]> The Tcpdump Group git mirrors - libpcap/blob - optimize.c
Merge branch 'master' into pcap-options
[libpcap] / optimize.c
1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * Optimization module for BPF code intermediate representation.
22 */
23
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27
28 #include <pcap-types.h>
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <string.h>
35 #include <limits.h> /* for SIZE_MAX */
36 #include <errno.h>
37
38 #include "pcap-int.h"
39
40 #include "gencode.h"
41 #include "optimize.h"
42 #include "diag-control.h"
43
44 #ifdef HAVE_OS_PROTO_H
45 #include "os-proto.h"
46 #endif
47
48 #ifdef BDEBUG
49 /*
50 * The internal "debug printout" flag for the filter expression optimizer.
51 * The code to print that stuff is present only if BDEBUG is defined, so
52 * the flag, and the routine to set it, are defined only if BDEBUG is
53 * defined.
54 */
55 static int pcap_optimizer_debug;
56
57 /*
58 * Routine to set that flag.
59 *
60 * This is intended for libpcap developers, not for general use.
61 * If you want to set these in a program, you'll have to declare this
62 * routine yourself, with the appropriate DLL import attribute on Windows;
63 * it's not declared in any header file, and won't be declared in any
64 * header file provided by libpcap.
65 */
66 PCAP_API void pcap_set_optimizer_debug(int value);
67
68 PCAP_API_DEF void
69 pcap_set_optimizer_debug(int value)
70 {
71 pcap_optimizer_debug = value;
72 }
73
74 /*
75 * The internal "print dot graph" flag for the filter expression optimizer.
76 * The code to print that stuff is present only if BDEBUG is defined, so
77 * the flag, and the routine to set it, are defined only if BDEBUG is
78 * defined.
79 */
80 static int pcap_print_dot_graph;
81
82 /*
83 * Routine to set that flag.
84 *
85 * This is intended for libpcap developers, not for general use.
86 * If you want to set these in a program, you'll have to declare this
87 * routine yourself, with the appropriate DLL import attribute on Windows;
88 * it's not declared in any header file, and won't be declared in any
89 * header file provided by libpcap.
90 */
91 PCAP_API void pcap_set_print_dot_graph(int value);
92
93 PCAP_API_DEF void
94 pcap_set_print_dot_graph(int value)
95 {
96 pcap_print_dot_graph = value;
97 }
98
99 #endif
100
101 /*
102 * lowest_set_bit().
103 *
104 * Takes a 32-bit integer as an argument.
105 *
106 * If handed a non-zero value, returns the index of the lowest set bit,
107 * counting upwards from zero.
108 *
109 * If handed zero, the results are platform- and compiler-dependent.
110 * Keep it out of the light, don't give it any water, don't feed it
111 * after midnight, and don't pass zero to it.
112 *
113 * This is the same as the count of trailing zeroes in the word.
114 */
115 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116 /*
117 * GCC 3.4 and later; we have __builtin_ctz().
118 */
119 #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120 #elif defined(_MSC_VER)
121 /*
122 * Visual Studio; we support only 2005 and later, so use
123 * _BitScanForward().
124 */
125 #include <intrin.h>
126
127 #ifndef __clang__
128 #pragma intrinsic(_BitScanForward)
129 #endif
130
131 static __forceinline u_int
132 lowest_set_bit(int mask)
133 {
134 unsigned long bit;
135
136 /*
137 * Don't sign-extend mask if long is longer than int.
138 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139 */
140 if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141 abort(); /* mask is zero */
142 return (u_int)bit;
143 }
144 #elif defined(MSDOS) && defined(__DJGPP__)
145 /*
146 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147 * we've already included.
148 */
149 #define lowest_set_bit(mask) ((u_int)(ffs((mask)) - 1))
150 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151 /*
152 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153 * or some other platform (UN*X conforming to a sufficient recent version
154 * of the Single UNIX Specification).
155 */
156 #include <strings.h>
157 #define lowest_set_bit(mask) (u_int)((ffs((mask)) - 1))
158 #else
159 /*
160 * None of the above.
161 * Use a perfect-hash-function-based function.
162 */
163 static u_int
164 lowest_set_bit(int mask)
165 {
166 unsigned int v = (unsigned int)mask;
167
168 static const u_int MultiplyDeBruijnBitPosition[32] = {
169 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171 };
172
173 /*
174 * We strip off all but the lowermost set bit (v & ~v),
175 * and perform a minimal perfect hash on it to look up the
176 * number of low-order zero bits in a table.
177 *
178 * See:
179 *
180 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181 *
182 * http://supertech.csail.mit.edu/papers/debruijn.pdf
183 */
184 return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185 }
186 #endif
187
188 /*
189 * Represents a deleted instruction.
190 */
191 #define NOP -1
192
193 /*
194 * Register numbers for use-def values.
195 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196 * location. A_ATOM is the accumulator and X_ATOM is the index
197 * register.
198 */
199 #define A_ATOM BPF_MEMWORDS
200 #define X_ATOM (BPF_MEMWORDS+1)
201
202 /*
203 * This define is used to represent *both* the accumulator and
204 * x register in use-def computations.
205 * Currently, the use-def code assumes only one definition per instruction.
206 */
207 #define AX_ATOM N_ATOMS
208
209 /*
210 * These data structures are used in a Cocke and Shwarz style
211 * value numbering scheme. Since the flowgraph is acyclic,
212 * exit values can be propagated from a node's predecessors
213 * provided it is uniquely defined.
214 */
215 struct valnode {
216 int code;
217 bpf_u_int32 v0, v1;
218 int val; /* the value number */
219 struct valnode *next;
220 };
221
222 /* Integer constants mapped with the load immediate opcode. */
223 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225 struct vmapinfo {
226 int is_const;
227 bpf_u_int32 const_val;
228 };
229
230 typedef struct {
231 /*
232 * Place to longjmp to on an error.
233 */
234 jmp_buf top_ctx;
235
236 /*
237 * The buffer into which to put error message.
238 */
239 char *errbuf;
240
241 /*
242 * A flag to indicate that further optimization is needed.
243 * Iterative passes are continued until a given pass yields no
244 * code simplification or branch movement.
245 */
246 int done;
247
248 /*
249 * XXX - detect loops that do nothing but repeated AND/OR pullups
250 * and edge moves.
251 * If 100 passes in a row do nothing but that, treat that as a
252 * sign that we're in a loop that just shuffles in a cycle in
253 * which each pass just shuffles the code and we eventually
254 * get back to the original configuration.
255 *
256 * XXX - we need a non-heuristic way of detecting, or preventing,
257 * such a cycle.
258 */
259 int non_branch_movement_performed;
260
261 u_int n_blocks; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262 struct block **blocks;
263 u_int n_edges; /* twice n_blocks, so guaranteed to be > 0 */
264 struct edge **edges;
265
266 /*
267 * A bit vector set representation of the dominators.
268 * We round up the set size to the next power of two.
269 */
270 u_int nodewords; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271 u_int edgewords; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272 struct block **levels;
273 bpf_u_int32 *space;
274
275 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276 /*
277 * True if a is in uset {p}
278 */
279 #define SET_MEMBER(p, a) \
280 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282 /*
283 * Add 'a' to uset p.
284 */
285 #define SET_INSERT(p, a) \
286 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288 /*
289 * Delete 'a' from uset p.
290 */
291 #define SET_DELETE(p, a) \
292 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294 /*
295 * a := a intersect b
296 * n must be guaranteed to be > 0
297 */
298 #define SET_INTERSECT(a, b, n)\
299 {\
300 register bpf_u_int32 *_x = a, *_y = b;\
301 register u_int _n = n;\
302 do *_x++ &= *_y++; while (--_n != 0);\
303 }
304
305 /*
306 * a := a - b
307 * n must be guaranteed to be > 0
308 */
309 #define SET_SUBTRACT(a, b, n)\
310 {\
311 register bpf_u_int32 *_x = a, *_y = b;\
312 register u_int _n = n;\
313 do *_x++ &=~ *_y++; while (--_n != 0);\
314 }
315
316 /*
317 * a := a union b
318 * n must be guaranteed to be > 0
319 */
320 #define SET_UNION(a, b, n)\
321 {\
322 register bpf_u_int32 *_x = a, *_y = b;\
323 register u_int _n = n;\
324 do *_x++ |= *_y++; while (--_n != 0);\
325 }
326
327 uset all_dom_sets;
328 uset all_closure_sets;
329 uset all_edge_sets;
330
331 #define MODULUS 213
332 struct valnode *hashtbl[MODULUS];
333 bpf_u_int32 curval;
334 bpf_u_int32 maxval;
335
336 struct vmapinfo *vmap;
337 struct valnode *vnode_base;
338 struct valnode *next_vnode;
339 } opt_state_t;
340
341 typedef struct {
342 /*
343 * Place to longjmp to on an error.
344 */
345 jmp_buf top_ctx;
346
347 /*
348 * The buffer into which to put error message.
349 */
350 char *errbuf;
351
352 /*
353 * Some pointers used to convert the basic block form of the code,
354 * into the array form that BPF requires. 'fstart' will point to
355 * the malloc'd array while 'ftail' is used during the recursive
356 * traversal.
357 */
358 struct bpf_insn *fstart;
359 struct bpf_insn *ftail;
360 } conv_state_t;
361
362 static void opt_init(opt_state_t *, struct icode *);
363 static void opt_cleanup(opt_state_t *);
364 static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365 PCAP_PRINTFLIKE(2, 3);
366
367 static void intern_blocks(opt_state_t *, struct icode *);
368
369 static void find_inedges(opt_state_t *, struct block *);
370 #ifdef BDEBUG
371 static void opt_dump(opt_state_t *, struct icode *);
372 #endif
373
374 #ifndef MAX
375 #define MAX(a,b) ((a)>(b)?(a):(b))
376 #endif
377
378 static void
379 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380 {
381 int level;
382
383 if (isMarked(ic, b))
384 return;
385
386 Mark(ic, b);
387 b->link = 0;
388
389 if (JT(b)) {
390 find_levels_r(opt_state, ic, JT(b));
391 find_levels_r(opt_state, ic, JF(b));
392 level = MAX(JT(b)->level, JF(b)->level) + 1;
393 } else
394 level = 0;
395 b->level = level;
396 b->link = opt_state->levels[level];
397 opt_state->levels[level] = b;
398 }
399
400 /*
401 * Level graph. The levels go from 0 at the leaves to
402 * N_LEVELS at the root. The opt_state->levels[] array points to the
403 * first node of the level list, whose elements are linked
404 * with the 'link' field of the struct block.
405 */
406 static void
407 find_levels(opt_state_t *opt_state, struct icode *ic)
408 {
409 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410 unMarkAll(ic);
411 find_levels_r(opt_state, ic, ic->root);
412 }
413
414 /*
415 * Find dominator relationships.
416 * Assumes graph has been leveled.
417 */
418 static void
419 find_dom(opt_state_t *opt_state, struct block *root)
420 {
421 u_int i;
422 int level;
423 struct block *b;
424 bpf_u_int32 *x;
425
426 /*
427 * Initialize sets to contain all nodes.
428 */
429 x = opt_state->all_dom_sets;
430 /*
431 * In opt_init(), we've made sure the product doesn't overflow.
432 */
433 i = opt_state->n_blocks * opt_state->nodewords;
434 while (i != 0) {
435 --i;
436 *x++ = 0xFFFFFFFFU;
437 }
438 /* Root starts off empty. */
439 for (i = opt_state->nodewords; i != 0;) {
440 --i;
441 root->dom[i] = 0;
442 }
443
444 /* root->level is the highest level no found. */
445 for (level = root->level; level >= 0; --level) {
446 for (b = opt_state->levels[level]; b; b = b->link) {
447 SET_INSERT(b->dom, b->id);
448 if (JT(b) == 0)
449 continue;
450 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452 }
453 }
454 }
455
456 static void
457 propedom(opt_state_t *opt_state, struct edge *ep)
458 {
459 SET_INSERT(ep->edom, ep->id);
460 if (ep->succ) {
461 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463 }
464 }
465
466 /*
467 * Compute edge dominators.
468 * Assumes graph has been leveled and predecessors established.
469 */
470 static void
471 find_edom(opt_state_t *opt_state, struct block *root)
472 {
473 u_int i;
474 uset x;
475 int level;
476 struct block *b;
477
478 x = opt_state->all_edge_sets;
479 /*
480 * In opt_init(), we've made sure the product doesn't overflow.
481 */
482 for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483 --i;
484 x[i] = 0xFFFFFFFFU;
485 }
486
487 /* root->level is the highest level no found. */
488 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490 for (level = root->level; level >= 0; --level) {
491 for (b = opt_state->levels[level]; b != 0; b = b->link) {
492 propedom(opt_state, &b->et);
493 propedom(opt_state, &b->ef);
494 }
495 }
496 }
497
498 /*
499 * Find the backwards transitive closure of the flow graph. These sets
500 * are backwards in the sense that we find the set of nodes that reach
501 * a given node, not the set of nodes that can be reached by a node.
502 *
503 * Assumes graph has been leveled.
504 */
505 static void
506 find_closure(opt_state_t *opt_state, struct block *root)
507 {
508 int level;
509 struct block *b;
510
511 /*
512 * Initialize sets to contain no nodes.
513 */
514 memset((char *)opt_state->all_closure_sets, 0,
515 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517 /* root->level is the highest level no found. */
518 for (level = root->level; level >= 0; --level) {
519 for (b = opt_state->levels[level]; b; b = b->link) {
520 SET_INSERT(b->closure, b->id);
521 if (JT(b) == 0)
522 continue;
523 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525 }
526 }
527 }
528
529 /*
530 * Return the register number that is used by s.
531 *
532 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533 * are used, the scratch memory location's number if a scratch memory
534 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535 *
536 * The implementation should probably change to an array access.
537 */
538 static int
539 atomuse(struct stmt *s)
540 {
541 register int c = s->code;
542
543 if (c == NOP)
544 return -1;
545
546 switch (BPF_CLASS(c)) {
547
548 case BPF_RET:
549 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552 case BPF_LD:
553 case BPF_LDX:
554 /*
555 * As there are fewer than 2^31 memory locations,
556 * s->k should be convertible to int without problems.
557 */
558 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559 (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561 case BPF_ST:
562 return A_ATOM;
563
564 case BPF_STX:
565 return X_ATOM;
566
567 case BPF_JMP:
568 case BPF_ALU:
569 if (BPF_SRC(c) == BPF_X)
570 return AX_ATOM;
571 return A_ATOM;
572
573 case BPF_MISC:
574 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575 }
576 abort();
577 /* NOTREACHED */
578 }
579
580 /*
581 * Return the register number that is defined by 's'. We assume that
582 * a single stmt cannot define more than one register. If no register
583 * is defined, return -1.
584 *
585 * The implementation should probably change to an array access.
586 */
587 static int
588 atomdef(struct stmt *s)
589 {
590 if (s->code == NOP)
591 return -1;
592
593 switch (BPF_CLASS(s->code)) {
594
595 case BPF_LD:
596 case BPF_ALU:
597 return A_ATOM;
598
599 case BPF_LDX:
600 return X_ATOM;
601
602 case BPF_ST:
603 case BPF_STX:
604 return s->k;
605
606 case BPF_MISC:
607 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608 }
609 return -1;
610 }
611
612 /*
613 * Compute the sets of registers used, defined, and killed by 'b'.
614 *
615 * "Used" means that a statement in 'b' uses the register before any
616 * statement in 'b' defines it, i.e. it uses the value left in
617 * that register by a predecessor block of this block.
618 * "Defined" means that a statement in 'b' defines it.
619 * "Killed" means that a statement in 'b' defines it before any
620 * statement in 'b' uses it, i.e. it kills the value left in that
621 * register by a predecessor block of this block.
622 */
623 static void
624 compute_local_ud(struct block *b)
625 {
626 struct slist *s;
627 atomset def = 0, use = 0, killed = 0;
628 int atom;
629
630 for (s = b->stmts; s; s = s->next) {
631 if (s->s.code == NOP)
632 continue;
633 atom = atomuse(&s->s);
634 if (atom >= 0) {
635 if (atom == AX_ATOM) {
636 if (!ATOMELEM(def, X_ATOM))
637 use |= ATOMMASK(X_ATOM);
638 if (!ATOMELEM(def, A_ATOM))
639 use |= ATOMMASK(A_ATOM);
640 }
641 else if (atom < N_ATOMS) {
642 if (!ATOMELEM(def, atom))
643 use |= ATOMMASK(atom);
644 }
645 else
646 abort();
647 }
648 atom = atomdef(&s->s);
649 if (atom >= 0) {
650 if (!ATOMELEM(use, atom))
651 killed |= ATOMMASK(atom);
652 def |= ATOMMASK(atom);
653 }
654 }
655 if (BPF_CLASS(b->s.code) == BPF_JMP) {
656 /*
657 * XXX - what about RET?
658 */
659 atom = atomuse(&b->s);
660 if (atom >= 0) {
661 if (atom == AX_ATOM) {
662 if (!ATOMELEM(def, X_ATOM))
663 use |= ATOMMASK(X_ATOM);
664 if (!ATOMELEM(def, A_ATOM))
665 use |= ATOMMASK(A_ATOM);
666 }
667 else if (atom < N_ATOMS) {
668 if (!ATOMELEM(def, atom))
669 use |= ATOMMASK(atom);
670 }
671 else
672 abort();
673 }
674 }
675
676 b->def = def;
677 b->kill = killed;
678 b->in_use = use;
679 }
680
681 /*
682 * Assume graph is already leveled.
683 */
684 static void
685 find_ud(opt_state_t *opt_state, struct block *root)
686 {
687 int i, maxlevel;
688 struct block *p;
689
690 /*
691 * root->level is the highest level no found;
692 * count down from there.
693 */
694 maxlevel = root->level;
695 for (i = maxlevel; i >= 0; --i)
696 for (p = opt_state->levels[i]; p; p = p->link) {
697 compute_local_ud(p);
698 p->out_use = 0;
699 }
700
701 for (i = 1; i <= maxlevel; ++i) {
702 for (p = opt_state->levels[i]; p; p = p->link) {
703 p->out_use |= JT(p)->in_use | JF(p)->in_use;
704 p->in_use |= p->out_use &~ p->kill;
705 }
706 }
707 }
708 static void
709 init_val(opt_state_t *opt_state)
710 {
711 opt_state->curval = 0;
712 opt_state->next_vnode = opt_state->vnode_base;
713 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715 }
716
717 /*
718 * Because we really don't have an IR, this stuff is a little messy.
719 *
720 * This routine looks in the table of existing value number for a value
721 * with generated from an operation with the specified opcode and
722 * the specified values. If it finds it, it returns its value number,
723 * otherwise it makes a new entry in the table and returns the
724 * value number of that entry.
725 */
726 static bpf_u_int32
727 F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728 {
729 u_int hash;
730 bpf_u_int32 val;
731 struct valnode *p;
732
733 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734 hash %= MODULUS;
735
736 for (p = opt_state->hashtbl[hash]; p; p = p->next)
737 if (p->code == code && p->v0 == v0 && p->v1 == v1)
738 return p->val;
739
740 /*
741 * Not found. Allocate a new value, and assign it a new
742 * value number.
743 *
744 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745 * increment it before using it as the new value number, which
746 * means we never assign VAL_UNKNOWN.
747 *
748 * XXX - unless we overflow, but we probably won't have 2^32-1
749 * values; we treat 32 bits as effectively infinite.
750 */
751 val = ++opt_state->curval;
752 if (BPF_MODE(code) == BPF_IMM &&
753 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754 opt_state->vmap[val].const_val = v0;
755 opt_state->vmap[val].is_const = 1;
756 }
757 p = opt_state->next_vnode++;
758 p->val = val;
759 p->code = code;
760 p->v0 = v0;
761 p->v1 = v1;
762 p->next = opt_state->hashtbl[hash];
763 opt_state->hashtbl[hash] = p;
764
765 return val;
766 }
767
768 static inline void
769 vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770 {
771 if (alter && newval != VAL_UNKNOWN && *valp == newval)
772 s->code = NOP;
773 else
774 *valp = newval;
775 }
776
777 /*
778 * Do constant-folding on binary operators.
779 * (Unary operators are handled elsewhere.)
780 */
781 static void
782 fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783 {
784 bpf_u_int32 a, b;
785
786 a = opt_state->vmap[v0].const_val;
787 b = opt_state->vmap[v1].const_val;
788
789 switch (BPF_OP(s->code)) {
790 case BPF_ADD:
791 a += b;
792 break;
793
794 case BPF_SUB:
795 a -= b;
796 break;
797
798 case BPF_MUL:
799 a *= b;
800 break;
801
802 case BPF_DIV:
803 if (b == 0)
804 opt_error(opt_state, "division by zero");
805 a /= b;
806 break;
807
808 case BPF_MOD:
809 if (b == 0)
810 opt_error(opt_state, "modulus by zero");
811 a %= b;
812 break;
813
814 case BPF_AND:
815 a &= b;
816 break;
817
818 case BPF_OR:
819 a |= b;
820 break;
821
822 case BPF_XOR:
823 a ^= b;
824 break;
825
826 case BPF_LSH:
827 /*
828 * A left shift of more than the width of the type
829 * is undefined in C; we'll just treat it as shifting
830 * all the bits out.
831 *
832 * XXX - the BPF interpreter doesn't check for this,
833 * so its behavior is dependent on the behavior of
834 * the processor on which it's running. There are
835 * processors on which it shifts all the bits out
836 * and processors on which it does no shift.
837 */
838 if (b < 32)
839 a <<= b;
840 else
841 a = 0;
842 break;
843
844 case BPF_RSH:
845 /*
846 * A right shift of more than the width of the type
847 * is undefined in C; we'll just treat it as shifting
848 * all the bits out.
849 *
850 * XXX - the BPF interpreter doesn't check for this,
851 * so its behavior is dependent on the behavior of
852 * the processor on which it's running. There are
853 * processors on which it shifts all the bits out
854 * and processors on which it does no shift.
855 */
856 if (b < 32)
857 a >>= b;
858 else
859 a = 0;
860 break;
861
862 default:
863 abort();
864 }
865 s->k = a;
866 s->code = BPF_LD|BPF_IMM;
867 /*
868 * XXX - optimizer loop detection.
869 */
870 opt_state->non_branch_movement_performed = 1;
871 opt_state->done = 0;
872 }
873
874 static inline struct slist *
875 this_op(struct slist *s)
876 {
877 while (s != 0 && s->s.code == NOP)
878 s = s->next;
879 return s;
880 }
881
882 static void
883 opt_not(struct block *b)
884 {
885 struct block *tmp = JT(b);
886
887 JT(b) = JF(b);
888 JF(b) = tmp;
889 }
890
891 static void
892 opt_peep(opt_state_t *opt_state, struct block *b)
893 {
894 struct slist *s;
895 struct slist *next, *last;
896 bpf_u_int32 val;
897
898 s = b->stmts;
899 if (s == 0)
900 return;
901
902 last = s;
903 for (/*empty*/; /*empty*/; s = next) {
904 /*
905 * Skip over nops.
906 */
907 s = this_op(s);
908 if (s == 0)
909 break; /* nothing left in the block */
910
911 /*
912 * Find the next real instruction after that one
913 * (skipping nops).
914 */
915 next = this_op(s->next);
916 if (next == 0)
917 break; /* no next instruction */
918 last = next;
919
920 /*
921 * st M[k] --> st M[k]
922 * ldx M[k] tax
923 */
924 if (s->s.code == BPF_ST &&
925 next->s.code == (BPF_LDX|BPF_MEM) &&
926 s->s.k == next->s.k) {
927 /*
928 * XXX - optimizer loop detection.
929 */
930 opt_state->non_branch_movement_performed = 1;
931 opt_state->done = 0;
932 next->s.code = BPF_MISC|BPF_TAX;
933 }
934 /*
935 * ld #k --> ldx #k
936 * tax txa
937 */
938 if (s->s.code == (BPF_LD|BPF_IMM) &&
939 next->s.code == (BPF_MISC|BPF_TAX)) {
940 s->s.code = BPF_LDX|BPF_IMM;
941 next->s.code = BPF_MISC|BPF_TXA;
942 /*
943 * XXX - optimizer loop detection.
944 */
945 opt_state->non_branch_movement_performed = 1;
946 opt_state->done = 0;
947 }
948 /*
949 * This is an ugly special case, but it happens
950 * when you say tcp[k] or udp[k] where k is a constant.
951 */
952 if (s->s.code == (BPF_LD|BPF_IMM)) {
953 struct slist *add, *tax, *ild;
954
955 /*
956 * Check that X isn't used on exit from this
957 * block (which the optimizer might cause).
958 * We know the code generator won't generate
959 * any local dependencies.
960 */
961 if (ATOMELEM(b->out_use, X_ATOM))
962 continue;
963
964 /*
965 * Check that the instruction following the ldi
966 * is an addx, or it's an ldxms with an addx
967 * following it (with 0 or more nops between the
968 * ldxms and addx).
969 */
970 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971 add = next;
972 else
973 add = this_op(next->next);
974 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975 continue;
976
977 /*
978 * Check that a tax follows that (with 0 or more
979 * nops between them).
980 */
981 tax = this_op(add->next);
982 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983 continue;
984
985 /*
986 * Check that an ild follows that (with 0 or more
987 * nops between them).
988 */
989 ild = this_op(tax->next);
990 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991 BPF_MODE(ild->s.code) != BPF_IND)
992 continue;
993 /*
994 * We want to turn this sequence:
995 *
996 * (004) ldi #0x2 {s}
997 * (005) ldxms [14] {next} -- optional
998 * (006) addx {add}
999 * (007) tax {tax}
1000 * (008) ild [x+0] {ild}
1001 *
1002 * into this sequence:
1003 *
1004 * (004) nop
1005 * (005) ldxms [14]
1006 * (006) nop
1007 * (007) nop
1008 * (008) ild [x+2]
1009 *
1010 * XXX We need to check that X is not
1011 * subsequently used, because we want to change
1012 * what'll be in it after this sequence.
1013 *
1014 * We know we can eliminate the accumulator
1015 * modifications earlier in the sequence since
1016 * it is defined by the last stmt of this sequence
1017 * (i.e., the last statement of the sequence loads
1018 * a value into the accumulator, so we can eliminate
1019 * earlier operations on the accumulator).
1020 */
1021 ild->s.k += s->s.k;
1022 s->s.code = NOP;
1023 add->s.code = NOP;
1024 tax->s.code = NOP;
1025 /*
1026 * XXX - optimizer loop detection.
1027 */
1028 opt_state->non_branch_movement_performed = 1;
1029 opt_state->done = 0;
1030 }
1031 }
1032 /*
1033 * If the comparison at the end of a block is an equality
1034 * comparison against a constant, and nobody uses the value
1035 * we leave in the A register at the end of a block, and
1036 * the operation preceding the comparison is an arithmetic
1037 * operation, we can sometime optimize it away.
1038 */
1039 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040 !ATOMELEM(b->out_use, A_ATOM)) {
1041 /*
1042 * We can optimize away certain subtractions of the
1043 * X register.
1044 */
1045 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046 val = b->val[X_ATOM];
1047 if (opt_state->vmap[val].is_const) {
1048 /*
1049 * If we have a subtract to do a comparison,
1050 * and the X register is a known constant,
1051 * we can merge this value into the
1052 * comparison:
1053 *
1054 * sub x -> nop
1055 * jeq #y jeq #(x+y)
1056 */
1057 b->s.k += opt_state->vmap[val].const_val;
1058 last->s.code = NOP;
1059 /*
1060 * XXX - optimizer loop detection.
1061 */
1062 opt_state->non_branch_movement_performed = 1;
1063 opt_state->done = 0;
1064 } else if (b->s.k == 0) {
1065 /*
1066 * If the X register isn't a constant,
1067 * and the comparison in the test is
1068 * against 0, we can compare with the
1069 * X register, instead:
1070 *
1071 * sub x -> nop
1072 * jeq #0 jeq x
1073 */
1074 last->s.code = NOP;
1075 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076 /*
1077 * XXX - optimizer loop detection.
1078 */
1079 opt_state->non_branch_movement_performed = 1;
1080 opt_state->done = 0;
1081 }
1082 }
1083 /*
1084 * Likewise, a constant subtract can be simplified:
1085 *
1086 * sub #x -> nop
1087 * jeq #y -> jeq #(x+y)
1088 */
1089 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090 last->s.code = NOP;
1091 b->s.k += last->s.k;
1092 /*
1093 * XXX - optimizer loop detection.
1094 */
1095 opt_state->non_branch_movement_performed = 1;
1096 opt_state->done = 0;
1097 }
1098 /*
1099 * And, similarly, a constant AND can be simplified
1100 * if we're testing against 0, i.e.:
1101 *
1102 * and #k nop
1103 * jeq #0 -> jset #k
1104 */
1105 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106 b->s.k == 0) {
1107 b->s.k = last->s.k;
1108 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109 last->s.code = NOP;
1110 /*
1111 * XXX - optimizer loop detection.
1112 */
1113 opt_state->non_branch_movement_performed = 1;
1114 opt_state->done = 0;
1115 opt_not(b);
1116 }
1117 }
1118 /*
1119 * jset #0 -> never
1120 * jset #ffffffff -> always
1121 */
1122 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123 if (b->s.k == 0)
1124 JT(b) = JF(b);
1125 if (b->s.k == 0xffffffffU)
1126 JF(b) = JT(b);
1127 }
1128 /*
1129 * If we're comparing against the index register, and the index
1130 * register is a known constant, we can just compare against that
1131 * constant.
1132 */
1133 val = b->val[X_ATOM];
1134 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135 bpf_u_int32 v = opt_state->vmap[val].const_val;
1136 b->s.code &= ~BPF_X;
1137 b->s.k = v;
1138 }
1139 /*
1140 * If the accumulator is a known constant, we can compute the
1141 * comparison result.
1142 */
1143 val = b->val[A_ATOM];
1144 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145 bpf_u_int32 v = opt_state->vmap[val].const_val;
1146 switch (BPF_OP(b->s.code)) {
1147
1148 case BPF_JEQ:
1149 v = v == b->s.k;
1150 break;
1151
1152 case BPF_JGT:
1153 v = v > b->s.k;
1154 break;
1155
1156 case BPF_JGE:
1157 v = v >= b->s.k;
1158 break;
1159
1160 case BPF_JSET:
1161 v &= b->s.k;
1162 break;
1163
1164 default:
1165 abort();
1166 }
1167 if (JF(b) != JT(b)) {
1168 /*
1169 * XXX - optimizer loop detection.
1170 */
1171 opt_state->non_branch_movement_performed = 1;
1172 opt_state->done = 0;
1173 }
1174 if (v)
1175 JF(b) = JT(b);
1176 else
1177 JT(b) = JF(b);
1178 }
1179 }
1180
1181 /*
1182 * Compute the symbolic value of expression of 's', and update
1183 * anything it defines in the value table 'val'. If 'alter' is true,
1184 * do various optimizations. This code would be cleaner if symbolic
1185 * evaluation and code transformations weren't folded together.
1186 */
1187 static void
1188 opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189 {
1190 int op;
1191 bpf_u_int32 v;
1192
1193 switch (s->code) {
1194
1195 case BPF_LD|BPF_ABS|BPF_W:
1196 case BPF_LD|BPF_ABS|BPF_H:
1197 case BPF_LD|BPF_ABS|BPF_B:
1198 v = F(opt_state, s->code, s->k, 0L);
1199 vstore(s, &val[A_ATOM], v, alter);
1200 break;
1201
1202 case BPF_LD|BPF_IND|BPF_W:
1203 case BPF_LD|BPF_IND|BPF_H:
1204 case BPF_LD|BPF_IND|BPF_B:
1205 v = val[X_ATOM];
1206 if (alter && opt_state->vmap[v].is_const) {
1207 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208 s->k += opt_state->vmap[v].const_val;
1209 v = F(opt_state, s->code, s->k, 0L);
1210 /*
1211 * XXX - optimizer loop detection.
1212 */
1213 opt_state->non_branch_movement_performed = 1;
1214 opt_state->done = 0;
1215 }
1216 else
1217 v = F(opt_state, s->code, s->k, v);
1218 vstore(s, &val[A_ATOM], v, alter);
1219 break;
1220
1221 case BPF_LD|BPF_LEN:
1222 v = F(opt_state, s->code, 0L, 0L);
1223 vstore(s, &val[A_ATOM], v, alter);
1224 break;
1225
1226 case BPF_LD|BPF_IMM:
1227 v = K(s->k);
1228 vstore(s, &val[A_ATOM], v, alter);
1229 break;
1230
1231 case BPF_LDX|BPF_IMM:
1232 v = K(s->k);
1233 vstore(s, &val[X_ATOM], v, alter);
1234 break;
1235
1236 case BPF_LDX|BPF_MSH|BPF_B:
1237 v = F(opt_state, s->code, s->k, 0L);
1238 vstore(s, &val[X_ATOM], v, alter);
1239 break;
1240
1241 case BPF_ALU|BPF_NEG:
1242 if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243 s->code = BPF_LD|BPF_IMM;
1244 /*
1245 * Do this negation as unsigned arithmetic; that's
1246 * what modern BPF engines do, and it guarantees
1247 * that all possible values can be negated. (Yeah,
1248 * negating 0x80000000, the minimum signed 32-bit
1249 * two's-complement value, results in 0x80000000,
1250 * so it's still negative, but we *should* be doing
1251 * all unsigned arithmetic here, to match what
1252 * modern BPF engines do.)
1253 *
1254 * Express it as 0U - (unsigned value) so that we
1255 * don't get compiler warnings about negating an
1256 * unsigned value and don't get UBSan warnings
1257 * about the result of negating 0x80000000 being
1258 * undefined.
1259 */
1260 s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261 val[A_ATOM] = K(s->k);
1262 }
1263 else
1264 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265 break;
1266
1267 case BPF_ALU|BPF_ADD|BPF_K:
1268 case BPF_ALU|BPF_SUB|BPF_K:
1269 case BPF_ALU|BPF_MUL|BPF_K:
1270 case BPF_ALU|BPF_DIV|BPF_K:
1271 case BPF_ALU|BPF_MOD|BPF_K:
1272 case BPF_ALU|BPF_AND|BPF_K:
1273 case BPF_ALU|BPF_OR|BPF_K:
1274 case BPF_ALU|BPF_XOR|BPF_K:
1275 case BPF_ALU|BPF_LSH|BPF_K:
1276 case BPF_ALU|BPF_RSH|BPF_K:
1277 op = BPF_OP(s->code);
1278 if (alter) {
1279 if (s->k == 0) {
1280 /*
1281 * Optimize operations where the constant
1282 * is zero.
1283 *
1284 * Don't optimize away "sub #0"
1285 * as it may be needed later to
1286 * fixup the generated math code.
1287 *
1288 * Fail if we're dividing by zero or taking
1289 * a modulus by zero.
1290 */
1291 if (op == BPF_ADD ||
1292 op == BPF_LSH || op == BPF_RSH ||
1293 op == BPF_OR || op == BPF_XOR) {
1294 s->code = NOP;
1295 break;
1296 }
1297 if (op == BPF_MUL || op == BPF_AND) {
1298 s->code = BPF_LD|BPF_IMM;
1299 val[A_ATOM] = K(s->k);
1300 break;
1301 }
1302 if (op == BPF_DIV)
1303 opt_error(opt_state,
1304 "division by zero");
1305 if (op == BPF_MOD)
1306 opt_error(opt_state,
1307 "modulus by zero");
1308 }
1309 if (opt_state->vmap[val[A_ATOM]].is_const) {
1310 fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311 val[A_ATOM] = K(s->k);
1312 break;
1313 }
1314 }
1315 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316 break;
1317
1318 case BPF_ALU|BPF_ADD|BPF_X:
1319 case BPF_ALU|BPF_SUB|BPF_X:
1320 case BPF_ALU|BPF_MUL|BPF_X:
1321 case BPF_ALU|BPF_DIV|BPF_X:
1322 case BPF_ALU|BPF_MOD|BPF_X:
1323 case BPF_ALU|BPF_AND|BPF_X:
1324 case BPF_ALU|BPF_OR|BPF_X:
1325 case BPF_ALU|BPF_XOR|BPF_X:
1326 case BPF_ALU|BPF_LSH|BPF_X:
1327 case BPF_ALU|BPF_RSH|BPF_X:
1328 op = BPF_OP(s->code);
1329 if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330 if (opt_state->vmap[val[A_ATOM]].is_const) {
1331 fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332 val[A_ATOM] = K(s->k);
1333 }
1334 else {
1335 s->code = BPF_ALU|BPF_K|op;
1336 s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337 if ((op == BPF_LSH || op == BPF_RSH) &&
1338 s->k > 31)
1339 opt_error(opt_state,
1340 "shift by more than 31 bits");
1341 /*
1342 * XXX - optimizer loop detection.
1343 */
1344 opt_state->non_branch_movement_performed = 1;
1345 opt_state->done = 0;
1346 val[A_ATOM] =
1347 F(opt_state, s->code, val[A_ATOM], K(s->k));
1348 }
1349 break;
1350 }
1351 /*
1352 * Check if we're doing something to an accumulator
1353 * that is 0, and simplify. This may not seem like
1354 * much of a simplification but it could open up further
1355 * optimizations.
1356 * XXX We could also check for mul by 1, etc.
1357 */
1358 if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359 && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361 s->code = BPF_MISC|BPF_TXA;
1362 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363 break;
1364 }
1365 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367 s->code = BPF_LD|BPF_IMM;
1368 s->k = 0;
1369 vstore(s, &val[A_ATOM], K(s->k), alter);
1370 break;
1371 }
1372 else if (op == BPF_NEG) {
1373 s->code = NOP;
1374 break;
1375 }
1376 }
1377 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378 break;
1379
1380 case BPF_MISC|BPF_TXA:
1381 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382 break;
1383
1384 case BPF_LD|BPF_MEM:
1385 v = val[s->k];
1386 if (alter && opt_state->vmap[v].is_const) {
1387 s->code = BPF_LD|BPF_IMM;
1388 s->k = opt_state->vmap[v].const_val;
1389 /*
1390 * XXX - optimizer loop detection.
1391 */
1392 opt_state->non_branch_movement_performed = 1;
1393 opt_state->done = 0;
1394 }
1395 vstore(s, &val[A_ATOM], v, alter);
1396 break;
1397
1398 case BPF_MISC|BPF_TAX:
1399 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400 break;
1401
1402 case BPF_LDX|BPF_MEM:
1403 v = val[s->k];
1404 if (alter && opt_state->vmap[v].is_const) {
1405 s->code = BPF_LDX|BPF_IMM;
1406 s->k = opt_state->vmap[v].const_val;
1407 /*
1408 * XXX - optimizer loop detection.
1409 */
1410 opt_state->non_branch_movement_performed = 1;
1411 opt_state->done = 0;
1412 }
1413 vstore(s, &val[X_ATOM], v, alter);
1414 break;
1415
1416 case BPF_ST:
1417 vstore(s, &val[s->k], val[A_ATOM], alter);
1418 break;
1419
1420 case BPF_STX:
1421 vstore(s, &val[s->k], val[X_ATOM], alter);
1422 break;
1423 }
1424 }
1425
1426 static void
1427 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428 {
1429 register int atom;
1430
1431 atom = atomuse(s);
1432 if (atom >= 0) {
1433 if (atom == AX_ATOM) {
1434 last[X_ATOM] = 0;
1435 last[A_ATOM] = 0;
1436 }
1437 else
1438 last[atom] = 0;
1439 }
1440 atom = atomdef(s);
1441 if (atom >= 0) {
1442 if (last[atom]) {
1443 /*
1444 * XXX - optimizer loop detection.
1445 */
1446 opt_state->non_branch_movement_performed = 1;
1447 opt_state->done = 0;
1448 last[atom]->code = NOP;
1449 }
1450 last[atom] = s;
1451 }
1452 }
1453
1454 static void
1455 opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456 {
1457 register struct slist *s;
1458 register int atom;
1459 struct stmt *last[N_ATOMS];
1460
1461 memset((char *)last, 0, sizeof last);
1462
1463 for (s = b->stmts; s != 0; s = s->next)
1464 deadstmt(opt_state, &s->s, last);
1465 deadstmt(opt_state, &b->s, last);
1466
1467 for (atom = 0; atom < N_ATOMS; ++atom)
1468 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469 last[atom]->code = NOP;
1470 /*
1471 * XXX - optimizer loop detection.
1472 */
1473 opt_state->non_branch_movement_performed = 1;
1474 opt_state->done = 0;
1475 }
1476 }
1477
1478 static void
1479 opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480 {
1481 struct slist *s;
1482 struct edge *p;
1483 int i;
1484 bpf_u_int32 aval, xval;
1485
1486 #if 0
1487 for (s = b->stmts; s && s->next; s = s->next)
1488 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489 do_stmts = 0;
1490 break;
1491 }
1492 #endif
1493
1494 /*
1495 * Initialize the atom values.
1496 */
1497 p = b->in_edges;
1498 if (p == 0) {
1499 /*
1500 * We have no predecessors, so everything is undefined
1501 * upon entry to this block.
1502 */
1503 memset((char *)b->val, 0, sizeof(b->val));
1504 } else {
1505 /*
1506 * Inherit values from our predecessors.
1507 *
1508 * First, get the values from the predecessor along the
1509 * first edge leading to this node.
1510 */
1511 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512 /*
1513 * Now look at all the other nodes leading to this node.
1514 * If, for the predecessor along that edge, a register
1515 * has a different value from the one we have (i.e.,
1516 * control paths are merging, and the merging paths
1517 * assign different values to that register), give the
1518 * register the undefined value of 0.
1519 */
1520 while ((p = p->next) != NULL) {
1521 for (i = 0; i < N_ATOMS; ++i)
1522 if (b->val[i] != p->pred->val[i])
1523 b->val[i] = 0;
1524 }
1525 }
1526 aval = b->val[A_ATOM];
1527 xval = b->val[X_ATOM];
1528 for (s = b->stmts; s; s = s->next)
1529 opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531 /*
1532 * This is a special case: if we don't use anything from this
1533 * block, and we load the accumulator or index register with a
1534 * value that is already there, or if this block is a return,
1535 * eliminate all the statements.
1536 *
1537 * XXX - what if it does a store? Presumably that falls under
1538 * the heading of "if we don't use anything from this block",
1539 * i.e., if we use any memory location set to a different
1540 * value by this block, then we use something from this block.
1541 *
1542 * XXX - why does it matter whether we use anything from this
1543 * block? If the accumulator or index register doesn't change
1544 * its value, isn't that OK even if we use that value?
1545 *
1546 * XXX - if we load the accumulator with a different value,
1547 * and the block ends with a conditional branch, we obviously
1548 * can't eliminate it, as the branch depends on that value.
1549 * For the index register, the conditional branch only depends
1550 * on the index register value if the test is against the index
1551 * register value rather than a constant; if nothing uses the
1552 * value we put into the index register, and we're not testing
1553 * against the index register's value, and there aren't any
1554 * other problems that would keep us from eliminating this
1555 * block, can we eliminate it?
1556 */
1557 if (do_stmts &&
1558 ((b->out_use == 0 &&
1559 aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560 xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561 BPF_CLASS(b->s.code) == BPF_RET)) {
1562 if (b->stmts != 0) {
1563 b->stmts = 0;
1564 /*
1565 * XXX - optimizer loop detection.
1566 */
1567 opt_state->non_branch_movement_performed = 1;
1568 opt_state->done = 0;
1569 }
1570 } else {
1571 opt_peep(opt_state, b);
1572 opt_deadstores(opt_state, b);
1573 }
1574 /*
1575 * Set up values for branch optimizer.
1576 */
1577 if (BPF_SRC(b->s.code) == BPF_K)
1578 b->oval = K(b->s.k);
1579 else
1580 b->oval = b->val[X_ATOM];
1581 b->et.code = b->s.code;
1582 b->ef.code = -b->s.code;
1583 }
1584
1585 /*
1586 * Return true if any register that is used on exit from 'succ', has
1587 * an exit value that is different from the corresponding exit value
1588 * from 'b'.
1589 */
1590 static int
1591 use_conflict(struct block *b, struct block *succ)
1592 {
1593 int atom;
1594 atomset use = succ->out_use;
1595
1596 if (use == 0)
1597 return 0;
1598
1599 for (atom = 0; atom < N_ATOMS; ++atom)
1600 if (ATOMELEM(use, atom))
1601 if (b->val[atom] != succ->val[atom])
1602 return 1;
1603 return 0;
1604 }
1605
1606 /*
1607 * Given a block that is the successor of an edge, and an edge that
1608 * dominates that edge, return either a pointer to a child of that
1609 * block (a block to which that block jumps) if that block is a
1610 * candidate to replace the successor of the latter edge or NULL
1611 * if neither of the children of the first block are candidates.
1612 */
1613 static struct block *
1614 fold_edge(struct block *child, struct edge *ep)
1615 {
1616 int sense;
1617 bpf_u_int32 aval0, aval1, oval0, oval1;
1618 int code = ep->code;
1619
1620 if (code < 0) {
1621 /*
1622 * This edge is a "branch if false" edge.
1623 */
1624 code = -code;
1625 sense = 0;
1626 } else {
1627 /*
1628 * This edge is a "branch if true" edge.
1629 */
1630 sense = 1;
1631 }
1632
1633 /*
1634 * If the opcode for the branch at the end of the block we
1635 * were handed isn't the same as the opcode for the branch
1636 * to which the edge we were handed corresponds, the tests
1637 * for those branches aren't testing the same conditions,
1638 * so the blocks to which the first block branches aren't
1639 * candidates to replace the successor of the edge.
1640 */
1641 if (child->s.code != code)
1642 return 0;
1643
1644 aval0 = child->val[A_ATOM];
1645 oval0 = child->oval;
1646 aval1 = ep->pred->val[A_ATOM];
1647 oval1 = ep->pred->oval;
1648
1649 /*
1650 * If the A register value on exit from the successor block
1651 * isn't the same as the A register value on exit from the
1652 * predecessor of the edge, the blocks to which the first
1653 * block branches aren't candidates to replace the successor
1654 * of the edge.
1655 */
1656 if (aval0 != aval1)
1657 return 0;
1658
1659 if (oval0 == oval1)
1660 /*
1661 * The operands of the branch instructions are
1662 * identical, so the branches are testing the
1663 * same condition, and the result is true if a true
1664 * branch was taken to get here, otherwise false.
1665 */
1666 return sense ? JT(child) : JF(child);
1667
1668 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669 /*
1670 * At this point, we only know the comparison if we
1671 * came down the true branch, and it was an equality
1672 * comparison with a constant.
1673 *
1674 * I.e., if we came down the true branch, and the branch
1675 * was an equality comparison with a constant, we know the
1676 * accumulator contains that constant. If we came down
1677 * the false branch, or the comparison wasn't with a
1678 * constant, we don't know what was in the accumulator.
1679 *
1680 * We rely on the fact that distinct constants have distinct
1681 * value numbers.
1682 */
1683 return JF(child);
1684
1685 return 0;
1686 }
1687
1688 /*
1689 * If we can make this edge go directly to a child of the edge's current
1690 * successor, do so.
1691 */
1692 static void
1693 opt_j(opt_state_t *opt_state, struct edge *ep)
1694 {
1695 register u_int i, k;
1696 register struct block *target;
1697
1698 /*
1699 * Does this edge go to a block where, if the test
1700 * at the end of it succeeds, it goes to a block
1701 * that's a leaf node of the DAG, i.e. a return
1702 * statement?
1703 * If so, there's nothing to optimize.
1704 */
1705 if (JT(ep->succ) == 0)
1706 return;
1707
1708 /*
1709 * Does this edge go to a block that goes, in turn, to
1710 * the same block regardless of whether the test at the
1711 * end succeeds or fails?
1712 */
1713 if (JT(ep->succ) == JF(ep->succ)) {
1714 /*
1715 * Common branch targets can be eliminated, provided
1716 * there is no data dependency.
1717 *
1718 * Check whether any register used on exit from the
1719 * block to which the successor of this edge goes
1720 * has a value at that point that's different from
1721 * the value it has on exit from the predecessor of
1722 * this edge. If not, the predecessor of this edge
1723 * can just go to the block to which the successor
1724 * of this edge goes, bypassing the successor of this
1725 * edge, as the successor of this edge isn't doing
1726 * any calculations whose results are different
1727 * from what the blocks before it did and isn't
1728 * doing any tests the results of which matter.
1729 */
1730 if (!use_conflict(ep->pred, JT(ep->succ))) {
1731 /*
1732 * No, there isn't.
1733 * Make this edge go to the block to
1734 * which the successor of that edge
1735 * goes.
1736 *
1737 * XXX - optimizer loop detection.
1738 */
1739 opt_state->non_branch_movement_performed = 1;
1740 opt_state->done = 0;
1741 ep->succ = JT(ep->succ);
1742 }
1743 }
1744 /*
1745 * For each edge dominator that matches the successor of this
1746 * edge, promote the edge successor to the its grandchild.
1747 *
1748 * XXX We violate the set abstraction here in favor a reasonably
1749 * efficient loop.
1750 */
1751 top:
1752 for (i = 0; i < opt_state->edgewords; ++i) {
1753 /* i'th word in the bitset of dominators */
1754 register bpf_u_int32 x = ep->edom[i];
1755
1756 while (x != 0) {
1757 /* Find the next dominator in that word and mark it as found */
1758 k = lowest_set_bit(x);
1759 x &=~ ((bpf_u_int32)1 << k);
1760 k += i * BITS_PER_WORD;
1761
1762 target = fold_edge(ep->succ, opt_state->edges[k]);
1763 /*
1764 * We have a candidate to replace the successor
1765 * of ep.
1766 *
1767 * Check that there is no data dependency between
1768 * nodes that will be violated if we move the edge;
1769 * i.e., if any register used on exit from the
1770 * candidate has a value at that point different
1771 * from the value it has when we exit the
1772 * predecessor of that edge, there's a data
1773 * dependency that will be violated.
1774 */
1775 if (target != 0 && !use_conflict(ep->pred, target)) {
1776 /*
1777 * It's safe to replace the successor of
1778 * ep; do so, and note that we've made
1779 * at least one change.
1780 *
1781 * XXX - this is one of the operations that
1782 * happens when the optimizer gets into
1783 * one of those infinite loops.
1784 */
1785 opt_state->done = 0;
1786 ep->succ = target;
1787 if (JT(target) != 0)
1788 /*
1789 * Start over unless we hit a leaf.
1790 */
1791 goto top;
1792 return;
1793 }
1794 }
1795 }
1796 }
1797
1798 /*
1799 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800 * "Predicate Assertion Propagation" in the BPF+ paper?
1801 *
1802 * Note that this looks at block dominators, not edge dominators.
1803 * Don't think so.
1804 *
1805 * "A or B" compiles into
1806 *
1807 * A
1808 * t / \ f
1809 * / B
1810 * / t / \ f
1811 * \ /
1812 * \ /
1813 * X
1814 *
1815 *
1816 */
1817 static void
1818 or_pullup(opt_state_t *opt_state, struct block *b)
1819 {
1820 bpf_u_int32 val;
1821 int at_top;
1822 struct block *pull;
1823 struct block **diffp, **samep;
1824 struct edge *ep;
1825
1826 ep = b->in_edges;
1827 if (ep == 0)
1828 return;
1829
1830 /*
1831 * Make sure each predecessor loads the same value.
1832 * XXX why?
1833 */
1834 val = ep->pred->val[A_ATOM];
1835 for (ep = ep->next; ep != 0; ep = ep->next)
1836 if (val != ep->pred->val[A_ATOM])
1837 return;
1838
1839 /*
1840 * For the first edge in the list of edges coming into this block,
1841 * see whether the predecessor of that edge comes here via a true
1842 * branch or a false branch.
1843 */
1844 if (JT(b->in_edges->pred) == b)
1845 diffp = &JT(b->in_edges->pred); /* jt */
1846 else
1847 diffp = &JF(b->in_edges->pred); /* jf */
1848
1849 /*
1850 * diffp is a pointer to a pointer to the block.
1851 *
1852 * Go down the false chain looking as far as you can,
1853 * making sure that each jump-compare is doing the
1854 * same as the original block.
1855 *
1856 * If you reach the bottom before you reach a
1857 * different jump-compare, just exit. There's nothing
1858 * to do here. XXX - no, this version is checking for
1859 * the value leaving the block; that's from the BPF+
1860 * pullup routine.
1861 */
1862 at_top = 1;
1863 for (;;) {
1864 /*
1865 * Done if that's not going anywhere XXX
1866 */
1867 if (*diffp == 0)
1868 return;
1869
1870 /*
1871 * Done if that predecessor blah blah blah isn't
1872 * going the same place we're going XXX
1873 *
1874 * Does the true edge of this block point to the same
1875 * location as the true edge of b?
1876 */
1877 if (JT(*diffp) != JT(b))
1878 return;
1879
1880 /*
1881 * Done if this node isn't a dominator of that
1882 * node blah blah blah XXX
1883 *
1884 * Does b dominate diffp?
1885 */
1886 if (!SET_MEMBER((*diffp)->dom, b->id))
1887 return;
1888
1889 /*
1890 * Break out of the loop if that node's value of A
1891 * isn't the value of A above XXX
1892 */
1893 if ((*diffp)->val[A_ATOM] != val)
1894 break;
1895
1896 /*
1897 * Get the JF for that node XXX
1898 * Go down the false path.
1899 */
1900 diffp = &JF(*diffp);
1901 at_top = 0;
1902 }
1903
1904 /*
1905 * Now that we've found a different jump-compare in a chain
1906 * below b, search further down until we find another
1907 * jump-compare that looks at the original value. This
1908 * jump-compare should get pulled up. XXX again we're
1909 * comparing values not jump-compares.
1910 */
1911 samep = &JF(*diffp);
1912 for (;;) {
1913 /*
1914 * Done if that's not going anywhere XXX
1915 */
1916 if (*samep == 0)
1917 return;
1918
1919 /*
1920 * Done if that predecessor blah blah blah isn't
1921 * going the same place we're going XXX
1922 */
1923 if (JT(*samep) != JT(b))
1924 return;
1925
1926 /*
1927 * Done if this node isn't a dominator of that
1928 * node blah blah blah XXX
1929 *
1930 * Does b dominate samep?
1931 */
1932 if (!SET_MEMBER((*samep)->dom, b->id))
1933 return;
1934
1935 /*
1936 * Break out of the loop if that node's value of A
1937 * is the value of A above XXX
1938 */
1939 if ((*samep)->val[A_ATOM] == val)
1940 break;
1941
1942 /* XXX Need to check that there are no data dependencies
1943 between dp0 and dp1. Currently, the code generator
1944 will not produce such dependencies. */
1945 samep = &JF(*samep);
1946 }
1947 #ifdef notdef
1948 /* XXX This doesn't cover everything. */
1949 for (i = 0; i < N_ATOMS; ++i)
1950 if ((*samep)->val[i] != pred->val[i])
1951 return;
1952 #endif
1953 /* Pull up the node. */
1954 pull = *samep;
1955 *samep = JF(pull);
1956 JF(pull) = *diffp;
1957
1958 /*
1959 * At the top of the chain, each predecessor needs to point at the
1960 * pulled up node. Inside the chain, there is only one predecessor
1961 * to worry about.
1962 */
1963 if (at_top) {
1964 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965 if (JT(ep->pred) == b)
1966 JT(ep->pred) = pull;
1967 else
1968 JF(ep->pred) = pull;
1969 }
1970 }
1971 else
1972 *diffp = pull;
1973
1974 /*
1975 * XXX - this is one of the operations that happens when the
1976 * optimizer gets into one of those infinite loops.
1977 */
1978 opt_state->done = 0;
1979 }
1980
1981 static void
1982 and_pullup(opt_state_t *opt_state, struct block *b)
1983 {
1984 bpf_u_int32 val;
1985 int at_top;
1986 struct block *pull;
1987 struct block **diffp, **samep;
1988 struct edge *ep;
1989
1990 ep = b->in_edges;
1991 if (ep == 0)
1992 return;
1993
1994 /*
1995 * Make sure each predecessor loads the same value.
1996 */
1997 val = ep->pred->val[A_ATOM];
1998 for (ep = ep->next; ep != 0; ep = ep->next)
1999 if (val != ep->pred->val[A_ATOM])
2000 return;
2001
2002 if (JT(b->in_edges->pred) == b)
2003 diffp = &JT(b->in_edges->pred);
2004 else
2005 diffp = &JF(b->in_edges->pred);
2006
2007 at_top = 1;
2008 for (;;) {
2009 if (*diffp == 0)
2010 return;
2011
2012 if (JF(*diffp) != JF(b))
2013 return;
2014
2015 if (!SET_MEMBER((*diffp)->dom, b->id))
2016 return;
2017
2018 if ((*diffp)->val[A_ATOM] != val)
2019 break;
2020
2021 diffp = &JT(*diffp);
2022 at_top = 0;
2023 }
2024 samep = &JT(*diffp);
2025 for (;;) {
2026 if (*samep == 0)
2027 return;
2028
2029 if (JF(*samep) != JF(b))
2030 return;
2031
2032 if (!SET_MEMBER((*samep)->dom, b->id))
2033 return;
2034
2035 if ((*samep)->val[A_ATOM] == val)
2036 break;
2037
2038 /* XXX Need to check that there are no data dependencies
2039 between diffp and samep. Currently, the code generator
2040 will not produce such dependencies. */
2041 samep = &JT(*samep);
2042 }
2043 #ifdef notdef
2044 /* XXX This doesn't cover everything. */
2045 for (i = 0; i < N_ATOMS; ++i)
2046 if ((*samep)->val[i] != pred->val[i])
2047 return;
2048 #endif
2049 /* Pull up the node. */
2050 pull = *samep;
2051 *samep = JT(pull);
2052 JT(pull) = *diffp;
2053
2054 /*
2055 * At the top of the chain, each predecessor needs to point at the
2056 * pulled up node. Inside the chain, there is only one predecessor
2057 * to worry about.
2058 */
2059 if (at_top) {
2060 for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061 if (JT(ep->pred) == b)
2062 JT(ep->pred) = pull;
2063 else
2064 JF(ep->pred) = pull;
2065 }
2066 }
2067 else
2068 *diffp = pull;
2069
2070 /*
2071 * XXX - this is one of the operations that happens when the
2072 * optimizer gets into one of those infinite loops.
2073 */
2074 opt_state->done = 0;
2075 }
2076
2077 static void
2078 opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079 {
2080 int i, maxlevel;
2081 struct block *p;
2082
2083 init_val(opt_state);
2084 maxlevel = ic->root->level;
2085
2086 find_inedges(opt_state, ic->root);
2087 for (i = maxlevel; i >= 0; --i)
2088 for (p = opt_state->levels[i]; p; p = p->link)
2089 opt_blk(opt_state, p, do_stmts);
2090
2091 if (do_stmts)
2092 /*
2093 * No point trying to move branches; it can't possibly
2094 * make a difference at this point.
2095 *
2096 * XXX - this might be after we detect a loop where
2097 * we were just looping infinitely moving branches
2098 * in such a fashion that we went through two or more
2099 * versions of the machine code, eventually returning
2100 * to the first version. (We're really not doing a
2101 * full loop detection, we're just testing for two
2102 * passes in a row where where we do nothing but
2103 * move branches.)
2104 */
2105 return;
2106
2107 /*
2108 * Is this what the BPF+ paper describes in sections 6.1.1,
2109 * 6.1.2, and 6.1.3?
2110 */
2111 for (i = 1; i <= maxlevel; ++i) {
2112 for (p = opt_state->levels[i]; p; p = p->link) {
2113 opt_j(opt_state, &p->et);
2114 opt_j(opt_state, &p->ef);
2115 }
2116 }
2117
2118 find_inedges(opt_state, ic->root);
2119 for (i = 1; i <= maxlevel; ++i) {
2120 for (p = opt_state->levels[i]; p; p = p->link) {
2121 or_pullup(opt_state, p);
2122 and_pullup(opt_state, p);
2123 }
2124 }
2125 }
2126
2127 static inline void
2128 link_inedge(struct edge *parent, struct block *child)
2129 {
2130 parent->next = child->in_edges;
2131 child->in_edges = parent;
2132 }
2133
2134 static void
2135 find_inedges(opt_state_t *opt_state, struct block *root)
2136 {
2137 u_int i;
2138 int level;
2139 struct block *b;
2140
2141 for (i = 0; i < opt_state->n_blocks; ++i)
2142 opt_state->blocks[i]->in_edges = 0;
2143
2144 /*
2145 * Traverse the graph, adding each edge to the predecessor
2146 * list of its successors. Skip the leaves (i.e. level 0).
2147 */
2148 for (level = root->level; level > 0; --level) {
2149 for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150 link_inedge(&b->et, JT(b));
2151 link_inedge(&b->ef, JF(b));
2152 }
2153 }
2154 }
2155
2156 static void
2157 opt_root(struct block **b)
2158 {
2159 struct slist *tmp, *s;
2160
2161 s = (*b)->stmts;
2162 (*b)->stmts = 0;
2163 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164 *b = JT(*b);
2165
2166 tmp = (*b)->stmts;
2167 if (tmp != 0)
2168 sappend(s, tmp);
2169 (*b)->stmts = s;
2170
2171 /*
2172 * If the root node is a return, then there is no
2173 * point executing any statements (since the bpf machine
2174 * has no side effects).
2175 */
2176 if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177 (*b)->stmts = 0;
2178 }
2179
2180 static void
2181 opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182 {
2183
2184 #ifdef BDEBUG
2185 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186 printf("opt_loop(root, %d) begin\n", do_stmts);
2187 opt_dump(opt_state, ic);
2188 }
2189 #endif
2190
2191 /*
2192 * XXX - optimizer loop detection.
2193 */
2194 int loop_count = 0;
2195 for (;;) {
2196 opt_state->done = 1;
2197 /*
2198 * XXX - optimizer loop detection.
2199 */
2200 opt_state->non_branch_movement_performed = 0;
2201 find_levels(opt_state, ic);
2202 find_dom(opt_state, ic->root);
2203 find_closure(opt_state, ic->root);
2204 find_ud(opt_state, ic->root);
2205 find_edom(opt_state, ic->root);
2206 opt_blks(opt_state, ic, do_stmts);
2207 #ifdef BDEBUG
2208 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210 opt_dump(opt_state, ic);
2211 }
2212 #endif
2213
2214 /*
2215 * Was anything done in this optimizer pass?
2216 */
2217 if (opt_state->done) {
2218 /*
2219 * No, so we've reached a fixed point.
2220 * We're done.
2221 */
2222 break;
2223 }
2224
2225 /*
2226 * XXX - was anything done other than branch movement
2227 * in this pass?
2228 */
2229 if (opt_state->non_branch_movement_performed) {
2230 /*
2231 * Yes. Clear any loop-detection counter;
2232 * we're making some form of progress (assuming
2233 * we can't get into a cycle doing *other*
2234 * optimizations...).
2235 */
2236 loop_count = 0;
2237 } else {
2238 /*
2239 * No - increment the counter, and quit if
2240 * it's up to 100.
2241 */
2242 loop_count++;
2243 if (loop_count >= 100) {
2244 /*
2245 * We've done nothing but branch movement
2246 * for 100 passes; we're probably
2247 * in a cycle and will never reach a
2248 * fixed point.
2249 *
2250 * XXX - yes, we really need a non-
2251 * heuristic way of detecting a cycle.
2252 */
2253 opt_state->done = 1;
2254 break;
2255 }
2256 }
2257 }
2258 }
2259
2260 /*
2261 * Optimize the filter code in its dag representation.
2262 * Return 0 on success, -1 on error.
2263 */
2264 int
2265 bpf_optimize(struct icode *ic, char *errbuf)
2266 {
2267 opt_state_t opt_state;
2268
2269 memset(&opt_state, 0, sizeof(opt_state));
2270 opt_state.errbuf = errbuf;
2271 opt_state.non_branch_movement_performed = 0;
2272 if (setjmp(opt_state.top_ctx)) {
2273 opt_cleanup(&opt_state);
2274 return -1;
2275 }
2276 opt_init(&opt_state, ic);
2277 opt_loop(&opt_state, ic, 0);
2278 opt_loop(&opt_state, ic, 1);
2279 intern_blocks(&opt_state, ic);
2280 #ifdef BDEBUG
2281 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282 printf("after intern_blocks()\n");
2283 opt_dump(&opt_state, ic);
2284 }
2285 #endif
2286 opt_root(&ic->root);
2287 #ifdef BDEBUG
2288 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289 printf("after opt_root()\n");
2290 opt_dump(&opt_state, ic);
2291 }
2292 #endif
2293 opt_cleanup(&opt_state);
2294 return 0;
2295 }
2296
2297 static void
2298 make_marks(struct icode *ic, struct block *p)
2299 {
2300 if (!isMarked(ic, p)) {
2301 Mark(ic, p);
2302 if (BPF_CLASS(p->s.code) != BPF_RET) {
2303 make_marks(ic, JT(p));
2304 make_marks(ic, JF(p));
2305 }
2306 }
2307 }
2308
2309 /*
2310 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311 * only for nodes that are alive.
2312 */
2313 static void
2314 mark_code(struct icode *ic)
2315 {
2316 ic->cur_mark += 1;
2317 make_marks(ic, ic->root);
2318 }
2319
2320 /*
2321 * True iff the two stmt lists load the same value from the packet into
2322 * the accumulator.
2323 */
2324 static int
2325 eq_slist(struct slist *x, struct slist *y)
2326 {
2327 for (;;) {
2328 while (x && x->s.code == NOP)
2329 x = x->next;
2330 while (y && y->s.code == NOP)
2331 y = y->next;
2332 if (x == 0)
2333 return y == 0;
2334 if (y == 0)
2335 return x == 0;
2336 if (x->s.code != y->s.code || x->s.k != y->s.k)
2337 return 0;
2338 x = x->next;
2339 y = y->next;
2340 }
2341 }
2342
2343 static inline int
2344 eq_blk(struct block *b0, struct block *b1)
2345 {
2346 if (b0->s.code == b1->s.code &&
2347 b0->s.k == b1->s.k &&
2348 b0->et.succ == b1->et.succ &&
2349 b0->ef.succ == b1->ef.succ)
2350 return eq_slist(b0->stmts, b1->stmts);
2351 return 0;
2352 }
2353
2354 static void
2355 intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356 {
2357 struct block *p;
2358 u_int i, j;
2359 int done1; /* don't shadow global */
2360 top:
2361 done1 = 1;
2362 for (i = 0; i < opt_state->n_blocks; ++i)
2363 opt_state->blocks[i]->link = 0;
2364
2365 mark_code(ic);
2366
2367 for (i = opt_state->n_blocks - 1; i != 0; ) {
2368 --i;
2369 if (!isMarked(ic, opt_state->blocks[i]))
2370 continue;
2371 for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372 if (!isMarked(ic, opt_state->blocks[j]))
2373 continue;
2374 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375 opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376 opt_state->blocks[j]->link : opt_state->blocks[j];
2377 break;
2378 }
2379 }
2380 }
2381 for (i = 0; i < opt_state->n_blocks; ++i) {
2382 p = opt_state->blocks[i];
2383 if (JT(p) == 0)
2384 continue;
2385 if (JT(p)->link) {
2386 done1 = 0;
2387 JT(p) = JT(p)->link;
2388 }
2389 if (JF(p)->link) {
2390 done1 = 0;
2391 JF(p) = JF(p)->link;
2392 }
2393 }
2394 if (!done1)
2395 goto top;
2396 }
2397
2398 static void
2399 opt_cleanup(opt_state_t *opt_state)
2400 {
2401 free((void *)opt_state->vnode_base);
2402 free((void *)opt_state->vmap);
2403 free((void *)opt_state->edges);
2404 free((void *)opt_state->space);
2405 free((void *)opt_state->levels);
2406 free((void *)opt_state->blocks);
2407 }
2408
2409 /*
2410 * For optimizer errors.
2411 */
2412 static void PCAP_NORETURN
2413 opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414 {
2415 va_list ap;
2416
2417 if (opt_state->errbuf != NULL) {
2418 va_start(ap, fmt);
2419 (void)vsnprintf(opt_state->errbuf,
2420 PCAP_ERRBUF_SIZE, fmt, ap);
2421 va_end(ap);
2422 }
2423 longjmp(opt_state->top_ctx, 1);
2424 /* NOTREACHED */
2425 #ifdef _AIX
2426 PCAP_UNREACHABLE
2427 #endif /* _AIX */
2428 }
2429
2430 /*
2431 * Return the number of stmts in 's'.
2432 */
2433 static u_int
2434 slength(struct slist *s)
2435 {
2436 u_int n = 0;
2437
2438 for (; s; s = s->next)
2439 if (s->s.code != NOP)
2440 ++n;
2441 return n;
2442 }
2443
2444 /*
2445 * Return the number of nodes reachable by 'p'.
2446 * All nodes should be initially unmarked.
2447 */
2448 static int
2449 count_blocks(struct icode *ic, struct block *p)
2450 {
2451 if (p == 0 || isMarked(ic, p))
2452 return 0;
2453 Mark(ic, p);
2454 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455 }
2456
2457 /*
2458 * Do a depth first search on the flow graph, numbering the
2459 * the basic blocks, and entering them into the 'blocks' array.`
2460 */
2461 static void
2462 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463 {
2464 u_int n;
2465
2466 if (p == 0 || isMarked(ic, p))
2467 return;
2468
2469 Mark(ic, p);
2470 n = opt_state->n_blocks++;
2471 if (opt_state->n_blocks == 0) {
2472 /*
2473 * Overflow.
2474 */
2475 opt_error(opt_state, "filter is too complex to optimize");
2476 }
2477 p->id = n;
2478 opt_state->blocks[n] = p;
2479
2480 number_blks_r(opt_state, ic, JT(p));
2481 number_blks_r(opt_state, ic, JF(p));
2482 }
2483
2484 /*
2485 * Return the number of stmts in the flowgraph reachable by 'p'.
2486 * The nodes should be unmarked before calling.
2487 *
2488 * Note that "stmts" means "instructions", and that this includes
2489 *
2490 * side-effect statements in 'p' (slength(p->stmts));
2491 *
2492 * statements in the true branch from 'p' (count_stmts(JT(p)));
2493 *
2494 * statements in the false branch from 'p' (count_stmts(JF(p)));
2495 *
2496 * the conditional jump itself (1);
2497 *
2498 * an extra long jump if the true branch requires it (p->longjt);
2499 *
2500 * an extra long jump if the false branch requires it (p->longjf).
2501 */
2502 static u_int
2503 count_stmts(struct icode *ic, struct block *p)
2504 {
2505 u_int n;
2506
2507 if (p == 0 || isMarked(ic, p))
2508 return 0;
2509 Mark(ic, p);
2510 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512 }
2513
2514 /*
2515 * Allocate memory. All allocation is done before optimization
2516 * is begun. A linear bound on the size of all data structures is computed
2517 * from the total number of blocks and/or statements.
2518 */
2519 static void
2520 opt_init(opt_state_t *opt_state, struct icode *ic)
2521 {
2522 bpf_u_int32 *p;
2523 int i, n, max_stmts;
2524 u_int product;
2525 size_t block_memsize, edge_memsize;
2526
2527 /*
2528 * First, count the blocks, so we can malloc an array to map
2529 * block number to block. Then, put the blocks into the array.
2530 */
2531 unMarkAll(ic);
2532 n = count_blocks(ic, ic->root);
2533 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534 if (opt_state->blocks == NULL)
2535 opt_error(opt_state, "malloc");
2536 unMarkAll(ic);
2537 opt_state->n_blocks = 0;
2538 number_blks_r(opt_state, ic, ic->root);
2539
2540 /*
2541 * This "should not happen".
2542 */
2543 if (opt_state->n_blocks == 0)
2544 opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546 opt_state->n_edges = 2 * opt_state->n_blocks;
2547 if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548 /*
2549 * Overflow.
2550 */
2551 opt_error(opt_state, "filter is too complex to optimize");
2552 }
2553 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554 if (opt_state->edges == NULL) {
2555 opt_error(opt_state, "malloc");
2556 }
2557
2558 /*
2559 * The number of levels is bounded by the number of nodes.
2560 */
2561 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562 if (opt_state->levels == NULL) {
2563 opt_error(opt_state, "malloc");
2564 }
2565
2566 opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567 opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569 /*
2570 * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571 * in a u_int; we use it as a u_int number-of-iterations
2572 * value.
2573 */
2574 product = opt_state->n_blocks * opt_state->nodewords;
2575 if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576 /*
2577 * XXX - just punt and don't try to optimize?
2578 * In practice, this is unlikely to happen with
2579 * a normal filter.
2580 */
2581 opt_error(opt_state, "filter is too complex to optimize");
2582 }
2583
2584 /*
2585 * Make sure the total memory required for that doesn't
2586 * overflow.
2587 */
2588 block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589 if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590 opt_error(opt_state, "filter is too complex to optimize");
2591 }
2592
2593 /*
2594 * Make sure opt_state->n_edges * opt_state->edgewords fits
2595 * in a u_int; we use it as a u_int number-of-iterations
2596 * value.
2597 */
2598 product = opt_state->n_edges * opt_state->edgewords;
2599 if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600 opt_error(opt_state, "filter is too complex to optimize");
2601 }
2602
2603 /*
2604 * Make sure the total memory required for that doesn't
2605 * overflow.
2606 */
2607 edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608 if (edge_memsize / product != sizeof(*opt_state->space)) {
2609 opt_error(opt_state, "filter is too complex to optimize");
2610 }
2611
2612 /*
2613 * Make sure the total memory required for both of them dosn't
2614 * overflow.
2615 */
2616 if (block_memsize > SIZE_MAX - edge_memsize) {
2617 opt_error(opt_state, "filter is too complex to optimize");
2618 }
2619
2620 /* XXX */
2621 opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622 if (opt_state->space == NULL) {
2623 opt_error(opt_state, "malloc");
2624 }
2625 p = opt_state->space;
2626 opt_state->all_dom_sets = p;
2627 for (i = 0; i < n; ++i) {
2628 opt_state->blocks[i]->dom = p;
2629 p += opt_state->nodewords;
2630 }
2631 opt_state->all_closure_sets = p;
2632 for (i = 0; i < n; ++i) {
2633 opt_state->blocks[i]->closure = p;
2634 p += opt_state->nodewords;
2635 }
2636 opt_state->all_edge_sets = p;
2637 for (i = 0; i < n; ++i) {
2638 register struct block *b = opt_state->blocks[i];
2639
2640 b->et.edom = p;
2641 p += opt_state->edgewords;
2642 b->ef.edom = p;
2643 p += opt_state->edgewords;
2644 b->et.id = i;
2645 opt_state->edges[i] = &b->et;
2646 b->ef.id = opt_state->n_blocks + i;
2647 opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648 b->et.pred = b;
2649 b->ef.pred = b;
2650 }
2651 max_stmts = 0;
2652 for (i = 0; i < n; ++i)
2653 max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654 /*
2655 * We allocate at most 3 value numbers per statement,
2656 * so this is an upper bound on the number of valnodes
2657 * we'll need.
2658 */
2659 opt_state->maxval = 3 * max_stmts;
2660 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661 if (opt_state->vmap == NULL) {
2662 opt_error(opt_state, "malloc");
2663 }
2664 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665 if (opt_state->vnode_base == NULL) {
2666 opt_error(opt_state, "malloc");
2667 }
2668 }
2669
2670 /*
2671 * This is only used when supporting optimizer debugging. It is
2672 * global state, so do *not* do more than one compile in parallel
2673 * and expect it to provide meaningful information.
2674 */
2675 #ifdef BDEBUG
2676 int bids[NBIDS];
2677 #endif
2678
2679 static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680 PCAP_PRINTFLIKE(2, 3);
2681
2682 /*
2683 * Returns true if successful. Returns false if a branch has
2684 * an offset that is too large. If so, we have marked that
2685 * branch so that on a subsequent iteration, it will be treated
2686 * properly.
2687 */
2688 static int
2689 convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690 {
2691 struct bpf_insn *dst;
2692 struct slist *src;
2693 u_int slen;
2694 u_int off;
2695 struct slist **offset = NULL;
2696
2697 if (p == 0 || isMarked(ic, p))
2698 return (1);
2699 Mark(ic, p);
2700
2701 if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702 return (0);
2703 if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704 return (0);
2705
2706 slen = slength(p->stmts);
2707 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708 /* inflate length by any extra jumps */
2709
2710 p->offset = (int)(dst - conv_state->fstart);
2711
2712 /* generate offset[] for convenience */
2713 if (slen) {
2714 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715 if (!offset) {
2716 conv_error(conv_state, "not enough core");
2717 /*NOTREACHED*/
2718 }
2719 }
2720 src = p->stmts;
2721 for (off = 0; off < slen && src; off++) {
2722 #if 0
2723 printf("off=%d src=%x\n", off, src);
2724 #endif
2725 offset[off] = src;
2726 src = src->next;
2727 }
2728
2729 off = 0;
2730 for (src = p->stmts; src; src = src->next) {
2731 if (src->s.code == NOP)
2732 continue;
2733 dst->code = (u_short)src->s.code;
2734 dst->k = src->s.k;
2735
2736 /* fill block-local relative jump */
2737 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738 #if 0
2739 if (src->s.jt || src->s.jf) {
2740 free(offset);
2741 conv_error(conv_state, "illegal jmp destination");
2742 /*NOTREACHED*/
2743 }
2744 #endif
2745 goto filled;
2746 }
2747 if (off == slen - 2) /*???*/
2748 goto filled;
2749
2750 {
2751 u_int i;
2752 int jt, jf;
2753 const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755 #if 0
2756 printf("code=%x off=%d %x %x\n", src->s.code,
2757 off, src->s.jt, src->s.jf);
2758 #endif
2759
2760 if (!src->s.jt || !src->s.jf) {
2761 free(offset);
2762 conv_error(conv_state, ljerr, "no jmp destination", off);
2763 /*NOTREACHED*/
2764 }
2765
2766 jt = jf = 0;
2767 for (i = 0; i < slen; i++) {
2768 if (offset[i] == src->s.jt) {
2769 if (jt) {
2770 free(offset);
2771 conv_error(conv_state, ljerr, "multiple matches", off);
2772 /*NOTREACHED*/
2773 }
2774
2775 if (i - off - 1 >= 256) {
2776 free(offset);
2777 conv_error(conv_state, ljerr, "out-of-range jump", off);
2778 /*NOTREACHED*/
2779 }
2780 dst->jt = (u_char)(i - off - 1);
2781 jt++;
2782 }
2783 if (offset[i] == src->s.jf) {
2784 if (jf) {
2785 free(offset);
2786 conv_error(conv_state, ljerr, "multiple matches", off);
2787 /*NOTREACHED*/
2788 }
2789 if (i - off - 1 >= 256) {
2790 free(offset);
2791 conv_error(conv_state, ljerr, "out-of-range jump", off);
2792 /*NOTREACHED*/
2793 }
2794 dst->jf = (u_char)(i - off - 1);
2795 jf++;
2796 }
2797 }
2798 if (!jt || !jf) {
2799 free(offset);
2800 conv_error(conv_state, ljerr, "no destination found", off);
2801 /*NOTREACHED*/
2802 }
2803 }
2804 filled:
2805 ++dst;
2806 ++off;
2807 }
2808 if (offset)
2809 free(offset);
2810
2811 #ifdef BDEBUG
2812 if (dst - conv_state->fstart < NBIDS)
2813 bids[dst - conv_state->fstart] = p->id + 1;
2814 #endif
2815 dst->code = (u_short)p->s.code;
2816 dst->k = p->s.k;
2817 if (JT(p)) {
2818 /* number of extra jumps inserted */
2819 u_char extrajmps = 0;
2820 off = JT(p)->offset - (p->offset + slen) - 1;
2821 if (off >= 256) {
2822 /* offset too large for branch, must add a jump */
2823 if (p->longjt == 0) {
2824 /* mark this instruction and retry */
2825 p->longjt++;
2826 return(0);
2827 }
2828 dst->jt = extrajmps;
2829 extrajmps++;
2830 dst[extrajmps].code = BPF_JMP|BPF_JA;
2831 dst[extrajmps].k = off - extrajmps;
2832 }
2833 else
2834 dst->jt = (u_char)off;
2835 off = JF(p)->offset - (p->offset + slen) - 1;
2836 if (off >= 256) {
2837 /* offset too large for branch, must add a jump */
2838 if (p->longjf == 0) {
2839 /* mark this instruction and retry */
2840 p->longjf++;
2841 return(0);
2842 }
2843 /* branch if F to following jump */
2844 /* if two jumps are inserted, F goes to second one */
2845 dst->jf = extrajmps;
2846 extrajmps++;
2847 dst[extrajmps].code = BPF_JMP|BPF_JA;
2848 dst[extrajmps].k = off - extrajmps;
2849 }
2850 else
2851 dst->jf = (u_char)off;
2852 }
2853 return (1);
2854 }
2855
2856
2857 /*
2858 * Convert flowgraph intermediate representation to the
2859 * BPF array representation. Set *lenp to the number of instructions.
2860 *
2861 * This routine does *NOT* leak the memory pointed to by fp. It *must
2862 * not* do free(fp) before returning fp; doing so would make no sense,
2863 * as the BPF array pointed to by the return value of icode_to_fcode()
2864 * must be valid - it's being returned for use in a bpf_program structure.
2865 *
2866 * If it appears that icode_to_fcode() is leaking, the problem is that
2867 * the program using pcap_compile() is failing to free the memory in
2868 * the BPF program when it's done - the leak is in the program, not in
2869 * the routine that happens to be allocating the memory. (By analogy, if
2870 * a program calls fopen() without ever calling fclose() on the FILE *,
2871 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872 * the program.) Change the program to use pcap_freecode() when it's
2873 * done with the filter program. See the pcap man page.
2874 */
2875 struct bpf_insn *
2876 icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877 char *errbuf)
2878 {
2879 u_int n;
2880 struct bpf_insn *fp;
2881 conv_state_t conv_state;
2882
2883 conv_state.fstart = NULL;
2884 conv_state.errbuf = errbuf;
2885 if (setjmp(conv_state.top_ctx) != 0) {
2886 free(conv_state.fstart);
2887 return NULL;
2888 }
2889
2890 /*
2891 * Loop doing convert_code_r() until no branches remain
2892 * with too-large offsets.
2893 */
2894 for (;;) {
2895 unMarkAll(ic);
2896 n = *lenp = count_stmts(ic, root);
2897
2898 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899 if (fp == NULL) {
2900 (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901 "malloc");
2902 return NULL;
2903 }
2904 memset((char *)fp, 0, sizeof(*fp) * n);
2905 conv_state.fstart = fp;
2906 conv_state.ftail = fp + n;
2907
2908 unMarkAll(ic);
2909 if (convert_code_r(&conv_state, ic, root))
2910 break;
2911 free(fp);
2912 }
2913
2914 return fp;
2915 }
2916
2917 /*
2918 * For iconv_to_fconv() errors.
2919 */
2920 static void PCAP_NORETURN
2921 conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922 {
2923 va_list ap;
2924
2925 va_start(ap, fmt);
2926 (void)vsnprintf(conv_state->errbuf,
2927 PCAP_ERRBUF_SIZE, fmt, ap);
2928 va_end(ap);
2929 longjmp(conv_state->top_ctx, 1);
2930 /* NOTREACHED */
2931 #ifdef _AIX
2932 PCAP_UNREACHABLE
2933 #endif /* _AIX */
2934 }
2935
2936 /*
2937 * Make a copy of a BPF program and put it in the "fcode" member of
2938 * a "pcap_t".
2939 *
2940 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941 * member of the "pcap_t" with an error message, and return -1;
2942 * otherwise, return 0.
2943 */
2944 int
2945 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946 {
2947 size_t prog_size;
2948
2949 /*
2950 * Validate the program.
2951 */
2952 if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953 snprintf(p->errbuf, sizeof(p->errbuf),
2954 "BPF program is not valid");
2955 return (-1);
2956 }
2957
2958 /*
2959 * Free up any already installed program.
2960 */
2961 pcap_freecode(&p->fcode);
2962
2963 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964 p->fcode.bf_len = fp->bf_len;
2965 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966 if (p->fcode.bf_insns == NULL) {
2967 pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968 errno, "malloc");
2969 return (-1);
2970 }
2971 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972 return (0);
2973 }
2974
2975 #ifdef BDEBUG
2976 static void
2977 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978 FILE *out)
2979 {
2980 int icount, noffset;
2981 int i;
2982
2983 if (block == NULL || isMarked(ic, block))
2984 return;
2985 Mark(ic, block);
2986
2987 icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988 noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990 fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991 for (i = block->offset; i < noffset; i++) {
2992 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993 }
2994 fprintf(out, "\" tooltip=\"");
2995 for (i = 0; i < BPF_MEMWORDS; i++)
2996 if (block->val[i] != VAL_UNKNOWN)
2997 fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998 fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999 fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000 fprintf(out, "\"");
3001 if (JT(block) == NULL)
3002 fprintf(out, ", peripheries=2");
3003 fprintf(out, "];\n");
3004
3005 dot_dump_node(ic, JT(block), prog, out);
3006 dot_dump_node(ic, JF(block), prog, out);
3007 }
3008
3009 static void
3010 dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011 {
3012 if (block == NULL || isMarked(ic, block))
3013 return;
3014 Mark(ic, block);
3015
3016 if (JT(block)) {
3017 fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018 block->id, JT(block)->id);
3019 fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020 block->id, JF(block)->id);
3021 }
3022 dot_dump_edge(ic, JT(block), out);
3023 dot_dump_edge(ic, JF(block), out);
3024 }
3025
3026 /* Output the block CFG using graphviz/DOT language
3027 * In the CFG, block's code, value index for each registers at EXIT,
3028 * and the jump relationship is show.
3029 *
3030 * example DOT for BPF `ip src host 1.1.1.1' is:
3031 digraph BPF {
3032 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
3033 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
3034 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036 "block0":se -> "block1":n [label="T"];
3037 "block0":sw -> "block3":n [label="F"];
3038 "block1":se -> "block2":n [label="T"];
3039 "block1":sw -> "block3":n [label="F"];
3040 }
3041 *
3042 * After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043 * and run `dot -Tpng -O bpf.dot' to draw the graph.
3044 */
3045 static int
3046 dot_dump(struct icode *ic, char *errbuf)
3047 {
3048 struct bpf_program f;
3049 FILE *out = stdout;
3050
3051 memset(bids, 0, sizeof bids);
3052 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053 if (f.bf_insns == NULL)
3054 return -1;
3055
3056 fprintf(out, "digraph BPF {\n");
3057 unMarkAll(ic);
3058 dot_dump_node(ic, ic->root, &f, out);
3059 unMarkAll(ic);
3060 dot_dump_edge(ic, ic->root, out);
3061 fprintf(out, "}\n");
3062
3063 free((char *)f.bf_insns);
3064 return 0;
3065 }
3066
3067 static int
3068 plain_dump(struct icode *ic, char *errbuf)
3069 {
3070 struct bpf_program f;
3071
3072 memset(bids, 0, sizeof bids);
3073 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074 if (f.bf_insns == NULL)
3075 return -1;
3076 bpf_dump(&f, 1);
3077 putchar('\n');
3078 free((char *)f.bf_insns);
3079 return 0;
3080 }
3081
3082 static void
3083 opt_dump(opt_state_t *opt_state, struct icode *ic)
3084 {
3085 int status;
3086 char errbuf[PCAP_ERRBUF_SIZE];
3087
3088 /*
3089 * If the CFG, in DOT format, is requested, output it rather than
3090 * the code that would be generated from that graph.
3091 */
3092 if (pcap_print_dot_graph)
3093 status = dot_dump(ic, errbuf);
3094 else
3095 status = plain_dump(ic, errbuf);
3096 if (status == -1)
3097 opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098 }
3099 #endif