sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2538 s2->s.k = 16;
2539 sappend(s, s2);
2540
2541 sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2542 sjset_tsft_datapad->s.k = 0x20;
2543 sappend(s, sjset_tsft_datapad);
2544
2545 /*
2546 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2547 * at an offset of 8 from the beginning of the raw packet
2548 * data (8 bytes for the radiotap header).
2549 *
2550 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2551 * is set.
2552 */
2553 sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2554 s2->s.k = 8;
2555 sappend(s, s2);
2556
2557 sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2558 sjset_notsft_datapad->s.k = 0x20;
2559 sappend(s, sjset_notsft_datapad);
2560
2561 /*
2562 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2563 * set, round the length of the 802.11 header to
2564 * a multiple of 4. Do that by adding 3 and then
2565 * dividing by and multiplying by 4, which we do by
2566 * ANDing with ~3.
2567 */
2568 s_roundup = new_stmt(BPF_LD|BPF_MEM);
2569 s_roundup->s.k = reg_off_macpl;
2570 sappend(s, s_roundup);
2571 s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2572 s2->s.k = 3;
2573 sappend(s, s2);
2574 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2575 s2->s.k = ~3;
2576 sappend(s, s2);
2577 s2 = new_stmt(BPF_ST);
2578 s2->s.k = reg_off_macpl;
2579 sappend(s, s2);
2580
2581 sjset_tsft_datapad->s.jt = s_roundup;
2582 sjset_tsft_datapad->s.jf = snext;
2583 sjset_notsft_datapad->s.jt = s_roundup;
2584 sjset_notsft_datapad->s.jf = snext;
2585 } else
2586 sjset_qos->s.jf = snext;
2587
2588 return s;
2589 }
2590
2591 static void
2592 insert_compute_vloffsets(b)
2593 struct block *b;
2594 {
2595 struct slist *s;
2596
2597 /*
2598 * For link-layer types that have a variable-length header
2599 * preceding the link-layer header, generate code to load
2600 * the offset of the link-layer header into the register
2601 * assigned to that offset, if any.
2602 */
2603 switch (linktype) {
2604
2605 case DLT_PRISM_HEADER:
2606 s = gen_load_prism_llprefixlen();
2607 break;
2608
2609 case DLT_IEEE802_11_RADIO_AVS:
2610 s = gen_load_avs_llprefixlen();
2611 break;
2612
2613 case DLT_IEEE802_11_RADIO:
2614 s = gen_load_radiotap_llprefixlen();
2615 break;
2616
2617 case DLT_PPI:
2618 s = gen_load_ppi_llprefixlen();
2619 break;
2620
2621 default:
2622 s = NULL;
2623 break;
2624 }
2625
2626 /*
2627 * For link-layer types that have a variable-length link-layer
2628 * header, generate code to load the offset of the MAC-layer
2629 * payload into the register assigned to that offset, if any.
2630 */
2631 switch (linktype) {
2632
2633 case DLT_IEEE802_11:
2634 case DLT_PRISM_HEADER:
2635 case DLT_IEEE802_11_RADIO_AVS:
2636 case DLT_IEEE802_11_RADIO:
2637 case DLT_PPI:
2638 s = gen_load_802_11_header_len(s, b->stmts);
2639 break;
2640 }
2641
2642 /*
2643 * If we have any offset-loading code, append all the
2644 * existing statements in the block to those statements,
2645 * and make the resulting list the list of statements
2646 * for the block.
2647 */
2648 if (s != NULL) {
2649 sappend(s, b->stmts);
2650 b->stmts = s;
2651 }
2652 }
2653
2654 static struct block *
2655 gen_ppi_dlt_check(void)
2656 {
2657 struct slist *s_load_dlt;
2658 struct block *b;
2659
2660 if (linktype == DLT_PPI)
2661 {
2662 /* Create the statements that check for the DLT
2663 */
2664 s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2665 s_load_dlt->s.k = 4;
2666
2667 b = new_block(JMP(BPF_JEQ));
2668
2669 b->stmts = s_load_dlt;
2670 b->s.k = SWAPLONG(DLT_IEEE802_11);
2671 }
2672 else
2673 {
2674 b = NULL;
2675 }
2676
2677 return b;
2678 }
2679
2680 static struct slist *
2681 gen_prism_llprefixlen(void)
2682 {
2683 struct slist *s;
2684
2685 if (reg_off_ll == -1) {
2686 /*
2687 * We haven't yet assigned a register for the length
2688 * of the radio header; allocate one.
2689 */
2690 reg_off_ll = alloc_reg();
2691 }
2692
2693 /*
2694 * Load the register containing the radio length
2695 * into the X register.
2696 */
2697 s = new_stmt(BPF_LDX|BPF_MEM);
2698 s->s.k = reg_off_ll;
2699 return s;
2700 }
2701
2702 static struct slist *
2703 gen_avs_llprefixlen(void)
2704 {
2705 struct slist *s;
2706
2707 if (reg_off_ll == -1) {
2708 /*
2709 * We haven't yet assigned a register for the length
2710 * of the AVS header; allocate one.
2711 */
2712 reg_off_ll = alloc_reg();
2713 }
2714
2715 /*
2716 * Load the register containing the AVS length
2717 * into the X register.
2718 */
2719 s = new_stmt(BPF_LDX|BPF_MEM);
2720 s->s.k = reg_off_ll;
2721 return s;
2722 }
2723
2724 static struct slist *
2725 gen_radiotap_llprefixlen(void)
2726 {
2727 struct slist *s;
2728
2729 if (reg_off_ll == -1) {
2730 /*
2731 * We haven't yet assigned a register for the length
2732 * of the radiotap header; allocate one.
2733 */
2734 reg_off_ll = alloc_reg();
2735 }
2736
2737 /*
2738 * Load the register containing the radiotap length
2739 * into the X register.
2740 */
2741 s = new_stmt(BPF_LDX|BPF_MEM);
2742 s->s.k = reg_off_ll;
2743 return s;
2744 }
2745
2746 /*
2747 * At the moment we treat PPI as normal Radiotap encoded
2748 * packets. The difference is in the function that generates
2749 * the code at the beginning to compute the header length.
2750 * Since this code generator of PPI supports bare 802.11
2751 * encapsulation only (i.e. the encapsulated DLT should be
2752 * DLT_IEEE802_11) we generate code to check for this too.
2753 */
2754 static struct slist *
2755 gen_ppi_llprefixlen(void)
2756 {
2757 struct slist *s;
2758
2759 if (reg_off_ll == -1) {
2760 /*
2761 * We haven't yet assigned a register for the length
2762 * of the radiotap header; allocate one.
2763 */
2764 reg_off_ll = alloc_reg();
2765 }
2766
2767 /*
2768 * Load the register containing the PPI length
2769 * into the X register.
2770 */
2771 s = new_stmt(BPF_LDX|BPF_MEM);
2772 s->s.k = reg_off_ll;
2773 return s;
2774 }
2775
2776 /*
2777 * Generate code to compute the link-layer header length, if necessary,
2778 * putting it into the X register, and to return either a pointer to a
2779 * "struct slist" for the list of statements in that code, or NULL if
2780 * no code is necessary.
2781 */
2782 static struct slist *
2783 gen_llprefixlen(void)
2784 {
2785 switch (linktype) {
2786
2787 case DLT_PRISM_HEADER:
2788 return gen_prism_llprefixlen();
2789
2790 case DLT_IEEE802_11_RADIO_AVS:
2791 return gen_avs_llprefixlen();
2792
2793 case DLT_IEEE802_11_RADIO:
2794 return gen_radiotap_llprefixlen();
2795
2796 case DLT_PPI:
2797 return gen_ppi_llprefixlen();
2798
2799 default:
2800 return NULL;
2801 }
2802 }
2803
2804 /*
2805 * Generate code to load the register containing the offset of the
2806 * MAC-layer payload into the X register; if no register for that offset
2807 * has been allocated, allocate it first.
2808 */
2809 static struct slist *
2810 gen_off_macpl(void)
2811 {
2812 struct slist *s;
2813
2814 if (off_macpl_is_variable) {
2815 if (reg_off_macpl == -1) {
2816 /*
2817 * We haven't yet assigned a register for the offset
2818 * of the MAC-layer payload; allocate one.
2819 */
2820 reg_off_macpl = alloc_reg();
2821 }
2822
2823 /*
2824 * Load the register containing the offset of the MAC-layer
2825 * payload into the X register.
2826 */
2827 s = new_stmt(BPF_LDX|BPF_MEM);
2828 s->s.k = reg_off_macpl;
2829 return s;
2830 } else {
2831 /*
2832 * That offset isn't variable, so we don't need to
2833 * generate any code.
2834 */
2835 return NULL;
2836 }
2837 }
2838
2839 /*
2840 * Map an Ethernet type to the equivalent PPP type.
2841 */
2842 static int
2843 ethertype_to_ppptype(proto)
2844 int proto;
2845 {
2846 switch (proto) {
2847
2848 case ETHERTYPE_IP:
2849 proto = PPP_IP;
2850 break;
2851
2852 #ifdef INET6
2853 case ETHERTYPE_IPV6:
2854 proto = PPP_IPV6;
2855 break;
2856 #endif
2857
2858 case ETHERTYPE_DN:
2859 proto = PPP_DECNET;
2860 break;
2861
2862 case ETHERTYPE_ATALK:
2863 proto = PPP_APPLE;
2864 break;
2865
2866 case ETHERTYPE_NS:
2867 proto = PPP_NS;
2868 break;
2869
2870 case LLCSAP_ISONS:
2871 proto = PPP_OSI;
2872 break;
2873
2874 case LLCSAP_8021D:
2875 /*
2876 * I'm assuming the "Bridging PDU"s that go
2877 * over PPP are Spanning Tree Protocol
2878 * Bridging PDUs.
2879 */
2880 proto = PPP_BRPDU;
2881 break;
2882
2883 case LLCSAP_IPX:
2884 proto = PPP_IPX;
2885 break;
2886 }
2887 return (proto);
2888 }
2889
2890 /*
2891 * Generate code to match a particular packet type by matching the
2892 * link-layer type field or fields in the 802.2 LLC header.
2893 *
2894 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2895 * value, if <= ETHERMTU.
2896 */
2897 static struct block *
2898 gen_linktype(proto)
2899 register int proto;
2900 {
2901 struct block *b0, *b1, *b2;
2902
2903 /* are we checking MPLS-encapsulated packets? */
2904 if (label_stack_depth > 0) {
2905 switch (proto) {
2906 case ETHERTYPE_IP:
2907 case PPP_IP:
2908 /* FIXME add other L3 proto IDs */
2909 return gen_mpls_linktype(Q_IP);
2910
2911 case ETHERTYPE_IPV6:
2912 case PPP_IPV6:
2913 /* FIXME add other L3 proto IDs */
2914 return gen_mpls_linktype(Q_IPV6);
2915
2916 default:
2917 bpf_error("unsupported protocol over mpls");
2918 /* NOTREACHED */
2919 }
2920 }
2921
2922 /*
2923 * Are we testing PPPoE packets?
2924 */
2925 if (is_pppoes) {
2926 /*
2927 * The PPPoE session header is part of the
2928 * MAC-layer payload, so all references
2929 * should be relative to the beginning of
2930 * that payload.
2931 */
2932
2933 /*
2934 * We use Ethernet protocol types inside libpcap;
2935 * map them to the corresponding PPP protocol types.
2936 */
2937 proto = ethertype_to_ppptype(proto);
2938 return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2939 }
2940
2941 switch (linktype) {
2942
2943 case DLT_EN10MB:
2944 return gen_ether_linktype(proto);
2945 /*NOTREACHED*/
2946 break;
2947
2948 case DLT_C_HDLC:
2949 switch (proto) {
2950
2951 case LLCSAP_ISONS:
2952 proto = (proto << 8 | LLCSAP_ISONS);
2953 /* fall through */
2954
2955 default:
2956 return gen_cmp(OR_LINK, off_linktype, BPF_H,
2957 (bpf_int32)proto);
2958 /*NOTREACHED*/
2959 break;
2960 }
2961 break;
2962
2963 case DLT_IEEE802_11:
2964 case DLT_PRISM_HEADER:
2965 case DLT_IEEE802_11_RADIO_AVS:
2966 case DLT_IEEE802_11_RADIO:
2967 case DLT_PPI:
2968 /*
2969 * Check that we have a data frame.
2970 */
2971 b0 = gen_check_802_11_data_frame();
2972
2973 /*
2974 * Now check for the specified link-layer type.
2975 */
2976 b1 = gen_llc_linktype(proto);
2977 gen_and(b0, b1);
2978 return b1;
2979 /*NOTREACHED*/
2980 break;
2981
2982 case DLT_FDDI:
2983 /*
2984 * XXX - check for asynchronous frames, as per RFC 1103.
2985 */
2986 return gen_llc_linktype(proto);
2987 /*NOTREACHED*/
2988 break;
2989
2990 case DLT_IEEE802:
2991 /*
2992 * XXX - check for LLC PDUs, as per IEEE 802.5.
2993 */
2994 return gen_llc_linktype(proto);
2995 /*NOTREACHED*/
2996 break;
2997
2998 case DLT_ATM_RFC1483:
2999 case DLT_ATM_CLIP:
3000 case DLT_IP_OVER_FC:
3001 return gen_llc_linktype(proto);
3002 /*NOTREACHED*/
3003 break;
3004
3005 case DLT_SUNATM:
3006 /*
3007 * If "is_lane" is set, check for a LANE-encapsulated
3008 * version of this protocol, otherwise check for an
3009 * LLC-encapsulated version of this protocol.
3010 *
3011 * We assume LANE means Ethernet, not Token Ring.
3012 */
3013 if (is_lane) {
3014 /*
3015 * Check that the packet doesn't begin with an
3016 * LE Control marker. (We've already generated
3017 * a test for LANE.)
3018 */
3019 b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3020 0xFF00);
3021 gen_not(b0);
3022
3023 /*
3024 * Now generate an Ethernet test.
3025 */
3026 b1 = gen_ether_linktype(proto);
3027 gen_and(b0, b1);
3028 return b1;
3029 } else {
3030 /*
3031 * Check for LLC encapsulation and then check the
3032 * protocol.
3033 */
3034 b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3035 b1 = gen_llc_linktype(proto);
3036 gen_and(b0, b1);
3037 return b1;
3038 }
3039 /*NOTREACHED*/
3040 break;
3041
3042 case DLT_LINUX_SLL:
3043 return gen_linux_sll_linktype(proto);
3044 /*NOTREACHED*/
3045 break;
3046
3047 case DLT_SLIP:
3048 case DLT_SLIP_BSDOS:
3049 case DLT_RAW:
3050 /*
3051 * These types don't provide any type field; packets
3052 * are always IPv4 or IPv6.
3053 *
3054 * XXX - for IPv4, check for a version number of 4, and,
3055 * for IPv6, check for a version number of 6?
3056 */
3057 switch (proto) {
3058
3059 case ETHERTYPE_IP:
3060 /* Check for a version number of 4. */
3061 return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3062 #ifdef INET6
3063 case ETHERTYPE_IPV6:
3064 /* Check for a version number of 6. */
3065 return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3066 #endif
3067
3068 default:
3069 return gen_false(); /* always false */
3070 }
3071 /*NOTREACHED*/
3072 break;
3073
3074 case DLT_PPP:
3075 case DLT_PPP_PPPD:
3076 case DLT_PPP_SERIAL:
3077 case DLT_PPP_ETHER:
3078 /*
3079 * We use Ethernet protocol types inside libpcap;
3080 * map them to the corresponding PPP protocol types.
3081 */
3082 proto = ethertype_to_ppptype(proto);
3083 return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3084 /*NOTREACHED*/
3085 break;
3086
3087 case DLT_PPP_BSDOS:
3088 /*
3089 * We use Ethernet protocol types inside libpcap;
3090 * map them to the corresponding PPP protocol types.
3091 */
3092 switch (proto) {
3093
3094 case ETHERTYPE_IP:
3095 /*
3096 * Also check for Van Jacobson-compressed IP.
3097 * XXX - do this for other forms of PPP?
3098 */
3099 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3100 b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3101 gen_or(b0, b1);
3102 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3103 gen_or(b1, b0);
3104 return b0;
3105
3106 default:
3107 proto = ethertype_to_ppptype(proto);
3108 return gen_cmp(OR_LINK, off_linktype, BPF_H,
3109 (bpf_int32)proto);
3110 }
3111 /*NOTREACHED*/
3112 break;
3113
3114 case DLT_NULL:
3115 case DLT_LOOP:
3116 case DLT_ENC:
3117 /*
3118 * For DLT_NULL, the link-layer header is a 32-bit
3119 * word containing an AF_ value in *host* byte order,
3120 * and for DLT_ENC, the link-layer header begins
3121 * with a 32-bit work containing an AF_ value in
3122 * host byte order.
3123 *
3124 * In addition, if we're reading a saved capture file,
3125 * the host byte order in the capture may not be the
3126 * same as the host byte order on this machine.
3127 *
3128 * For DLT_LOOP, the link-layer header is a 32-bit
3129 * word containing an AF_ value in *network* byte order.
3130 *
3131 * XXX - AF_ values may, unfortunately, be platform-
3132 * dependent; for example, FreeBSD's AF_INET6 is 24
3133 * whilst NetBSD's and OpenBSD's is 26.
3134 *
3135 * This means that, when reading a capture file, just
3136 * checking for our AF_INET6 value won't work if the
3137 * capture file came from another OS.
3138 */
3139 switch (proto) {
3140
3141 case ETHERTYPE_IP:
3142 proto = AF_INET;
3143 break;
3144
3145 #ifdef INET6
3146 case ETHERTYPE_IPV6:
3147 proto = AF_INET6;
3148 break;
3149 #endif
3150
3151 default:
3152 /*
3153 * Not a type on which we support filtering.
3154 * XXX - support those that have AF_ values
3155 * #defined on this platform, at least?
3156 */
3157 return gen_false();
3158 }
3159
3160 if (linktype == DLT_NULL || linktype == DLT_ENC) {
3161 /*
3162 * The AF_ value is in host byte order, but
3163 * the BPF interpreter will convert it to
3164 * network byte order.
3165 *
3166 * If this is a save file, and it's from a
3167 * machine with the opposite byte order to
3168 * ours, we byte-swap the AF_ value.
3169 *
3170 * Then we run it through "htonl()", and
3171 * generate code to compare against the result.
3172 */
3173 if (bpf_pcap->sf.rfile != NULL &&
3174 bpf_pcap->sf.swapped)
3175 proto = SWAPLONG(proto);
3176 proto = htonl(proto);
3177 }
3178 return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3179
3180 #ifdef HAVE_NET_PFVAR_H
3181 case DLT_PFLOG:
3182 /*
3183 * af field is host byte order in contrast to the rest of
3184 * the packet.
3185 */
3186 if (proto == ETHERTYPE_IP)
3187 return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3188 BPF_B, (bpf_int32)AF_INET));
3189 #ifdef INET6
3190 else if (proto == ETHERTYPE_IPV6)
3191 return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3192 BPF_B, (bpf_int32)AF_INET6));
3193 #endif /* INET6 */
3194 else
3195 return gen_false();
3196 /*NOTREACHED*/
3197 break;
3198 #endif /* HAVE_NET_PFVAR_H */
3199
3200 case DLT_ARCNET:
3201 case DLT_ARCNET_LINUX:
3202 /*
3203 * XXX should we check for first fragment if the protocol
3204 * uses PHDS?
3205 */
3206 switch (proto) {
3207
3208 default:
3209 return gen_false();
3210
3211 #ifdef INET6
3212 case ETHERTYPE_IPV6:
3213 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3214 (bpf_int32)ARCTYPE_INET6));
3215 #endif /* INET6 */
3216
3217 case ETHERTYPE_IP:
3218 b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3219 (bpf_int32)ARCTYPE_IP);
3220 b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3221 (bpf_int32)ARCTYPE_IP_OLD);
3222 gen_or(b0, b1);
3223 return (b1);
3224
3225 case ETHERTYPE_ARP:
3226 b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3227 (bpf_int32)ARCTYPE_ARP);
3228 b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3229 (bpf_int32)ARCTYPE_ARP_OLD);
3230 gen_or(b0, b1);
3231 return (b1);
3232
3233 case ETHERTYPE_REVARP:
3234 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3235 (bpf_int32)ARCTYPE_REVARP));
3236
3237 case ETHERTYPE_ATALK:
3238 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3239 (bpf_int32)ARCTYPE_ATALK));
3240 }
3241 /*NOTREACHED*/
3242 break;
3243
3244 case DLT_LTALK:
3245 switch (proto) {
3246 case ETHERTYPE_ATALK:
3247 return gen_true();
3248 default:
3249 return gen_false();
3250 }
3251 /*NOTREACHED*/
3252 break;
3253
3254 case DLT_FRELAY:
3255 /*
3256 * XXX - assumes a 2-byte Frame Relay header with
3257 * DLCI and flags. What if the address is longer?
3258 */
3259 switch (proto) {
3260
3261 case ETHERTYPE_IP:
3262 /*
3263 * Check for the special NLPID for IP.
3264 */
3265 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3266
3267 #ifdef INET6
3268 case ETHERTYPE_IPV6:
3269 /*
3270 * Check for the special NLPID for IPv6.
3271 */
3272 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3273 #endif
3274
3275 case LLCSAP_ISONS:
3276 /*
3277 * Check for several OSI protocols.
3278 *
3279 * Frame Relay packets typically have an OSI
3280 * NLPID at the beginning; we check for each
3281 * of them.
3282 *
3283 * What we check for is the NLPID and a frame
3284 * control field of UI, i.e. 0x03 followed
3285 * by the NLPID.
3286 */
3287 b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3288 b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3289 b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3290 gen_or(b1, b2);
3291 gen_or(b0, b2);
3292 return b2;
3293
3294 default:
3295 return gen_false();
3296 }
3297 /*NOTREACHED*/
3298 break;
3299
3300 case DLT_MFR:
3301 bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3302
3303 case DLT_JUNIPER_MFR:
3304 case DLT_JUNIPER_MLFR:
3305 case DLT_JUNIPER_MLPPP:
3306 case DLT_JUNIPER_ATM1:
3307 case DLT_JUNIPER_ATM2:
3308 case DLT_JUNIPER_PPPOE:
3309 case DLT_JUNIPER_PPPOE_ATM:
3310 case DLT_JUNIPER_GGSN:
3311 case DLT_JUNIPER_ES:
3312 case DLT_JUNIPER_MONITOR:
3313 case DLT_JUNIPER_SERVICES:
3314 case DLT_JUNIPER_ETHER:
3315 case DLT_JUNIPER_PPP:
3316 case DLT_JUNIPER_FRELAY:
3317 case DLT_JUNIPER_CHDLC:
3318 case DLT_JUNIPER_VP:
3319 case DLT_JUNIPER_ST:
3320 case DLT_JUNIPER_ISM:
3321 /* just lets verify the magic number for now -
3322 * on ATM we may have up to 6 different encapsulations on the wire
3323 * and need a lot of heuristics to figure out that the payload
3324 * might be;
3325 *
3326 * FIXME encapsulation specific BPF_ filters
3327 */
3328 return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3329
3330 case DLT_LINUX_IRDA:
3331 bpf_error("IrDA link-layer type filtering not implemented");
3332
3333 case DLT_DOCSIS:
3334 bpf_error("DOCSIS link-layer type filtering not implemented");
3335
3336 case DLT_MTP2:
3337 case DLT_MTP2_WITH_PHDR:
3338 bpf_error("MTP2 link-layer type filtering not implemented");
3339
3340 case DLT_ERF:
3341 bpf_error("ERF link-layer type filtering not implemented");
3342
3343 #ifdef DLT_PFSYNC
3344 case DLT_PFSYNC:
3345 bpf_error("PFSYNC link-layer type filtering not implemented");
3346 #endif
3347
3348 case DLT_LINUX_LAPD:
3349 bpf_error("LAPD link-layer type filtering not implemented");
3350
3351 case DLT_USB:
3352 case DLT_USB_LINUX:
3353 bpf_error("USB link-layer type filtering not implemented");
3354
3355 case DLT_BLUETOOTH_HCI_H4:
3356 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3357 bpf_error("Bluetooth link-layer type filtering not implemented");
3358
3359 case DLT_CAN20B:
3360 bpf_error("CAN20B link-layer type filtering not implemented");
3361
3362 case DLT_IEEE802_15_4:
3363 case DLT_IEEE802_15_4_LINUX:
3364 case DLT_IEEE802_15_4_NONASK_PHY:
3365 bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3366
3367 case DLT_IEEE802_16_MAC_CPS_RADIO:
3368 bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3369
3370 case DLT_SITA:
3371 bpf_error("SITA link-layer type filtering not implemented");
3372
3373 case DLT_RAIF1:
3374 bpf_error("RAIF1 link-layer type filtering not implemented");
3375
3376 case DLT_IPMB:
3377 bpf_error("IPMB link-layer type filtering not implemented");
3378
3379 case DLT_AX25_KISS:
3380 bpf_error("AX.25 link-layer type filtering not implemented");
3381 }
3382
3383 /*
3384 * All the types that have no encapsulation should either be
3385 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3386 * all packets are IP packets, or should be handled in some
3387 * special case, if none of them are (if some are and some
3388 * aren't, the lack of encapsulation is a problem, as we'd
3389 * have to find some other way of determining the packet type).
3390 *
3391 * Therefore, if "off_linktype" is -1, there's an error.
3392 */
3393 if (off_linktype == (u_int)-1)
3394 abort();
3395
3396 /*
3397 * Any type not handled above should always have an Ethernet
3398 * type at an offset of "off_linktype".
3399 */
3400 return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3401 }
3402
3403 /*
3404 * Check for an LLC SNAP packet with a given organization code and
3405 * protocol type; we check the entire contents of the 802.2 LLC and
3406 * snap headers, checking for DSAP and SSAP of SNAP and a control
3407 * field of 0x03 in the LLC header, and for the specified organization
3408 * code and protocol type in the SNAP header.
3409 */
3410 static struct block *
3411 gen_snap(orgcode, ptype)
3412 bpf_u_int32 orgcode;
3413 bpf_u_int32 ptype;
3414 {
3415 u_char snapblock[8];
3416
3417 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3418 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3419 snapblock[2] = 0x03; /* control = UI */
3420 snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */
3421 snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */
3422 snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
3423 snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
3424 snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
3425 return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3426 }
3427
3428 /*
3429 * Generate code to match a particular packet type, for link-layer types
3430 * using 802.2 LLC headers.
3431 *
3432 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3433 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3434 *
3435 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3436 * value, if <= ETHERMTU. We use that to determine whether to
3437 * match the DSAP or both DSAP and LSAP or to check the OUI and
3438 * protocol ID in a SNAP header.
3439 */
3440 static struct block *
3441 gen_llc_linktype(proto)
3442 int proto;
3443 {
3444 /*
3445 * XXX - handle token-ring variable-length header.
3446 */
3447 switch (proto) {
3448
3449 case LLCSAP_IP:
3450 case LLCSAP_ISONS:
3451 case LLCSAP_NETBEUI:
3452 /*
3453 * XXX - should we check both the DSAP and the
3454 * SSAP, like this, or should we check just the
3455 * DSAP, as we do for other types <= ETHERMTU
3456 * (i.e., other SAP values)?
3457 */
3458 return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3459 ((proto << 8) | proto));
3460
3461 case LLCSAP_IPX:
3462 /*
3463 * XXX - are there ever SNAP frames for IPX on
3464 * non-Ethernet 802.x networks?
3465 */
3466 return gen_cmp(OR_MACPL, 0, BPF_B,
3467 (bpf_int32)LLCSAP_IPX);
3468
3469 case ETHERTYPE_ATALK:
3470 /*
3471 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3472 * SNAP packets with an organization code of
3473 * 0x080007 (Apple, for Appletalk) and a protocol
3474 * type of ETHERTYPE_ATALK (Appletalk).
3475 *
3476 * XXX - check for an organization code of
3477 * encapsulated Ethernet as well?
3478 */
3479 return gen_snap(0x080007, ETHERTYPE_ATALK);
3480
3481 default:
3482 /*
3483 * XXX - we don't have to check for IPX 802.3
3484 * here, but should we check for the IPX Ethertype?
3485 */
3486 if (proto <= ETHERMTU) {
3487 /*
3488 * This is an LLC SAP value, so check
3489 * the DSAP.
3490 */
3491 return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3492 } else {
3493 /*
3494 * This is an Ethernet type; we assume that it's
3495 * unlikely that it'll appear in the right place
3496 * at random, and therefore check only the
3497 * location that would hold the Ethernet type
3498 * in a SNAP frame with an organization code of
3499 * 0x000000 (encapsulated Ethernet).
3500 *
3501 * XXX - if we were to check for the SNAP DSAP and
3502 * LSAP, as per XXX, and were also to check for an
3503 * organization code of 0x000000 (encapsulated
3504 * Ethernet), we'd do
3505 *
3506 * return gen_snap(0x000000, proto);
3507 *
3508 * here; for now, we don't, as per the above.
3509 * I don't know whether it's worth the extra CPU
3510 * time to do the right check or not.
3511 */
3512 return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3513 }
3514 }
3515 }
3516
3517 static struct block *
3518 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3519 bpf_u_int32 addr;
3520 bpf_u_int32 mask;
3521 int dir, proto;
3522 u_int src_off, dst_off;
3523 {
3524 struct block *b0, *b1;
3525 u_int offset;
3526
3527 switch (dir) {
3528
3529 case Q_SRC:
3530 offset = src_off;
3531 break;
3532
3533 case Q_DST:
3534 offset = dst_off;
3535 break;
3536
3537 case Q_AND:
3538 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3539 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3540 gen_and(b0, b1);
3541 return b1;
3542
3543 case Q_OR:
3544 case Q_DEFAULT:
3545 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3546 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3547 gen_or(b0, b1);
3548 return b1;
3549
3550 default:
3551 abort();
3552 }
3553 b0 = gen_linktype(proto);
3554 b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3555 gen_and(b0, b1);
3556 return b1;
3557 }
3558
3559 #ifdef INET6
3560 static struct block *
3561 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3562 struct in6_addr *addr;
3563 struct in6_addr *mask;
3564 int dir, proto;
3565 u_int src_off, dst_off;
3566 {
3567 struct block *b0, *b1;
3568 u_int offset;
3569 u_int32_t *a, *m;
3570
3571 switch (dir) {
3572
3573 case Q_SRC:
3574 offset = src_off;
3575 break;
3576
3577 case Q_DST:
3578 offset = dst_off;
3579 break;
3580
3581 case Q_AND:
3582 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3583 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3584 gen_and(b0, b1);
3585 return b1;
3586
3587 case Q_OR:
3588 case Q_DEFAULT:
3589 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3590 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3591 gen_or(b0, b1);
3592 return b1;
3593
3594 default:
3595 abort();
3596 }
3597 /* this order is important */
3598 a = (u_int32_t *)addr;
3599 m = (u_int32_t *)mask;
3600 b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3601 b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3602 gen_and(b0, b1);
3603 b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3604 gen_and(b0, b1);
3605 b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3606 gen_and(b0, b1);
3607 b0 = gen_linktype(proto);
3608 gen_and(b0, b1);
3609 return b1;
3610 }
3611 #endif /*INET6*/
3612
3613 static struct block *
3614 gen_ehostop(eaddr, dir)
3615 register const u_char *eaddr;
3616 register int dir;
3617 {
3618 register struct block *b0, *b1;
3619
3620 switch (dir) {
3621 case Q_SRC:
3622 return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3623
3624 case Q_DST:
3625 return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3626
3627 case Q_AND:
3628 b0 = gen_ehostop(eaddr, Q_SRC);
3629 b1 = gen_ehostop(eaddr, Q_DST);
3630 gen_and(b0, b1);
3631 return b1;
3632
3633 case Q_DEFAULT:
3634 case Q_OR:
3635 b0 = gen_ehostop(eaddr, Q_SRC);
3636 b1 = gen_ehostop(eaddr, Q_DST);
3637 gen_or(b0, b1);
3638 return b1;
3639 }
3640 abort();
3641 /* NOTREACHED */
3642 }
3643
3644 /*
3645 * Like gen_ehostop, but for DLT_FDDI
3646 */
3647 static struct block *
3648 gen_fhostop(eaddr, dir)
3649 register const u_char *eaddr;
3650 register int dir;
3651 {
3652 struct block *b0, *b1;
3653
3654 switch (dir) {
3655 case Q_SRC:
3656 #ifdef PCAP_FDDIPAD
3657 return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3658 #else
3659 return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3660 #endif
3661
3662 case Q_DST:
3663 #ifdef PCAP_FDDIPAD
3664 return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3665 #else
3666 return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3667 #endif
3668
3669 case Q_AND:
3670 b0 = gen_fhostop(eaddr, Q_SRC);
3671 b1 = gen_fhostop(eaddr, Q_DST);
3672 gen_and(b0, b1);
3673 return b1;
3674
3675 case Q_DEFAULT:
3676 case Q_OR:
3677 b0 = gen_fhostop(eaddr, Q_SRC);
3678 b1 = gen_fhostop(eaddr, Q_DST);
3679 gen_or(b0, b1);
3680 return b1;
3681 }
3682 abort();
3683 /* NOTREACHED */
3684 }
3685
3686 /*
3687 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3688 */
3689 static struct block *
3690 gen_thostop(eaddr, dir)
3691 register const u_char *eaddr;
3692 register int dir;
3693 {
3694 register struct block *b0, *b1;
3695
3696 switch (dir) {
3697 case Q_SRC:
3698 return gen_bcmp(OR_LINK, 8, 6, eaddr);
3699
3700 case Q_DST:
3701 return gen_bcmp(OR_LINK, 2, 6, eaddr);
3702
3703 case Q_AND:
3704 b0 = gen_thostop(eaddr, Q_SRC);
3705 b1 = gen_thostop(eaddr, Q_DST);
3706 gen_and(b0, b1);
3707 return b1;
3708
3709 case Q_DEFAULT:
3710 case Q_OR:
3711 b0 = gen_thostop(eaddr, Q_SRC);
3712 b1 = gen_thostop(eaddr, Q_DST);
3713 gen_or(b0, b1);
3714 return b1;
3715 }
3716 abort();
3717 /* NOTREACHED */
3718 }
3719
3720 /*
3721 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3722 * various 802.11 + radio headers.
3723 */
3724 static struct block *
3725 gen_wlanhostop(eaddr, dir)
3726 register const u_char *eaddr;
3727 register int dir;
3728 {
3729 register struct block *b0, *b1, *b2;
3730 register struct slist *s;
3731
3732 #ifdef ENABLE_WLAN_FILTERING_PATCH
3733 /*
3734 * TODO GV 20070613
3735 * We need to disable the optimizer because the optimizer is buggy
3736 * and wipes out some LD instructions generated by the below
3737 * code to validate the Frame Control bits
3738 */
3739 no_optimize = 1;
3740 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3741
3742 switch (dir) {
3743 case Q_SRC:
3744 /*
3745 * Oh, yuk.
3746 *
3747 * For control frames, there is no SA.
3748 *
3749 * For management frames, SA is at an
3750 * offset of 10 from the beginning of
3751 * the packet.
3752 *
3753 * For data frames, SA is at an offset
3754 * of 10 from the beginning of the packet
3755 * if From DS is clear, at an offset of
3756 * 16 from the beginning of the packet
3757 * if From DS is set and To DS is clear,
3758 * and an offset of 24 from the beginning
3759 * of the packet if From DS is set and To DS
3760 * is set.
3761 */
3762
3763 /*
3764 * Generate the tests to be done for data frames
3765 * with From DS set.
3766 *
3767 * First, check for To DS set, i.e. check "link[1] & 0x01".
3768 */
3769 s = gen_load_a(OR_LINK, 1, BPF_B);
3770 b1 = new_block(JMP(BPF_JSET));
3771 b1->s.k = 0x01; /* To DS */
3772 b1->stmts = s;
3773
3774 /*
3775 * If To DS is set, the SA is at 24.
3776 */
3777 b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3778 gen_and(b1, b0);
3779
3780 /*
3781 * Now, check for To DS not set, i.e. check
3782 * "!(link[1] & 0x01)".
3783 */
3784 s = gen_load_a(OR_LINK, 1, BPF_B);
3785 b2 = new_block(JMP(BPF_JSET));
3786 b2->s.k = 0x01; /* To DS */
3787 b2->stmts = s;
3788 gen_not(b2);
3789
3790 /*
3791 * If To DS is not set, the SA is at 16.
3792 */
3793 b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3794 gen_and(b2, b1);
3795
3796 /*
3797 * Now OR together the last two checks. That gives
3798 * the complete set of checks for data frames with
3799 * From DS set.
3800 */
3801 gen_or(b1, b0);
3802
3803 /*
3804 * Now check for From DS being set, and AND that with
3805 * the ORed-together checks.
3806 */
3807 s = gen_load_a(OR_LINK, 1, BPF_B);
3808 b1 = new_block(JMP(BPF_JSET));
3809 b1->s.k = 0x02; /* From DS */
3810 b1->stmts = s;
3811 gen_and(b1, b0);
3812
3813 /*
3814 * Now check for data frames with From DS not set.
3815 */
3816 s = gen_load_a(OR_LINK, 1, BPF_B);
3817 b2 = new_block(JMP(BPF_JSET));
3818 b2->s.k = 0x02; /* From DS */
3819 b2->stmts = s;
3820 gen_not(b2);
3821
3822 /*
3823 * If From DS isn't set, the SA is at 10.
3824 */
3825 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3826 gen_and(b2, b1);
3827
3828 /*
3829 * Now OR together the checks for data frames with
3830 * From DS not set and for data frames with From DS
3831 * set; that gives the checks done for data frames.
3832 */
3833 gen_or(b1, b0);
3834
3835 /*
3836 * Now check for a data frame.
3837 * I.e, check "link[0] & 0x08".
3838 */
3839 s = gen_load_a(OR_LINK, 0, BPF_B);
3840 b1 = new_block(JMP(BPF_JSET));
3841 b1->s.k = 0x08;
3842 b1->stmts = s;
3843
3844 /*
3845 * AND that with the checks done for data frames.
3846 */
3847 gen_and(b1, b0);
3848
3849 /*
3850 * If the high-order bit of the type value is 0, this
3851 * is a management frame.
3852 * I.e, check "!(link[0] & 0x08)".
3853 */
3854 s = gen_load_a(OR_LINK, 0, BPF_B);
3855 b2 = new_block(JMP(BPF_JSET));
3856 b2->s.k = 0x08;
3857 b2->stmts = s;
3858 gen_not(b2);
3859
3860 /*
3861 * For management frames, the SA is at 10.
3862 */
3863 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3864 gen_and(b2, b1);
3865
3866 /*
3867 * OR that with the checks done for data frames.
3868 * That gives the checks done for management and
3869 * data frames.
3870 */
3871 gen_or(b1, b0);
3872
3873 /*
3874 * If the low-order bit of the type value is 1,
3875 * this is either a control frame or a frame
3876 * with a reserved type, and thus not a
3877 * frame with an SA.
3878 *
3879 * I.e., check "!(link[0] & 0x04)".
3880 */
3881 s = gen_load_a(OR_LINK, 0, BPF_B);
3882 b1 = new_block(JMP(BPF_JSET));
3883 b1->s.k = 0x04;
3884 b1->stmts = s;
3885 gen_not(b1);
3886
3887 /*
3888 * AND that with the checks for data and management
3889 * frames.
3890 */
3891 gen_and(b1, b0);
3892 return b0;
3893
3894 case Q_DST:
3895 /*
3896 * Oh, yuk.
3897 *
3898 * For control frames, there is no DA.
3899 *
3900 * For management frames, DA is at an
3901 * offset of 4 from the beginning of
3902 * the packet.
3903 *
3904 * For data frames, DA is at an offset
3905 * of 4 from the beginning of the packet
3906 * if To DS is clear and at an offset of
3907 * 16 from the beginning of the packet
3908 * if To DS is set.
3909 */
3910
3911 /*
3912 * Generate the tests to be done for data frames.
3913 *
3914 * First, check for To DS set, i.e. "link[1] & 0x01".
3915 */
3916 s = gen_load_a(OR_LINK, 1, BPF_B);
3917 b1 = new_block(JMP(BPF_JSET));
3918 b1->s.k = 0x01; /* To DS */
3919 b1->stmts = s;
3920
3921 /*
3922 * If To DS is set, the DA is at 16.
3923 */
3924 b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3925 gen_and(b1, b0);
3926
3927 /*
3928 * Now, check for To DS not set, i.e. check
3929 * "!(link[1] & 0x01)".
3930 */
3931 s = gen_load_a(OR_LINK, 1, BPF_B);
3932 b2 = new_block(JMP(BPF_JSET));
3933 b2->s.k = 0x01; /* To DS */
3934 b2->stmts = s;
3935 gen_not(b2);
3936
3937 /*
3938 * If To DS is not set, the DA is at 4.
3939 */
3940 b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3941 gen_and(b2, b1);
3942
3943 /*
3944 * Now OR together the last two checks. That gives
3945 * the complete set of checks for data frames.
3946 */
3947 gen_or(b1, b0);
3948
3949 /*
3950 * Now check for a data frame.
3951 * I.e, check "link[0] & 0x08".
3952 */
3953 s = gen_load_a(OR_LINK, 0, BPF_B);
3954 b1 = new_block(JMP(BPF_JSET));
3955 b1->s.k = 0x08;
3956 b1->stmts = s;
3957
3958 /*
3959 * AND that with the checks done for data frames.
3960 */
3961 gen_and(b1, b0);
3962
3963 /*
3964 * If the high-order bit of the type value is 0, this
3965 * is a management frame.
3966 * I.e, check "!(link[0] & 0x08)".
3967 */
3968 s = gen_load_a(OR_LINK, 0, BPF_B);
3969 b2 = new_block(JMP(BPF_JSET));
3970 b2->s.k = 0x08;
3971 b2->stmts = s;
3972 gen_not(b2);
3973
3974 /*
3975 * For management frames, the DA is at 4.
3976 */
3977 b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3978 gen_and(b2, b1);
3979
3980 /*
3981 * OR that with the checks done for data frames.
3982 * That gives the checks done for management and
3983 * data frames.
3984 */
3985 gen_or(b1, b0);
3986
3987 /*
3988 * If the low-order bit of the type value is 1,
3989 * this is either a control frame or a frame
3990 * with a reserved type, and thus not a
3991 * frame with an SA.
3992 *
3993 * I.e., check "!(link[0] & 0x04)".
3994 */
3995 s = gen_load_a(OR_LINK, 0, BPF_B);
3996 b1 = new_block(JMP(BPF_JSET));
3997 b1->s.k = 0x04;
3998 b1->stmts = s;
3999 gen_not(b1);
4000
4001 /*
4002 * AND that with the checks for data and management
4003 * frames.
4004 */
4005 gen_and(b1, b0);
4006 return b0;
4007
4008 /*
4009 * XXX - add RA, TA, and BSSID keywords?
4010 */
4011 case Q_ADDR1:
4012 return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4013
4014 case Q_ADDR2:
4015 /*
4016 * Not present in CTS or ACK control frames.
4017 */
4018 b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4019 IEEE80211_FC0_TYPE_MASK);
4020 gen_not(b0);
4021 b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4022 IEEE80211_FC0_SUBTYPE_MASK);
4023 gen_not(b1);
4024 b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4025 IEEE80211_FC0_SUBTYPE_MASK);
4026 gen_not(b2);
4027 gen_and(b1, b2);
4028 gen_or(b0, b2);
4029 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4030 gen_and(b2, b1);
4031 return b1;
4032
4033 case Q_ADDR3:
4034 /*
4035 * Not present in control frames.
4036 */
4037 b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4038 IEEE80211_FC0_TYPE_MASK);
4039 gen_not(b0);
4040 b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4041 gen_and(b0, b1);
4042 return b1;
4043
4044 case Q_ADDR4:
4045 /*
4046 * Present only if the direction mask has both "From DS"
4047 * and "To DS" set. Neither control frames nor management
4048 * frames should have both of those set, so we don't
4049 * check the frame type.
4050 */
4051 b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4052 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4053 b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4054 gen_and(b0, b1);
4055 return b1;
4056
4057 case Q_AND:
4058 b0 = gen_wlanhostop(eaddr, Q_SRC);
4059 b1 = gen_wlanhostop(eaddr, Q_DST);
4060 gen_and(b0, b1);
4061 return b1;
4062
4063 case Q_DEFAULT:
4064 case Q_OR:
4065 b0 = gen_wlanhostop(eaddr, Q_SRC);
4066 b1 = gen_wlanhostop(eaddr, Q_DST);
4067 gen_or(b0, b1);
4068 return b1;
4069 }
4070 abort();
4071 /* NOTREACHED */
4072 }
4073
4074 /*
4075 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4076 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4077 * as the RFC states.)
4078 */
4079 static struct block *
4080 gen_ipfchostop(eaddr, dir)
4081 register const u_char *eaddr;
4082 register int dir;
4083 {
4084 register struct block *b0, *b1;
4085
4086 switch (dir) {
4087 case Q_SRC:
4088 return gen_bcmp(OR_LINK, 10, 6, eaddr);
4089
4090 case Q_DST:
4091 return gen_bcmp(OR_LINK, 2, 6, eaddr);
4092
4093 case Q_AND:
4094 b0 = gen_ipfchostop(eaddr, Q_SRC);
4095 b1 = gen_ipfchostop(eaddr, Q_DST);
4096 gen_and(b0, b1);
4097 return b1;
4098
4099 case Q_DEFAULT:
4100 case Q_OR:
4101 b0 = gen_ipfchostop(eaddr, Q_SRC);
4102 b1 = gen_ipfchostop(eaddr, Q_DST);
4103 gen_or(b0, b1);
4104 return b1;
4105 }
4106 abort();
4107 /* NOTREACHED */
4108 }
4109
4110 /*
4111 * This is quite tricky because there may be pad bytes in front of the
4112 * DECNET header, and then there are two possible data packet formats that
4113 * carry both src and dst addresses, plus 5 packet types in a format that
4114 * carries only the src node, plus 2 types that use a different format and
4115 * also carry just the src node.
4116 *
4117 * Yuck.
4118 *
4119 * Instead of doing those all right, we just look for data packets with
4120 * 0 or 1 bytes of padding. If you want to look at other packets, that
4121 * will require a lot more hacking.
4122 *
4123 * To add support for filtering on DECNET "areas" (network numbers)
4124 * one would want to add a "mask" argument to this routine. That would
4125 * make the filter even more inefficient, although one could be clever
4126 * and not generate masking instructions if the mask is 0xFFFF.
4127 */
4128 static struct block *
4129 gen_dnhostop(addr, dir)
4130 bpf_u_int32 addr;
4131 int dir;
4132 {
4133 struct block *b0, *b1, *b2, *tmp;
4134 u_int offset_lh; /* offset if long header is received */
4135 u_int offset_sh; /* offset if short header is received */
4136
4137 switch (dir) {
4138
4139 case Q_DST:
4140 offset_sh = 1; /* follows flags */
4141 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4142 break;
4143
4144 case Q_SRC:
4145 offset_sh = 3; /* follows flags, dstnode */
4146 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4147 break;
4148
4149 case Q_AND:
4150 /* Inefficient because we do our Calvinball dance twice */
4151 b0 = gen_dnhostop(addr, Q_SRC);
4152 b1 = gen_dnhostop(addr, Q_DST);
4153 gen_and(b0, b1);
4154 return b1;
4155
4156 case Q_OR:
4157 case Q_DEFAULT:
4158 /* Inefficient because we do our Calvinball dance twice */
4159 b0 = gen_dnhostop(addr, Q_SRC);
4160 b1 = gen_dnhostop(addr, Q_DST);
4161 gen_or(b0, b1);
4162 return b1;
4163
4164 case Q_ISO:
4165 bpf_error("ISO host filtering not implemented");
4166
4167 default:
4168 abort();
4169 }
4170 b0 = gen_linktype(ETHERTYPE_DN);
4171 /* Check for pad = 1, long header case */
4172 tmp = gen_mcmp(OR_NET, 2, BPF_H,
4173 (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4174 b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4175 BPF_H, (bpf_int32)ntohs((u_short)addr));
4176 gen_and(tmp, b1);
4177 /* Check for pad = 0, long header case */
4178 tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4179 b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4180 gen_and(tmp, b2);
4181 gen_or(b2, b1);
4182 /* Check for pad = 1, short header case */
4183 tmp = gen_mcmp(OR_NET, 2, BPF_H,
4184 (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4185 b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4186 gen_and(tmp, b2);
4187 gen_or(b2, b1);
4188 /* Check for pad = 0, short header case */
4189 tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4190 b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4191 gen_and(tmp, b2);
4192 gen_or(b2, b1);
4193
4194 /* Combine with test for linktype */
4195 gen_and(b0, b1);
4196 return b1;
4197 }
4198
4199 /*
4200 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4201 * test the bottom-of-stack bit, and then check the version number
4202 * field in the IP header.
4203 */
4204 static struct block *
4205 gen_mpls_linktype(proto)
4206 int proto;
4207 {
4208 struct block *b0, *b1;
4209
4210 switch (proto) {
4211
4212 case Q_IP:
4213 /* match the bottom-of-stack bit */
4214 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4215 /* match the IPv4 version number */
4216 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4217 gen_and(b0, b1);
4218 return b1;
4219
4220 case Q_IPV6:
4221 /* match the bottom-of-stack bit */
4222 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4223 /* match the IPv4 version number */
4224 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4225 gen_and(b0, b1);
4226 return b1;
4227
4228 default:
4229 abort();
4230 }
4231 }
4232
4233 static struct block *
4234 gen_host(addr, mask, proto, dir, type)
4235 bpf_u_int32 addr;
4236 bpf_u_int32 mask;
4237 int proto;
4238 int dir;
4239 int type;
4240 {
4241 struct block *b0, *b1;
4242 const char *typestr;
4243
4244 if (type == Q_NET)
4245 typestr = "net";
4246 else
4247 typestr = "host";
4248
4249 switch (proto) {
4250
4251 case Q_DEFAULT:
4252 b0 = gen_host(addr, mask, Q_IP, dir, type);
4253 /*
4254 * Only check for non-IPv4 addresses if we're not
4255 * checking MPLS-encapsulated packets.
4256 */
4257 if (label_stack_depth == 0) {
4258 b1 = gen_host(addr, mask, Q_ARP, dir, type);
4259 gen_or(b0, b1);
4260 b0 = gen_host(addr, mask, Q_RARP, dir, type);
4261 gen_or(b1, b0);
4262 }
4263 return b0;
4264
4265 case Q_IP:
4266 return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4267
4268 case Q_RARP:
4269 return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4270
4271 case Q_ARP:
4272 return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4273
4274 case Q_TCP:
4275 bpf_error("'tcp' modifier applied to %s", typestr);
4276
4277 case Q_SCTP:
4278 bpf_error("'sctp' modifier applied to %s", typestr);
4279
4280 case Q_UDP:
4281 bpf_error("'udp' modifier applied to %s", typestr);
4282
4283 case Q_ICMP:
4284 bpf_error("'icmp' modifier applied to %s", typestr);
4285
4286 case Q_IGMP:
4287 bpf_error("'igmp' modifier applied to %s", typestr);
4288
4289 case Q_IGRP:
4290 bpf_error("'igrp' modifier applied to %s", typestr);
4291
4292 case Q_PIM:
4293 bpf_error("'pim' modifier applied to %s", typestr);
4294
4295 case Q_VRRP:
4296 bpf_error("'vrrp' modifier applied to %s", typestr);
4297
4298 case Q_ATALK:
4299 bpf_error("ATALK host filtering not implemented");
4300
4301 case Q_AARP:
4302 bpf_error("AARP host filtering not implemented");
4303
4304 case Q_DECNET:
4305 return gen_dnhostop(addr, dir);
4306
4307 case Q_SCA:
4308 bpf_error("SCA host filtering not implemented");
4309
4310 case Q_LAT:
4311 bpf_error("LAT host filtering not implemented");
4312
4313 case Q_MOPDL:
4314 bpf_error("MOPDL host filtering not implemented");
4315
4316 case Q_MOPRC:
4317 bpf_error("MOPRC host filtering not implemented");
4318
4319 #ifdef INET6
4320 case Q_IPV6:
4321 bpf_error("'ip6' modifier applied to ip host");
4322
4323 case Q_ICMPV6:
4324 bpf_error("'icmp6' modifier applied to %s", typestr);
4325 #endif /* INET6 */
4326
4327 case Q_AH:
4328 bpf_error("'ah' modifier applied to %s", typestr);
4329
4330 case Q_ESP:
4331 bpf_error("'esp' modifier applied to %s", typestr);
4332
4333 case Q_ISO:
4334 bpf_error("ISO host filtering not implemented");
4335
4336 case Q_ESIS:
4337 bpf_error("'esis' modifier applied to %s", typestr);
4338
4339 case Q_ISIS:
4340 bpf_error("'isis' modifier applied to %s", typestr);
4341
4342 case Q_CLNP:
4343 bpf_error("'clnp' modifier applied to %s", typestr);
4344
4345 case Q_STP:
4346 bpf_error("'stp' modifier applied to %s", typestr);
4347
4348 case Q_IPX:
4349 bpf_error("IPX host filtering not implemented");
4350
4351 case Q_NETBEUI:
4352 bpf_error("'netbeui' modifier applied to %s", typestr);
4353
4354 case Q_RADIO:
4355 bpf_error("'radio' modifier applied to %s", typestr);
4356
4357 default:
4358 abort();
4359 }
4360 /* NOTREACHED */
4361 }
4362
4363 #ifdef INET6
4364 static struct block *
4365 gen_host6(addr, mask, proto, dir, type)
4366 struct in6_addr *addr;
4367 struct in6_addr *mask;
4368 int proto;
4369 int dir;
4370 int type;
4371 {
4372 const char *typestr;
4373
4374 if (type == Q_NET)
4375 typestr = "net";
4376 else
4377 typestr = "host";
4378
4379 switch (proto) {
4380
4381 case Q_DEFAULT:
4382 return gen_host6(addr, mask, Q_IPV6, dir, type);
4383
4384 case Q_IP:
4385 bpf_error("'ip' modifier applied to ip6 %s", typestr);
4386
4387 case Q_RARP:
4388 bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4389
4390 case Q_ARP:
4391 bpf_error("'arp' modifier applied to ip6 %s", typestr);
4392
4393 case Q_SCTP:
4394 bpf_error("'sctp' modifier applied to %s", typestr);
4395
4396 case Q_TCP:
4397 bpf_error("'tcp' modifier applied to %s", typestr);
4398
4399 case Q_UDP:
4400 bpf_error("'udp' modifier applied to %s", typestr);
4401
4402 case Q_ICMP:
4403 bpf_error("'icmp' modifier applied to %s", typestr);
4404
4405 case Q_IGMP:
4406 bpf_error("'igmp' modifier applied to %s", typestr);
4407
4408 case Q_IGRP:
4409 bpf_error("'igrp' modifier applied to %s", typestr);
4410
4411 case Q_PIM:
4412 bpf_error("'pim' modifier applied to %s", typestr);
4413
4414 case Q_VRRP:
4415 bpf_error("'vrrp' modifier applied to %s", typestr);
4416
4417 case Q_ATALK:
4418 bpf_error("ATALK host filtering not implemented");
4419
4420 case Q_AARP:
4421 bpf_error("AARP host filtering not implemented");
4422
4423 case Q_DECNET:
4424 bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4425
4426 case Q_SCA:
4427 bpf_error("SCA host filtering not implemented");
4428
4429 case Q_LAT:
4430 bpf_error("LAT host filtering not implemented");
4431
4432 case Q_MOPDL:
4433 bpf_error("MOPDL host filtering not implemented");
4434
4435 case Q_MOPRC:
4436 bpf_error("MOPRC host filtering not implemented");
4437
4438 case Q_IPV6:
4439 return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4440
4441 case Q_ICMPV6:
4442 bpf_error("'icmp6' modifier applied to %s", typestr);
4443
4444 case Q_AH:
4445 bpf_error("'ah' modifier applied to %s", typestr);
4446
4447 case Q_ESP:
4448 bpf_error("'esp' modifier applied to %s", typestr);
4449
4450 case Q_ISO:
4451 bpf_error("ISO host filtering not implemented");
4452
4453 case Q_ESIS:
4454 bpf_error("'esis' modifier applied to %s", typestr);
4455
4456 case Q_ISIS:
4457 bpf_error("'isis' modifier applied to %s", typestr);
4458
4459 case Q_CLNP:
4460 bpf_error("'clnp' modifier applied to %s", typestr);
4461
4462 case Q_STP:
4463 bpf_error("'stp' modifier applied to %s", typestr);
4464
4465 case Q_IPX:
4466 bpf_error("IPX host filtering not implemented");
4467
4468 case Q_NETBEUI:
4469 bpf_error("'netbeui' modifier applied to %s", typestr);
4470
4471 case Q_RADIO:
4472 bpf_error("'radio' modifier applied to %s", typestr);
4473
4474 default:
4475 abort();
4476 }
4477 /* NOTREACHED */
4478 }
4479 #endif /*INET6*/
4480
4481 #ifndef INET6
4482 static struct block *
4483 gen_gateway(eaddr, alist, proto, dir)
4484 const u_char *eaddr;
4485 bpf_u_int32 **alist;
4486 int proto;
4487 int dir;
4488 {
4489 struct block *b0, *b1, *tmp;
4490
4491 if (dir != 0)
4492 bpf_error("direction applied to 'gateway'");
4493
4494 switch (proto) {
4495 case Q_DEFAULT:
4496 case Q_IP:
4497 case Q_ARP:
4498 case Q_RARP:
4499 switch (linktype) {
4500 case DLT_EN10MB:
4501 b0 = gen_ehostop(eaddr, Q_OR);
4502 break;
4503 case DLT_FDDI:
4504 b0 = gen_fhostop(eaddr, Q_OR);
4505 break;
4506 case DLT_IEEE802:
4507 b0 = gen_thostop(eaddr, Q_OR);
4508 break;
4509 case DLT_IEEE802_11:
4510 case DLT_PRISM_HEADER:
4511 case DLT_IEEE802_11_RADIO_AVS:
4512 case DLT_IEEE802_11_RADIO:
4513 case DLT_PPI:
4514 b0 = gen_wlanhostop(eaddr, Q_OR);
4515 break;
4516 case DLT_SUNATM:
4517 if (is_lane) {
4518 /*
4519 * Check that the packet doesn't begin with an
4520 * LE Control marker. (We've already generated
4521 * a test for LANE.)
4522 */
4523 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4524 BPF_H, 0xFF00);
4525 gen_not(b1);
4526
4527 /*
4528 * Now check the MAC address.
4529 */
4530 b0 = gen_ehostop(eaddr, Q_OR);
4531 gen_and(b1, b0);
4532 }
4533 break;
4534 case DLT_IP_OVER_FC:
4535 b0 = gen_ipfchostop(eaddr, Q_OR);
4536 break;
4537 default:
4538 bpf_error(
4539 "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
4540 }
4541 b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4542 while (*alist) {
4543 tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4544 Q_HOST);
4545 gen_or(b1, tmp);
4546 b1 = tmp;
4547 }
4548 gen_not(b1);
4549 gen_and(b0, b1);
4550 return b1;
4551 }
4552 bpf_error("illegal modifier of 'gateway'");
4553 /* NOTREACHED */
4554 }
4555 #endif
4556
4557 struct block *
4558 gen_proto_abbrev(proto)
4559 int proto;
4560 {
4561 struct block *b0;
4562 struct block *b1;
4563
4564 switch (proto) {
4565
4566 case Q_SCTP:
4567 b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4568 #ifdef INET6
4569 b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4570 gen_or(b0, b1);
4571 #endif
4572 break;
4573
4574 case Q_TCP:
4575 b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4576 #ifdef INET6
4577 b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4578 gen_or(b0, b1);
4579 #endif
4580 break;
4581
4582 case Q_UDP:
4583 b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4584 #ifdef INET6
4585 b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4586 gen_or(b0, b1);
4587 #endif
4588 break;
4589
4590 case Q_ICMP:
4591 b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4592 break;
4593
4594 #ifndef IPPROTO_IGMP
4595 #define IPPROTO_IGMP 2
4596 #endif
4597
4598 case Q_IGMP:
4599 b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4600 break;
4601
4602 #ifndef IPPROTO_IGRP
4603 #define IPPROTO_IGRP 9
4604 #endif
4605 case Q_IGRP:
4606 b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4607 break;
4608
4609 #ifndef IPPROTO_PIM
4610 #define IPPROTO_PIM 103
4611 #endif
4612
4613 case Q_PIM:
4614 b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4615 #ifdef INET6
4616 b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4617 gen_or(b0, b1);
4618 #endif
4619 break;
4620
4621 #ifndef IPPROTO_VRRP
4622 #define IPPROTO_VRRP 112
4623 #endif
4624
4625 case Q_VRRP:
4626 b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4627 break;
4628
4629 case Q_IP:
4630 b1 = gen_linktype(ETHERTYPE_IP);
4631 break;
4632
4633 case Q_ARP:
4634 b1 = gen_linktype(ETHERTYPE_ARP);
4635 break;
4636
4637 case Q_RARP:
4638 b1 = gen_linktype(ETHERTYPE_REVARP);
4639 break;
4640
4641 case Q_LINK:
4642 bpf_error("link layer applied in wrong context");
4643
4644 case Q_ATALK:
4645 b1 = gen_linktype(ETHERTYPE_ATALK);
4646 break;
4647
4648 case Q_AARP:
4649 b1 = gen_linktype(ETHERTYPE_AARP);
4650 break;
4651
4652 case Q_DECNET:
4653 b1 = gen_linktype(ETHERTYPE_DN);
4654 break;
4655
4656 case Q_SCA:
4657 b1 = gen_linktype(ETHERTYPE_SCA);
4658 break;
4659
4660 case Q_LAT:
4661 b1 = gen_linktype(ETHERTYPE_LAT);
4662 break;
4663
4664 case Q_MOPDL:
4665 b1 = gen_linktype(ETHERTYPE_MOPDL);
4666 break;
4667
4668 case Q_MOPRC:
4669 b1 = gen_linktype(ETHERTYPE_MOPRC);
4670 break;
4671
4672 #ifdef INET6
4673 case Q_IPV6:
4674 b1 = gen_linktype(ETHERTYPE_IPV6);
4675 break;
4676
4677 #ifndef IPPROTO_ICMPV6
4678 #define IPPROTO_ICMPV6 58
4679 #endif
4680 case Q_ICMPV6:
4681 b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4682 break;
4683 #endif /* INET6 */
4684
4685 #ifndef IPPROTO_AH
4686 #define IPPROTO_AH 51
4687 #endif
4688 case Q_AH:
4689 b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4690 #ifdef INET6
4691 b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4692 gen_or(b0, b1);
4693 #endif
4694 break;
4695
4696 #ifndef IPPROTO_ESP
4697 #define IPPROTO_ESP 50
4698 #endif
4699 case Q_ESP:
4700 b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4701 #ifdef INET6
4702 b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4703 gen_or(b0, b1);
4704 #endif
4705 break;
4706
4707 case Q_ISO:
4708 b1 = gen_linktype(LLCSAP_ISONS);
4709 break;
4710
4711 case Q_ESIS:
4712 b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4713 break;
4714
4715 case Q_ISIS:
4716 b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4717 break;
4718
4719 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4720 b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4721 b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4722 gen_or(b0, b1);
4723 b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4724 gen_or(b0, b1);
4725 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4726 gen_or(b0, b1);
4727 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4728 gen_or(b0, b1);
4729 break;
4730
4731 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4732 b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4733 b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4734 gen_or(b0, b1);
4735 b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4736 gen_or(b0, b1);
4737 b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4738 gen_or(b0, b1);
4739 b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4740 gen_or(b0, b1);
4741 break;
4742
4743 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4744 b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4745 b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4746 gen_or(b0, b1);
4747 b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4748 gen_or(b0, b1);
4749 break;
4750
4751 case Q_ISIS_LSP:
4752 b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4753 b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4754 gen_or(b0, b1);
4755 break;
4756
4757 case Q_ISIS_SNP:
4758 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4759 b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4760 gen_or(b0, b1);
4761 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4762 gen_or(b0, b1);
4763 b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4764 gen_or(b0, b1);
4765 break;
4766
4767 case Q_ISIS_CSNP:
4768 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4769 b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4770 gen_or(b0, b1);
4771 break;
4772
4773 case Q_ISIS_PSNP:
4774 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4775 b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4776 gen_or(b0, b1);
4777 break;
4778
4779 case Q_CLNP:
4780 b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4781 break;
4782
4783 case Q_STP:
4784 b1 = gen_linktype(LLCSAP_8021D);
4785 break;
4786
4787 case Q_IPX:
4788 b1 = gen_linktype(LLCSAP_IPX);
4789 break;
4790
4791 case Q_NETBEUI:
4792 b1 = gen_linktype(LLCSAP_NETBEUI);
4793 break;
4794
4795 case Q_RADIO:
4796 bpf_error("'radio' is not a valid protocol type");
4797
4798 default:
4799 abort();
4800 }
4801 return b1;
4802 }
4803
4804 static struct block *
4805 gen_ipfrag()
4806 {
4807 struct slist *s;
4808 struct block *b;
4809
4810 /* not ip frag */
4811 s = gen_load_a(OR_NET, 6, BPF_H);
4812 b = new_block(JMP(BPF_JSET));
4813 b->s.k = 0x1fff;
4814 b->stmts = s;
4815 gen_not(b);
4816
4817 return b;
4818 }
4819
4820 /*
4821 * Generate a comparison to a port value in the transport-layer header
4822 * at the specified offset from the beginning of that header.
4823 *
4824 * XXX - this handles a variable-length prefix preceding the link-layer
4825 * header, such as the radiotap or AVS radio prefix, but doesn't handle
4826 * variable-length link-layer headers (such as Token Ring or 802.11
4827 * headers).
4828 */
4829 static struct block *
4830 gen_portatom(off, v)
4831 int off;
4832 bpf_int32 v;
4833 {
4834 return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
4835 }
4836
4837 #ifdef INET6
4838 static struct block *
4839 gen_portatom6(off, v)
4840 int off;
4841 bpf_int32 v;
4842 {
4843 return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
4844 }
4845 #endif/*INET6*/
4846
4847 struct block *
4848 gen_portop(port, proto, dir)
4849 int port, proto, dir;
4850 {
4851 struct block *b0, *b1, *tmp;
4852
4853 /* ip proto 'proto' */
4854 tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
4855 b0 = gen_ipfrag();
4856 gen_and(tmp, b0);
4857
4858 switch (dir) {
4859 case Q_SRC:
4860 b1 = gen_portatom(0, (bpf_int32)port);
4861 break;
4862
4863 case Q_DST:
4864 b1 = gen_portatom(2, (bpf_int32)port);
4865 break;
4866
4867 case Q_OR:
4868 case Q_DEFAULT:
4869 tmp = gen_portatom(0, (bpf_int32)port);
4870 b1 = gen_portatom(2, (bpf_int32)port);
4871 gen_or(tmp, b1);
4872 break;
4873
4874 case Q_AND:
4875 tmp = gen_portatom(0, (bpf_int32)port);
4876 b1 = gen_portatom(2, (bpf_int32)port);
4877 gen_and(tmp, b1);
4878 break;
4879
4880 default:
4881 abort();
4882 }
4883 gen_and(b0, b1);
4884
4885 return b1;
4886 }
4887
4888 static struct block *
4889 gen_port(port, ip_proto, dir)
4890 int port;
4891 int ip_proto;
4892 int dir;
4893 {
4894 struct block *b0, *b1, *tmp;
4895
4896 /*
4897 * ether proto ip
4898 *
4899 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4900 * not LLC encapsulation with LLCSAP_IP.
4901 *
4902 * For IEEE 802 networks - which includes 802.5 token ring
4903 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4904 * says that SNAP encapsulation is used, not LLC encapsulation
4905 * with LLCSAP_IP.
4906 *
4907 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4908 * RFC 2225 say that SNAP encapsulation is used, not LLC
4909 * encapsulation with LLCSAP_IP.
4910 *
4911 * So we always check for ETHERTYPE_IP.
4912 */
4913 b0 = gen_linktype(ETHERTYPE_IP);
4914
4915 switch (ip_proto) {
4916 case IPPROTO_UDP:
4917 case IPPROTO_TCP:
4918 case IPPROTO_SCTP:
4919 b1 = gen_portop(port, ip_proto, dir);
4920 break;
4921
4922 case PROTO_UNDEF:
4923 tmp = gen_portop(port, IPPROTO_TCP, dir);
4924 b1 = gen_portop(port, IPPROTO_UDP, dir);
4925 gen_or(tmp, b1);
4926 tmp = gen_portop(port, IPPROTO_SCTP, dir);
4927 gen_or(tmp, b1);
4928 break;
4929
4930 default:
4931 abort();
4932 }
4933 gen_and(b0, b1);
4934 return b1;
4935 }
4936
4937 #ifdef INET6
4938 struct block *
4939 gen_portop6(port, proto, dir)
4940 int port, proto, dir;
4941 {
4942 struct block *b0, *b1, *tmp;
4943
4944 /* ip6 proto 'proto' */
4945 b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
4946
4947 switch (dir) {
4948 case Q_SRC:
4949 b1 = gen_portatom6(0, (bpf_int32)port);
4950 break;
4951
4952 case Q_DST:
4953 b1 = gen_portatom6(2, (bpf_int32)port);
4954 break;
4955
4956 case Q_OR:
4957 case Q_DEFAULT:
4958 tmp = gen_portatom6(0, (bpf_int32)port);
4959 b1 = gen_portatom6(2, (bpf_int32)port);
4960 gen_or(tmp, b1);
4961 break;
4962
4963 case Q_AND:
4964 tmp = gen_portatom6(0, (bpf_int32)port);
4965 b1 = gen_portatom6(2, (bpf_int32)port);
4966 gen_and(tmp, b1);
4967 break;
4968
4969 default:
4970 abort();
4971 }
4972 gen_and(b0, b1);
4973
4974 return b1;
4975 }
4976
4977 static struct block *
4978 gen_port6(port, ip_proto, dir)
4979 int port;
4980 int ip_proto;
4981 int dir;
4982 {
4983 struct block *b0, *b1, *tmp;
4984
4985 /* link proto ip6 */
4986 b0 = gen_linktype(ETHERTYPE_IPV6);
4987
4988 switch (ip_proto) {
4989 case IPPROTO_UDP:
4990 case IPPROTO_TCP:
4991 case IPPROTO_SCTP:
4992 b1 = gen_portop6(port, ip_proto, dir);
4993 break;
4994
4995 case PROTO_UNDEF:
4996 tmp = gen_portop6(port, IPPROTO_TCP, dir);
4997 b1 = gen_portop6(port, IPPROTO_UDP, dir);
4998 gen_or(tmp, b1);
4999 tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5000 gen_or(tmp, b1);
5001 break;
5002
5003 default:
5004 abort();
5005 }
5006 gen_and(b0, b1);
5007 return b1;
5008 }
5009 #endif /* INET6 */
5010
5011 /* gen_portrange code */
5012 static struct block *
5013 gen_portrangeatom(off, v1, v2)
5014 int off;
5015 bpf_int32 v1, v2;
5016 {
5017 struct block *b1, *b2;
5018
5019 if (v1 > v2) {
5020 /*
5021 * Reverse the order of the ports, so v1 is the lower one.
5022 */
5023 bpf_int32 vtemp;
5024
5025 vtemp = v1;
5026 v1 = v2;
5027 v2 = vtemp;
5028 }
5029
5030 b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5031 b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5032
5033 gen_and(b1, b2);
5034
5035 return b2;
5036 }
5037
5038 struct block *
5039 gen_portrangeop(port1, port2, proto, dir)
5040 int port1, port2;
5041 int proto;
5042 int dir;
5043 {
5044 struct block *b0, *b1, *tmp;
5045
5046 /* ip proto 'proto' */
5047 tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5048 b0 = gen_ipfrag();
5049 gen_and(tmp, b0);
5050
5051 switch (dir) {
5052 case Q_SRC:
5053 b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5054 break;
5055
5056 case Q_DST:
5057 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5058 break;
5059
5060 case Q_OR:
5061 case Q_DEFAULT:
5062 tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5063 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5064 gen_or(tmp, b1);
5065 break;
5066
5067 case Q_AND:
5068 tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5069 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5070 gen_and(tmp, b1);
5071 break;
5072
5073 default:
5074 abort();
5075 }
5076 gen_and(b0, b1);
5077
5078 return b1;
5079 }
5080
5081 static struct block *
5082 gen_portrange(port1, port2, ip_proto, dir)
5083 int port1, port2;
5084 int ip_proto;
5085 int dir;
5086 {
5087 struct block *b0, *b1, *tmp;
5088
5089 /* link proto ip */
5090 b0 = gen_linktype(ETHERTYPE_IP);
5091
5092 switch (ip_proto) {
5093 case IPPROTO_UDP:
5094 case IPPROTO_TCP:
5095 case IPPROTO_SCTP:
5096 b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5097 break;
5098
5099 case PROTO_UNDEF:
5100 tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5101 b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5102 gen_or(tmp, b1);
5103 tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5104 gen_or(tmp, b1);
5105 break;
5106
5107 default:
5108 abort();
5109 }
5110 gen_and(b0, b1);
5111 return b1;
5112 }
5113
5114 #ifdef INET6
5115 static struct block *
5116 gen_portrangeatom6(off, v1, v2)
5117 int off;
5118 bpf_int32 v1, v2;
5119 {
5120 struct block *b1, *b2;
5121
5122 if (v1 > v2) {
5123 /*
5124 * Reverse the order of the ports, so v1 is the lower one.
5125 */
5126 bpf_int32 vtemp;
5127
5128 vtemp = v1;
5129 v1 = v2;
5130 v2 = vtemp;
5131 }
5132
5133 b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5134 b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5135
5136 gen_and(b1, b2);
5137
5138 return b2;
5139 }
5140
5141 struct block *
5142 gen_portrangeop6(port1, port2, proto, dir)
5143 int port1, port2;
5144 int proto;
5145 int dir;
5146 {
5147 struct block *b0, *b1, *tmp;
5148
5149 /* ip6 proto 'proto' */
5150 b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5151
5152 switch (dir) {
5153 case Q_SRC:
5154 b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5155 break;
5156
5157 case Q_DST:
5158 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5159 break;
5160
5161 case Q_OR:
5162 case Q_DEFAULT:
5163 tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5164 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5165 gen_or(tmp, b1);
5166 break;
5167
5168 case Q_AND:
5169 tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5170 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5171 gen_and(tmp, b1);
5172 break;
5173
5174 default:
5175 abort();
5176 }
5177 gen_and(b0, b1);
5178
5179 return b1;
5180 }
5181
5182 static struct block *
5183 gen_portrange6(port1, port2, ip_proto, dir)
5184 int port1, port2;
5185 int ip_proto;
5186 int dir;
5187 {
5188 struct block *b0, *b1, *tmp;
5189
5190 /* link proto ip6 */
5191 b0 = gen_linktype(ETHERTYPE_IPV6);
5192
5193 switch (ip_proto) {
5194 case IPPROTO_UDP:
5195 case IPPROTO_TCP:
5196 case IPPROTO_SCTP:
5197 b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5198 break;
5199
5200 case PROTO_UNDEF:
5201 tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5202 b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5203 gen_or(tmp, b1);
5204 tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5205 gen_or(tmp, b1);
5206 break;
5207
5208 default:
5209 abort();
5210 }
5211 gen_and(b0, b1);
5212 return b1;
5213 }
5214 #endif /* INET6 */
5215
5216 static int
5217 lookup_proto(name, proto)
5218 register const char *name;
5219 register int proto;
5220 {
5221 register int v;
5222
5223 switch (proto) {
5224
5225 case Q_DEFAULT:
5226 case Q_IP:
5227 case Q_IPV6:
5228 v = pcap_nametoproto(name);
5229 if (v == PROTO_UNDEF)
5230 bpf_error("unknown ip proto '%s'", name);
5231 break;
5232
5233 case Q_LINK:
5234 /* XXX should look up h/w protocol type based on linktype */
5235 v = pcap_nametoeproto(name);
5236 if (v == PROTO_UNDEF) {
5237 v = pcap_nametollc(name);
5238 if (v == PROTO_UNDEF)
5239 bpf_error("unknown ether proto '%s'", name);
5240 }
5241 break;
5242
5243 case Q_ISO:
5244 if (strcmp(name, "esis") == 0)
5245 v = ISO9542_ESIS;
5246 else if (strcmp(name, "isis") == 0)
5247 v = ISO10589_ISIS;
5248 else if (strcmp(name, "clnp") == 0)
5249 v = ISO8473_CLNP;
5250 else
5251 bpf_error("unknown osi proto '%s'", name);
5252 break;
5253
5254 default:
5255 v = PROTO_UNDEF;
5256 break;
5257 }
5258 return v;
5259 }
5260
5261 #if 0
5262 struct stmt *
5263 gen_joinsp(s, n)
5264 struct stmt **s;
5265 int n;
5266 {
5267 return NULL;
5268 }
5269 #endif
5270
5271 static struct block *
5272 gen_protochain(v, proto, dir)
5273 int v;
5274 int proto;
5275 int dir;
5276 {
5277 #ifdef NO_PROTOCHAIN
5278 return gen_proto(v, proto, dir);
5279 #else
5280 struct block *b0, *b;
5281 struct slist *s[100];
5282 int fix2, fix3, fix4, fix5;
5283 int ahcheck, again, end;
5284 int i, max;
5285 int reg2 = alloc_reg();
5286
5287 memset(s, 0, sizeof(s));
5288 fix2 = fix3 = fix4 = fix5 = 0;
5289
5290 switch (proto) {
5291 case Q_IP:
5292 case Q_IPV6:
5293 break;
5294 case Q_DEFAULT:
5295 b0 = gen_protochain(v, Q_IP, dir);
5296 b = gen_protochain(v, Q_IPV6, dir);
5297 gen_or(b0, b);
5298 return b;
5299 default:
5300 bpf_error("bad protocol applied for 'protochain'");
5301 /*NOTREACHED*/
5302 }
5303
5304 /*
5305 * We don't handle variable-length prefixes before the link-layer
5306 * header, or variable-length link-layer headers, here yet.
5307 * We might want to add BPF instructions to do the protochain
5308 * work, to simplify that and, on platforms that have a BPF
5309 * interpreter with the new instructions, let the filtering
5310 * be done in the kernel. (We already require a modified BPF
5311 * engine to do the protochain stuff, to support backward
5312 * branches, and backward branch support is unlikely to appear
5313 * in kernel BPF engines.)
5314 */
5315 switch (linktype) {
5316
5317 case DLT_IEEE802_11:
5318 case DLT_PRISM_HEADER:
5319 case DLT_IEEE802_11_RADIO_AVS:
5320 case DLT_IEEE802_11_RADIO:
5321 case DLT_PPI:
5322 bpf_error("'protochain' not supported with 802.11");
5323 }
5324
5325 no_optimize = 1; /*this code is not compatible with optimzer yet */
5326
5327 /*
5328 * s[0] is a dummy entry to protect other BPF insn from damage
5329 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5330 * hard to find interdependency made by jump table fixup.
5331 */
5332 i = 0;
5333 s[i] = new_stmt(0); /*dummy*/
5334 i++;
5335
5336 switch (proto) {
5337 case Q_IP:
5338 b0 = gen_linktype(ETHERTYPE_IP);
5339
5340 /* A = ip->ip_p */
5341 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5342 s[i]->s.k = off_macpl + off_nl + 9;
5343 i++;
5344 /* X = ip->ip_hl << 2 */
5345 s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5346 s[i]->s.k = off_macpl + off_nl;
5347 i++;
5348 break;
5349 #ifdef INET6
5350 case Q_IPV6:
5351 b0 = gen_linktype(ETHERTYPE_IPV6);
5352
5353 /* A = ip6->ip_nxt */
5354 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5355 s[i]->s.k = off_macpl + off_nl + 6;
5356 i++;
5357 /* X = sizeof(struct ip6_hdr) */
5358 s[i] = new_stmt(BPF_LDX|BPF_IMM);
5359 s[i]->s.k = 40;
5360 i++;
5361 break;
5362 #endif
5363 default:
5364 bpf_error("unsupported proto to gen_protochain");
5365 /*NOTREACHED*/
5366 }
5367
5368 /* again: if (A == v) goto end; else fall through; */
5369 again = i;
5370 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5371 s[i]->s.k = v;
5372 s[i]->s.jt = NULL; /*later*/
5373 s[i]->s.jf = NULL; /*update in next stmt*/
5374 fix5 = i;
5375 i++;
5376
5377 #ifndef IPPROTO_NONE
5378 #define IPPROTO_NONE 59
5379 #endif
5380 /* if (A == IPPROTO_NONE) goto end */
5381 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5382 s[i]->s.jt = NULL; /*later*/
5383 s[i]->s.jf = NULL; /*update in next stmt*/
5384 s[i]->s.k = IPPROTO_NONE;
5385 s[fix5]->s.jf = s[i];
5386 fix2 = i;
5387 i++;
5388
5389 #ifdef INET6
5390 if (proto == Q_IPV6) {
5391 int v6start, v6end, v6advance, j;
5392
5393 v6start = i;
5394 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5395 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5396 s[i]->s.jt = NULL; /*later*/
5397 s[i]->s.jf = NULL; /*update in next stmt*/
5398 s[i]->s.k = IPPROTO_HOPOPTS;
5399 s[fix2]->s.jf = s[i];
5400 i++;
5401 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5402 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5403 s[i]->s.jt = NULL; /*later*/
5404 s[i]->s.jf = NULL; /*update in next stmt*/
5405 s[i]->s.k = IPPROTO_DSTOPTS;
5406 i++;
5407 /* if (A == IPPROTO_ROUTING) goto v6advance */
5408 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5409 s[i]->s.jt = NULL; /*later*/
5410 s[i]->s.jf = NULL; /*update in next stmt*/
5411 s[i]->s.k = IPPROTO_ROUTING;
5412 i++;
5413 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5414 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5415 s[i]->s.jt = NULL; /*later*/
5416 s[i]->s.jf = NULL; /*later*/
5417 s[i]->s.k = IPPROTO_FRAGMENT;
5418 fix3 = i;
5419 v6end = i;
5420 i++;
5421
5422 /* v6advance: */
5423 v6advance = i;
5424
5425 /*
5426 * in short,
5427 * A = P[X];
5428 * X = X + (P[X + 1] + 1) * 8;
5429 */
5430 /* A = X */
5431 s[i] = new_stmt(BPF_MISC|BPF_TXA);
5432 i++;
5433 /* A = P[X + packet head] */
5434 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5435 s[i]->s.k = off_macpl + off_nl;
5436 i++;
5437 /* MEM[reg2] = A */
5438 s[i] = new_stmt(BPF_ST);
5439 s[i]->s.k = reg2;
5440 i++;
5441 /* A = X */
5442 s[i] = new_stmt(BPF_MISC|BPF_TXA);
5443 i++;
5444 /* A += 1 */
5445 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5446 s[i]->s.k = 1;
5447 i++;
5448 /* X = A */
5449 s[i] = new_stmt(BPF_MISC|BPF_TAX);
5450 i++;
5451 /* A = P[X + packet head]; */
5452 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5453 s[i]->s.k = off_macpl + off_nl;
5454 i++;
5455 /* A += 1 */
5456 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5457 s[i]->s.k = 1;
5458 i++;
5459 /* A *= 8 */
5460 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5461 s[i]->s.k = 8;
5462 i++;
5463 /* X = A; */
5464 s[i] = new_stmt(BPF_MISC|BPF_TAX);
5465 i++;
5466 /* A = MEM[reg2] */
5467 s[i] = new_stmt(BPF_LD|BPF_MEM);
5468 s[i]->s.k = reg2;
5469 i++;
5470
5471 /* goto again; (must use BPF_JA for backward jump) */
5472 s[i] = new_stmt(BPF_JMP|BPF_JA);
5473 s[i]->s.k = again - i - 1;
5474 s[i - 1]->s.jf = s[i];
5475 i++;
5476
5477 /* fixup */
5478 for (j = v6start; j <= v6end; j++)
5479 s[j]->s.jt = s[v6advance];
5480 } else
5481 #endif
5482 {
5483 /* nop */
5484 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5485 s[i]->s.k = 0;
5486 s[fix2]->s.jf = s[i];
5487 i++;
5488 }
5489
5490 /* ahcheck: */
5491 ahcheck = i;
5492 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5493 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5494 s[i]->s.jt = NULL; /*later*/
5495 s[i]->s.jf = NULL; /*later*/
5496 s[i]->s.k = IPPROTO_AH;
5497 if (fix3)
5498 s[fix3]->s.jf = s[ahcheck];
5499 fix4 = i;
5500 i++;
5501
5502 /*
5503 * in short,
5504 * A = P[X];
5505 * X = X + (P[X + 1] + 2) * 4;
5506 */
5507 /* A = X */
5508 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5509 i++;
5510 /* A = P[X + packet head]; */
5511 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5512 s[i]->s.k = off_macpl + off_nl;
5513 i++;
5514 /* MEM[reg2] = A */
5515 s[i] = new_stmt(BPF_ST);
5516 s[i]->s.k = reg2;
5517 i++;
5518 /* A = X */
5519 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5520 i++;
5521 /* A += 1 */
5522 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5523 s[i]->s.k = 1;
5524 i++;
5525 /* X = A */
5526 s[i] = new_stmt(BPF_MISC|BPF_TAX);
5527 i++;
5528 /* A = P[X + packet head] */
5529 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5530 s[i]->s.k = off_macpl + off_nl;
5531 i++;
5532 /* A += 2 */
5533 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5534 s[i]->s.k = 2;
5535 i++;
5536 /* A *= 4 */
5537 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5538 s[i]->s.k = 4;
5539 i++;
5540 /* X = A; */
5541 s[i] = new_stmt(BPF_MISC|BPF_TAX);
5542 i++;
5543 /* A = MEM[reg2] */
5544 s[i] = new_stmt(BPF_LD|BPF_MEM);
5545 s[i]->s.k = reg2;
5546 i++;
5547
5548 /* goto again; (must use BPF_JA for backward jump) */
5549 s[i] = new_stmt(BPF_JMP|BPF_JA);
5550 s[i]->s.k = again - i - 1;
5551 i++;
5552
5553 /* end: nop */
5554 end = i;
5555 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5556 s[i]->s.k = 0;
5557 s[fix2]->s.jt = s[end];
5558 s[fix4]->s.jf = s[end];
5559 s[fix5]->s.jt = s[end];
5560 i++;
5561
5562 /*
5563 * make slist chain
5564 */
5565 max = i;
5566 for (i = 0; i < max - 1; i++)
5567 s[i]->next = s[i + 1];
5568 s[max - 1]->next = NULL;
5569
5570 /*
5571 * emit final check
5572 */
5573 b = new_block(JMP(BPF_JEQ));
5574 b->stmts = s[1]; /*remember, s[0] is dummy*/
5575 b->s.k = v;
5576
5577 free_reg(reg2);
5578
5579 gen_and(b0, b);
5580 return b;
5581 #endif
5582 }
5583
5584 static struct block *
5585 gen_check_802_11_data_frame()
5586 {
5587 struct slist *s;
5588 struct block *b0, *b1;
5589
5590 /*
5591 * A data frame has the 0x08 bit (b3) in the frame control field set
5592 * and the 0x04 bit (b2) clear.
5593 */
5594 s = gen_load_a(OR_LINK, 0, BPF_B);
5595 b0 = new_block(JMP(BPF_JSET));
5596 b0->s.k = 0x08;
5597 b0->stmts = s;
5598
5599 s = gen_load_a(OR_LINK, 0, BPF_B);
5600 b1 = new_block(JMP(BPF_JSET));
5601 b1->s.k = 0x04;
5602 b1->stmts = s;
5603 gen_not(b1);
5604
5605 gen_and(b1, b0);
5606
5607 return b0;
5608 }
5609
5610 /*
5611 * Generate code that checks whether the packet is a packet for protocol
5612 * <proto> and whether the type field in that protocol's header has
5613 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5614 * IP packet and checks the protocol number in the IP header against <v>.
5615 *
5616 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5617 * against Q_IP and Q_IPV6.
5618 */
5619 static struct block *
5620 gen_proto(v, proto, dir)
5621 int v;
5622 int proto;
5623 int dir;
5624 {
5625 struct block *b0, *b1;
5626
5627 if (dir != Q_DEFAULT)
5628 bpf_error("direction applied to 'proto'");
5629
5630 switch (proto) {
5631 case Q_DEFAULT:
5632 #ifdef INET6
5633 b0 = gen_proto(v, Q_IP, dir);
5634 b1 = gen_proto(v, Q_IPV6, dir);
5635 gen_or(b0, b1);
5636 return b1;
5637 #else
5638 /*FALLTHROUGH*/
5639 #endif
5640 case Q_IP:
5641 /*
5642 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5643 * not LLC encapsulation with LLCSAP_IP.
5644 *
5645 * For IEEE 802 networks - which includes 802.5 token ring
5646 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5647 * says that SNAP encapsulation is used, not LLC encapsulation
5648 * with LLCSAP_IP.
5649 *
5650 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5651 * RFC 2225 say that SNAP encapsulation is used, not LLC
5652 * encapsulation with LLCSAP_IP.
5653 *
5654 * So we always check for ETHERTYPE_IP.
5655 */
5656 b0 = gen_linktype(ETHERTYPE_IP);
5657 #ifndef CHASE_CHAIN
5658 b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5659 #else
5660 b1 = gen_protochain(v, Q_IP);
5661 #endif
5662 gen_and(b0, b1);
5663 return b1;
5664
5665 case Q_ISO:
5666 switch (linktype) {
5667
5668 case DLT_FRELAY:
5669 /*
5670 * Frame Relay packets typically have an OSI
5671 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5672 * generates code to check for all the OSI
5673 * NLPIDs, so calling it and then adding a check
5674 * for the particular NLPID for which we're
5675 * looking is bogus, as we can just check for
5676 * the NLPID.
5677 *
5678 * What we check for is the NLPID and a frame
5679 * control field value of UI, i.e. 0x03 followed
5680 * by the NLPID.
5681 *
5682 * XXX - assumes a 2-byte Frame Relay header with
5683 * DLCI and flags. What if the address is longer?
5684 *
5685 * XXX - what about SNAP-encapsulated frames?
5686 */
5687 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5688 /*NOTREACHED*/
5689 break;
5690
5691 case DLT_C_HDLC:
5692 /*
5693 * Cisco uses an Ethertype lookalike - for OSI,
5694 * it's 0xfefe.
5695 */
5696 b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5697 /* OSI in C-HDLC is stuffed with a fudge byte */
5698 b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5699 gen_and(b0, b1);
5700 return b1;
5701
5702 default:
5703 b0 = gen_linktype(LLCSAP_ISONS);
5704 b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5705 gen_and(b0, b1);
5706 return b1;
5707 }
5708
5709 case Q_ISIS:
5710 b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5711 /*
5712 * 4 is the offset of the PDU type relative to the IS-IS
5713 * header.
5714 */
5715 b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5716 gen_and(b0, b1);
5717 return b1;
5718
5719 case Q_ARP:
5720 bpf_error("arp does not encapsulate another protocol");
5721 /* NOTREACHED */
5722
5723 case Q_RARP:
5724 bpf_error("rarp does not encapsulate another protocol");
5725 /* NOTREACHED */
5726
5727 case Q_ATALK:
5728 bpf_error("atalk encapsulation is not specifiable");
5729 /* NOTREACHED */
5730
5731 case Q_DECNET:
5732 bpf_error("decnet encapsulation is not specifiable");
5733 /* NOTREACHED */
5734
5735 case Q_SCA:
5736 bpf_error("sca does not encapsulate another protocol");
5737 /* NOTREACHED */
5738
5739 case Q_LAT:
5740 bpf_error("lat does not encapsulate another protocol");
5741 /* NOTREACHED */
5742
5743 case Q_MOPRC:
5744 bpf_error("moprc does not encapsulate another protocol");
5745 /* NOTREACHED */
5746
5747 case Q_MOPDL:
5748 bpf_error("mopdl does not encapsulate another protocol");
5749 /* NOTREACHED */
5750
5751 case Q_LINK:
5752 return gen_linktype(v);
5753
5754 case Q_UDP:
5755 bpf_error("'udp proto' is bogus");
5756 /* NOTREACHED */
5757
5758 case Q_TCP:
5759 bpf_error("'tcp proto' is bogus");
5760 /* NOTREACHED */
5761
5762 case Q_SCTP:
5763 bpf_error("'sctp proto' is bogus");
5764 /* NOTREACHED */
5765
5766 case Q_ICMP:
5767 bpf_error("'icmp proto' is bogus");
5768 /* NOTREACHED */
5769
5770 case Q_IGMP:
5771 bpf_error("'igmp proto' is bogus");
5772 /* NOTREACHED */
5773
5774 case Q_IGRP:
5775 bpf_error("'igrp proto' is bogus");
5776 /* NOTREACHED */
5777
5778 case Q_PIM:
5779 bpf_error("'pim proto' is bogus");
5780 /* NOTREACHED */
5781
5782 case Q_VRRP:
5783 bpf_error("'vrrp proto' is bogus");
5784 /* NOTREACHED */
5785
5786 #ifdef INET6
5787 case Q_IPV6:
5788 b0 = gen_linktype(ETHERTYPE_IPV6);
5789 #ifndef CHASE_CHAIN
5790 b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5791 #else
5792 b1 = gen_protochain(v, Q_IPV6);
5793 #endif
5794 gen_and(b0, b1);
5795 return b1;
5796
5797 case Q_ICMPV6:
5798 bpf_error("'icmp6 proto' is bogus");
5799 #endif /* INET6 */
5800
5801 case Q_AH:
5802 bpf_error("'ah proto' is bogus");
5803
5804 case Q_ESP:
5805 bpf_error("'ah proto' is bogus");
5806
5807 case Q_STP:
5808 bpf_error("'stp proto' is bogus");
5809
5810 case Q_IPX:
5811 bpf_error("'ipx proto' is bogus");
5812
5813 case Q_NETBEUI:
5814 bpf_error("'netbeui proto' is bogus");
5815
5816 case Q_RADIO:
5817 bpf_error("'radio proto' is bogus");
5818
5819 default:
5820 abort();
5821 /* NOTREACHED */
5822 }
5823 /* NOTREACHED */
5824 }
5825
5826 struct block *
5827 gen_scode(name, q)
5828 register const char *name;
5829 struct qual q;
5830 {
5831 int proto = q.proto;
5832 int dir = q.dir;
5833 int tproto;
5834 u_char *eaddr;
5835 bpf_u_int32 mask, addr;
5836 #ifndef INET6
5837 bpf_u_int32 **alist;
5838 #else
5839 int tproto6;
5840 struct sockaddr_in *sin4;
5841 struct sockaddr_in6 *sin6;
5842 struct addrinfo *res, *res0;
5843 struct in6_addr mask128;
5844 #endif /*INET6*/
5845 struct block *b, *tmp;
5846 int port, real_proto;
5847 int port1, port2;
5848
5849 switch (q.addr) {
5850
5851 case Q_NET:
5852 addr = pcap_nametonetaddr(name);
5853 if (addr == 0)
5854 bpf_error("unknown network '%s'", name);
5855 /* Left justify network addr and calculate its network mask */
5856 mask = 0xffffffff;
5857 while (addr && (addr & 0xff000000) == 0) {
5858 addr <<= 8;
5859 mask <<= 8;
5860 }
5861 return gen_host(addr, mask, proto, dir, q.addr);
5862
5863 case Q_DEFAULT:
5864 case Q_HOST:
5865 if (proto == Q_LINK) {
5866 switch (linktype) {
5867
5868 case DLT_EN10MB:
5869 eaddr = pcap_ether_hostton(name);
5870 if (eaddr == NULL)
5871 bpf_error(
5872 "unknown ether host '%s'", name);
5873 b = gen_ehostop(eaddr, dir);
5874 free(eaddr);
5875 return b;
5876
5877 case DLT_FDDI:
5878 eaddr = pcap_ether_hostton(name);
5879 if (eaddr == NULL)
5880 bpf_error(
5881 "unknown FDDI host '%s'", name);
5882 b = gen_fhostop(eaddr, dir);
5883 free(eaddr);
5884 return b;
5885
5886 case DLT_IEEE802:
5887 eaddr = pcap_ether_hostton(name);
5888 if (eaddr == NULL)
5889 bpf_error(
5890 "unknown token ring host '%s'", name);
5891 b = gen_thostop(eaddr, dir);
5892 free(eaddr);
5893 return b;
5894
5895 case DLT_IEEE802_11:
5896 case DLT_PRISM_HEADER:
5897 case DLT_IEEE802_11_RADIO_AVS:
5898 case DLT_IEEE802_11_RADIO:
5899 case DLT_PPI:
5900 eaddr = pcap_ether_hostton(name);
5901 if (eaddr == NULL)
5902 bpf_error(
5903 "unknown 802.11 host '%s'", name);
5904 b = gen_wlanhostop(eaddr, dir);
5905 free(eaddr);
5906 return b;
5907
5908 case DLT_IP_OVER_FC:
5909 eaddr = pcap_ether_hostton(name);
5910 if (eaddr == NULL)
5911 bpf_error(
5912 "unknown Fibre Channel host '%s'", name);
5913 b = gen_ipfchostop(eaddr, dir);
5914 free(eaddr);
5915 return b;
5916
5917 case DLT_SUNATM:
5918 if (!is_lane)
5919 break;
5920
5921 /*
5922 * Check that the packet doesn't begin
5923 * with an LE Control marker. (We've
5924 * already generated a test for LANE.)
5925 */
5926 tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
5927 BPF_H, 0xFF00);
5928 gen_not(tmp);
5929
5930 eaddr = pcap_ether_hostton(name);
5931 if (eaddr == NULL)
5932 bpf_error(
5933 "unknown ether host '%s'", name);
5934 b = gen_ehostop(eaddr, dir);
5935 gen_and(tmp, b);
5936 free(eaddr);
5937 return b;
5938 }
5939
5940 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
5941 } else if (proto == Q_DECNET) {
5942 unsigned short dn_addr = __pcap_nametodnaddr(name);
5943 /*
5944 * I don't think DECNET hosts can be multihomed, so
5945 * there is no need to build up a list of addresses
5946 */
5947 return (gen_host(dn_addr, 0, proto, dir, q.addr));
5948 } else {
5949 #ifndef INET6
5950 alist = pcap_nametoaddr(name);
5951 if (alist == NULL || *alist == NULL)
5952 bpf_error("unknown host '%s'", name);
5953 tproto = proto;
5954 if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
5955 tproto = Q_IP;
5956 b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
5957 while (*alist) {
5958 tmp = gen_host(**alist++, 0xffffffff,
5959 tproto, dir, q.addr);
5960 gen_or(b, tmp);
5961 b = tmp;
5962 }
5963 return b;
5964 #else
5965 memset(&mask128, 0xff, sizeof(mask128));
5966 res0 = res = pcap_nametoaddrinfo(name);
5967 if (res == NULL)
5968 bpf_error("unknown host '%s'", name);
5969 b = tmp = NULL;
5970 tproto = tproto6 = proto;
5971 if (off_linktype == -1 && tproto == Q_DEFAULT) {
5972 tproto = Q_IP;
5973 tproto6 = Q_IPV6;
5974 }
5975 for (res = res0; res; res = res->ai_next) {
5976 switch (res->ai_family) {
5977 case AF_INET:
5978 if (tproto == Q_IPV6)
5979 continue;
5980
5981 sin4 = (struct sockaddr_in *)
5982 res->ai_addr;
5983 tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
5984 0xffffffff, tproto, dir, q.addr);
5985 break;
5986 case AF_INET6:
5987 if (tproto6 == Q_IP)
5988 continue;
5989
5990 sin6 = (struct sockaddr_in6 *)
5991 res->ai_addr;
5992 tmp = gen_host6(&sin6->sin6_addr,
5993 &mask128, tproto6, dir, q.addr);
5994 break;
5995 default:
5996 continue;
5997 }
5998 if (b)
5999 gen_or(b, tmp);
6000 b = tmp;
6001 }
6002 freeaddrinfo(res0);
6003 if (b == NULL) {
6004 bpf_error("unknown host '%s'%s", name,
6005 (proto == Q_DEFAULT)
6006 ? ""
6007 : " for specified address family");
6008 }
6009 return b;
6010 #endif /*INET6*/
6011 }
6012
6013 case Q_PORT:
6014 if (proto != Q_DEFAULT &&
6015 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6016 bpf_error("illegal qualifier of 'port'");
6017 if (pcap_nametoport(name, &port, &real_proto) == 0)
6018 bpf_error("unknown port '%s'", name);
6019 if (proto == Q_UDP) {
6020 if (real_proto == IPPROTO_TCP)
6021 bpf_error("port '%s' is tcp", name);
6022 else if (real_proto == IPPROTO_SCTP)
6023 bpf_error("port '%s' is sctp", name);
6024 else
6025 /* override PROTO_UNDEF */
6026 real_proto = IPPROTO_UDP;
6027 }
6028 if (proto == Q_TCP) {
6029 if (real_proto == IPPROTO_UDP)
6030 bpf_error("port '%s' is udp", name);
6031
6032 else if (real_proto == IPPROTO_SCTP)
6033 bpf_error("port '%s' is sctp", name);
6034 else
6035 /* override PROTO_UNDEF */
6036 real_proto = IPPROTO_TCP;
6037 }
6038 if (proto == Q_SCTP) {
6039 if (real_proto == IPPROTO_UDP)
6040 bpf_error("port '%s' is udp", name);
6041
6042 else if (real_proto == IPPROTO_TCP)
6043 bpf_error("port '%s' is tcp", name);
6044 else
6045 /* override PROTO_UNDEF */
6046 real_proto = IPPROTO_SCTP;
6047 }
6048 #ifndef INET6
6049 return gen_port(port, real_proto, dir);
6050 #else
6051 b = gen_port(port, real_proto, dir);
6052 gen_or(gen_port6(port, real_proto, dir), b);
6053 return b;
6054 #endif /* INET6 */
6055
6056 case Q_PORTRANGE:
6057 if (proto != Q_DEFAULT &&
6058 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6059 bpf_error("illegal qualifier of 'portrange'");
6060 if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6061 bpf_error("unknown port in range '%s'", name);
6062 if (proto == Q_UDP) {
6063 if (real_proto == IPPROTO_TCP)
6064 bpf_error("port in range '%s' is tcp", name);
6065 else if (real_proto == IPPROTO_SCTP)
6066 bpf_error("port in range '%s' is sctp", name);
6067 else
6068 /* override PROTO_UNDEF */
6069 real_proto = IPPROTO_UDP;
6070 }
6071 if (proto == Q_TCP) {
6072 if (real_proto == IPPROTO_UDP)
6073 bpf_error("port in range '%s' is udp", name);
6074 else if (real_proto == IPPROTO_SCTP)
6075 bpf_error("port in range '%s' is sctp", name);
6076 else
6077 /* override PROTO_UNDEF */
6078 real_proto = IPPROTO_TCP;
6079 }
6080 if (proto == Q_SCTP) {
6081 if (real_proto == IPPROTO_UDP)
6082 bpf_error("port in range '%s' is udp", name);
6083 else if (real_proto == IPPROTO_TCP)
6084 bpf_error("port in range '%s' is tcp", name);
6085 else
6086 /* override PROTO_UNDEF */
6087 real_proto = IPPROTO_SCTP;
6088 }
6089 #ifndef INET6
6090 return gen_portrange(port1, port2, real_proto, dir);
6091 #else
6092 b = gen_portrange(port1, port2, real_proto, dir);
6093 gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6094 return b;
6095 #endif /* INET6 */
6096
6097 case Q_GATEWAY:
6098 #ifndef INET6
6099 eaddr = pcap_ether_hostton(name);
6100 if (eaddr == NULL)
6101 bpf_error("unknown ether host: %s", name);
6102
6103 alist = pcap_nametoaddr(name);
6104 if (alist == NULL || *alist == NULL)
6105 bpf_error("unknown host '%s'", name);
6106 b = gen_gateway(eaddr, alist, proto, dir);
6107 free(eaddr);
6108 return b;
6109 #else
6110 bpf_error("'gateway' not supported in this configuration");
6111 #endif /*INET6*/
6112
6113 case Q_PROTO:
6114 real_proto = lookup_proto(name, proto);
6115 if (real_proto >= 0)
6116 return gen_proto(real_proto, proto, dir);
6117 else
6118 bpf_error("unknown protocol: %s", name);
6119
6120 case Q_PROTOCHAIN:
6121 real_proto = lookup_proto(name, proto);
6122 if (real_proto >= 0)
6123 return gen_protochain(real_proto, proto, dir);
6124 else
6125 bpf_error("unknown protocol: %s", name);
6126
6127 case Q_UNDEF:
6128 syntax();
6129 /* NOTREACHED */
6130 }
6131 abort();
6132 /* NOTREACHED */
6133 }
6134
6135 struct block *
6136 gen_mcode(s1, s2, masklen, q)
6137 register const char *s1, *s2;
6138 register int masklen;
6139 struct qual q;
6140 {
6141 register int nlen, mlen;
6142 bpf_u_int32 n, m;
6143
6144 nlen = __pcap_atoin(s1, &n);
6145 /* Promote short ipaddr */
6146 n <<= 32 - nlen;
6147
6148 if (s2 != NULL) {
6149 mlen = __pcap_atoin(s2, &m);
6150 /* Promote short ipaddr */
6151 m <<= 32 - mlen;
6152 if ((n & ~m) != 0)
6153 bpf_error("non-network bits set in \"%s mask %s\"",
6154 s1, s2);
6155 } else {
6156 /* Convert mask len to mask */
6157 if (masklen > 32)
6158 bpf_error("mask length must be <= 32");
6159 if (masklen == 0) {
6160 /*
6161 * X << 32 is not guaranteed by C to be 0; it's
6162 * undefined.
6163 */
6164 m = 0;
6165 } else
6166 m = 0xffffffff << (32 - masklen);
6167 if ((n & ~m) != 0)
6168 bpf_error("non-network bits set in \"%s/%d\"",
6169 s1, masklen);
6170 }
6171
6172 switch (q.addr) {
6173
6174 case Q_NET:
6175 return gen_host(n, m, q.proto, q.dir, q.addr);
6176
6177 default:
6178 bpf_error("Mask syntax for networks only");
6179 /* NOTREACHED */
6180 }
6181 /* NOTREACHED */
6182 return NULL;
6183 }
6184
6185 struct block *
6186 gen_ncode(s, v, q)
6187 register const char *s;
6188 bpf_u_int32 v;
6189 struct qual q;
6190 {
6191 bpf_u_int32 mask;
6192 int proto = q.proto;
6193 int dir = q.dir;
6194 register int vlen;
6195
6196 if (s == NULL)
6197 vlen = 32;
6198 else if (q.proto == Q_DECNET)
6199 vlen = __pcap_atodn(s, &v);
6200 else
6201 vlen = __pcap_atoin(s, &v);
6202
6203 switch (q.addr) {
6204
6205 case Q_DEFAULT:
6206 case Q_HOST:
6207 case Q_NET:
6208 if (proto == Q_DECNET)
6209 return gen_host(v, 0, proto, dir, q.addr);
6210 else if (proto == Q_LINK) {
6211 bpf_error("illegal link layer address");
6212 } else {
6213 mask = 0xffffffff;
6214 if (s == NULL && q.addr == Q_NET) {
6215 /* Promote short net number */
6216 while (v && (v & 0xff000000) == 0) {
6217 v <<= 8;
6218 mask <<= 8;
6219 }
6220 } else {
6221 /* Promote short ipaddr */
6222 v <<= 32 - vlen;
6223 mask <<= 32 - vlen;
6224 }
6225 return gen_host(v, mask, proto, dir, q.addr);
6226 }
6227
6228 case Q_PORT:
6229 if (proto == Q_UDP)
6230 proto = IPPROTO_UDP;
6231 else if (proto == Q_TCP)
6232 proto = IPPROTO_TCP;
6233 else if (proto == Q_SCTP)
6234 proto = IPPROTO_SCTP;
6235 else if (proto == Q_DEFAULT)
6236 proto = PROTO_UNDEF;
6237 else
6238 bpf_error("illegal qualifier of 'port'");
6239
6240 #ifndef INET6
6241 return gen_port((int)v, proto, dir);
6242 #else
6243 {
6244 struct block *b;
6245 b = gen_port((int)v, proto, dir);
6246 gen_or(gen_port6((int)v, proto, dir), b);
6247 return b;
6248 }
6249 #endif /* INET6 */
6250
6251 case Q_PORTRANGE:
6252 if (proto == Q_UDP)
6253 proto = IPPROTO_UDP;
6254 else if (proto == Q_TCP)
6255 proto = IPPROTO_TCP;
6256 else if (proto == Q_SCTP)
6257 proto = IPPROTO_SCTP;
6258 else if (proto == Q_DEFAULT)
6259 proto = PROTO_UNDEF;
6260 else
6261 bpf_error("illegal qualifier of 'portrange'");
6262
6263 #ifndef INET6
6264 return gen_portrange((int)v, (int)v, proto, dir);
6265 #else
6266 {
6267 struct block *b;
6268 b = gen_portrange((int)v, (int)v, proto, dir);
6269 gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6270 return b;
6271 }
6272 #endif /* INET6 */
6273
6274 case Q_GATEWAY:
6275 bpf_error("'gateway' requires a name");
6276 /* NOTREACHED */
6277
6278 case Q_PROTO:
6279 return gen_proto((int)v, proto, dir);
6280
6281 case Q_PROTOCHAIN:
6282 return gen_protochain((int)v, proto, dir);
6283
6284 case Q_UNDEF:
6285 syntax();
6286 /* NOTREACHED */
6287
6288 default:
6289 abort();
6290 /* NOTREACHED */
6291 }
6292 /* NOTREACHED */
6293 }
6294
6295 #ifdef INET6
6296 struct block *
6297 gen_mcode6(s1, s2, masklen, q)
6298 register const char *s1, *s2;
6299 register int masklen;
6300 struct qual q;
6301 {
6302 struct addrinfo *res;
6303 struct in6_addr *addr;
6304 struct in6_addr mask;
6305 struct block *b;
6306 u_int32_t *a, *m;
6307
6308 if (s2)
6309 bpf_error("no mask %s supported", s2);
6310
6311 res = pcap_nametoaddrinfo(s1);
6312 if (!res)
6313 bpf_error("invalid ip6 address %s", s1);
6314 if (res->ai_next)
6315 bpf_error("%s resolved to multiple address", s1);
6316 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6317
6318 if (sizeof(mask) * 8 < masklen)
6319 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6320 memset(&mask, 0, sizeof(mask));
6321 memset(&mask, 0xff, masklen / 8);
6322 if (masklen % 8) {
6323 mask.s6_addr[masklen / 8] =
6324 (0xff << (8 - masklen % 8)) & 0xff;
6325 }
6326
6327 a = (u_int32_t *)addr;
6328 m = (u_int32_t *)&mask;
6329 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6330 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6331 bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6332 }
6333
6334 switch (q.addr) {
6335
6336 case Q_DEFAULT:
6337 case Q_HOST:
6338 if (masklen != 128)
6339 bpf_error("Mask syntax for networks only");
6340 /* FALLTHROUGH */
6341
6342 case Q_NET:
6343 b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6344 freeaddrinfo(res);
6345 return b;
6346
6347 default:
6348 bpf_error("invalid qualifier against IPv6 address");
6349 /* NOTREACHED */
6350 }
6351 return NULL;
6352 }
6353 #endif /*INET6*/
6354
6355 struct block *
6356 gen_ecode(eaddr, q)
6357 register const u_char *eaddr;
6358 struct qual q;
6359 {
6360 struct block *b, *tmp;
6361
6362 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6363 switch (linktype) {
6364 case DLT_EN10MB:
6365 return gen_ehostop(eaddr, (int)q.dir);
6366 case DLT_FDDI:
6367 return gen_fhostop(eaddr, (int)q.dir);
6368 case DLT_IEEE802:
6369 return gen_thostop(eaddr, (int)q.dir);
6370 case DLT_IEEE802_11:
6371 case DLT_PRISM_HEADER:
6372 case DLT_IEEE802_11_RADIO_AVS:
6373 case DLT_IEEE802_11_RADIO:
6374 case DLT_PPI:
6375 return gen_wlanhostop(eaddr, (int)q.dir);
6376 case DLT_SUNATM:
6377 if (is_lane) {
6378 /*
6379 * Check that the packet doesn't begin with an
6380 * LE Control marker. (We've already generated
6381 * a test for LANE.)
6382 */
6383 tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6384 0xFF00);
6385 gen_not(tmp);
6386
6387 /*
6388 * Now check the MAC address.
6389 */
6390 b = gen_ehostop(eaddr, (int)q.dir);
6391 gen_and(tmp, b);
6392 return b;
6393 }
6394 break;
6395 case DLT_IP_OVER_FC:
6396 return gen_ipfchostop(eaddr, (int)q.dir);
6397 default:
6398 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6399 break;
6400 }
6401 }
6402 bpf_error("ethernet address used in non-ether expression");
6403 /* NOTREACHED */
6404 return NULL;
6405 }
6406
6407 void
6408 sappend(s0, s1)
6409 struct slist *s0, *s1;
6410 {
6411 /*
6412 * This is definitely not the best way to do this, but the
6413 * lists will rarely get long.
6414 */
6415 while (s0->next)
6416 s0 = s0->next;
6417 s0->next = s1;
6418 }
6419
6420 static struct slist *
6421 xfer_to_x(a)
6422 struct arth *a;
6423 {
6424 struct slist *s;
6425
6426 s = new_stmt(BPF_LDX|BPF_MEM);
6427 s->s.k = a->regno;
6428 return s;
6429 }
6430
6431 static struct slist *
6432 xfer_to_a(a)
6433 struct arth *a;
6434 {
6435 struct slist *s;
6436
6437 s = new_stmt(BPF_LD|BPF_MEM);
6438 s->s.k = a->regno;
6439 return s;
6440 }
6441
6442 /*
6443 * Modify "index" to use the value stored into its register as an
6444 * offset relative to the beginning of the header for the protocol
6445 * "proto", and allocate a register and put an item "size" bytes long
6446 * (1, 2, or 4) at that offset into that register, making it the register
6447 * for "index".
6448 */
6449 struct arth *
6450 gen_load(proto, inst, size)
6451 int proto;
6452 struct arth *inst;
6453 int size;
6454 {
6455 struct slist *s, *tmp;
6456 struct block *b;
6457 int regno = alloc_reg();
6458
6459 free_reg(inst->regno);
6460 switch (size) {
6461
6462 default:
6463 bpf_error("data size must be 1, 2, or 4");
6464
6465 case 1:
6466 size = BPF_B;
6467 break;
6468
6469 case 2:
6470 size = BPF_H;
6471 break;
6472
6473 case 4:
6474 size = BPF_W;
6475 break;
6476 }
6477 switch (proto) {
6478 default:
6479 bpf_error("unsupported index operation");
6480
6481 case Q_RADIO:
6482 /*
6483 * The offset is relative to the beginning of the packet
6484 * data, if we have a radio header. (If we don't, this
6485 * is an error.)
6486 */
6487 if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6488 linktype != DLT_IEEE802_11_RADIO &&
6489 linktype != DLT_PRISM_HEADER)
6490 bpf_error("radio information not present in capture");
6491
6492 /*
6493 * Load into the X register the offset computed into the
6494 * register specifed by "index".
6495 */
6496 s = xfer_to_x(inst);
6497
6498 /*
6499 * Load the item at that offset.
6500 */
6501 tmp = new_stmt(BPF_LD|BPF_IND|size);
6502 sappend(s, tmp);
6503 sappend(inst->s, s);
6504 break;
6505
6506 case Q_LINK:
6507 /*
6508 * The offset is relative to the beginning of
6509 * the link-layer header.
6510 *
6511 * XXX - what about ATM LANE? Should the index be
6512 * relative to the beginning of the AAL5 frame, so
6513 * that 0 refers to the beginning of the LE Control
6514 * field, or relative to the beginning of the LAN
6515 * frame, so that 0 refers, for Ethernet LANE, to
6516 * the beginning of the destination address?
6517 */
6518 s = gen_llprefixlen();
6519
6520 /*
6521 * If "s" is non-null, it has code to arrange that the
6522 * X register contains the length of the prefix preceding
6523 * the link-layer header. Add to it the offset computed
6524 * into the register specified by "index", and move that
6525 * into the X register. Otherwise, just load into the X
6526 * register the offset computed into the register specifed
6527 * by "index".
6528 */
6529 if (s != NULL) {
6530 sappend(s, xfer_to_a(inst));
6531 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6532 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6533 } else
6534 s = xfer_to_x(inst);
6535
6536 /*
6537 * Load the item at the sum of the offset we've put in the
6538 * X register and the offset of the start of the link
6539 * layer header (which is 0 if the radio header is
6540 * variable-length; that header length is what we put
6541 * into the X register and then added to the index).
6542 */
6543 tmp = new_stmt(BPF_LD|BPF_IND|size);
6544 tmp->s.k = off_ll;
6545 sappend(s, tmp);
6546 sappend(inst->s, s);
6547 break;
6548
6549 case Q_IP:
6550 case Q_ARP:
6551 case Q_RARP:
6552 case Q_ATALK:
6553 case Q_DECNET:
6554 case Q_SCA:
6555 case Q_LAT:
6556 case Q_MOPRC:
6557 case Q_MOPDL:
6558 #ifdef INET6
6559 case Q_IPV6:
6560 #endif
6561 /*
6562 * The offset is relative to the beginning of
6563 * the network-layer header.
6564 * XXX - are there any cases where we want
6565 * off_nl_nosnap?
6566 */
6567 s = gen_off_macpl();
6568
6569 /*
6570 * If "s" is non-null, it has code to arrange that the
6571 * X register contains the offset of the MAC-layer
6572 * payload. Add to it the offset computed into the
6573 * register specified by "index", and move that into
6574 * the X register. Otherwise, just load into the X
6575 * register the offset computed into the register specifed
6576 * by "index".
6577 */
6578 if (s != NULL) {
6579 sappend(s, xfer_to_a(inst));
6580 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6581 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6582 } else
6583 s = xfer_to_x(inst);
6584
6585 /*
6586 * Load the item at the sum of the offset we've put in the
6587 * X register, the offset of the start of the network
6588 * layer header from the beginning of the MAC-layer
6589 * payload, and the purported offset of the start of the
6590 * MAC-layer payload (which might be 0 if there's a
6591 * variable-length prefix before the link-layer header
6592 * or the link-layer header itself is variable-length;
6593 * the variable-length offset of the start of the
6594 * MAC-layer payload is what we put into the X register
6595 * and then added to the index).
6596 */
6597 tmp = new_stmt(BPF_LD|BPF_IND|size);
6598 tmp->s.k = off_macpl + off_nl;
6599 sappend(s, tmp);
6600 sappend(inst->s, s);
6601
6602 /*
6603 * Do the computation only if the packet contains
6604 * the protocol in question.
6605 */
6606 b = gen_proto_abbrev(proto);
6607 if (inst->b)
6608 gen_and(inst->b, b);
6609 inst->b = b;
6610 break;
6611
6612 case Q_SCTP:
6613 case Q_TCP:
6614 case Q_UDP:
6615 case Q_ICMP:
6616 case Q_IGMP:
6617 case Q_IGRP:
6618 case Q_PIM:
6619 case Q_VRRP:
6620 /*
6621 * The offset is relative to the beginning of
6622 * the transport-layer header.
6623 *
6624 * Load the X register with the length of the IPv4 header
6625 * (plus the offset of the link-layer header, if it's
6626 * a variable-length header), in bytes.
6627 *
6628 * XXX - are there any cases where we want
6629 * off_nl_nosnap?
6630 * XXX - we should, if we're built with
6631 * IPv6 support, generate code to load either
6632 * IPv4, IPv6, or both, as appropriate.
6633 */
6634 s = gen_loadx_iphdrlen();
6635
6636 /*
6637 * The X register now contains the sum of the length
6638 * of any variable-length header preceding the link-layer
6639 * header, any variable-length link-layer header, and the
6640 * length of the network-layer header.
6641 *
6642 * Load into the A register the offset relative to
6643 * the beginning of the transport layer header,
6644 * add the X register to that, move that to the
6645 * X register, and load with an offset from the
6646 * X register equal to the offset of the network
6647 * layer header relative to the beginning of
6648 * the MAC-layer payload plus the fixed-length
6649 * portion of the offset of the MAC-layer payload
6650 * from the beginning of the raw packet data.
6651 */
6652 sappend(s, xfer_to_a(inst));
6653 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6654 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6655 sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6656 tmp->s.k = off_macpl + off_nl;
6657 sappend(inst->s, s);
6658
6659 /*
6660 * Do the computation only if the packet contains
6661 * the protocol in question - which is true only
6662 * if this is an IP datagram and is the first or
6663 * only fragment of that datagram.
6664 */
6665 gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6666 if (inst->b)
6667 gen_and(inst->b, b);
6668 #ifdef INET6
6669 gen_and(gen_proto_abbrev(Q_IP), b);
6670 #endif
6671 inst->b = b;
6672 break;
6673 #ifdef INET6
6674 case Q_ICMPV6:
6675 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6676 /*NOTREACHED*/
6677 #endif
6678 }
6679 inst->regno = regno;
6680 s = new_stmt(BPF_ST);
6681 s->s.k = regno;
6682 sappend(inst->s, s);
6683
6684 return inst;
6685 }
6686
6687 struct block *
6688 gen_relation(code, a0, a1, reversed)
6689 int code;
6690 struct arth *a0, *a1;
6691 int reversed;
6692 {
6693 struct slist *s0, *s1, *s2;
6694 struct block *b, *tmp;
6695
6696 s0 = xfer_to_x(a1);
6697 s1 = xfer_to_a(a0);
6698 if (code == BPF_JEQ) {
6699 s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6700 b = new_block(JMP(code));
6701 sappend(s1, s2);
6702 }
6703 else
6704 b = new_block(BPF_JMP|code|BPF_X);
6705 if (reversed)
6706 gen_not(b);
6707
6708 sappend(s0, s1);
6709 sappend(a1->s, s0);
6710 sappend(a0->s, a1->s);
6711
6712 b->stmts = a0->s;
6713
6714 free_reg(a0->regno);
6715 free_reg(a1->regno);
6716
6717 /* 'and' together protocol checks */
6718 if (a0->b) {
6719 if (a1->b) {
6720 gen_and(a0->b, tmp = a1->b);
6721 }
6722 else
6723 tmp = a0->b;
6724 } else
6725 tmp = a1->b;
6726
6727 if (tmp)
6728 gen_and(tmp, b);
6729
6730 return b;
6731 }
6732
6733 struct arth *
6734 gen_loadlen()
6735 {
6736 int regno = alloc_reg();
6737 struct arth *a = (struct arth *)newchunk(sizeof(*a));
6738 struct slist *s;
6739
6740 s = new_stmt(BPF_LD|BPF_LEN);
6741 s->next = new_stmt(BPF_ST);
6742 s->next->s.k = regno;
6743 a->s = s;
6744 a->regno = regno;
6745
6746 return a;
6747 }
6748
6749 struct arth *
6750 gen_loadi(val)
6751 int val;
6752 {
6753 struct arth *a;
6754 struct slist *s;
6755 int reg;
6756
6757 a = (struct arth *)newchunk(sizeof(*a));
6758
6759 reg = alloc_reg();
6760
6761 s = new_stmt(BPF_LD|BPF_IMM);
6762 s->s.k = val;
6763 s->next = new_stmt(BPF_ST);
6764 s->next->s.k = reg;
6765 a->s = s;
6766 a->regno = reg;
6767
6768 return a;
6769 }
6770
6771 struct arth *
6772 gen_neg(a)
6773 struct arth *a;
6774 {
6775 struct slist *s;
6776
6777 s = xfer_to_a(a);
6778 sappend(a->s, s);
6779 s = new_stmt(BPF_ALU|BPF_NEG);
6780 s->s.k = 0;
6781 sappend(a->s, s);
6782 s = new_stmt(BPF_ST);
6783 s->s.k = a->regno;
6784 sappend(a->s, s);
6785
6786 return a;
6787 }
6788
6789 struct arth *
6790 gen_arth(code, a0, a1)
6791 int code;
6792 struct arth *a0, *a1;
6793 {
6794 struct slist *s0, *s1, *s2;
6795
6796 s0 = xfer_to_x(a1);
6797 s1 = xfer_to_a(a0);
6798 s2 = new_stmt(BPF_ALU|BPF_X|code);
6799
6800 sappend(s1, s2);
6801 sappend(s0, s1);
6802 sappend(a1->s, s0);
6803 sappend(a0->s, a1->s);
6804
6805 free_reg(a0->regno);
6806 free_reg(a1->regno);
6807
6808 s0 = new_stmt(BPF_ST);
6809 a0->regno = s0->s.k = alloc_reg();
6810 sappend(a0->s, s0);
6811
6812 return a0;
6813 }
6814
6815 /*
6816 * Here we handle simple allocation of the scratch registers.
6817 * If too many registers are alloc'd, the allocator punts.
6818 */
6819 static int regused[BPF_MEMWORDS];
6820 static int curreg;
6821
6822 /*
6823 * Initialize the table of used registers and the current register.
6824 */
6825 static void
6826 init_regs()
6827 {
6828 curreg = 0;
6829 memset(regused, 0, sizeof regused);
6830 }
6831
6832 /*
6833 * Return the next free register.
6834 */
6835 static int
6836 alloc_reg()
6837 {
6838 int n = BPF_MEMWORDS;
6839
6840 while (--n >= 0) {
6841 if (regused[curreg])
6842 curreg = (curreg + 1) % BPF_MEMWORDS;
6843 else {
6844 regused[curreg] = 1;
6845 return curreg;
6846 }
6847 }
6848 bpf_error("too many registers needed to evaluate expression");
6849 /* NOTREACHED */
6850 return 0;
6851 }
6852
6853 /*
6854 * Return a register to the table so it can
6855 * be used later.
6856 */
6857 static void
6858 free_reg(n)
6859 int n;
6860 {
6861 regused[n] = 0;
6862 }
6863
6864 static struct block *
6865 gen_len(jmp, n)
6866 int jmp, n;
6867 {
6868 struct slist *s;
6869 struct block *b;
6870
6871 s = new_stmt(BPF_LD|BPF_LEN);
6872 b = new_block(JMP(jmp));
6873 b->stmts = s;
6874 b->s.k = n;
6875
6876 return b;
6877 }
6878
6879 struct block *
6880 gen_greater(n)
6881 int n;
6882 {
6883 return gen_len(BPF_JGE, n);
6884 }
6885
6886 /*
6887 * Actually, this is less than or equal.
6888 */
6889 struct block *
6890 gen_less(n)
6891 int n;
6892 {
6893 struct block *b;
6894
6895 b = gen_len(BPF_JGT, n);
6896 gen_not(b);
6897
6898 return b;
6899 }
6900
6901 /*
6902 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
6903 * the beginning of the link-layer header.
6904 * XXX - that means you can't test values in the radiotap header, but
6905 * as that header is difficult if not impossible to parse generally
6906 * without a loop, that might not be a severe problem. A new keyword
6907 * "radio" could be added for that, although what you'd really want
6908 * would be a way of testing particular radio header values, which
6909 * would generate code appropriate to the radio header in question.
6910 */
6911 struct block *
6912 gen_byteop(op, idx, val)
6913 int op, idx, val;
6914 {
6915 struct block *b;
6916 struct slist *s;
6917
6918 switch (op) {
6919 default:
6920 abort();
6921
6922 case '=':
6923 return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6924
6925 case '<':
6926 b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6927 return b;
6928
6929 case '>':
6930 b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6931 return b;
6932
6933 case '|':
6934 s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
6935 break;
6936
6937 case '&':
6938 s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
6939 break;
6940 }
6941 s->s.k = val;
6942 b = new_block(JMP(BPF_JEQ));
6943 b->stmts = s;
6944 gen_not(b);
6945
6946 return b;
6947 }
6948
6949 static u_char abroadcast[] = { 0x0 };
6950
6951 struct block *
6952 gen_broadcast(proto)
6953 int proto;
6954 {
6955 bpf_u_int32 hostmask;
6956 struct block *b0, *b1, *b2;
6957 static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
6958
6959 switch (proto) {
6960
6961 case Q_DEFAULT:
6962 case Q_LINK:
6963 switch (linktype) {
6964 case DLT_ARCNET:
6965 case DLT_ARCNET_LINUX:
6966 return gen_ahostop(abroadcast, Q_DST);
6967 case DLT_EN10MB:
6968 return gen_ehostop(ebroadcast, Q_DST);
6969 case DLT_FDDI:
6970 return gen_fhostop(ebroadcast, Q_DST);
6971 case DLT_IEEE802:
6972 return gen_thostop(ebroadcast, Q_DST);
6973 case DLT_IEEE802_11:
6974 case DLT_PRISM_HEADER:
6975 case DLT_IEEE802_11_RADIO_AVS:
6976 case DLT_IEEE802_11_RADIO:
6977 case DLT_PPI:
6978 return gen_wlanhostop(ebroadcast, Q_DST);
6979 case DLT_IP_OVER_FC:
6980 return gen_ipfchostop(ebroadcast, Q_DST);
6981 case DLT_SUNATM:
6982 if (is_lane) {
6983 /*
6984 * Check that the packet doesn't begin with an
6985 * LE Control marker. (We've already generated
6986 * a test for LANE.)
6987 */
6988 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6989 BPF_H, 0xFF00);
6990 gen_not(b1);
6991
6992 /*
6993 * Now check the MAC address.
6994 */
6995 b0 = gen_ehostop(ebroadcast, Q_DST);
6996 gen_and(b1, b0);
6997 return b0;
6998 }
6999 break;
7000 default:
7001 bpf_error("not a broadcast link");
7002 }
7003 break;
7004
7005 case Q_IP:
7006 b0 = gen_linktype(ETHERTYPE_IP);
7007 hostmask = ~netmask;
7008 b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7009 b2 = gen_mcmp(OR_NET, 16, BPF_W,
7010 (bpf_int32)(~0 & hostmask), hostmask);
7011 gen_or(b1, b2);
7012 gen_and(b0, b2);
7013 return b2;
7014 }
7015 bpf_error("only link-layer/IP broadcast filters supported");
7016 /* NOTREACHED */
7017 return NULL;
7018 }
7019
7020 /*
7021 * Generate code to test the low-order bit of a MAC address (that's
7022 * the bottom bit of the *first* byte).
7023 */
7024 static struct block *
7025 gen_mac_multicast(offset)
7026 int offset;
7027 {
7028 register struct block *b0;
7029 register struct slist *s;
7030
7031 /* link[offset] & 1 != 0 */
7032 s = gen_load_a(OR_LINK, offset, BPF_B);
7033 b0 = new_block(JMP(BPF_JSET));
7034 b0->s.k = 1;
7035 b0->stmts = s;
7036 return b0;
7037 }
7038
7039 struct block *
7040 gen_multicast(proto)
7041 int proto;
7042 {
7043 register struct block *b0, *b1, *b2;
7044 register struct slist *s;
7045
7046 switch (proto) {
7047
7048 case Q_DEFAULT:
7049 case Q_LINK:
7050 switch (linktype) {
7051 case DLT_ARCNET:
7052 case DLT_ARCNET_LINUX:
7053 /* all ARCnet multicasts use the same address */
7054 return gen_ahostop(abroadcast, Q_DST);
7055 case DLT_EN10MB:
7056 /* ether[0] & 1 != 0 */
7057 return gen_mac_multicast(0);
7058 case DLT_FDDI:
7059 /*
7060 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7061 *
7062 * XXX - was that referring to bit-order issues?
7063 */
7064 /* fddi[1] & 1 != 0 */
7065 return gen_mac_multicast(1);
7066 case DLT_IEEE802:
7067 /* tr[2] & 1 != 0 */
7068 return gen_mac_multicast(2);
7069 case DLT_IEEE802_11:
7070 case DLT_PRISM_HEADER:
7071 case DLT_IEEE802_11_RADIO_AVS:
7072 case DLT_IEEE802_11_RADIO:
7073 case DLT_PPI:
7074 /*
7075 * Oh, yuk.
7076 *
7077 * For control frames, there is no DA.
7078 *
7079 * For management frames, DA is at an
7080 * offset of 4 from the beginning of
7081 * the packet.
7082 *
7083 * For data frames, DA is at an offset
7084 * of 4 from the beginning of the packet
7085 * if To DS is clear and at an offset of
7086 * 16 from the beginning of the packet
7087 * if To DS is set.
7088 */
7089
7090 /*
7091 * Generate the tests to be done for data frames.
7092 *
7093 * First, check for To DS set, i.e. "link[1] & 0x01".
7094 */
7095 s = gen_load_a(OR_LINK, 1, BPF_B);
7096 b1 = new_block(JMP(BPF_JSET));
7097 b1->s.k = 0x01; /* To DS */
7098 b1->stmts = s;
7099
7100 /*
7101 * If To DS is set, the DA is at 16.
7102 */
7103 b0 = gen_mac_multicast(16);
7104 gen_and(b1, b0);
7105
7106 /*
7107 * Now, check for To DS not set, i.e. check
7108 * "!(link[1] & 0x01)".
7109 */
7110 s = gen_load_a(OR_LINK, 1, BPF_B);
7111 b2 = new_block(JMP(BPF_JSET));
7112 b2->s.k = 0x01; /* To DS */
7113 b2->stmts = s;
7114 gen_not(b2);
7115
7116 /*
7117 * If To DS is not set, the DA is at 4.
7118 */
7119 b1 = gen_mac_multicast(4);
7120 gen_and(b2, b1);
7121
7122 /*
7123 * Now OR together the last two checks. That gives
7124 * the complete set of checks for data frames.
7125 */
7126 gen_or(b1, b0);
7127
7128 /*
7129 * Now check for a data frame.
7130 * I.e, check "link[0] & 0x08".
7131 */
7132 s = gen_load_a(OR_LINK, 0, BPF_B);
7133 b1 = new_block(JMP(BPF_JSET));
7134 b1->s.k = 0x08;
7135 b1->stmts = s;
7136
7137 /*
7138 * AND that with the checks done for data frames.
7139 */
7140 gen_and(b1, b0);
7141
7142 /*
7143 * If the high-order bit of the type value is 0, this
7144 * is a management frame.
7145 * I.e, check "!(link[0] & 0x08)".
7146 */
7147 s = gen_load_a(OR_LINK, 0, BPF_B);
7148 b2 = new_block(JMP(BPF_JSET));
7149 b2->s.k = 0x08;
7150 b2->stmts = s;
7151 gen_not(b2);
7152
7153 /*
7154 * For management frames, the DA is at 4.
7155 */
7156 b1 = gen_mac_multicast(4);
7157 gen_and(b2, b1);
7158
7159 /*
7160 * OR that with the checks done for data frames.
7161 * That gives the checks done for management and
7162 * data frames.
7163 */
7164 gen_or(b1, b0);
7165
7166 /*
7167 * If the low-order bit of the type value is 1,
7168 * this is either a control frame or a frame
7169 * with a reserved type, and thus not a
7170 * frame with an SA.
7171 *
7172 * I.e., check "!(link[0] & 0x04)".
7173 */
7174 s = gen_load_a(OR_LINK, 0, BPF_B);
7175 b1 = new_block(JMP(BPF_JSET));
7176 b1->s.k = 0x04;
7177 b1->stmts = s;
7178 gen_not(b1);
7179
7180 /*
7181 * AND that with the checks for data and management
7182 * frames.
7183 */
7184 gen_and(b1, b0);
7185 return b0;
7186 case DLT_IP_OVER_FC:
7187 b0 = gen_mac_multicast(2);
7188 return b0;
7189 case DLT_SUNATM:
7190 if (is_lane) {
7191 /*
7192 * Check that the packet doesn't begin with an
7193 * LE Control marker. (We've already generated
7194 * a test for LANE.)
7195 */
7196 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7197 BPF_H, 0xFF00);
7198 gen_not(b1);
7199
7200 /* ether[off_mac] & 1 != 0 */
7201 b0 = gen_mac_multicast(off_mac);
7202 gen_and(b1, b0);
7203 return b0;
7204 }
7205 break;
7206 default:
7207 break;
7208 }
7209 /* Link not known to support multicasts */
7210 break;
7211
7212 case Q_IP:
7213 b0 = gen_linktype(ETHERTYPE_IP);
7214 b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7215 gen_and(b0, b1);
7216 return b1;
7217
7218 #ifdef INET6
7219 case Q_IPV6:
7220 b0 = gen_linktype(ETHERTYPE_IPV6);
7221 b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7222 gen_and(b0, b1);
7223 return b1;
7224 #endif /* INET6 */
7225 }
7226 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7227 /* NOTREACHED */
7228 return NULL;
7229 }
7230
7231 /*
7232 * generate command for inbound/outbound. It's here so we can
7233 * make it link-type specific. 'dir' = 0 implies "inbound",
7234 * = 1 implies "outbound".
7235 */
7236 struct block *
7237 gen_inbound(dir)
7238 int dir;
7239 {
7240 register struct block *b0;
7241
7242 /*
7243 * Only some data link types support inbound/outbound qualifiers.
7244 */
7245 switch (linktype) {
7246 case DLT_SLIP:
7247 b0 = gen_relation(BPF_JEQ,
7248 gen_load(Q_LINK, gen_loadi(0), 1),
7249 gen_loadi(0),
7250 dir);
7251 break;
7252
7253 case DLT_LINUX_SLL:
7254 if (dir) {
7255 /*
7256 * Match packets sent by this machine.
7257 */
7258 b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7259 } else {
7260 /*
7261 * Match packets sent to this machine.
7262 * (No broadcast or multicast packets, or
7263 * packets sent to some other machine and
7264 * received promiscuously.)
7265 *
7266 * XXX - packets sent to other machines probably
7267 * shouldn't be matched, but what about broadcast
7268 * or multicast packets we received?
7269 */
7270 b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
7271 }
7272 break;
7273
7274 #ifdef HAVE_NET_PFVAR_H
7275 case DLT_PFLOG:
7276 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7277 (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7278 break;
7279 #endif
7280
7281 case DLT_PPP_PPPD:
7282 if (dir) {
7283 /* match outgoing packets */
7284 b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7285 } else {
7286 /* match incoming packets */
7287 b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7288 }
7289 break;
7290
7291 case DLT_JUNIPER_MFR:
7292 case DLT_JUNIPER_MLFR:
7293 case DLT_JUNIPER_MLPPP:
7294 case DLT_JUNIPER_ATM1:
7295 case DLT_JUNIPER_ATM2:
7296 case DLT_JUNIPER_PPPOE:
7297 case DLT_JUNIPER_PPPOE_ATM:
7298 case DLT_JUNIPER_GGSN:
7299 case DLT_JUNIPER_ES:
7300 case DLT_JUNIPER_MONITOR:
7301 case DLT_JUNIPER_SERVICES:
7302 case DLT_JUNIPER_ETHER:
7303 case DLT_JUNIPER_PPP:
7304 case DLT_JUNIPER_FRELAY:
7305 case DLT_JUNIPER_CHDLC:
7306 case DLT_JUNIPER_VP:
7307 case DLT_JUNIPER_ST:
7308 case DLT_JUNIPER_ISM:
7309 /* juniper flags (including direction) are stored
7310 * the byte after the 3-byte magic number */
7311 if (dir) {
7312 /* match outgoing packets */
7313 b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7314 } else {
7315 /* match incoming packets */
7316 b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7317 }
7318 break;
7319
7320 default:
7321 bpf_error("inbound/outbound not supported on linktype %d",
7322 linktype);
7323 b0 = NULL;
7324 /* NOTREACHED */
7325 }
7326 return (b0);
7327 }
7328
7329 #ifdef HAVE_NET_PFVAR_H
7330 /* PF firewall log matched interface */
7331 struct block *
7332 gen_pf_ifname(const char *ifname)
7333 {
7334 struct block *b0;
7335 u_int len, off;
7336
7337 if (linktype != DLT_PFLOG) {
7338 bpf_error("ifname supported only on PF linktype");
7339 /* NOTREACHED */
7340 }
7341 len = sizeof(((struct pfloghdr *)0)->ifname);
7342 off = offsetof(struct pfloghdr, ifname);
7343 if (strlen(ifname) >= len) {
7344 bpf_error("ifname interface names can only be %d characters",
7345 len-1);
7346 /* NOTREACHED */
7347 }
7348 b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7349 return (b0);
7350 }
7351
7352 /* PF firewall log ruleset name */
7353 struct block *
7354 gen_pf_ruleset(char *ruleset)
7355 {
7356 struct block *b0;
7357
7358 if (linktype != DLT_PFLOG) {
7359 bpf_error("ruleset supported only on PF linktype");
7360 /* NOTREACHED */
7361 }
7362
7363 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7364 bpf_error("ruleset names can only be %ld characters",
7365 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7366 /* NOTREACHED */
7367 }
7368
7369 b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7370 strlen(ruleset), (const u_char *)ruleset);
7371 return (b0);
7372 }
7373
7374 /* PF firewall log rule number */
7375 struct block *
7376 gen_pf_rnr(int rnr)
7377 {
7378 struct block *b0;
7379
7380 if (linktype != DLT_PFLOG) {
7381 bpf_error("rnr supported only on PF linktype");
7382 /* NOTREACHED */
7383 }
7384
7385 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7386 (bpf_int32)rnr);
7387 return (b0);
7388 }
7389
7390 /* PF firewall log sub-rule number */
7391 struct block *
7392 gen_pf_srnr(int srnr)
7393 {
7394 struct block *b0;
7395
7396 if (linktype != DLT_PFLOG) {
7397 bpf_error("srnr supported only on PF linktype");
7398 /* NOTREACHED */
7399 }
7400
7401 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7402 (bpf_int32)srnr);
7403 return (b0);
7404 }
7405
7406 /* PF firewall log reason code */
7407 struct block *
7408 gen_pf_reason(int reason)
7409 {
7410 struct block *b0;
7411
7412 if (linktype != DLT_PFLOG) {
7413 bpf_error("reason supported only on PF linktype");
7414 /* NOTREACHED */
7415 }
7416
7417 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7418 (bpf_int32)reason);
7419 return (b0);
7420 }
7421
7422 /* PF firewall log action */
7423 struct block *
7424 gen_pf_action(int action)
7425 {
7426 struct block *b0;
7427
7428 if (linktype != DLT_PFLOG) {
7429 bpf_error("action supported only on PF linktype");
7430 /* NOTREACHED */
7431 }
7432
7433 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7434 (bpf_int32)action);
7435 return (b0);
7436 }
7437 #else /* !HAVE_NET_PFVAR_H */
7438 struct block *
7439 gen_pf_ifname(const char *ifname)
7440 {
7441 bpf_error("libpcap was compiled without pf support");
7442 /* NOTREACHED */
7443 return (NULL);
7444 }
7445
7446 struct block *
7447 gen_pf_ruleset(char *ruleset)
7448 {
7449 bpf_error("libpcap was compiled on a machine without pf support");
7450 /* NOTREACHED */
7451 return (NULL);
7452 }
7453
7454 struct block *
7455 gen_pf_rnr(int rnr)
7456 {
7457 bpf_error("libpcap was compiled on a machine without pf support");
7458 /* NOTREACHED */
7459 return (NULL);
7460 }
7461
7462 struct block *
7463 gen_pf_srnr(int srnr)
7464 {
7465 bpf_error("libpcap was compiled on a machine without pf support");
7466 /* NOTREACHED */
7467 return (NULL);
7468 }
7469
7470 struct block *
7471 gen_pf_reason(int reason)
7472 {
7473 bpf_error("libpcap was compiled on a machine without pf support");
7474 /* NOTREACHED */
7475 return (NULL);
7476 }
7477
7478 struct block *
7479 gen_pf_action(int action)
7480 {
7481 bpf_error("libpcap was compiled on a machine without pf support");
7482 /* NOTREACHED */
7483 return (NULL);
7484 }
7485 #endif /* HAVE_NET_PFVAR_H */
7486
7487 /* IEEE 802.11 wireless header */
7488 struct block *
7489 gen_p80211_type(int type, int mask)
7490 {
7491 struct block *b0;
7492
7493 switch (linktype) {
7494
7495 case DLT_IEEE802_11:
7496 case DLT_PRISM_HEADER:
7497 case DLT_IEEE802_11_RADIO_AVS:
7498 case DLT_IEEE802_11_RADIO:
7499 b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7500 (bpf_int32)mask);
7501 break;
7502
7503 default:
7504 bpf_error("802.11 link-layer types supported only on 802.11");
7505 /* NOTREACHED */
7506 }
7507
7508 return (b0);
7509 }
7510
7511 struct block *
7512 gen_p80211_fcdir(int fcdir)
7513 {
7514 struct block *b0;
7515
7516 switch (linktype) {
7517
7518 case DLT_IEEE802_11:
7519 case DLT_PRISM_HEADER:
7520 case DLT_IEEE802_11_RADIO_AVS:
7521 case DLT_IEEE802_11_RADIO:
7522 break;
7523
7524 default:
7525 bpf_error("frame direction supported only with 802.11 headers");
7526 /* NOTREACHED */
7527 }
7528
7529 b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7530 (bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7531
7532 return (b0);
7533 }
7534
7535 struct block *
7536 gen_acode(eaddr, q)
7537 register const u_char *eaddr;
7538 struct qual q;
7539 {
7540 switch (linktype) {
7541
7542 case DLT_ARCNET:
7543 case DLT_ARCNET_LINUX:
7544 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7545 q.proto == Q_LINK)
7546 return (gen_ahostop(eaddr, (int)q.dir));
7547 else {
7548 bpf_error("ARCnet address used in non-arc expression");
7549 /* NOTREACHED */
7550 }
7551 break;
7552
7553 default:
7554 bpf_error("aid supported only on ARCnet");
7555 /* NOTREACHED */
7556 }
7557 bpf_error("ARCnet address used in non-arc expression");
7558 /* NOTREACHED */
7559 return NULL;
7560 }
7561
7562 static struct block *
7563 gen_ahostop(eaddr, dir)
7564 register const u_char *eaddr;
7565 register int dir;
7566 {
7567 register struct block *b0, *b1;
7568
7569 switch (dir) {
7570 /* src comes first, different from Ethernet */
7571 case Q_SRC:
7572 return gen_bcmp(OR_LINK, 0, 1, eaddr);
7573
7574 case Q_DST:
7575 return gen_bcmp(OR_LINK, 1, 1, eaddr);
7576
7577 case Q_AND:
7578 b0 = gen_ahostop(eaddr, Q_SRC);
7579 b1 = gen_ahostop(eaddr, Q_DST);
7580 gen_and(b0, b1);
7581 return b1;
7582
7583 case Q_DEFAULT:
7584 case Q_OR:
7585 b0 = gen_ahostop(eaddr, Q_SRC);
7586 b1 = gen_ahostop(eaddr, Q_DST);
7587 gen_or(b0, b1);
7588 return b1;
7589 }
7590 abort();
7591 /* NOTREACHED */
7592 }
7593
7594 /*
7595 * support IEEE 802.1Q VLAN trunk over ethernet
7596 */
7597 struct block *
7598 gen_vlan(vlan_num)
7599 int vlan_num;
7600 {
7601 struct block *b0, *b1;
7602
7603 /* can't check for VLAN-encapsulated packets inside MPLS */
7604 if (label_stack_depth > 0)
7605 bpf_error("no VLAN match after MPLS");
7606
7607 /*
7608 * Check for a VLAN packet, and then change the offsets to point
7609 * to the type and data fields within the VLAN packet. Just
7610 * increment the offsets, so that we can support a hierarchy, e.g.
7611 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7612 * VLAN 100.
7613 *
7614 * XXX - this is a bit of a kludge. If we were to split the
7615 * compiler into a parser that parses an expression and
7616 * generates an expression tree, and a code generator that
7617 * takes an expression tree (which could come from our
7618 * parser or from some other parser) and generates BPF code,
7619 * we could perhaps make the offsets parameters of routines
7620 * and, in the handler for an "AND" node, pass to subnodes
7621 * other than the VLAN node the adjusted offsets.
7622 *
7623 * This would mean that "vlan" would, instead of changing the
7624 * behavior of *all* tests after it, change only the behavior
7625 * of tests ANDed with it. That would change the documented
7626 * semantics of "vlan", which might break some expressions.
7627 * However, it would mean that "(vlan and ip) or ip" would check
7628 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7629 * checking only for VLAN-encapsulated IP, so that could still
7630 * be considered worth doing; it wouldn't break expressions
7631 * that are of the form "vlan and ..." or "vlan N and ...",
7632 * which I suspect are the most common expressions involving
7633 * "vlan". "vlan or ..." doesn't necessarily do what the user
7634 * would really want, now, as all the "or ..." tests would
7635 * be done assuming a VLAN, even though the "or" could be viewed
7636 * as meaning "or, if this isn't a VLAN packet...".
7637 */
7638 orig_nl = off_nl;
7639
7640 switch (linktype) {
7641
7642 case DLT_EN10MB:
7643 /* check for VLAN */
7644 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7645 (bpf_int32)ETHERTYPE_8021Q);
7646
7647 /* If a specific VLAN is requested, check VLAN id */
7648 if (vlan_num >= 0) {
7649 b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7650 (bpf_int32)vlan_num, 0x0fff);
7651 gen_and(b0, b1);
7652 b0 = b1;
7653 }
7654
7655 off_macpl += 4;
7656 off_linktype += 4;
7657 #if 0
7658 off_nl_nosnap += 4;
7659 off_nl += 4;
7660 #endif
7661 break;
7662
7663 default:
7664 bpf_error("no VLAN support for data link type %d",
7665 linktype);
7666 /*NOTREACHED*/
7667 }
7668
7669 return (b0);
7670 }
7671
7672 /*
7673 * support for MPLS
7674 */
7675 struct block *
7676 gen_mpls(label_num)
7677 int label_num;
7678 {
7679 struct block *b0,*b1;
7680
7681 /*
7682 * Change the offsets to point to the type and data fields within
7683 * the MPLS packet. Just increment the offsets, so that we
7684 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7685 * capture packets with an outer label of 100000 and an inner
7686 * label of 1024.
7687 *
7688 * XXX - this is a bit of a kludge. See comments in gen_vlan().
7689 */
7690 orig_nl = off_nl;
7691
7692 if (label_stack_depth > 0) {
7693 /* just match the bottom-of-stack bit clear */
7694 b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7695 } else {
7696 /*
7697 * Indicate that we're checking MPLS-encapsulated headers,
7698 * to make sure higher level code generators don't try to
7699 * match against IP-related protocols such as Q_ARP, Q_RARP
7700 * etc.
7701 */
7702 switch (linktype) {
7703
7704 case DLT_C_HDLC: /* fall through */
7705 case DLT_EN10MB:
7706 b0 = gen_linktype(ETHERTYPE_MPLS);
7707 break;
7708
7709 case DLT_PPP:
7710 b0 = gen_linktype(PPP_MPLS_UCAST);
7711 break;
7712
7713 /* FIXME add other DLT_s ...
7714 * for Frame-Relay/and ATM this may get messy due to SNAP headers
7715 * leave it for now */
7716
7717 default:
7718 bpf_error("no MPLS support for data link type %d",
7719 linktype);
7720 b0 = NULL;
7721 /*NOTREACHED*/
7722 break;
7723 }
7724 }
7725
7726 /* If a specific MPLS label is requested, check it */
7727 if (label_num >= 0) {
7728 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
7729 b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
7730 0xfffff000); /* only compare the first 20 bits */
7731 gen_and(b0, b1);
7732 b0 = b1;
7733 }
7734
7735 off_nl_nosnap += 4;
7736 off_nl += 4;
7737 label_stack_depth++;
7738 return (b0);
7739 }
7740
7741 /*
7742 * Support PPPOE discovery and session.
7743 */
7744 struct block *
7745 gen_pppoed()
7746 {
7747 /* check for PPPoE discovery */
7748 return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
7749 }
7750
7751 struct block *
7752 gen_pppoes()
7753 {
7754 struct block *b0;
7755
7756 /*
7757 * Test against the PPPoE session link-layer type.
7758 */
7759 b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
7760
7761 /*
7762 * Change the offsets to point to the type and data fields within
7763 * the PPP packet, and note that this is PPPoE rather than
7764 * raw PPP.
7765 *
7766 * XXX - this is a bit of a kludge. If we were to split the
7767 * compiler into a parser that parses an expression and
7768 * generates an expression tree, and a code generator that
7769 * takes an expression tree (which could come from our
7770 * parser or from some other parser) and generates BPF code,
7771 * we could perhaps make the offsets parameters of routines
7772 * and, in the handler for an "AND" node, pass to subnodes
7773 * other than the PPPoE node the adjusted offsets.
7774 *
7775 * This would mean that "pppoes" would, instead of changing the
7776 * behavior of *all* tests after it, change only the behavior
7777 * of tests ANDed with it. That would change the documented
7778 * semantics of "pppoes", which might break some expressions.
7779 * However, it would mean that "(pppoes and ip) or ip" would check
7780 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7781 * checking only for VLAN-encapsulated IP, so that could still
7782 * be considered worth doing; it wouldn't break expressions
7783 * that are of the form "pppoes and ..." which I suspect are the
7784 * most common expressions involving "pppoes". "pppoes or ..."
7785 * doesn't necessarily do what the user would really want, now,
7786 * as all the "or ..." tests would be done assuming PPPoE, even
7787 * though the "or" could be viewed as meaning "or, if this isn't
7788 * a PPPoE packet...".
7789 */
7790 orig_linktype = off_linktype; /* save original values */
7791 orig_nl = off_nl;
7792 is_pppoes = 1;
7793
7794 /*
7795 * The "network-layer" protocol is PPPoE, which has a 6-byte
7796 * PPPoE header, followed by a PPP packet.
7797 *
7798 * There is no HDLC encapsulation for the PPP packet (it's
7799 * encapsulated in PPPoES instead), so the link-layer type
7800 * starts at the first byte of the PPP packet. For PPPoE,
7801 * that offset is relative to the beginning of the total
7802 * link-layer payload, including any 802.2 LLC header, so
7803 * it's 6 bytes past off_nl.
7804 */
7805 off_linktype = off_nl + 6;
7806
7807 /*
7808 * The network-layer offsets are relative to the beginning
7809 * of the MAC-layer payload; that's past the 6-byte
7810 * PPPoE header and the 2-byte PPP header.
7811 */
7812 off_nl = 6+2;
7813 off_nl_nosnap = 6+2;
7814
7815 return b0;
7816 }
7817
7818 struct block *
7819 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
7820 int atmfield;
7821 bpf_int32 jvalue;
7822 bpf_u_int32 jtype;
7823 int reverse;
7824 {
7825 struct block *b0;
7826
7827 switch (atmfield) {
7828
7829 case A_VPI:
7830 if (!is_atm)
7831 bpf_error("'vpi' supported only on raw ATM");
7832 if (off_vpi == (u_int)-1)
7833 abort();
7834 b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
7835 reverse, jvalue);
7836 break;
7837
7838 case A_VCI:
7839 if (!is_atm)
7840 bpf_error("'vci' supported only on raw ATM");
7841 if (off_vci == (u_int)-1)
7842 abort();
7843 b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
7844 reverse, jvalue);
7845 break;
7846
7847 case A_PROTOTYPE:
7848 if (off_proto == (u_int)-1)
7849 abort(); /* XXX - this isn't on FreeBSD */
7850 b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
7851 reverse, jvalue);
7852 break;
7853
7854 case A_MSGTYPE:
7855 if (off_payload == (u_int)-1)
7856 abort();
7857 b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
7858 0xffffffff, jtype, reverse, jvalue);
7859 break;
7860
7861 case A_CALLREFTYPE:
7862 if (!is_atm)
7863 bpf_error("'callref' supported only on raw ATM");
7864 if (off_proto == (u_int)-1)
7865 abort();
7866 b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
7867 jtype, reverse, jvalue);
7868 break;
7869
7870 default:
7871 abort();
7872 }
7873 return b0;
7874 }
7875
7876 struct block *
7877 gen_atmtype_abbrev(type)
7878 int type;
7879 {
7880 struct block *b0, *b1;
7881
7882 switch (type) {
7883
7884 case A_METAC:
7885 /* Get all packets in Meta signalling Circuit */
7886 if (!is_atm)
7887 bpf_error("'metac' supported only on raw ATM");
7888 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7889 b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
7890 gen_and(b0, b1);
7891 break;
7892
7893 case A_BCC:
7894 /* Get all packets in Broadcast Circuit*/
7895 if (!is_atm)
7896 bpf_error("'bcc' supported only on raw ATM");
7897 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7898 b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
7899 gen_and(b0, b1);
7900 break;
7901
7902 case A_OAMF4SC:
7903 /* Get all cells in Segment OAM F4 circuit*/
7904 if (!is_atm)
7905 bpf_error("'oam4sc' supported only on raw ATM");
7906 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7907 b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
7908 gen_and(b0, b1);
7909 break;
7910
7911 case A_OAMF4EC:
7912 /* Get all cells in End-to-End OAM F4 Circuit*/
7913 if (!is_atm)
7914 bpf_error("'oam4ec' supported only on raw ATM");
7915 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7916 b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
7917 gen_and(b0, b1);
7918 break;
7919
7920 case A_SC:
7921 /* Get all packets in connection Signalling Circuit */
7922 if (!is_atm)
7923 bpf_error("'sc' supported only on raw ATM");
7924 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7925 b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
7926 gen_and(b0, b1);
7927 break;
7928
7929 case A_ILMIC:
7930 /* Get all packets in ILMI Circuit */
7931 if (!is_atm)
7932 bpf_error("'ilmic' supported only on raw ATM");
7933 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7934 b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
7935 gen_and(b0, b1);
7936 break;
7937
7938 case A_LANE:
7939 /* Get all LANE packets */
7940 if (!is_atm)
7941 bpf_error("'lane' supported only on raw ATM");
7942 b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
7943
7944 /*
7945 * Arrange that all subsequent tests assume LANE
7946 * rather than LLC-encapsulated packets, and set
7947 * the offsets appropriately for LANE-encapsulated
7948 * Ethernet.
7949 *
7950 * "off_mac" is the offset of the Ethernet header,
7951 * which is 2 bytes past the ATM pseudo-header
7952 * (skipping the pseudo-header and 2-byte LE Client
7953 * field). The other offsets are Ethernet offsets
7954 * relative to "off_mac".
7955 */
7956 is_lane = 1;
7957 off_mac = off_payload + 2; /* MAC header */
7958 off_linktype = off_mac + 12;
7959 off_macpl = off_mac + 14; /* Ethernet */
7960 off_nl = 0; /* Ethernet II */
7961 off_nl_nosnap = 3; /* 802.3+802.2 */
7962 break;
7963
7964 case A_LLC:
7965 /* Get all LLC-encapsulated packets */
7966 if (!is_atm)
7967 bpf_error("'llc' supported only on raw ATM");
7968 b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
7969 is_lane = 0;
7970 break;
7971
7972 default:
7973 abort();
7974 }
7975 return b1;
7976 }
7977
7978 /*
7979 * Filtering for MTP2 messages based on li value
7980 * FISU, length is null
7981 * LSSU, length is 1 or 2
7982 * MSU, length is 3 or more
7983 */
7984 struct block *
7985 gen_mtp2type_abbrev(type)
7986 int type;
7987 {
7988 struct block *b0, *b1;
7989
7990 switch (type) {
7991
7992 case M_FISU:
7993 if ( (linktype != DLT_MTP2) &&
7994 (linktype != DLT_ERF) &&
7995 (linktype != DLT_MTP2_WITH_PHDR) )
7996 bpf_error("'fisu' supported only on MTP2");
7997 /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
7998 b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
7999 break;
8000
8001 case M_LSSU:
8002 if ( (linktype != DLT_MTP2) &&
8003 (linktype != DLT_ERF) &&
8004 (linktype != DLT_MTP2_WITH_PHDR) )
8005 bpf_error("'lssu' supported only on MTP2");
8006 b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8007 b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8008 gen_and(b1, b0);
8009 break;
8010
8011 case M_MSU:
8012 if ( (linktype != DLT_MTP2) &&
8013 (linktype != DLT_ERF) &&
8014 (linktype != DLT_MTP2_WITH_PHDR) )
8015 bpf_error("'msu' supported only on MTP2");
8016 b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8017 break;
8018
8019 default:
8020 abort();
8021 }
8022 return b0;
8023 }
8024
8025 struct block *
8026 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8027 int mtp3field;
8028 bpf_u_int32 jvalue;
8029 bpf_u_int32 jtype;
8030 int reverse;
8031 {
8032 struct block *b0;
8033 bpf_u_int32 val1 , val2 , val3;
8034
8035 switch (mtp3field) {
8036
8037 case M_SIO:
8038 if (off_sio == (u_int)-1)
8039 bpf_error("'sio' supported only on SS7");
8040 /* sio coded on 1 byte so max value 255 */
8041 if(jvalue > 255)
8042 bpf_error("sio value %u too big; max value = 255",
8043 jvalue);
8044 b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8045 (u_int)jtype, reverse, (u_int)jvalue);
8046 break;
8047
8048 case M_OPC:
8049 if (off_opc == (u_int)-1)
8050 bpf_error("'opc' supported only on SS7");
8051 /* opc coded on 14 bits so max value 16383 */
8052 if (jvalue > 16383)
8053 bpf_error("opc value %u too big; max value = 16383",
8054 jvalue);
8055 /* the following instructions are made to convert jvalue
8056 * to the form used to write opc in an ss7 message*/
8057 val1 = jvalue & 0x00003c00;
8058 val1 = val1 >>10;
8059 val2 = jvalue & 0x000003fc;
8060 val2 = val2 <<6;
8061 val3 = jvalue & 0x00000003;
8062 val3 = val3 <<22;
8063 jvalue = val1 + val2 + val3;
8064 b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8065 (u_int)jtype, reverse, (u_int)jvalue);
8066 break;
8067
8068 case M_DPC:
8069 if (off_dpc == (u_int)-1)
8070 bpf_error("'dpc' supported only on SS7");
8071 /* dpc coded on 14 bits so max value 16383 */
8072 if (jvalue > 16383)
8073 bpf_error("dpc value %u too big; max value = 16383",
8074 jvalue);
8075 /* the following instructions are made to convert jvalue
8076 * to the forme used to write dpc in an ss7 message*/
8077 val1 = jvalue & 0x000000ff;
8078 val1 = val1 << 24;
8079 val2 = jvalue & 0x00003f00;
8080 val2 = val2 << 8;
8081 jvalue = val1 + val2;
8082 b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8083 (u_int)jtype, reverse, (u_int)jvalue);
8084 break;
8085
8086 case M_SLS:
8087 if (off_sls == (u_int)-1)
8088 bpf_error("'sls' supported only on SS7");
8089 /* sls coded on 4 bits so max value 15 */
8090 if (jvalue > 15)
8091 bpf_error("sls value %u too big; max value = 15",
8092 jvalue);
8093 /* the following instruction is made to convert jvalue
8094 * to the forme used to write sls in an ss7 message*/
8095 jvalue = jvalue << 4;
8096 b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8097 (u_int)jtype,reverse, (u_int)jvalue);
8098 break;
8099
8100 default:
8101 abort();
8102 }
8103 return b0;
8104 }
8105
8106 static struct block *
8107 gen_msg_abbrev(type)
8108 int type;
8109 {
8110 struct block *b1;
8111
8112 /*
8113 * Q.2931 signalling protocol messages for handling virtual circuits
8114 * establishment and teardown
8115 */
8116 switch (type) {
8117
8118 case A_SETUP:
8119 b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8120 break;
8121
8122 case A_CALLPROCEED:
8123 b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8124 break;
8125
8126 case A_CONNECT:
8127 b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8128 break;
8129
8130 case A_CONNECTACK:
8131 b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8132 break;
8133
8134 case A_RELEASE:
8135 b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8136 break;
8137
8138 case A_RELEASE_DONE:
8139 b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8140 break;
8141
8142 default:
8143 abort();
8144 }
8145 return b1;
8146 }
8147
8148 struct block *
8149 gen_atmmulti_abbrev(type)
8150 int type;
8151 {
8152 struct block *b0, *b1;
8153
8154 switch (type) {
8155
8156 case A_OAM:
8157 if (!is_atm)
8158 bpf_error("'oam' supported only on raw ATM");
8159 b1 = gen_atmmulti_abbrev(A_OAMF4);
8160 break;
8161
8162 case A_OAMF4:
8163 if (!is_atm)
8164 bpf_error("'oamf4' supported only on raw ATM");
8165 /* OAM F4 type */
8166 b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8167 b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8168 gen_or(b0, b1);
8169 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8170 gen_and(b0, b1);
8171 break;
8172
8173 case A_CONNECTMSG:
8174 /*
8175 * Get Q.2931 signalling messages for switched
8176 * virtual connection
8177 */
8178 if (!is_atm)
8179 bpf_error("'connectmsg' supported only on raw ATM");
8180 b0 = gen_msg_abbrev(A_SETUP);
8181 b1 = gen_msg_abbrev(A_CALLPROCEED);
8182 gen_or(b0, b1);
8183 b0 = gen_msg_abbrev(A_CONNECT);
8184 gen_or(b0, b1);
8185 b0 = gen_msg_abbrev(A_CONNECTACK);
8186 gen_or(b0, b1);
8187 b0 = gen_msg_abbrev(A_RELEASE);
8188 gen_or(b0, b1);
8189 b0 = gen_msg_abbrev(A_RELEASE_DONE);
8190 gen_or(b0, b1);
8191 b0 = gen_atmtype_abbrev(A_SC);
8192 gen_and(b0, b1);
8193 break;
8194
8195 case A_METACONNECT:
8196 if (!is_atm)
8197 bpf_error("'metaconnect' supported only on raw ATM");
8198 b0 = gen_msg_abbrev(A_SETUP);
8199 b1 = gen_msg_abbrev(A_CALLPROCEED);
8200 gen_or(b0, b1);
8201 b0 = gen_msg_abbrev(A_CONNECT);
8202 gen_or(b0, b1);
8203 b0 = gen_msg_abbrev(A_RELEASE);
8204 gen_or(b0, b1);
8205 b0 = gen_msg_abbrev(A_RELEASE_DONE);
8206 gen_or(b0, b1);
8207 b0 = gen_atmtype_abbrev(A_METAC);
8208 gen_and(b0, b1);
8209 break;
8210
8211 default:
8212 abort();
8213 }
8214 return b1;
8215 }