2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for BPF code intermediate representation.
28 #include <pcap-types.h>
42 #ifdef HAVE_OS_PROTO_H
48 * The internal "debug printout" flag for the filter expression optimizer.
49 * The code to print that stuff is present only if BDEBUG is defined, so
50 * the flag, and the routine to set it, are defined only if BDEBUG is
53 static int pcap_optimizer_debug
;
56 * Routine to set that flag.
58 * This is intended for libpcap developers, not for general use.
59 * If you want to set these in a program, you'll have to declare this
60 * routine yourself, with the appropriate DLL import attribute on Windows;
61 * it's not declared in any header file, and won't be declared in any
62 * header file provided by libpcap.
64 PCAP_API
void pcap_set_optimizer_debug(int value
);
67 pcap_set_optimizer_debug(int value
)
69 pcap_optimizer_debug
= value
;
73 * The internal "print dot graph" flag for the filter expression optimizer.
74 * The code to print that stuff is present only if BDEBUG is defined, so
75 * the flag, and the routine to set it, are defined only if BDEBUG is
78 static int pcap_print_dot_graph
;
81 * Routine to set that flag.
83 * This is intended for libpcap developers, not for general use.
84 * If you want to set these in a program, you'll have to declare this
85 * routine yourself, with the appropriate DLL import attribute on Windows;
86 * it's not declared in any header file, and won't be declared in any
87 * header file provided by libpcap.
89 PCAP_API
void pcap_set_print_dot_graph(int value
);
92 pcap_set_print_dot_graph(int value
)
94 pcap_print_dot_graph
= value
;
102 * Takes a 32-bit integer as an argument.
104 * If handed a non-zero value, returns the index of the lowest set bit,
105 * counting upwards fro zero.
107 * If handed zero, the results are platform- and compiler-dependent.
108 * Keep it out of the light, don't give it any water, don't feed it
109 * after midnight, and don't pass zero to it.
111 * This is the same as the count of trailing zeroes in the word.
113 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115 * GCC 3.4 and later; we have __builtin_ctz().
117 #define lowest_set_bit(mask) __builtin_ctz(mask)
118 #elif defined(_MSC_VER)
120 * Visual Studio; we support only 2005 and later, so use
126 #pragma intrinsic(_BitScanForward)
129 static __forceinline
int
130 lowest_set_bit(int mask
)
135 * Don't sign-extend mask if long is longer than int.
136 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138 if (_BitScanForward(&bit
, (unsigned int)mask
) == 0)
139 return -1; /* mask is zero */
142 #elif defined(MSDOS) && defined(__DJGPP__)
144 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
145 * we've already included.
147 #define lowest_set_bit(mask) (ffs((mask)) - 1)
148 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
151 * or some other platform (UN*X conforming to a sufficient recent version
152 * of the Single UNIX Specification).
155 #define lowest_set_bit(mask) (ffs((mask)) - 1)
159 * Use a perfect-hash-function-based function.
162 lowest_set_bit(int mask
)
164 unsigned int v
= (unsigned int)mask
;
166 static const int MultiplyDeBruijnBitPosition
[32] = {
167 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
168 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
172 * We strip off all but the lowermost set bit (v & ~v),
173 * and perform a minimal perfect hash on it to look up the
174 * number of low-order zero bits in a table.
178 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180 * http://supertech.csail.mit.edu/papers/debruijn.pdf
182 return (MultiplyDeBruijnBitPosition
[((v
& -v
) * 0x077CB531U
) >> 27]);
187 * Represents a deleted instruction.
192 * Register numbers for use-def values.
193 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
194 * location. A_ATOM is the accumulator and X_ATOM is the index
197 #define A_ATOM BPF_MEMWORDS
198 #define X_ATOM (BPF_MEMWORDS+1)
201 * This define is used to represent *both* the accumulator and
202 * x register in use-def computations.
203 * Currently, the use-def code assumes only one definition per instruction.
205 #define AX_ATOM N_ATOMS
208 * These data structures are used in a Cocke and Shwarz style
209 * value numbering scheme. Since the flowgraph is acyclic,
210 * exit values can be propagated from a node's predecessors
211 * provided it is uniquely defined.
217 struct valnode
*next
;
220 /* Integer constants mapped with the load immediate opcode. */
221 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
230 * A flag to indicate that further optimization is needed.
231 * Iterative passes are continued until a given pass yields no
237 struct block
**blocks
;
242 * A bit vector set representation of the dominators.
243 * We round up the set size to the next power of two.
247 struct block
**levels
;
250 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
252 * True if a is in uset {p}
254 #define SET_MEMBER(p, a) \
255 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
260 #define SET_INSERT(p, a) \
261 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
264 * Delete 'a' from uset p.
266 #define SET_DELETE(p, a) \
267 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
272 #define SET_INTERSECT(a, b, n)\
274 register bpf_u_int32 *_x = a, *_y = b;\
275 register int _n = n;\
276 while (--_n >= 0) *_x++ &= *_y++;\
282 #define SET_SUBTRACT(a, b, n)\
284 register bpf_u_int32 *_x = a, *_y = b;\
285 register int _n = n;\
286 while (--_n >= 0) *_x++ &=~ *_y++;\
292 #define SET_UNION(a, b, n)\
294 register bpf_u_int32 *_x = a, *_y = b;\
295 register int _n = n;\
296 while (--_n >= 0) *_x++ |= *_y++;\
300 uset all_closure_sets
;
304 struct valnode
*hashtbl
[MODULUS
];
308 struct vmapinfo
*vmap
;
309 struct valnode
*vnode_base
;
310 struct valnode
*next_vnode
;
315 * Some pointers used to convert the basic block form of the code,
316 * into the array form that BPF requires. 'fstart' will point to
317 * the malloc'd array while 'ftail' is used during the recursive
320 struct bpf_insn
*fstart
;
321 struct bpf_insn
*ftail
;
324 static void opt_init(compiler_state_t
*, opt_state_t
*, struct icode
*);
325 static void opt_cleanup(opt_state_t
*);
327 static void intern_blocks(opt_state_t
*, struct icode
*);
329 static void find_inedges(opt_state_t
*, struct block
*);
331 static void opt_dump(compiler_state_t
*, struct icode
*);
335 #define MAX(a,b) ((a)>(b)?(a):(b))
339 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
350 find_levels_r(opt_state
, ic
, JT(b
));
351 find_levels_r(opt_state
, ic
, JF(b
));
352 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
356 b
->link
= opt_state
->levels
[level
];
357 opt_state
->levels
[level
] = b
;
361 * Level graph. The levels go from 0 at the leaves to
362 * N_LEVELS at the root. The opt_state->levels[] array points to the
363 * first node of the level list, whose elements are linked
364 * with the 'link' field of the struct block.
367 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
369 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
371 find_levels_r(opt_state
, ic
, ic
->root
);
375 * Find dominator relationships.
376 * Assumes graph has been leveled.
379 find_dom(opt_state_t
*opt_state
, struct block
*root
)
386 * Initialize sets to contain all nodes.
388 x
= opt_state
->all_dom_sets
;
389 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
392 /* Root starts off empty. */
393 for (i
= opt_state
->nodewords
; --i
>= 0;)
396 /* root->level is the highest level no found. */
397 for (i
= root
->level
; i
>= 0; --i
) {
398 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
399 SET_INSERT(b
->dom
, b
->id
);
402 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
403 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
409 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
411 SET_INSERT(ep
->edom
, ep
->id
);
413 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
414 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
419 * Compute edge dominators.
420 * Assumes graph has been leveled and predecessors established.
423 find_edom(opt_state_t
*opt_state
, struct block
*root
)
429 x
= opt_state
->all_edge_sets
;
430 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; --i
>= 0; )
433 /* root->level is the highest level no found. */
434 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
435 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
436 for (i
= root
->level
; i
>= 0; --i
) {
437 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
438 propedom(opt_state
, &b
->et
);
439 propedom(opt_state
, &b
->ef
);
445 * Find the backwards transitive closure of the flow graph. These sets
446 * are backwards in the sense that we find the set of nodes that reach
447 * a given node, not the set of nodes that can be reached by a node.
449 * Assumes graph has been leveled.
452 find_closure(opt_state_t
*opt_state
, struct block
*root
)
458 * Initialize sets to contain no nodes.
460 memset((char *)opt_state
->all_closure_sets
, 0,
461 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
463 /* root->level is the highest level no found. */
464 for (i
= root
->level
; i
>= 0; --i
) {
465 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
466 SET_INSERT(b
->closure
, b
->id
);
469 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
470 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
476 * Return the register number that is used by s. If A and X are both
477 * used, return AX_ATOM. If no register is used, return -1.
479 * The implementation should probably change to an array access.
482 atomuse(struct stmt
*s
)
484 register int c
= s
->code
;
489 switch (BPF_CLASS(c
)) {
492 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
493 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
497 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
498 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
508 if (BPF_SRC(c
) == BPF_X
)
513 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
520 * Return the register number that is defined by 's'. We assume that
521 * a single stmt cannot define more than one register. If no register
522 * is defined, return -1.
524 * The implementation should probably change to an array access.
527 atomdef(struct stmt
*s
)
532 switch (BPF_CLASS(s
->code
)) {
546 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
552 * Compute the sets of registers used, defined, and killed by 'b'.
554 * "Used" means that a statement in 'b' uses the register before any
555 * statement in 'b' defines it, i.e. it uses the value left in
556 * that register by a predecessor block of this block.
557 * "Defined" means that a statement in 'b' defines it.
558 * "Killed" means that a statement in 'b' defines it before any
559 * statement in 'b' uses it, i.e. it kills the value left in that
560 * register by a predecessor block of this block.
563 compute_local_ud(struct block
*b
)
566 atomset def
= 0, use
= 0, killed
= 0;
569 for (s
= b
->stmts
; s
; s
= s
->next
) {
570 if (s
->s
.code
== NOP
)
572 atom
= atomuse(&s
->s
);
574 if (atom
== AX_ATOM
) {
575 if (!ATOMELEM(def
, X_ATOM
))
576 use
|= ATOMMASK(X_ATOM
);
577 if (!ATOMELEM(def
, A_ATOM
))
578 use
|= ATOMMASK(A_ATOM
);
580 else if (atom
< N_ATOMS
) {
581 if (!ATOMELEM(def
, atom
))
582 use
|= ATOMMASK(atom
);
587 atom
= atomdef(&s
->s
);
589 if (!ATOMELEM(use
, atom
))
590 killed
|= ATOMMASK(atom
);
591 def
|= ATOMMASK(atom
);
594 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
596 * XXX - what about RET?
598 atom
= atomuse(&b
->s
);
600 if (atom
== AX_ATOM
) {
601 if (!ATOMELEM(def
, X_ATOM
))
602 use
|= ATOMMASK(X_ATOM
);
603 if (!ATOMELEM(def
, A_ATOM
))
604 use
|= ATOMMASK(A_ATOM
);
606 else if (atom
< N_ATOMS
) {
607 if (!ATOMELEM(def
, atom
))
608 use
|= ATOMMASK(atom
);
621 * Assume graph is already leveled.
624 find_ud(opt_state_t
*opt_state
, struct block
*root
)
630 * root->level is the highest level no found;
631 * count down from there.
633 maxlevel
= root
->level
;
634 for (i
= maxlevel
; i
>= 0; --i
)
635 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
640 for (i
= 1; i
<= maxlevel
; ++i
) {
641 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
642 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
643 p
->in_use
|= p
->out_use
&~ p
->kill
;
648 init_val(opt_state_t
*opt_state
)
650 opt_state
->curval
= 0;
651 opt_state
->next_vnode
= opt_state
->vnode_base
;
652 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
653 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
656 /* Because we really don't have an IR, this stuff is a little messy. */
658 F(opt_state_t
*opt_state
, int code
, int v0
, int v1
)
664 hash
= (u_int
)code
^ ((u_int
)v0
<< 4) ^ ((u_int
)v1
<< 8);
667 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
668 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
671 val
= ++opt_state
->curval
;
672 if (BPF_MODE(code
) == BPF_IMM
&&
673 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
674 opt_state
->vmap
[val
].const_val
= v0
;
675 opt_state
->vmap
[val
].is_const
= 1;
677 p
= opt_state
->next_vnode
++;
682 p
->next
= opt_state
->hashtbl
[hash
];
683 opt_state
->hashtbl
[hash
] = p
;
689 vstore(struct stmt
*s
, int *valp
, int newval
, int alter
)
691 if (alter
&& newval
!= VAL_UNKNOWN
&& *valp
== newval
)
698 * Do constant-folding on binary operators.
699 * (Unary operators are handled elsewhere.)
702 fold_op(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
703 struct stmt
*s
, int v0
, int v1
)
707 a
= opt_state
->vmap
[v0
].const_val
;
708 b
= opt_state
->vmap
[v1
].const_val
;
710 switch (BPF_OP(s
->code
)) {
725 bpf_error(cstate
, "division by zero");
731 bpf_error(cstate
, "modulus by zero");
749 * A left shift of more than the width of the type
750 * is undefined in C; we'll just treat it as shifting
753 * XXX - the BPF interpreter doesn't check for this,
754 * so its behavior is dependent on the behavior of
755 * the processor on which it's running. There are
756 * processors on which it shifts all the bits out
757 * and processors on which it does no shift.
767 * A right shift of more than the width of the type
768 * is undefined in C; we'll just treat it as shifting
771 * XXX - the BPF interpreter doesn't check for this,
772 * so its behavior is dependent on the behavior of
773 * the processor on which it's running. There are
774 * processors on which it shifts all the bits out
775 * and processors on which it does no shift.
787 s
->code
= BPF_LD
|BPF_IMM
;
791 static inline struct slist
*
792 this_op(struct slist
*s
)
794 while (s
!= 0 && s
->s
.code
== NOP
)
800 opt_not(struct block
*b
)
802 struct block
*tmp
= JT(b
);
809 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
812 struct slist
*next
, *last
;
820 for (/*empty*/; /*empty*/; s
= next
) {
826 break; /* nothing left in the block */
829 * Find the next real instruction after that one
832 next
= this_op(s
->next
);
834 break; /* no next instruction */
838 * st M[k] --> st M[k]
841 if (s
->s
.code
== BPF_ST
&&
842 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
843 s
->s
.k
== next
->s
.k
) {
845 next
->s
.code
= BPF_MISC
|BPF_TAX
;
851 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
852 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
853 s
->s
.code
= BPF_LDX
|BPF_IMM
;
854 next
->s
.code
= BPF_MISC
|BPF_TXA
;
858 * This is an ugly special case, but it happens
859 * when you say tcp[k] or udp[k] where k is a constant.
861 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
862 struct slist
*add
, *tax
, *ild
;
865 * Check that X isn't used on exit from this
866 * block (which the optimizer might cause).
867 * We know the code generator won't generate
868 * any local dependencies.
870 if (ATOMELEM(b
->out_use
, X_ATOM
))
874 * Check that the instruction following the ldi
875 * is an addx, or it's an ldxms with an addx
876 * following it (with 0 or more nops between the
879 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
882 add
= this_op(next
->next
);
883 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
887 * Check that a tax follows that (with 0 or more
888 * nops between them).
890 tax
= this_op(add
->next
);
891 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
895 * Check that an ild follows that (with 0 or more
896 * nops between them).
898 ild
= this_op(tax
->next
);
899 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
900 BPF_MODE(ild
->s
.code
) != BPF_IND
)
903 * We want to turn this sequence:
906 * (005) ldxms [14] {next} -- optional
909 * (008) ild [x+0] {ild}
911 * into this sequence:
919 * XXX We need to check that X is not
920 * subsequently used, because we want to change
921 * what'll be in it after this sequence.
923 * We know we can eliminate the accumulator
924 * modifications earlier in the sequence since
925 * it is defined by the last stmt of this sequence
926 * (i.e., the last statement of the sequence loads
927 * a value into the accumulator, so we can eliminate
928 * earlier operations on the accumulator).
938 * If the comparison at the end of a block is an equality
939 * comparison against a constant, and nobody uses the value
940 * we leave in the A register at the end of a block, and
941 * the operation preceding the comparison is an arithmetic
942 * operation, we can sometime optimize it away.
944 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
945 !ATOMELEM(b
->out_use
, A_ATOM
)) {
947 * We can optimize away certain subtractions of the
950 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
951 val
= b
->val
[X_ATOM
];
952 if (opt_state
->vmap
[val
].is_const
) {
954 * If we have a subtract to do a comparison,
955 * and the X register is a known constant,
956 * we can merge this value into the
962 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
965 } else if (b
->s
.k
== 0) {
967 * If the X register isn't a constant,
968 * and the comparison in the test is
969 * against 0, we can compare with the
970 * X register, instead:
976 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
981 * Likewise, a constant subtract can be simplified:
984 * jeq #y -> jeq #(x+y)
986 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
992 * And, similarly, a constant AND can be simplified
993 * if we're testing against 0, i.e.:
998 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
1001 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
1003 opt_state
->done
= 0;
1009 * jset #ffffffff -> always
1011 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
1014 if ((u_int
)b
->s
.k
== 0xffffffffU
)
1018 * If we're comparing against the index register, and the index
1019 * register is a known constant, we can just compare against that
1022 val
= b
->val
[X_ATOM
];
1023 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
1024 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1025 b
->s
.code
&= ~BPF_X
;
1029 * If the accumulator is a known constant, we can compute the
1030 * comparison result.
1032 val
= b
->val
[A_ATOM
];
1033 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
1034 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1035 switch (BPF_OP(b
->s
.code
)) {
1042 v
= (unsigned)v
> (unsigned)b
->s
.k
;
1046 v
= (unsigned)v
>= (unsigned)b
->s
.k
;
1057 opt_state
->done
= 0;
1066 * Compute the symbolic value of expression of 's', and update
1067 * anything it defines in the value table 'val'. If 'alter' is true,
1068 * do various optimizations. This code would be cleaner if symbolic
1069 * evaluation and code transformations weren't folded together.
1072 opt_stmt(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1073 struct stmt
*s
, int val
[], int alter
)
1080 case BPF_LD
|BPF_ABS
|BPF_W
:
1081 case BPF_LD
|BPF_ABS
|BPF_H
:
1082 case BPF_LD
|BPF_ABS
|BPF_B
:
1083 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1084 vstore(s
, &val
[A_ATOM
], v
, alter
);
1087 case BPF_LD
|BPF_IND
|BPF_W
:
1088 case BPF_LD
|BPF_IND
|BPF_H
:
1089 case BPF_LD
|BPF_IND
|BPF_B
:
1091 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1092 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
1093 s
->k
+= opt_state
->vmap
[v
].const_val
;
1094 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1095 opt_state
->done
= 0;
1098 v
= F(opt_state
, s
->code
, s
->k
, v
);
1099 vstore(s
, &val
[A_ATOM
], v
, alter
);
1102 case BPF_LD
|BPF_LEN
:
1103 v
= F(opt_state
, s
->code
, 0L, 0L);
1104 vstore(s
, &val
[A_ATOM
], v
, alter
);
1107 case BPF_LD
|BPF_IMM
:
1109 vstore(s
, &val
[A_ATOM
], v
, alter
);
1112 case BPF_LDX
|BPF_IMM
:
1114 vstore(s
, &val
[X_ATOM
], v
, alter
);
1117 case BPF_LDX
|BPF_MSH
|BPF_B
:
1118 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1119 vstore(s
, &val
[X_ATOM
], v
, alter
);
1122 case BPF_ALU
|BPF_NEG
:
1123 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1124 s
->code
= BPF_LD
|BPF_IMM
;
1125 s
->k
= -opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1126 val
[A_ATOM
] = K(s
->k
);
1129 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1132 case BPF_ALU
|BPF_ADD
|BPF_K
:
1133 case BPF_ALU
|BPF_SUB
|BPF_K
:
1134 case BPF_ALU
|BPF_MUL
|BPF_K
:
1135 case BPF_ALU
|BPF_DIV
|BPF_K
:
1136 case BPF_ALU
|BPF_MOD
|BPF_K
:
1137 case BPF_ALU
|BPF_AND
|BPF_K
:
1138 case BPF_ALU
|BPF_OR
|BPF_K
:
1139 case BPF_ALU
|BPF_XOR
|BPF_K
:
1140 case BPF_ALU
|BPF_LSH
|BPF_K
:
1141 case BPF_ALU
|BPF_RSH
|BPF_K
:
1142 op
= BPF_OP(s
->code
);
1145 /* don't optimize away "sub #0"
1146 * as it may be needed later to
1147 * fixup the generated math code */
1148 if (op
== BPF_ADD
||
1149 op
== BPF_LSH
|| op
== BPF_RSH
||
1150 op
== BPF_OR
|| op
== BPF_XOR
) {
1154 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1155 s
->code
= BPF_LD
|BPF_IMM
;
1156 val
[A_ATOM
] = K(s
->k
);
1160 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1161 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1162 val
[A_ATOM
] = K(s
->k
);
1166 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1169 case BPF_ALU
|BPF_ADD
|BPF_X
:
1170 case BPF_ALU
|BPF_SUB
|BPF_X
:
1171 case BPF_ALU
|BPF_MUL
|BPF_X
:
1172 case BPF_ALU
|BPF_DIV
|BPF_X
:
1173 case BPF_ALU
|BPF_MOD
|BPF_X
:
1174 case BPF_ALU
|BPF_AND
|BPF_X
:
1175 case BPF_ALU
|BPF_OR
|BPF_X
:
1176 case BPF_ALU
|BPF_XOR
|BPF_X
:
1177 case BPF_ALU
|BPF_LSH
|BPF_X
:
1178 case BPF_ALU
|BPF_RSH
|BPF_X
:
1179 op
= BPF_OP(s
->code
);
1180 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1181 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1182 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1183 val
[A_ATOM
] = K(s
->k
);
1186 s
->code
= BPF_ALU
|BPF_K
|op
;
1187 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1188 opt_state
->done
= 0;
1190 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1195 * Check if we're doing something to an accumulator
1196 * that is 0, and simplify. This may not seem like
1197 * much of a simplification but it could open up further
1199 * XXX We could also check for mul by 1, etc.
1201 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1202 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1203 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1204 s
->code
= BPF_MISC
|BPF_TXA
;
1205 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1208 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1209 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1210 s
->code
= BPF_LD
|BPF_IMM
;
1212 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1215 else if (op
== BPF_NEG
) {
1220 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1223 case BPF_MISC
|BPF_TXA
:
1224 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1227 case BPF_LD
|BPF_MEM
:
1229 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1230 s
->code
= BPF_LD
|BPF_IMM
;
1231 s
->k
= opt_state
->vmap
[v
].const_val
;
1232 opt_state
->done
= 0;
1234 vstore(s
, &val
[A_ATOM
], v
, alter
);
1237 case BPF_MISC
|BPF_TAX
:
1238 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1241 case BPF_LDX
|BPF_MEM
:
1243 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1244 s
->code
= BPF_LDX
|BPF_IMM
;
1245 s
->k
= opt_state
->vmap
[v
].const_val
;
1246 opt_state
->done
= 0;
1248 vstore(s
, &val
[X_ATOM
], v
, alter
);
1252 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1256 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1262 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1268 if (atom
== AX_ATOM
) {
1278 opt_state
->done
= 0;
1279 last
[atom
]->code
= NOP
;
1286 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1288 register struct slist
*s
;
1290 struct stmt
*last
[N_ATOMS
];
1292 memset((char *)last
, 0, sizeof last
);
1294 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1295 deadstmt(opt_state
, &s
->s
, last
);
1296 deadstmt(opt_state
, &b
->s
, last
);
1298 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1299 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1300 last
[atom
]->code
= NOP
;
1301 opt_state
->done
= 0;
1306 opt_blk(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1307 struct block
*b
, int do_stmts
)
1312 bpf_int32 aval
, xval
;
1315 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1316 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1323 * Initialize the atom values.
1328 * We have no predecessors, so everything is undefined
1329 * upon entry to this block.
1331 memset((char *)b
->val
, 0, sizeof(b
->val
));
1334 * Inherit values from our predecessors.
1336 * First, get the values from the predecessor along the
1337 * first edge leading to this node.
1339 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1341 * Now look at all the other nodes leading to this node.
1342 * If, for the predecessor along that edge, a register
1343 * has a different value from the one we have (i.e.,
1344 * control paths are merging, and the merging paths
1345 * assign different values to that register), give the
1346 * register the undefined value of 0.
1348 while ((p
= p
->next
) != NULL
) {
1349 for (i
= 0; i
< N_ATOMS
; ++i
)
1350 if (b
->val
[i
] != p
->pred
->val
[i
])
1354 aval
= b
->val
[A_ATOM
];
1355 xval
= b
->val
[X_ATOM
];
1356 for (s
= b
->stmts
; s
; s
= s
->next
)
1357 opt_stmt(cstate
, opt_state
, &s
->s
, b
->val
, do_stmts
);
1360 * This is a special case: if we don't use anything from this
1361 * block, and we load the accumulator or index register with a
1362 * value that is already there, or if this block is a return,
1363 * eliminate all the statements.
1365 * XXX - what if it does a store?
1367 * XXX - why does it matter whether we use anything from this
1368 * block? If the accumulator or index register doesn't change
1369 * its value, isn't that OK even if we use that value?
1371 * XXX - if we load the accumulator with a different value,
1372 * and the block ends with a conditional branch, we obviously
1373 * can't eliminate it, as the branch depends on that value.
1374 * For the index register, the conditional branch only depends
1375 * on the index register value if the test is against the index
1376 * register value rather than a constant; if nothing uses the
1377 * value we put into the index register, and we're not testing
1378 * against the index register's value, and there aren't any
1379 * other problems that would keep us from eliminating this
1380 * block, can we eliminate it?
1383 ((b
->out_use
== 0 &&
1384 aval
!= VAL_UNKNOWN
&& b
->val
[A_ATOM
] == aval
&&
1385 xval
!= VAL_UNKNOWN
&& b
->val
[X_ATOM
] == xval
) ||
1386 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1387 if (b
->stmts
!= 0) {
1389 opt_state
->done
= 0;
1392 opt_peep(opt_state
, b
);
1393 opt_deadstores(opt_state
, b
);
1396 * Set up values for branch optimizer.
1398 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1399 b
->oval
= K(b
->s
.k
);
1401 b
->oval
= b
->val
[X_ATOM
];
1402 b
->et
.code
= b
->s
.code
;
1403 b
->ef
.code
= -b
->s
.code
;
1407 * Return true if any register that is used on exit from 'succ', has
1408 * an exit value that is different from the corresponding exit value
1412 use_conflict(struct block
*b
, struct block
*succ
)
1415 atomset use
= succ
->out_use
;
1420 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1421 if (ATOMELEM(use
, atom
))
1422 if (b
->val
[atom
] != succ
->val
[atom
])
1427 static struct block
*
1428 fold_edge(struct block
*child
, struct edge
*ep
)
1431 int aval0
, aval1
, oval0
, oval1
;
1432 int code
= ep
->code
;
1440 if (child
->s
.code
!= code
)
1443 aval0
= child
->val
[A_ATOM
];
1444 oval0
= child
->oval
;
1445 aval1
= ep
->pred
->val
[A_ATOM
];
1446 oval1
= ep
->pred
->oval
;
1453 * The operands of the branch instructions are
1454 * identical, so the result is true if a true
1455 * branch was taken to get here, otherwise false.
1457 return sense
? JT(child
) : JF(child
);
1459 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1461 * At this point, we only know the comparison if we
1462 * came down the true branch, and it was an equality
1463 * comparison with a constant.
1465 * I.e., if we came down the true branch, and the branch
1466 * was an equality comparison with a constant, we know the
1467 * accumulator contains that constant. If we came down
1468 * the false branch, or the comparison wasn't with a
1469 * constant, we don't know what was in the accumulator.
1471 * We rely on the fact that distinct constants have distinct
1480 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1483 register struct block
*target
;
1485 if (JT(ep
->succ
) == 0)
1488 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1490 * Common branch targets can be eliminated, provided
1491 * there is no data dependency.
1493 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1494 opt_state
->done
= 0;
1495 ep
->succ
= JT(ep
->succ
);
1499 * For each edge dominator that matches the successor of this
1500 * edge, promote the edge successor to the its grandchild.
1502 * XXX We violate the set abstraction here in favor a reasonably
1506 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1507 register bpf_u_int32 x
= ep
->edom
[i
];
1510 k
= lowest_set_bit(x
);
1511 x
&=~ ((bpf_u_int32
)1 << k
);
1512 k
+= i
* BITS_PER_WORD
;
1514 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1516 * Check that there is no data dependency between
1517 * nodes that will be violated if we move the edge.
1519 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1520 opt_state
->done
= 0;
1522 if (JT(target
) != 0)
1524 * Start over unless we hit a leaf.
1535 or_pullup(opt_state_t
*opt_state
, struct block
*b
)
1539 struct block
**diffp
, **samep
;
1547 * Make sure each predecessor loads the same value.
1550 val
= ep
->pred
->val
[A_ATOM
];
1551 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1552 if (val
!= ep
->pred
->val
[A_ATOM
])
1555 if (JT(b
->in_edges
->pred
) == b
)
1556 diffp
= &JT(b
->in_edges
->pred
);
1558 diffp
= &JF(b
->in_edges
->pred
);
1565 if (JT(*diffp
) != JT(b
))
1568 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1571 if ((*diffp
)->val
[A_ATOM
] != val
)
1574 diffp
= &JF(*diffp
);
1577 samep
= &JF(*diffp
);
1582 if (JT(*samep
) != JT(b
))
1585 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1588 if ((*samep
)->val
[A_ATOM
] == val
)
1591 /* XXX Need to check that there are no data dependencies
1592 between dp0 and dp1. Currently, the code generator
1593 will not produce such dependencies. */
1594 samep
= &JF(*samep
);
1597 /* XXX This doesn't cover everything. */
1598 for (i
= 0; i
< N_ATOMS
; ++i
)
1599 if ((*samep
)->val
[i
] != pred
->val
[i
])
1602 /* Pull up the node. */
1608 * At the top of the chain, each predecessor needs to point at the
1609 * pulled up node. Inside the chain, there is only one predecessor
1613 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1614 if (JT(ep
->pred
) == b
)
1615 JT(ep
->pred
) = pull
;
1617 JF(ep
->pred
) = pull
;
1623 opt_state
->done
= 0;
1627 and_pullup(opt_state_t
*opt_state
, struct block
*b
)
1631 struct block
**diffp
, **samep
;
1639 * Make sure each predecessor loads the same value.
1641 val
= ep
->pred
->val
[A_ATOM
];
1642 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1643 if (val
!= ep
->pred
->val
[A_ATOM
])
1646 if (JT(b
->in_edges
->pred
) == b
)
1647 diffp
= &JT(b
->in_edges
->pred
);
1649 diffp
= &JF(b
->in_edges
->pred
);
1656 if (JF(*diffp
) != JF(b
))
1659 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1662 if ((*diffp
)->val
[A_ATOM
] != val
)
1665 diffp
= &JT(*diffp
);
1668 samep
= &JT(*diffp
);
1673 if (JF(*samep
) != JF(b
))
1676 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1679 if ((*samep
)->val
[A_ATOM
] == val
)
1682 /* XXX Need to check that there are no data dependencies
1683 between diffp and samep. Currently, the code generator
1684 will not produce such dependencies. */
1685 samep
= &JT(*samep
);
1688 /* XXX This doesn't cover everything. */
1689 for (i
= 0; i
< N_ATOMS
; ++i
)
1690 if ((*samep
)->val
[i
] != pred
->val
[i
])
1693 /* Pull up the node. */
1699 * At the top of the chain, each predecessor needs to point at the
1700 * pulled up node. Inside the chain, there is only one predecessor
1704 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1705 if (JT(ep
->pred
) == b
)
1706 JT(ep
->pred
) = pull
;
1708 JF(ep
->pred
) = pull
;
1714 opt_state
->done
= 0;
1718 opt_blks(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1724 init_val(opt_state
);
1725 maxlevel
= ic
->root
->level
;
1727 find_inedges(opt_state
, ic
->root
);
1728 for (i
= maxlevel
; i
>= 0; --i
)
1729 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
1730 opt_blk(cstate
, opt_state
, p
, do_stmts
);
1734 * No point trying to move branches; it can't possibly
1735 * make a difference at this point.
1739 for (i
= 1; i
<= maxlevel
; ++i
) {
1740 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1741 opt_j(opt_state
, &p
->et
);
1742 opt_j(opt_state
, &p
->ef
);
1746 find_inedges(opt_state
, ic
->root
);
1747 for (i
= 1; i
<= maxlevel
; ++i
) {
1748 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1749 or_pullup(opt_state
, p
);
1750 and_pullup(opt_state
, p
);
1756 link_inedge(struct edge
*parent
, struct block
*child
)
1758 parent
->next
= child
->in_edges
;
1759 child
->in_edges
= parent
;
1763 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
1768 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1769 opt_state
->blocks
[i
]->in_edges
= 0;
1772 * Traverse the graph, adding each edge to the predecessor
1773 * list of its successors. Skip the leaves (i.e. level 0).
1775 for (i
= root
->level
; i
> 0; --i
) {
1776 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
1777 link_inedge(&b
->et
, JT(b
));
1778 link_inedge(&b
->ef
, JF(b
));
1784 opt_root(struct block
**b
)
1786 struct slist
*tmp
, *s
;
1790 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1799 * If the root node is a return, then there is no
1800 * point executing any statements (since the bpf machine
1801 * has no side effects).
1803 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1808 opt_loop(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1813 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1814 printf("opt_loop(root, %d) begin\n", do_stmts
);
1815 opt_dump(cstate
, ic
);
1819 opt_state
->done
= 1;
1820 find_levels(opt_state
, ic
);
1821 find_dom(opt_state
, ic
->root
);
1822 find_closure(opt_state
, ic
->root
);
1823 find_ud(opt_state
, ic
->root
);
1824 find_edom(opt_state
, ic
->root
);
1825 opt_blks(cstate
, opt_state
, ic
, do_stmts
);
1827 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1828 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, opt_state
->done
);
1829 opt_dump(cstate
, ic
);
1832 } while (!opt_state
->done
);
1836 * Optimize the filter code in its dag representation.
1839 bpf_optimize(compiler_state_t
*cstate
, struct icode
*ic
)
1841 opt_state_t opt_state
;
1843 opt_init(cstate
, &opt_state
, ic
);
1844 opt_loop(cstate
, &opt_state
, ic
, 0);
1845 opt_loop(cstate
, &opt_state
, ic
, 1);
1846 intern_blocks(&opt_state
, ic
);
1848 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1849 printf("after intern_blocks()\n");
1850 opt_dump(cstate
, ic
);
1853 opt_root(&ic
->root
);
1855 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1856 printf("after opt_root()\n");
1857 opt_dump(cstate
, ic
);
1860 opt_cleanup(&opt_state
);
1864 make_marks(struct icode
*ic
, struct block
*p
)
1866 if (!isMarked(ic
, p
)) {
1868 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1869 make_marks(ic
, JT(p
));
1870 make_marks(ic
, JF(p
));
1876 * Mark code array such that isMarked(ic->cur_mark, i) is true
1877 * only for nodes that are alive.
1880 mark_code(struct icode
*ic
)
1883 make_marks(ic
, ic
->root
);
1887 * True iff the two stmt lists load the same value from the packet into
1891 eq_slist(struct slist
*x
, struct slist
*y
)
1894 while (x
&& x
->s
.code
== NOP
)
1896 while (y
&& y
->s
.code
== NOP
)
1902 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1910 eq_blk(struct block
*b0
, struct block
*b1
)
1912 if (b0
->s
.code
== b1
->s
.code
&&
1913 b0
->s
.k
== b1
->s
.k
&&
1914 b0
->et
.succ
== b1
->et
.succ
&&
1915 b0
->ef
.succ
== b1
->ef
.succ
)
1916 return eq_slist(b0
->stmts
, b1
->stmts
);
1921 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
1925 int done1
; /* don't shadow global */
1928 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1929 opt_state
->blocks
[i
]->link
= 0;
1933 for (i
= opt_state
->n_blocks
- 1; --i
>= 0; ) {
1934 if (!isMarked(ic
, opt_state
->blocks
[i
]))
1936 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
1937 if (!isMarked(ic
, opt_state
->blocks
[j
]))
1939 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
1940 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
1941 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
1946 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
1947 p
= opt_state
->blocks
[i
];
1952 JT(p
) = JT(p
)->link
;
1956 JF(p
) = JF(p
)->link
;
1964 opt_cleanup(opt_state_t
*opt_state
)
1966 free((void *)opt_state
->vnode_base
);
1967 free((void *)opt_state
->vmap
);
1968 free((void *)opt_state
->edges
);
1969 free((void *)opt_state
->space
);
1970 free((void *)opt_state
->levels
);
1971 free((void *)opt_state
->blocks
);
1975 * Return the number of stmts in 's'.
1978 slength(struct slist
*s
)
1982 for (; s
; s
= s
->next
)
1983 if (s
->s
.code
!= NOP
)
1989 * Return the number of nodes reachable by 'p'.
1990 * All nodes should be initially unmarked.
1993 count_blocks(struct icode
*ic
, struct block
*p
)
1995 if (p
== 0 || isMarked(ic
, p
))
1998 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
2002 * Do a depth first search on the flow graph, numbering the
2003 * the basic blocks, and entering them into the 'blocks' array.`
2006 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
2010 if (p
== 0 || isMarked(ic
, p
))
2014 n
= opt_state
->n_blocks
++;
2016 opt_state
->blocks
[n
] = p
;
2018 number_blks_r(opt_state
, ic
, JT(p
));
2019 number_blks_r(opt_state
, ic
, JF(p
));
2023 * Return the number of stmts in the flowgraph reachable by 'p'.
2024 * The nodes should be unmarked before calling.
2026 * Note that "stmts" means "instructions", and that this includes
2028 * side-effect statements in 'p' (slength(p->stmts));
2030 * statements in the true branch from 'p' (count_stmts(JT(p)));
2032 * statements in the false branch from 'p' (count_stmts(JF(p)));
2034 * the conditional jump itself (1);
2036 * an extra long jump if the true branch requires it (p->longjt);
2038 * an extra long jump if the false branch requires it (p->longjf).
2041 count_stmts(struct icode
*ic
, struct block
*p
)
2045 if (p
== 0 || isMarked(ic
, p
))
2048 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
2049 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
2053 * Allocate memory. All allocation is done before optimization
2054 * is begun. A linear bound on the size of all data structures is computed
2055 * from the total number of blocks and/or statements.
2058 opt_init(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
)
2061 int i
, n
, max_stmts
;
2064 * First, count the blocks, so we can malloc an array to map
2065 * block number to block. Then, put the blocks into the array.
2068 n
= count_blocks(ic
, ic
->root
);
2069 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
2070 if (opt_state
->blocks
== NULL
)
2071 bpf_error(cstate
, "malloc");
2073 opt_state
->n_blocks
= 0;
2074 number_blks_r(opt_state
, ic
, ic
->root
);
2076 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
2077 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
2078 if (opt_state
->edges
== NULL
)
2079 bpf_error(cstate
, "malloc");
2082 * The number of levels is bounded by the number of nodes.
2084 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
2085 if (opt_state
->levels
== NULL
)
2086 bpf_error(cstate
, "malloc");
2088 opt_state
->edgewords
= opt_state
->n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
2089 opt_state
->nodewords
= opt_state
->n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
2092 opt_state
->space
= (bpf_u_int32
*)malloc(2 * opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->space
)
2093 + opt_state
->n_edges
* opt_state
->edgewords
* sizeof(*opt_state
->space
));
2094 if (opt_state
->space
== NULL
)
2095 bpf_error(cstate
, "malloc");
2096 p
= opt_state
->space
;
2097 opt_state
->all_dom_sets
= p
;
2098 for (i
= 0; i
< n
; ++i
) {
2099 opt_state
->blocks
[i
]->dom
= p
;
2100 p
+= opt_state
->nodewords
;
2102 opt_state
->all_closure_sets
= p
;
2103 for (i
= 0; i
< n
; ++i
) {
2104 opt_state
->blocks
[i
]->closure
= p
;
2105 p
+= opt_state
->nodewords
;
2107 opt_state
->all_edge_sets
= p
;
2108 for (i
= 0; i
< n
; ++i
) {
2109 register struct block
*b
= opt_state
->blocks
[i
];
2112 p
+= opt_state
->edgewords
;
2114 p
+= opt_state
->edgewords
;
2116 opt_state
->edges
[i
] = &b
->et
;
2117 b
->ef
.id
= opt_state
->n_blocks
+ i
;
2118 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
2123 for (i
= 0; i
< n
; ++i
)
2124 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
2126 * We allocate at most 3 value numbers per statement,
2127 * so this is an upper bound on the number of valnodes
2130 opt_state
->maxval
= 3 * max_stmts
;
2131 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2132 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2133 if (opt_state
->vmap
== NULL
|| opt_state
->vnode_base
== NULL
)
2134 bpf_error(cstate
, "malloc");
2138 * This is only used when supporting optimizer debugging. It is
2139 * global state, so do *not* do more than one compile in parallel
2140 * and expect it to provide meaningful information.
2147 * Returns true if successful. Returns false if a branch has
2148 * an offset that is too large. If so, we have marked that
2149 * branch so that on a subsequent iteration, it will be treated
2153 convert_code_r(compiler_state_t
*cstate
, conv_state_t
*conv_state
,
2154 struct icode
*ic
, struct block
*p
)
2156 struct bpf_insn
*dst
;
2160 u_int extrajmps
; /* number of extra jumps inserted */
2161 struct slist
**offset
= NULL
;
2163 if (p
== 0 || isMarked(ic
, p
))
2167 if (convert_code_r(cstate
, conv_state
, ic
, JF(p
)) == 0)
2169 if (convert_code_r(cstate
, conv_state
, ic
, JT(p
)) == 0)
2172 slen
= slength(p
->stmts
);
2173 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2174 /* inflate length by any extra jumps */
2176 p
->offset
= (int)(dst
- conv_state
->fstart
);
2178 /* generate offset[] for convenience */
2180 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2182 bpf_error(cstate
, "not enough core");
2187 for (off
= 0; off
< slen
&& src
; off
++) {
2189 printf("off=%d src=%x\n", off
, src
);
2196 for (src
= p
->stmts
; src
; src
= src
->next
) {
2197 if (src
->s
.code
== NOP
)
2199 dst
->code
= (u_short
)src
->s
.code
;
2202 /* fill block-local relative jump */
2203 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2205 if (src
->s
.jt
|| src
->s
.jf
) {
2206 bpf_error(cstate
, "illegal jmp destination");
2212 if (off
== slen
- 2) /*???*/
2218 const char ljerr
[] = "%s for block-local relative jump: off=%d";
2221 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2222 off
, src
->s
.jt
, src
->s
.jf
);
2225 if (!src
->s
.jt
|| !src
->s
.jf
) {
2226 bpf_error(cstate
, ljerr
, "no jmp destination", off
);
2231 for (i
= 0; i
< slen
; i
++) {
2232 if (offset
[i
] == src
->s
.jt
) {
2234 bpf_error(cstate
, ljerr
, "multiple matches", off
);
2238 if (i
- off
- 1 >= 256) {
2239 bpf_error(cstate
, ljerr
, "out-of-range jump", off
);
2242 dst
->jt
= (u_char
)(i
- off
- 1);
2245 if (offset
[i
] == src
->s
.jf
) {
2247 bpf_error(cstate
, ljerr
, "multiple matches", off
);
2250 if (i
- off
- 1 >= 256) {
2251 bpf_error(cstate
, ljerr
, "out-of-range jump", off
);
2254 dst
->jf
= (u_char
)(i
- off
- 1);
2259 bpf_error(cstate
, ljerr
, "no destination found", off
);
2271 if (dst
- conv_state
->fstart
< NBIDS
)
2272 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2274 dst
->code
= (u_short
)p
->s
.code
;
2278 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2280 /* offset too large for branch, must add a jump */
2281 if (p
->longjt
== 0) {
2282 /* mark this instruction and retry */
2286 /* branch if T to following jump */
2287 if (extrajmps
>= 256) {
2288 bpf_error(cstate
, "too many extra jumps");
2291 dst
->jt
= (u_char
)extrajmps
;
2293 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2294 dst
[extrajmps
].k
= off
- extrajmps
;
2297 dst
->jt
= (u_char
)off
;
2298 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2300 /* offset too large for branch, must add a jump */
2301 if (p
->longjf
== 0) {
2302 /* mark this instruction and retry */
2306 /* branch if F to following jump */
2307 /* if two jumps are inserted, F goes to second one */
2308 if (extrajmps
>= 256) {
2309 bpf_error(cstate
, "too many extra jumps");
2312 dst
->jf
= (u_char
)extrajmps
;
2314 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2315 dst
[extrajmps
].k
= off
- extrajmps
;
2318 dst
->jf
= (u_char
)off
;
2325 * Convert flowgraph intermediate representation to the
2326 * BPF array representation. Set *lenp to the number of instructions.
2328 * This routine does *NOT* leak the memory pointed to by fp. It *must
2329 * not* do free(fp) before returning fp; doing so would make no sense,
2330 * as the BPF array pointed to by the return value of icode_to_fcode()
2331 * must be valid - it's being returned for use in a bpf_program structure.
2333 * If it appears that icode_to_fcode() is leaking, the problem is that
2334 * the program using pcap_compile() is failing to free the memory in
2335 * the BPF program when it's done - the leak is in the program, not in
2336 * the routine that happens to be allocating the memory. (By analogy, if
2337 * a program calls fopen() without ever calling fclose() on the FILE *,
2338 * it will leak the FILE structure; the leak is not in fopen(), it's in
2339 * the program.) Change the program to use pcap_freecode() when it's
2340 * done with the filter program. See the pcap man page.
2343 icode_to_fcode(compiler_state_t
*cstate
, struct icode
*ic
,
2344 struct block
*root
, u_int
*lenp
)
2347 struct bpf_insn
*fp
;
2348 conv_state_t conv_state
;
2351 * Loop doing convert_code_r() until no branches remain
2352 * with too-large offsets.
2356 n
= *lenp
= count_stmts(ic
, root
);
2358 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2360 bpf_error(cstate
, "malloc");
2361 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2362 conv_state
.fstart
= fp
;
2363 conv_state
.ftail
= fp
+ n
;
2366 if (convert_code_r(cstate
, &conv_state
, ic
, root
))
2375 * Make a copy of a BPF program and put it in the "fcode" member of
2378 * If we fail to allocate memory for the copy, fill in the "errbuf"
2379 * member of the "pcap_t" with an error message, and return -1;
2380 * otherwise, return 0.
2383 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2388 * Validate the program.
2390 if (!pcap_validate_filter(fp
->bf_insns
, fp
->bf_len
)) {
2391 pcap_snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2392 "BPF program is not valid");
2397 * Free up any already installed program.
2399 pcap_freecode(&p
->fcode
);
2401 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2402 p
->fcode
.bf_len
= fp
->bf_len
;
2403 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2404 if (p
->fcode
.bf_insns
== NULL
) {
2405 pcap_fmt_errmsg_for_errno(p
->errbuf
, sizeof(p
->errbuf
),
2409 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2415 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2418 int icount
, noffset
;
2421 if (block
== NULL
|| isMarked(ic
, block
))
2425 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2426 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2428 fprintf(out
, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block
->id
, block
->id
, block
->id
);
2429 for (i
= block
->offset
; i
< noffset
; i
++) {
2430 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2432 fprintf(out
, "\" tooltip=\"");
2433 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2434 if (block
->val
[i
] != VAL_UNKNOWN
)
2435 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2436 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2437 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2439 if (JT(block
) == NULL
)
2440 fprintf(out
, ", peripheries=2");
2441 fprintf(out
, "];\n");
2443 dot_dump_node(ic
, JT(block
), prog
, out
);
2444 dot_dump_node(ic
, JF(block
), prog
, out
);
2448 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
2450 if (block
== NULL
|| isMarked(ic
, block
))
2455 fprintf(out
, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2456 block
->id
, JT(block
)->id
);
2457 fprintf(out
, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2458 block
->id
, JF(block
)->id
);
2460 dot_dump_edge(ic
, JT(block
), out
);
2461 dot_dump_edge(ic
, JF(block
), out
);
2464 /* Output the block CFG using graphviz/DOT language
2465 * In the CFG, block's code, value index for each registers at EXIT,
2466 * and the jump relationship is show.
2468 * example DOT for BPF `ip src host 1.1.1.1' is:
2470 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2471 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2472 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2473 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2474 "block0":se -> "block1":n [label="T"];
2475 "block0":sw -> "block3":n [label="F"];
2476 "block1":se -> "block2":n [label="T"];
2477 "block1":sw -> "block3":n [label="F"];
2480 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2481 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2484 dot_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2486 struct bpf_program f
;
2489 memset(bids
, 0, sizeof bids
);
2490 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2492 fprintf(out
, "digraph BPF {\n");
2494 dot_dump_node(ic
, ic
->root
, &f
, out
);
2496 dot_dump_edge(ic
, ic
->root
, out
);
2497 fprintf(out
, "}\n");
2499 free((char *)f
.bf_insns
);
2503 plain_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2505 struct bpf_program f
;
2507 memset(bids
, 0, sizeof bids
);
2508 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2511 free((char *)f
.bf_insns
);
2515 opt_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2518 * If the CFG, in DOT format, is requested, output it rather than
2519 * the code that would be generated from that graph.
2521 if (pcap_print_dot_graph
)
2522 dot_dump(cstate
, ic
);
2524 plain_dump(cstate
, ic
);