]>
The Tcpdump Group git mirrors - libpcap/blob - optimize.c
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
29 #include <pcap-stdinc.h>
36 #ifdef HAVE_SYS_BITYPES_H
37 #include <sys/bitypes.h>
39 #include <sys/types.h>
53 #ifdef HAVE_OS_PROTO_H
58 int pcap_optimizer_debug
;
61 #if defined(MSDOS) && !defined(__DJGPP__)
62 extern int _w32_ffs (int mask
);
67 * So is the check for _MSC_VER done because MinGW has this?
69 #if defined(_WIN32) && defined (_MSC_VER)
71 * ffs -- vax ffs instruction
73 * XXX - with versions of VS that have it, use _BitScanForward()?
82 for (bit
= 1; !(mask
& 1); bit
++)
89 * Represents a deleted instruction.
94 * Register numbers for use-def values.
95 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
96 * location. A_ATOM is the accumulator and X_ATOM is the index
99 #define A_ATOM BPF_MEMWORDS
100 #define X_ATOM (BPF_MEMWORDS+1)
103 * This define is used to represent *both* the accumulator and
104 * x register in use-def computations.
105 * Currently, the use-def code assumes only one definition per instruction.
107 #define AX_ATOM N_ATOMS
110 * These data structures are used in a Cocke and Shwarz style
111 * value numbering scheme. Since the flowgraph is acyclic,
112 * exit values can be propagated from a node's predecessors
113 * provided it is uniquely defined.
119 struct valnode
*next
;
122 /* Integer constants mapped with the load immediate opcode. */
123 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
132 * A flag to indicate that further optimization is needed.
133 * Iterative passes are continued until a given pass yields no
139 struct block
**blocks
;
144 * A bit vector set representation of the dominators.
145 * We round up the set size to the next power of two.
149 struct block
**levels
;
152 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
154 * True if a is in uset {p}
156 #define SET_MEMBER(p, a) \
157 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
162 #define SET_INSERT(p, a) \
163 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
166 * Delete 'a' from uset p.
168 #define SET_DELETE(p, a) \
169 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
174 #define SET_INTERSECT(a, b, n)\
176 register bpf_u_int32 *_x = a, *_y = b;\
177 register int _n = n;\
178 while (--_n >= 0) *_x++ &= *_y++;\
184 #define SET_SUBTRACT(a, b, n)\
186 register bpf_u_int32 *_x = a, *_y = b;\
187 register int _n = n;\
188 while (--_n >= 0) *_x++ &=~ *_y++;\
194 #define SET_UNION(a, b, n)\
196 register bpf_u_int32 *_x = a, *_y = b;\
197 register int _n = n;\
198 while (--_n >= 0) *_x++ |= *_y++;\
202 uset all_closure_sets
;
206 struct valnode
*hashtbl
[MODULUS
];
210 struct vmapinfo
*vmap
;
211 struct valnode
*vnode_base
;
212 struct valnode
*next_vnode
;
217 * Some pointers used to convert the basic block form of the code,
218 * into the array form that BPF requires. 'fstart' will point to
219 * the malloc'd array while 'ftail' is used during the recursive
222 struct bpf_insn
*fstart
;
223 struct bpf_insn
*ftail
;
226 static void opt_init(compiler_state_t
*, opt_state_t
*, struct icode
*);
227 static void opt_cleanup(opt_state_t
*);
229 static void intern_blocks(opt_state_t
*, struct icode
*);
231 static void find_inedges(opt_state_t
*, struct block
*);
233 static void opt_dump(compiler_state_t
*, struct icode
*);
237 #define MAX(a,b) ((a)>(b)?(a):(b))
241 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
252 find_levels_r(opt_state
, ic
, JT(b
));
253 find_levels_r(opt_state
, ic
, JF(b
));
254 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
258 b
->link
= opt_state
->levels
[level
];
259 opt_state
->levels
[level
] = b
;
263 * Level graph. The levels go from 0 at the leaves to
264 * N_LEVELS at the root. The opt_state->levels[] array points to the
265 * first node of the level list, whose elements are linked
266 * with the 'link' field of the struct block.
269 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
271 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
273 find_levels_r(opt_state
, ic
, ic
->root
);
277 * Find dominator relationships.
278 * Assumes graph has been leveled.
281 find_dom(opt_state_t
*opt_state
, struct block
*root
)
288 * Initialize sets to contain all nodes.
290 x
= opt_state
->all_dom_sets
;
291 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
294 /* Root starts off empty. */
295 for (i
= opt_state
->nodewords
; --i
>= 0;)
298 /* root->level is the highest level no found. */
299 for (i
= root
->level
; i
>= 0; --i
) {
300 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
301 SET_INSERT(b
->dom
, b
->id
);
304 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
305 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
311 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
313 SET_INSERT(ep
->edom
, ep
->id
);
315 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
316 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
321 * Compute edge dominators.
322 * Assumes graph has been leveled and predecessors established.
325 find_edom(opt_state_t
*opt_state
, struct block
*root
)
331 x
= opt_state
->all_edge_sets
;
332 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; --i
>= 0; )
335 /* root->level is the highest level no found. */
336 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
337 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
338 for (i
= root
->level
; i
>= 0; --i
) {
339 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
340 propedom(opt_state
, &b
->et
);
341 propedom(opt_state
, &b
->ef
);
347 * Find the backwards transitive closure of the flow graph. These sets
348 * are backwards in the sense that we find the set of nodes that reach
349 * a given node, not the set of nodes that can be reached by a node.
351 * Assumes graph has been leveled.
354 find_closure(opt_state_t
*opt_state
, struct block
*root
)
360 * Initialize sets to contain no nodes.
362 memset((char *)opt_state
->all_closure_sets
, 0,
363 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
365 /* root->level is the highest level no found. */
366 for (i
= root
->level
; i
>= 0; --i
) {
367 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
368 SET_INSERT(b
->closure
, b
->id
);
371 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
372 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
378 * Return the register number that is used by s. If A and X are both
379 * used, return AX_ATOM. If no register is used, return -1.
381 * The implementation should probably change to an array access.
384 atomuse(struct stmt
*s
)
386 register int c
= s
->code
;
391 switch (BPF_CLASS(c
)) {
394 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
395 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
399 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
400 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
410 if (BPF_SRC(c
) == BPF_X
)
415 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
422 * Return the register number that is defined by 's'. We assume that
423 * a single stmt cannot define more than one register. If no register
424 * is defined, return -1.
426 * The implementation should probably change to an array access.
429 atomdef(struct stmt
*s
)
434 switch (BPF_CLASS(s
->code
)) {
448 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
454 * Compute the sets of registers used, defined, and killed by 'b'.
456 * "Used" means that a statement in 'b' uses the register before any
457 * statement in 'b' defines it, i.e. it uses the value left in
458 * that register by a predecessor block of this block.
459 * "Defined" means that a statement in 'b' defines it.
460 * "Killed" means that a statement in 'b' defines it before any
461 * statement in 'b' uses it, i.e. it kills the value left in that
462 * register by a predecessor block of this block.
465 compute_local_ud(struct block
*b
)
468 atomset def
= 0, use
= 0, kill
= 0;
471 for (s
= b
->stmts
; s
; s
= s
->next
) {
472 if (s
->s
.code
== NOP
)
474 atom
= atomuse(&s
->s
);
476 if (atom
== AX_ATOM
) {
477 if (!ATOMELEM(def
, X_ATOM
))
478 use
|= ATOMMASK(X_ATOM
);
479 if (!ATOMELEM(def
, A_ATOM
))
480 use
|= ATOMMASK(A_ATOM
);
482 else if (atom
< N_ATOMS
) {
483 if (!ATOMELEM(def
, atom
))
484 use
|= ATOMMASK(atom
);
489 atom
= atomdef(&s
->s
);
491 if (!ATOMELEM(use
, atom
))
492 kill
|= ATOMMASK(atom
);
493 def
|= ATOMMASK(atom
);
496 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
498 * XXX - what about RET?
500 atom
= atomuse(&b
->s
);
502 if (atom
== AX_ATOM
) {
503 if (!ATOMELEM(def
, X_ATOM
))
504 use
|= ATOMMASK(X_ATOM
);
505 if (!ATOMELEM(def
, A_ATOM
))
506 use
|= ATOMMASK(A_ATOM
);
508 else if (atom
< N_ATOMS
) {
509 if (!ATOMELEM(def
, atom
))
510 use
|= ATOMMASK(atom
);
523 * Assume graph is already leveled.
526 find_ud(opt_state_t
*opt_state
, struct block
*root
)
532 * root->level is the highest level no found;
533 * count down from there.
535 maxlevel
= root
->level
;
536 for (i
= maxlevel
; i
>= 0; --i
)
537 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
542 for (i
= 1; i
<= maxlevel
; ++i
) {
543 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
544 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
545 p
->in_use
|= p
->out_use
&~ p
->kill
;
550 init_val(opt_state_t
*opt_state
)
552 opt_state
->curval
= 0;
553 opt_state
->next_vnode
= opt_state
->vnode_base
;
554 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
555 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
558 /* Because we really don't have an IR, this stuff is a little messy. */
560 F(opt_state_t
*opt_state
, int code
, int v0
, int v1
)
566 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
569 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
570 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
573 val
= ++opt_state
->curval
;
574 if (BPF_MODE(code
) == BPF_IMM
&&
575 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
576 opt_state
->vmap
[val
].const_val
= v0
;
577 opt_state
->vmap
[val
].is_const
= 1;
579 p
= opt_state
->next_vnode
++;
584 p
->next
= opt_state
->hashtbl
[hash
];
585 opt_state
->hashtbl
[hash
] = p
;
591 vstore(struct stmt
*s
, int *valp
, int newval
, int alter
)
593 if (alter
&& *valp
== newval
)
600 * Do constant-folding on binary operators.
601 * (Unary operators are handled elsewhere.)
604 fold_op(compiler_state_t
*cstate
, struct icode
*ic
, opt_state_t
*opt_state
,
605 struct stmt
*s
, int v0
, int v1
)
609 a
= opt_state
->vmap
[v0
].const_val
;
610 b
= opt_state
->vmap
[v1
].const_val
;
612 switch (BPF_OP(s
->code
)) {
627 bpf_error(cstate
, "division by zero");
633 bpf_error(cstate
, "modulus by zero");
661 s
->code
= BPF_LD
|BPF_IMM
;
665 static inline struct slist
*
666 this_op(struct slist
*s
)
668 while (s
!= 0 && s
->s
.code
== NOP
)
674 opt_not(struct block
*b
)
676 struct block
*tmp
= JT(b
);
683 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
686 struct slist
*next
, *last
;
694 for (/*empty*/; /*empty*/; s
= next
) {
700 break; /* nothing left in the block */
703 * Find the next real instruction after that one
706 next
= this_op(s
->next
);
708 break; /* no next instruction */
712 * st M[k] --> st M[k]
715 if (s
->s
.code
== BPF_ST
&&
716 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
717 s
->s
.k
== next
->s
.k
) {
719 next
->s
.code
= BPF_MISC
|BPF_TAX
;
725 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
726 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
727 s
->s
.code
= BPF_LDX
|BPF_IMM
;
728 next
->s
.code
= BPF_MISC
|BPF_TXA
;
732 * This is an ugly special case, but it happens
733 * when you say tcp[k] or udp[k] where k is a constant.
735 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
736 struct slist
*add
, *tax
, *ild
;
739 * Check that X isn't used on exit from this
740 * block (which the optimizer might cause).
741 * We know the code generator won't generate
742 * any local dependencies.
744 if (ATOMELEM(b
->out_use
, X_ATOM
))
748 * Check that the instruction following the ldi
749 * is an addx, or it's an ldxms with an addx
750 * following it (with 0 or more nops between the
753 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
756 add
= this_op(next
->next
);
757 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
761 * Check that a tax follows that (with 0 or more
762 * nops between them).
764 tax
= this_op(add
->next
);
765 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
769 * Check that an ild follows that (with 0 or more
770 * nops between them).
772 ild
= this_op(tax
->next
);
773 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
774 BPF_MODE(ild
->s
.code
) != BPF_IND
)
777 * We want to turn this sequence:
780 * (005) ldxms [14] {next} -- optional
783 * (008) ild [x+0] {ild}
785 * into this sequence:
793 * XXX We need to check that X is not
794 * subsequently used, because we want to change
795 * what'll be in it after this sequence.
797 * We know we can eliminate the accumulator
798 * modifications earlier in the sequence since
799 * it is defined by the last stmt of this sequence
800 * (i.e., the last statement of the sequence loads
801 * a value into the accumulator, so we can eliminate
802 * earlier operations on the accumulator).
812 * If the comparison at the end of a block is an equality
813 * comparison against a constant, and nobody uses the value
814 * we leave in the A register at the end of a block, and
815 * the operation preceding the comparison is an arithmetic
816 * operation, we can sometime optimize it away.
818 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
819 !ATOMELEM(b
->out_use
, A_ATOM
)) {
821 * We can optimize away certain subtractions of the
824 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
825 val
= b
->val
[X_ATOM
];
826 if (opt_state
->vmap
[val
].is_const
) {
828 * If we have a subtract to do a comparison,
829 * and the X register is a known constant,
830 * we can merge this value into the
836 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
839 } else if (b
->s
.k
== 0) {
841 * If the X register isn't a constant,
842 * and the comparison in the test is
843 * against 0, we can compare with the
844 * X register, instead:
850 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
855 * Likewise, a constant subtract can be simplified:
858 * jeq #y -> jeq #(x+y)
860 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
866 * And, similarly, a constant AND can be simplified
867 * if we're testing against 0, i.e.:
872 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
875 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
883 * jset #ffffffff -> always
885 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
888 if (b
->s
.k
== 0xffffffff)
892 * If we're comparing against the index register, and the index
893 * register is a known constant, we can just compare against that
896 val
= b
->val
[X_ATOM
];
897 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
898 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
903 * If the accumulator is a known constant, we can compute the
906 val
= b
->val
[A_ATOM
];
907 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
908 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
909 switch (BPF_OP(b
->s
.code
)) {
916 v
= (unsigned)v
> b
->s
.k
;
920 v
= (unsigned)v
>= b
->s
.k
;
940 * Compute the symbolic value of expression of 's', and update
941 * anything it defines in the value table 'val'. If 'alter' is true,
942 * do various optimizations. This code would be cleaner if symbolic
943 * evaluation and code transformations weren't folded together.
946 opt_stmt(compiler_state_t
*cstate
, struct icode
*ic
, opt_state_t
*opt_state
,
947 struct stmt
*s
, int val
[], int alter
)
954 case BPF_LD
|BPF_ABS
|BPF_W
:
955 case BPF_LD
|BPF_ABS
|BPF_H
:
956 case BPF_LD
|BPF_ABS
|BPF_B
:
957 v
= F(opt_state
, s
->code
, s
->k
, 0L);
958 vstore(s
, &val
[A_ATOM
], v
, alter
);
961 case BPF_LD
|BPF_IND
|BPF_W
:
962 case BPF_LD
|BPF_IND
|BPF_H
:
963 case BPF_LD
|BPF_IND
|BPF_B
:
965 if (alter
&& opt_state
->vmap
[v
].is_const
) {
966 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
967 s
->k
+= opt_state
->vmap
[v
].const_val
;
968 v
= F(opt_state
, s
->code
, s
->k
, 0L);
972 v
= F(opt_state
, s
->code
, s
->k
, v
);
973 vstore(s
, &val
[A_ATOM
], v
, alter
);
977 v
= F(opt_state
, s
->code
, 0L, 0L);
978 vstore(s
, &val
[A_ATOM
], v
, alter
);
983 vstore(s
, &val
[A_ATOM
], v
, alter
);
986 case BPF_LDX
|BPF_IMM
:
988 vstore(s
, &val
[X_ATOM
], v
, alter
);
991 case BPF_LDX
|BPF_MSH
|BPF_B
:
992 v
= F(opt_state
, s
->code
, s
->k
, 0L);
993 vstore(s
, &val
[X_ATOM
], v
, alter
);
996 case BPF_ALU
|BPF_NEG
:
997 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
998 s
->code
= BPF_LD
|BPF_IMM
;
999 s
->k
= -opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1000 val
[A_ATOM
] = K(s
->k
);
1003 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1006 case BPF_ALU
|BPF_ADD
|BPF_K
:
1007 case BPF_ALU
|BPF_SUB
|BPF_K
:
1008 case BPF_ALU
|BPF_MUL
|BPF_K
:
1009 case BPF_ALU
|BPF_DIV
|BPF_K
:
1010 case BPF_ALU
|BPF_MOD
|BPF_K
:
1011 case BPF_ALU
|BPF_AND
|BPF_K
:
1012 case BPF_ALU
|BPF_OR
|BPF_K
:
1013 case BPF_ALU
|BPF_XOR
|BPF_K
:
1014 case BPF_ALU
|BPF_LSH
|BPF_K
:
1015 case BPF_ALU
|BPF_RSH
|BPF_K
:
1016 op
= BPF_OP(s
->code
);
1019 /* don't optimize away "sub #0"
1020 * as it may be needed later to
1021 * fixup the generated math code */
1022 if (op
== BPF_ADD
||
1023 op
== BPF_LSH
|| op
== BPF_RSH
||
1024 op
== BPF_OR
|| op
== BPF_XOR
) {
1028 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1029 s
->code
= BPF_LD
|BPF_IMM
;
1030 val
[A_ATOM
] = K(s
->k
);
1034 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1035 fold_op(cstate
, ic
, opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1036 val
[A_ATOM
] = K(s
->k
);
1040 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1043 case BPF_ALU
|BPF_ADD
|BPF_X
:
1044 case BPF_ALU
|BPF_SUB
|BPF_X
:
1045 case BPF_ALU
|BPF_MUL
|BPF_X
:
1046 case BPF_ALU
|BPF_DIV
|BPF_X
:
1047 case BPF_ALU
|BPF_MOD
|BPF_X
:
1048 case BPF_ALU
|BPF_AND
|BPF_X
:
1049 case BPF_ALU
|BPF_OR
|BPF_X
:
1050 case BPF_ALU
|BPF_XOR
|BPF_X
:
1051 case BPF_ALU
|BPF_LSH
|BPF_X
:
1052 case BPF_ALU
|BPF_RSH
|BPF_X
:
1053 op
= BPF_OP(s
->code
);
1054 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1055 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1056 fold_op(cstate
, ic
, opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1057 val
[A_ATOM
] = K(s
->k
);
1060 s
->code
= BPF_ALU
|BPF_K
|op
;
1061 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1062 opt_state
->done
= 0;
1064 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1069 * Check if we're doing something to an accumulator
1070 * that is 0, and simplify. This may not seem like
1071 * much of a simplification but it could open up further
1073 * XXX We could also check for mul by 1, etc.
1075 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1076 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1077 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1078 s
->code
= BPF_MISC
|BPF_TXA
;
1079 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1082 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1083 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1084 s
->code
= BPF_LD
|BPF_IMM
;
1086 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1089 else if (op
== BPF_NEG
) {
1094 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1097 case BPF_MISC
|BPF_TXA
:
1098 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1101 case BPF_LD
|BPF_MEM
:
1103 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1104 s
->code
= BPF_LD
|BPF_IMM
;
1105 s
->k
= opt_state
->vmap
[v
].const_val
;
1106 opt_state
->done
= 0;
1108 vstore(s
, &val
[A_ATOM
], v
, alter
);
1111 case BPF_MISC
|BPF_TAX
:
1112 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1115 case BPF_LDX
|BPF_MEM
:
1117 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1118 s
->code
= BPF_LDX
|BPF_IMM
;
1119 s
->k
= opt_state
->vmap
[v
].const_val
;
1120 opt_state
->done
= 0;
1122 vstore(s
, &val
[X_ATOM
], v
, alter
);
1126 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1130 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1136 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1142 if (atom
== AX_ATOM
) {
1152 opt_state
->done
= 0;
1153 last
[atom
]->code
= NOP
;
1160 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1162 register struct slist
*s
;
1164 struct stmt
*last
[N_ATOMS
];
1166 memset((char *)last
, 0, sizeof last
);
1168 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1169 deadstmt(opt_state
, &s
->s
, last
);
1170 deadstmt(opt_state
, &b
->s
, last
);
1172 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1173 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1174 last
[atom
]->code
= NOP
;
1175 opt_state
->done
= 0;
1180 opt_blk(compiler_state_t
*cstate
, struct icode
*ic
, opt_state_t
*opt_state
,
1181 struct block
*b
, int do_stmts
)
1186 bpf_int32 aval
, xval
;
1189 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1190 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1197 * Initialize the atom values.
1202 * We have no predecessors, so everything is undefined
1203 * upon entry to this block.
1205 memset((char *)b
->val
, 0, sizeof(b
->val
));
1208 * Inherit values from our predecessors.
1210 * First, get the values from the predecessor along the
1211 * first edge leading to this node.
1213 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1215 * Now look at all the other nodes leading to this node.
1216 * If, for the predecessor along that edge, a register
1217 * has a different value from the one we have (i.e.,
1218 * control paths are merging, and the merging paths
1219 * assign different values to that register), give the
1220 * register the undefined value of 0.
1222 while ((p
= p
->next
) != NULL
) {
1223 for (i
= 0; i
< N_ATOMS
; ++i
)
1224 if (b
->val
[i
] != p
->pred
->val
[i
])
1228 aval
= b
->val
[A_ATOM
];
1229 xval
= b
->val
[X_ATOM
];
1230 for (s
= b
->stmts
; s
; s
= s
->next
)
1231 opt_stmt(cstate
, ic
, opt_state
, &s
->s
, b
->val
, do_stmts
);
1234 * This is a special case: if we don't use anything from this
1235 * block, and we load the accumulator or index register with a
1236 * value that is already there, or if this block is a return,
1237 * eliminate all the statements.
1239 * XXX - what if it does a store?
1241 * XXX - why does it matter whether we use anything from this
1242 * block? If the accumulator or index register doesn't change
1243 * its value, isn't that OK even if we use that value?
1245 * XXX - if we load the accumulator with a different value,
1246 * and the block ends with a conditional branch, we obviously
1247 * can't eliminate it, as the branch depends on that value.
1248 * For the index register, the conditional branch only depends
1249 * on the index register value if the test is against the index
1250 * register value rather than a constant; if nothing uses the
1251 * value we put into the index register, and we're not testing
1252 * against the index register's value, and there aren't any
1253 * other problems that would keep us from eliminating this
1254 * block, can we eliminate it?
1257 ((b
->out_use
== 0 && aval
!= 0 && b
->val
[A_ATOM
] == aval
&&
1258 xval
!= 0 && b
->val
[X_ATOM
] == xval
) ||
1259 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1260 if (b
->stmts
!= 0) {
1262 opt_state
->done
= 0;
1265 opt_peep(opt_state
, b
);
1266 opt_deadstores(opt_state
, b
);
1269 * Set up values for branch optimizer.
1271 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1272 b
->oval
= K(b
->s
.k
);
1274 b
->oval
= b
->val
[X_ATOM
];
1275 b
->et
.code
= b
->s
.code
;
1276 b
->ef
.code
= -b
->s
.code
;
1280 * Return true if any register that is used on exit from 'succ', has
1281 * an exit value that is different from the corresponding exit value
1285 use_conflict(struct block
*b
, struct block
*succ
)
1288 atomset use
= succ
->out_use
;
1293 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1294 if (ATOMELEM(use
, atom
))
1295 if (b
->val
[atom
] != succ
->val
[atom
])
1300 static struct block
*
1301 fold_edge(struct block
*child
, struct edge
*ep
)
1304 int aval0
, aval1
, oval0
, oval1
;
1305 int code
= ep
->code
;
1313 if (child
->s
.code
!= code
)
1316 aval0
= child
->val
[A_ATOM
];
1317 oval0
= child
->oval
;
1318 aval1
= ep
->pred
->val
[A_ATOM
];
1319 oval1
= ep
->pred
->oval
;
1326 * The operands of the branch instructions are
1327 * identical, so the result is true if a true
1328 * branch was taken to get here, otherwise false.
1330 return sense
? JT(child
) : JF(child
);
1332 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1334 * At this point, we only know the comparison if we
1335 * came down the true branch, and it was an equality
1336 * comparison with a constant.
1338 * I.e., if we came down the true branch, and the branch
1339 * was an equality comparison with a constant, we know the
1340 * accumulator contains that constant. If we came down
1341 * the false branch, or the comparison wasn't with a
1342 * constant, we don't know what was in the accumulator.
1344 * We rely on the fact that distinct constants have distinct
1353 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1356 register struct block
*target
;
1358 if (JT(ep
->succ
) == 0)
1361 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1363 * Common branch targets can be eliminated, provided
1364 * there is no data dependency.
1366 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1367 opt_state
->done
= 0;
1368 ep
->succ
= JT(ep
->succ
);
1372 * For each edge dominator that matches the successor of this
1373 * edge, promote the edge successor to the its grandchild.
1375 * XXX We violate the set abstraction here in favor a reasonably
1379 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1380 register bpf_u_int32 x
= ep
->edom
[i
];
1385 k
+= i
* BITS_PER_WORD
;
1387 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1389 * Check that there is no data dependency between
1390 * nodes that will be violated if we move the edge.
1392 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1393 opt_state
->done
= 0;
1395 if (JT(target
) != 0)
1397 * Start over unless we hit a leaf.
1408 or_pullup(opt_state_t
*opt_state
, struct block
*b
)
1412 struct block
**diffp
, **samep
;
1420 * Make sure each predecessor loads the same value.
1423 val
= ep
->pred
->val
[A_ATOM
];
1424 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1425 if (val
!= ep
->pred
->val
[A_ATOM
])
1428 if (JT(b
->in_edges
->pred
) == b
)
1429 diffp
= &JT(b
->in_edges
->pred
);
1431 diffp
= &JF(b
->in_edges
->pred
);
1438 if (JT(*diffp
) != JT(b
))
1441 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1444 if ((*diffp
)->val
[A_ATOM
] != val
)
1447 diffp
= &JF(*diffp
);
1450 samep
= &JF(*diffp
);
1455 if (JT(*samep
) != JT(b
))
1458 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1461 if ((*samep
)->val
[A_ATOM
] == val
)
1464 /* XXX Need to check that there are no data dependencies
1465 between dp0 and dp1. Currently, the code generator
1466 will not produce such dependencies. */
1467 samep
= &JF(*samep
);
1470 /* XXX This doesn't cover everything. */
1471 for (i
= 0; i
< N_ATOMS
; ++i
)
1472 if ((*samep
)->val
[i
] != pred
->val
[i
])
1475 /* Pull up the node. */
1481 * At the top of the chain, each predecessor needs to point at the
1482 * pulled up node. Inside the chain, there is only one predecessor
1486 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1487 if (JT(ep
->pred
) == b
)
1488 JT(ep
->pred
) = pull
;
1490 JF(ep
->pred
) = pull
;
1496 opt_state
->done
= 0;
1500 and_pullup(opt_state_t
*opt_state
, struct block
*b
)
1504 struct block
**diffp
, **samep
;
1512 * Make sure each predecessor loads the same value.
1514 val
= ep
->pred
->val
[A_ATOM
];
1515 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1516 if (val
!= ep
->pred
->val
[A_ATOM
])
1519 if (JT(b
->in_edges
->pred
) == b
)
1520 diffp
= &JT(b
->in_edges
->pred
);
1522 diffp
= &JF(b
->in_edges
->pred
);
1529 if (JF(*diffp
) != JF(b
))
1532 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1535 if ((*diffp
)->val
[A_ATOM
] != val
)
1538 diffp
= &JT(*diffp
);
1541 samep
= &JT(*diffp
);
1546 if (JF(*samep
) != JF(b
))
1549 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1552 if ((*samep
)->val
[A_ATOM
] == val
)
1555 /* XXX Need to check that there are no data dependencies
1556 between diffp and samep. Currently, the code generator
1557 will not produce such dependencies. */
1558 samep
= &JT(*samep
);
1561 /* XXX This doesn't cover everything. */
1562 for (i
= 0; i
< N_ATOMS
; ++i
)
1563 if ((*samep
)->val
[i
] != pred
->val
[i
])
1566 /* Pull up the node. */
1572 * At the top of the chain, each predecessor needs to point at the
1573 * pulled up node. Inside the chain, there is only one predecessor
1577 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1578 if (JT(ep
->pred
) == b
)
1579 JT(ep
->pred
) = pull
;
1581 JF(ep
->pred
) = pull
;
1587 opt_state
->done
= 0;
1591 opt_blks(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1597 init_val(opt_state
);
1598 maxlevel
= ic
->root
->level
;
1600 find_inedges(opt_state
, ic
->root
);
1601 for (i
= maxlevel
; i
>= 0; --i
)
1602 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
1603 opt_blk(cstate
, ic
, opt_state
, p
, do_stmts
);
1607 * No point trying to move branches; it can't possibly
1608 * make a difference at this point.
1612 for (i
= 1; i
<= maxlevel
; ++i
) {
1613 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1614 opt_j(opt_state
, &p
->et
);
1615 opt_j(opt_state
, &p
->ef
);
1619 find_inedges(opt_state
, ic
->root
);
1620 for (i
= 1; i
<= maxlevel
; ++i
) {
1621 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1622 or_pullup(opt_state
, p
);
1623 and_pullup(opt_state
, p
);
1629 link_inedge(struct edge
*parent
, struct block
*child
)
1631 parent
->next
= child
->in_edges
;
1632 child
->in_edges
= parent
;
1636 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
1641 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1642 opt_state
->blocks
[i
]->in_edges
= 0;
1645 * Traverse the graph, adding each edge to the predecessor
1646 * list of its successors. Skip the leaves (i.e. level 0).
1648 for (i
= root
->level
; i
> 0; --i
) {
1649 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
1650 link_inedge(&b
->et
, JT(b
));
1651 link_inedge(&b
->ef
, JF(b
));
1657 opt_root(struct block
**b
)
1659 struct slist
*tmp
, *s
;
1663 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1672 * If the root node is a return, then there is no
1673 * point executing any statements (since the bpf machine
1674 * has no side effects).
1676 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1681 opt_loop(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1686 if (pcap_optimizer_debug
> 1) {
1687 printf("opt_loop(root, %d) begin\n", do_stmts
);
1688 opt_dump(cstate
, ic
);
1692 opt_state
->done
= 1;
1693 find_levels(opt_state
, ic
);
1694 find_dom(opt_state
, ic
->root
);
1695 find_closure(opt_state
, ic
->root
);
1696 find_ud(opt_state
, ic
->root
);
1697 find_edom(opt_state
, ic
->root
);
1698 opt_blks(cstate
, opt_state
, ic
, do_stmts
);
1700 if (pcap_optimizer_debug
> 1) {
1701 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, opt_state
->done
);
1702 opt_dump(cstate
, ic
);
1705 } while (!opt_state
->done
);
1709 * Optimize the filter code in its dag representation.
1712 bpf_optimize(compiler_state_t
*cstate
, struct icode
*ic
)
1714 opt_state_t opt_state
;
1716 opt_init(cstate
, &opt_state
, ic
);
1717 opt_loop(cstate
, &opt_state
, ic
, 0);
1718 opt_loop(cstate
, &opt_state
, ic
, 1);
1719 intern_blocks(&opt_state
, ic
);
1721 if (pcap_optimizer_debug
> 1) {
1722 printf("after intern_blocks()\n");
1723 opt_dump(cstate
, ic
);
1726 opt_root(&ic
->root
);
1728 if (pcap_optimizer_debug
> 1) {
1729 printf("after opt_root()\n");
1730 opt_dump(cstate
, ic
);
1733 opt_cleanup(&opt_state
);
1737 make_marks(struct icode
*ic
, struct block
*p
)
1739 if (!isMarked(ic
, p
)) {
1741 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1742 make_marks(ic
, JT(p
));
1743 make_marks(ic
, JF(p
));
1749 * Mark code array such that isMarked(ic->cur_mark, i) is true
1750 * only for nodes that are alive.
1753 mark_code(struct icode
*ic
)
1756 make_marks(ic
, ic
->root
);
1760 * True iff the two stmt lists load the same value from the packet into
1764 eq_slist(struct slist
*x
, struct slist
*y
)
1767 while (x
&& x
->s
.code
== NOP
)
1769 while (y
&& y
->s
.code
== NOP
)
1775 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1783 eq_blk(struct block
*b0
, struct block
*b1
)
1785 if (b0
->s
.code
== b1
->s
.code
&&
1786 b0
->s
.k
== b1
->s
.k
&&
1787 b0
->et
.succ
== b1
->et
.succ
&&
1788 b0
->ef
.succ
== b1
->ef
.succ
)
1789 return eq_slist(b0
->stmts
, b1
->stmts
);
1794 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
1798 int done1
; /* don't shadow global */
1801 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1802 opt_state
->blocks
[i
]->link
= 0;
1806 for (i
= opt_state
->n_blocks
- 1; --i
>= 0; ) {
1807 if (!isMarked(ic
, opt_state
->blocks
[i
]))
1809 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
1810 if (!isMarked(ic
, opt_state
->blocks
[j
]))
1812 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
1813 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
1814 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
1819 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
1820 p
= opt_state
->blocks
[i
];
1825 JT(p
) = JT(p
)->link
;
1829 JF(p
) = JF(p
)->link
;
1837 opt_cleanup(opt_state_t
*opt_state
)
1839 free((void *)opt_state
->vnode_base
);
1840 free((void *)opt_state
->vmap
);
1841 free((void *)opt_state
->edges
);
1842 free((void *)opt_state
->space
);
1843 free((void *)opt_state
->levels
);
1844 free((void *)opt_state
->blocks
);
1848 * Return the number of stmts in 's'.
1851 slength(struct slist
*s
)
1855 for (; s
; s
= s
->next
)
1856 if (s
->s
.code
!= NOP
)
1862 * Return the number of nodes reachable by 'p'.
1863 * All nodes should be initially unmarked.
1866 count_blocks(struct icode
*ic
, struct block
*p
)
1868 if (p
== 0 || isMarked(ic
, p
))
1871 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
1875 * Do a depth first search on the flow graph, numbering the
1876 * the basic blocks, and entering them into the 'blocks' array.`
1879 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
1883 if (p
== 0 || isMarked(ic
, p
))
1887 n
= opt_state
->n_blocks
++;
1889 opt_state
->blocks
[n
] = p
;
1891 number_blks_r(opt_state
, ic
, JT(p
));
1892 number_blks_r(opt_state
, ic
, JF(p
));
1896 * Return the number of stmts in the flowgraph reachable by 'p'.
1897 * The nodes should be unmarked before calling.
1899 * Note that "stmts" means "instructions", and that this includes
1901 * side-effect statements in 'p' (slength(p->stmts));
1903 * statements in the true branch from 'p' (count_stmts(JT(p)));
1905 * statements in the false branch from 'p' (count_stmts(JF(p)));
1907 * the conditional jump itself (1);
1909 * an extra long jump if the true branch requires it (p->longjt);
1911 * an extra long jump if the false branch requires it (p->longjf).
1914 count_stmts(struct icode
*ic
, struct block
*p
)
1918 if (p
== 0 || isMarked(ic
, p
))
1921 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
1922 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
1926 * Allocate memory. All allocation is done before optimization
1927 * is begun. A linear bound on the size of all data structures is computed
1928 * from the total number of blocks and/or statements.
1931 opt_init(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
)
1934 int i
, n
, max_stmts
;
1937 * First, count the blocks, so we can malloc an array to map
1938 * block number to block. Then, put the blocks into the array.
1941 n
= count_blocks(ic
, ic
->root
);
1942 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
1943 if (opt_state
->blocks
== NULL
)
1944 bpf_error(cstate
, "malloc");
1946 opt_state
->n_blocks
= 0;
1947 number_blks_r(opt_state
, ic
, ic
->root
);
1949 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
1950 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
1951 if (opt_state
->edges
== NULL
)
1952 bpf_error(cstate
, "malloc");
1955 * The number of levels is bounded by the number of nodes.
1957 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
1958 if (opt_state
->levels
== NULL
)
1959 bpf_error(cstate
, "malloc");
1961 opt_state
->edgewords
= opt_state
->n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
1962 opt_state
->nodewords
= opt_state
->n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
1965 opt_state
->space
= (bpf_u_int32
*)malloc(2 * opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->space
)
1966 + opt_state
->n_edges
* opt_state
->edgewords
* sizeof(*opt_state
->space
));
1967 if (opt_state
->space
== NULL
)
1968 bpf_error(cstate
, "malloc");
1969 p
= opt_state
->space
;
1970 opt_state
->all_dom_sets
= p
;
1971 for (i
= 0; i
< n
; ++i
) {
1972 opt_state
->blocks
[i
]->dom
= p
;
1973 p
+= opt_state
->nodewords
;
1975 opt_state
->all_closure_sets
= p
;
1976 for (i
= 0; i
< n
; ++i
) {
1977 opt_state
->blocks
[i
]->closure
= p
;
1978 p
+= opt_state
->nodewords
;
1980 opt_state
->all_edge_sets
= p
;
1981 for (i
= 0; i
< n
; ++i
) {
1982 register struct block
*b
= opt_state
->blocks
[i
];
1985 p
+= opt_state
->edgewords
;
1987 p
+= opt_state
->edgewords
;
1989 opt_state
->edges
[i
] = &b
->et
;
1990 b
->ef
.id
= opt_state
->n_blocks
+ i
;
1991 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
1996 for (i
= 0; i
< n
; ++i
)
1997 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
1999 * We allocate at most 3 value numbers per statement,
2000 * so this is an upper bound on the number of valnodes
2003 opt_state
->maxval
= 3 * max_stmts
;
2004 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2005 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2006 if (opt_state
->vmap
== NULL
|| opt_state
->vnode_base
== NULL
)
2007 bpf_error(cstate
, "malloc");
2011 * This is only used when supporting optimizer debugging. It is
2012 * global state, so do *not* do more than one compile in parallel
2013 * and expect it to provide meaningful information.
2020 * Returns true if successful. Returns false if a branch has
2021 * an offset that is too large. If so, we have marked that
2022 * branch so that on a subsequent iteration, it will be treated
2026 convert_code_r(compiler_state_t
*cstate
, conv_state_t
*conv_state
,
2027 struct icode
*ic
, struct block
*p
)
2029 struct bpf_insn
*dst
;
2033 int extrajmps
; /* number of extra jumps inserted */
2034 struct slist
**offset
= NULL
;
2036 if (p
== 0 || isMarked(ic
, p
))
2040 if (convert_code_r(cstate
, conv_state
, ic
, JF(p
)) == 0)
2042 if (convert_code_r(cstate
, conv_state
, ic
, JT(p
)) == 0)
2045 slen
= slength(p
->stmts
);
2046 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2047 /* inflate length by any extra jumps */
2049 p
->offset
= dst
- conv_state
->fstart
;
2051 /* generate offset[] for convenience */
2053 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2055 bpf_error(cstate
, "not enough core");
2060 for (off
= 0; off
< slen
&& src
; off
++) {
2062 printf("off=%d src=%x\n", off
, src
);
2069 for (src
= p
->stmts
; src
; src
= src
->next
) {
2070 if (src
->s
.code
== NOP
)
2072 dst
->code
= (u_short
)src
->s
.code
;
2075 /* fill block-local relative jump */
2076 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2078 if (src
->s
.jt
|| src
->s
.jf
) {
2079 bpf_error(cstate
, "illegal jmp destination");
2085 if (off
== slen
- 2) /*???*/
2091 const char *ljerr
= "%s for block-local relative jump: off=%d";
2094 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2095 off
, src
->s
.jt
, src
->s
.jf
);
2098 if (!src
->s
.jt
|| !src
->s
.jf
) {
2099 bpf_error(cstate
, ljerr
, "no jmp destination", off
);
2104 for (i
= 0; i
< slen
; i
++) {
2105 if (offset
[i
] == src
->s
.jt
) {
2107 bpf_error(cstate
, ljerr
, "multiple matches", off
);
2111 dst
->jt
= i
- off
- 1;
2114 if (offset
[i
] == src
->s
.jf
) {
2116 bpf_error(cstate
, ljerr
, "multiple matches", off
);
2119 dst
->jf
= i
- off
- 1;
2124 bpf_error(cstate
, ljerr
, "no destination found", off
);
2136 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2138 dst
->code
= (u_short
)p
->s
.code
;
2142 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2144 /* offset too large for branch, must add a jump */
2145 if (p
->longjt
== 0) {
2146 /* mark this instruction and retry */
2150 /* branch if T to following jump */
2151 dst
->jt
= extrajmps
;
2153 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2154 dst
[extrajmps
].k
= off
- extrajmps
;
2158 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2160 /* offset too large for branch, must add a jump */
2161 if (p
->longjf
== 0) {
2162 /* mark this instruction and retry */
2166 /* branch if F to following jump */
2167 /* if two jumps are inserted, F goes to second one */
2168 dst
->jf
= extrajmps
;
2170 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2171 dst
[extrajmps
].k
= off
- extrajmps
;
2181 * Convert flowgraph intermediate representation to the
2182 * BPF array representation. Set *lenp to the number of instructions.
2184 * This routine does *NOT* leak the memory pointed to by fp. It *must
2185 * not* do free(fp) before returning fp; doing so would make no sense,
2186 * as the BPF array pointed to by the return value of icode_to_fcode()
2187 * must be valid - it's being returned for use in a bpf_program structure.
2189 * If it appears that icode_to_fcode() is leaking, the problem is that
2190 * the program using pcap_compile() is failing to free the memory in
2191 * the BPF program when it's done - the leak is in the program, not in
2192 * the routine that happens to be allocating the memory. (By analogy, if
2193 * a program calls fopen() without ever calling fclose() on the FILE *,
2194 * it will leak the FILE structure; the leak is not in fopen(), it's in
2195 * the program.) Change the program to use pcap_freecode() when it's
2196 * done with the filter program. See the pcap man page.
2199 icode_to_fcode(compiler_state_t
*cstate
, struct icode
*ic
,
2200 struct block
*root
, u_int
*lenp
)
2203 struct bpf_insn
*fp
;
2204 conv_state_t conv_state
;
2207 * Loop doing convert_code_r() until no branches remain
2208 * with too-large offsets.
2212 n
= *lenp
= count_stmts(ic
, root
);
2214 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2216 bpf_error(cstate
, "malloc");
2217 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2218 conv_state
.fstart
= fp
;
2219 conv_state
.ftail
= fp
+ n
;
2222 if (convert_code_r(cstate
, &conv_state
, ic
, root
))
2231 * Make a copy of a BPF program and put it in the "fcode" member of
2234 * If we fail to allocate memory for the copy, fill in the "errbuf"
2235 * member of the "pcap_t" with an error message, and return -1;
2236 * otherwise, return 0.
2239 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2244 * Validate the program.
2246 if (!bpf_validate(fp
->bf_insns
, fp
->bf_len
)) {
2247 pcap_snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2248 "BPF program is not valid");
2253 * Free up any already installed program.
2255 pcap_freecode(&p
->fcode
);
2257 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2258 p
->fcode
.bf_len
= fp
->bf_len
;
2259 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2260 if (p
->fcode
.bf_insns
== NULL
) {
2261 pcap_snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2262 "malloc: %s", pcap_strerror(errno
));
2265 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2271 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2274 int icount
, noffset
;
2277 if (block
== NULL
|| isMarked(ic
, block
))
2281 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2282 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2284 fprintf(out
, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block
->id
, block
->id
, block
->id
);
2285 for (i
= block
->offset
; i
< noffset
; i
++) {
2286 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2288 fprintf(out
, "\" tooltip=\"");
2289 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2290 if (block
->val
[i
] != 0)
2291 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2292 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2293 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2295 if (JT(block
) == NULL
)
2296 fprintf(out
, ", peripheries=2");
2297 fprintf(out
, "];\n");
2299 dot_dump_node(ic
, JT(block
), prog
, out
);
2300 dot_dump_node(ic
, JF(block
), prog
, out
);
2304 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
2306 if (block
== NULL
|| isMarked(ic
, block
))
2311 fprintf(out
, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2312 block
->id
, JT(block
)->id
);
2313 fprintf(out
, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2314 block
->id
, JF(block
)->id
);
2316 dot_dump_edge(ic
, JT(block
), out
);
2317 dot_dump_edge(ic
, JF(block
), out
);
2320 /* Output the block CFG using graphviz/DOT language
2321 * In the CFG, block's code, value index for each registers at EXIT,
2322 * and the jump relationship is show.
2324 * example DOT for BPF `ip src host 1.1.1.1' is:
2326 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2327 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2328 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2329 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2330 "block0":se -> "block1":n [label="T"];
2331 "block0":sw -> "block3":n [label="F"];
2332 "block1":se -> "block2":n [label="T"];
2333 "block1":sw -> "block3":n [label="F"];
2336 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2337 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2340 dot_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2342 struct bpf_program f
;
2345 memset(bids
, 0, sizeof bids
);
2346 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2348 fprintf(out
, "digraph BPF {\n");
2351 dot_dump_node(ic
, ic
->root
, &f
, out
);
2354 dot_dump_edge(ic
, ic
->root
, out
);
2355 fprintf(out
, "}\n");
2357 free((char *)f
.bf_insns
);
2361 plain_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2363 struct bpf_program f
;
2365 memset(bids
, 0, sizeof bids
);
2366 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2369 free((char *)f
.bf_insns
);
2373 opt_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2375 /* if optimizer debugging is enabled, output DOT graph
2376 * `pcap_optimizer_debug=4' is equivalent to -dddd to follow -d/-dd/-ddd
2377 * convention in tcpdump command line
2379 if (pcap_optimizer_debug
> 3)
2380 dot_dump(cstate
, ic
);
2382 plain_dump(cstate
, ic
);