1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 static const char rcsid
[] _U_
=
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.215 2004-12-18 08:52:09 guy Exp $ (LBL)";
32 #include <pcap-stdinc.h>
34 #include <sys/types.h>
35 #include <sys/socket.h>
39 * XXX - why was this included even on UNIX?
48 #include <sys/param.h>
51 #include <netinet/in.h>
67 #include "ethertype.h"
72 #include "sunatmpos.h"
78 #define offsetof(s, e) ((size_t)&((s *)0)->e)
82 #include <netdb.h> /* for "struct addrinfo" */
85 #include <pcap-namedb.h>
90 #define IPPROTO_SCTP 132
93 #ifdef HAVE_OS_PROTO_H
97 #define JMP(c) ((c)|BPF_JMP|BPF_K)
100 static jmp_buf top_ctx
;
101 static pcap_t
*bpf_pcap
;
103 /* Hack for updating VLAN, MPLS offsets. */
104 static u_int orig_linktype
= -1U, orig_nl
= -1U, orig_nl_nosnap
= -1U;
108 static int pcap_fddipad
;
113 bpf_error(const char *fmt
, ...)
119 if (bpf_pcap
!= NULL
)
120 (void)vsnprintf(pcap_geterr(bpf_pcap
), PCAP_ERRBUF_SIZE
,
127 static void init_linktype(pcap_t
*);
129 static int alloc_reg(void);
130 static void free_reg(int);
132 static struct block
*root
;
135 * We divy out chunks of memory rather than call malloc each time so
136 * we don't have to worry about leaking memory. It's probably
137 * not a big deal if all this memory was wasted but if this ever
138 * goes into a library that would probably not be a good idea.
140 * XXX - this *is* in a library....
143 #define CHUNK0SIZE 1024
149 static struct chunk chunks
[NCHUNKS
];
150 static int cur_chunk
;
152 static void *newchunk(u_int
);
153 static void freechunks(void);
154 static inline struct block
*new_block(int);
155 static inline struct slist
*new_stmt(int);
156 static struct block
*gen_retblk(int);
157 static inline void syntax(void);
159 static void backpatch(struct block
*, struct block
*);
160 static void merge(struct block
*, struct block
*);
161 static struct block
*gen_cmp(u_int
, u_int
, bpf_int32
);
162 static struct block
*gen_cmp_gt(u_int
, u_int
, bpf_int32
);
163 static struct block
*gen_mcmp(u_int
, u_int
, bpf_int32
, bpf_u_int32
);
164 static struct block
*gen_bcmp(u_int
, u_int
, const u_char
*);
165 static struct block
*gen_ncmp(bpf_u_int32
, bpf_u_int32
, bpf_u_int32
,
166 bpf_u_int32
, bpf_u_int32
, int);
167 static struct block
*gen_uncond(int);
168 static inline struct block
*gen_true(void);
169 static inline struct block
*gen_false(void);
170 static struct block
*gen_ether_linktype(int);
171 static struct block
*gen_linux_sll_linktype(int);
172 static struct block
*gen_linktype(int);
173 static struct block
*gen_snap(bpf_u_int32
, bpf_u_int32
, u_int
);
174 static struct block
*gen_llc(int);
175 static struct block
*gen_hostop(bpf_u_int32
, bpf_u_int32
, int, int, u_int
, u_int
);
177 static struct block
*gen_hostop6(struct in6_addr
*, struct in6_addr
*, int, int, u_int
, u_int
);
179 static struct block
*gen_ahostop(const u_char
*, int);
180 static struct block
*gen_ehostop(const u_char
*, int);
181 static struct block
*gen_fhostop(const u_char
*, int);
182 static struct block
*gen_thostop(const u_char
*, int);
183 static struct block
*gen_wlanhostop(const u_char
*, int);
184 static struct block
*gen_ipfchostop(const u_char
*, int);
185 static struct block
*gen_dnhostop(bpf_u_int32
, int, u_int
);
186 static struct block
*gen_host(bpf_u_int32
, bpf_u_int32
, int, int);
188 static struct block
*gen_host6(struct in6_addr
*, struct in6_addr
*, int, int);
191 static struct block
*gen_gateway(const u_char
*, bpf_u_int32
**, int, int);
193 static struct block
*gen_ipfrag(void);
194 static struct block
*gen_portatom(int, bpf_int32
);
196 static struct block
*gen_portatom6(int, bpf_int32
);
198 struct block
*gen_portop(int, int, int);
199 static struct block
*gen_port(int, int, int);
201 struct block
*gen_portop6(int, int, int);
202 static struct block
*gen_port6(int, int, int);
204 static int lookup_proto(const char *, int);
205 static struct block
*gen_protochain(int, int, int);
206 static struct block
*gen_proto(int, int, int);
207 static struct slist
*xfer_to_x(struct arth
*);
208 static struct slist
*xfer_to_a(struct arth
*);
209 static struct block
*gen_mac_multicast(int);
210 static struct block
*gen_len(int, int);
212 static struct block
*gen_msg_abbrev(int type
);
223 /* XXX Round up to nearest long. */
224 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
226 /* XXX Round up to structure boundary. */
230 cp
= &chunks
[cur_chunk
];
231 if (n
> cp
->n_left
) {
232 ++cp
, k
= ++cur_chunk
;
234 bpf_error("out of memory");
235 size
= CHUNK0SIZE
<< k
;
236 cp
->m
= (void *)malloc(size
);
238 bpf_error("out of memory");
239 memset((char *)cp
->m
, 0, size
);
242 bpf_error("out of memory");
245 return (void *)((char *)cp
->m
+ cp
->n_left
);
254 for (i
= 0; i
< NCHUNKS
; ++i
)
255 if (chunks
[i
].m
!= NULL
) {
262 * A strdup whose allocations are freed after code generation is over.
266 register const char *s
;
268 int n
= strlen(s
) + 1;
269 char *cp
= newchunk(n
);
275 static inline struct block
*
281 p
= (struct block
*)newchunk(sizeof(*p
));
288 static inline struct slist
*
294 p
= (struct slist
*)newchunk(sizeof(*p
));
300 static struct block
*
304 struct block
*b
= new_block(BPF_RET
|BPF_K
);
313 bpf_error("syntax error in filter expression");
316 static bpf_u_int32 netmask
;
321 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
322 char *buf
, int optimize
, bpf_u_int32 mask
)
331 if (setjmp(top_ctx
)) {
339 snaplen
= pcap_snapshot(p
);
341 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
342 "snaplen of 0 rejects all packets");
346 lex_init(buf
? buf
: "");
354 root
= gen_retblk(snaplen
);
356 if (optimize
&& !no_optimize
) {
359 (root
->s
.code
== (BPF_RET
|BPF_K
) && root
->s
.k
== 0))
360 bpf_error("expression rejects all packets");
362 program
->bf_insns
= icode_to_fcode(root
, &len
);
363 program
->bf_len
= len
;
371 * entry point for using the compiler with no pcap open
372 * pass in all the stuff that is needed explicitly instead.
375 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
376 struct bpf_program
*program
,
377 char *buf
, int optimize
, bpf_u_int32 mask
)
382 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
385 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
391 * Clean up a "struct bpf_program" by freeing all the memory allocated
395 pcap_freecode(struct bpf_program
*program
)
398 if (program
->bf_insns
!= NULL
) {
399 free((char *)program
->bf_insns
);
400 program
->bf_insns
= NULL
;
405 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
406 * which of the jt and jf fields has been resolved and which is a pointer
407 * back to another unresolved block (or nil). At least one of the fields
408 * in each block is already resolved.
411 backpatch(list
, target
)
412 struct block
*list
, *target
;
429 * Merge the lists in b0 and b1, using the 'sense' field to indicate
430 * which of jt and jf is the link.
434 struct block
*b0
, *b1
;
436 register struct block
**p
= &b0
;
438 /* Find end of list. */
440 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
442 /* Concatenate the lists. */
450 backpatch(p
, gen_retblk(snaplen
));
451 p
->sense
= !p
->sense
;
452 backpatch(p
, gen_retblk(0));
458 struct block
*b0
, *b1
;
460 backpatch(b0
, b1
->head
);
461 b0
->sense
= !b0
->sense
;
462 b1
->sense
= !b1
->sense
;
464 b1
->sense
= !b1
->sense
;
470 struct block
*b0
, *b1
;
472 b0
->sense
= !b0
->sense
;
473 backpatch(b0
, b1
->head
);
474 b0
->sense
= !b0
->sense
;
483 b
->sense
= !b
->sense
;
486 static struct block
*
487 gen_cmp(offset
, size
, v
)
494 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
497 b
= new_block(JMP(BPF_JEQ
));
504 static struct block
*
505 gen_cmp_gt(offset
, size
, v
)
512 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
515 b
= new_block(JMP(BPF_JGT
));
522 static struct block
*
523 gen_mcmp(offset
, size
, v
, mask
)
528 struct block
*b
= gen_cmp(offset
, size
, v
);
531 if (mask
!= 0xffffffff) {
532 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
539 static struct block
*
540 gen_bcmp(offset
, size
, v
)
541 register u_int offset
, size
;
542 register const u_char
*v
;
544 register struct block
*b
, *tmp
;
548 register const u_char
*p
= &v
[size
- 4];
549 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
550 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
552 tmp
= gen_cmp(offset
+ size
- 4, BPF_W
, w
);
559 register const u_char
*p
= &v
[size
- 2];
560 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
562 tmp
= gen_cmp(offset
+ size
- 2, BPF_H
, w
);
569 tmp
= gen_cmp(offset
, BPF_B
, (bpf_int32
)v
[0]);
577 static struct block
*
578 gen_ncmp(datasize
, offset
, mask
, jtype
, jvalue
, reverse
)
579 bpf_u_int32 datasize
, offset
, mask
, jtype
, jvalue
;
585 s
= new_stmt(BPF_LD
|datasize
|BPF_ABS
);
588 if (mask
!= 0xffffffff) {
589 s
->next
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
593 b
= new_block(JMP(jtype
));
596 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
602 * Various code constructs need to know the layout of the data link
603 * layer. These variables give the necessary offsets.
607 * This is the offset of the beginning of the MAC-layer header.
608 * It's usually 0, except for ATM LANE.
610 static u_int off_mac
;
613 * "off_linktype" is the offset to information in the link-layer header
614 * giving the packet type.
616 * For Ethernet, it's the offset of the Ethernet type field.
618 * For link-layer types that always use 802.2 headers, it's the
619 * offset of the LLC header.
621 * For PPP, it's the offset of the PPP type field.
623 * For Cisco HDLC, it's the offset of the CHDLC type field.
625 * For BSD loopback, it's the offset of the AF_ value.
627 * For Linux cooked sockets, it's the offset of the type field.
629 * It's set to -1 for no encapsulation, in which case, IP is assumed.
631 static u_int off_linktype
;
634 * TRUE if the link layer includes an ATM pseudo-header.
636 static int is_atm
= 0;
639 * TRUE if "lane" appeared in the filter; it causes us to generate
640 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
642 static int is_lane
= 0;
645 * These are offsets for the ATM pseudo-header.
647 static u_int off_vpi
;
648 static u_int off_vci
;
649 static u_int off_proto
;
652 * This is the offset of the first byte after the ATM pseudo_header,
653 * or -1 if there is no ATM pseudo-header.
655 static u_int off_payload
;
658 * These are offsets to the beginning of the network-layer header.
660 * If the link layer never uses 802.2 LLC:
662 * "off_nl" and "off_nl_nosnap" are the same.
664 * If the link layer always uses 802.2 LLC:
666 * "off_nl" is the offset if there's a SNAP header following
669 * "off_nl_nosnap" is the offset if there's no SNAP header.
671 * If the link layer is Ethernet:
673 * "off_nl" is the offset if the packet is an Ethernet II packet
674 * (we assume no 802.3+802.2+SNAP);
676 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
677 * with an 802.2 header following it.
680 static u_int off_nl_nosnap
;
688 linktype
= pcap_datalink(p
);
690 pcap_fddipad
= p
->fddipad
;
694 * Assume it's not raw ATM with a pseudo-header, for now.
712 off_nl
= 6; /* XXX in reality, variable! */
713 off_nl_nosnap
= 6; /* no 802.2 LLC */
716 case DLT_ARCNET_LINUX
:
718 off_nl
= 8; /* XXX in reality, variable! */
719 off_nl_nosnap
= 8; /* no 802.2 LLC */
724 off_nl
= 14; /* Ethernet II */
725 off_nl_nosnap
= 17; /* 802.3+802.2 */
730 * SLIP doesn't have a link level type. The 16 byte
731 * header is hacked into our SLIP driver.
735 off_nl_nosnap
= 16; /* no 802.2 LLC */
739 /* XXX this may be the same as the DLT_PPP_BSDOS case */
743 off_nl_nosnap
= 24; /* no 802.2 LLC */
750 off_nl_nosnap
= 4; /* no 802.2 LLC */
756 off_nl_nosnap
= 12; /* no 802.2 LLC */
760 case DLT_PPP_WITHDIRECTION
:
761 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
762 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
765 off_nl_nosnap
= 4; /* no 802.2 LLC */
770 * This does no include the Ethernet header, and
771 * only covers session state.
775 off_nl_nosnap
= 8; /* no 802.2 LLC */
781 off_nl_nosnap
= 24; /* no 802.2 LLC */
786 * FDDI doesn't really have a link-level type field.
787 * We set "off_linktype" to the offset of the LLC header.
789 * To check for Ethernet types, we assume that SSAP = SNAP
790 * is being used and pick out the encapsulated Ethernet type.
791 * XXX - should we generate code to check for SNAP?
795 off_linktype
+= pcap_fddipad
;
797 off_nl
= 21; /* FDDI+802.2+SNAP */
798 off_nl_nosnap
= 16; /* FDDI+802.2 */
800 off_nl
+= pcap_fddipad
;
801 off_nl_nosnap
+= pcap_fddipad
;
807 * Token Ring doesn't really have a link-level type field.
808 * We set "off_linktype" to the offset of the LLC header.
810 * To check for Ethernet types, we assume that SSAP = SNAP
811 * is being used and pick out the encapsulated Ethernet type.
812 * XXX - should we generate code to check for SNAP?
814 * XXX - the header is actually variable-length.
815 * Some various Linux patched versions gave 38
816 * as "off_linktype" and 40 as "off_nl"; however,
817 * if a token ring packet has *no* routing
818 * information, i.e. is not source-routed, the correct
819 * values are 20 and 22, as they are in the vanilla code.
821 * A packet is source-routed iff the uppermost bit
822 * of the first byte of the source address, at an
823 * offset of 8, has the uppermost bit set. If the
824 * packet is source-routed, the total number of bytes
825 * of routing information is 2 plus bits 0x1F00 of
826 * the 16-bit value at an offset of 14 (shifted right
827 * 8 - figure out which byte that is).
830 off_nl
= 22; /* Token Ring+802.2+SNAP */
831 off_nl_nosnap
= 17; /* Token Ring+802.2 */
836 * 802.11 doesn't really have a link-level type field.
837 * We set "off_linktype" to the offset of the LLC header.
839 * To check for Ethernet types, we assume that SSAP = SNAP
840 * is being used and pick out the encapsulated Ethernet type.
841 * XXX - should we generate code to check for SNAP?
843 * XXX - the header is actually variable-length. We
844 * assume a 24-byte link-layer header, as appears in
845 * data frames in networks with no bridges. If the
846 * fromds and tods 802.11 header bits are both set,
847 * it's actually supposed to be 30 bytes.
850 off_nl
= 32; /* 802.11+802.2+SNAP */
851 off_nl_nosnap
= 27; /* 802.11+802.2 */
854 case DLT_PRISM_HEADER
:
856 * Same as 802.11, but with an additional header before
857 * the 802.11 header, containing a bunch of additional
858 * information including radio-level information.
860 * The header is 144 bytes long.
862 * XXX - same variable-length header problem; at least
863 * the Prism header is fixed-length.
865 off_linktype
= 144+24;
866 off_nl
= 144+32; /* Prism+802.11+802.2+SNAP */
867 off_nl_nosnap
= 144+27; /* Prism+802.11+802.2 */
870 case DLT_IEEE802_11_RADIO_AVS
:
872 * Same as 802.11, but with an additional header before
873 * the 802.11 header, containing a bunch of additional
874 * information including radio-level information.
876 * The header is 64 bytes long, at least in its
877 * current incarnation.
879 * XXX - same variable-length header problem, only
880 * more so; this header is also variable-length,
881 * with the length being the 32-bit big-endian
882 * number at an offset of 4 from the beginning
883 * of the radio header.
885 off_linktype
= 64+24;
886 off_nl
= 64+32; /* Radio+802.11+802.2+SNAP */
887 off_nl_nosnap
= 64+27; /* Radio+802.11+802.2 */
890 case DLT_IEEE802_11_RADIO
:
892 * Same as 802.11, but with an additional header before
893 * the 802.11 header, containing a bunch of additional
894 * information including radio-level information.
896 * XXX - same variable-length header problem, only
897 * even *more* so; this header is also variable-length,
898 * with the length being the 16-bit number at an offset
899 * of 2 from the beginning of the radio header, and it's
900 * device-dependent (different devices might supply
901 * different amounts of information), so we can't even
902 * assume a fixed length for the current version of the
905 * Therefore, currently, only raw "link[N:M]" filtering is
913 case DLT_ATM_RFC1483
:
914 case DLT_ATM_CLIP
: /* Linux ATM defines this */
916 * assume routed, non-ISO PDUs
917 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
920 off_nl
= 8; /* 802.2+SNAP */
921 off_nl_nosnap
= 3; /* 802.2 */
926 * Full Frontal ATM; you get AALn PDUs with an ATM
930 off_vpi
= SUNATM_VPI_POS
;
931 off_vci
= SUNATM_VCI_POS
;
932 off_proto
= PROTO_POS
;
933 off_mac
= -1; /* LLC-encapsulated, so no MAC-layer header */
934 off_payload
= SUNATM_PKT_BEGIN_POS
;
935 off_linktype
= off_payload
;
936 off_nl
= off_payload
+8; /* 802.2+SNAP */
937 off_nl_nosnap
= off_payload
+3; /* 802.2 */
943 off_nl_nosnap
= 0; /* no 802.2 LLC */
946 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
949 off_nl_nosnap
= 16; /* no 802.2 LLC */
954 * LocalTalk does have a 1-byte type field in the LLAP header,
955 * but really it just indicates whether there is a "short" or
956 * "long" DDP packet following.
960 off_nl_nosnap
= 0; /* no 802.2 LLC */
965 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
966 * link-level type field. We set "off_linktype" to the
967 * offset of the LLC header.
969 * To check for Ethernet types, we assume that SSAP = SNAP
970 * is being used and pick out the encapsulated Ethernet type.
971 * XXX - should we generate code to check for SNAP? RFC
972 * 2625 says SNAP should be used.
975 off_nl
= 24; /* IPFC+802.2+SNAP */
976 off_nl_nosnap
= 19; /* IPFC+802.2 */
981 * XXX - we should set this to handle SNAP-encapsulated
982 * frames (NLPID of 0x80).
986 off_nl_nosnap
= 0; /* no 802.2 LLC */
989 case DLT_APPLE_IP_OVER_IEEE1394
:
992 off_nl_nosnap
= 0; /* no 802.2 LLC */
997 * Currently, only raw "link[N:M]" filtering is supported.
1006 * Currently, only raw "link[N:M]" filtering is supported.
1013 case DLT_SYMANTEC_FIREWALL
:
1015 off_nl
= 44; /* Ethernet II */
1016 off_nl_nosnap
= 44; /* XXX - what does it do with 802.3 packets? */
1021 /* XXX read from header? */
1022 off_nl
= PFLOG_HDRLEN
;
1023 off_nl_nosnap
= PFLOG_HDRLEN
;
1026 case DLT_JUNIPER_ATM1
:
1027 off_linktype
= 4; /* in reality variable between 4-8 */
1032 case DLT_JUNIPER_ATM2
:
1033 off_linktype
= 8; /* in reality variable between 8-12 */
1046 bpf_error("unknown data link type %d", linktype
);
1050 static struct block
*
1057 s
= new_stmt(BPF_LD
|BPF_IMM
);
1059 b
= new_block(JMP(BPF_JEQ
));
1065 static inline struct block
*
1068 return gen_uncond(1);
1071 static inline struct block
*
1074 return gen_uncond(0);
1078 * Byte-swap a 32-bit number.
1079 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1080 * big-endian platforms.)
1082 #define SWAPLONG(y) \
1083 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1085 static struct block
*
1086 gen_ether_linktype(proto
)
1089 struct block
*b0
, *b1
;
1095 * OSI protocols always use 802.2 encapsulation.
1096 * XXX - should we check both the DSAP and the
1097 * SSAP, like this, or should we check just the
1100 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1102 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1103 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1108 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1110 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1111 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1115 case LLCSAP_NETBEUI
:
1117 * NetBEUI always uses 802.2 encapsulation.
1118 * XXX - should we check both the DSAP and the
1119 * SSAP, like this, or should we check just the
1122 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1124 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1125 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1133 * Ethernet_II frames, which are Ethernet
1134 * frames with a frame type of ETHERTYPE_IPX;
1136 * Ethernet_802.3 frames, which are 802.3
1137 * frames (i.e., the type/length field is
1138 * a length field, <= ETHERMTU, rather than
1139 * a type field) with the first two bytes
1140 * after the Ethernet/802.3 header being
1143 * Ethernet_802.2 frames, which are 802.3
1144 * frames with an 802.2 LLC header and
1145 * with the IPX LSAP as the DSAP in the LLC
1148 * Ethernet_SNAP frames, which are 802.3
1149 * frames with an LLC header and a SNAP
1150 * header and with an OUI of 0x000000
1151 * (encapsulated Ethernet) and a protocol
1152 * ID of ETHERTYPE_IPX in the SNAP header.
1154 * XXX - should we generate the same code both
1155 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1159 * This generates code to check both for the
1160 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1162 b0
= gen_cmp(off_linktype
+ 2, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1163 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)0xFFFF);
1167 * Now we add code to check for SNAP frames with
1168 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1170 b0
= gen_snap(0x000000, ETHERTYPE_IPX
, 14);
1174 * Now we generate code to check for 802.3
1175 * frames in general.
1177 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1181 * Now add the check for 802.3 frames before the
1182 * check for Ethernet_802.2 and Ethernet_802.3,
1183 * as those checks should only be done on 802.3
1184 * frames, not on Ethernet frames.
1189 * Now add the check for Ethernet_II frames, and
1190 * do that before checking for the other frame
1193 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
1197 case ETHERTYPE_ATALK
:
1198 case ETHERTYPE_AARP
:
1200 * EtherTalk (AppleTalk protocols on Ethernet link
1201 * layer) may use 802.2 encapsulation.
1205 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1206 * we check for an Ethernet type field less than
1207 * 1500, which means it's an 802.3 length field.
1209 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1213 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1214 * SNAP packets with an organization code of
1215 * 0x080007 (Apple, for Appletalk) and a protocol
1216 * type of ETHERTYPE_ATALK (Appletalk).
1218 * 802.2-encapsulated ETHERTYPE_AARP packets are
1219 * SNAP packets with an organization code of
1220 * 0x000000 (encapsulated Ethernet) and a protocol
1221 * type of ETHERTYPE_AARP (Appletalk ARP).
1223 if (proto
== ETHERTYPE_ATALK
)
1224 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
, 14);
1225 else /* proto == ETHERTYPE_AARP */
1226 b1
= gen_snap(0x000000, ETHERTYPE_AARP
, 14);
1230 * Check for Ethernet encapsulation (Ethertalk
1231 * phase 1?); we just check for the Ethernet
1234 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1240 if (proto
<= ETHERMTU
) {
1242 * This is an LLC SAP value, so the frames
1243 * that match would be 802.2 frames.
1244 * Check that the frame is an 802.2 frame
1245 * (i.e., that the length/type field is
1246 * a length field, <= ETHERMTU) and
1247 * then check the DSAP.
1249 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1251 b1
= gen_cmp(off_linktype
+ 2, BPF_B
, (bpf_int32
)proto
);
1256 * This is an Ethernet type, so compare
1257 * the length/type field with it (if
1258 * the frame is an 802.2 frame, the length
1259 * field will be <= ETHERMTU, and, as
1260 * "proto" is > ETHERMTU, this test
1261 * will fail and the frame won't match,
1262 * which is what we want).
1264 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1269 static struct block
*
1270 gen_linux_sll_linktype(proto
)
1273 struct block
*b0
, *b1
;
1278 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1279 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1280 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1286 * OSI protocols always use 802.2 encapsulation.
1287 * XXX - should we check both the DSAP and the
1288 * SSAP, like this, or should we check just the
1291 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1292 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1293 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1297 case LLCSAP_NETBEUI
:
1299 * NetBEUI always uses 802.2 encapsulation.
1300 * XXX - should we check both the DSAP and the
1301 * LSAP, like this, or should we check just the
1304 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1305 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1306 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1312 * Ethernet_II frames, which are Ethernet
1313 * frames with a frame type of ETHERTYPE_IPX;
1315 * Ethernet_802.3 frames, which have a frame
1316 * type of LINUX_SLL_P_802_3;
1318 * Ethernet_802.2 frames, which are 802.3
1319 * frames with an 802.2 LLC header (i.e, have
1320 * a frame type of LINUX_SLL_P_802_2) and
1321 * with the IPX LSAP as the DSAP in the LLC
1324 * Ethernet_SNAP frames, which are 802.3
1325 * frames with an LLC header and a SNAP
1326 * header and with an OUI of 0x000000
1327 * (encapsulated Ethernet) and a protocol
1328 * ID of ETHERTYPE_IPX in the SNAP header.
1330 * First, do the checks on LINUX_SLL_P_802_2
1331 * frames; generate the check for either
1332 * Ethernet_802.2 or Ethernet_SNAP frames, and
1333 * then put a check for LINUX_SLL_P_802_2 frames
1336 b0
= gen_cmp(off_linktype
+ 2, BPF_B
,
1337 (bpf_int32
)LLCSAP_IPX
);
1338 b1
= gen_snap(0x000000, ETHERTYPE_IPX
,
1341 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1345 * Now check for 802.3 frames and OR that with
1346 * the previous test.
1348 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_3
);
1352 * Now add the check for Ethernet_II frames, and
1353 * do that before checking for the other frame
1356 b0
= gen_cmp(off_linktype
, BPF_H
,
1357 (bpf_int32
)ETHERTYPE_IPX
);
1361 case ETHERTYPE_ATALK
:
1362 case ETHERTYPE_AARP
:
1364 * EtherTalk (AppleTalk protocols on Ethernet link
1365 * layer) may use 802.2 encapsulation.
1369 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1370 * we check for the 802.2 protocol type in the
1371 * "Ethernet type" field.
1373 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1376 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1377 * SNAP packets with an organization code of
1378 * 0x080007 (Apple, for Appletalk) and a protocol
1379 * type of ETHERTYPE_ATALK (Appletalk).
1381 * 802.2-encapsulated ETHERTYPE_AARP packets are
1382 * SNAP packets with an organization code of
1383 * 0x000000 (encapsulated Ethernet) and a protocol
1384 * type of ETHERTYPE_AARP (Appletalk ARP).
1386 if (proto
== ETHERTYPE_ATALK
)
1387 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
,
1389 else /* proto == ETHERTYPE_AARP */
1390 b1
= gen_snap(0x000000, ETHERTYPE_AARP
,
1395 * Check for Ethernet encapsulation (Ethertalk
1396 * phase 1?); we just check for the Ethernet
1399 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1405 if (proto
<= ETHERMTU
) {
1407 * This is an LLC SAP value, so the frames
1408 * that match would be 802.2 frames.
1409 * Check for the 802.2 protocol type
1410 * in the "Ethernet type" field, and
1411 * then check the DSAP.
1413 b0
= gen_cmp(off_linktype
, BPF_H
,
1415 b1
= gen_cmp(off_linktype
+ 2, BPF_B
,
1421 * This is an Ethernet type, so compare
1422 * the length/type field with it (if
1423 * the frame is an 802.2 frame, the length
1424 * field will be <= ETHERMTU, and, as
1425 * "proto" is > ETHERMTU, this test
1426 * will fail and the frame won't match,
1427 * which is what we want).
1429 return gen_cmp(off_linktype
, BPF_H
,
1435 static struct block
*
1439 struct block
*b0
, *b1
, *b2
;
1444 return gen_ether_linktype(proto
);
1452 proto
= (proto
<< 8 | LLCSAP_ISONS
);
1456 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1462 case DLT_IEEE802_11
:
1463 case DLT_PRISM_HEADER
:
1464 case DLT_IEEE802_11_RADIO
:
1467 case DLT_ATM_RFC1483
:
1469 case DLT_IP_OVER_FC
:
1470 return gen_llc(proto
);
1476 * If "is_lane" is set, check for a LANE-encapsulated
1477 * version of this protocol, otherwise check for an
1478 * LLC-encapsulated version of this protocol.
1480 * We assume LANE means Ethernet, not Token Ring.
1484 * Check that the packet doesn't begin with an
1485 * LE Control marker. (We've already generated
1488 b0
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
1492 * Now generate an Ethernet test.
1494 b1
= gen_ether_linktype(proto
);
1499 * Check for LLC encapsulation and then check the
1502 b0
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
1503 b1
= gen_llc(proto
);
1509 return gen_linux_sll_linktype(proto
);
1514 case DLT_SLIP_BSDOS
:
1517 * These types don't provide any type field; packets
1520 * XXX - for IPv4, check for a version number of 4, and,
1521 * for IPv6, check for a version number of 6?
1527 case ETHERTYPE_IPV6
:
1529 return gen_true(); /* always true */
1532 return gen_false(); /* always false */
1538 case DLT_PPP_WITHDIRECTION
:
1539 case DLT_PPP_SERIAL
:
1542 * We use Ethernet protocol types inside libpcap;
1543 * map them to the corresponding PPP protocol types.
1552 case ETHERTYPE_IPV6
:
1561 case ETHERTYPE_ATALK
:
1575 * I'm assuming the "Bridging PDU"s that go
1576 * over PPP are Spanning Tree Protocol
1590 * We use Ethernet protocol types inside libpcap;
1591 * map them to the corresponding PPP protocol types.
1596 b0
= gen_cmp(off_linktype
, BPF_H
, PPP_IP
);
1597 b1
= gen_cmp(off_linktype
, BPF_H
, PPP_VJC
);
1599 b0
= gen_cmp(off_linktype
, BPF_H
, PPP_VJNC
);
1604 case ETHERTYPE_IPV6
:
1614 case ETHERTYPE_ATALK
:
1628 * I'm assuming the "Bridging PDU"s that go
1629 * over PPP are Spanning Tree Protocol
1645 * For DLT_NULL, the link-layer header is a 32-bit
1646 * word containing an AF_ value in *host* byte order,
1647 * and for DLT_ENC, the link-layer header begins
1648 * with a 32-bit work containing an AF_ value in
1651 * In addition, if we're reading a saved capture file,
1652 * the host byte order in the capture may not be the
1653 * same as the host byte order on this machine.
1655 * For DLT_LOOP, the link-layer header is a 32-bit
1656 * word containing an AF_ value in *network* byte order.
1658 * XXX - AF_ values may, unfortunately, be platform-
1659 * dependent; for example, FreeBSD's AF_INET6 is 24
1660 * whilst NetBSD's and OpenBSD's is 26.
1662 * This means that, when reading a capture file, just
1663 * checking for our AF_INET6 value won't work if the
1664 * capture file came from another OS.
1673 case ETHERTYPE_IPV6
:
1680 * Not a type on which we support filtering.
1681 * XXX - support those that have AF_ values
1682 * #defined on this platform, at least?
1687 if (linktype
== DLT_NULL
|| linktype
== DLT_ENC
) {
1689 * The AF_ value is in host byte order, but
1690 * the BPF interpreter will convert it to
1691 * network byte order.
1693 * If this is a save file, and it's from a
1694 * machine with the opposite byte order to
1695 * ours, we byte-swap the AF_ value.
1697 * Then we run it through "htonl()", and
1698 * generate code to compare against the result.
1700 if (bpf_pcap
->sf
.rfile
!= NULL
&&
1701 bpf_pcap
->sf
.swapped
)
1702 proto
= SWAPLONG(proto
);
1703 proto
= htonl(proto
);
1705 return (gen_cmp(0, BPF_W
, (bpf_int32
)proto
));
1709 * af field is host byte order in contrast to the rest of
1712 if (proto
== ETHERTYPE_IP
)
1713 return (gen_cmp(offsetof(struct pfloghdr
, af
), BPF_B
,
1714 (bpf_int32
)AF_INET
));
1716 else if (proto
== ETHERTYPE_IPV6
)
1717 return (gen_cmp(offsetof(struct pfloghdr
, af
), BPF_B
,
1718 (bpf_int32
)AF_INET6
));
1726 case DLT_ARCNET_LINUX
:
1728 * XXX should we check for first fragment if the protocol
1737 case ETHERTYPE_IPV6
:
1738 return (gen_cmp(off_linktype
, BPF_B
,
1739 (bpf_int32
)ARCTYPE_INET6
));
1743 b0
= gen_cmp(off_linktype
, BPF_B
,
1744 (bpf_int32
)ARCTYPE_IP
);
1745 b1
= gen_cmp(off_linktype
, BPF_B
,
1746 (bpf_int32
)ARCTYPE_IP_OLD
);
1751 b0
= gen_cmp(off_linktype
, BPF_B
,
1752 (bpf_int32
)ARCTYPE_ARP
);
1753 b1
= gen_cmp(off_linktype
, BPF_B
,
1754 (bpf_int32
)ARCTYPE_ARP_OLD
);
1758 case ETHERTYPE_REVARP
:
1759 return (gen_cmp(off_linktype
, BPF_B
,
1760 (bpf_int32
)ARCTYPE_REVARP
));
1762 case ETHERTYPE_ATALK
:
1763 return (gen_cmp(off_linktype
, BPF_B
,
1764 (bpf_int32
)ARCTYPE_ATALK
));
1771 case ETHERTYPE_ATALK
:
1781 * XXX - assumes a 2-byte Frame Relay header with
1782 * DLCI and flags. What if the address is longer?
1788 * Check for the special NLPID for IP.
1790 return gen_cmp(2, BPF_H
, (0x03<<8) | 0xcc);
1793 case ETHERTYPE_IPV6
:
1795 * Check for the special NLPID for IPv6.
1797 return gen_cmp(2, BPF_H
, (0x03<<8) | 0x8e);
1802 * Check for several OSI protocols.
1804 * Frame Relay packets typically have an OSI
1805 * NLPID at the beginning; we check for each
1808 * What we check for is the NLPID and a frame
1809 * control field of UI, i.e. 0x03 followed
1812 b0
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
1813 b1
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
1814 b2
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
1825 case DLT_JUNIPER_ATM1
:
1826 case DLT_JUNIPER_ATM2
:
1827 /* just lets verify the magic number for now -
1828 * we may have up to 6 different encapsulations on the wire
1829 * and need a lot of heuristics to figure out that the payload
1832 * FIXME encapsulation specific BPF_ filters
1834 return gen_mcmp(0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
1836 case DLT_LINUX_IRDA
:
1837 bpf_error("IrDA link-layer type filtering not implemented");
1840 bpf_error("DOCSIS link-layer type filtering not implemented");
1844 * All the types that have no encapsulation should either be
1845 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
1846 * all packets are IP packets, or should be handled in some
1847 * special case, if none of them are (if some are and some
1848 * aren't, the lack of encapsulation is a problem, as we'd
1849 * have to find some other way of determining the packet type).
1851 * Therefore, if "off_linktype" is -1, there's an error.
1853 if (off_linktype
== (u_int
)-1)
1857 * Any type not handled above should always have an Ethernet
1858 * type at an offset of "off_linktype". (PPP is partially
1859 * handled above - the protocol type is mapped from the
1860 * Ethernet and LLC types we use internally to the corresponding
1861 * PPP type - but the PPP type is always specified by a value
1862 * at "off_linktype", so we don't have to do the code generation
1865 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1869 * Check for an LLC SNAP packet with a given organization code and
1870 * protocol type; we check the entire contents of the 802.2 LLC and
1871 * snap headers, checking for DSAP and SSAP of SNAP and a control
1872 * field of 0x03 in the LLC header, and for the specified organization
1873 * code and protocol type in the SNAP header.
1875 static struct block
*
1876 gen_snap(orgcode
, ptype
, offset
)
1877 bpf_u_int32 orgcode
;
1881 u_char snapblock
[8];
1883 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
1884 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
1885 snapblock
[2] = 0x03; /* control = UI */
1886 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
1887 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
1888 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
1889 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
1890 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
1891 return gen_bcmp(offset
, 8, snapblock
);
1895 * Check for a given protocol value assuming an 802.2 LLC header.
1897 static struct block
*
1902 * XXX - handle token-ring variable-length header.
1907 return gen_cmp(off_linktype
, BPF_H
, (long)
1908 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1911 return gen_cmp(off_linktype
, BPF_H
, (long)
1912 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1914 case LLCSAP_NETBEUI
:
1915 return gen_cmp(off_linktype
, BPF_H
, (long)
1916 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1920 * XXX - are there ever SNAP frames for IPX on
1921 * non-Ethernet 802.x networks?
1923 return gen_cmp(off_linktype
, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1925 case ETHERTYPE_ATALK
:
1927 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1928 * SNAP packets with an organization code of
1929 * 0x080007 (Apple, for Appletalk) and a protocol
1930 * type of ETHERTYPE_ATALK (Appletalk).
1932 * XXX - check for an organization code of
1933 * encapsulated Ethernet as well?
1935 return gen_snap(0x080007, ETHERTYPE_ATALK
, off_linktype
);
1939 * XXX - we don't have to check for IPX 802.3
1940 * here, but should we check for the IPX Ethertype?
1942 if (proto
<= ETHERMTU
) {
1944 * This is an LLC SAP value, so check
1947 return gen_cmp(off_linktype
, BPF_B
, (bpf_int32
)proto
);
1950 * This is an Ethernet type; we assume that it's
1951 * unlikely that it'll appear in the right place
1952 * at random, and therefore check only the
1953 * location that would hold the Ethernet type
1954 * in a SNAP frame with an organization code of
1955 * 0x000000 (encapsulated Ethernet).
1957 * XXX - if we were to check for the SNAP DSAP and
1958 * LSAP, as per XXX, and were also to check for an
1959 * organization code of 0x000000 (encapsulated
1960 * Ethernet), we'd do
1962 * return gen_snap(0x000000, proto,
1965 * here; for now, we don't, as per the above.
1966 * I don't know whether it's worth the extra CPU
1967 * time to do the right check or not.
1969 return gen_cmp(off_linktype
+6, BPF_H
, (bpf_int32
)proto
);
1974 static struct block
*
1975 gen_hostop(addr
, mask
, dir
, proto
, src_off
, dst_off
)
1979 u_int src_off
, dst_off
;
1981 struct block
*b0
, *b1
;
1995 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
1996 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2002 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2003 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2010 b0
= gen_linktype(proto
);
2011 b1
= gen_mcmp(offset
, BPF_W
, (bpf_int32
)addr
, mask
);
2017 static struct block
*
2018 gen_hostop6(addr
, mask
, dir
, proto
, src_off
, dst_off
)
2019 struct in6_addr
*addr
;
2020 struct in6_addr
*mask
;
2022 u_int src_off
, dst_off
;
2024 struct block
*b0
, *b1
;
2039 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2040 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2046 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2047 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2054 /* this order is important */
2055 a
= (u_int32_t
*)addr
;
2056 m
= (u_int32_t
*)mask
;
2057 b1
= gen_mcmp(offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
2058 b0
= gen_mcmp(offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
2060 b0
= gen_mcmp(offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
2062 b0
= gen_mcmp(offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
2064 b0
= gen_linktype(proto
);
2070 static struct block
*
2071 gen_ehostop(eaddr
, dir
)
2072 register const u_char
*eaddr
;
2075 register struct block
*b0
, *b1
;
2079 return gen_bcmp(off_mac
+ 6, 6, eaddr
);
2082 return gen_bcmp(off_mac
+ 0, 6, eaddr
);
2085 b0
= gen_ehostop(eaddr
, Q_SRC
);
2086 b1
= gen_ehostop(eaddr
, Q_DST
);
2092 b0
= gen_ehostop(eaddr
, Q_SRC
);
2093 b1
= gen_ehostop(eaddr
, Q_DST
);
2102 * Like gen_ehostop, but for DLT_FDDI
2104 static struct block
*
2105 gen_fhostop(eaddr
, dir
)
2106 register const u_char
*eaddr
;
2109 struct block
*b0
, *b1
;
2114 return gen_bcmp(6 + 1 + pcap_fddipad
, 6, eaddr
);
2116 return gen_bcmp(6 + 1, 6, eaddr
);
2121 return gen_bcmp(0 + 1 + pcap_fddipad
, 6, eaddr
);
2123 return gen_bcmp(0 + 1, 6, eaddr
);
2127 b0
= gen_fhostop(eaddr
, Q_SRC
);
2128 b1
= gen_fhostop(eaddr
, Q_DST
);
2134 b0
= gen_fhostop(eaddr
, Q_SRC
);
2135 b1
= gen_fhostop(eaddr
, Q_DST
);
2144 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2146 static struct block
*
2147 gen_thostop(eaddr
, dir
)
2148 register const u_char
*eaddr
;
2151 register struct block
*b0
, *b1
;
2155 return gen_bcmp(8, 6, eaddr
);
2158 return gen_bcmp(2, 6, eaddr
);
2161 b0
= gen_thostop(eaddr
, Q_SRC
);
2162 b1
= gen_thostop(eaddr
, Q_DST
);
2168 b0
= gen_thostop(eaddr
, Q_SRC
);
2169 b1
= gen_thostop(eaddr
, Q_DST
);
2178 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2180 static struct block
*
2181 gen_wlanhostop(eaddr
, dir
)
2182 register const u_char
*eaddr
;
2185 register struct block
*b0
, *b1
, *b2
;
2186 register struct slist
*s
;
2193 * For control frames, there is no SA.
2195 * For management frames, SA is at an
2196 * offset of 10 from the beginning of
2199 * For data frames, SA is at an offset
2200 * of 10 from the beginning of the packet
2201 * if From DS is clear, at an offset of
2202 * 16 from the beginning of the packet
2203 * if From DS is set and To DS is clear,
2204 * and an offset of 24 from the beginning
2205 * of the packet if From DS is set and To DS
2210 * Generate the tests to be done for data frames
2213 * First, check for To DS set, i.e. check "link[1] & 0x01".
2215 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2217 b1
= new_block(JMP(BPF_JSET
));
2218 b1
->s
.k
= 0x01; /* To DS */
2222 * If To DS is set, the SA is at 24.
2224 b0
= gen_bcmp(24, 6, eaddr
);
2228 * Now, check for To DS not set, i.e. check
2229 * "!(link[1] & 0x01)".
2231 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2233 b2
= new_block(JMP(BPF_JSET
));
2234 b2
->s
.k
= 0x01; /* To DS */
2239 * If To DS is not set, the SA is at 16.
2241 b1
= gen_bcmp(16, 6, eaddr
);
2245 * Now OR together the last two checks. That gives
2246 * the complete set of checks for data frames with
2252 * Now check for From DS being set, and AND that with
2253 * the ORed-together checks.
2255 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2257 b1
= new_block(JMP(BPF_JSET
));
2258 b1
->s
.k
= 0x02; /* From DS */
2263 * Now check for data frames with From DS not set.
2265 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2267 b2
= new_block(JMP(BPF_JSET
));
2268 b2
->s
.k
= 0x02; /* From DS */
2273 * If From DS isn't set, the SA is at 10.
2275 b1
= gen_bcmp(10, 6, eaddr
);
2279 * Now OR together the checks for data frames with
2280 * From DS not set and for data frames with From DS
2281 * set; that gives the checks done for data frames.
2286 * Now check for a data frame.
2287 * I.e, check "link[0] & 0x08".
2289 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2291 b1
= new_block(JMP(BPF_JSET
));
2296 * AND that with the checks done for data frames.
2301 * If the high-order bit of the type value is 0, this
2302 * is a management frame.
2303 * I.e, check "!(link[0] & 0x08)".
2305 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2307 b2
= new_block(JMP(BPF_JSET
));
2313 * For management frames, the SA is at 10.
2315 b1
= gen_bcmp(10, 6, eaddr
);
2319 * OR that with the checks done for data frames.
2320 * That gives the checks done for management and
2326 * If the low-order bit of the type value is 1,
2327 * this is either a control frame or a frame
2328 * with a reserved type, and thus not a
2331 * I.e., check "!(link[0] & 0x04)".
2333 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2335 b1
= new_block(JMP(BPF_JSET
));
2341 * AND that with the checks for data and management
2351 * For control frames, there is no DA.
2353 * For management frames, DA is at an
2354 * offset of 4 from the beginning of
2357 * For data frames, DA is at an offset
2358 * of 4 from the beginning of the packet
2359 * if To DS is clear and at an offset of
2360 * 16 from the beginning of the packet
2365 * Generate the tests to be done for data frames.
2367 * First, check for To DS set, i.e. "link[1] & 0x01".
2369 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2371 b1
= new_block(JMP(BPF_JSET
));
2372 b1
->s
.k
= 0x01; /* To DS */
2376 * If To DS is set, the DA is at 16.
2378 b0
= gen_bcmp(16, 6, eaddr
);
2382 * Now, check for To DS not set, i.e. check
2383 * "!(link[1] & 0x01)".
2385 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2387 b2
= new_block(JMP(BPF_JSET
));
2388 b2
->s
.k
= 0x01; /* To DS */
2393 * If To DS is not set, the DA is at 4.
2395 b1
= gen_bcmp(4, 6, eaddr
);
2399 * Now OR together the last two checks. That gives
2400 * the complete set of checks for data frames.
2405 * Now check for a data frame.
2406 * I.e, check "link[0] & 0x08".
2408 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2410 b1
= new_block(JMP(BPF_JSET
));
2415 * AND that with the checks done for data frames.
2420 * If the high-order bit of the type value is 0, this
2421 * is a management frame.
2422 * I.e, check "!(link[0] & 0x08)".
2424 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2426 b2
= new_block(JMP(BPF_JSET
));
2432 * For management frames, the DA is at 4.
2434 b1
= gen_bcmp(4, 6, eaddr
);
2438 * OR that with the checks done for data frames.
2439 * That gives the checks done for management and
2445 * If the low-order bit of the type value is 1,
2446 * this is either a control frame or a frame
2447 * with a reserved type, and thus not a
2450 * I.e., check "!(link[0] & 0x04)".
2452 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2454 b1
= new_block(JMP(BPF_JSET
));
2460 * AND that with the checks for data and management
2467 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2468 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2474 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2475 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2484 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
2485 * (We assume that the addresses are IEEE 48-bit MAC addresses,
2486 * as the RFC states.)
2488 static struct block
*
2489 gen_ipfchostop(eaddr
, dir
)
2490 register const u_char
*eaddr
;
2493 register struct block
*b0
, *b1
;
2497 return gen_bcmp(10, 6, eaddr
);
2500 return gen_bcmp(2, 6, eaddr
);
2503 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2504 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2510 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2511 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2520 * This is quite tricky because there may be pad bytes in front of the
2521 * DECNET header, and then there are two possible data packet formats that
2522 * carry both src and dst addresses, plus 5 packet types in a format that
2523 * carries only the src node, plus 2 types that use a different format and
2524 * also carry just the src node.
2528 * Instead of doing those all right, we just look for data packets with
2529 * 0 or 1 bytes of padding. If you want to look at other packets, that
2530 * will require a lot more hacking.
2532 * To add support for filtering on DECNET "areas" (network numbers)
2533 * one would want to add a "mask" argument to this routine. That would
2534 * make the filter even more inefficient, although one could be clever
2535 * and not generate masking instructions if the mask is 0xFFFF.
2537 static struct block
*
2538 gen_dnhostop(addr
, dir
, base_off
)
2543 struct block
*b0
, *b1
, *b2
, *tmp
;
2544 u_int offset_lh
; /* offset if long header is received */
2545 u_int offset_sh
; /* offset if short header is received */
2550 offset_sh
= 1; /* follows flags */
2551 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
2555 offset_sh
= 3; /* follows flags, dstnode */
2556 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
2560 /* Inefficient because we do our Calvinball dance twice */
2561 b0
= gen_dnhostop(addr
, Q_SRC
, base_off
);
2562 b1
= gen_dnhostop(addr
, Q_DST
, base_off
);
2568 /* Inefficient because we do our Calvinball dance twice */
2569 b0
= gen_dnhostop(addr
, Q_SRC
, base_off
);
2570 b1
= gen_dnhostop(addr
, Q_DST
, base_off
);
2575 bpf_error("ISO host filtering not implemented");
2580 b0
= gen_linktype(ETHERTYPE_DN
);
2581 /* Check for pad = 1, long header case */
2582 tmp
= gen_mcmp(base_off
+ 2, BPF_H
,
2583 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
2584 b1
= gen_cmp(base_off
+ 2 + 1 + offset_lh
,
2585 BPF_H
, (bpf_int32
)ntohs(addr
));
2587 /* Check for pad = 0, long header case */
2588 tmp
= gen_mcmp(base_off
+ 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
2589 b2
= gen_cmp(base_off
+ 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs(addr
));
2592 /* Check for pad = 1, short header case */
2593 tmp
= gen_mcmp(base_off
+ 2, BPF_H
,
2594 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
2595 b2
= gen_cmp(base_off
+ 2 + 1 + offset_sh
,
2596 BPF_H
, (bpf_int32
)ntohs(addr
));
2599 /* Check for pad = 0, short header case */
2600 tmp
= gen_mcmp(base_off
+ 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
2601 b2
= gen_cmp(base_off
+ 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs(addr
));
2605 /* Combine with test for linktype */
2610 static struct block
*
2611 gen_host(addr
, mask
, proto
, dir
)
2617 struct block
*b0
, *b1
;
2622 b0
= gen_host(addr
, mask
, Q_IP
, dir
);
2623 if (off_linktype
!= (u_int
)-1) {
2624 b1
= gen_host(addr
, mask
, Q_ARP
, dir
);
2626 b0
= gen_host(addr
, mask
, Q_RARP
, dir
);
2632 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_IP
,
2633 off_nl
+ 12, off_nl
+ 16);
2636 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_REVARP
,
2637 off_nl
+ 14, off_nl
+ 24);
2640 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_ARP
,
2641 off_nl
+ 14, off_nl
+ 24);
2644 bpf_error("'tcp' modifier applied to host");
2647 bpf_error("'sctp' modifier applied to host");
2650 bpf_error("'udp' modifier applied to host");
2653 bpf_error("'icmp' modifier applied to host");
2656 bpf_error("'igmp' modifier applied to host");
2659 bpf_error("'igrp' modifier applied to host");
2662 bpf_error("'pim' modifier applied to host");
2665 bpf_error("'vrrp' modifier applied to host");
2668 bpf_error("ATALK host filtering not implemented");
2671 bpf_error("AARP host filtering not implemented");
2674 return gen_dnhostop(addr
, dir
, off_nl
);
2677 bpf_error("SCA host filtering not implemented");
2680 bpf_error("LAT host filtering not implemented");
2683 bpf_error("MOPDL host filtering not implemented");
2686 bpf_error("MOPRC host filtering not implemented");
2690 bpf_error("'ip6' modifier applied to ip host");
2693 bpf_error("'icmp6' modifier applied to host");
2697 bpf_error("'ah' modifier applied to host");
2700 bpf_error("'esp' modifier applied to host");
2703 bpf_error("ISO host filtering not implemented");
2706 bpf_error("'esis' modifier applied to host");
2709 bpf_error("'isis' modifier applied to host");
2712 bpf_error("'clnp' modifier applied to host");
2715 bpf_error("'stp' modifier applied to host");
2718 bpf_error("IPX host filtering not implemented");
2721 bpf_error("'netbeui' modifier applied to host");
2730 static struct block
*
2731 gen_host6(addr
, mask
, proto
, dir
)
2732 struct in6_addr
*addr
;
2733 struct in6_addr
*mask
;
2740 return gen_host6(addr
, mask
, Q_IPV6
, dir
);
2743 bpf_error("'ip' modifier applied to ip6 host");
2746 bpf_error("'rarp' modifier applied to ip6 host");
2749 bpf_error("'arp' modifier applied to ip6 host");
2752 bpf_error("'sctp' modifier applied to host");
2755 bpf_error("'tcp' modifier applied to host");
2758 bpf_error("'udp' modifier applied to host");
2761 bpf_error("'icmp' modifier applied to host");
2764 bpf_error("'igmp' modifier applied to host");
2767 bpf_error("'igrp' modifier applied to host");
2770 bpf_error("'pim' modifier applied to host");
2773 bpf_error("'vrrp' modifier applied to host");
2776 bpf_error("ATALK host filtering not implemented");
2779 bpf_error("AARP host filtering not implemented");
2782 bpf_error("'decnet' modifier applied to ip6 host");
2785 bpf_error("SCA host filtering not implemented");
2788 bpf_error("LAT host filtering not implemented");
2791 bpf_error("MOPDL host filtering not implemented");
2794 bpf_error("MOPRC host filtering not implemented");
2797 return gen_hostop6(addr
, mask
, dir
, ETHERTYPE_IPV6
,
2798 off_nl
+ 8, off_nl
+ 24);
2801 bpf_error("'icmp6' modifier applied to host");
2804 bpf_error("'ah' modifier applied to host");
2807 bpf_error("'esp' modifier applied to host");
2810 bpf_error("ISO host filtering not implemented");
2813 bpf_error("'esis' modifier applied to host");
2816 bpf_error("'isis' modifier applied to host");
2819 bpf_error("'clnp' modifier applied to host");
2822 bpf_error("'stp' modifier applied to host");
2825 bpf_error("IPX host filtering not implemented");
2828 bpf_error("'netbeui' modifier applied to host");
2838 static struct block
*
2839 gen_gateway(eaddr
, alist
, proto
, dir
)
2840 const u_char
*eaddr
;
2841 bpf_u_int32
**alist
;
2845 struct block
*b0
, *b1
, *tmp
;
2848 bpf_error("direction applied to 'gateway'");
2855 if (linktype
== DLT_EN10MB
)
2856 b0
= gen_ehostop(eaddr
, Q_OR
);
2857 else if (linktype
== DLT_FDDI
)
2858 b0
= gen_fhostop(eaddr
, Q_OR
);
2859 else if (linktype
== DLT_IEEE802
)
2860 b0
= gen_thostop(eaddr
, Q_OR
);
2861 else if (linktype
== DLT_IEEE802_11
)
2862 b0
= gen_wlanhostop(eaddr
, Q_OR
);
2863 else if (linktype
== DLT_SUNATM
&& is_lane
) {
2865 * Check that the packet doesn't begin with an
2866 * LE Control marker. (We've already generated
2869 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
2873 * Now check the MAC address.
2875 b0
= gen_ehostop(eaddr
, Q_OR
);
2877 } else if (linktype
== DLT_IP_OVER_FC
)
2878 b0
= gen_ipfchostop(eaddr
, Q_OR
);
2881 "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
2883 b1
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
2885 tmp
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
2893 bpf_error("illegal modifier of 'gateway'");
2899 gen_proto_abbrev(proto
)
2908 b1
= gen_proto(IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
2910 b0
= gen_proto(IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
2916 b1
= gen_proto(IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
2918 b0
= gen_proto(IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
2924 b1
= gen_proto(IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
2926 b0
= gen_proto(IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
2932 b1
= gen_proto(IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
2935 #ifndef IPPROTO_IGMP
2936 #define IPPROTO_IGMP 2
2940 b1
= gen_proto(IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
2943 #ifndef IPPROTO_IGRP
2944 #define IPPROTO_IGRP 9
2947 b1
= gen_proto(IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
2951 #define IPPROTO_PIM 103
2955 b1
= gen_proto(IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
2957 b0
= gen_proto(IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
2962 #ifndef IPPROTO_VRRP
2963 #define IPPROTO_VRRP 112
2967 b1
= gen_proto(IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
2971 b1
= gen_linktype(ETHERTYPE_IP
);
2975 b1
= gen_linktype(ETHERTYPE_ARP
);
2979 b1
= gen_linktype(ETHERTYPE_REVARP
);
2983 bpf_error("link layer applied in wrong context");
2986 b1
= gen_linktype(ETHERTYPE_ATALK
);
2990 b1
= gen_linktype(ETHERTYPE_AARP
);
2994 b1
= gen_linktype(ETHERTYPE_DN
);
2998 b1
= gen_linktype(ETHERTYPE_SCA
);
3002 b1
= gen_linktype(ETHERTYPE_LAT
);
3006 b1
= gen_linktype(ETHERTYPE_MOPDL
);
3010 b1
= gen_linktype(ETHERTYPE_MOPRC
);
3015 b1
= gen_linktype(ETHERTYPE_IPV6
);
3018 #ifndef IPPROTO_ICMPV6
3019 #define IPPROTO_ICMPV6 58
3022 b1
= gen_proto(IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
3027 #define IPPROTO_AH 51
3030 b1
= gen_proto(IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
3032 b0
= gen_proto(IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
3038 #define IPPROTO_ESP 50
3041 b1
= gen_proto(IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
3043 b0
= gen_proto(IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
3049 b1
= gen_linktype(LLCSAP_ISONS
);
3053 b1
= gen_proto(ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
3057 b1
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
3060 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
3061 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3062 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3064 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3066 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3068 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3072 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
3073 b0
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3074 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3076 b0
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3078 b0
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3080 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3084 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
3085 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3086 b1
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3088 b0
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
3093 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3094 b1
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3099 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3100 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3102 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3104 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3109 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3110 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3115 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3116 b1
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3121 b1
= gen_proto(ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
3125 b1
= gen_linktype(LLCSAP_8021D
);
3129 b1
= gen_linktype(LLCSAP_IPX
);
3133 b1
= gen_linktype(LLCSAP_NETBEUI
);
3142 static struct block
*
3149 s
= new_stmt(BPF_LD
|BPF_H
|BPF_ABS
);
3150 s
->s
.k
= off_nl
+ 6;
3151 b
= new_block(JMP(BPF_JSET
));
3159 static struct block
*
3160 gen_portatom(off
, v
)
3167 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
3170 s
->next
= new_stmt(BPF_LD
|BPF_IND
|BPF_H
);
3171 s
->next
->s
.k
= off_nl
+ off
;
3173 b
= new_block(JMP(BPF_JEQ
));
3181 static struct block
*
3182 gen_portatom6(off
, v
)
3186 return gen_cmp(off_nl
+ 40 + off
, BPF_H
, v
);
3191 gen_portop(port
, proto
, dir
)
3192 int port
, proto
, dir
;
3194 struct block
*b0
, *b1
, *tmp
;
3196 /* ip proto 'proto' */
3197 tmp
= gen_cmp(off_nl
+ 9, BPF_B
, (bpf_int32
)proto
);
3203 b1
= gen_portatom(0, (bpf_int32
)port
);
3207 b1
= gen_portatom(2, (bpf_int32
)port
);
3212 tmp
= gen_portatom(0, (bpf_int32
)port
);
3213 b1
= gen_portatom(2, (bpf_int32
)port
);
3218 tmp
= gen_portatom(0, (bpf_int32
)port
);
3219 b1
= gen_portatom(2, (bpf_int32
)port
);
3231 static struct block
*
3232 gen_port(port
, ip_proto
, dir
)
3237 struct block
*b0
, *b1
, *tmp
;
3242 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3243 * not LLC encapsulation with LLCSAP_IP.
3245 * For IEEE 802 networks - which includes 802.5 token ring
3246 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3247 * says that SNAP encapsulation is used, not LLC encapsulation
3250 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3251 * RFC 2225 say that SNAP encapsulation is used, not LLC
3252 * encapsulation with LLCSAP_IP.
3254 * So we always check for ETHERTYPE_IP.
3256 b0
= gen_linktype(ETHERTYPE_IP
);
3262 b1
= gen_portop(port
, ip_proto
, dir
);
3266 tmp
= gen_portop(port
, IPPROTO_TCP
, dir
);
3267 b1
= gen_portop(port
, IPPROTO_UDP
, dir
);
3269 tmp
= gen_portop(port
, IPPROTO_SCTP
, dir
);
3282 gen_portop6(port
, proto
, dir
)
3283 int port
, proto
, dir
;
3285 struct block
*b0
, *b1
, *tmp
;
3287 /* ip proto 'proto' */
3288 b0
= gen_cmp(off_nl
+ 6, BPF_B
, (bpf_int32
)proto
);
3292 b1
= gen_portatom6(0, (bpf_int32
)port
);
3296 b1
= gen_portatom6(2, (bpf_int32
)port
);
3301 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3302 b1
= gen_portatom6(2, (bpf_int32
)port
);
3307 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3308 b1
= gen_portatom6(2, (bpf_int32
)port
);
3320 static struct block
*
3321 gen_port6(port
, ip_proto
, dir
)
3326 struct block
*b0
, *b1
, *tmp
;
3328 /* ether proto ip */
3329 b0
= gen_linktype(ETHERTYPE_IPV6
);
3335 b1
= gen_portop6(port
, ip_proto
, dir
);
3339 tmp
= gen_portop6(port
, IPPROTO_TCP
, dir
);
3340 b1
= gen_portop6(port
, IPPROTO_UDP
, dir
);
3342 tmp
= gen_portop6(port
, IPPROTO_SCTP
, dir
);
3355 lookup_proto(name
, proto
)
3356 register const char *name
;
3366 v
= pcap_nametoproto(name
);
3367 if (v
== PROTO_UNDEF
)
3368 bpf_error("unknown ip proto '%s'", name
);
3372 /* XXX should look up h/w protocol type based on linktype */
3373 v
= pcap_nametoeproto(name
);
3374 if (v
== PROTO_UNDEF
)
3375 bpf_error("unknown ether proto '%s'", name
);
3379 if (strcmp(name
, "esis") == 0)
3381 else if (strcmp(name
, "isis") == 0)
3383 else if (strcmp(name
, "clnp") == 0)
3386 bpf_error("unknown osi proto '%s'", name
);
3406 static struct block
*
3407 gen_protochain(v
, proto
, dir
)
3412 #ifdef NO_PROTOCHAIN
3413 return gen_proto(v
, proto
, dir
);
3415 struct block
*b0
, *b
;
3416 struct slist
*s
[100];
3417 int fix2
, fix3
, fix4
, fix5
;
3418 int ahcheck
, again
, end
;
3420 int reg2
= alloc_reg();
3422 memset(s
, 0, sizeof(s
));
3423 fix2
= fix3
= fix4
= fix5
= 0;
3430 b0
= gen_protochain(v
, Q_IP
, dir
);
3431 b
= gen_protochain(v
, Q_IPV6
, dir
);
3435 bpf_error("bad protocol applied for 'protochain'");
3439 no_optimize
= 1; /*this code is not compatible with optimzer yet */
3442 * s[0] is a dummy entry to protect other BPF insn from damaged
3443 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
3444 * hard to find interdependency made by jump table fixup.
3447 s
[i
] = new_stmt(0); /*dummy*/
3452 b0
= gen_linktype(ETHERTYPE_IP
);
3455 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
3456 s
[i
]->s
.k
= off_nl
+ 9;
3458 /* X = ip->ip_hl << 2 */
3459 s
[i
] = new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
3465 b0
= gen_linktype(ETHERTYPE_IPV6
);
3467 /* A = ip6->ip_nxt */
3468 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
3469 s
[i
]->s
.k
= off_nl
+ 6;
3471 /* X = sizeof(struct ip6_hdr) */
3472 s
[i
] = new_stmt(BPF_LDX
|BPF_IMM
);
3478 bpf_error("unsupported proto to gen_protochain");
3482 /* again: if (A == v) goto end; else fall through; */
3484 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3486 s
[i
]->s
.jt
= NULL
; /*later*/
3487 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3491 #ifndef IPPROTO_NONE
3492 #define IPPROTO_NONE 59
3494 /* if (A == IPPROTO_NONE) goto end */
3495 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3496 s
[i
]->s
.jt
= NULL
; /*later*/
3497 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3498 s
[i
]->s
.k
= IPPROTO_NONE
;
3499 s
[fix5
]->s
.jf
= s
[i
];
3504 if (proto
== Q_IPV6
) {
3505 int v6start
, v6end
, v6advance
, j
;
3508 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
3509 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3510 s
[i
]->s
.jt
= NULL
; /*later*/
3511 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3512 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
3513 s
[fix2
]->s
.jf
= s
[i
];
3515 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
3516 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3517 s
[i
]->s
.jt
= NULL
; /*later*/
3518 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3519 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
3521 /* if (A == IPPROTO_ROUTING) goto v6advance */
3522 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3523 s
[i
]->s
.jt
= NULL
; /*later*/
3524 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3525 s
[i
]->s
.k
= IPPROTO_ROUTING
;
3527 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
3528 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3529 s
[i
]->s
.jt
= NULL
; /*later*/
3530 s
[i
]->s
.jf
= NULL
; /*later*/
3531 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
3542 * X = X + (P[X + 1] + 1) * 8;
3545 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3547 /* A = P[X + packet head] */
3548 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3552 s
[i
] = new_stmt(BPF_ST
);
3556 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3559 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3563 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3565 /* A = P[X + packet head]; */
3566 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3570 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3574 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
3578 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3581 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
3585 /* goto again; (must use BPF_JA for backward jump) */
3586 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
3587 s
[i
]->s
.k
= again
- i
- 1;
3588 s
[i
- 1]->s
.jf
= s
[i
];
3592 for (j
= v6start
; j
<= v6end
; j
++)
3593 s
[j
]->s
.jt
= s
[v6advance
];
3598 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3600 s
[fix2
]->s
.jf
= s
[i
];
3606 /* if (A == IPPROTO_AH) then fall through; else goto end; */
3607 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3608 s
[i
]->s
.jt
= NULL
; /*later*/
3609 s
[i
]->s
.jf
= NULL
; /*later*/
3610 s
[i
]->s
.k
= IPPROTO_AH
;
3612 s
[fix3
]->s
.jf
= s
[ahcheck
];
3619 * X = X + (P[X + 1] + 2) * 4;
3622 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3624 /* A = P[X + packet head]; */
3625 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3629 s
[i
] = new_stmt(BPF_ST
);
3633 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3636 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3640 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3642 /* A = P[X + packet head] */
3643 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3647 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3651 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
3655 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3658 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
3662 /* goto again; (must use BPF_JA for backward jump) */
3663 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
3664 s
[i
]->s
.k
= again
- i
- 1;
3669 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3671 s
[fix2
]->s
.jt
= s
[end
];
3672 s
[fix4
]->s
.jf
= s
[end
];
3673 s
[fix5
]->s
.jt
= s
[end
];
3680 for (i
= 0; i
< max
- 1; i
++)
3681 s
[i
]->next
= s
[i
+ 1];
3682 s
[max
- 1]->next
= NULL
;
3687 b
= new_block(JMP(BPF_JEQ
));
3688 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
3698 static struct block
*
3699 gen_proto(v
, proto
, dir
)
3704 struct block
*b0
, *b1
;
3706 if (dir
!= Q_DEFAULT
)
3707 bpf_error("direction applied to 'proto'");
3712 b0
= gen_proto(v
, Q_IP
, dir
);
3713 b1
= gen_proto(v
, Q_IPV6
, dir
);
3721 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3722 * not LLC encapsulation with LLCSAP_IP.
3724 * For IEEE 802 networks - which includes 802.5 token ring
3725 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3726 * says that SNAP encapsulation is used, not LLC encapsulation
3729 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3730 * RFC 2225 say that SNAP encapsulation is used, not LLC
3731 * encapsulation with LLCSAP_IP.
3733 * So we always check for ETHERTYPE_IP.
3735 b0
= gen_linktype(ETHERTYPE_IP
);
3737 b1
= gen_cmp(off_nl
+ 9, BPF_B
, (bpf_int32
)v
);
3739 b1
= gen_protochain(v
, Q_IP
);
3749 * Frame Relay packets typically have an OSI
3750 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
3751 * generates code to check for all the OSI
3752 * NLPIDs, so calling it and then adding a check
3753 * for the particular NLPID for which we're
3754 * looking is bogus, as we can just check for
3757 * What we check for is the NLPID and a frame
3758 * control field value of UI, i.e. 0x03 followed
3761 * XXX - assumes a 2-byte Frame Relay header with
3762 * DLCI and flags. What if the address is longer?
3764 * XXX - what about SNAP-encapsulated frames?
3766 return gen_cmp(2, BPF_H
, (0x03<<8) | v
);
3772 * Cisco uses an Ethertype lookalike - for OSI,
3775 b0
= gen_linktype(LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
3776 /* OSI in C-HDLC is stuffed with a fudge byte */
3777 b1
= gen_cmp(off_nl_nosnap
+1, BPF_B
, (long)v
);
3782 b0
= gen_linktype(LLCSAP_ISONS
);
3783 b1
= gen_cmp(off_nl_nosnap
, BPF_B
, (long)v
);
3789 b0
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
3791 * 4 is the offset of the PDU type relative to the IS-IS
3794 b1
= gen_cmp(off_nl_nosnap
+4, BPF_B
, (long)v
);
3799 bpf_error("arp does not encapsulate another protocol");
3803 bpf_error("rarp does not encapsulate another protocol");
3807 bpf_error("atalk encapsulation is not specifiable");
3811 bpf_error("decnet encapsulation is not specifiable");
3815 bpf_error("sca does not encapsulate another protocol");
3819 bpf_error("lat does not encapsulate another protocol");
3823 bpf_error("moprc does not encapsulate another protocol");
3827 bpf_error("mopdl does not encapsulate another protocol");
3831 return gen_linktype(v
);
3834 bpf_error("'udp proto' is bogus");
3838 bpf_error("'tcp proto' is bogus");
3842 bpf_error("'sctp proto' is bogus");
3846 bpf_error("'icmp proto' is bogus");
3850 bpf_error("'igmp proto' is bogus");
3854 bpf_error("'igrp proto' is bogus");
3858 bpf_error("'pim proto' is bogus");
3862 bpf_error("'vrrp proto' is bogus");
3867 b0
= gen_linktype(ETHERTYPE_IPV6
);
3869 b1
= gen_cmp(off_nl
+ 6, BPF_B
, (bpf_int32
)v
);
3871 b1
= gen_protochain(v
, Q_IPV6
);
3877 bpf_error("'icmp6 proto' is bogus");
3881 bpf_error("'ah proto' is bogus");
3884 bpf_error("'ah proto' is bogus");
3887 bpf_error("'stp proto' is bogus");
3890 bpf_error("'ipx proto' is bogus");
3893 bpf_error("'netbeui proto' is bogus");
3904 register const char *name
;
3907 int proto
= q
.proto
;
3911 bpf_u_int32 mask
, addr
;
3913 bpf_u_int32
**alist
;
3916 struct sockaddr_in
*sin
;
3917 struct sockaddr_in6
*sin6
;
3918 struct addrinfo
*res
, *res0
;
3919 struct in6_addr mask128
;
3921 struct block
*b
, *tmp
;
3922 int port
, real_proto
;
3927 addr
= pcap_nametonetaddr(name
);
3929 bpf_error("unknown network '%s'", name
);
3930 /* Left justify network addr and calculate its network mask */
3932 while (addr
&& (addr
& 0xff000000) == 0) {
3936 return gen_host(addr
, mask
, proto
, dir
);
3940 if (proto
== Q_LINK
) {
3944 eaddr
= pcap_ether_hostton(name
);
3947 "unknown ether host '%s'", name
);
3948 b
= gen_ehostop(eaddr
, dir
);
3953 eaddr
= pcap_ether_hostton(name
);
3956 "unknown FDDI host '%s'", name
);
3957 b
= gen_fhostop(eaddr
, dir
);
3962 eaddr
= pcap_ether_hostton(name
);
3965 "unknown token ring host '%s'", name
);
3966 b
= gen_thostop(eaddr
, dir
);
3970 case DLT_IEEE802_11
:
3971 eaddr
= pcap_ether_hostton(name
);
3974 "unknown 802.11 host '%s'", name
);
3975 b
= gen_wlanhostop(eaddr
, dir
);
3979 case DLT_IP_OVER_FC
:
3980 eaddr
= pcap_ether_hostton(name
);
3983 "unknown Fibre Channel host '%s'", name
);
3984 b
= gen_ipfchostop(eaddr
, dir
);
3993 * Check that the packet doesn't begin
3994 * with an LE Control marker. (We've
3995 * already generated a test for LANE.)
3997 tmp
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
,
4001 eaddr
= pcap_ether_hostton(name
);
4004 "unknown ether host '%s'", name
);
4005 b
= gen_ehostop(eaddr
, dir
);
4011 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
4012 } else if (proto
== Q_DECNET
) {
4013 unsigned short dn_addr
= __pcap_nametodnaddr(name
);
4015 * I don't think DECNET hosts can be multihomed, so
4016 * there is no need to build up a list of addresses
4018 return (gen_host(dn_addr
, 0, proto
, dir
));
4021 alist
= pcap_nametoaddr(name
);
4022 if (alist
== NULL
|| *alist
== NULL
)
4023 bpf_error("unknown host '%s'", name
);
4025 if (off_linktype
== (u_int
)-1 && tproto
== Q_DEFAULT
)
4027 b
= gen_host(**alist
++, 0xffffffff, tproto
, dir
);
4029 tmp
= gen_host(**alist
++, 0xffffffff,
4036 memset(&mask128
, 0xff, sizeof(mask128
));
4037 res0
= res
= pcap_nametoaddrinfo(name
);
4039 bpf_error("unknown host '%s'", name
);
4041 tproto
= tproto6
= proto
;
4042 if (off_linktype
== -1 && tproto
== Q_DEFAULT
) {
4046 for (res
= res0
; res
; res
= res
->ai_next
) {
4047 switch (res
->ai_family
) {
4049 if (tproto
== Q_IPV6
)
4052 sin
= (struct sockaddr_in
*)
4054 tmp
= gen_host(ntohl(sin
->sin_addr
.s_addr
),
4055 0xffffffff, tproto
, dir
);
4058 if (tproto6
== Q_IP
)
4061 sin6
= (struct sockaddr_in6
*)
4063 tmp
= gen_host6(&sin6
->sin6_addr
,
4064 &mask128
, tproto6
, dir
);
4075 bpf_error("unknown host '%s'%s", name
,
4076 (proto
== Q_DEFAULT
)
4078 : " for specified address family");
4085 if (proto
!= Q_DEFAULT
&&
4086 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
4087 bpf_error("illegal qualifier of 'port'");
4088 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
4089 bpf_error("unknown port '%s'", name
);
4090 if (proto
== Q_UDP
) {
4091 if (real_proto
== IPPROTO_TCP
)
4092 bpf_error("port '%s' is tcp", name
);
4093 else if (real_proto
== IPPROTO_SCTP
)
4094 bpf_error("port '%s' is sctp", name
);
4096 /* override PROTO_UNDEF */
4097 real_proto
= IPPROTO_UDP
;
4099 if (proto
== Q_TCP
) {
4100 if (real_proto
== IPPROTO_UDP
)
4101 bpf_error("port '%s' is udp", name
);
4103 else if (real_proto
== IPPROTO_SCTP
)
4104 bpf_error("port '%s' is sctp", name
);
4106 /* override PROTO_UNDEF */
4107 real_proto
= IPPROTO_TCP
;
4109 if (proto
== Q_SCTP
) {
4110 if (real_proto
== IPPROTO_UDP
)
4111 bpf_error("port '%s' is udp", name
);
4113 else if (real_proto
== IPPROTO_TCP
)
4114 bpf_error("port '%s' is tcp", name
);
4116 /* override PROTO_UNDEF */
4117 real_proto
= IPPROTO_SCTP
;
4120 return gen_port(port
, real_proto
, dir
);
4124 b
= gen_port(port
, real_proto
, dir
);
4125 gen_or(gen_port6(port
, real_proto
, dir
), b
);
4132 eaddr
= pcap_ether_hostton(name
);
4134 bpf_error("unknown ether host: %s", name
);
4136 alist
= pcap_nametoaddr(name
);
4137 if (alist
== NULL
|| *alist
== NULL
)
4138 bpf_error("unknown host '%s'", name
);
4139 b
= gen_gateway(eaddr
, alist
, proto
, dir
);
4143 bpf_error("'gateway' not supported in this configuration");
4147 real_proto
= lookup_proto(name
, proto
);
4148 if (real_proto
>= 0)
4149 return gen_proto(real_proto
, proto
, dir
);
4151 bpf_error("unknown protocol: %s", name
);
4154 real_proto
= lookup_proto(name
, proto
);
4155 if (real_proto
>= 0)
4156 return gen_protochain(real_proto
, proto
, dir
);
4158 bpf_error("unknown protocol: %s", name
);
4170 gen_mcode(s1
, s2
, masklen
, q
)
4171 register const char *s1
, *s2
;
4172 register int masklen
;
4175 register int nlen
, mlen
;
4178 nlen
= __pcap_atoin(s1
, &n
);
4179 /* Promote short ipaddr */
4183 mlen
= __pcap_atoin(s2
, &m
);
4184 /* Promote short ipaddr */
4187 bpf_error("non-network bits set in \"%s mask %s\"",
4190 /* Convert mask len to mask */
4192 bpf_error("mask length must be <= 32");
4193 m
= 0xffffffff << (32 - masklen
);
4195 bpf_error("non-network bits set in \"%s/%d\"",
4202 return gen_host(n
, m
, q
.proto
, q
.dir
);
4205 bpf_error("Mask syntax for networks only");
4213 register const char *s
;
4218 int proto
= q
.proto
;
4224 else if (q
.proto
== Q_DECNET
)
4225 vlen
= __pcap_atodn(s
, &v
);
4227 vlen
= __pcap_atoin(s
, &v
);
4234 if (proto
== Q_DECNET
)
4235 return gen_host(v
, 0, proto
, dir
);
4236 else if (proto
== Q_LINK
) {
4237 bpf_error("illegal link layer address");
4240 if (s
== NULL
&& q
.addr
== Q_NET
) {
4241 /* Promote short net number */
4242 while (v
&& (v
& 0xff000000) == 0) {
4247 /* Promote short ipaddr */
4251 return gen_host(v
, mask
, proto
, dir
);
4256 proto
= IPPROTO_UDP
;
4257 else if (proto
== Q_TCP
)
4258 proto
= IPPROTO_TCP
;
4259 else if (proto
== Q_SCTP
)
4260 proto
= IPPROTO_SCTP
;
4261 else if (proto
== Q_DEFAULT
)
4262 proto
= PROTO_UNDEF
;
4264 bpf_error("illegal qualifier of 'port'");
4267 return gen_port((int)v
, proto
, dir
);
4271 b
= gen_port((int)v
, proto
, dir
);
4272 gen_or(gen_port6((int)v
, proto
, dir
), b
);
4278 bpf_error("'gateway' requires a name");
4282 return gen_proto((int)v
, proto
, dir
);
4285 return gen_protochain((int)v
, proto
, dir
);
4300 gen_mcode6(s1
, s2
, masklen
, q
)
4301 register const char *s1
, *s2
;
4302 register int masklen
;
4305 struct addrinfo
*res
;
4306 struct in6_addr
*addr
;
4307 struct in6_addr mask
;
4312 bpf_error("no mask %s supported", s2
);
4314 res
= pcap_nametoaddrinfo(s1
);
4316 bpf_error("invalid ip6 address %s", s1
);
4318 bpf_error("%s resolved to multiple address", s1
);
4319 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
4321 if (sizeof(mask
) * 8 < masklen
)
4322 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
4323 memset(&mask
, 0, sizeof(mask
));
4324 memset(&mask
, 0xff, masklen
/ 8);
4326 mask
.s6_addr
[masklen
/ 8] =
4327 (0xff << (8 - masklen
% 8)) & 0xff;
4330 a
= (u_int32_t
*)addr
;
4331 m
= (u_int32_t
*)&mask
;
4332 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
4333 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
4334 bpf_error("non-network bits set in \"%s/%d\"", s1
, masklen
);
4342 bpf_error("Mask syntax for networks only");
4346 b
= gen_host6(addr
, &mask
, q
.proto
, q
.dir
);
4351 bpf_error("invalid qualifier against IPv6 address");
4359 register const u_char
*eaddr
;
4362 struct block
*b
, *tmp
;
4364 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
4365 if (linktype
== DLT_EN10MB
)
4366 return gen_ehostop(eaddr
, (int)q
.dir
);
4367 if (linktype
== DLT_FDDI
)
4368 return gen_fhostop(eaddr
, (int)q
.dir
);
4369 if (linktype
== DLT_IEEE802
)
4370 return gen_thostop(eaddr
, (int)q
.dir
);
4371 if (linktype
== DLT_IEEE802_11
)
4372 return gen_wlanhostop(eaddr
, (int)q
.dir
);
4373 if (linktype
== DLT_SUNATM
&& is_lane
) {
4375 * Check that the packet doesn't begin with an
4376 * LE Control marker. (We've already generated
4379 tmp
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
4383 * Now check the MAC address.
4385 b
= gen_ehostop(eaddr
, (int)q
.dir
);
4389 if (linktype
== DLT_IP_OVER_FC
)
4390 return gen_ipfchostop(eaddr
, (int)q
.dir
);
4391 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4393 bpf_error("ethernet address used in non-ether expression");
4399 struct slist
*s0
, *s1
;
4402 * This is definitely not the best way to do this, but the
4403 * lists will rarely get long.
4410 static struct slist
*
4416 s
= new_stmt(BPF_LDX
|BPF_MEM
);
4421 static struct slist
*
4427 s
= new_stmt(BPF_LD
|BPF_MEM
);
4433 gen_load(proto
, index
, size
)
4438 struct slist
*s
, *tmp
;
4440 int regno
= alloc_reg();
4442 free_reg(index
->regno
);
4446 bpf_error("data size must be 1, 2, or 4");
4462 bpf_error("unsupported index operation");
4466 * XXX - what about ATM LANE? Should the index be
4467 * relative to the beginning of the AAL5 frame, so
4468 * that 0 refers to the beginning of the LE Control
4469 * field, or relative to the beginning of the LAN
4470 * frame, so that 0 refers, for Ethernet LANE, to
4471 * the beginning of the destination address?
4473 s
= xfer_to_x(index
);
4474 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
4476 sappend(index
->s
, s
);
4491 /* XXX Note that we assume a fixed link header here. */
4492 s
= xfer_to_x(index
);
4493 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
4496 sappend(index
->s
, s
);
4498 b
= gen_proto_abbrev(proto
);
4500 gen_and(index
->b
, b
);
4512 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
4514 sappend(s
, xfer_to_a(index
));
4515 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
4516 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
4517 sappend(s
, tmp
= new_stmt(BPF_LD
|BPF_IND
|size
));
4519 sappend(index
->s
, s
);
4521 gen_and(gen_proto_abbrev(proto
), b
= gen_ipfrag());
4523 gen_and(index
->b
, b
);
4525 gen_and(gen_proto_abbrev(Q_IP
), b
);
4531 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
4535 index
->regno
= regno
;
4536 s
= new_stmt(BPF_ST
);
4538 sappend(index
->s
, s
);
4544 gen_relation(code
, a0
, a1
, reversed
)
4546 struct arth
*a0
, *a1
;
4549 struct slist
*s0
, *s1
, *s2
;
4550 struct block
*b
, *tmp
;
4554 if (code
== BPF_JEQ
) {
4555 s2
= new_stmt(BPF_ALU
|BPF_SUB
|BPF_X
);
4556 b
= new_block(JMP(code
));
4560 b
= new_block(BPF_JMP
|code
|BPF_X
);
4566 sappend(a0
->s
, a1
->s
);
4570 free_reg(a0
->regno
);
4571 free_reg(a1
->regno
);
4573 /* 'and' together protocol checks */
4576 gen_and(a0
->b
, tmp
= a1
->b
);
4592 int regno
= alloc_reg();
4593 struct arth
*a
= (struct arth
*)newchunk(sizeof(*a
));
4596 s
= new_stmt(BPF_LD
|BPF_LEN
);
4597 s
->next
= new_stmt(BPF_ST
);
4598 s
->next
->s
.k
= regno
;
4613 a
= (struct arth
*)newchunk(sizeof(*a
));
4617 s
= new_stmt(BPF_LD
|BPF_IMM
);
4619 s
->next
= new_stmt(BPF_ST
);
4635 s
= new_stmt(BPF_ALU
|BPF_NEG
);
4638 s
= new_stmt(BPF_ST
);
4646 gen_arth(code
, a0
, a1
)
4648 struct arth
*a0
, *a1
;
4650 struct slist
*s0
, *s1
, *s2
;
4654 s2
= new_stmt(BPF_ALU
|BPF_X
|code
);
4659 sappend(a0
->s
, a1
->s
);
4661 free_reg(a0
->regno
);
4662 free_reg(a1
->regno
);
4664 s0
= new_stmt(BPF_ST
);
4665 a0
->regno
= s0
->s
.k
= alloc_reg();
4672 * Here we handle simple allocation of the scratch registers.
4673 * If too many registers are alloc'd, the allocator punts.
4675 static int regused
[BPF_MEMWORDS
];
4679 * Return the next free register.
4684 int n
= BPF_MEMWORDS
;
4687 if (regused
[curreg
])
4688 curreg
= (curreg
+ 1) % BPF_MEMWORDS
;
4690 regused
[curreg
] = 1;
4694 bpf_error("too many registers needed to evaluate expression");
4699 * Return a register to the table so it can
4709 static struct block
*
4716 s
= new_stmt(BPF_LD
|BPF_LEN
);
4717 b
= new_block(JMP(jmp
));
4728 return gen_len(BPF_JGE
, n
);
4732 * Actually, this is less than or equal.
4740 b
= gen_len(BPF_JGT
, n
);
4747 gen_byteop(op
, idx
, val
)
4758 return gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4761 b
= gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4762 b
->s
.code
= JMP(BPF_JGE
);
4767 b
= gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4768 b
->s
.code
= JMP(BPF_JGT
);
4772 s
= new_stmt(BPF_ALU
|BPF_OR
|BPF_K
);
4776 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
4780 b
= new_block(JMP(BPF_JEQ
));
4787 static u_char abroadcast
[] = { 0x0 };
4790 gen_broadcast(proto
)
4793 bpf_u_int32 hostmask
;
4794 struct block
*b0
, *b1
, *b2
;
4795 static u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4801 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
4802 return gen_ahostop(abroadcast
, Q_DST
);
4803 if (linktype
== DLT_EN10MB
)
4804 return gen_ehostop(ebroadcast
, Q_DST
);
4805 if (linktype
== DLT_FDDI
)
4806 return gen_fhostop(ebroadcast
, Q_DST
);
4807 if (linktype
== DLT_IEEE802
)
4808 return gen_thostop(ebroadcast
, Q_DST
);
4809 if (linktype
== DLT_IEEE802_11
)
4810 return gen_wlanhostop(ebroadcast
, Q_DST
);
4811 if (linktype
== DLT_IP_OVER_FC
)
4812 return gen_ipfchostop(ebroadcast
, Q_DST
);
4813 if (linktype
== DLT_SUNATM
&& is_lane
) {
4815 * Check that the packet doesn't begin with an
4816 * LE Control marker. (We've already generated
4819 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
4823 * Now check the MAC address.
4825 b0
= gen_ehostop(ebroadcast
, Q_DST
);
4829 bpf_error("not a broadcast link");
4833 b0
= gen_linktype(ETHERTYPE_IP
);
4834 hostmask
= ~netmask
;
4835 b1
= gen_mcmp(off_nl
+ 16, BPF_W
, (bpf_int32
)0, hostmask
);
4836 b2
= gen_mcmp(off_nl
+ 16, BPF_W
,
4837 (bpf_int32
)(~0 & hostmask
), hostmask
);
4842 bpf_error("only link-layer/IP broadcast filters supported");
4847 * Generate code to test the low-order bit of a MAC address (that's
4848 * the bottom bit of the *first* byte).
4850 static struct block
*
4851 gen_mac_multicast(offset
)
4854 register struct block
*b0
;
4855 register struct slist
*s
;
4857 /* link[offset] & 1 != 0 */
4858 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4860 b0
= new_block(JMP(BPF_JSET
));
4867 gen_multicast(proto
)
4870 register struct block
*b0
, *b1
, *b2
;
4871 register struct slist
*s
;
4877 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
4878 /* all ARCnet multicasts use the same address */
4879 return gen_ahostop(abroadcast
, Q_DST
);
4881 if (linktype
== DLT_EN10MB
) {
4882 /* ether[0] & 1 != 0 */
4883 return gen_mac_multicast(0);
4886 if (linktype
== DLT_FDDI
) {
4888 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
4890 * XXX - was that referring to bit-order issues?
4892 /* fddi[1] & 1 != 0 */
4893 return gen_mac_multicast(1);
4896 if (linktype
== DLT_IEEE802
) {
4897 /* tr[2] & 1 != 0 */
4898 return gen_mac_multicast(2);
4901 if (linktype
== DLT_IEEE802_11
) {
4905 * For control frames, there is no DA.
4907 * For management frames, DA is at an
4908 * offset of 4 from the beginning of
4911 * For data frames, DA is at an offset
4912 * of 4 from the beginning of the packet
4913 * if To DS is clear and at an offset of
4914 * 16 from the beginning of the packet
4919 * Generate the tests to be done for data frames.
4921 * First, check for To DS set, i.e. "link[1] & 0x01".
4923 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4925 b1
= new_block(JMP(BPF_JSET
));
4926 b1
->s
.k
= 0x01; /* To DS */
4930 * If To DS is set, the DA is at 16.
4932 b0
= gen_mac_multicast(16);
4936 * Now, check for To DS not set, i.e. check
4937 * "!(link[1] & 0x01)".
4939 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4941 b2
= new_block(JMP(BPF_JSET
));
4942 b2
->s
.k
= 0x01; /* To DS */
4947 * If To DS is not set, the DA is at 4.
4949 b1
= gen_mac_multicast(4);
4953 * Now OR together the last two checks. That gives
4954 * the complete set of checks for data frames.
4959 * Now check for a data frame.
4960 * I.e, check "link[0] & 0x08".
4962 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4964 b1
= new_block(JMP(BPF_JSET
));
4969 * AND that with the checks done for data frames.
4974 * If the high-order bit of the type value is 0, this
4975 * is a management frame.
4976 * I.e, check "!(link[0] & 0x08)".
4978 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4980 b2
= new_block(JMP(BPF_JSET
));
4986 * For management frames, the DA is at 4.
4988 b1
= gen_mac_multicast(4);
4992 * OR that with the checks done for data frames.
4993 * That gives the checks done for management and
4999 * If the low-order bit of the type value is 1,
5000 * this is either a control frame or a frame
5001 * with a reserved type, and thus not a
5004 * I.e., check "!(link[0] & 0x04)".
5006 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
5008 b1
= new_block(JMP(BPF_JSET
));
5014 * AND that with the checks for data and management
5021 if (linktype
== DLT_IP_OVER_FC
) {
5022 b0
= gen_mac_multicast(2);
5026 if (linktype
== DLT_SUNATM
&& is_lane
) {
5028 * Check that the packet doesn't begin with an
5029 * LE Control marker. (We've already generated
5032 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
5035 /* ether[off_mac] & 1 != 0 */
5036 b0
= gen_mac_multicast(off_mac
);
5041 /* Link not known to support multicasts */
5045 b0
= gen_linktype(ETHERTYPE_IP
);
5046 b1
= gen_cmp(off_nl
+ 16, BPF_B
, (bpf_int32
)224);
5047 b1
->s
.code
= JMP(BPF_JGE
);
5053 b0
= gen_linktype(ETHERTYPE_IPV6
);
5054 b1
= gen_cmp(off_nl
+ 24, BPF_B
, (bpf_int32
)255);
5059 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
5064 * generate command for inbound/outbound. It's here so we can
5065 * make it link-type specific. 'dir' = 0 implies "inbound",
5066 * = 1 implies "outbound".
5072 register struct block
*b0
;
5075 * Only some data link types support inbound/outbound qualifiers.
5079 b0
= gen_relation(BPF_JEQ
,
5080 gen_load(Q_LINK
, gen_loadi(0), 1),
5088 * Match packets sent by this machine.
5090 b0
= gen_cmp(0, BPF_H
, LINUX_SLL_OUTGOING
);
5093 * Match packets sent to this machine.
5094 * (No broadcast or multicast packets, or
5095 * packets sent to some other machine and
5096 * received promiscuously.)
5098 * XXX - packets sent to other machines probably
5099 * shouldn't be matched, but what about broadcast
5100 * or multicast packets we received?
5102 b0
= gen_cmp(0, BPF_H
, LINUX_SLL_HOST
);
5107 b0
= gen_cmp(offsetof(struct pfloghdr
, dir
), BPF_B
,
5108 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
5111 case DLT_PPP_WITHDIRECTION
:
5113 /* match outgoing packets */
5114 b0
= gen_cmp(0, BPF_B
, PPP_WITHDIRECTION_OUT
);
5116 /* match incoming packets */
5117 b0
= gen_cmp(0, BPF_B
, PPP_WITHDIRECTION_IN
);
5121 case DLT_JUNIPER_ATM1
:
5122 case DLT_JUNIPER_ATM2
:
5123 /* juniper flags (including direction) are stored
5124 * the byte after the 3-byte magic number */
5126 /* match outgoing packets */
5127 b0
= gen_mcmp(3, BPF_B
, 0, 0x01);
5129 /* match incoming packets */
5130 b0
= gen_mcmp(3, BPF_B
, 1, 0x01);
5135 bpf_error("inbound/outbound not supported on linktype %d",
5143 /* PF firewall log matched interface */
5145 gen_pf_ifname(const char *ifname
)
5150 if (linktype
== DLT_PFLOG
) {
5151 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
5152 off
= offsetof(struct pfloghdr
, ifname
);
5154 bpf_error("ifname not supported on linktype 0x%x", linktype
);
5157 if (strlen(ifname
) >= len
) {
5158 bpf_error("ifname interface names can only be %d characters",
5162 b0
= gen_bcmp(off
, strlen(ifname
), (const u_char
*)ifname
);
5166 /* PF firewall log matched interface */
5168 gen_pf_ruleset(char *ruleset
)
5172 if (linktype
!= DLT_PFLOG
) {
5173 bpf_error("ruleset not supported on linktype 0x%x", linktype
);
5176 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
5177 bpf_error("ruleset names can only be %ld characters",
5178 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
5181 b0
= gen_bcmp(offsetof(struct pfloghdr
, ruleset
),
5182 strlen(ruleset
), (const u_char
*)ruleset
);
5186 /* PF firewall log rule number */
5192 if (linktype
== DLT_PFLOG
) {
5193 b0
= gen_cmp(offsetof(struct pfloghdr
, rulenr
), BPF_W
,
5196 bpf_error("rnr not supported on linktype 0x%x", linktype
);
5203 /* PF firewall log sub-rule number */
5205 gen_pf_srnr(int srnr
)
5209 if (linktype
!= DLT_PFLOG
) {
5210 bpf_error("srnr not supported on linktype 0x%x", linktype
);
5214 b0
= gen_cmp(offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
5219 /* PF firewall log reason code */
5221 gen_pf_reason(int reason
)
5225 if (linktype
== DLT_PFLOG
) {
5226 b0
= gen_cmp(offsetof(struct pfloghdr
, reason
), BPF_B
,
5229 bpf_error("reason not supported on linktype 0x%x", linktype
);
5236 /* PF firewall log action */
5238 gen_pf_action(int action
)
5242 if (linktype
== DLT_PFLOG
) {
5243 b0
= gen_cmp(offsetof(struct pfloghdr
, action
), BPF_B
,
5246 bpf_error("action not supported on linktype 0x%x", linktype
);
5255 register const u_char
*eaddr
;
5258 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
5259 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
5260 return gen_ahostop(eaddr
, (int)q
.dir
);
5262 bpf_error("ARCnet address used in non-arc expression");
5266 static struct block
*
5267 gen_ahostop(eaddr
, dir
)
5268 register const u_char
*eaddr
;
5271 register struct block
*b0
, *b1
;
5274 /* src comes first, different from Ethernet */
5276 return gen_bcmp(0, 1, eaddr
);
5279 return gen_bcmp(1, 1, eaddr
);
5282 b0
= gen_ahostop(eaddr
, Q_SRC
);
5283 b1
= gen_ahostop(eaddr
, Q_DST
);
5289 b0
= gen_ahostop(eaddr
, Q_SRC
);
5290 b1
= gen_ahostop(eaddr
, Q_DST
);
5299 * support IEEE 802.1Q VLAN trunk over ethernet
5308 * Change the offsets to point to the type and data fields within
5309 * the VLAN packet. This is somewhat of a kludge.
5311 if (orig_nl
== (u_int
)-1) {
5312 orig_linktype
= off_linktype
; /* save original values */
5314 orig_nl_nosnap
= off_nl_nosnap
;
5325 bpf_error("no VLAN support for data link type %d",
5331 /* check for VLAN */
5332 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_8021Q
);
5334 /* If a specific VLAN is requested, check VLAN id */
5335 if (vlan_num
>= 0) {
5338 b1
= gen_mcmp(orig_nl
, BPF_H
, (bpf_int32
)vlan_num
, 0x0fff);
5356 * Change the offsets to point to the type and data fields within
5357 * the MPLS packet. This is somewhat of a kludge.
5359 if (orig_nl
== (u_int
)-1) {
5360 orig_linktype
= off_linktype
; /* save original values */
5362 orig_nl_nosnap
= off_nl_nosnap
;
5371 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_MPLS
);
5379 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)PPP_MPLS_UCAST
);
5387 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_MPLS
);
5390 /* FIXME add other DLT_s ...
5391 * for Frame-Relay/and ATM this may get messy due to SNAP headers
5392 * leave it for now */
5395 bpf_error("no MPLS support for data link type %d",
5400 bpf_error("'mpls' can't be combined with 'vlan' or another 'mpls'");
5404 /* If a specific MPLS label is requested, check it */
5405 if (label_num
>= 0) {
5408 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
5409 b1
= gen_mcmp(orig_nl
, BPF_W
, (bpf_int32
)label_num
, 0xfffff000); /* only compare the first 20 bits */
5418 gen_atmfield_code(atmfield
, jvalue
, jtype
, reverse
)
5430 bpf_error("'vpi' supported only on raw ATM");
5431 if (off_vpi
== (u_int
)-1)
5433 b0
= gen_ncmp(BPF_B
, off_vpi
, 0xffffffff, (u_int
)jtype
,
5434 (u_int
)jvalue
, reverse
);
5439 bpf_error("'vci' supported only on raw ATM");
5440 if (off_vci
== (u_int
)-1)
5442 b0
= gen_ncmp(BPF_H
, off_vci
, 0xffffffff, (u_int
)jtype
,
5443 (u_int
)jvalue
, reverse
);
5447 if (off_proto
== (u_int
)-1)
5448 abort(); /* XXX - this isn't on FreeBSD */
5449 b0
= gen_ncmp(BPF_B
, off_proto
, 0x0f, (u_int
)jtype
,
5450 (u_int
)jvalue
, reverse
);
5454 if (off_payload
== (u_int
)-1)
5456 b0
= gen_ncmp(BPF_B
, off_payload
+ MSG_TYPE_POS
, 0xffffffff,
5457 (u_int
)jtype
, (u_int
)jvalue
, reverse
);
5462 bpf_error("'callref' supported only on raw ATM");
5463 if (off_proto
== (u_int
)-1)
5465 b0
= gen_ncmp(BPF_B
, off_proto
, 0xffffffff, (u_int
)jtype
,
5466 (u_int
)jvalue
, reverse
);
5476 gen_atmtype_abbrev(type
)
5479 struct block
*b0
, *b1
;
5484 /* Get all packets in Meta signalling Circuit */
5486 bpf_error("'metac' supported only on raw ATM");
5487 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5488 b1
= gen_atmfield_code(A_VCI
, 1, BPF_JEQ
, 0);
5493 /* Get all packets in Broadcast Circuit*/
5495 bpf_error("'bcc' supported only on raw ATM");
5496 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5497 b1
= gen_atmfield_code(A_VCI
, 2, BPF_JEQ
, 0);
5502 /* Get all cells in Segment OAM F4 circuit*/
5504 bpf_error("'oam4sc' supported only on raw ATM");
5505 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5506 b1
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
5511 /* Get all cells in End-to-End OAM F4 Circuit*/
5513 bpf_error("'oam4ec' supported only on raw ATM");
5514 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5515 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
5520 /* Get all packets in connection Signalling Circuit */
5522 bpf_error("'sc' supported only on raw ATM");
5523 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5524 b1
= gen_atmfield_code(A_VCI
, 5, BPF_JEQ
, 0);
5529 /* Get all packets in ILMI Circuit */
5531 bpf_error("'ilmic' supported only on raw ATM");
5532 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5533 b1
= gen_atmfield_code(A_VCI
, 16, BPF_JEQ
, 0);
5538 /* Get all LANE packets */
5540 bpf_error("'lane' supported only on raw ATM");
5541 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
5544 * Arrange that all subsequent tests assume LANE
5545 * rather than LLC-encapsulated packets, and set
5546 * the offsets appropriately for LANE-encapsulated
5549 * "off_mac" is the offset of the Ethernet header,
5550 * which is 2 bytes past the ATM pseudo-header
5551 * (skipping the pseudo-header and 2-byte LE Client
5552 * field). The other offsets are Ethernet offsets
5553 * relative to "off_mac".
5556 off_mac
= off_payload
+ 2; /* MAC header */
5557 off_linktype
= off_mac
+ 12;
5558 off_nl
= off_mac
+ 14; /* Ethernet II */
5559 off_nl_nosnap
= off_mac
+ 17; /* 802.3+802.2 */
5563 /* Get all LLC-encapsulated packets */
5565 bpf_error("'llc' supported only on raw ATM");
5566 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
5577 static struct block
*
5578 gen_msg_abbrev(type
)
5584 * Q.2931 signalling protocol messages for handling virtual circuits
5585 * establishment and teardown
5590 b1
= gen_atmfield_code(A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
5594 b1
= gen_atmfield_code(A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
5598 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
5602 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
5606 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
5609 case A_RELEASE_DONE
:
5610 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
5620 gen_atmmulti_abbrev(type
)
5623 struct block
*b0
, *b1
;
5629 bpf_error("'oam' supported only on raw ATM");
5630 b1
= gen_atmmulti_abbrev(A_OAMF4
);
5635 bpf_error("'oamf4' supported only on raw ATM");
5637 b0
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
5638 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
5640 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5646 * Get Q.2931 signalling messages for switched
5647 * virtual connection
5650 bpf_error("'connectmsg' supported only on raw ATM");
5651 b0
= gen_msg_abbrev(A_SETUP
);
5652 b1
= gen_msg_abbrev(A_CALLPROCEED
);
5654 b0
= gen_msg_abbrev(A_CONNECT
);
5656 b0
= gen_msg_abbrev(A_CONNECTACK
);
5658 b0
= gen_msg_abbrev(A_RELEASE
);
5660 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
5662 b0
= gen_atmtype_abbrev(A_SC
);
5668 bpf_error("'metaconnect' supported only on raw ATM");
5669 b0
= gen_msg_abbrev(A_SETUP
);
5670 b1
= gen_msg_abbrev(A_CALLPROCEED
);
5672 b0
= gen_msg_abbrev(A_CONNECT
);
5674 b0
= gen_msg_abbrev(A_RELEASE
);
5676 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
5678 b0
= gen_atmtype_abbrev(A_METAC
);