]>
The Tcpdump Group git mirrors - libpcap/blob - optimize.c
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
29 #include <pcap-stdinc.h>
36 #ifdef HAVE_SYS_BITYPES_H
37 #include <sys/bitypes.h>
39 #include <sys/types.h>
53 #ifdef HAVE_OS_PROTO_H
61 #if defined(MSDOS) && !defined(__DJGPP__)
62 extern int _w32_ffs (int mask
);
66 #if defined(WIN32) && defined (_MSC_VER)
71 * Represents a deleted instruction.
76 * Register numbers for use-def values.
77 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
78 * location. A_ATOM is the accumulator and X_ATOM is the index
81 #define A_ATOM BPF_MEMWORDS
82 #define X_ATOM (BPF_MEMWORDS+1)
85 * This define is used to represent *both* the accumulator and
86 * x register in use-def computations.
87 * Currently, the use-def code assumes only one definition per instruction.
89 #define AX_ATOM N_ATOMS
92 * A flag to indicate that further optimization is needed.
93 * Iterative passes are continued until a given pass yields no
99 * A block is marked if only if its mark equals the current mark.
100 * Rather than traverse the code array, marking each item, 'cur_mark' is
101 * incremented. This automatically makes each element unmarked.
104 #define isMarked(p) ((p)->mark == cur_mark)
105 #define unMarkAll() cur_mark += 1
106 #define Mark(p) ((p)->mark = cur_mark)
108 static void opt_init(struct block
*);
109 static void opt_cleanup(void);
111 static void intern_blocks(struct block
*);
113 static void find_inedges(struct block
*);
115 static void opt_dump(struct block
*);
119 struct block
**blocks
;
124 * A bit vector set representation of the dominators.
125 * We round up the set size to the next power of two.
127 static int nodewords
;
128 static int edgewords
;
129 struct block
**levels
;
131 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
133 * True if a is in uset {p}
135 #define SET_MEMBER(p, a) \
136 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
141 #define SET_INSERT(p, a) \
142 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
145 * Delete 'a' from uset p.
147 #define SET_DELETE(p, a) \
148 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
153 #define SET_INTERSECT(a, b, n)\
155 register bpf_u_int32 *_x = a, *_y = b;\
156 register int _n = n;\
157 while (--_n >= 0) *_x++ &= *_y++;\
163 #define SET_SUBTRACT(a, b, n)\
165 register bpf_u_int32 *_x = a, *_y = b;\
166 register int _n = n;\
167 while (--_n >= 0) *_x++ &=~ *_y++;\
173 #define SET_UNION(a, b, n)\
175 register bpf_u_int32 *_x = a, *_y = b;\
176 register int _n = n;\
177 while (--_n >= 0) *_x++ |= *_y++;\
180 static uset all_dom_sets
;
181 static uset all_closure_sets
;
182 static uset all_edge_sets
;
185 #define MAX(a,b) ((a)>(b)?(a):(b))
189 find_levels_r(struct block
*b
)
200 find_levels_r(JT(b
));
201 find_levels_r(JF(b
));
202 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
206 b
->link
= levels
[level
];
211 * Level graph. The levels go from 0 at the leaves to
212 * N_LEVELS at the root. The levels[] array points to the
213 * first node of the level list, whose elements are linked
214 * with the 'link' field of the struct block.
217 find_levels(struct block
*root
)
219 memset((char *)levels
, 0, n_blocks
* sizeof(*levels
));
225 * Find dominator relationships.
226 * Assumes graph has been leveled.
229 find_dom(struct block
*root
)
236 * Initialize sets to contain all nodes.
239 i
= n_blocks
* nodewords
;
242 /* Root starts off empty. */
243 for (i
= nodewords
; --i
>= 0;)
246 /* root->level is the highest level no found. */
247 for (i
= root
->level
; i
>= 0; --i
) {
248 for (b
= levels
[i
]; b
; b
= b
->link
) {
249 SET_INSERT(b
->dom
, b
->id
);
252 SET_INTERSECT(JT(b
)->dom
, b
->dom
, nodewords
);
253 SET_INTERSECT(JF(b
)->dom
, b
->dom
, nodewords
);
259 propedom(struct edge
*ep
)
261 SET_INSERT(ep
->edom
, ep
->id
);
263 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, edgewords
);
264 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, edgewords
);
269 * Compute edge dominators.
270 * Assumes graph has been leveled and predecessors established.
273 find_edom(struct block
*root
)
280 for (i
= n_edges
* edgewords
; --i
>= 0; )
283 /* root->level is the highest level no found. */
284 memset(root
->et
.edom
, 0, edgewords
* sizeof(*(uset
)0));
285 memset(root
->ef
.edom
, 0, edgewords
* sizeof(*(uset
)0));
286 for (i
= root
->level
; i
>= 0; --i
) {
287 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
295 * Find the backwards transitive closure of the flow graph. These sets
296 * are backwards in the sense that we find the set of nodes that reach
297 * a given node, not the set of nodes that can be reached by a node.
299 * Assumes graph has been leveled.
302 find_closure(struct block
*root
)
308 * Initialize sets to contain no nodes.
310 memset((char *)all_closure_sets
, 0,
311 n_blocks
* nodewords
* sizeof(*all_closure_sets
));
313 /* root->level is the highest level no found. */
314 for (i
= root
->level
; i
>= 0; --i
) {
315 for (b
= levels
[i
]; b
; b
= b
->link
) {
316 SET_INSERT(b
->closure
, b
->id
);
319 SET_UNION(JT(b
)->closure
, b
->closure
, nodewords
);
320 SET_UNION(JF(b
)->closure
, b
->closure
, nodewords
);
326 * Return the register number that is used by s. If A and X are both
327 * used, return AX_ATOM. If no register is used, return -1.
329 * The implementation should probably change to an array access.
332 atomuse(struct stmt
*s
)
334 register int c
= s
->code
;
339 switch (BPF_CLASS(c
)) {
342 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
343 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
347 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
348 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
358 if (BPF_SRC(c
) == BPF_X
)
363 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
370 * Return the register number that is defined by 's'. We assume that
371 * a single stmt cannot define more than one register. If no register
372 * is defined, return -1.
374 * The implementation should probably change to an array access.
377 atomdef(struct stmt
*s
)
382 switch (BPF_CLASS(s
->code
)) {
396 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
402 * Compute the sets of registers used, defined, and killed by 'b'.
404 * "Used" means that a statement in 'b' uses the register before any
405 * statement in 'b' defines it, i.e. it uses the value left in
406 * that register by a predecessor block of this block.
407 * "Defined" means that a statement in 'b' defines it.
408 * "Killed" means that a statement in 'b' defines it before any
409 * statement in 'b' uses it, i.e. it kills the value left in that
410 * register by a predecessor block of this block.
413 compute_local_ud(struct block
*b
)
416 atomset def
= 0, use
= 0, kill
= 0;
419 for (s
= b
->stmts
; s
; s
= s
->next
) {
420 if (s
->s
.code
== NOP
)
422 atom
= atomuse(&s
->s
);
424 if (atom
== AX_ATOM
) {
425 if (!ATOMELEM(def
, X_ATOM
))
426 use
|= ATOMMASK(X_ATOM
);
427 if (!ATOMELEM(def
, A_ATOM
))
428 use
|= ATOMMASK(A_ATOM
);
430 else if (atom
< N_ATOMS
) {
431 if (!ATOMELEM(def
, atom
))
432 use
|= ATOMMASK(atom
);
437 atom
= atomdef(&s
->s
);
439 if (!ATOMELEM(use
, atom
))
440 kill
|= ATOMMASK(atom
);
441 def
|= ATOMMASK(atom
);
444 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
446 * XXX - what about RET?
448 atom
= atomuse(&b
->s
);
450 if (atom
== AX_ATOM
) {
451 if (!ATOMELEM(def
, X_ATOM
))
452 use
|= ATOMMASK(X_ATOM
);
453 if (!ATOMELEM(def
, A_ATOM
))
454 use
|= ATOMMASK(A_ATOM
);
456 else if (atom
< N_ATOMS
) {
457 if (!ATOMELEM(def
, atom
))
458 use
|= ATOMMASK(atom
);
471 * Assume graph is already leveled.
474 find_ud(struct block
*root
)
480 * root->level is the highest level no found;
481 * count down from there.
483 maxlevel
= root
->level
;
484 for (i
= maxlevel
; i
>= 0; --i
)
485 for (p
= levels
[i
]; p
; p
= p
->link
) {
490 for (i
= 1; i
<= maxlevel
; ++i
) {
491 for (p
= levels
[i
]; p
; p
= p
->link
) {
492 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
493 p
->in_use
|= p
->out_use
&~ p
->kill
;
499 * These data structures are used in a Cocke and Shwarz style
500 * value numbering scheme. Since the flowgraph is acyclic,
501 * exit values can be propagated from a node's predecessors
502 * provided it is uniquely defined.
508 struct valnode
*next
;
512 static struct valnode
*hashtbl
[MODULUS
];
516 /* Integer constants mapped with the load immediate opcode. */
517 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
524 struct vmapinfo
*vmap
;
525 struct valnode
*vnode_base
;
526 struct valnode
*next_vnode
;
532 next_vnode
= vnode_base
;
533 memset((char *)vmap
, 0, maxval
* sizeof(*vmap
));
534 memset((char *)hashtbl
, 0, sizeof hashtbl
);
537 /* Because we really don't have an IR, this stuff is a little messy. */
539 F(int code
, int v0
, int v1
)
545 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
548 for (p
= hashtbl
[hash
]; p
; p
= p
->next
)
549 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
553 if (BPF_MODE(code
) == BPF_IMM
&&
554 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
555 vmap
[val
].const_val
= v0
;
556 vmap
[val
].is_const
= 1;
563 p
->next
= hashtbl
[hash
];
570 vstore(struct stmt
*s
, int *valp
, int newval
, int alter
)
572 if (alter
&& *valp
== newval
)
579 * Do constant-folding on binary operators.
580 * (Unary operators are handled elsewhere.)
583 fold_op(struct stmt
*s
, int v0
, int v1
)
587 a
= vmap
[v0
].const_val
;
588 b
= vmap
[v1
].const_val
;
590 switch (BPF_OP(s
->code
)) {
605 bpf_error("division by zero");
611 bpf_error("modulus by zero");
639 s
->code
= BPF_LD
|BPF_IMM
;
643 static inline struct slist
*
644 this_op(struct slist
*s
)
646 while (s
!= 0 && s
->s
.code
== NOP
)
652 opt_not(struct block
*b
)
654 struct block
*tmp
= JT(b
);
661 opt_peep(struct block
*b
)
664 struct slist
*next
, *last
;
672 for (/*empty*/; /*empty*/; s
= next
) {
678 break; /* nothing left in the block */
681 * Find the next real instruction after that one
684 next
= this_op(s
->next
);
686 break; /* no next instruction */
690 * st M[k] --> st M[k]
693 if (s
->s
.code
== BPF_ST
&&
694 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
695 s
->s
.k
== next
->s
.k
) {
697 next
->s
.code
= BPF_MISC
|BPF_TAX
;
703 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
704 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
705 s
->s
.code
= BPF_LDX
|BPF_IMM
;
706 next
->s
.code
= BPF_MISC
|BPF_TXA
;
710 * This is an ugly special case, but it happens
711 * when you say tcp[k] or udp[k] where k is a constant.
713 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
714 struct slist
*add
, *tax
, *ild
;
717 * Check that X isn't used on exit from this
718 * block (which the optimizer might cause).
719 * We know the code generator won't generate
720 * any local dependencies.
722 if (ATOMELEM(b
->out_use
, X_ATOM
))
726 * Check that the instruction following the ldi
727 * is an addx, or it's an ldxms with an addx
728 * following it (with 0 or more nops between the
731 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
734 add
= this_op(next
->next
);
735 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
739 * Check that a tax follows that (with 0 or more
740 * nops between them).
742 tax
= this_op(add
->next
);
743 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
747 * Check that an ild follows that (with 0 or more
748 * nops between them).
750 ild
= this_op(tax
->next
);
751 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
752 BPF_MODE(ild
->s
.code
) != BPF_IND
)
755 * We want to turn this sequence:
758 * (005) ldxms [14] {next} -- optional
761 * (008) ild [x+0] {ild}
763 * into this sequence:
771 * XXX We need to check that X is not
772 * subsequently used, because we want to change
773 * what'll be in it after this sequence.
775 * We know we can eliminate the accumulator
776 * modifications earlier in the sequence since
777 * it is defined by the last stmt of this sequence
778 * (i.e., the last statement of the sequence loads
779 * a value into the accumulator, so we can eliminate
780 * earlier operations on the accumulator).
790 * If the comparison at the end of a block is an equality
791 * comparison against a constant, and nobody uses the value
792 * we leave in the A register at the end of a block, and
793 * the operation preceding the comparison is an arithmetic
794 * operation, we can sometime optimize it away.
796 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
797 !ATOMELEM(b
->out_use
, A_ATOM
)) {
799 * We can optimize away certain subtractions of the
802 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
803 val
= b
->val
[X_ATOM
];
804 if (vmap
[val
].is_const
) {
806 * If we have a subtract to do a comparison,
807 * and the X register is a known constant,
808 * we can merge this value into the
814 b
->s
.k
+= vmap
[val
].const_val
;
817 } else if (b
->s
.k
== 0) {
819 * If the X register isn't a constant,
820 * and the comparison in the test is
821 * against 0, we can compare with the
822 * X register, instead:
828 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
833 * Likewise, a constant subtract can be simplified:
836 * jeq #y -> jeq #(x+y)
838 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
844 * And, similarly, a constant AND can be simplified
845 * if we're testing against 0, i.e.:
850 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
853 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
861 * jset #ffffffff -> always
863 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
866 if (b
->s
.k
== 0xffffffff)
870 * If we're comparing against the index register, and the index
871 * register is a known constant, we can just compare against that
874 val
= b
->val
[X_ATOM
];
875 if (vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
876 bpf_int32 v
= vmap
[val
].const_val
;
881 * If the accumulator is a known constant, we can compute the
884 val
= b
->val
[A_ATOM
];
885 if (vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
886 bpf_int32 v
= vmap
[val
].const_val
;
887 switch (BPF_OP(b
->s
.code
)) {
894 v
= (unsigned)v
> b
->s
.k
;
898 v
= (unsigned)v
>= b
->s
.k
;
918 * Compute the symbolic value of expression of 's', and update
919 * anything it defines in the value table 'val'. If 'alter' is true,
920 * do various optimizations. This code would be cleaner if symbolic
921 * evaluation and code transformations weren't folded together.
924 opt_stmt(struct stmt
*s
, int val
[], int alter
)
931 case BPF_LD
|BPF_ABS
|BPF_W
:
932 case BPF_LD
|BPF_ABS
|BPF_H
:
933 case BPF_LD
|BPF_ABS
|BPF_B
:
934 v
= F(s
->code
, s
->k
, 0L);
935 vstore(s
, &val
[A_ATOM
], v
, alter
);
938 case BPF_LD
|BPF_IND
|BPF_W
:
939 case BPF_LD
|BPF_IND
|BPF_H
:
940 case BPF_LD
|BPF_IND
|BPF_B
:
942 if (alter
&& vmap
[v
].is_const
) {
943 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
944 s
->k
+= vmap
[v
].const_val
;
945 v
= F(s
->code
, s
->k
, 0L);
949 v
= F(s
->code
, s
->k
, v
);
950 vstore(s
, &val
[A_ATOM
], v
, alter
);
954 v
= F(s
->code
, 0L, 0L);
955 vstore(s
, &val
[A_ATOM
], v
, alter
);
960 vstore(s
, &val
[A_ATOM
], v
, alter
);
963 case BPF_LDX
|BPF_IMM
:
965 vstore(s
, &val
[X_ATOM
], v
, alter
);
968 case BPF_LDX
|BPF_MSH
|BPF_B
:
969 v
= F(s
->code
, s
->k
, 0L);
970 vstore(s
, &val
[X_ATOM
], v
, alter
);
973 case BPF_ALU
|BPF_NEG
:
974 if (alter
&& vmap
[val
[A_ATOM
]].is_const
) {
975 s
->code
= BPF_LD
|BPF_IMM
;
976 s
->k
= -vmap
[val
[A_ATOM
]].const_val
;
977 val
[A_ATOM
] = K(s
->k
);
980 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], 0L);
983 case BPF_ALU
|BPF_ADD
|BPF_K
:
984 case BPF_ALU
|BPF_SUB
|BPF_K
:
985 case BPF_ALU
|BPF_MUL
|BPF_K
:
986 case BPF_ALU
|BPF_DIV
|BPF_K
:
987 case BPF_ALU
|BPF_MOD
|BPF_K
:
988 case BPF_ALU
|BPF_AND
|BPF_K
:
989 case BPF_ALU
|BPF_OR
|BPF_K
:
990 case BPF_ALU
|BPF_XOR
|BPF_K
:
991 case BPF_ALU
|BPF_LSH
|BPF_K
:
992 case BPF_ALU
|BPF_RSH
|BPF_K
:
993 op
= BPF_OP(s
->code
);
996 /* don't optimize away "sub #0"
997 * as it may be needed later to
998 * fixup the generated math code */
1000 op
== BPF_LSH
|| op
== BPF_RSH
||
1001 op
== BPF_OR
|| op
== BPF_XOR
) {
1005 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1006 s
->code
= BPF_LD
|BPF_IMM
;
1007 val
[A_ATOM
] = K(s
->k
);
1011 if (vmap
[val
[A_ATOM
]].is_const
) {
1012 fold_op(s
, val
[A_ATOM
], K(s
->k
));
1013 val
[A_ATOM
] = K(s
->k
);
1017 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], K(s
->k
));
1020 case BPF_ALU
|BPF_ADD
|BPF_X
:
1021 case BPF_ALU
|BPF_SUB
|BPF_X
:
1022 case BPF_ALU
|BPF_MUL
|BPF_X
:
1023 case BPF_ALU
|BPF_DIV
|BPF_X
:
1024 case BPF_ALU
|BPF_MOD
|BPF_X
:
1025 case BPF_ALU
|BPF_AND
|BPF_X
:
1026 case BPF_ALU
|BPF_OR
|BPF_X
:
1027 case BPF_ALU
|BPF_XOR
|BPF_X
:
1028 case BPF_ALU
|BPF_LSH
|BPF_X
:
1029 case BPF_ALU
|BPF_RSH
|BPF_X
:
1030 op
= BPF_OP(s
->code
);
1031 if (alter
&& vmap
[val
[X_ATOM
]].is_const
) {
1032 if (vmap
[val
[A_ATOM
]].is_const
) {
1033 fold_op(s
, val
[A_ATOM
], val
[X_ATOM
]);
1034 val
[A_ATOM
] = K(s
->k
);
1037 s
->code
= BPF_ALU
|BPF_K
|op
;
1038 s
->k
= vmap
[val
[X_ATOM
]].const_val
;
1041 F(s
->code
, val
[A_ATOM
], K(s
->k
));
1046 * Check if we're doing something to an accumulator
1047 * that is 0, and simplify. This may not seem like
1048 * much of a simplification but it could open up further
1050 * XXX We could also check for mul by 1, etc.
1052 if (alter
&& vmap
[val
[A_ATOM
]].is_const
1053 && vmap
[val
[A_ATOM
]].const_val
== 0) {
1054 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1055 s
->code
= BPF_MISC
|BPF_TXA
;
1056 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1059 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1060 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1061 s
->code
= BPF_LD
|BPF_IMM
;
1063 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1066 else if (op
== BPF_NEG
) {
1071 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1074 case BPF_MISC
|BPF_TXA
:
1075 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1078 case BPF_LD
|BPF_MEM
:
1080 if (alter
&& vmap
[v
].is_const
) {
1081 s
->code
= BPF_LD
|BPF_IMM
;
1082 s
->k
= vmap
[v
].const_val
;
1085 vstore(s
, &val
[A_ATOM
], v
, alter
);
1088 case BPF_MISC
|BPF_TAX
:
1089 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1092 case BPF_LDX
|BPF_MEM
:
1094 if (alter
&& vmap
[v
].is_const
) {
1095 s
->code
= BPF_LDX
|BPF_IMM
;
1096 s
->k
= vmap
[v
].const_val
;
1099 vstore(s
, &val
[X_ATOM
], v
, alter
);
1103 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1107 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1113 deadstmt(register struct stmt
*s
, register struct stmt
*last
[])
1119 if (atom
== AX_ATOM
) {
1130 last
[atom
]->code
= NOP
;
1137 opt_deadstores(register struct block
*b
)
1139 register struct slist
*s
;
1141 struct stmt
*last
[N_ATOMS
];
1143 memset((char *)last
, 0, sizeof last
);
1145 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1146 deadstmt(&s
->s
, last
);
1147 deadstmt(&b
->s
, last
);
1149 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1150 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1151 last
[atom
]->code
= NOP
;
1157 opt_blk(struct block
*b
, int do_stmts
)
1162 bpf_int32 aval
, xval
;
1165 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1166 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1173 * Initialize the atom values.
1178 * We have no predecessors, so everything is undefined
1179 * upon entry to this block.
1181 memset((char *)b
->val
, 0, sizeof(b
->val
));
1184 * Inherit values from our predecessors.
1186 * First, get the values from the predecessor along the
1187 * first edge leading to this node.
1189 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1191 * Now look at all the other nodes leading to this node.
1192 * If, for the predecessor along that edge, a register
1193 * has a different value from the one we have (i.e.,
1194 * control paths are merging, and the merging paths
1195 * assign different values to that register), give the
1196 * register the undefined value of 0.
1198 while ((p
= p
->next
) != NULL
) {
1199 for (i
= 0; i
< N_ATOMS
; ++i
)
1200 if (b
->val
[i
] != p
->pred
->val
[i
])
1204 aval
= b
->val
[A_ATOM
];
1205 xval
= b
->val
[X_ATOM
];
1206 for (s
= b
->stmts
; s
; s
= s
->next
)
1207 opt_stmt(&s
->s
, b
->val
, do_stmts
);
1210 * This is a special case: if we don't use anything from this
1211 * block, and we load the accumulator or index register with a
1212 * value that is already there, or if this block is a return,
1213 * eliminate all the statements.
1215 * XXX - what if it does a store?
1217 * XXX - why does it matter whether we use anything from this
1218 * block? If the accumulator or index register doesn't change
1219 * its value, isn't that OK even if we use that value?
1221 * XXX - if we load the accumulator with a different value,
1222 * and the block ends with a conditional branch, we obviously
1223 * can't eliminate it, as the branch depends on that value.
1224 * For the index register, the conditional branch only depends
1225 * on the index register value if the test is against the index
1226 * register value rather than a constant; if nothing uses the
1227 * value we put into the index register, and we're not testing
1228 * against the index register's value, and there aren't any
1229 * other problems that would keep us from eliminating this
1230 * block, can we eliminate it?
1233 ((b
->out_use
== 0 && aval
!= 0 && b
->val
[A_ATOM
] == aval
&&
1234 xval
!= 0 && b
->val
[X_ATOM
] == xval
) ||
1235 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1236 if (b
->stmts
!= 0) {
1245 * Set up values for branch optimizer.
1247 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1248 b
->oval
= K(b
->s
.k
);
1250 b
->oval
= b
->val
[X_ATOM
];
1251 b
->et
.code
= b
->s
.code
;
1252 b
->ef
.code
= -b
->s
.code
;
1256 * Return true if any register that is used on exit from 'succ', has
1257 * an exit value that is different from the corresponding exit value
1261 use_conflict(struct block
*b
, struct block
*succ
)
1264 atomset use
= succ
->out_use
;
1269 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1270 if (ATOMELEM(use
, atom
))
1271 if (b
->val
[atom
] != succ
->val
[atom
])
1276 static struct block
*
1277 fold_edge(struct block
*child
, struct edge
*ep
)
1280 int aval0
, aval1
, oval0
, oval1
;
1281 int code
= ep
->code
;
1289 if (child
->s
.code
!= code
)
1292 aval0
= child
->val
[A_ATOM
];
1293 oval0
= child
->oval
;
1294 aval1
= ep
->pred
->val
[A_ATOM
];
1295 oval1
= ep
->pred
->oval
;
1302 * The operands of the branch instructions are
1303 * identical, so the result is true if a true
1304 * branch was taken to get here, otherwise false.
1306 return sense
? JT(child
) : JF(child
);
1308 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1310 * At this point, we only know the comparison if we
1311 * came down the true branch, and it was an equality
1312 * comparison with a constant.
1314 * I.e., if we came down the true branch, and the branch
1315 * was an equality comparison with a constant, we know the
1316 * accumulator contains that constant. If we came down
1317 * the false branch, or the comparison wasn't with a
1318 * constant, we don't know what was in the accumulator.
1320 * We rely on the fact that distinct constants have distinct
1329 opt_j(struct edge
*ep
)
1332 register struct block
*target
;
1334 if (JT(ep
->succ
) == 0)
1337 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1339 * Common branch targets can be eliminated, provided
1340 * there is no data dependency.
1342 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1344 ep
->succ
= JT(ep
->succ
);
1348 * For each edge dominator that matches the successor of this
1349 * edge, promote the edge successor to the its grandchild.
1351 * XXX We violate the set abstraction here in favor a reasonably
1355 for (i
= 0; i
< edgewords
; ++i
) {
1356 register bpf_u_int32 x
= ep
->edom
[i
];
1361 k
+= i
* BITS_PER_WORD
;
1363 target
= fold_edge(ep
->succ
, edges
[k
]);
1365 * Check that there is no data dependency between
1366 * nodes that will be violated if we move the edge.
1368 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1371 if (JT(target
) != 0)
1373 * Start over unless we hit a leaf.
1384 or_pullup(struct block
*b
)
1388 struct block
**diffp
, **samep
;
1396 * Make sure each predecessor loads the same value.
1399 val
= ep
->pred
->val
[A_ATOM
];
1400 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1401 if (val
!= ep
->pred
->val
[A_ATOM
])
1404 if (JT(b
->in_edges
->pred
) == b
)
1405 diffp
= &JT(b
->in_edges
->pred
);
1407 diffp
= &JF(b
->in_edges
->pred
);
1414 if (JT(*diffp
) != JT(b
))
1417 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1420 if ((*diffp
)->val
[A_ATOM
] != val
)
1423 diffp
= &JF(*diffp
);
1426 samep
= &JF(*diffp
);
1431 if (JT(*samep
) != JT(b
))
1434 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1437 if ((*samep
)->val
[A_ATOM
] == val
)
1440 /* XXX Need to check that there are no data dependencies
1441 between dp0 and dp1. Currently, the code generator
1442 will not produce such dependencies. */
1443 samep
= &JF(*samep
);
1446 /* XXX This doesn't cover everything. */
1447 for (i
= 0; i
< N_ATOMS
; ++i
)
1448 if ((*samep
)->val
[i
] != pred
->val
[i
])
1451 /* Pull up the node. */
1457 * At the top of the chain, each predecessor needs to point at the
1458 * pulled up node. Inside the chain, there is only one predecessor
1462 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1463 if (JT(ep
->pred
) == b
)
1464 JT(ep
->pred
) = pull
;
1466 JF(ep
->pred
) = pull
;
1476 and_pullup(struct block
*b
)
1480 struct block
**diffp
, **samep
;
1488 * Make sure each predecessor loads the same value.
1490 val
= ep
->pred
->val
[A_ATOM
];
1491 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1492 if (val
!= ep
->pred
->val
[A_ATOM
])
1495 if (JT(b
->in_edges
->pred
) == b
)
1496 diffp
= &JT(b
->in_edges
->pred
);
1498 diffp
= &JF(b
->in_edges
->pred
);
1505 if (JF(*diffp
) != JF(b
))
1508 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1511 if ((*diffp
)->val
[A_ATOM
] != val
)
1514 diffp
= &JT(*diffp
);
1517 samep
= &JT(*diffp
);
1522 if (JF(*samep
) != JF(b
))
1525 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1528 if ((*samep
)->val
[A_ATOM
] == val
)
1531 /* XXX Need to check that there are no data dependencies
1532 between diffp and samep. Currently, the code generator
1533 will not produce such dependencies. */
1534 samep
= &JT(*samep
);
1537 /* XXX This doesn't cover everything. */
1538 for (i
= 0; i
< N_ATOMS
; ++i
)
1539 if ((*samep
)->val
[i
] != pred
->val
[i
])
1542 /* Pull up the node. */
1548 * At the top of the chain, each predecessor needs to point at the
1549 * pulled up node. Inside the chain, there is only one predecessor
1553 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1554 if (JT(ep
->pred
) == b
)
1555 JT(ep
->pred
) = pull
;
1557 JF(ep
->pred
) = pull
;
1567 opt_blks(struct block
*root
, int do_stmts
)
1573 maxlevel
= root
->level
;
1576 for (i
= maxlevel
; i
>= 0; --i
)
1577 for (p
= levels
[i
]; p
; p
= p
->link
)
1578 opt_blk(p
, do_stmts
);
1582 * No point trying to move branches; it can't possibly
1583 * make a difference at this point.
1587 for (i
= 1; i
<= maxlevel
; ++i
) {
1588 for (p
= levels
[i
]; p
; p
= p
->link
) {
1595 for (i
= 1; i
<= maxlevel
; ++i
) {
1596 for (p
= levels
[i
]; p
; p
= p
->link
) {
1604 link_inedge(struct edge
*parent
, struct block
*child
)
1606 parent
->next
= child
->in_edges
;
1607 child
->in_edges
= parent
;
1611 find_inedges(struct block
*root
)
1616 for (i
= 0; i
< n_blocks
; ++i
)
1617 blocks
[i
]->in_edges
= 0;
1620 * Traverse the graph, adding each edge to the predecessor
1621 * list of its successors. Skip the leaves (i.e. level 0).
1623 for (i
= root
->level
; i
> 0; --i
) {
1624 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
1625 link_inedge(&b
->et
, JT(b
));
1626 link_inedge(&b
->ef
, JF(b
));
1632 opt_root(struct block
**b
)
1634 struct slist
*tmp
, *s
;
1638 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1647 * If the root node is a return, then there is no
1648 * point executing any statements (since the bpf machine
1649 * has no side effects).
1651 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1656 opt_loop(struct block
*root
, int do_stmts
)
1661 printf("opt_loop(root, %d) begin\n", do_stmts
);
1672 opt_blks(root
, do_stmts
);
1675 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, done
);
1683 * Optimize the filter code in its dag representation.
1686 bpf_optimize(struct block
**rootp
)
1695 intern_blocks(root
);
1698 printf("after intern_blocks()\n");
1705 printf("after opt_root()\n");
1713 make_marks(struct block
*p
)
1717 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1725 * Mark code array such that isMarked(i) is true
1726 * only for nodes that are alive.
1729 mark_code(struct block
*p
)
1736 * True iff the two stmt lists load the same value from the packet into
1740 eq_slist(struct slist
*x
, struct slist
*y
)
1743 while (x
&& x
->s
.code
== NOP
)
1745 while (y
&& y
->s
.code
== NOP
)
1751 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1759 eq_blk(struct block
*b0
, struct block
*b1
)
1761 if (b0
->s
.code
== b1
->s
.code
&&
1762 b0
->s
.k
== b1
->s
.k
&&
1763 b0
->et
.succ
== b1
->et
.succ
&&
1764 b0
->ef
.succ
== b1
->ef
.succ
)
1765 return eq_slist(b0
->stmts
, b1
->stmts
);
1770 intern_blocks(struct block
*root
)
1774 int done1
; /* don't shadow global */
1777 for (i
= 0; i
< n_blocks
; ++i
)
1778 blocks
[i
]->link
= 0;
1782 for (i
= n_blocks
- 1; --i
>= 0; ) {
1783 if (!isMarked(blocks
[i
]))
1785 for (j
= i
+ 1; j
< n_blocks
; ++j
) {
1786 if (!isMarked(blocks
[j
]))
1788 if (eq_blk(blocks
[i
], blocks
[j
])) {
1789 blocks
[i
]->link
= blocks
[j
]->link
?
1790 blocks
[j
]->link
: blocks
[j
];
1795 for (i
= 0; i
< n_blocks
; ++i
) {
1801 JT(p
) = JT(p
)->link
;
1805 JF(p
) = JF(p
)->link
;
1815 free((void *)vnode_base
);
1817 free((void *)edges
);
1818 free((void *)space
);
1819 free((void *)levels
);
1820 free((void *)blocks
);
1824 * Return the number of stmts in 's'.
1827 slength(struct slist
*s
)
1831 for (; s
; s
= s
->next
)
1832 if (s
->s
.code
!= NOP
)
1838 * Return the number of nodes reachable by 'p'.
1839 * All nodes should be initially unmarked.
1842 count_blocks(struct block
*p
)
1844 if (p
== 0 || isMarked(p
))
1847 return count_blocks(JT(p
)) + count_blocks(JF(p
)) + 1;
1851 * Do a depth first search on the flow graph, numbering the
1852 * the basic blocks, and entering them into the 'blocks' array.`
1855 number_blks_r(struct block
*p
)
1859 if (p
== 0 || isMarked(p
))
1867 number_blks_r(JT(p
));
1868 number_blks_r(JF(p
));
1872 * Return the number of stmts in the flowgraph reachable by 'p'.
1873 * The nodes should be unmarked before calling.
1875 * Note that "stmts" means "instructions", and that this includes
1877 * side-effect statements in 'p' (slength(p->stmts));
1879 * statements in the true branch from 'p' (count_stmts(JT(p)));
1881 * statements in the false branch from 'p' (count_stmts(JF(p)));
1883 * the conditional jump itself (1);
1885 * an extra long jump if the true branch requires it (p->longjt);
1887 * an extra long jump if the false branch requires it (p->longjf).
1890 count_stmts(struct block
*p
)
1894 if (p
== 0 || isMarked(p
))
1897 n
= count_stmts(JT(p
)) + count_stmts(JF(p
));
1898 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
1902 * Allocate memory. All allocation is done before optimization
1903 * is begun. A linear bound on the size of all data structures is computed
1904 * from the total number of blocks and/or statements.
1907 opt_init(struct block
*root
)
1910 int i
, n
, max_stmts
;
1913 * First, count the blocks, so we can malloc an array to map
1914 * block number to block. Then, put the blocks into the array.
1917 n
= count_blocks(root
);
1918 blocks
= (struct block
**)calloc(n
, sizeof(*blocks
));
1920 bpf_error("malloc");
1923 number_blks_r(root
);
1925 n_edges
= 2 * n_blocks
;
1926 edges
= (struct edge
**)calloc(n_edges
, sizeof(*edges
));
1928 bpf_error("malloc");
1931 * The number of levels is bounded by the number of nodes.
1933 levels
= (struct block
**)calloc(n_blocks
, sizeof(*levels
));
1935 bpf_error("malloc");
1937 edgewords
= n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
1938 nodewords
= n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
1941 space
= (bpf_u_int32
*)malloc(2 * n_blocks
* nodewords
* sizeof(*space
)
1942 + n_edges
* edgewords
* sizeof(*space
));
1944 bpf_error("malloc");
1947 for (i
= 0; i
< n
; ++i
) {
1951 all_closure_sets
= p
;
1952 for (i
= 0; i
< n
; ++i
) {
1953 blocks
[i
]->closure
= p
;
1957 for (i
= 0; i
< n
; ++i
) {
1958 register struct block
*b
= blocks
[i
];
1966 b
->ef
.id
= n_blocks
+ i
;
1967 edges
[n_blocks
+ i
] = &b
->ef
;
1972 for (i
= 0; i
< n
; ++i
)
1973 max_stmts
+= slength(blocks
[i
]->stmts
) + 1;
1975 * We allocate at most 3 value numbers per statement,
1976 * so this is an upper bound on the number of valnodes
1979 maxval
= 3 * max_stmts
;
1980 vmap
= (struct vmapinfo
*)calloc(maxval
, sizeof(*vmap
));
1981 vnode_base
= (struct valnode
*)calloc(maxval
, sizeof(*vnode_base
));
1982 if (vmap
== NULL
|| vnode_base
== NULL
)
1983 bpf_error("malloc");
1987 * Some pointers used to convert the basic block form of the code,
1988 * into the array form that BPF requires. 'fstart' will point to
1989 * the malloc'd array while 'ftail' is used during the recursive traversal.
1991 static struct bpf_insn
*fstart
;
1992 static struct bpf_insn
*ftail
;
1999 * Returns true if successful. Returns false if a branch has
2000 * an offset that is too large. If so, we have marked that
2001 * branch so that on a subsequent iteration, it will be treated
2005 convert_code_r(struct block
*p
)
2007 struct bpf_insn
*dst
;
2011 int extrajmps
; /* number of extra jumps inserted */
2012 struct slist
**offset
= NULL
;
2014 if (p
== 0 || isMarked(p
))
2018 if (convert_code_r(JF(p
)) == 0)
2020 if (convert_code_r(JT(p
)) == 0)
2023 slen
= slength(p
->stmts
);
2024 dst
= ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2025 /* inflate length by any extra jumps */
2027 p
->offset
= dst
- fstart
;
2029 /* generate offset[] for convenience */
2031 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2033 bpf_error("not enough core");
2038 for (off
= 0; off
< slen
&& src
; off
++) {
2040 printf("off=%d src=%x\n", off
, src
);
2047 for (src
= p
->stmts
; src
; src
= src
->next
) {
2048 if (src
->s
.code
== NOP
)
2050 dst
->code
= (u_short
)src
->s
.code
;
2053 /* fill block-local relative jump */
2054 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2056 if (src
->s
.jt
|| src
->s
.jf
) {
2057 bpf_error("illegal jmp destination");
2063 if (off
== slen
- 2) /*???*/
2069 const char *ljerr
= "%s for block-local relative jump: off=%d";
2072 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2073 off
, src
->s
.jt
, src
->s
.jf
);
2076 if (!src
->s
.jt
|| !src
->s
.jf
) {
2077 bpf_error(ljerr
, "no jmp destination", off
);
2082 for (i
= 0; i
< slen
; i
++) {
2083 if (offset
[i
] == src
->s
.jt
) {
2085 bpf_error(ljerr
, "multiple matches", off
);
2089 dst
->jt
= i
- off
- 1;
2092 if (offset
[i
] == src
->s
.jf
) {
2094 bpf_error(ljerr
, "multiple matches", off
);
2097 dst
->jf
= i
- off
- 1;
2102 bpf_error(ljerr
, "no destination found", off
);
2114 bids
[dst
- fstart
] = p
->id
+ 1;
2116 dst
->code
= (u_short
)p
->s
.code
;
2120 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2122 /* offset too large for branch, must add a jump */
2123 if (p
->longjt
== 0) {
2124 /* mark this instruction and retry */
2128 /* branch if T to following jump */
2129 dst
->jt
= extrajmps
;
2131 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2132 dst
[extrajmps
].k
= off
- extrajmps
;
2136 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2138 /* offset too large for branch, must add a jump */
2139 if (p
->longjf
== 0) {
2140 /* mark this instruction and retry */
2144 /* branch if F to following jump */
2145 /* if two jumps are inserted, F goes to second one */
2146 dst
->jf
= extrajmps
;
2148 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2149 dst
[extrajmps
].k
= off
- extrajmps
;
2159 * Convert flowgraph intermediate representation to the
2160 * BPF array representation. Set *lenp to the number of instructions.
2162 * This routine does *NOT* leak the memory pointed to by fp. It *must
2163 * not* do free(fp) before returning fp; doing so would make no sense,
2164 * as the BPF array pointed to by the return value of icode_to_fcode()
2165 * must be valid - it's being returned for use in a bpf_program structure.
2167 * If it appears that icode_to_fcode() is leaking, the problem is that
2168 * the program using pcap_compile() is failing to free the memory in
2169 * the BPF program when it's done - the leak is in the program, not in
2170 * the routine that happens to be allocating the memory. (By analogy, if
2171 * a program calls fopen() without ever calling fclose() on the FILE *,
2172 * it will leak the FILE structure; the leak is not in fopen(), it's in
2173 * the program.) Change the program to use pcap_freecode() when it's
2174 * done with the filter program. See the pcap man page.
2177 icode_to_fcode(struct block
*root
, u_int
*lenp
)
2180 struct bpf_insn
*fp
;
2183 * Loop doing convert_code_r() until no branches remain
2184 * with too-large offsets.
2188 n
= *lenp
= count_stmts(root
);
2190 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2192 bpf_error("malloc");
2193 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2198 if (convert_code_r(root
))
2207 * Make a copy of a BPF program and put it in the "fcode" member of
2210 * If we fail to allocate memory for the copy, fill in the "errbuf"
2211 * member of the "pcap_t" with an error message, and return -1;
2212 * otherwise, return 0.
2215 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2220 * Validate the program.
2222 if (!bpf_validate(fp
->bf_insns
, fp
->bf_len
)) {
2223 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2224 "BPF program is not valid");
2229 * Free up any already installed program.
2231 pcap_freecode(&p
->fcode
);
2233 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2234 p
->fcode
.bf_len
= fp
->bf_len
;
2235 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2236 if (p
->fcode
.bf_insns
== NULL
) {
2237 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2238 "malloc: %s", pcap_strerror(errno
));
2241 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2247 dot_dump_node(struct block
*block
, struct bpf_program
*prog
, FILE *out
)
2249 int icount
, noffset
;
2252 if (block
== NULL
|| isMarked(block
))
2256 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2257 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2259 fprintf(out
, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block
->id
, block
->id
, block
->id
);
2260 for (i
= block
->offset
; i
< noffset
; i
++) {
2261 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2263 fprintf(out
, "\" tooltip=\"");
2264 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2265 if (block
->val
[i
] != 0)
2266 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2267 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2268 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2270 if (JT(block
) == NULL
)
2271 fprintf(out
, ", peripheries=2");
2272 fprintf(out
, "];\n");
2274 dot_dump_node(JT(block
), prog
, out
);
2275 dot_dump_node(JF(block
), prog
, out
);
2278 dot_dump_edge(struct block
*block
, FILE *out
)
2280 if (block
== NULL
|| isMarked(block
))
2285 fprintf(out
, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2286 block
->id
, JT(block
)->id
);
2287 fprintf(out
, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2288 block
->id
, JF(block
)->id
);
2290 dot_dump_edge(JT(block
), out
);
2291 dot_dump_edge(JF(block
), out
);
2293 /* Output the block CFG using graphviz/DOT language
2294 * In the CFG, block's code, value index for each registers at EXIT,
2295 * and the jump relationship is show.
2297 * example DOT for BPF `ip src host 1.1.1.1' is:
2299 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2300 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2301 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2302 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2303 "block0":se -> "block1":n [label="T"];
2304 "block0":sw -> "block3":n [label="F"];
2305 "block1":se -> "block2":n [label="T"];
2306 "block1":sw -> "block3":n [label="F"];
2309 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2310 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2313 dot_dump(struct block
*root
)
2315 struct bpf_program f
;
2318 memset(bids
, 0, sizeof bids
);
2319 f
.bf_insns
= icode_to_fcode(root
, &f
.bf_len
);
2321 fprintf(out
, "digraph BPF {\n");
2323 dot_dump_node(root
, &f
, out
);
2325 dot_dump_edge(root
, out
);
2326 fprintf(out
, "}\n");
2328 free((char *)f
.bf_insns
);
2332 plain_dump(struct block
*root
)
2334 struct bpf_program f
;
2336 memset(bids
, 0, sizeof bids
);
2337 f
.bf_insns
= icode_to_fcode(root
, &f
.bf_len
);
2340 free((char *)f
.bf_insns
);
2343 opt_dump(struct block
*root
)
2345 /* if optimizer debugging is enabled, output DOT graph
2346 * `dflag=4' is equivalent to -dddd to follow -d/-dd/-ddd
2347 * convention in tcpdump command line