]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Don't dump core if the user uses "sio", "opc", "dpc", or "sls" on a
[libpcap] / gencode.c
1 /*#define CHASE_CHAIN*/
2 /*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 */
22 #ifndef lint
23 static const char rcsid[] _U_ =
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.221.2.24 2005-06-20 21:52:53 guy Exp $ (LBL)";
25 #endif
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #include <sys/types.h>
35 #include <sys/socket.h>
36 #endif /* WIN32 */
37
38 /*
39 * XXX - why was this included even on UNIX?
40 */
41 #ifdef __MINGW32__
42 #include "IP6_misc.h"
43 #endif
44
45 #ifndef WIN32
46
47 #ifdef __NetBSD__
48 #include <sys/param.h>
49 #endif
50
51 #include <netinet/in.h>
52
53 #endif /* WIN32 */
54
55 #include <stdlib.h>
56 #include <string.h>
57 #include <memory.h>
58 #include <setjmp.h>
59 #include <stdarg.h>
60
61 #ifdef MSDOS
62 #include "pcap-dos.h"
63 #endif
64
65 #include "pcap-int.h"
66
67 #include "ethertype.h"
68 #include "nlpid.h"
69 #include "llc.h"
70 #include "gencode.h"
71 #include "atmuni31.h"
72 #include "sunatmpos.h"
73 #include "ppp.h"
74 #include "sll.h"
75 #include "arcnet.h"
76 #include "pf.h"
77 #ifndef offsetof
78 #define offsetof(s, e) ((size_t)&((s *)0)->e)
79 #endif
80 #ifdef INET6
81 #ifndef WIN32
82 #include <netdb.h> /* for "struct addrinfo" */
83 #endif /* WIN32 */
84 #endif /*INET6*/
85 #include <pcap-namedb.h>
86
87 #define ETHERMTU 1500
88
89 #ifndef IPPROTO_SCTP
90 #define IPPROTO_SCTP 132
91 #endif
92
93 #ifdef HAVE_OS_PROTO_H
94 #include "os-proto.h"
95 #endif
96
97 #define JMP(c) ((c)|BPF_JMP|BPF_K)
98
99 /* Locals */
100 static jmp_buf top_ctx;
101 static pcap_t *bpf_pcap;
102
103 /* Hack for updating VLAN, MPLS offsets. */
104 static u_int orig_linktype = -1U, orig_nl = -1U;
105
106 /* XXX */
107 #ifdef PCAP_FDDIPAD
108 static int pcap_fddipad;
109 #endif
110
111 /* VARARGS */
112 void
113 bpf_error(const char *fmt, ...)
114 {
115 va_list ap;
116
117 va_start(ap, fmt);
118 if (bpf_pcap != NULL)
119 (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
120 fmt, ap);
121 va_end(ap);
122 longjmp(top_ctx, 1);
123 /* NOTREACHED */
124 }
125
126 static void init_linktype(pcap_t *);
127
128 static int alloc_reg(void);
129 static void free_reg(int);
130
131 static struct block *root;
132
133 /*
134 * Value passed to gen_load_a() to indicate what the offset argument
135 * is relative to.
136 */
137 enum e_offrel {
138 OR_PACKET, /* relative to the beginning of the packet */
139 OR_LINK, /* relative to the link-layer header */
140 OR_NET, /* relative to the network-layer header */
141 OR_NET_NOSNAP, /* relative to the network-layer header, with no SNAP header at the link layer */
142 OR_TRAN_IPV4, /* relative to the transport-layer header, with IPv4 network layer */
143 OR_TRAN_IPV6 /* relative to the transport-layer header, with IPv6 network layer */
144 };
145
146 /*
147 * We divy out chunks of memory rather than call malloc each time so
148 * we don't have to worry about leaking memory. It's probably
149 * not a big deal if all this memory was wasted but if this ever
150 * goes into a library that would probably not be a good idea.
151 *
152 * XXX - this *is* in a library....
153 */
154 #define NCHUNKS 16
155 #define CHUNK0SIZE 1024
156 struct chunk {
157 u_int n_left;
158 void *m;
159 };
160
161 static struct chunk chunks[NCHUNKS];
162 static int cur_chunk;
163
164 static void *newchunk(u_int);
165 static void freechunks(void);
166 static inline struct block *new_block(int);
167 static inline struct slist *new_stmt(int);
168 static struct block *gen_retblk(int);
169 static inline void syntax(void);
170
171 static void backpatch(struct block *, struct block *);
172 static void merge(struct block *, struct block *);
173 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
174 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
175 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
176 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
177 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
178 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
179 bpf_u_int32);
180 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
181 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
182 bpf_u_int32, bpf_u_int32, int, bpf_int32);
183 static struct slist *gen_load_llrel(u_int, u_int);
184 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
185 static struct slist *gen_loadx_iphdrlen(void);
186 static struct block *gen_uncond(int);
187 static inline struct block *gen_true(void);
188 static inline struct block *gen_false(void);
189 static struct block *gen_ether_linktype(int);
190 static struct block *gen_linux_sll_linktype(int);
191 static void insert_radiotap_load_llprefixlen(struct block *);
192 static void insert_load_llprefixlen(struct block *);
193 static struct slist *gen_llprefixlen(void);
194 static struct block *gen_linktype(int);
195 static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
196 static struct block *gen_llc_linktype(int);
197 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
198 #ifdef INET6
199 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
200 #endif
201 static struct block *gen_ahostop(const u_char *, int);
202 static struct block *gen_ehostop(const u_char *, int);
203 static struct block *gen_fhostop(const u_char *, int);
204 static struct block *gen_thostop(const u_char *, int);
205 static struct block *gen_wlanhostop(const u_char *, int);
206 static struct block *gen_ipfchostop(const u_char *, int);
207 static struct block *gen_dnhostop(bpf_u_int32, int);
208 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int);
209 #ifdef INET6
210 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int);
211 #endif
212 #ifndef INET6
213 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
214 #endif
215 static struct block *gen_ipfrag(void);
216 static struct block *gen_portatom(int, bpf_int32);
217 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
218 #ifdef INET6
219 static struct block *gen_portatom6(int, bpf_int32);
220 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
221 #endif
222 struct block *gen_portop(int, int, int);
223 static struct block *gen_port(int, int, int);
224 struct block *gen_portrangeop(int, int, int, int);
225 static struct block *gen_portrange(int, int, int, int);
226 #ifdef INET6
227 struct block *gen_portop6(int, int, int);
228 static struct block *gen_port6(int, int, int);
229 struct block *gen_portrangeop6(int, int, int, int);
230 static struct block *gen_portrange6(int, int, int, int);
231 #endif
232 static int lookup_proto(const char *, int);
233 static struct block *gen_protochain(int, int, int);
234 static struct block *gen_proto(int, int, int);
235 static struct slist *xfer_to_x(struct arth *);
236 static struct slist *xfer_to_a(struct arth *);
237 static struct block *gen_mac_multicast(int);
238 static struct block *gen_len(int, int);
239
240 static struct block *gen_msg_abbrev(int type);
241
242 static void *
243 newchunk(n)
244 u_int n;
245 {
246 struct chunk *cp;
247 int k;
248 size_t size;
249
250 #ifndef __NetBSD__
251 /* XXX Round up to nearest long. */
252 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
253 #else
254 /* XXX Round up to structure boundary. */
255 n = ALIGN(n);
256 #endif
257
258 cp = &chunks[cur_chunk];
259 if (n > cp->n_left) {
260 ++cp, k = ++cur_chunk;
261 if (k >= NCHUNKS)
262 bpf_error("out of memory");
263 size = CHUNK0SIZE << k;
264 cp->m = (void *)malloc(size);
265 if (cp->m == NULL)
266 bpf_error("out of memory");
267 memset((char *)cp->m, 0, size);
268 cp->n_left = size;
269 if (n > size)
270 bpf_error("out of memory");
271 }
272 cp->n_left -= n;
273 return (void *)((char *)cp->m + cp->n_left);
274 }
275
276 static void
277 freechunks()
278 {
279 int i;
280
281 cur_chunk = 0;
282 for (i = 0; i < NCHUNKS; ++i)
283 if (chunks[i].m != NULL) {
284 free(chunks[i].m);
285 chunks[i].m = NULL;
286 }
287 }
288
289 /*
290 * A strdup whose allocations are freed after code generation is over.
291 */
292 char *
293 sdup(s)
294 register const char *s;
295 {
296 int n = strlen(s) + 1;
297 char *cp = newchunk(n);
298
299 strlcpy(cp, s, n);
300 return (cp);
301 }
302
303 static inline struct block *
304 new_block(code)
305 int code;
306 {
307 struct block *p;
308
309 p = (struct block *)newchunk(sizeof(*p));
310 p->s.code = code;
311 p->head = p;
312
313 return p;
314 }
315
316 static inline struct slist *
317 new_stmt(code)
318 int code;
319 {
320 struct slist *p;
321
322 p = (struct slist *)newchunk(sizeof(*p));
323 p->s.code = code;
324
325 return p;
326 }
327
328 static struct block *
329 gen_retblk(v)
330 int v;
331 {
332 struct block *b = new_block(BPF_RET|BPF_K);
333
334 b->s.k = v;
335 return b;
336 }
337
338 static inline void
339 syntax()
340 {
341 bpf_error("syntax error in filter expression");
342 }
343
344 static bpf_u_int32 netmask;
345 static int snaplen;
346 int no_optimize;
347
348 int
349 pcap_compile(pcap_t *p, struct bpf_program *program,
350 char *buf, int optimize, bpf_u_int32 mask)
351 {
352 extern int n_errors;
353 int len;
354
355 no_optimize = 0;
356 n_errors = 0;
357 root = NULL;
358 bpf_pcap = p;
359 if (setjmp(top_ctx)) {
360 lex_cleanup();
361 freechunks();
362 return (-1);
363 }
364
365 netmask = mask;
366
367 snaplen = pcap_snapshot(p);
368 if (snaplen == 0) {
369 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
370 "snaplen of 0 rejects all packets");
371 return -1;
372 }
373
374 lex_init(buf ? buf : "");
375 init_linktype(p);
376 (void)pcap_parse();
377
378 if (n_errors)
379 syntax();
380
381 if (root == NULL)
382 root = gen_retblk(snaplen);
383
384 if (optimize && !no_optimize) {
385 bpf_optimize(&root);
386 if (root == NULL ||
387 (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
388 bpf_error("expression rejects all packets");
389 }
390 program->bf_insns = icode_to_fcode(root, &len);
391 program->bf_len = len;
392
393 lex_cleanup();
394 freechunks();
395 return (0);
396 }
397
398 /*
399 * entry point for using the compiler with no pcap open
400 * pass in all the stuff that is needed explicitly instead.
401 */
402 int
403 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
404 struct bpf_program *program,
405 char *buf, int optimize, bpf_u_int32 mask)
406 {
407 pcap_t *p;
408 int ret;
409
410 p = pcap_open_dead(linktype_arg, snaplen_arg);
411 if (p == NULL)
412 return (-1);
413 ret = pcap_compile(p, program, buf, optimize, mask);
414 pcap_close(p);
415 return (ret);
416 }
417
418 /*
419 * Clean up a "struct bpf_program" by freeing all the memory allocated
420 * in it.
421 */
422 void
423 pcap_freecode(struct bpf_program *program)
424 {
425 program->bf_len = 0;
426 if (program->bf_insns != NULL) {
427 free((char *)program->bf_insns);
428 program->bf_insns = NULL;
429 }
430 }
431
432 /*
433 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
434 * which of the jt and jf fields has been resolved and which is a pointer
435 * back to another unresolved block (or nil). At least one of the fields
436 * in each block is already resolved.
437 */
438 static void
439 backpatch(list, target)
440 struct block *list, *target;
441 {
442 struct block *next;
443
444 while (list) {
445 if (!list->sense) {
446 next = JT(list);
447 JT(list) = target;
448 } else {
449 next = JF(list);
450 JF(list) = target;
451 }
452 list = next;
453 }
454 }
455
456 /*
457 * Merge the lists in b0 and b1, using the 'sense' field to indicate
458 * which of jt and jf is the link.
459 */
460 static void
461 merge(b0, b1)
462 struct block *b0, *b1;
463 {
464 register struct block **p = &b0;
465
466 /* Find end of list. */
467 while (*p)
468 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
469
470 /* Concatenate the lists. */
471 *p = b1;
472 }
473
474 void
475 finish_parse(p)
476 struct block *p;
477 {
478 backpatch(p, gen_retblk(snaplen));
479 p->sense = !p->sense;
480 backpatch(p, gen_retblk(0));
481 root = p->head;
482
483 /*
484 * Insert before the statements of the first (root) block any
485 * statements needed to load the lengths of any variable-length
486 * headers into registers.
487 *
488 * XXX - a fancier strategy would be to insert those before the
489 * statements of all blocks that use those lengths and that
490 * have no predecessors that use them, so that we only compute
491 * the lengths if we need them. There might be even better
492 * approaches than that. However, as we're currently only
493 * handling variable-length radiotap headers, and as all
494 * filtering expressions other than raw link[M:N] tests
495 * require the length of that header, doing more for that
496 * header length isn't really worth the effort.
497 */
498 insert_load_llprefixlen(root);
499 }
500
501 void
502 gen_and(b0, b1)
503 struct block *b0, *b1;
504 {
505 backpatch(b0, b1->head);
506 b0->sense = !b0->sense;
507 b1->sense = !b1->sense;
508 merge(b1, b0);
509 b1->sense = !b1->sense;
510 b1->head = b0->head;
511 }
512
513 void
514 gen_or(b0, b1)
515 struct block *b0, *b1;
516 {
517 b0->sense = !b0->sense;
518 backpatch(b0, b1->head);
519 b0->sense = !b0->sense;
520 merge(b1, b0);
521 b1->head = b0->head;
522 }
523
524 void
525 gen_not(b)
526 struct block *b;
527 {
528 b->sense = !b->sense;
529 }
530
531 static struct block *
532 gen_cmp(offrel, offset, size, v)
533 enum e_offrel offrel;
534 u_int offset, size;
535 bpf_int32 v;
536 {
537 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
538 }
539
540 static struct block *
541 gen_cmp_gt(offrel, offset, size, v)
542 enum e_offrel offrel;
543 u_int offset, size;
544 bpf_int32 v;
545 {
546 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
547 }
548
549 static struct block *
550 gen_cmp_ge(offrel, offset, size, v)
551 enum e_offrel offrel;
552 u_int offset, size;
553 bpf_int32 v;
554 {
555 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
556 }
557
558 static struct block *
559 gen_cmp_lt(offrel, offset, size, v)
560 enum e_offrel offrel;
561 u_int offset, size;
562 bpf_int32 v;
563 {
564 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
565 }
566
567 static struct block *
568 gen_cmp_le(offrel, offset, size, v)
569 enum e_offrel offrel;
570 u_int offset, size;
571 bpf_int32 v;
572 {
573 return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
574 }
575
576 static struct block *
577 gen_mcmp(offrel, offset, size, v, mask)
578 enum e_offrel offrel;
579 u_int offset, size;
580 bpf_int32 v;
581 bpf_u_int32 mask;
582 {
583 return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
584 }
585
586 static struct block *
587 gen_bcmp(offrel, offset, size, v)
588 enum e_offrel offrel;
589 register u_int offset, size;
590 register const u_char *v;
591 {
592 register struct block *b, *tmp;
593
594 b = NULL;
595 while (size >= 4) {
596 register const u_char *p = &v[size - 4];
597 bpf_int32 w = ((bpf_int32)p[0] << 24) |
598 ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
599
600 tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
601 if (b != NULL)
602 gen_and(b, tmp);
603 b = tmp;
604 size -= 4;
605 }
606 while (size >= 2) {
607 register const u_char *p = &v[size - 2];
608 bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
609
610 tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
611 if (b != NULL)
612 gen_and(b, tmp);
613 b = tmp;
614 size -= 2;
615 }
616 if (size > 0) {
617 tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
618 if (b != NULL)
619 gen_and(b, tmp);
620 b = tmp;
621 }
622 return b;
623 }
624
625 /*
626 * AND the field of size "size" at offset "offset" relative to the header
627 * specified by "offrel" with "mask", and compare it with the value "v"
628 * with the test specified by "jtype"; if "reverse" is true, the test
629 * should test the opposite of "jtype".
630 */
631 static struct block *
632 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
633 enum e_offrel offrel;
634 bpf_int32 v;
635 bpf_u_int32 offset, size, mask, jtype;
636 int reverse;
637 {
638 struct slist *s, *s2;
639 struct block *b;
640
641 s = gen_load_a(offrel, offset, size);
642
643 if (mask != 0xffffffff) {
644 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
645 s2->s.k = mask;
646 sappend(s, s2);
647 }
648
649 b = new_block(JMP(jtype));
650 b->stmts = s;
651 b->s.k = v;
652 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
653 gen_not(b);
654 return b;
655 }
656
657 /*
658 * Various code constructs need to know the layout of the data link
659 * layer. These variables give the necessary offsets from the beginning
660 * of the packet data.
661 *
662 * If the link layer has variable_length headers, the offsets are offsets
663 * from the end of the link-link-layer header, and "reg_ll_size" is
664 * the register number for a register containing the length of the
665 * link-layer header. Otherwise, "reg_ll_size" is -1.
666 */
667 static int reg_ll_size;
668
669 /*
670 * This is the offset of the beginning of the link-layer header.
671 * It's usually 0, except for 802.11 with a fixed-length radio header.
672 */
673 static u_int off_ll;
674
675 /*
676 * This is the offset of the beginning of the MAC-layer header.
677 * It's usually 0, except for ATM LANE.
678 */
679 static u_int off_mac;
680
681 /*
682 * "off_linktype" is the offset to information in the link-layer header
683 * giving the packet type.
684 *
685 * For Ethernet, it's the offset of the Ethernet type field.
686 *
687 * For link-layer types that always use 802.2 headers, it's the
688 * offset of the LLC header.
689 *
690 * For PPP, it's the offset of the PPP type field.
691 *
692 * For Cisco HDLC, it's the offset of the CHDLC type field.
693 *
694 * For BSD loopback, it's the offset of the AF_ value.
695 *
696 * For Linux cooked sockets, it's the offset of the type field.
697 *
698 * It's set to -1 for no encapsulation, in which case, IP is assumed.
699 */
700 static u_int off_linktype;
701
702 /*
703 * TRUE if the link layer includes an ATM pseudo-header.
704 */
705 static int is_atm = 0;
706
707 /*
708 * TRUE if "lane" appeared in the filter; it causes us to generate
709 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
710 */
711 static int is_lane = 0;
712
713 /*
714 * These are offsets for the ATM pseudo-header.
715 */
716 static u_int off_vpi;
717 static u_int off_vci;
718 static u_int off_proto;
719
720 /*
721 * These are offsets for the MTP3 fields.
722 */
723 static u_int off_sio;
724 static u_int off_opc;
725 static u_int off_dpc;
726 static u_int off_sls;
727
728 /*
729 * This is the offset of the first byte after the ATM pseudo_header,
730 * or -1 if there is no ATM pseudo-header.
731 */
732 static u_int off_payload;
733
734 /*
735 * These are offsets to the beginning of the network-layer header.
736 *
737 * If the link layer never uses 802.2 LLC:
738 *
739 * "off_nl" and "off_nl_nosnap" are the same.
740 *
741 * If the link layer always uses 802.2 LLC:
742 *
743 * "off_nl" is the offset if there's a SNAP header following
744 * the 802.2 header;
745 *
746 * "off_nl_nosnap" is the offset if there's no SNAP header.
747 *
748 * If the link layer is Ethernet:
749 *
750 * "off_nl" is the offset if the packet is an Ethernet II packet
751 * (we assume no 802.3+802.2+SNAP);
752 *
753 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
754 * with an 802.2 header following it.
755 */
756 static u_int off_nl;
757 static u_int off_nl_nosnap;
758
759 static int linktype;
760
761 static void
762 init_linktype(p)
763 pcap_t *p;
764 {
765 linktype = pcap_datalink(p);
766 #ifdef PCAP_FDDIPAD
767 pcap_fddipad = p->fddipad;
768 #endif
769
770 /*
771 * Assume it's not raw ATM with a pseudo-header, for now.
772 */
773 off_mac = 0;
774 is_atm = 0;
775 is_lane = 0;
776 off_vpi = -1;
777 off_vci = -1;
778 off_proto = -1;
779 off_payload = -1;
780
781 off_sio = -1;
782 off_opc = -1;
783 off_dpc = -1;
784 off_sls = -1;
785
786 /*
787 * Also assume it's not 802.11 with a fixed-length radio header.
788 */
789 off_ll = 0;
790
791 orig_linktype = -1;
792 orig_nl = -1;
793
794 reg_ll_size = -1;
795
796 switch (linktype) {
797
798 case DLT_ARCNET:
799 off_linktype = 2;
800 off_nl = 6; /* XXX in reality, variable! */
801 off_nl_nosnap = 6; /* no 802.2 LLC */
802 return;
803
804 case DLT_ARCNET_LINUX:
805 off_linktype = 4;
806 off_nl = 8; /* XXX in reality, variable! */
807 off_nl_nosnap = 8; /* no 802.2 LLC */
808 return;
809
810 case DLT_EN10MB:
811 off_linktype = 12;
812 off_nl = 14; /* Ethernet II */
813 off_nl_nosnap = 17; /* 802.3+802.2 */
814 return;
815
816 case DLT_SLIP:
817 /*
818 * SLIP doesn't have a link level type. The 16 byte
819 * header is hacked into our SLIP driver.
820 */
821 off_linktype = -1;
822 off_nl = 16;
823 off_nl_nosnap = 16; /* no 802.2 LLC */
824 return;
825
826 case DLT_SLIP_BSDOS:
827 /* XXX this may be the same as the DLT_PPP_BSDOS case */
828 off_linktype = -1;
829 /* XXX end */
830 off_nl = 24;
831 off_nl_nosnap = 24; /* no 802.2 LLC */
832 return;
833
834 case DLT_NULL:
835 case DLT_LOOP:
836 off_linktype = 0;
837 off_nl = 4;
838 off_nl_nosnap = 4; /* no 802.2 LLC */
839 return;
840
841 case DLT_ENC:
842 off_linktype = 0;
843 off_nl = 12;
844 off_nl_nosnap = 12; /* no 802.2 LLC */
845 return;
846
847 case DLT_PPP:
848 case DLT_PPP_PPPD:
849 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
850 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
851 off_linktype = 2;
852 off_nl = 4;
853 off_nl_nosnap = 4; /* no 802.2 LLC */
854 return;
855
856 case DLT_PPP_ETHER:
857 /*
858 * This does no include the Ethernet header, and
859 * only covers session state.
860 */
861 off_linktype = 6;
862 off_nl = 8;
863 off_nl_nosnap = 8; /* no 802.2 LLC */
864 return;
865
866 case DLT_PPP_BSDOS:
867 off_linktype = 5;
868 off_nl = 24;
869 off_nl_nosnap = 24; /* no 802.2 LLC */
870 return;
871
872 case DLT_FDDI:
873 /*
874 * FDDI doesn't really have a link-level type field.
875 * We set "off_linktype" to the offset of the LLC header.
876 *
877 * To check for Ethernet types, we assume that SSAP = SNAP
878 * is being used and pick out the encapsulated Ethernet type.
879 * XXX - should we generate code to check for SNAP?
880 */
881 off_linktype = 13;
882 #ifdef PCAP_FDDIPAD
883 off_linktype += pcap_fddipad;
884 #endif
885 off_nl = 21; /* FDDI+802.2+SNAP */
886 off_nl_nosnap = 16; /* FDDI+802.2 */
887 #ifdef PCAP_FDDIPAD
888 off_nl += pcap_fddipad;
889 off_nl_nosnap += pcap_fddipad;
890 #endif
891 return;
892
893 case DLT_IEEE802:
894 /*
895 * Token Ring doesn't really have a link-level type field.
896 * We set "off_linktype" to the offset of the LLC header.
897 *
898 * To check for Ethernet types, we assume that SSAP = SNAP
899 * is being used and pick out the encapsulated Ethernet type.
900 * XXX - should we generate code to check for SNAP?
901 *
902 * XXX - the header is actually variable-length.
903 * Some various Linux patched versions gave 38
904 * as "off_linktype" and 40 as "off_nl"; however,
905 * if a token ring packet has *no* routing
906 * information, i.e. is not source-routed, the correct
907 * values are 20 and 22, as they are in the vanilla code.
908 *
909 * A packet is source-routed iff the uppermost bit
910 * of the first byte of the source address, at an
911 * offset of 8, has the uppermost bit set. If the
912 * packet is source-routed, the total number of bytes
913 * of routing information is 2 plus bits 0x1F00 of
914 * the 16-bit value at an offset of 14 (shifted right
915 * 8 - figure out which byte that is).
916 */
917 off_linktype = 14;
918 off_nl = 22; /* Token Ring+802.2+SNAP */
919 off_nl_nosnap = 17; /* Token Ring+802.2 */
920 return;
921
922 case DLT_IEEE802_11:
923 /*
924 * 802.11 doesn't really have a link-level type field.
925 * We set "off_linktype" to the offset of the LLC header.
926 *
927 * To check for Ethernet types, we assume that SSAP = SNAP
928 * is being used and pick out the encapsulated Ethernet type.
929 * XXX - should we generate code to check for SNAP?
930 *
931 * XXX - the header is actually variable-length. We
932 * assume a 24-byte link-layer header, as appears in
933 * data frames in networks with no bridges. If the
934 * fromds and tods 802.11 header bits are both set,
935 * it's actually supposed to be 30 bytes.
936 */
937 off_linktype = 24;
938 off_nl = 32; /* 802.11+802.2+SNAP */
939 off_nl_nosnap = 27; /* 802.11+802.2 */
940 return;
941
942 case DLT_PRISM_HEADER:
943 /*
944 * Same as 802.11, but with an additional header before
945 * the 802.11 header, containing a bunch of additional
946 * information including radio-level information.
947 *
948 * The header is 144 bytes long.
949 *
950 * XXX - same variable-length header problem; at least
951 * the Prism header is fixed-length.
952 */
953 off_ll = 144;
954 off_linktype = 144+24;
955 off_nl = 144+32; /* Prism+802.11+802.2+SNAP */
956 off_nl_nosnap = 144+27; /* Prism+802.11+802.2 */
957 return;
958
959 case DLT_IEEE802_11_RADIO_AVS:
960 /*
961 * Same as 802.11, but with an additional header before
962 * the 802.11 header, containing a bunch of additional
963 * information including radio-level information.
964 *
965 * The header is 64 bytes long, at least in its
966 * current incarnation.
967 *
968 * XXX - same variable-length header problem, only
969 * more so; this header is also variable-length,
970 * with the length being the 32-bit big-endian
971 * number at an offset of 4 from the beginning
972 * of the radio header.
973 */
974 off_ll = 64;
975 off_linktype = 64+24;
976 off_nl = 64+32; /* Radio+802.11+802.2+SNAP */
977 off_nl_nosnap = 64+27; /* Radio+802.11+802.2 */
978 return;
979
980 case DLT_IEEE802_11_RADIO:
981 /*
982 * Same as 802.11, but with an additional header before
983 * the 802.11 header, containing a bunch of additional
984 * information including radio-level information.
985 *
986 * The radiotap header is variable length, and we
987 * generate code to compute its length and store it
988 * in a register. These offsets are relative to the
989 * beginning of the 802.11 header.
990 */
991 off_linktype = 24;
992 off_nl = 32; /* 802.11+802.2+SNAP */
993 off_nl_nosnap = 27; /* 802.11+802.2 */
994 return;
995
996 case DLT_ATM_RFC1483:
997 case DLT_ATM_CLIP: /* Linux ATM defines this */
998 /*
999 * assume routed, non-ISO PDUs
1000 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1001 *
1002 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1003 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1004 * latter would presumably be treated the way PPPoE
1005 * should be, so you can do "pppoe and udp port 2049"
1006 * or "pppoa and tcp port 80" and have it check for
1007 * PPPo{A,E} and a PPP protocol of IP and....
1008 */
1009 off_linktype = 0;
1010 off_nl = 8; /* 802.2+SNAP */
1011 off_nl_nosnap = 3; /* 802.2 */
1012 return;
1013
1014 case DLT_SUNATM:
1015 /*
1016 * Full Frontal ATM; you get AALn PDUs with an ATM
1017 * pseudo-header.
1018 */
1019 is_atm = 1;
1020 off_vpi = SUNATM_VPI_POS;
1021 off_vci = SUNATM_VCI_POS;
1022 off_proto = PROTO_POS;
1023 off_mac = -1; /* LLC-encapsulated, so no MAC-layer header */
1024 off_payload = SUNATM_PKT_BEGIN_POS;
1025 off_linktype = off_payload;
1026 off_nl = off_payload+8; /* 802.2+SNAP */
1027 off_nl_nosnap = off_payload+3; /* 802.2 */
1028 return;
1029
1030 case DLT_RAW:
1031 off_linktype = -1;
1032 off_nl = 0;
1033 off_nl_nosnap = 0; /* no 802.2 LLC */
1034 return;
1035
1036 case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
1037 off_linktype = 14;
1038 off_nl = 16;
1039 off_nl_nosnap = 16; /* no 802.2 LLC */
1040 return;
1041
1042 case DLT_LTALK:
1043 /*
1044 * LocalTalk does have a 1-byte type field in the LLAP header,
1045 * but really it just indicates whether there is a "short" or
1046 * "long" DDP packet following.
1047 */
1048 off_linktype = -1;
1049 off_nl = 0;
1050 off_nl_nosnap = 0; /* no 802.2 LLC */
1051 return;
1052
1053 case DLT_IP_OVER_FC:
1054 /*
1055 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1056 * link-level type field. We set "off_linktype" to the
1057 * offset of the LLC header.
1058 *
1059 * To check for Ethernet types, we assume that SSAP = SNAP
1060 * is being used and pick out the encapsulated Ethernet type.
1061 * XXX - should we generate code to check for SNAP? RFC
1062 * 2625 says SNAP should be used.
1063 */
1064 off_linktype = 16;
1065 off_nl = 24; /* IPFC+802.2+SNAP */
1066 off_nl_nosnap = 19; /* IPFC+802.2 */
1067 return;
1068
1069 case DLT_FRELAY:
1070 /*
1071 * XXX - we should set this to handle SNAP-encapsulated
1072 * frames (NLPID of 0x80).
1073 */
1074 off_linktype = -1;
1075 off_nl = 0;
1076 off_nl_nosnap = 0; /* no 802.2 LLC */
1077 return;
1078
1079 case DLT_APPLE_IP_OVER_IEEE1394:
1080 off_linktype = 16;
1081 off_nl = 18;
1082 off_nl_nosnap = 18; /* no 802.2 LLC */
1083 return;
1084
1085 case DLT_LINUX_IRDA:
1086 /*
1087 * Currently, only raw "link[N:M]" filtering is supported.
1088 */
1089 off_linktype = -1;
1090 off_nl = -1;
1091 off_nl_nosnap = -1;
1092 return;
1093
1094 case DLT_DOCSIS:
1095 /*
1096 * Currently, only raw "link[N:M]" filtering is supported.
1097 */
1098 off_linktype = -1;
1099 off_nl = -1;
1100 off_nl_nosnap = -1;
1101 return;
1102
1103 case DLT_SYMANTEC_FIREWALL:
1104 off_linktype = 6;
1105 off_nl = 44; /* Ethernet II */
1106 off_nl_nosnap = 44; /* XXX - what does it do with 802.3 packets? */
1107 return;
1108
1109 case DLT_PFLOG:
1110 off_linktype = 0;
1111 /* XXX read this from pf.h? */
1112 off_nl = PFLOG_HDRLEN;
1113 off_nl_nosnap = PFLOG_HDRLEN; /* no 802.2 LLC */
1114 return;
1115
1116 case DLT_JUNIPER_MLFR:
1117 case DLT_JUNIPER_MLPPP:
1118 off_linktype = 4;
1119 off_nl = 4;
1120 off_nl_nosnap = -1; /* no 802.2 LLC */
1121 return;
1122
1123 case DLT_JUNIPER_ATM1:
1124 off_linktype = 4; /* in reality variable between 4-8 */
1125 off_nl = 4;
1126 off_nl_nosnap = 14;
1127 return;
1128
1129 case DLT_JUNIPER_ATM2:
1130 off_linktype = 8; /* in reality variable between 8-12 */
1131 off_nl = 8;
1132 off_nl_nosnap = 18;
1133 return;
1134
1135 /* frames captured on a Juniper PPPoE service PIC
1136 * contain raw ethernet frames */
1137 case DLT_JUNIPER_PPPOE:
1138 off_linktype = 16;
1139 off_nl = 18; /* Ethernet II */
1140 off_nl_nosnap = 21; /* 802.3+802.2 */
1141 return;
1142
1143 case DLT_JUNIPER_PPPOE_ATM:
1144 off_linktype = 4;
1145 off_nl = 6;
1146 off_nl_nosnap = -1; /* no 802.2 LLC */
1147 return;
1148
1149 case DLT_JUNIPER_GGSN:
1150 off_linktype = 6;
1151 off_nl = 12;
1152 off_nl_nosnap = -1; /* no 802.2 LLC */
1153 return;
1154
1155 case DLT_JUNIPER_ES:
1156 off_linktype = 6;
1157 off_nl = -1; /* not really a network layer but raw IP adresses */
1158 off_nl_nosnap = -1; /* no 802.2 LLC */
1159 return;
1160
1161 case DLT_JUNIPER_MONITOR:
1162 off_linktype = 12;
1163 off_nl = 12; /* raw IP/IP6 header */
1164 off_nl_nosnap = -1; /* no 802.2 LLC */
1165 return;
1166
1167 case DLT_JUNIPER_SERVICES:
1168 off_linktype = 12;
1169 off_nl = -1; /* L3 proto location dep. on cookie type */
1170 off_nl_nosnap = -1; /* no 802.2 LLC */
1171 return;
1172
1173 case DLT_MTP2:
1174 off_sio = 3;
1175 off_opc = 4;
1176 off_dpc = 4;
1177 off_sls = 7;
1178 off_linktype = -1;
1179 off_nl = -1;
1180 off_nl_nosnap = -1;
1181 return;
1182
1183 #ifdef DLT_PFSYNC
1184 case DLT_PFSYNC:
1185 off_linktype = -1;
1186 off_nl = 4;
1187 off_nl_nosnap = 4;
1188 return;
1189 #endif
1190
1191 case DLT_LINUX_LAPD:
1192 /*
1193 * Currently, only raw "link[N:M]" filtering is supported.
1194 */
1195 off_linktype = -1;
1196 off_nl = -1;
1197 off_nl_nosnap = -1;
1198 return;
1199 }
1200 bpf_error("unknown data link type %d", linktype);
1201 /* NOTREACHED */
1202 }
1203
1204 /*
1205 * Load a value relative to the beginning of the link-layer header.
1206 * The link-layer header doesn't necessarily begin at the beginning
1207 * of the packet data; there might be a variable-length prefix containing
1208 * radio information.
1209 */
1210 static struct slist *
1211 gen_load_llrel(offset, size)
1212 u_int offset, size;
1213 {
1214 struct slist *s, *s2;
1215
1216 s = gen_llprefixlen();
1217
1218 /*
1219 * If "s" is non-null, it has code to arrange that the X register
1220 * contains the length of the prefix preceding the link-layer
1221 * header.
1222 */
1223 if (s != NULL) {
1224 s2 = new_stmt(BPF_LD|BPF_IND|size);
1225 s2->s.k = offset;
1226 sappend(s, s2);
1227 } else {
1228 s = new_stmt(BPF_LD|BPF_ABS|size);
1229 s->s.k = offset;
1230 }
1231 return s;
1232 }
1233
1234 /*
1235 * Load a value relative to the beginning of the specified header.
1236 */
1237 static struct slist *
1238 gen_load_a(offrel, offset, size)
1239 enum e_offrel offrel;
1240 u_int offset, size;
1241 {
1242 struct slist *s, *s2;
1243
1244 switch (offrel) {
1245
1246 case OR_PACKET:
1247 s = gen_load_llrel(offset, size);
1248 break;
1249
1250 case OR_LINK:
1251 s = gen_load_llrel(off_ll + offset, size);
1252 break;
1253
1254 case OR_NET:
1255 s = gen_load_llrel(off_nl + offset, size);
1256 break;
1257
1258 case OR_NET_NOSNAP:
1259 s = gen_load_llrel(off_nl_nosnap + offset, size);
1260 break;
1261
1262 case OR_TRAN_IPV4:
1263 /*
1264 * Load the X register with the length of the IPv4 header,
1265 * in bytes.
1266 */
1267 s = gen_loadx_iphdrlen();
1268
1269 /*
1270 * Load the item at {length of the link-layer header} +
1271 * {length of the IPv4 header} + {specified offset}.
1272 */
1273 s2 = new_stmt(BPF_LD|BPF_IND|size);
1274 s2->s.k = off_nl + offset;
1275 sappend(s, s2);
1276 break;
1277
1278 case OR_TRAN_IPV6:
1279 s = gen_load_llrel(off_nl + 40 + offset, size);
1280 break;
1281
1282 default:
1283 abort();
1284 return NULL;
1285 }
1286 return s;
1287 }
1288
1289 /*
1290 * Generate code to load into the X register the sum of the length of
1291 * the IPv4 header and any variable-length header preceding the link-layer
1292 * header.
1293 */
1294 static struct slist *
1295 gen_loadx_iphdrlen()
1296 {
1297 struct slist *s, *s2;
1298
1299 s = gen_llprefixlen();
1300 if (s != NULL) {
1301 /*
1302 * There's a variable-length prefix preceding the
1303 * link-layer header. "s" points to a list of statements
1304 * that put the length of that prefix into the X register.
1305 * The 4*([k]&0xf) addressing mode can't be used, as we
1306 * don't have a constant offset, so we have to load the
1307 * value in question into the A register and add to it
1308 * the value from the X register.
1309 */
1310 s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1311 s2->s.k = off_nl;
1312 sappend(s, s2);
1313 s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1314 s2->s.k = 0xf;
1315 sappend(s, s2);
1316 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1317 s2->s.k = 2;
1318 sappend(s, s2);
1319
1320 /*
1321 * The A register now contains the length of the
1322 * IP header. We need to add to it the length
1323 * of the prefix preceding the link-layer
1324 * header, which is still in the X register, and
1325 * move the result into the X register.
1326 */
1327 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1328 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1329 } else {
1330 /*
1331 * There is no variable-length header preceding the
1332 * link-layer header; if there's a fixed-length
1333 * header preceding it, its length is included in
1334 * the off_ variables, so it doesn't need to be added.
1335 */
1336 s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1337 s->s.k = off_nl;
1338 }
1339 return s;
1340 }
1341
1342 static struct block *
1343 gen_uncond(rsense)
1344 int rsense;
1345 {
1346 struct block *b;
1347 struct slist *s;
1348
1349 s = new_stmt(BPF_LD|BPF_IMM);
1350 s->s.k = !rsense;
1351 b = new_block(JMP(BPF_JEQ));
1352 b->stmts = s;
1353
1354 return b;
1355 }
1356
1357 static inline struct block *
1358 gen_true()
1359 {
1360 return gen_uncond(1);
1361 }
1362
1363 static inline struct block *
1364 gen_false()
1365 {
1366 return gen_uncond(0);
1367 }
1368
1369 /*
1370 * Byte-swap a 32-bit number.
1371 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1372 * big-endian platforms.)
1373 */
1374 #define SWAPLONG(y) \
1375 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1376
1377 /*
1378 * Generate code to match a particular packet type.
1379 *
1380 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1381 * value, if <= ETHERMTU. We use that to determine whether to
1382 * match the type/length field or to check the type/length field for
1383 * a value <= ETHERMTU to see whether it's a type field and then do
1384 * the appropriate test.
1385 */
1386 static struct block *
1387 gen_ether_linktype(proto)
1388 register int proto;
1389 {
1390 struct block *b0, *b1;
1391
1392 switch (proto) {
1393
1394 case LLCSAP_ISONS:
1395 case LLCSAP_IP:
1396 case LLCSAP_NETBEUI:
1397 /*
1398 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1399 * so we check the DSAP and SSAP.
1400 *
1401 * LLCSAP_IP checks for IP-over-802.2, rather
1402 * than IP-over-Ethernet or IP-over-SNAP.
1403 *
1404 * XXX - should we check both the DSAP and the
1405 * SSAP, like this, or should we check just the
1406 * DSAP, as we do for other types <= ETHERMTU
1407 * (i.e., other SAP values)?
1408 */
1409 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1410 gen_not(b0);
1411 b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1412 ((proto << 8) | proto));
1413 gen_and(b0, b1);
1414 return b1;
1415
1416 case LLCSAP_IPX:
1417 /*
1418 * Check for;
1419 *
1420 * Ethernet_II frames, which are Ethernet
1421 * frames with a frame type of ETHERTYPE_IPX;
1422 *
1423 * Ethernet_802.3 frames, which are 802.3
1424 * frames (i.e., the type/length field is
1425 * a length field, <= ETHERMTU, rather than
1426 * a type field) with the first two bytes
1427 * after the Ethernet/802.3 header being
1428 * 0xFFFF;
1429 *
1430 * Ethernet_802.2 frames, which are 802.3
1431 * frames with an 802.2 LLC header and
1432 * with the IPX LSAP as the DSAP in the LLC
1433 * header;
1434 *
1435 * Ethernet_SNAP frames, which are 802.3
1436 * frames with an LLC header and a SNAP
1437 * header and with an OUI of 0x000000
1438 * (encapsulated Ethernet) and a protocol
1439 * ID of ETHERTYPE_IPX in the SNAP header.
1440 *
1441 * XXX - should we generate the same code both
1442 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1443 */
1444
1445 /*
1446 * This generates code to check both for the
1447 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1448 */
1449 b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1450 (bpf_int32)LLCSAP_IPX);
1451 b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H,
1452 (bpf_int32)0xFFFF);
1453 gen_or(b0, b1);
1454
1455 /*
1456 * Now we add code to check for SNAP frames with
1457 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1458 */
1459 b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
1460 gen_or(b0, b1);
1461
1462 /*
1463 * Now we generate code to check for 802.3
1464 * frames in general.
1465 */
1466 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1467 gen_not(b0);
1468
1469 /*
1470 * Now add the check for 802.3 frames before the
1471 * check for Ethernet_802.2 and Ethernet_802.3,
1472 * as those checks should only be done on 802.3
1473 * frames, not on Ethernet frames.
1474 */
1475 gen_and(b0, b1);
1476
1477 /*
1478 * Now add the check for Ethernet_II frames, and
1479 * do that before checking for the other frame
1480 * types.
1481 */
1482 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1483 (bpf_int32)ETHERTYPE_IPX);
1484 gen_or(b0, b1);
1485 return b1;
1486
1487 case ETHERTYPE_ATALK:
1488 case ETHERTYPE_AARP:
1489 /*
1490 * EtherTalk (AppleTalk protocols on Ethernet link
1491 * layer) may use 802.2 encapsulation.
1492 */
1493
1494 /*
1495 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1496 * we check for an Ethernet type field less than
1497 * 1500, which means it's an 802.3 length field.
1498 */
1499 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1500 gen_not(b0);
1501
1502 /*
1503 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1504 * SNAP packets with an organization code of
1505 * 0x080007 (Apple, for Appletalk) and a protocol
1506 * type of ETHERTYPE_ATALK (Appletalk).
1507 *
1508 * 802.2-encapsulated ETHERTYPE_AARP packets are
1509 * SNAP packets with an organization code of
1510 * 0x000000 (encapsulated Ethernet) and a protocol
1511 * type of ETHERTYPE_AARP (Appletalk ARP).
1512 */
1513 if (proto == ETHERTYPE_ATALK)
1514 b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
1515 else /* proto == ETHERTYPE_AARP */
1516 b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
1517 gen_and(b0, b1);
1518
1519 /*
1520 * Check for Ethernet encapsulation (Ethertalk
1521 * phase 1?); we just check for the Ethernet
1522 * protocol type.
1523 */
1524 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1525
1526 gen_or(b0, b1);
1527 return b1;
1528
1529 default:
1530 if (proto <= ETHERMTU) {
1531 /*
1532 * This is an LLC SAP value, so the frames
1533 * that match would be 802.2 frames.
1534 * Check that the frame is an 802.2 frame
1535 * (i.e., that the length/type field is
1536 * a length field, <= ETHERMTU) and
1537 * then check the DSAP.
1538 */
1539 b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1540 gen_not(b0);
1541 b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1542 (bpf_int32)proto);
1543 gen_and(b0, b1);
1544 return b1;
1545 } else {
1546 /*
1547 * This is an Ethernet type, so compare
1548 * the length/type field with it (if
1549 * the frame is an 802.2 frame, the length
1550 * field will be <= ETHERMTU, and, as
1551 * "proto" is > ETHERMTU, this test
1552 * will fail and the frame won't match,
1553 * which is what we want).
1554 */
1555 return gen_cmp(OR_LINK, off_linktype, BPF_H,
1556 (bpf_int32)proto);
1557 }
1558 }
1559 }
1560
1561 /*
1562 * Generate code to match a particular packet type.
1563 *
1564 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1565 * value, if <= ETHERMTU. We use that to determine whether to
1566 * match the type field or to check the type field for the special
1567 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1568 */
1569 static struct block *
1570 gen_linux_sll_linktype(proto)
1571 register int proto;
1572 {
1573 struct block *b0, *b1;
1574
1575 switch (proto) {
1576
1577 case LLCSAP_ISONS:
1578 case LLCSAP_IP:
1579 case LLCSAP_NETBEUI:
1580 /*
1581 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1582 * so we check the DSAP and SSAP.
1583 *
1584 * LLCSAP_IP checks for IP-over-802.2, rather
1585 * than IP-over-Ethernet or IP-over-SNAP.
1586 *
1587 * XXX - should we check both the DSAP and the
1588 * SSAP, like this, or should we check just the
1589 * DSAP, as we do for other types <= ETHERMTU
1590 * (i.e., other SAP values)?
1591 */
1592 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1593 b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1594 ((proto << 8) | proto));
1595 gen_and(b0, b1);
1596 return b1;
1597
1598 case LLCSAP_IPX:
1599 /*
1600 * Ethernet_II frames, which are Ethernet
1601 * frames with a frame type of ETHERTYPE_IPX;
1602 *
1603 * Ethernet_802.3 frames, which have a frame
1604 * type of LINUX_SLL_P_802_3;
1605 *
1606 * Ethernet_802.2 frames, which are 802.3
1607 * frames with an 802.2 LLC header (i.e, have
1608 * a frame type of LINUX_SLL_P_802_2) and
1609 * with the IPX LSAP as the DSAP in the LLC
1610 * header;
1611 *
1612 * Ethernet_SNAP frames, which are 802.3
1613 * frames with an LLC header and a SNAP
1614 * header and with an OUI of 0x000000
1615 * (encapsulated Ethernet) and a protocol
1616 * ID of ETHERTYPE_IPX in the SNAP header.
1617 *
1618 * First, do the checks on LINUX_SLL_P_802_2
1619 * frames; generate the check for either
1620 * Ethernet_802.2 or Ethernet_SNAP frames, and
1621 * then put a check for LINUX_SLL_P_802_2 frames
1622 * before it.
1623 */
1624 b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1625 (bpf_int32)LLCSAP_IPX);
1626 b1 = gen_snap(0x000000, ETHERTYPE_IPX,
1627 off_linktype + 2);
1628 gen_or(b0, b1);
1629 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1630 gen_and(b0, b1);
1631
1632 /*
1633 * Now check for 802.3 frames and OR that with
1634 * the previous test.
1635 */
1636 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1637 gen_or(b0, b1);
1638
1639 /*
1640 * Now add the check for Ethernet_II frames, and
1641 * do that before checking for the other frame
1642 * types.
1643 */
1644 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1645 (bpf_int32)ETHERTYPE_IPX);
1646 gen_or(b0, b1);
1647 return b1;
1648
1649 case ETHERTYPE_ATALK:
1650 case ETHERTYPE_AARP:
1651 /*
1652 * EtherTalk (AppleTalk protocols on Ethernet link
1653 * layer) may use 802.2 encapsulation.
1654 */
1655
1656 /*
1657 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1658 * we check for the 802.2 protocol type in the
1659 * "Ethernet type" field.
1660 */
1661 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1662
1663 /*
1664 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1665 * SNAP packets with an organization code of
1666 * 0x080007 (Apple, for Appletalk) and a protocol
1667 * type of ETHERTYPE_ATALK (Appletalk).
1668 *
1669 * 802.2-encapsulated ETHERTYPE_AARP packets are
1670 * SNAP packets with an organization code of
1671 * 0x000000 (encapsulated Ethernet) and a protocol
1672 * type of ETHERTYPE_AARP (Appletalk ARP).
1673 */
1674 if (proto == ETHERTYPE_ATALK)
1675 b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
1676 off_linktype + 2);
1677 else /* proto == ETHERTYPE_AARP */
1678 b1 = gen_snap(0x000000, ETHERTYPE_AARP,
1679 off_linktype + 2);
1680 gen_and(b0, b1);
1681
1682 /*
1683 * Check for Ethernet encapsulation (Ethertalk
1684 * phase 1?); we just check for the Ethernet
1685 * protocol type.
1686 */
1687 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1688
1689 gen_or(b0, b1);
1690 return b1;
1691
1692 default:
1693 if (proto <= ETHERMTU) {
1694 /*
1695 * This is an LLC SAP value, so the frames
1696 * that match would be 802.2 frames.
1697 * Check for the 802.2 protocol type
1698 * in the "Ethernet type" field, and
1699 * then check the DSAP.
1700 */
1701 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1702 LINUX_SLL_P_802_2);
1703 b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1704 (bpf_int32)proto);
1705 gen_and(b0, b1);
1706 return b1;
1707 } else {
1708 /*
1709 * This is an Ethernet type, so compare
1710 * the length/type field with it (if
1711 * the frame is an 802.2 frame, the length
1712 * field will be <= ETHERMTU, and, as
1713 * "proto" is > ETHERMTU, this test
1714 * will fail and the frame won't match,
1715 * which is what we want).
1716 */
1717 return gen_cmp(OR_LINK, off_linktype, BPF_H,
1718 (bpf_int32)proto);
1719 }
1720 }
1721 }
1722
1723 static void
1724 insert_radiotap_load_llprefixlen(b)
1725 struct block *b;
1726 {
1727 struct slist *s1, *s2;
1728
1729 /*
1730 * Prepend to the statements in this block code to load the
1731 * length of the radiotap header into the register assigned
1732 * to hold that length, if one has been assigned.
1733 */
1734 if (reg_ll_size != -1) {
1735 /*
1736 * The 2 bytes at offsets of 2 and 3 from the beginning
1737 * of the radiotap header are the length of the radiotap
1738 * header; unfortunately, it's little-endian, so we have
1739 * to load it a byte at a time and construct the value.
1740 */
1741
1742 /*
1743 * Load the high-order byte, at an offset of 3, shift it
1744 * left a byte, and put the result in the X register.
1745 */
1746 s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1747 s1->s.k = 3;
1748 s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1749 sappend(s1, s2);
1750 s2->s.k = 8;
1751 s2 = new_stmt(BPF_MISC|BPF_TAX);
1752 sappend(s1, s2);
1753
1754 /*
1755 * Load the next byte, at an offset of 2, and OR the
1756 * value from the X register into it.
1757 */
1758 s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1759 sappend(s1, s2);
1760 s2->s.k = 2;
1761 s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
1762 sappend(s1, s2);
1763
1764 /*
1765 * Now allocate a register to hold that value and store
1766 * it.
1767 */
1768 s2 = new_stmt(BPF_ST);
1769 s2->s.k = reg_ll_size;
1770 sappend(s1, s2);
1771
1772 /*
1773 * Now move it into the X register.
1774 */
1775 s2 = new_stmt(BPF_MISC|BPF_TAX);
1776 sappend(s1, s2);
1777
1778 /*
1779 * Now append all the existing statements in this
1780 * block to these statements.
1781 */
1782 sappend(s1, b->stmts);
1783 b->stmts = s1;
1784 }
1785 }
1786
1787
1788 static void
1789 insert_load_llprefixlen(b)
1790 struct block *b;
1791 {
1792 switch (linktype) {
1793
1794 case DLT_IEEE802_11_RADIO:
1795 insert_radiotap_load_llprefixlen(b);
1796 }
1797 }
1798
1799
1800 static struct slist *
1801 gen_radiotap_llprefixlen(void)
1802 {
1803 struct slist *s;
1804
1805 if (reg_ll_size == -1) {
1806 /*
1807 * We haven't yet assigned a register for the length
1808 * of the radiotap header; allocate one.
1809 */
1810 reg_ll_size = alloc_reg();
1811 }
1812
1813 /*
1814 * Load the register containing the radiotap length
1815 * into the X register.
1816 */
1817 s = new_stmt(BPF_LDX|BPF_MEM);
1818 s->s.k = reg_ll_size;
1819 return s;
1820 }
1821
1822 /*
1823 * Generate code to compute the link-layer header length, if necessary,
1824 * putting it into the X register, and to return either a pointer to a
1825 * "struct slist" for the list of statements in that code, or NULL if
1826 * no code is necessary.
1827 */
1828 static struct slist *
1829 gen_llprefixlen(void)
1830 {
1831 switch (linktype) {
1832
1833 case DLT_IEEE802_11_RADIO:
1834 return gen_radiotap_llprefixlen();
1835
1836 default:
1837 return NULL;
1838 }
1839 }
1840
1841 /*
1842 * Generate code to match a particular packet type by matching the
1843 * link-layer type field or fields in the 802.2 LLC header.
1844 *
1845 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1846 * value, if <= ETHERMTU.
1847 */
1848 static struct block *
1849 gen_linktype(proto)
1850 register int proto;
1851 {
1852 struct block *b0, *b1, *b2;
1853
1854 switch (linktype) {
1855
1856 case DLT_EN10MB:
1857 return gen_ether_linktype(proto);
1858 /*NOTREACHED*/
1859 break;
1860
1861 case DLT_C_HDLC:
1862 switch (proto) {
1863
1864 case LLCSAP_ISONS:
1865 proto = (proto << 8 | LLCSAP_ISONS);
1866 /* fall through */
1867
1868 default:
1869 return gen_cmp(OR_LINK, off_linktype, BPF_H,
1870 (bpf_int32)proto);
1871 /*NOTREACHED*/
1872 break;
1873 }
1874 break;
1875
1876 case DLT_FDDI:
1877 case DLT_IEEE802:
1878 case DLT_IEEE802_11:
1879 case DLT_IEEE802_11_RADIO_AVS:
1880 case DLT_IEEE802_11_RADIO:
1881 case DLT_PRISM_HEADER:
1882 case DLT_ATM_RFC1483:
1883 case DLT_ATM_CLIP:
1884 case DLT_IP_OVER_FC:
1885 return gen_llc_linktype(proto);
1886 /*NOTREACHED*/
1887 break;
1888
1889 case DLT_SUNATM:
1890 /*
1891 * If "is_lane" is set, check for a LANE-encapsulated
1892 * version of this protocol, otherwise check for an
1893 * LLC-encapsulated version of this protocol.
1894 *
1895 * We assume LANE means Ethernet, not Token Ring.
1896 */
1897 if (is_lane) {
1898 /*
1899 * Check that the packet doesn't begin with an
1900 * LE Control marker. (We've already generated
1901 * a test for LANE.)
1902 */
1903 b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
1904 0xFF00);
1905 gen_not(b0);
1906
1907 /*
1908 * Now generate an Ethernet test.
1909 */
1910 b1 = gen_ether_linktype(proto);
1911 gen_and(b0, b1);
1912 return b1;
1913 } else {
1914 /*
1915 * Check for LLC encapsulation and then check the
1916 * protocol.
1917 */
1918 b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
1919 b1 = gen_llc_linktype(proto);
1920 gen_and(b0, b1);
1921 return b1;
1922 }
1923 /*NOTREACHED*/
1924 break;
1925
1926 case DLT_LINUX_SLL:
1927 return gen_linux_sll_linktype(proto);
1928 /*NOTREACHED*/
1929 break;
1930
1931 case DLT_SLIP:
1932 case DLT_SLIP_BSDOS:
1933 case DLT_RAW:
1934 /*
1935 * These types don't provide any type field; packets
1936 * are always IP.
1937 *
1938 * XXX - for IPv4, check for a version number of 4, and,
1939 * for IPv6, check for a version number of 6?
1940 */
1941 switch (proto) {
1942
1943 case ETHERTYPE_IP:
1944 #ifdef INET6
1945 case ETHERTYPE_IPV6:
1946 #endif
1947 return gen_true(); /* always true */
1948
1949 default:
1950 return gen_false(); /* always false */
1951 }
1952 /*NOTREACHED*/
1953 break;
1954
1955 case DLT_PPP:
1956 case DLT_PPP_PPPD:
1957 case DLT_PPP_SERIAL:
1958 case DLT_PPP_ETHER:
1959 /*
1960 * We use Ethernet protocol types inside libpcap;
1961 * map them to the corresponding PPP protocol types.
1962 */
1963 switch (proto) {
1964
1965 case ETHERTYPE_IP:
1966 proto = PPP_IP;
1967 break;
1968
1969 #ifdef INET6
1970 case ETHERTYPE_IPV6:
1971 proto = PPP_IPV6;
1972 break;
1973 #endif
1974
1975 case ETHERTYPE_DN:
1976 proto = PPP_DECNET;
1977 break;
1978
1979 case ETHERTYPE_ATALK:
1980 proto = PPP_APPLE;
1981 break;
1982
1983 case ETHERTYPE_NS:
1984 proto = PPP_NS;
1985 break;
1986
1987 case LLCSAP_ISONS:
1988 proto = PPP_OSI;
1989 break;
1990
1991 case LLCSAP_8021D:
1992 /*
1993 * I'm assuming the "Bridging PDU"s that go
1994 * over PPP are Spanning Tree Protocol
1995 * Bridging PDUs.
1996 */
1997 proto = PPP_BRPDU;
1998 break;
1999
2000 case LLCSAP_IPX:
2001 proto = PPP_IPX;
2002 break;
2003 }
2004 break;
2005
2006 case DLT_PPP_BSDOS:
2007 /*
2008 * We use Ethernet protocol types inside libpcap;
2009 * map them to the corresponding PPP protocol types.
2010 */
2011 switch (proto) {
2012
2013 case ETHERTYPE_IP:
2014 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
2015 b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
2016 gen_or(b0, b1);
2017 b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
2018 gen_or(b1, b0);
2019 return b0;
2020
2021 #ifdef INET6
2022 case ETHERTYPE_IPV6:
2023 proto = PPP_IPV6;
2024 /* more to go? */
2025 break;
2026 #endif
2027
2028 case ETHERTYPE_DN:
2029 proto = PPP_DECNET;
2030 break;
2031
2032 case ETHERTYPE_ATALK:
2033 proto = PPP_APPLE;
2034 break;
2035
2036 case ETHERTYPE_NS:
2037 proto = PPP_NS;
2038 break;
2039
2040 case LLCSAP_ISONS:
2041 proto = PPP_OSI;
2042 break;
2043
2044 case LLCSAP_8021D:
2045 /*
2046 * I'm assuming the "Bridging PDU"s that go
2047 * over PPP are Spanning Tree Protocol
2048 * Bridging PDUs.
2049 */
2050 proto = PPP_BRPDU;
2051 break;
2052
2053 case LLCSAP_IPX:
2054 proto = PPP_IPX;
2055 break;
2056 }
2057 break;
2058
2059 case DLT_NULL:
2060 case DLT_LOOP:
2061 case DLT_ENC:
2062 /*
2063 * For DLT_NULL, the link-layer header is a 32-bit
2064 * word containing an AF_ value in *host* byte order,
2065 * and for DLT_ENC, the link-layer header begins
2066 * with a 32-bit work containing an AF_ value in
2067 * host byte order.
2068 *
2069 * In addition, if we're reading a saved capture file,
2070 * the host byte order in the capture may not be the
2071 * same as the host byte order on this machine.
2072 *
2073 * For DLT_LOOP, the link-layer header is a 32-bit
2074 * word containing an AF_ value in *network* byte order.
2075 *
2076 * XXX - AF_ values may, unfortunately, be platform-
2077 * dependent; for example, FreeBSD's AF_INET6 is 24
2078 * whilst NetBSD's and OpenBSD's is 26.
2079 *
2080 * This means that, when reading a capture file, just
2081 * checking for our AF_INET6 value won't work if the
2082 * capture file came from another OS.
2083 */
2084 switch (proto) {
2085
2086 case ETHERTYPE_IP:
2087 proto = AF_INET;
2088 break;
2089
2090 #ifdef INET6
2091 case ETHERTYPE_IPV6:
2092 proto = AF_INET6;
2093 break;
2094 #endif
2095
2096 default:
2097 /*
2098 * Not a type on which we support filtering.
2099 * XXX - support those that have AF_ values
2100 * #defined on this platform, at least?
2101 */
2102 return gen_false();
2103 }
2104
2105 if (linktype == DLT_NULL || linktype == DLT_ENC) {
2106 /*
2107 * The AF_ value is in host byte order, but
2108 * the BPF interpreter will convert it to
2109 * network byte order.
2110 *
2111 * If this is a save file, and it's from a
2112 * machine with the opposite byte order to
2113 * ours, we byte-swap the AF_ value.
2114 *
2115 * Then we run it through "htonl()", and
2116 * generate code to compare against the result.
2117 */
2118 if (bpf_pcap->sf.rfile != NULL &&
2119 bpf_pcap->sf.swapped)
2120 proto = SWAPLONG(proto);
2121 proto = htonl(proto);
2122 }
2123 return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
2124
2125 case DLT_PFLOG:
2126 /*
2127 * af field is host byte order in contrast to the rest of
2128 * the packet.
2129 */
2130 if (proto == ETHERTYPE_IP)
2131 return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2132 BPF_B, (bpf_int32)AF_INET));
2133 #ifdef INET6
2134 else if (proto == ETHERTYPE_IPV6)
2135 return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2136 BPF_B, (bpf_int32)AF_INET6));
2137 #endif /* INET6 */
2138 else
2139 return gen_false();
2140 /*NOTREACHED*/
2141 break;
2142
2143 case DLT_ARCNET:
2144 case DLT_ARCNET_LINUX:
2145 /*
2146 * XXX should we check for first fragment if the protocol
2147 * uses PHDS?
2148 */
2149 switch (proto) {
2150
2151 default:
2152 return gen_false();
2153
2154 #ifdef INET6
2155 case ETHERTYPE_IPV6:
2156 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2157 (bpf_int32)ARCTYPE_INET6));
2158 #endif /* INET6 */
2159
2160 case ETHERTYPE_IP:
2161 b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2162 (bpf_int32)ARCTYPE_IP);
2163 b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2164 (bpf_int32)ARCTYPE_IP_OLD);
2165 gen_or(b0, b1);
2166 return (b1);
2167
2168 case ETHERTYPE_ARP:
2169 b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2170 (bpf_int32)ARCTYPE_ARP);
2171 b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2172 (bpf_int32)ARCTYPE_ARP_OLD);
2173 gen_or(b0, b1);
2174 return (b1);
2175
2176 case ETHERTYPE_REVARP:
2177 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2178 (bpf_int32)ARCTYPE_REVARP));
2179
2180 case ETHERTYPE_ATALK:
2181 return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2182 (bpf_int32)ARCTYPE_ATALK));
2183 }
2184 /*NOTREACHED*/
2185 break;
2186
2187 case DLT_LTALK:
2188 switch (proto) {
2189 case ETHERTYPE_ATALK:
2190 return gen_true();
2191 default:
2192 return gen_false();
2193 }
2194 /*NOTREACHED*/
2195 break;
2196
2197 case DLT_FRELAY:
2198 /*
2199 * XXX - assumes a 2-byte Frame Relay header with
2200 * DLCI and flags. What if the address is longer?
2201 */
2202 switch (proto) {
2203
2204 case ETHERTYPE_IP:
2205 /*
2206 * Check for the special NLPID for IP.
2207 */
2208 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
2209
2210 #ifdef INET6
2211 case ETHERTYPE_IPV6:
2212 /*
2213 * Check for the special NLPID for IPv6.
2214 */
2215 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
2216 #endif
2217
2218 case LLCSAP_ISONS:
2219 /*
2220 * Check for several OSI protocols.
2221 *
2222 * Frame Relay packets typically have an OSI
2223 * NLPID at the beginning; we check for each
2224 * of them.
2225 *
2226 * What we check for is the NLPID and a frame
2227 * control field of UI, i.e. 0x03 followed
2228 * by the NLPID.
2229 */
2230 b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
2231 b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
2232 b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
2233 gen_or(b1, b2);
2234 gen_or(b0, b2);
2235 return b2;
2236
2237 default:
2238 return gen_false();
2239 }
2240 /*NOTREACHED*/
2241 break;
2242
2243 case DLT_JUNIPER_MLFR:
2244 case DLT_JUNIPER_MLPPP:
2245 case DLT_JUNIPER_ATM1:
2246 case DLT_JUNIPER_ATM2:
2247 case DLT_JUNIPER_PPPOE:
2248 case DLT_JUNIPER_PPPOE_ATM:
2249 case DLT_JUNIPER_GGSN:
2250 case DLT_JUNIPER_ES:
2251 case DLT_JUNIPER_MONITOR:
2252 case DLT_JUNIPER_SERVICES:
2253 /* just lets verify the magic number for now -
2254 * on ATM we may have up to 6 different encapsulations on the wire
2255 * and need a lot of heuristics to figure out that the payload
2256 * might be;
2257 *
2258 * FIXME encapsulation specific BPF_ filters
2259 */
2260 return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
2261
2262 case DLT_LINUX_IRDA:
2263 bpf_error("IrDA link-layer type filtering not implemented");
2264
2265 case DLT_DOCSIS:
2266 bpf_error("DOCSIS link-layer type filtering not implemented");
2267
2268 case DLT_LINUX_LAPD:
2269 bpf_error("LAPD link-layer type filtering not implemented");
2270 }
2271
2272 /*
2273 * All the types that have no encapsulation should either be
2274 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
2275 * all packets are IP packets, or should be handled in some
2276 * special case, if none of them are (if some are and some
2277 * aren't, the lack of encapsulation is a problem, as we'd
2278 * have to find some other way of determining the packet type).
2279 *
2280 * Therefore, if "off_linktype" is -1, there's an error.
2281 */
2282 if (off_linktype == (u_int)-1)
2283 abort();
2284
2285 /*
2286 * Any type not handled above should always have an Ethernet
2287 * type at an offset of "off_linktype". (PPP is partially
2288 * handled above - the protocol type is mapped from the
2289 * Ethernet and LLC types we use internally to the corresponding
2290 * PPP type - but the PPP type is always specified by a value
2291 * at "off_linktype", so we don't have to do the code generation
2292 * above.)
2293 */
2294 return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2295 }
2296
2297 /*
2298 * Check for an LLC SNAP packet with a given organization code and
2299 * protocol type; we check the entire contents of the 802.2 LLC and
2300 * snap headers, checking for DSAP and SSAP of SNAP and a control
2301 * field of 0x03 in the LLC header, and for the specified organization
2302 * code and protocol type in the SNAP header.
2303 */
2304 static struct block *
2305 gen_snap(orgcode, ptype, offset)
2306 bpf_u_int32 orgcode;
2307 bpf_u_int32 ptype;
2308 u_int offset;
2309 {
2310 u_char snapblock[8];
2311
2312 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
2313 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
2314 snapblock[2] = 0x03; /* control = UI */
2315 snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */
2316 snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */
2317 snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
2318 snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
2319 snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
2320 return gen_bcmp(OR_LINK, offset, 8, snapblock);
2321 }
2322
2323 /*
2324 * Generate code to match a particular packet type, for link-layer types
2325 * using 802.2 LLC headers.
2326 *
2327 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
2328 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
2329 *
2330 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2331 * value, if <= ETHERMTU. We use that to determine whether to
2332 * match the DSAP or both DSAP and LSAP or to check the OUI and
2333 * protocol ID in a SNAP header.
2334 */
2335 static struct block *
2336 gen_llc_linktype(proto)
2337 int proto;
2338 {
2339 /*
2340 * XXX - handle token-ring variable-length header.
2341 */
2342 switch (proto) {
2343
2344 case LLCSAP_IP:
2345 case LLCSAP_ISONS:
2346 case LLCSAP_NETBEUI:
2347 /*
2348 * XXX - should we check both the DSAP and the
2349 * SSAP, like this, or should we check just the
2350 * DSAP, as we do for other types <= ETHERMTU
2351 * (i.e., other SAP values)?
2352 */
2353 return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_u_int32)
2354 ((proto << 8) | proto));
2355
2356 case LLCSAP_IPX:
2357 /*
2358 * XXX - are there ever SNAP frames for IPX on
2359 * non-Ethernet 802.x networks?
2360 */
2361 return gen_cmp(OR_LINK, off_linktype, BPF_B,
2362 (bpf_int32)LLCSAP_IPX);
2363
2364 case ETHERTYPE_ATALK:
2365 /*
2366 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2367 * SNAP packets with an organization code of
2368 * 0x080007 (Apple, for Appletalk) and a protocol
2369 * type of ETHERTYPE_ATALK (Appletalk).
2370 *
2371 * XXX - check for an organization code of
2372 * encapsulated Ethernet as well?
2373 */
2374 return gen_snap(0x080007, ETHERTYPE_ATALK, off_linktype);
2375
2376 default:
2377 /*
2378 * XXX - we don't have to check for IPX 802.3
2379 * here, but should we check for the IPX Ethertype?
2380 */
2381 if (proto <= ETHERMTU) {
2382 /*
2383 * This is an LLC SAP value, so check
2384 * the DSAP.
2385 */
2386 return gen_cmp(OR_LINK, off_linktype, BPF_B,
2387 (bpf_int32)proto);
2388 } else {
2389 /*
2390 * This is an Ethernet type; we assume that it's
2391 * unlikely that it'll appear in the right place
2392 * at random, and therefore check only the
2393 * location that would hold the Ethernet type
2394 * in a SNAP frame with an organization code of
2395 * 0x000000 (encapsulated Ethernet).
2396 *
2397 * XXX - if we were to check for the SNAP DSAP and
2398 * LSAP, as per XXX, and were also to check for an
2399 * organization code of 0x000000 (encapsulated
2400 * Ethernet), we'd do
2401 *
2402 * return gen_snap(0x000000, proto,
2403 * off_linktype);
2404 *
2405 * here; for now, we don't, as per the above.
2406 * I don't know whether it's worth the extra CPU
2407 * time to do the right check or not.
2408 */
2409 return gen_cmp(OR_LINK, off_linktype+6, BPF_H,
2410 (bpf_int32)proto);
2411 }
2412 }
2413 }
2414
2415 static struct block *
2416 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
2417 bpf_u_int32 addr;
2418 bpf_u_int32 mask;
2419 int dir, proto;
2420 u_int src_off, dst_off;
2421 {
2422 struct block *b0, *b1;
2423 u_int offset;
2424
2425 switch (dir) {
2426
2427 case Q_SRC:
2428 offset = src_off;
2429 break;
2430
2431 case Q_DST:
2432 offset = dst_off;
2433 break;
2434
2435 case Q_AND:
2436 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2437 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2438 gen_and(b0, b1);
2439 return b1;
2440
2441 case Q_OR:
2442 case Q_DEFAULT:
2443 b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2444 b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2445 gen_or(b0, b1);
2446 return b1;
2447
2448 default:
2449 abort();
2450 }
2451 b0 = gen_linktype(proto);
2452 b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
2453 gen_and(b0, b1);
2454 return b1;
2455 }
2456
2457 #ifdef INET6
2458 static struct block *
2459 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
2460 struct in6_addr *addr;
2461 struct in6_addr *mask;
2462 int dir, proto;
2463 u_int src_off, dst_off;
2464 {
2465 struct block *b0, *b1;
2466 u_int offset;
2467 u_int32_t *a, *m;
2468
2469 switch (dir) {
2470
2471 case Q_SRC:
2472 offset = src_off;
2473 break;
2474
2475 case Q_DST:
2476 offset = dst_off;
2477 break;
2478
2479 case Q_AND:
2480 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2481 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2482 gen_and(b0, b1);
2483 return b1;
2484
2485 case Q_OR:
2486 case Q_DEFAULT:
2487 b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2488 b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2489 gen_or(b0, b1);
2490 return b1;
2491
2492 default:
2493 abort();
2494 }
2495 /* this order is important */
2496 a = (u_int32_t *)addr;
2497 m = (u_int32_t *)mask;
2498 b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
2499 b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
2500 gen_and(b0, b1);
2501 b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
2502 gen_and(b0, b1);
2503 b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
2504 gen_and(b0, b1);
2505 b0 = gen_linktype(proto);
2506 gen_and(b0, b1);
2507 return b1;
2508 }
2509 #endif /*INET6*/
2510
2511 static struct block *
2512 gen_ehostop(eaddr, dir)
2513 register const u_char *eaddr;
2514 register int dir;
2515 {
2516 register struct block *b0, *b1;
2517
2518 switch (dir) {
2519 case Q_SRC:
2520 return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
2521
2522 case Q_DST:
2523 return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
2524
2525 case Q_AND:
2526 b0 = gen_ehostop(eaddr, Q_SRC);
2527 b1 = gen_ehostop(eaddr, Q_DST);
2528 gen_and(b0, b1);
2529 return b1;
2530
2531 case Q_DEFAULT:
2532 case Q_OR:
2533 b0 = gen_ehostop(eaddr, Q_SRC);
2534 b1 = gen_ehostop(eaddr, Q_DST);
2535 gen_or(b0, b1);
2536 return b1;
2537 }
2538 abort();
2539 /* NOTREACHED */
2540 }
2541
2542 /*
2543 * Like gen_ehostop, but for DLT_FDDI
2544 */
2545 static struct block *
2546 gen_fhostop(eaddr, dir)
2547 register const u_char *eaddr;
2548 register int dir;
2549 {
2550 struct block *b0, *b1;
2551
2552 switch (dir) {
2553 case Q_SRC:
2554 #ifdef PCAP_FDDIPAD
2555 return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
2556 #else
2557 return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
2558 #endif
2559
2560 case Q_DST:
2561 #ifdef PCAP_FDDIPAD
2562 return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
2563 #else
2564 return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
2565 #endif
2566
2567 case Q_AND:
2568 b0 = gen_fhostop(eaddr, Q_SRC);
2569 b1 = gen_fhostop(eaddr, Q_DST);
2570 gen_and(b0, b1);
2571 return b1;
2572
2573 case Q_DEFAULT:
2574 case Q_OR:
2575 b0 = gen_fhostop(eaddr, Q_SRC);
2576 b1 = gen_fhostop(eaddr, Q_DST);
2577 gen_or(b0, b1);
2578 return b1;
2579 }
2580 abort();
2581 /* NOTREACHED */
2582 }
2583
2584 /*
2585 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2586 */
2587 static struct block *
2588 gen_thostop(eaddr, dir)
2589 register const u_char *eaddr;
2590 register int dir;
2591 {
2592 register struct block *b0, *b1;
2593
2594 switch (dir) {
2595 case Q_SRC:
2596 return gen_bcmp(OR_LINK, 8, 6, eaddr);
2597
2598 case Q_DST:
2599 return gen_bcmp(OR_LINK, 2, 6, eaddr);
2600
2601 case Q_AND:
2602 b0 = gen_thostop(eaddr, Q_SRC);
2603 b1 = gen_thostop(eaddr, Q_DST);
2604 gen_and(b0, b1);
2605 return b1;
2606
2607 case Q_DEFAULT:
2608 case Q_OR:
2609 b0 = gen_thostop(eaddr, Q_SRC);
2610 b1 = gen_thostop(eaddr, Q_DST);
2611 gen_or(b0, b1);
2612 return b1;
2613 }
2614 abort();
2615 /* NOTREACHED */
2616 }
2617
2618 /*
2619 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2620 */
2621 static struct block *
2622 gen_wlanhostop(eaddr, dir)
2623 register const u_char *eaddr;
2624 register int dir;
2625 {
2626 register struct block *b0, *b1, *b2;
2627 register struct slist *s;
2628
2629 switch (dir) {
2630 case Q_SRC:
2631 /*
2632 * Oh, yuk.
2633 *
2634 * For control frames, there is no SA.
2635 *
2636 * For management frames, SA is at an
2637 * offset of 10 from the beginning of
2638 * the packet.
2639 *
2640 * For data frames, SA is at an offset
2641 * of 10 from the beginning of the packet
2642 * if From DS is clear, at an offset of
2643 * 16 from the beginning of the packet
2644 * if From DS is set and To DS is clear,
2645 * and an offset of 24 from the beginning
2646 * of the packet if From DS is set and To DS
2647 * is set.
2648 */
2649
2650 /*
2651 * Generate the tests to be done for data frames
2652 * with From DS set.
2653 *
2654 * First, check for To DS set, i.e. check "link[1] & 0x01".
2655 */
2656 s = gen_load_a(OR_LINK, 1, BPF_B);
2657 b1 = new_block(JMP(BPF_JSET));
2658 b1->s.k = 0x01; /* To DS */
2659 b1->stmts = s;
2660
2661 /*
2662 * If To DS is set, the SA is at 24.
2663 */
2664 b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
2665 gen_and(b1, b0);
2666
2667 /*
2668 * Now, check for To DS not set, i.e. check
2669 * "!(link[1] & 0x01)".
2670 */
2671 s = gen_load_a(OR_LINK, 1, BPF_B);
2672 b2 = new_block(JMP(BPF_JSET));
2673 b2->s.k = 0x01; /* To DS */
2674 b2->stmts = s;
2675 gen_not(b2);
2676
2677 /*
2678 * If To DS is not set, the SA is at 16.
2679 */
2680 b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
2681 gen_and(b2, b1);
2682
2683 /*
2684 * Now OR together the last two checks. That gives
2685 * the complete set of checks for data frames with
2686 * From DS set.
2687 */
2688 gen_or(b1, b0);
2689
2690 /*
2691 * Now check for From DS being set, and AND that with
2692 * the ORed-together checks.
2693 */
2694 s = gen_load_a(OR_LINK, 1, BPF_B);
2695 b1 = new_block(JMP(BPF_JSET));
2696 b1->s.k = 0x02; /* From DS */
2697 b1->stmts = s;
2698 gen_and(b1, b0);
2699
2700 /*
2701 * Now check for data frames with From DS not set.
2702 */
2703 s = gen_load_a(OR_LINK, 1, BPF_B);
2704 b2 = new_block(JMP(BPF_JSET));
2705 b2->s.k = 0x02; /* From DS */
2706 b2->stmts = s;
2707 gen_not(b2);
2708
2709 /*
2710 * If From DS isn't set, the SA is at 10.
2711 */
2712 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
2713 gen_and(b2, b1);
2714
2715 /*
2716 * Now OR together the checks for data frames with
2717 * From DS not set and for data frames with From DS
2718 * set; that gives the checks done for data frames.
2719 */
2720 gen_or(b1, b0);
2721
2722 /*
2723 * Now check for a data frame.
2724 * I.e, check "link[0] & 0x08".
2725 */
2726 gen_load_a(OR_LINK, 0, BPF_B);
2727 b1 = new_block(JMP(BPF_JSET));
2728 b1->s.k = 0x08;
2729 b1->stmts = s;
2730
2731 /*
2732 * AND that with the checks done for data frames.
2733 */
2734 gen_and(b1, b0);
2735
2736 /*
2737 * If the high-order bit of the type value is 0, this
2738 * is a management frame.
2739 * I.e, check "!(link[0] & 0x08)".
2740 */
2741 s = gen_load_a(OR_LINK, 0, BPF_B);
2742 b2 = new_block(JMP(BPF_JSET));
2743 b2->s.k = 0x08;
2744 b2->stmts = s;
2745 gen_not(b2);
2746
2747 /*
2748 * For management frames, the SA is at 10.
2749 */
2750 b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
2751 gen_and(b2, b1);
2752
2753 /*
2754 * OR that with the checks done for data frames.
2755 * That gives the checks done for management and
2756 * data frames.
2757 */
2758 gen_or(b1, b0);
2759
2760 /*
2761 * If the low-order bit of the type value is 1,
2762 * this is either a control frame or a frame
2763 * with a reserved type, and thus not a
2764 * frame with an SA.
2765 *
2766 * I.e., check "!(link[0] & 0x04)".
2767 */
2768 s = gen_load_a(OR_LINK, 0, BPF_B);
2769 b1 = new_block(JMP(BPF_JSET));
2770 b1->s.k = 0x04;
2771 b1->stmts = s;
2772 gen_not(b1);
2773
2774 /*
2775 * AND that with the checks for data and management
2776 * frames.
2777 */
2778 gen_and(b1, b0);
2779 return b0;
2780
2781 case Q_DST:
2782 /*
2783 * Oh, yuk.
2784 *
2785 * For control frames, there is no DA.
2786 *
2787 * For management frames, DA is at an
2788 * offset of 4 from the beginning of
2789 * the packet.
2790 *
2791 * For data frames, DA is at an offset
2792 * of 4 from the beginning of the packet
2793 * if To DS is clear and at an offset of
2794 * 16 from the beginning of the packet
2795 * if To DS is set.
2796 */
2797
2798 /*
2799 * Generate the tests to be done for data frames.
2800 *
2801 * First, check for To DS set, i.e. "link[1] & 0x01".
2802 */
2803 s = gen_load_a(OR_LINK, 1, BPF_B);
2804 b1 = new_block(JMP(BPF_JSET));
2805 b1->s.k = 0x01; /* To DS */
2806 b1->stmts = s;
2807
2808 /*
2809 * If To DS is set, the DA is at 16.
2810 */
2811 b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
2812 gen_and(b1, b0);
2813
2814 /*
2815 * Now, check for To DS not set, i.e. check
2816 * "!(link[1] & 0x01)".
2817 */
2818 s = gen_load_a(OR_LINK, 1, BPF_B);
2819 b2 = new_block(JMP(BPF_JSET));
2820 b2->s.k = 0x01; /* To DS */
2821 b2->stmts = s;
2822 gen_not(b2);
2823
2824 /*
2825 * If To DS is not set, the DA is at 4.
2826 */
2827 b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
2828 gen_and(b2, b1);
2829
2830 /*
2831 * Now OR together the last two checks. That gives
2832 * the complete set of checks for data frames.
2833 */
2834 gen_or(b1, b0);
2835
2836 /*
2837 * Now check for a data frame.
2838 * I.e, check "link[0] & 0x08".
2839 */
2840 s = gen_load_a(OR_LINK, 0, BPF_B);
2841 b1 = new_block(JMP(BPF_JSET));
2842 b1->s.k = 0x08;
2843 b1->stmts = s;
2844
2845 /*
2846 * AND that with the checks done for data frames.
2847 */
2848 gen_and(b1, b0);
2849
2850 /*
2851 * If the high-order bit of the type value is 0, this
2852 * is a management frame.
2853 * I.e, check "!(link[0] & 0x08)".
2854 */
2855 s = gen_load_a(OR_LINK, 0, BPF_B);
2856 b2 = new_block(JMP(BPF_JSET));
2857 b2->s.k = 0x08;
2858 b2->stmts = s;
2859 gen_not(b2);
2860
2861 /*
2862 * For management frames, the DA is at 4.
2863 */
2864 b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
2865 gen_and(b2, b1);
2866
2867 /*
2868 * OR that with the checks done for data frames.
2869 * That gives the checks done for management and
2870 * data frames.
2871 */
2872 gen_or(b1, b0);
2873
2874 /*
2875 * If the low-order bit of the type value is 1,
2876 * this is either a control frame or a frame
2877 * with a reserved type, and thus not a
2878 * frame with an SA.
2879 *
2880 * I.e., check "!(link[0] & 0x04)".
2881 */
2882 s = gen_load_a(OR_LINK, 0, BPF_B);
2883 b1 = new_block(JMP(BPF_JSET));
2884 b1->s.k = 0x04;
2885 b1->stmts = s;
2886 gen_not(b1);
2887
2888 /*
2889 * AND that with the checks for data and management
2890 * frames.
2891 */
2892 gen_and(b1, b0);
2893 return b0;
2894
2895 case Q_AND:
2896 b0 = gen_wlanhostop(eaddr, Q_SRC);
2897 b1 = gen_wlanhostop(eaddr, Q_DST);
2898 gen_and(b0, b1);
2899 return b1;
2900
2901 case Q_DEFAULT:
2902 case Q_OR:
2903 b0 = gen_wlanhostop(eaddr, Q_SRC);
2904 b1 = gen_wlanhostop(eaddr, Q_DST);
2905 gen_or(b0, b1);
2906 return b1;
2907 }
2908 abort();
2909 /* NOTREACHED */
2910 }
2911
2912 /*
2913 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
2914 * (We assume that the addresses are IEEE 48-bit MAC addresses,
2915 * as the RFC states.)
2916 */
2917 static struct block *
2918 gen_ipfchostop(eaddr, dir)
2919 register const u_char *eaddr;
2920 register int dir;
2921 {
2922 register struct block *b0, *b1;
2923
2924 switch (dir) {
2925 case Q_SRC:
2926 return gen_bcmp(OR_LINK, 10, 6, eaddr);
2927
2928 case Q_DST:
2929 return gen_bcmp(OR_LINK, 2, 6, eaddr);
2930
2931 case Q_AND:
2932 b0 = gen_ipfchostop(eaddr, Q_SRC);
2933 b1 = gen_ipfchostop(eaddr, Q_DST);
2934 gen_and(b0, b1);
2935 return b1;
2936
2937 case Q_DEFAULT:
2938 case Q_OR:
2939 b0 = gen_ipfchostop(eaddr, Q_SRC);
2940 b1 = gen_ipfchostop(eaddr, Q_DST);
2941 gen_or(b0, b1);
2942 return b1;
2943 }
2944 abort();
2945 /* NOTREACHED */
2946 }
2947
2948 /*
2949 * This is quite tricky because there may be pad bytes in front of the
2950 * DECNET header, and then there are two possible data packet formats that
2951 * carry both src and dst addresses, plus 5 packet types in a format that
2952 * carries only the src node, plus 2 types that use a different format and
2953 * also carry just the src node.
2954 *
2955 * Yuck.
2956 *
2957 * Instead of doing those all right, we just look for data packets with
2958 * 0 or 1 bytes of padding. If you want to look at other packets, that
2959 * will require a lot more hacking.
2960 *
2961 * To add support for filtering on DECNET "areas" (network numbers)
2962 * one would want to add a "mask" argument to this routine. That would
2963 * make the filter even more inefficient, although one could be clever
2964 * and not generate masking instructions if the mask is 0xFFFF.
2965 */
2966 static struct block *
2967 gen_dnhostop(addr, dir)
2968 bpf_u_int32 addr;
2969 int dir;
2970 {
2971 struct block *b0, *b1, *b2, *tmp;
2972 u_int offset_lh; /* offset if long header is received */
2973 u_int offset_sh; /* offset if short header is received */
2974
2975 switch (dir) {
2976
2977 case Q_DST:
2978 offset_sh = 1; /* follows flags */
2979 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
2980 break;
2981
2982 case Q_SRC:
2983 offset_sh = 3; /* follows flags, dstnode */
2984 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
2985 break;
2986
2987 case Q_AND:
2988 /* Inefficient because we do our Calvinball dance twice */
2989 b0 = gen_dnhostop(addr, Q_SRC);
2990 b1 = gen_dnhostop(addr, Q_DST);
2991 gen_and(b0, b1);
2992 return b1;
2993
2994 case Q_OR:
2995 case Q_DEFAULT:
2996 /* Inefficient because we do our Calvinball dance twice */
2997 b0 = gen_dnhostop(addr, Q_SRC);
2998 b1 = gen_dnhostop(addr, Q_DST);
2999 gen_or(b0, b1);
3000 return b1;
3001
3002 case Q_ISO:
3003 bpf_error("ISO host filtering not implemented");
3004
3005 default:
3006 abort();
3007 }
3008 b0 = gen_linktype(ETHERTYPE_DN);
3009 /* Check for pad = 1, long header case */
3010 tmp = gen_mcmp(OR_NET, 2, BPF_H,
3011 (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
3012 b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
3013 BPF_H, (bpf_int32)ntohs(addr));
3014 gen_and(tmp, b1);
3015 /* Check for pad = 0, long header case */
3016 tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
3017 b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs(addr));
3018 gen_and(tmp, b2);
3019 gen_or(b2, b1);
3020 /* Check for pad = 1, short header case */
3021 tmp = gen_mcmp(OR_NET, 2, BPF_H,
3022 (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
3023 b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
3024 gen_and(tmp, b2);
3025 gen_or(b2, b1);
3026 /* Check for pad = 0, short header case */
3027 tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
3028 b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
3029 gen_and(tmp, b2);
3030 gen_or(b2, b1);
3031
3032 /* Combine with test for linktype */
3033 gen_and(b0, b1);
3034 return b1;
3035 }
3036
3037 static struct block *
3038 gen_host(addr, mask, proto, dir)
3039 bpf_u_int32 addr;
3040 bpf_u_int32 mask;
3041 int proto;
3042 int dir;
3043 {
3044 struct block *b0, *b1;
3045
3046 switch (proto) {
3047
3048 case Q_DEFAULT:
3049 b0 = gen_host(addr, mask, Q_IP, dir);
3050 if (off_linktype != (u_int)-1) {
3051 b1 = gen_host(addr, mask, Q_ARP, dir);
3052 gen_or(b0, b1);
3053 b0 = gen_host(addr, mask, Q_RARP, dir);
3054 gen_or(b1, b0);
3055 }
3056 return b0;
3057
3058 case Q_IP:
3059 return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
3060
3061 case Q_RARP:
3062 return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
3063
3064 case Q_ARP:
3065 return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
3066
3067 case Q_TCP:
3068 bpf_error("'tcp' modifier applied to host");
3069
3070 case Q_SCTP:
3071 bpf_error("'sctp' modifier applied to host");
3072
3073 case Q_UDP:
3074 bpf_error("'udp' modifier applied to host");
3075
3076 case Q_ICMP:
3077 bpf_error("'icmp' modifier applied to host");
3078
3079 case Q_IGMP:
3080 bpf_error("'igmp' modifier applied to host");
3081
3082 case Q_IGRP:
3083 bpf_error("'igrp' modifier applied to host");
3084
3085 case Q_PIM:
3086 bpf_error("'pim' modifier applied to host");
3087
3088 case Q_VRRP:
3089 bpf_error("'vrrp' modifier applied to host");
3090
3091 case Q_ATALK:
3092 bpf_error("ATALK host filtering not implemented");
3093
3094 case Q_AARP:
3095 bpf_error("AARP host filtering not implemented");
3096
3097 case Q_DECNET:
3098 return gen_dnhostop(addr, dir);
3099
3100 case Q_SCA:
3101 bpf_error("SCA host filtering not implemented");
3102
3103 case Q_LAT:
3104 bpf_error("LAT host filtering not implemented");
3105
3106 case Q_MOPDL:
3107 bpf_error("MOPDL host filtering not implemented");
3108
3109 case Q_MOPRC:
3110 bpf_error("MOPRC host filtering not implemented");
3111
3112 #ifdef INET6
3113 case Q_IPV6:
3114 bpf_error("'ip6' modifier applied to ip host");
3115
3116 case Q_ICMPV6:
3117 bpf_error("'icmp6' modifier applied to host");
3118 #endif /* INET6 */
3119
3120 case Q_AH:
3121 bpf_error("'ah' modifier applied to host");
3122
3123 case Q_ESP:
3124 bpf_error("'esp' modifier applied to host");
3125
3126 case Q_ISO:
3127 bpf_error("ISO host filtering not implemented");
3128
3129 case Q_ESIS:
3130 bpf_error("'esis' modifier applied to host");
3131
3132 case Q_ISIS:
3133 bpf_error("'isis' modifier applied to host");
3134
3135 case Q_CLNP:
3136 bpf_error("'clnp' modifier applied to host");
3137
3138 case Q_STP:
3139 bpf_error("'stp' modifier applied to host");
3140
3141 case Q_IPX:
3142 bpf_error("IPX host filtering not implemented");
3143
3144 case Q_NETBEUI:
3145 bpf_error("'netbeui' modifier applied to host");
3146
3147 case Q_RADIO:
3148 bpf_error("'radio' modifier applied to host");
3149
3150 default:
3151 abort();
3152 }
3153 /* NOTREACHED */
3154 }
3155
3156 #ifdef INET6
3157 static struct block *
3158 gen_host6(addr, mask, proto, dir)
3159 struct in6_addr *addr;
3160 struct in6_addr *mask;
3161 int proto;
3162 int dir;
3163 {
3164 switch (proto) {
3165
3166 case Q_DEFAULT:
3167 return gen_host6(addr, mask, Q_IPV6, dir);
3168
3169 case Q_IP:
3170 bpf_error("'ip' modifier applied to ip6 host");
3171
3172 case Q_RARP:
3173 bpf_error("'rarp' modifier applied to ip6 host");
3174
3175 case Q_ARP:
3176 bpf_error("'arp' modifier applied to ip6 host");
3177
3178 case Q_SCTP:
3179 bpf_error("'sctp' modifier applied to host");
3180
3181 case Q_TCP:
3182 bpf_error("'tcp' modifier applied to host");
3183
3184 case Q_UDP:
3185 bpf_error("'udp' modifier applied to host");
3186
3187 case Q_ICMP:
3188 bpf_error("'icmp' modifier applied to host");
3189
3190 case Q_IGMP:
3191 bpf_error("'igmp' modifier applied to host");
3192
3193 case Q_IGRP:
3194 bpf_error("'igrp' modifier applied to host");
3195
3196 case Q_PIM:
3197 bpf_error("'pim' modifier applied to host");
3198
3199 case Q_VRRP:
3200 bpf_error("'vrrp' modifier applied to host");
3201
3202 case Q_ATALK:
3203 bpf_error("ATALK host filtering not implemented");
3204
3205 case Q_AARP:
3206 bpf_error("AARP host filtering not implemented");
3207
3208 case Q_DECNET:
3209 bpf_error("'decnet' modifier applied to ip6 host");
3210
3211 case Q_SCA:
3212 bpf_error("SCA host filtering not implemented");
3213
3214 case Q_LAT:
3215 bpf_error("LAT host filtering not implemented");
3216
3217 case Q_MOPDL:
3218 bpf_error("MOPDL host filtering not implemented");
3219
3220 case Q_MOPRC:
3221 bpf_error("MOPRC host filtering not implemented");
3222
3223 case Q_IPV6:
3224 return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
3225
3226 case Q_ICMPV6:
3227 bpf_error("'icmp6' modifier applied to host");
3228
3229 case Q_AH:
3230 bpf_error("'ah' modifier applied to host");
3231
3232 case Q_ESP:
3233 bpf_error("'esp' modifier applied to host");
3234
3235 case Q_ISO:
3236 bpf_error("ISO host filtering not implemented");
3237
3238 case Q_ESIS:
3239 bpf_error("'esis' modifier applied to host");
3240
3241 case Q_ISIS:
3242 bpf_error("'isis' modifier applied to host");
3243
3244 case Q_CLNP:
3245 bpf_error("'clnp' modifier applied to host");
3246
3247 case Q_STP:
3248 bpf_error("'stp' modifier applied to host");
3249
3250 case Q_IPX:
3251 bpf_error("IPX host filtering not implemented");
3252
3253 case Q_NETBEUI:
3254 bpf_error("'netbeui' modifier applied to host");
3255
3256 case Q_RADIO:
3257 bpf_error("'radio' modifier applied to host");
3258
3259 default:
3260 abort();
3261 }
3262 /* NOTREACHED */
3263 }
3264 #endif /*INET6*/
3265
3266 #ifndef INET6
3267 static struct block *
3268 gen_gateway(eaddr, alist, proto, dir)
3269 const u_char *eaddr;
3270 bpf_u_int32 **alist;
3271 int proto;
3272 int dir;
3273 {
3274 struct block *b0, *b1, *tmp;
3275
3276 if (dir != 0)
3277 bpf_error("direction applied to 'gateway'");
3278
3279 switch (proto) {
3280 case Q_DEFAULT:
3281 case Q_IP:
3282 case Q_ARP:
3283 case Q_RARP:
3284 if (linktype == DLT_EN10MB)
3285 b0 = gen_ehostop(eaddr, Q_OR);
3286 else if (linktype == DLT_FDDI)
3287 b0 = gen_fhostop(eaddr, Q_OR);
3288 else if (linktype == DLT_IEEE802)
3289 b0 = gen_thostop(eaddr, Q_OR);
3290 else if (linktype == DLT_IEEE802_11 ||
3291 linktype == DLT_IEEE802_11_RADIO_AVS ||
3292 linktype == DLT_IEEE802_11_RADIO ||
3293 linktype == DLT_PRISM_HEADER)
3294 b0 = gen_wlanhostop(eaddr, Q_OR);
3295 else if (linktype == DLT_SUNATM && is_lane) {
3296 /*
3297 * Check that the packet doesn't begin with an
3298 * LE Control marker. (We've already generated
3299 * a test for LANE.)
3300 */
3301 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3302 0xFF00);
3303 gen_not(b1);
3304
3305 /*
3306 * Now check the MAC address.
3307 */
3308 b0 = gen_ehostop(eaddr, Q_OR);
3309 gen_and(b1, b0);
3310 } else if (linktype == DLT_IP_OVER_FC)
3311 b0 = gen_ipfchostop(eaddr, Q_OR);
3312 else
3313 bpf_error(
3314 "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
3315
3316 b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR);
3317 while (*alist) {
3318 tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR);
3319 gen_or(b1, tmp);
3320 b1 = tmp;
3321 }
3322 gen_not(b1);
3323 gen_and(b0, b1);
3324 return b1;
3325 }
3326 bpf_error("illegal modifier of 'gateway'");
3327 /* NOTREACHED */
3328 }
3329 #endif
3330
3331 struct block *
3332 gen_proto_abbrev(proto)
3333 int proto;
3334 {
3335 struct block *b0;
3336 struct block *b1;
3337
3338 switch (proto) {
3339
3340 case Q_SCTP:
3341 b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
3342 #ifdef INET6
3343 b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
3344 gen_or(b0, b1);
3345 #endif
3346 break;
3347
3348 case Q_TCP:
3349 b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
3350 #ifdef INET6
3351 b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
3352 gen_or(b0, b1);
3353 #endif
3354 break;
3355
3356 case Q_UDP:
3357 b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
3358 #ifdef INET6
3359 b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
3360 gen_or(b0, b1);
3361 #endif
3362 break;
3363
3364 case Q_ICMP:
3365 b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
3366 break;
3367
3368 #ifndef IPPROTO_IGMP
3369 #define IPPROTO_IGMP 2
3370 #endif
3371
3372 case Q_IGMP:
3373 b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
3374 break;
3375
3376 #ifndef IPPROTO_IGRP
3377 #define IPPROTO_IGRP 9
3378 #endif
3379 case Q_IGRP:
3380 b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
3381 break;
3382
3383 #ifndef IPPROTO_PIM
3384 #define IPPROTO_PIM 103
3385 #endif
3386
3387 case Q_PIM:
3388 b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
3389 #ifdef INET6
3390 b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
3391 gen_or(b0, b1);
3392 #endif
3393 break;
3394
3395 #ifndef IPPROTO_VRRP
3396 #define IPPROTO_VRRP 112
3397 #endif
3398
3399 case Q_VRRP:
3400 b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
3401 break;
3402
3403 case Q_IP:
3404 b1 = gen_linktype(ETHERTYPE_IP);
3405 break;
3406
3407 case Q_ARP:
3408 b1 = gen_linktype(ETHERTYPE_ARP);
3409 break;
3410
3411 case Q_RARP:
3412 b1 = gen_linktype(ETHERTYPE_REVARP);
3413 break;
3414
3415 case Q_LINK:
3416 bpf_error("link layer applied in wrong context");
3417
3418 case Q_ATALK:
3419 b1 = gen_linktype(ETHERTYPE_ATALK);
3420 break;
3421
3422 case Q_AARP:
3423 b1 = gen_linktype(ETHERTYPE_AARP);
3424 break;
3425
3426 case Q_DECNET:
3427 b1 = gen_linktype(ETHERTYPE_DN);
3428 break;
3429
3430 case Q_SCA:
3431 b1 = gen_linktype(ETHERTYPE_SCA);
3432 break;
3433
3434 case Q_LAT:
3435 b1 = gen_linktype(ETHERTYPE_LAT);
3436 break;
3437
3438 case Q_MOPDL:
3439 b1 = gen_linktype(ETHERTYPE_MOPDL);
3440 break;
3441
3442 case Q_MOPRC:
3443 b1 = gen_linktype(ETHERTYPE_MOPRC);
3444 break;
3445
3446 #ifdef INET6
3447 case Q_IPV6:
3448 b1 = gen_linktype(ETHERTYPE_IPV6);
3449 break;
3450
3451 #ifndef IPPROTO_ICMPV6
3452 #define IPPROTO_ICMPV6 58
3453 #endif
3454 case Q_ICMPV6:
3455 b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
3456 break;
3457 #endif /* INET6 */
3458
3459 #ifndef IPPROTO_AH
3460 #define IPPROTO_AH 51
3461 #endif
3462 case Q_AH:
3463 b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
3464 #ifdef INET6
3465 b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
3466 gen_or(b0, b1);
3467 #endif
3468 break;
3469
3470 #ifndef IPPROTO_ESP
3471 #define IPPROTO_ESP 50
3472 #endif
3473 case Q_ESP:
3474 b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
3475 #ifdef INET6
3476 b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
3477 gen_or(b0, b1);
3478 #endif
3479 break;
3480
3481 case Q_ISO:
3482 b1 = gen_linktype(LLCSAP_ISONS);
3483 break;
3484
3485 case Q_ESIS:
3486 b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
3487 break;
3488
3489 case Q_ISIS:
3490 b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
3491 break;
3492
3493 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
3494 b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3495 b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3496 gen_or(b0, b1);
3497 b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3498 gen_or(b0, b1);
3499 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3500 gen_or(b0, b1);
3501 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3502 gen_or(b0, b1);
3503 break;
3504
3505 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
3506 b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3507 b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3508 gen_or(b0, b1);
3509 b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3510 gen_or(b0, b1);
3511 b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3512 gen_or(b0, b1);
3513 b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3514 gen_or(b0, b1);
3515 break;
3516
3517 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
3518 b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3519 b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3520 gen_or(b0, b1);
3521 b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
3522 gen_or(b0, b1);
3523 break;
3524
3525 case Q_ISIS_LSP:
3526 b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3527 b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3528 gen_or(b0, b1);
3529 break;
3530
3531 case Q_ISIS_SNP:
3532 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3533 b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3534 gen_or(b0, b1);
3535 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3536 gen_or(b0, b1);
3537 b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3538 gen_or(b0, b1);
3539 break;
3540
3541 case Q_ISIS_CSNP:
3542 b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3543 b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3544 gen_or(b0, b1);
3545 break;
3546
3547 case Q_ISIS_PSNP:
3548 b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3549 b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3550 gen_or(b0, b1);
3551 break;
3552
3553 case Q_CLNP:
3554 b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
3555 break;
3556
3557 case Q_STP:
3558 b1 = gen_linktype(LLCSAP_8021D);
3559 break;
3560
3561 case Q_IPX:
3562 b1 = gen_linktype(LLCSAP_IPX);
3563 break;
3564
3565 case Q_NETBEUI:
3566 b1 = gen_linktype(LLCSAP_NETBEUI);
3567 break;
3568
3569 case Q_RADIO:
3570 bpf_error("'radio' is not a valid protocol type");
3571
3572 default:
3573 abort();
3574 }
3575 return b1;
3576 }
3577
3578 static struct block *
3579 gen_ipfrag()
3580 {
3581 struct slist *s;
3582 struct block *b;
3583
3584 /* not ip frag */
3585 s = gen_load_a(OR_NET, 6, BPF_H);
3586 b = new_block(JMP(BPF_JSET));
3587 b->s.k = 0x1fff;
3588 b->stmts = s;
3589 gen_not(b);
3590
3591 return b;
3592 }
3593
3594 /*
3595 * Generate a comparison to a port value in the transport-layer header
3596 * at the specified offset from the beginning of that header.
3597 *
3598 * XXX - this handles a variable-length prefix preceding the link-layer
3599 * header, such as the radiotap or AVS radio prefix, but doesn't handle
3600 * variable-length link-layer headers (such as Token Ring or 802.11
3601 * headers).
3602 */
3603 static struct block *
3604 gen_portatom(off, v)
3605 int off;
3606 bpf_int32 v;
3607 {
3608 return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
3609 }
3610
3611 #ifdef INET6
3612 static struct block *
3613 gen_portatom6(off, v)
3614 int off;
3615 bpf_int32 v;
3616 {
3617 return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
3618 }
3619 #endif/*INET6*/
3620
3621 struct block *
3622 gen_portop(port, proto, dir)
3623 int port, proto, dir;
3624 {
3625 struct block *b0, *b1, *tmp;
3626
3627 /* ip proto 'proto' */
3628 tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
3629 b0 = gen_ipfrag();
3630 gen_and(tmp, b0);
3631
3632 switch (dir) {
3633 case Q_SRC:
3634 b1 = gen_portatom(0, (bpf_int32)port);
3635 break;
3636
3637 case Q_DST:
3638 b1 = gen_portatom(2, (bpf_int32)port);
3639 break;
3640
3641 case Q_OR:
3642 case Q_DEFAULT:
3643 tmp = gen_portatom(0, (bpf_int32)port);
3644 b1 = gen_portatom(2, (bpf_int32)port);
3645 gen_or(tmp, b1);
3646 break;
3647
3648 case Q_AND:
3649 tmp = gen_portatom(0, (bpf_int32)port);
3650 b1 = gen_portatom(2, (bpf_int32)port);
3651 gen_and(tmp, b1);
3652 break;
3653
3654 default:
3655 abort();
3656 }
3657 gen_and(b0, b1);
3658
3659 return b1;
3660 }
3661
3662 static struct block *
3663 gen_port(port, ip_proto, dir)
3664 int port;
3665 int ip_proto;
3666 int dir;
3667 {
3668 struct block *b0, *b1, *tmp;
3669
3670 /*
3671 * ether proto ip
3672 *
3673 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3674 * not LLC encapsulation with LLCSAP_IP.
3675 *
3676 * For IEEE 802 networks - which includes 802.5 token ring
3677 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3678 * says that SNAP encapsulation is used, not LLC encapsulation
3679 * with LLCSAP_IP.
3680 *
3681 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3682 * RFC 2225 say that SNAP encapsulation is used, not LLC
3683 * encapsulation with LLCSAP_IP.
3684 *
3685 * So we always check for ETHERTYPE_IP.
3686 */
3687 b0 = gen_linktype(ETHERTYPE_IP);
3688
3689 switch (ip_proto) {
3690 case IPPROTO_UDP:
3691 case IPPROTO_TCP:
3692 case IPPROTO_SCTP:
3693 b1 = gen_portop(port, ip_proto, dir);
3694 break;
3695
3696 case PROTO_UNDEF:
3697 tmp = gen_portop(port, IPPROTO_TCP, dir);
3698 b1 = gen_portop(port, IPPROTO_UDP, dir);
3699 gen_or(tmp, b1);
3700 tmp = gen_portop(port, IPPROTO_SCTP, dir);
3701 gen_or(tmp, b1);
3702 break;
3703
3704 default:
3705 abort();
3706 }
3707 gen_and(b0, b1);
3708 return b1;
3709 }
3710
3711 #ifdef INET6
3712 struct block *
3713 gen_portop6(port, proto, dir)
3714 int port, proto, dir;
3715 {
3716 struct block *b0, *b1, *tmp;
3717
3718 /* ip6 proto 'proto' */
3719 b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
3720
3721 switch (dir) {
3722 case Q_SRC:
3723 b1 = gen_portatom6(0, (bpf_int32)port);
3724 break;
3725
3726 case Q_DST:
3727 b1 = gen_portatom6(2, (bpf_int32)port);
3728 break;
3729
3730 case Q_OR:
3731 case Q_DEFAULT:
3732 tmp = gen_portatom6(0, (bpf_int32)port);
3733 b1 = gen_portatom6(2, (bpf_int32)port);
3734 gen_or(tmp, b1);
3735 break;
3736
3737 case Q_AND:
3738 tmp = gen_portatom6(0, (bpf_int32)port);
3739 b1 = gen_portatom6(2, (bpf_int32)port);
3740 gen_and(tmp, b1);
3741 break;
3742
3743 default:
3744 abort();
3745 }
3746 gen_and(b0, b1);
3747
3748 return b1;
3749 }
3750
3751 static struct block *
3752 gen_port6(port, ip_proto, dir)
3753 int port;
3754 int ip_proto;
3755 int dir;
3756 {
3757 struct block *b0, *b1, *tmp;
3758
3759 /* link proto ip6 */
3760 b0 = gen_linktype(ETHERTYPE_IPV6);
3761
3762 switch (ip_proto) {
3763 case IPPROTO_UDP:
3764 case IPPROTO_TCP:
3765 case IPPROTO_SCTP:
3766 b1 = gen_portop6(port, ip_proto, dir);
3767 break;
3768
3769 case PROTO_UNDEF:
3770 tmp = gen_portop6(port, IPPROTO_TCP, dir);
3771 b1 = gen_portop6(port, IPPROTO_UDP, dir);
3772 gen_or(tmp, b1);
3773 tmp = gen_portop6(port, IPPROTO_SCTP, dir);
3774 gen_or(tmp, b1);
3775 break;
3776
3777 default:
3778 abort();
3779 }
3780 gen_and(b0, b1);
3781 return b1;
3782 }
3783 #endif /* INET6 */
3784
3785 /* gen_portrange code */
3786 static struct block *
3787 gen_portrangeatom(off, v1, v2)
3788 int off;
3789 bpf_int32 v1, v2;
3790 {
3791 struct block *b1, *b2;
3792
3793 if (v1 > v2) {
3794 /*
3795 * Reverse the order of the ports, so v1 is the lower one.
3796 */
3797 bpf_int32 vtemp;
3798
3799 vtemp = v1;
3800 v1 = v2;
3801 v2 = vtemp;
3802 }
3803
3804 b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
3805 b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
3806
3807 gen_and(b1, b2);
3808
3809 return b2;
3810 }
3811
3812 struct block *
3813 gen_portrangeop(port1, port2, proto, dir)
3814 int port1, port2;
3815 int proto;
3816 int dir;
3817 {
3818 struct block *b0, *b1, *tmp;
3819
3820 /* ip proto 'proto' */
3821 tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
3822 b0 = gen_ipfrag();
3823 gen_and(tmp, b0);
3824
3825 switch (dir) {
3826 case Q_SRC:
3827 b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3828 break;
3829
3830 case Q_DST:
3831 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3832 break;
3833
3834 case Q_OR:
3835 case Q_DEFAULT:
3836 tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3837 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3838 gen_or(tmp, b1);
3839 break;
3840
3841 case Q_AND:
3842 tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3843 b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3844 gen_and(tmp, b1);
3845 break;
3846
3847 default:
3848 abort();
3849 }
3850 gen_and(b0, b1);
3851
3852 return b1;
3853 }
3854
3855 static struct block *
3856 gen_portrange(port1, port2, ip_proto, dir)
3857 int port1, port2;
3858 int ip_proto;
3859 int dir;
3860 {
3861 struct block *b0, *b1, *tmp;
3862
3863 /* link proto ip */
3864 b0 = gen_linktype(ETHERTYPE_IP);
3865
3866 switch (ip_proto) {
3867 case IPPROTO_UDP:
3868 case IPPROTO_TCP:
3869 case IPPROTO_SCTP:
3870 b1 = gen_portrangeop(port1, port2, ip_proto, dir);
3871 break;
3872
3873 case PROTO_UNDEF:
3874 tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
3875 b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
3876 gen_or(tmp, b1);
3877 tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
3878 gen_or(tmp, b1);
3879 break;
3880
3881 default:
3882 abort();
3883 }
3884 gen_and(b0, b1);
3885 return b1;
3886 }
3887
3888 #ifdef INET6
3889 static struct block *
3890 gen_portrangeatom6(off, v1, v2)
3891 int off;
3892 bpf_int32 v1, v2;
3893 {
3894 struct block *b1, *b2;
3895
3896 if (v1 > v2) {
3897 /*
3898 * Reverse the order of the ports, so v1 is the lower one.
3899 */
3900 bpf_int32 vtemp;
3901
3902 vtemp = v1;
3903 v1 = v2;
3904 v2 = vtemp;
3905 }
3906
3907 b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
3908 b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
3909
3910 gen_and(b1, b2);
3911
3912 return b2;
3913 }
3914
3915 struct block *
3916 gen_portrangeop6(port1, port2, proto, dir)
3917 int port1, port2;
3918 int proto;
3919 int dir;
3920 {
3921 struct block *b0, *b1, *tmp;
3922
3923 /* ip6 proto 'proto' */
3924 b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
3925
3926 switch (dir) {
3927 case Q_SRC:
3928 b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3929 break;
3930
3931 case Q_DST:
3932 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3933 break;
3934
3935 case Q_OR:
3936 case Q_DEFAULT:
3937 tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3938 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3939 gen_or(tmp, b1);
3940 break;
3941
3942 case Q_AND:
3943 tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3944 b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3945 gen_and(tmp, b1);
3946 break;
3947
3948 default:
3949 abort();
3950 }
3951 gen_and(b0, b1);
3952
3953 return b1;
3954 }
3955
3956 static struct block *
3957 gen_portrange6(port1, port2, ip_proto, dir)
3958 int port1, port2;
3959 int ip_proto;
3960 int dir;
3961 {
3962 struct block *b0, *b1, *tmp;
3963
3964 /* link proto ip6 */
3965 b0 = gen_linktype(ETHERTYPE_IPV6);
3966
3967 switch (ip_proto) {
3968 case IPPROTO_UDP:
3969 case IPPROTO_TCP:
3970 case IPPROTO_SCTP:
3971 b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
3972 break;
3973
3974 case PROTO_UNDEF:
3975 tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
3976 b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
3977 gen_or(tmp, b1);
3978 tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
3979 gen_or(tmp, b1);
3980 break;
3981
3982 default:
3983 abort();
3984 }
3985 gen_and(b0, b1);
3986 return b1;
3987 }
3988 #endif /* INET6 */
3989
3990 static int
3991 lookup_proto(name, proto)
3992 register const char *name;
3993 register int proto;
3994 {
3995 register int v;
3996
3997 switch (proto) {
3998
3999 case Q_DEFAULT:
4000 case Q_IP:
4001 case Q_IPV6:
4002 v = pcap_nametoproto(name);
4003 if (v == PROTO_UNDEF)
4004 bpf_error("unknown ip proto '%s'", name);
4005 break;
4006
4007 case Q_LINK:
4008 /* XXX should look up h/w protocol type based on linktype */
4009 v = pcap_nametoeproto(name);
4010 if (v == PROTO_UNDEF) {
4011 v = pcap_nametollc(name);
4012 if (v == PROTO_UNDEF)
4013 bpf_error("unknown ether proto '%s'", name);
4014 }
4015 break;
4016
4017 case Q_ISO:
4018 if (strcmp(name, "esis") == 0)
4019 v = ISO9542_ESIS;
4020 else if (strcmp(name, "isis") == 0)
4021 v = ISO10589_ISIS;
4022 else if (strcmp(name, "clnp") == 0)
4023 v = ISO8473_CLNP;
4024 else
4025 bpf_error("unknown osi proto '%s'", name);
4026 break;
4027
4028 default:
4029 v = PROTO_UNDEF;
4030 break;
4031 }
4032 return v;
4033 }
4034
4035 #if 0
4036 struct stmt *
4037 gen_joinsp(s, n)
4038 struct stmt **s;
4039 int n;
4040 {
4041 return NULL;
4042 }
4043 #endif
4044
4045 static struct block *
4046 gen_protochain(v, proto, dir)
4047 int v;
4048 int proto;
4049 int dir;
4050 {
4051 #ifdef NO_PROTOCHAIN
4052 return gen_proto(v, proto, dir);
4053 #else
4054 struct block *b0, *b;
4055 struct slist *s[100];
4056 int fix2, fix3, fix4, fix5;
4057 int ahcheck, again, end;
4058 int i, max;
4059 int reg2 = alloc_reg();
4060
4061 memset(s, 0, sizeof(s));
4062 fix2 = fix3 = fix4 = fix5 = 0;
4063
4064 switch (proto) {
4065 case Q_IP:
4066 case Q_IPV6:
4067 break;
4068 case Q_DEFAULT:
4069 b0 = gen_protochain(v, Q_IP, dir);
4070 b = gen_protochain(v, Q_IPV6, dir);
4071 gen_or(b0, b);
4072 return b;
4073 default:
4074 bpf_error("bad protocol applied for 'protochain'");
4075 /*NOTREACHED*/
4076 }
4077
4078 /*
4079 * We don't handle variable-length radiotap here headers yet.
4080 * We might want to add BPF instructions to do the protochain
4081 * work, to simplify that and, on platforms that have a BPF
4082 * interpreter with the new instructions, let the filtering
4083 * be done in the kernel. (We already require a modified BPF
4084 * engine to do the protochain stuff, to support backward
4085 * branches, and backward branch support is unlikely to appear
4086 * in kernel BPF engines.)
4087 */
4088 if (linktype == DLT_IEEE802_11_RADIO)
4089 bpf_error("'protochain' not supported with radiotap headers");
4090
4091 no_optimize = 1; /*this code is not compatible with optimzer yet */
4092
4093 /*
4094 * s[0] is a dummy entry to protect other BPF insn from damage
4095 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
4096 * hard to find interdependency made by jump table fixup.
4097 */
4098 i = 0;
4099 s[i] = new_stmt(0); /*dummy*/
4100 i++;
4101
4102 switch (proto) {
4103 case Q_IP:
4104 b0 = gen_linktype(ETHERTYPE_IP);
4105
4106 /* A = ip->ip_p */
4107 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4108 s[i]->s.k = off_nl + 9;
4109 i++;
4110 /* X = ip->ip_hl << 2 */
4111 s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
4112 s[i]->s.k = off_nl;
4113 i++;
4114 break;
4115 #ifdef INET6
4116 case Q_IPV6:
4117 b0 = gen_linktype(ETHERTYPE_IPV6);
4118
4119 /* A = ip6->ip_nxt */
4120 s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4121 s[i]->s.k = off_nl + 6;
4122 i++;
4123 /* X = sizeof(struct ip6_hdr) */
4124 s[i] = new_stmt(BPF_LDX|BPF_IMM);
4125 s[i]->s.k = 40;
4126 i++;
4127 break;
4128 #endif
4129 default:
4130 bpf_error("unsupported proto to gen_protochain");
4131 /*NOTREACHED*/
4132 }
4133
4134 /* again: if (A == v) goto end; else fall through; */
4135 again = i;
4136 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4137 s[i]->s.k = v;
4138 s[i]->s.jt = NULL; /*later*/
4139 s[i]->s.jf = NULL; /*update in next stmt*/
4140 fix5 = i;
4141 i++;
4142
4143 #ifndef IPPROTO_NONE
4144 #define IPPROTO_NONE 59
4145 #endif
4146 /* if (A == IPPROTO_NONE) goto end */
4147 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4148 s[i]->s.jt = NULL; /*later*/
4149 s[i]->s.jf = NULL; /*update in next stmt*/
4150 s[i]->s.k = IPPROTO_NONE;
4151 s[fix5]->s.jf = s[i];
4152 fix2 = i;
4153 i++;
4154
4155 #ifdef INET6
4156 if (proto == Q_IPV6) {
4157 int v6start, v6end, v6advance, j;
4158
4159 v6start = i;
4160 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
4161 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4162 s[i]->s.jt = NULL; /*later*/
4163 s[i]->s.jf = NULL; /*update in next stmt*/
4164 s[i]->s.k = IPPROTO_HOPOPTS;
4165 s[fix2]->s.jf = s[i];
4166 i++;
4167 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
4168 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4169 s[i]->s.jt = NULL; /*later*/
4170 s[i]->s.jf = NULL; /*update in next stmt*/
4171 s[i]->s.k = IPPROTO_DSTOPTS;
4172 i++;
4173 /* if (A == IPPROTO_ROUTING) goto v6advance */
4174 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4175 s[i]->s.jt = NULL; /*later*/
4176 s[i]->s.jf = NULL; /*update in next stmt*/
4177 s[i]->s.k = IPPROTO_ROUTING;
4178 i++;
4179 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
4180 s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4181 s[i]->s.jt = NULL; /*later*/
4182 s[i]->s.jf = NULL; /*later*/
4183 s[i]->s.k = IPPROTO_FRAGMENT;
4184 fix3 = i;
4185 v6end = i;
4186 i++;
4187
4188 /* v6advance: */
4189 v6advance = i;
4190
4191 /*
4192 * in short,
4193 * A = P[X];
4194 * X = X + (P[X + 1] + 1) * 8;
4195 */
4196 /* A = X */
4197 s[i] = new_stmt(BPF_MISC|BPF_TXA);
4198 i++;
4199 /* A = P[X + packet head] */
4200 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4201 s[i]->s.k = off_nl;
4202 i++;
4203 /* MEM[reg2] = A */
4204 s[i] = new_stmt(BPF_ST);
4205 s[i]->s.k = reg2;
4206 i++;
4207 /* A = X */
4208 s[i] = new_stmt(BPF_MISC|BPF_TXA);
4209 i++;
4210 /* A += 1 */
4211 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4212 s[i]->s.k = 1;
4213 i++;
4214 /* X = A */
4215 s[i] = new_stmt(BPF_MISC|BPF_TAX);
4216 i++;
4217 /* A = P[X + packet head]; */
4218 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4219 s[i]->s.k = off_nl;
4220 i++;
4221 /* A += 1 */
4222 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4223 s[i]->s.k = 1;
4224 i++;
4225 /* A *= 8 */
4226 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4227 s[i]->s.k = 8;
4228 i++;
4229 /* X = A; */
4230 s[i] = new_stmt(BPF_MISC|BPF_TAX);
4231 i++;
4232 /* A = MEM[reg2] */
4233 s[i] = new_stmt(BPF_LD|BPF_MEM);
4234 s[i]->s.k = reg2;
4235 i++;
4236
4237 /* goto again; (must use BPF_JA for backward jump) */
4238 s[i] = new_stmt(BPF_JMP|BPF_JA);
4239 s[i]->s.k = again - i - 1;
4240 s[i - 1]->s.jf = s[i];
4241 i++;
4242
4243 /* fixup */
4244 for (j = v6start; j <= v6end; j++)
4245 s[j]->s.jt = s[v6advance];
4246 } else
4247 #endif
4248 {
4249 /* nop */
4250 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4251 s[i]->s.k = 0;
4252 s[fix2]->s.jf = s[i];
4253 i++;
4254 }
4255
4256 /* ahcheck: */
4257 ahcheck = i;
4258 /* if (A == IPPROTO_AH) then fall through; else goto end; */
4259 s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4260 s[i]->s.jt = NULL; /*later*/
4261 s[i]->s.jf = NULL; /*later*/
4262 s[i]->s.k = IPPROTO_AH;
4263 if (fix3)
4264 s[fix3]->s.jf = s[ahcheck];
4265 fix4 = i;
4266 i++;
4267
4268 /*
4269 * in short,
4270 * A = P[X];
4271 * X = X + (P[X + 1] + 2) * 4;
4272 */
4273 /* A = X */
4274 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4275 i++;
4276 /* A = P[X + packet head]; */
4277 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4278 s[i]->s.k = off_nl;
4279 i++;
4280 /* MEM[reg2] = A */
4281 s[i] = new_stmt(BPF_ST);
4282 s[i]->s.k = reg2;
4283 i++;
4284 /* A = X */
4285 s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4286 i++;
4287 /* A += 1 */
4288 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4289 s[i]->s.k = 1;
4290 i++;
4291 /* X = A */
4292 s[i] = new_stmt(BPF_MISC|BPF_TAX);
4293 i++;
4294 /* A = P[X + packet head] */
4295 s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4296 s[i]->s.k = off_nl;
4297 i++;
4298 /* A += 2 */
4299 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4300 s[i]->s.k = 2;
4301 i++;
4302 /* A *= 4 */
4303 s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4304 s[i]->s.k = 4;
4305 i++;
4306 /* X = A; */
4307 s[i] = new_stmt(BPF_MISC|BPF_TAX);
4308 i++;
4309 /* A = MEM[reg2] */
4310 s[i] = new_stmt(BPF_LD|BPF_MEM);
4311 s[i]->s.k = reg2;
4312 i++;
4313
4314 /* goto again; (must use BPF_JA for backward jump) */
4315 s[i] = new_stmt(BPF_JMP|BPF_JA);
4316 s[i]->s.k = again - i - 1;
4317 i++;
4318
4319 /* end: nop */
4320 end = i;
4321 s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4322 s[i]->s.k = 0;
4323 s[fix2]->s.jt = s[end];
4324 s[fix4]->s.jf = s[end];
4325 s[fix5]->s.jt = s[end];
4326 i++;
4327
4328 /*
4329 * make slist chain
4330 */
4331 max = i;
4332 for (i = 0; i < max - 1; i++)
4333 s[i]->next = s[i + 1];
4334 s[max - 1]->next = NULL;
4335
4336 /*
4337 * emit final check
4338 */
4339 b = new_block(JMP(BPF_JEQ));
4340 b->stmts = s[1]; /*remember, s[0] is dummy*/
4341 b->s.k = v;
4342
4343 free_reg(reg2);
4344
4345 gen_and(b0, b);
4346 return b;
4347 #endif
4348 }
4349
4350 /*
4351 * Generate code that checks whether the packet is a packet for protocol
4352 * <proto> and whether the type field in that protocol's header has
4353 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
4354 * IP packet and checks the protocol number in the IP header against <v>.
4355 *
4356 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
4357 * against Q_IP and Q_IPV6.
4358 */
4359 static struct block *
4360 gen_proto(v, proto, dir)
4361 int v;
4362 int proto;
4363 int dir;
4364 {
4365 struct block *b0, *b1;
4366
4367 if (dir != Q_DEFAULT)
4368 bpf_error("direction applied to 'proto'");
4369
4370 switch (proto) {
4371 case Q_DEFAULT:
4372 #ifdef INET6
4373 b0 = gen_proto(v, Q_IP, dir);
4374 b1 = gen_proto(v, Q_IPV6, dir);
4375 gen_or(b0, b1);
4376 return b1;
4377 #else
4378 /*FALLTHROUGH*/
4379 #endif
4380 case Q_IP:
4381 /*
4382 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4383 * not LLC encapsulation with LLCSAP_IP.
4384 *
4385 * For IEEE 802 networks - which includes 802.5 token ring
4386 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4387 * says that SNAP encapsulation is used, not LLC encapsulation
4388 * with LLCSAP_IP.
4389 *
4390 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4391 * RFC 2225 say that SNAP encapsulation is used, not LLC
4392 * encapsulation with LLCSAP_IP.
4393 *
4394 * So we always check for ETHERTYPE_IP.
4395 */
4396 b0 = gen_linktype(ETHERTYPE_IP);
4397 #ifndef CHASE_CHAIN
4398 b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
4399 #else
4400 b1 = gen_protochain(v, Q_IP);
4401 #endif
4402 gen_and(b0, b1);
4403 return b1;
4404
4405 case Q_ISO:
4406 switch (linktype) {
4407
4408 case DLT_FRELAY:
4409 /*
4410 * Frame Relay packets typically have an OSI
4411 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
4412 * generates code to check for all the OSI
4413 * NLPIDs, so calling it and then adding a check
4414 * for the particular NLPID for which we're
4415 * looking is bogus, as we can just check for
4416 * the NLPID.
4417 *
4418 * What we check for is the NLPID and a frame
4419 * control field value of UI, i.e. 0x03 followed
4420 * by the NLPID.
4421 *
4422 * XXX - assumes a 2-byte Frame Relay header with
4423 * DLCI and flags. What if the address is longer?
4424 *
4425 * XXX - what about SNAP-encapsulated frames?
4426 */
4427 return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
4428 /*NOTREACHED*/
4429 break;
4430
4431 case DLT_C_HDLC:
4432 /*
4433 * Cisco uses an Ethertype lookalike - for OSI,
4434 * it's 0xfefe.
4435 */
4436 b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
4437 /* OSI in C-HDLC is stuffed with a fudge byte */
4438 b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
4439 gen_and(b0, b1);
4440 return b1;
4441
4442 default:
4443 b0 = gen_linktype(LLCSAP_ISONS);
4444 b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
4445 gen_and(b0, b1);
4446 return b1;
4447 }
4448
4449 case Q_ISIS:
4450 b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4451 /*
4452 * 4 is the offset of the PDU type relative to the IS-IS
4453 * header.
4454 */
4455 b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
4456 gen_and(b0, b1);
4457 return b1;
4458
4459 case Q_ARP:
4460 bpf_error("arp does not encapsulate another protocol");
4461 /* NOTREACHED */
4462
4463 case Q_RARP:
4464 bpf_error("rarp does not encapsulate another protocol");
4465 /* NOTREACHED */
4466
4467 case Q_ATALK:
4468 bpf_error("atalk encapsulation is not specifiable");
4469 /* NOTREACHED */
4470
4471 case Q_DECNET:
4472 bpf_error("decnet encapsulation is not specifiable");
4473 /* NOTREACHED */
4474
4475 case Q_SCA:
4476 bpf_error("sca does not encapsulate another protocol");
4477 /* NOTREACHED */
4478
4479 case Q_LAT:
4480 bpf_error("lat does not encapsulate another protocol");
4481 /* NOTREACHED */
4482
4483 case Q_MOPRC:
4484 bpf_error("moprc does not encapsulate another protocol");
4485 /* NOTREACHED */
4486
4487 case Q_MOPDL:
4488 bpf_error("mopdl does not encapsulate another protocol");
4489 /* NOTREACHED */
4490
4491 case Q_LINK:
4492 return gen_linktype(v);
4493
4494 case Q_UDP:
4495 bpf_error("'udp proto' is bogus");
4496 /* NOTREACHED */
4497
4498 case Q_TCP:
4499 bpf_error("'tcp proto' is bogus");
4500 /* NOTREACHED */
4501
4502 case Q_SCTP:
4503 bpf_error("'sctp proto' is bogus");
4504 /* NOTREACHED */
4505
4506 case Q_ICMP:
4507 bpf_error("'icmp proto' is bogus");
4508 /* NOTREACHED */
4509
4510 case Q_IGMP:
4511 bpf_error("'igmp proto' is bogus");
4512 /* NOTREACHED */
4513
4514 case Q_IGRP:
4515 bpf_error("'igrp proto' is bogus");
4516 /* NOTREACHED */
4517
4518 case Q_PIM:
4519 bpf_error("'pim proto' is bogus");
4520 /* NOTREACHED */
4521
4522 case Q_VRRP:
4523 bpf_error("'vrrp proto' is bogus");
4524 /* NOTREACHED */
4525
4526 #ifdef INET6
4527 case Q_IPV6:
4528 b0 = gen_linktype(ETHERTYPE_IPV6);
4529 #ifndef CHASE_CHAIN
4530 b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
4531 #else
4532 b1 = gen_protochain(v, Q_IPV6);
4533 #endif
4534 gen_and(b0, b1);
4535 return b1;
4536
4537 case Q_ICMPV6:
4538 bpf_error("'icmp6 proto' is bogus");
4539 #endif /* INET6 */
4540
4541 case Q_AH:
4542 bpf_error("'ah proto' is bogus");
4543
4544 case Q_ESP:
4545 bpf_error("'ah proto' is bogus");
4546
4547 case Q_STP:
4548 bpf_error("'stp proto' is bogus");
4549
4550 case Q_IPX:
4551 bpf_error("'ipx proto' is bogus");
4552
4553 case Q_NETBEUI:
4554 bpf_error("'netbeui proto' is bogus");
4555
4556 case Q_RADIO:
4557 bpf_error("'radio proto' is bogus");
4558
4559 default:
4560 abort();
4561 /* NOTREACHED */
4562 }
4563 /* NOTREACHED */
4564 }
4565
4566 struct block *
4567 gen_scode(name, q)
4568 register const char *name;
4569 struct qual q;
4570 {
4571 int proto = q.proto;
4572 int dir = q.dir;
4573 int tproto;
4574 u_char *eaddr;
4575 bpf_u_int32 mask, addr;
4576 #ifndef INET6
4577 bpf_u_int32 **alist;
4578 #else
4579 int tproto6;
4580 struct sockaddr_in *sin;
4581 struct sockaddr_in6 *sin6;
4582 struct addrinfo *res, *res0;
4583 struct in6_addr mask128;
4584 #endif /*INET6*/
4585 struct block *b, *tmp;
4586 int port, real_proto;
4587 int port1, port2;
4588
4589 switch (q.addr) {
4590
4591 case Q_NET:
4592 addr = pcap_nametonetaddr(name);
4593 if (addr == 0)
4594 bpf_error("unknown network '%s'", name);
4595 /* Left justify network addr and calculate its network mask */
4596 mask = 0xffffffff;
4597 while (addr && (addr & 0xff000000) == 0) {
4598 addr <<= 8;
4599 mask <<= 8;
4600 }
4601 return gen_host(addr, mask, proto, dir);
4602
4603 case Q_DEFAULT:
4604 case Q_HOST:
4605 if (proto == Q_LINK) {
4606 switch (linktype) {
4607
4608 case DLT_EN10MB:
4609 eaddr = pcap_ether_hostton(name);
4610 if (eaddr == NULL)
4611 bpf_error(
4612 "unknown ether host '%s'", name);
4613 b = gen_ehostop(eaddr, dir);
4614 free(eaddr);
4615 return b;
4616
4617 case DLT_FDDI:
4618 eaddr = pcap_ether_hostton(name);
4619 if (eaddr == NULL)
4620 bpf_error(
4621 "unknown FDDI host '%s'", name);
4622 b = gen_fhostop(eaddr, dir);
4623 free(eaddr);
4624 return b;
4625
4626 case DLT_IEEE802:
4627 eaddr = pcap_ether_hostton(name);
4628 if (eaddr == NULL)
4629 bpf_error(
4630 "unknown token ring host '%s'", name);
4631 b = gen_thostop(eaddr, dir);
4632 free(eaddr);
4633 return b;
4634
4635 case DLT_IEEE802_11:
4636 case DLT_IEEE802_11_RADIO_AVS:
4637 case DLT_IEEE802_11_RADIO:
4638 case DLT_PRISM_HEADER:
4639 eaddr = pcap_ether_hostton(name);
4640 if (eaddr == NULL)
4641 bpf_error(
4642 "unknown 802.11 host '%s'", name);
4643 b = gen_wlanhostop(eaddr, dir);
4644 free(eaddr);
4645 return b;
4646
4647 case DLT_IP_OVER_FC:
4648 eaddr = pcap_ether_hostton(name);
4649 if (eaddr == NULL)
4650 bpf_error(
4651 "unknown Fibre Channel host '%s'", name);
4652 b = gen_ipfchostop(eaddr, dir);
4653 free(eaddr);
4654 return b;
4655
4656 case DLT_SUNATM:
4657 if (!is_lane)
4658 break;
4659
4660 /*
4661 * Check that the packet doesn't begin
4662 * with an LE Control marker. (We've
4663 * already generated a test for LANE.)
4664 */
4665 tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4666 BPF_H, 0xFF00);
4667 gen_not(tmp);
4668
4669 eaddr = pcap_ether_hostton(name);
4670 if (eaddr == NULL)
4671 bpf_error(
4672 "unknown ether host '%s'", name);
4673 b = gen_ehostop(eaddr, dir);
4674 gen_and(tmp, b);
4675 free(eaddr);
4676 return b;
4677 }
4678
4679 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
4680 } else if (proto == Q_DECNET) {
4681 unsigned short dn_addr = __pcap_nametodnaddr(name);
4682 /*
4683 * I don't think DECNET hosts can be multihomed, so
4684 * there is no need to build up a list of addresses
4685 */
4686 return (gen_host(dn_addr, 0, proto, dir));
4687 } else {
4688 #ifndef INET6
4689 alist = pcap_nametoaddr(name);
4690 if (alist == NULL || *alist == NULL)
4691 bpf_error("unknown host '%s'", name);
4692 tproto = proto;
4693 if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
4694 tproto = Q_IP;
4695 b = gen_host(**alist++, 0xffffffff, tproto, dir);
4696 while (*alist) {
4697 tmp = gen_host(**alist++, 0xffffffff,
4698 tproto, dir);
4699 gen_or(b, tmp);
4700 b = tmp;
4701 }
4702 return b;
4703 #else
4704 memset(&mask128, 0xff, sizeof(mask128));
4705 res0 = res = pcap_nametoaddrinfo(name);
4706 if (res == NULL)
4707 bpf_error("unknown host '%s'", name);
4708 b = tmp = NULL;
4709 tproto = tproto6 = proto;
4710 if (off_linktype == -1 && tproto == Q_DEFAULT) {
4711 tproto = Q_IP;
4712 tproto6 = Q_IPV6;
4713 }
4714 for (res = res0; res; res = res->ai_next) {
4715 switch (res->ai_family) {
4716 case AF_INET:
4717 if (tproto == Q_IPV6)
4718 continue;
4719
4720 sin = (struct sockaddr_in *)
4721 res->ai_addr;
4722 tmp = gen_host(ntohl(sin->sin_addr.s_addr),
4723 0xffffffff, tproto, dir);
4724 break;
4725 case AF_INET6:
4726 if (tproto6 == Q_IP)
4727 continue;
4728
4729 sin6 = (struct sockaddr_in6 *)
4730 res->ai_addr;
4731 tmp = gen_host6(&sin6->sin6_addr,
4732 &mask128, tproto6, dir);
4733 break;
4734 default:
4735 continue;
4736 }
4737 if (b)
4738 gen_or(b, tmp);
4739 b = tmp;
4740 }
4741 freeaddrinfo(res0);
4742 if (b == NULL) {
4743 bpf_error("unknown host '%s'%s", name,
4744 (proto == Q_DEFAULT)
4745 ? ""
4746 : " for specified address family");
4747 }
4748 return b;
4749 #endif /*INET6*/
4750 }
4751
4752 case Q_PORT:
4753 if (proto != Q_DEFAULT &&
4754 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
4755 bpf_error("illegal qualifier of 'port'");
4756 if (pcap_nametoport(name, &port, &real_proto) == 0)
4757 bpf_error("unknown port '%s'", name);
4758 if (proto == Q_UDP) {
4759 if (real_proto == IPPROTO_TCP)
4760 bpf_error("port '%s' is tcp", name);
4761 else if (real_proto == IPPROTO_SCTP)
4762 bpf_error("port '%s' is sctp", name);
4763 else
4764 /* override PROTO_UNDEF */
4765 real_proto = IPPROTO_UDP;
4766 }
4767 if (proto == Q_TCP) {
4768 if (real_proto == IPPROTO_UDP)
4769 bpf_error("port '%s' is udp", name);
4770
4771 else if (real_proto == IPPROTO_SCTP)
4772 bpf_error("port '%s' is sctp", name);
4773 else
4774 /* override PROTO_UNDEF */
4775 real_proto = IPPROTO_TCP;
4776 }
4777 if (proto == Q_SCTP) {
4778 if (real_proto == IPPROTO_UDP)
4779 bpf_error("port '%s' is udp", name);
4780
4781 else if (real_proto == IPPROTO_TCP)
4782 bpf_error("port '%s' is tcp", name);
4783 else
4784 /* override PROTO_UNDEF */
4785 real_proto = IPPROTO_SCTP;
4786 }
4787 #ifndef INET6
4788 return gen_port(port, real_proto, dir);
4789 #else
4790 {
4791 struct block *b;
4792 b = gen_port(port, real_proto, dir);
4793 gen_or(gen_port6(port, real_proto, dir), b);
4794 return b;
4795 }
4796 #endif /* INET6 */
4797
4798 case Q_PORTRANGE:
4799 if (proto != Q_DEFAULT &&
4800 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
4801 bpf_error("illegal qualifier of 'portrange'");
4802 if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
4803 bpf_error("unknown port in range '%s'", name);
4804 if (proto == Q_UDP) {
4805 if (real_proto == IPPROTO_TCP)
4806 bpf_error("port in range '%s' is tcp", name);
4807 else if (real_proto == IPPROTO_SCTP)
4808 bpf_error("port in range '%s' is sctp", name);
4809 else
4810 /* override PROTO_UNDEF */
4811 real_proto = IPPROTO_UDP;
4812 }
4813 if (proto == Q_TCP) {
4814 if (real_proto == IPPROTO_UDP)
4815 bpf_error("port in range '%s' is udp", name);
4816 else if (real_proto == IPPROTO_SCTP)
4817 bpf_error("port in range '%s' is sctp", name);
4818 else
4819 /* override PROTO_UNDEF */
4820 real_proto = IPPROTO_TCP;
4821 }
4822 if (proto == Q_SCTP) {
4823 if (real_proto == IPPROTO_UDP)
4824 bpf_error("port in range '%s' is udp", name);
4825 else if (real_proto == IPPROTO_TCP)
4826 bpf_error("port in range '%s' is tcp", name);
4827 else
4828 /* override PROTO_UNDEF */
4829 real_proto = IPPROTO_SCTP;
4830 }
4831 #ifndef INET6
4832 return gen_portrange(port1, port2, real_proto, dir);
4833 #else
4834 {
4835 struct block *b;
4836 b = gen_portrange(port1, port2, real_proto, dir);
4837 gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
4838 return b;
4839 }
4840 #endif /* INET6 */
4841
4842 case Q_GATEWAY:
4843 #ifndef INET6
4844 eaddr = pcap_ether_hostton(name);
4845 if (eaddr == NULL)
4846 bpf_error("unknown ether host: %s", name);
4847
4848 alist = pcap_nametoaddr(name);
4849 if (alist == NULL || *alist == NULL)
4850 bpf_error("unknown host '%s'", name);
4851 b = gen_gateway(eaddr, alist, proto, dir);
4852 free(eaddr);
4853 return b;
4854 #else
4855 bpf_error("'gateway' not supported in this configuration");
4856 #endif /*INET6*/
4857
4858 case Q_PROTO:
4859 real_proto = lookup_proto(name, proto);
4860 if (real_proto >= 0)
4861 return gen_proto(real_proto, proto, dir);
4862 else
4863 bpf_error("unknown protocol: %s", name);
4864
4865 case Q_PROTOCHAIN:
4866 real_proto = lookup_proto(name, proto);
4867 if (real_proto >= 0)
4868 return gen_protochain(real_proto, proto, dir);
4869 else
4870 bpf_error("unknown protocol: %s", name);
4871
4872
4873 case Q_UNDEF:
4874 syntax();
4875 /* NOTREACHED */
4876 }
4877 abort();
4878 /* NOTREACHED */
4879 }
4880
4881 struct block *
4882 gen_mcode(s1, s2, masklen, q)
4883 register const char *s1, *s2;
4884 register int masklen;
4885 struct qual q;
4886 {
4887 register int nlen, mlen;
4888 bpf_u_int32 n, m;
4889
4890 nlen = __pcap_atoin(s1, &n);
4891 /* Promote short ipaddr */
4892 n <<= 32 - nlen;
4893
4894 if (s2 != NULL) {
4895 mlen = __pcap_atoin(s2, &m);
4896 /* Promote short ipaddr */
4897 m <<= 32 - mlen;
4898 if ((n & ~m) != 0)
4899 bpf_error("non-network bits set in \"%s mask %s\"",
4900 s1, s2);
4901 } else {
4902 /* Convert mask len to mask */
4903 if (masklen > 32)
4904 bpf_error("mask length must be <= 32");
4905 m = 0xffffffff << (32 - masklen);
4906 if ((n & ~m) != 0)
4907 bpf_error("non-network bits set in \"%s/%d\"",
4908 s1, masklen);
4909 }
4910
4911 switch (q.addr) {
4912
4913 case Q_NET:
4914 return gen_host(n, m, q.proto, q.dir);
4915
4916 default:
4917 bpf_error("Mask syntax for networks only");
4918 /* NOTREACHED */
4919 }
4920 /* NOTREACHED */
4921 }
4922
4923 struct block *
4924 gen_ncode(s, v, q)
4925 register const char *s;
4926 bpf_u_int32 v;
4927 struct qual q;
4928 {
4929 bpf_u_int32 mask;
4930 int proto = q.proto;
4931 int dir = q.dir;
4932 register int vlen;
4933
4934 if (s == NULL)
4935 vlen = 32;
4936 else if (q.proto == Q_DECNET)
4937 vlen = __pcap_atodn(s, &v);
4938 else
4939 vlen = __pcap_atoin(s, &v);
4940
4941 switch (q.addr) {
4942
4943 case Q_DEFAULT:
4944 case Q_HOST:
4945 case Q_NET:
4946 if (proto == Q_DECNET)
4947 return gen_host(v, 0, proto, dir);
4948 else if (proto == Q_LINK) {
4949 bpf_error("illegal link layer address");
4950 } else {
4951 mask = 0xffffffff;
4952 if (s == NULL && q.addr == Q_NET) {
4953 /* Promote short net number */
4954 while (v && (v & 0xff000000) == 0) {
4955 v <<= 8;
4956 mask <<= 8;
4957 }
4958 } else {
4959 /* Promote short ipaddr */
4960 v <<= 32 - vlen;
4961 mask <<= 32 - vlen;
4962 }
4963 return gen_host(v, mask, proto, dir);
4964 }
4965
4966 case Q_PORT:
4967 if (proto == Q_UDP)
4968 proto = IPPROTO_UDP;
4969 else if (proto == Q_TCP)
4970 proto = IPPROTO_TCP;
4971 else if (proto == Q_SCTP)
4972 proto = IPPROTO_SCTP;
4973 else if (proto == Q_DEFAULT)
4974 proto = PROTO_UNDEF;
4975 else
4976 bpf_error("illegal qualifier of 'port'");
4977
4978 #ifndef INET6
4979 return gen_port((int)v, proto, dir);
4980 #else
4981 {
4982 struct block *b;
4983 b = gen_port((int)v, proto, dir);
4984 gen_or(gen_port6((int)v, proto, dir), b);
4985 return b;
4986 }
4987 #endif /* INET6 */
4988
4989 case Q_PORTRANGE:
4990 if (proto == Q_UDP)
4991 proto = IPPROTO_UDP;
4992 else if (proto == Q_TCP)
4993 proto = IPPROTO_TCP;
4994 else if (proto == Q_SCTP)
4995 proto = IPPROTO_SCTP;
4996 else if (proto == Q_DEFAULT)
4997 proto = PROTO_UNDEF;
4998 else
4999 bpf_error("illegal qualifier of 'portrange'");
5000
5001 #ifndef INET6
5002 return gen_portrange((int)v, (int)v, proto, dir);
5003 #else
5004 {
5005 struct block *b;
5006 b = gen_portrange((int)v, (int)v, proto, dir);
5007 gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
5008 return b;
5009 }
5010 #endif /* INET6 */
5011
5012 case Q_GATEWAY:
5013 bpf_error("'gateway' requires a name");
5014 /* NOTREACHED */
5015
5016 case Q_PROTO:
5017 return gen_proto((int)v, proto, dir);
5018
5019 case Q_PROTOCHAIN:
5020 return gen_protochain((int)v, proto, dir);
5021
5022 case Q_UNDEF:
5023 syntax();
5024 /* NOTREACHED */
5025
5026 default:
5027 abort();
5028 /* NOTREACHED */
5029 }
5030 /* NOTREACHED */
5031 }
5032
5033 #ifdef INET6
5034 struct block *
5035 gen_mcode6(s1, s2, masklen, q)
5036 register const char *s1, *s2;
5037 register int masklen;
5038 struct qual q;
5039 {
5040 struct addrinfo *res;
5041 struct in6_addr *addr;
5042 struct in6_addr mask;
5043 struct block *b;
5044 u_int32_t *a, *m;
5045
5046 if (s2)
5047 bpf_error("no mask %s supported", s2);
5048
5049 res = pcap_nametoaddrinfo(s1);
5050 if (!res)
5051 bpf_error("invalid ip6 address %s", s1);
5052 if (res->ai_next)
5053 bpf_error("%s resolved to multiple address", s1);
5054 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
5055
5056 if (sizeof(mask) * 8 < masklen)
5057 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
5058 memset(&mask, 0, sizeof(mask));
5059 memset(&mask, 0xff, masklen / 8);
5060 if (masklen % 8) {
5061 mask.s6_addr[masklen / 8] =
5062 (0xff << (8 - masklen % 8)) & 0xff;
5063 }
5064
5065 a = (u_int32_t *)addr;
5066 m = (u_int32_t *)&mask;
5067 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
5068 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
5069 bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
5070 }
5071
5072 switch (q.addr) {
5073
5074 case Q_DEFAULT:
5075 case Q_HOST:
5076 if (masklen != 128)
5077 bpf_error("Mask syntax for networks only");
5078 /* FALLTHROUGH */
5079
5080 case Q_NET:
5081 b = gen_host6(addr, &mask, q.proto, q.dir);
5082 freeaddrinfo(res);
5083 return b;
5084
5085 default:
5086 bpf_error("invalid qualifier against IPv6 address");
5087 /* NOTREACHED */
5088 }
5089 }
5090 #endif /*INET6*/
5091
5092 struct block *
5093 gen_ecode(eaddr, q)
5094 register const u_char *eaddr;
5095 struct qual q;
5096 {
5097 struct block *b, *tmp;
5098
5099 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
5100 if (linktype == DLT_EN10MB)
5101 return gen_ehostop(eaddr, (int)q.dir);
5102 if (linktype == DLT_FDDI)
5103 return gen_fhostop(eaddr, (int)q.dir);
5104 if (linktype == DLT_IEEE802)
5105 return gen_thostop(eaddr, (int)q.dir);
5106 if (linktype == DLT_IEEE802_11 ||
5107 linktype == DLT_IEEE802_11_RADIO_AVS ||
5108 linktype == DLT_IEEE802_11_RADIO ||
5109 linktype == DLT_PRISM_HEADER)
5110 return gen_wlanhostop(eaddr, (int)q.dir);
5111 if (linktype == DLT_SUNATM && is_lane) {
5112 /*
5113 * Check that the packet doesn't begin with an
5114 * LE Control marker. (We've already generated
5115 * a test for LANE.)
5116 */
5117 tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5118 0xFF00);
5119 gen_not(tmp);
5120
5121 /*
5122 * Now check the MAC address.
5123 */
5124 b = gen_ehostop(eaddr, (int)q.dir);
5125 gen_and(tmp, b);
5126 return b;
5127 }
5128 if (linktype == DLT_IP_OVER_FC)
5129 return gen_ipfchostop(eaddr, (int)q.dir);
5130 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5131 }
5132 bpf_error("ethernet address used in non-ether expression");
5133 /* NOTREACHED */
5134 }
5135
5136 void
5137 sappend(s0, s1)
5138 struct slist *s0, *s1;
5139 {
5140 /*
5141 * This is definitely not the best way to do this, but the
5142 * lists will rarely get long.
5143 */
5144 while (s0->next)
5145 s0 = s0->next;
5146 s0->next = s1;
5147 }
5148
5149 static struct slist *
5150 xfer_to_x(a)
5151 struct arth *a;
5152 {
5153 struct slist *s;
5154
5155 s = new_stmt(BPF_LDX|BPF_MEM);
5156 s->s.k = a->regno;
5157 return s;
5158 }
5159
5160 static struct slist *
5161 xfer_to_a(a)
5162 struct arth *a;
5163 {
5164 struct slist *s;
5165
5166 s = new_stmt(BPF_LD|BPF_MEM);
5167 s->s.k = a->regno;
5168 return s;
5169 }
5170
5171 /*
5172 * Modify "index" to use the value stored into its register as an
5173 * offset relative to the beginning of the header for the protocol
5174 * "proto", and allocate a register and put an item "size" bytes long
5175 * (1, 2, or 4) at that offset into that register, making it the register
5176 * for "index".
5177 */
5178 struct arth *
5179 gen_load(proto, index, size)
5180 int proto;
5181 struct arth *index;
5182 int size;
5183 {
5184 struct slist *s, *tmp;
5185 struct block *b;
5186 int regno = alloc_reg();
5187
5188 free_reg(index->regno);
5189 switch (size) {
5190
5191 default:
5192 bpf_error("data size must be 1, 2, or 4");
5193
5194 case 1:
5195 size = BPF_B;
5196 break;
5197
5198 case 2:
5199 size = BPF_H;
5200 break;
5201
5202 case 4:
5203 size = BPF_W;
5204 break;
5205 }
5206 switch (proto) {
5207 default:
5208 bpf_error("unsupported index operation");
5209
5210 case Q_RADIO:
5211 /*
5212 * The offset is relative to the beginning of the packet
5213 * data, if we have a radio header. (If we don't, this
5214 * is an error.)
5215 */
5216 if (linktype != DLT_IEEE802_11_RADIO_AVS &&
5217 linktype != DLT_IEEE802_11_RADIO &&
5218 linktype != DLT_PRISM_HEADER)
5219 bpf_error("radio information not present in capture");
5220
5221 /*
5222 * Load into the X register the offset computed into the
5223 * register specifed by "index".
5224 */
5225 s = xfer_to_x(index);
5226
5227 /*
5228 * Load the item at that offset.
5229 */
5230 tmp = new_stmt(BPF_LD|BPF_IND|size);
5231 sappend(s, tmp);
5232 sappend(index->s, s);
5233 break;
5234
5235 case Q_LINK:
5236 /*
5237 * The offset is relative to the beginning of
5238 * the link-layer header.
5239 *
5240 * XXX - what about ATM LANE? Should the index be
5241 * relative to the beginning of the AAL5 frame, so
5242 * that 0 refers to the beginning of the LE Control
5243 * field, or relative to the beginning of the LAN
5244 * frame, so that 0 refers, for Ethernet LANE, to
5245 * the beginning of the destination address?
5246 */
5247 s = gen_llprefixlen();
5248
5249 /*
5250 * If "s" is non-null, it has code to arrange that the
5251 * X register contains the length of the prefix preceding
5252 * the link-layer header. Add to it the offset computed
5253 * into the register specified by "index", and move that
5254 * into the X register. Otherwise, just load into the X
5255 * register the offset computed into the register specifed
5256 * by "index".
5257 */
5258 if (s != NULL) {
5259 sappend(s, xfer_to_a(index));
5260 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5261 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5262 } else
5263 s = xfer_to_x(index);
5264
5265 /*
5266 * Load the item at the sum of the offset we've put in the
5267 * X register and the offset of the start of the link
5268 * layer header (which is 0 if the radio header is
5269 * variable-length; that header length is what we put
5270 * into the X register and then added to the index).
5271 */
5272 tmp = new_stmt(BPF_LD|BPF_IND|size);
5273 tmp->s.k = off_ll;
5274 sappend(s, tmp);
5275 sappend(index->s, s);
5276 break;
5277
5278 case Q_IP:
5279 case Q_ARP:
5280 case Q_RARP:
5281 case Q_ATALK:
5282 case Q_DECNET:
5283 case Q_SCA:
5284 case Q_LAT:
5285 case Q_MOPRC:
5286 case Q_MOPDL:
5287 #ifdef INET6
5288 case Q_IPV6:
5289 #endif
5290 /*
5291 * The offset is relative to the beginning of
5292 * the network-layer header.
5293 * XXX - are there any cases where we want
5294 * off_nl_nosnap?
5295 */
5296 s = gen_llprefixlen();
5297
5298 /*
5299 * If "s" is non-null, it has code to arrange that the
5300 * X register contains the length of the prefix preceding
5301 * the link-layer header. Add to it the offset computed
5302 * into the register specified by "index", and move that
5303 * into the X register. Otherwise, just load into the X
5304 * register the offset computed into the register specifed
5305 * by "index".
5306 */
5307 if (s != NULL) {
5308 sappend(s, xfer_to_a(index));
5309 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5310 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5311 } else
5312 s = xfer_to_x(index);
5313
5314 /*
5315 * Load the item at the sum of the offset we've put in the
5316 * X register and the offset of the start of the network
5317 * layer header.
5318 */
5319 tmp = new_stmt(BPF_LD|BPF_IND|size);
5320 tmp->s.k = off_nl;
5321 sappend(s, tmp);
5322 sappend(index->s, s);
5323
5324 /*
5325 * Do the computation only if the packet contains
5326 * the protocol in question.
5327 */
5328 b = gen_proto_abbrev(proto);
5329 if (index->b)
5330 gen_and(index->b, b);
5331 index->b = b;
5332 break;
5333
5334 case Q_SCTP:
5335 case Q_TCP:
5336 case Q_UDP:
5337 case Q_ICMP:
5338 case Q_IGMP:
5339 case Q_IGRP:
5340 case Q_PIM:
5341 case Q_VRRP:
5342 /*
5343 * The offset is relative to the beginning of
5344 * the transport-layer header.
5345 * XXX - are there any cases where we want
5346 * off_nl_nosnap?
5347 * XXX - we should, if we're built with
5348 * IPv6 support, generate code to load either
5349 * IPv4, IPv6, or both, as appropriate.
5350 */
5351 s = gen_loadx_iphdrlen();
5352
5353 /*
5354 * The X register now contains the sum of the offset
5355 * of the beginning of the link-layer header and
5356 * the length of the network-layer header. Load
5357 * into the A register the offset relative to
5358 * the beginning of the transport layer header,
5359 * add the X register to that, move that to the
5360 * X register, and load with an offset from the
5361 * X register equal to the offset of the network
5362 * layer header relative to the beginning of
5363 * the link-layer header.
5364 */
5365 sappend(s, xfer_to_a(index));
5366 sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5367 sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5368 sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
5369 tmp->s.k = off_nl;
5370 sappend(index->s, s);
5371
5372 /*
5373 * Do the computation only if the packet contains
5374 * the protocol in question - which is true only
5375 * if this is an IP datagram and is the first or
5376 * only fragment of that datagram.
5377 */
5378 gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
5379 if (index->b)
5380 gen_and(index->b, b);
5381 #ifdef INET6
5382 gen_and(gen_proto_abbrev(Q_IP), b);
5383 #endif
5384 index->b = b;
5385 break;
5386 #ifdef INET6
5387 case Q_ICMPV6:
5388 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
5389 /*NOTREACHED*/
5390 #endif
5391 }
5392 index->regno = regno;
5393 s = new_stmt(BPF_ST);
5394 s->s.k = regno;
5395 sappend(index->s, s);
5396
5397 return index;
5398 }
5399
5400 struct block *
5401 gen_relation(code, a0, a1, reversed)
5402 int code;
5403 struct arth *a0, *a1;
5404 int reversed;
5405 {
5406 struct slist *s0, *s1, *s2;
5407 struct block *b, *tmp;
5408
5409 s0 = xfer_to_x(a1);
5410 s1 = xfer_to_a(a0);
5411 if (code == BPF_JEQ) {
5412 s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
5413 b = new_block(JMP(code));
5414 sappend(s1, s2);
5415 }
5416 else
5417 b = new_block(BPF_JMP|code|BPF_X);
5418 if (reversed)
5419 gen_not(b);
5420
5421 sappend(s0, s1);
5422 sappend(a1->s, s0);
5423 sappend(a0->s, a1->s);
5424
5425 b->stmts = a0->s;
5426
5427 free_reg(a0->regno);
5428 free_reg(a1->regno);
5429
5430 /* 'and' together protocol checks */
5431 if (a0->b) {
5432 if (a1->b) {
5433 gen_and(a0->b, tmp = a1->b);
5434 }
5435 else
5436 tmp = a0->b;
5437 } else
5438 tmp = a1->b;
5439
5440 if (tmp)
5441 gen_and(tmp, b);
5442
5443 return b;
5444 }
5445
5446 struct arth *
5447 gen_loadlen()
5448 {
5449 int regno = alloc_reg();
5450 struct arth *a = (struct arth *)newchunk(sizeof(*a));
5451 struct slist *s;
5452
5453 s = new_stmt(BPF_LD|BPF_LEN);
5454 s->next = new_stmt(BPF_ST);
5455 s->next->s.k = regno;
5456 a->s = s;
5457 a->regno = regno;
5458
5459 return a;
5460 }
5461
5462 struct arth *
5463 gen_loadi(val)
5464 int val;
5465 {
5466 struct arth *a;
5467 struct slist *s;
5468 int reg;
5469
5470 a = (struct arth *)newchunk(sizeof(*a));
5471
5472 reg = alloc_reg();
5473
5474 s = new_stmt(BPF_LD|BPF_IMM);
5475 s->s.k = val;
5476 s->next = new_stmt(BPF_ST);
5477 s->next->s.k = reg;
5478 a->s = s;
5479 a->regno = reg;
5480
5481 return a;
5482 }
5483
5484 struct arth *
5485 gen_neg(a)
5486 struct arth *a;
5487 {
5488 struct slist *s;
5489
5490 s = xfer_to_a(a);
5491 sappend(a->s, s);
5492 s = new_stmt(BPF_ALU|BPF_NEG);
5493 s->s.k = 0;
5494 sappend(a->s, s);
5495 s = new_stmt(BPF_ST);
5496 s->s.k = a->regno;
5497 sappend(a->s, s);
5498
5499 return a;
5500 }
5501
5502 struct arth *
5503 gen_arth(code, a0, a1)
5504 int code;
5505 struct arth *a0, *a1;
5506 {
5507 struct slist *s0, *s1, *s2;
5508
5509 s0 = xfer_to_x(a1);
5510 s1 = xfer_to_a(a0);
5511 s2 = new_stmt(BPF_ALU|BPF_X|code);
5512
5513 sappend(s1, s2);
5514 sappend(s0, s1);
5515 sappend(a1->s, s0);
5516 sappend(a0->s, a1->s);
5517
5518 free_reg(a0->regno);
5519 free_reg(a1->regno);
5520
5521 s0 = new_stmt(BPF_ST);
5522 a0->regno = s0->s.k = alloc_reg();
5523 sappend(a0->s, s0);
5524
5525 return a0;
5526 }
5527
5528 /*
5529 * Here we handle simple allocation of the scratch registers.
5530 * If too many registers are alloc'd, the allocator punts.
5531 */
5532 static int regused[BPF_MEMWORDS];
5533 static int curreg;
5534
5535 /*
5536 * Return the next free register.
5537 */
5538 static int
5539 alloc_reg()
5540 {
5541 int n = BPF_MEMWORDS;
5542
5543 while (--n >= 0) {
5544 if (regused[curreg])
5545 curreg = (curreg + 1) % BPF_MEMWORDS;
5546 else {
5547 regused[curreg] = 1;
5548 return curreg;
5549 }
5550 }
5551 bpf_error("too many registers needed to evaluate expression");
5552 /* NOTREACHED */
5553 }
5554
5555 /*
5556 * Return a register to the table so it can
5557 * be used later.
5558 */
5559 static void
5560 free_reg(n)
5561 int n;
5562 {
5563 regused[n] = 0;
5564 }
5565
5566 static struct block *
5567 gen_len(jmp, n)
5568 int jmp, n;
5569 {
5570 struct slist *s;
5571 struct block *b;
5572
5573 s = new_stmt(BPF_LD|BPF_LEN);
5574 b = new_block(JMP(jmp));
5575 b->stmts = s;
5576 b->s.k = n;
5577
5578 return b;
5579 }
5580
5581 struct block *
5582 gen_greater(n)
5583 int n;
5584 {
5585 return gen_len(BPF_JGE, n);
5586 }
5587
5588 /*
5589 * Actually, this is less than or equal.
5590 */
5591 struct block *
5592 gen_less(n)
5593 int n;
5594 {
5595 struct block *b;
5596
5597 b = gen_len(BPF_JGT, n);
5598 gen_not(b);
5599
5600 return b;
5601 }
5602
5603 /*
5604 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
5605 * the beginning of the link-layer header.
5606 * XXX - that means you can't test values in the radiotap header, but
5607 * as that header is difficult if not impossible to parse generally
5608 * without a loop, that might not be a severe problem. A new keyword
5609 * "radio" could be added for that, although what you'd really want
5610 * would be a way of testing particular radio header values, which
5611 * would generate code appropriate to the radio header in question.
5612 */
5613 struct block *
5614 gen_byteop(op, idx, val)
5615 int op, idx, val;
5616 {
5617 struct block *b;
5618 struct slist *s;
5619
5620 switch (op) {
5621 default:
5622 abort();
5623
5624 case '=':
5625 return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5626
5627 case '<':
5628 b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5629 return b;
5630
5631 case '>':
5632 b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5633 return b;
5634
5635 case '|':
5636 s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
5637 break;
5638
5639 case '&':
5640 s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
5641 break;
5642 }
5643 s->s.k = val;
5644 b = new_block(JMP(BPF_JEQ));
5645 b->stmts = s;
5646 gen_not(b);
5647
5648 return b;
5649 }
5650
5651 static u_char abroadcast[] = { 0x0 };
5652
5653 struct block *
5654 gen_broadcast(proto)
5655 int proto;
5656 {
5657 bpf_u_int32 hostmask;
5658 struct block *b0, *b1, *b2;
5659 static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5660
5661 switch (proto) {
5662
5663 case Q_DEFAULT:
5664 case Q_LINK:
5665 if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
5666 return gen_ahostop(abroadcast, Q_DST);
5667 if (linktype == DLT_EN10MB)
5668 return gen_ehostop(ebroadcast, Q_DST);
5669 if (linktype == DLT_FDDI)
5670 return gen_fhostop(ebroadcast, Q_DST);
5671 if (linktype == DLT_IEEE802)
5672 return gen_thostop(ebroadcast, Q_DST);
5673 if (linktype == DLT_IEEE802_11 ||
5674 linktype == DLT_IEEE802_11_RADIO_AVS ||
5675 linktype == DLT_IEEE802_11_RADIO ||
5676 linktype == DLT_PRISM_HEADER)
5677 return gen_wlanhostop(ebroadcast, Q_DST);
5678 if (linktype == DLT_IP_OVER_FC)
5679 return gen_ipfchostop(ebroadcast, Q_DST);
5680 if (linktype == DLT_SUNATM && is_lane) {
5681 /*
5682 * Check that the packet doesn't begin with an
5683 * LE Control marker. (We've already generated
5684 * a test for LANE.)
5685 */
5686 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5687 0xFF00);
5688 gen_not(b1);
5689
5690 /*
5691 * Now check the MAC address.
5692 */
5693 b0 = gen_ehostop(ebroadcast, Q_DST);
5694 gen_and(b1, b0);
5695 return b0;
5696 }
5697 bpf_error("not a broadcast link");
5698 break;
5699
5700 case Q_IP:
5701 b0 = gen_linktype(ETHERTYPE_IP);
5702 hostmask = ~netmask;
5703 b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
5704 b2 = gen_mcmp(OR_NET, 16, BPF_W,
5705 (bpf_int32)(~0 & hostmask), hostmask);
5706 gen_or(b1, b2);
5707 gen_and(b0, b2);
5708 return b2;
5709 }
5710 bpf_error("only link-layer/IP broadcast filters supported");
5711 /* NOTREACHED */
5712 }
5713
5714 /*
5715 * Generate code to test the low-order bit of a MAC address (that's
5716 * the bottom bit of the *first* byte).
5717 */
5718 static struct block *
5719 gen_mac_multicast(offset)
5720 int offset;
5721 {
5722 register struct block *b0;
5723 register struct slist *s;
5724
5725 /* link[offset] & 1 != 0 */
5726 s = gen_load_a(OR_LINK, offset, BPF_B);
5727 b0 = new_block(JMP(BPF_JSET));
5728 b0->s.k = 1;
5729 b0->stmts = s;
5730 return b0;
5731 }
5732
5733 struct block *
5734 gen_multicast(proto)
5735 int proto;
5736 {
5737 register struct block *b0, *b1, *b2;
5738 register struct slist *s;
5739
5740 switch (proto) {
5741
5742 case Q_DEFAULT:
5743 case Q_LINK:
5744 if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
5745 /* all ARCnet multicasts use the same address */
5746 return gen_ahostop(abroadcast, Q_DST);
5747
5748 if (linktype == DLT_EN10MB) {
5749 /* ether[0] & 1 != 0 */
5750 return gen_mac_multicast(0);
5751 }
5752
5753 if (linktype == DLT_FDDI) {
5754 /*
5755 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
5756 *
5757 * XXX - was that referring to bit-order issues?
5758 */
5759 /* fddi[1] & 1 != 0 */
5760 return gen_mac_multicast(1);
5761 }
5762
5763 if (linktype == DLT_IEEE802) {
5764 /* tr[2] & 1 != 0 */
5765 return gen_mac_multicast(2);
5766 }
5767
5768 if (linktype == DLT_IEEE802_11 ||
5769 linktype == DLT_IEEE802_11_RADIO_AVS ||
5770 linktype == DLT_IEEE802_11_RADIO ||
5771 linktype == DLT_PRISM_HEADER) {
5772 /*
5773 * Oh, yuk.
5774 *
5775 * For control frames, there is no DA.
5776 *
5777 * For management frames, DA is at an
5778 * offset of 4 from the beginning of
5779 * the packet.
5780 *
5781 * For data frames, DA is at an offset
5782 * of 4 from the beginning of the packet
5783 * if To DS is clear and at an offset of
5784 * 16 from the beginning of the packet
5785 * if To DS is set.
5786 */
5787
5788 /*
5789 * Generate the tests to be done for data frames.
5790 *
5791 * First, check for To DS set, i.e. "link[1] & 0x01".
5792 */
5793 s = gen_load_a(OR_LINK, 1, BPF_B);
5794 b1 = new_block(JMP(BPF_JSET));
5795 b1->s.k = 0x01; /* To DS */
5796 b1->stmts = s;
5797
5798 /*
5799 * If To DS is set, the DA is at 16.
5800 */
5801 b0 = gen_mac_multicast(16);
5802 gen_and(b1, b0);
5803
5804 /*
5805 * Now, check for To DS not set, i.e. check
5806 * "!(link[1] & 0x01)".
5807 */
5808 s = gen_load_a(OR_LINK, 1, BPF_B);
5809 b2 = new_block(JMP(BPF_JSET));
5810 b2->s.k = 0x01; /* To DS */
5811 b2->stmts = s;
5812 gen_not(b2);
5813
5814 /*
5815 * If To DS is not set, the DA is at 4.
5816 */
5817 b1 = gen_mac_multicast(4);
5818 gen_and(b2, b1);
5819
5820 /*
5821 * Now OR together the last two checks. That gives
5822 * the complete set of checks for data frames.
5823 */
5824 gen_or(b1, b0);
5825
5826 /*
5827 * Now check for a data frame.
5828 * I.e, check "link[0] & 0x08".
5829 */
5830 s = gen_load_a(OR_LINK, 0, BPF_B);
5831 b1 = new_block(JMP(BPF_JSET));
5832 b1->s.k = 0x08;
5833 b1->stmts = s;
5834
5835 /*
5836 * AND that with the checks done for data frames.
5837 */
5838 gen_and(b1, b0);
5839
5840 /*
5841 * If the high-order bit of the type value is 0, this
5842 * is a management frame.
5843 * I.e, check "!(link[0] & 0x08)".
5844 */
5845 s = gen_load_a(OR_LINK, 0, BPF_B);
5846 b2 = new_block(JMP(BPF_JSET));
5847 b2->s.k = 0x08;
5848 b2->stmts = s;
5849 gen_not(b2);
5850
5851 /*
5852 * For management frames, the DA is at 4.
5853 */
5854 b1 = gen_mac_multicast(4);
5855 gen_and(b2, b1);
5856
5857 /*
5858 * OR that with the checks done for data frames.
5859 * That gives the checks done for management and
5860 * data frames.
5861 */
5862 gen_or(b1, b0);
5863
5864 /*
5865 * If the low-order bit of the type value is 1,
5866 * this is either a control frame or a frame
5867 * with a reserved type, and thus not a
5868 * frame with an SA.
5869 *
5870 * I.e., check "!(link[0] & 0x04)".
5871 */
5872 s = gen_load_a(OR_LINK, 0, BPF_B);
5873 b1 = new_block(JMP(BPF_JSET));
5874 b1->s.k = 0x04;
5875 b1->stmts = s;
5876 gen_not(b1);
5877
5878 /*
5879 * AND that with the checks for data and management
5880 * frames.
5881 */
5882 gen_and(b1, b0);
5883 return b0;
5884 }
5885
5886 if (linktype == DLT_IP_OVER_FC) {
5887 b0 = gen_mac_multicast(2);
5888 return b0;
5889 }
5890
5891 if (linktype == DLT_SUNATM && is_lane) {
5892 /*
5893 * Check that the packet doesn't begin with an
5894 * LE Control marker. (We've already generated
5895 * a test for LANE.)
5896 */
5897 b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5898 0xFF00);
5899 gen_not(b1);
5900
5901 /* ether[off_mac] & 1 != 0 */
5902 b0 = gen_mac_multicast(off_mac);
5903 gen_and(b1, b0);
5904 return b0;
5905 }
5906
5907 /* Link not known to support multicasts */
5908 break;
5909
5910 case Q_IP:
5911 b0 = gen_linktype(ETHERTYPE_IP);
5912 b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
5913 gen_and(b0, b1);
5914 return b1;
5915
5916 #ifdef INET6
5917 case Q_IPV6:
5918 b0 = gen_linktype(ETHERTYPE_IPV6);
5919 b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
5920 gen_and(b0, b1);
5921 return b1;
5922 #endif /* INET6 */
5923 }
5924 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
5925 /* NOTREACHED */
5926 }
5927
5928 /*
5929 * generate command for inbound/outbound. It's here so we can
5930 * make it link-type specific. 'dir' = 0 implies "inbound",
5931 * = 1 implies "outbound".
5932 */
5933 struct block *
5934 gen_inbound(dir)
5935 int dir;
5936 {
5937 register struct block *b0;
5938
5939 /*
5940 * Only some data link types support inbound/outbound qualifiers.
5941 */
5942 switch (linktype) {
5943 case DLT_SLIP:
5944 b0 = gen_relation(BPF_JEQ,
5945 gen_load(Q_LINK, gen_loadi(0), 1),
5946 gen_loadi(0),
5947 dir);
5948 break;
5949
5950 case DLT_LINUX_SLL:
5951 if (dir) {
5952 /*
5953 * Match packets sent by this machine.
5954 */
5955 b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
5956 } else {
5957 /*
5958 * Match packets sent to this machine.
5959 * (No broadcast or multicast packets, or
5960 * packets sent to some other machine and
5961 * received promiscuously.)
5962 *
5963 * XXX - packets sent to other machines probably
5964 * shouldn't be matched, but what about broadcast
5965 * or multicast packets we received?
5966 */
5967 b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
5968 }
5969 break;
5970
5971 case DLT_PFLOG:
5972 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
5973 (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
5974 break;
5975
5976 case DLT_PPP_PPPD:
5977 if (dir) {
5978 /* match outgoing packets */
5979 b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
5980 } else {
5981 /* match incoming packets */
5982 b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
5983 }
5984 break;
5985
5986 case DLT_JUNIPER_MLFR:
5987 case DLT_JUNIPER_MLPPP:
5988 case DLT_JUNIPER_ATM1:
5989 case DLT_JUNIPER_ATM2:
5990 case DLT_JUNIPER_PPPOE:
5991 case DLT_JUNIPER_PPPOE_ATM:
5992 case DLT_JUNIPER_GGSN:
5993 case DLT_JUNIPER_ES:
5994 case DLT_JUNIPER_MONITOR:
5995 case DLT_JUNIPER_SERVICES:
5996 /* juniper flags (including direction) are stored
5997 * the byte after the 3-byte magic number */
5998 if (dir) {
5999 /* match outgoing packets */
6000 b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
6001 } else {
6002 /* match incoming packets */
6003 b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
6004 }
6005 break;
6006
6007 default:
6008 bpf_error("inbound/outbound not supported on linktype %d",
6009 linktype);
6010 b0 = NULL;
6011 /* NOTREACHED */
6012 }
6013 return (b0);
6014 }
6015
6016 /* PF firewall log matched interface */
6017 struct block *
6018 gen_pf_ifname(const char *ifname)
6019 {
6020 struct block *b0;
6021 u_int len, off;
6022
6023 if (linktype == DLT_PFLOG) {
6024 len = sizeof(((struct pfloghdr *)0)->ifname);
6025 off = offsetof(struct pfloghdr, ifname);
6026 } else {
6027 bpf_error("ifname not supported on linktype 0x%x", linktype);
6028 /* NOTREACHED */
6029 }
6030 if (strlen(ifname) >= len) {
6031 bpf_error("ifname interface names can only be %d characters",
6032 len-1);
6033 /* NOTREACHED */
6034 }
6035 b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
6036 return (b0);
6037 }
6038
6039 /* PF firewall log matched interface */
6040 struct block *
6041 gen_pf_ruleset(char *ruleset)
6042 {
6043 struct block *b0;
6044
6045 if (linktype != DLT_PFLOG) {
6046 bpf_error("ruleset not supported on linktype 0x%x", linktype);
6047 /* NOTREACHED */
6048 }
6049 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
6050 bpf_error("ruleset names can only be %ld characters",
6051 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
6052 /* NOTREACHED */
6053 }
6054 b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
6055 strlen(ruleset), (const u_char *)ruleset);
6056 return (b0);
6057 }
6058
6059 /* PF firewall log rule number */
6060 struct block *
6061 gen_pf_rnr(int rnr)
6062 {
6063 struct block *b0;
6064
6065 if (linktype == DLT_PFLOG) {
6066 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
6067 (bpf_int32)rnr);
6068 } else {
6069 bpf_error("rnr not supported on linktype 0x%x", linktype);
6070 /* NOTREACHED */
6071 }
6072
6073 return (b0);
6074 }
6075
6076 /* PF firewall log sub-rule number */
6077 struct block *
6078 gen_pf_srnr(int srnr)
6079 {
6080 struct block *b0;
6081
6082 if (linktype != DLT_PFLOG) {
6083 bpf_error("srnr not supported on linktype 0x%x", linktype);
6084 /* NOTREACHED */
6085 }
6086
6087 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
6088 (bpf_int32)srnr);
6089 return (b0);
6090 }
6091
6092 /* PF firewall log reason code */
6093 struct block *
6094 gen_pf_reason(int reason)
6095 {
6096 struct block *b0;
6097
6098 if (linktype == DLT_PFLOG) {
6099 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
6100 (bpf_int32)reason);
6101 } else {
6102 bpf_error("reason not supported on linktype 0x%x", linktype);
6103 /* NOTREACHED */
6104 }
6105
6106 return (b0);
6107 }
6108
6109 /* PF firewall log action */
6110 struct block *
6111 gen_pf_action(int action)
6112 {
6113 struct block *b0;
6114
6115 if (linktype == DLT_PFLOG) {
6116 b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
6117 (bpf_int32)action);
6118 } else {
6119 bpf_error("action not supported on linktype 0x%x", linktype);
6120 /* NOTREACHED */
6121 }
6122
6123 return (b0);
6124 }
6125
6126 struct block *
6127 gen_acode(eaddr, q)
6128 register const u_char *eaddr;
6129 struct qual q;
6130 {
6131 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6132 if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
6133 return gen_ahostop(eaddr, (int)q.dir);
6134 }
6135 bpf_error("ARCnet address used in non-arc expression");
6136 /* NOTREACHED */
6137 }
6138
6139 static struct block *
6140 gen_ahostop(eaddr, dir)
6141 register const u_char *eaddr;
6142 register int dir;
6143 {
6144 register struct block *b0, *b1;
6145
6146 switch (dir) {
6147 /* src comes first, different from Ethernet */
6148 case Q_SRC:
6149 return gen_bcmp(OR_LINK, 0, 1, eaddr);
6150
6151 case Q_DST:
6152 return gen_bcmp(OR_LINK, 1, 1, eaddr);
6153
6154 case Q_AND:
6155 b0 = gen_ahostop(eaddr, Q_SRC);
6156 b1 = gen_ahostop(eaddr, Q_DST);
6157 gen_and(b0, b1);
6158 return b1;
6159
6160 case Q_DEFAULT:
6161 case Q_OR:
6162 b0 = gen_ahostop(eaddr, Q_SRC);
6163 b1 = gen_ahostop(eaddr, Q_DST);
6164 gen_or(b0, b1);
6165 return b1;
6166 }
6167 abort();
6168 /* NOTREACHED */
6169 }
6170
6171 /*
6172 * support IEEE 802.1Q VLAN trunk over ethernet
6173 */
6174 struct block *
6175 gen_vlan(vlan_num)
6176 int vlan_num;
6177 {
6178 struct block *b0;
6179
6180 /*
6181 * Change the offsets to point to the type and data fields within
6182 * the VLAN packet. Just increment the offsets, so that we
6183 * can support a hierarchy, e.g. "vlan 300 && vlan 200" to
6184 * capture VLAN 200 encapsulated within VLAN 100.
6185 *
6186 * XXX - this is a bit of a kludge. If we were to split the
6187 * compiler into a parser that parses an expression and
6188 * generates an expression tree, and a code generator that
6189 * takes an expression tree (which could come from our
6190 * parser or from some other parser) and generates BPF code,
6191 * we could perhaps make the offsets parameters of routines
6192 * and, in the handler for an "AND" node, pass to subnodes
6193 * other than the VLAN node the adjusted offsets.
6194 *
6195 * This would mean that "vlan" would, instead of changing the
6196 * behavior of *all* tests after it, change only the behavior
6197 * of tests ANDed with it. That would change the documented
6198 * semantics of "vlan", which might break some expressions.
6199 * However, it would mean that "(vlan and ip) or ip" would check
6200 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6201 * checking only for VLAN-encapsulated IP, so that could still
6202 * be considered worth doing; it wouldn't break expressions
6203 * that are of the form "vlan and ..." or "vlan N and ...",
6204 * which I suspect are the most common expressions involving
6205 * "vlan". "vlan or ..." doesn't necessarily do what the user
6206 * would really want, now, as all the "or ..." tests would
6207 * be done assuming a VLAN, even though the "or" could be viewed
6208 * as meaning "or, if this isn't a VLAN packet...".
6209 */
6210 orig_linktype = off_linktype; /* save original values */
6211 orig_nl = off_nl;
6212
6213 switch (linktype) {
6214
6215 case DLT_EN10MB:
6216 off_linktype += 4;
6217 off_nl_nosnap += 4;
6218 off_nl += 4;
6219 break;
6220
6221 default:
6222 bpf_error("no VLAN support for data link type %d",
6223 linktype);
6224 /*NOTREACHED*/
6225 }
6226
6227 /* check for VLAN */
6228 b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
6229
6230 /* If a specific VLAN is requested, check VLAN id */
6231 if (vlan_num >= 0) {
6232 struct block *b1;
6233
6234 b1 = gen_mcmp(OR_LINK, orig_nl, BPF_H, (bpf_int32)vlan_num,
6235 0x0fff);
6236 gen_and(b0, b1);
6237 b0 = b1;
6238 }
6239
6240 return (b0);
6241 }
6242
6243 /*
6244 * support for MPLS
6245 */
6246 struct block *
6247 gen_mpls(label_num)
6248 int label_num;
6249 {
6250 struct block *b0;
6251
6252 /*
6253 * Change the offsets to point to the type and data fields within
6254 * the MPLS packet. Just increment the offsets, so that we
6255 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
6256 * capture packets with an outer label of 100000 and an inner
6257 * label of 1024.
6258 *
6259 * XXX - this is a bit of a kludge. See comments in gen_vlan().
6260 */
6261 orig_linktype = off_linktype; /* save original values */
6262 orig_nl = off_nl;
6263
6264 switch (linktype) {
6265
6266 case DLT_C_HDLC: /* fall through */
6267 case DLT_EN10MB:
6268 off_nl_nosnap += 4;
6269 off_nl += 4;
6270
6271 b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H,
6272 (bpf_int32)ETHERTYPE_MPLS);
6273 break;
6274
6275 case DLT_PPP:
6276 off_nl_nosnap += 4;
6277 off_nl += 4;
6278
6279 b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H,
6280 (bpf_int32)PPP_MPLS_UCAST);
6281 break;
6282
6283 /* FIXME add other DLT_s ...
6284 * for Frame-Relay/and ATM this may get messy due to SNAP headers
6285 * leave it for now */
6286
6287 default:
6288 bpf_error("no MPLS support for data link type %d",
6289 linktype);
6290 b0 = NULL;
6291 /*NOTREACHED*/
6292 break;
6293 }
6294
6295 /* If a specific MPLS label is requested, check it */
6296 if (label_num >= 0) {
6297 struct block *b1;
6298
6299 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
6300 b1 = gen_mcmp(OR_LINK, orig_nl, BPF_W, (bpf_int32)label_num,
6301 0xfffff000); /* only compare the first 20 bits */
6302 gen_and(b0, b1);
6303 b0 = b1;
6304 }
6305
6306 return (b0);
6307 }
6308
6309 struct block *
6310 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
6311 int atmfield;
6312 bpf_int32 jvalue;
6313 bpf_u_int32 jtype;
6314 int reverse;
6315 {
6316 struct block *b0;
6317
6318 switch (atmfield) {
6319
6320 case A_VPI:
6321 if (!is_atm)
6322 bpf_error("'vpi' supported only on raw ATM");
6323 if (off_vpi == (u_int)-1)
6324 abort();
6325 b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
6326 reverse, jvalue);
6327 break;
6328
6329 case A_VCI:
6330 if (!is_atm)
6331 bpf_error("'vci' supported only on raw ATM");
6332 if (off_vci == (u_int)-1)
6333 abort();
6334 b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
6335 reverse, jvalue);
6336 break;
6337
6338 case A_PROTOTYPE:
6339 if (off_proto == (u_int)-1)
6340 abort(); /* XXX - this isn't on FreeBSD */
6341 b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
6342 reverse, jvalue);
6343 break;
6344
6345 case A_MSGTYPE:
6346 if (off_payload == (u_int)-1)
6347 abort();
6348 b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
6349 0xffffffff, jtype, reverse, jvalue);
6350 break;
6351
6352 case A_CALLREFTYPE:
6353 if (!is_atm)
6354 bpf_error("'callref' supported only on raw ATM");
6355 if (off_proto == (u_int)-1)
6356 abort();
6357 b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
6358 jtype, reverse, jvalue);
6359 break;
6360
6361 default:
6362 abort();
6363 }
6364 return b0;
6365 }
6366
6367 struct block *
6368 gen_atmtype_abbrev(type)
6369 int type;
6370 {
6371 struct block *b0, *b1;
6372
6373 switch (type) {
6374
6375 case A_METAC:
6376 /* Get all packets in Meta signalling Circuit */
6377 if (!is_atm)
6378 bpf_error("'metac' supported only on raw ATM");
6379 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6380 b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
6381 gen_and(b0, b1);
6382 break;
6383
6384 case A_BCC:
6385 /* Get all packets in Broadcast Circuit*/
6386 if (!is_atm)
6387 bpf_error("'bcc' supported only on raw ATM");
6388 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6389 b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
6390 gen_and(b0, b1);
6391 break;
6392
6393 case A_OAMF4SC:
6394 /* Get all cells in Segment OAM F4 circuit*/
6395 if (!is_atm)
6396 bpf_error("'oam4sc' supported only on raw ATM");
6397 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6398 b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6399 gen_and(b0, b1);
6400 break;
6401
6402 case A_OAMF4EC:
6403 /* Get all cells in End-to-End OAM F4 Circuit*/
6404 if (!is_atm)
6405 bpf_error("'oam4ec' supported only on raw ATM");
6406 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6407 b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6408 gen_and(b0, b1);
6409 break;
6410
6411 case A_SC:
6412 /* Get all packets in connection Signalling Circuit */
6413 if (!is_atm)
6414 bpf_error("'sc' supported only on raw ATM");
6415 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6416 b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
6417 gen_and(b0, b1);
6418 break;
6419
6420 case A_ILMIC:
6421 /* Get all packets in ILMI Circuit */
6422 if (!is_atm)
6423 bpf_error("'ilmic' supported only on raw ATM");
6424 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6425 b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
6426 gen_and(b0, b1);
6427 break;
6428
6429 case A_LANE:
6430 /* Get all LANE packets */
6431 if (!is_atm)
6432 bpf_error("'lane' supported only on raw ATM");
6433 b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
6434
6435 /*
6436 * Arrange that all subsequent tests assume LANE
6437 * rather than LLC-encapsulated packets, and set
6438 * the offsets appropriately for LANE-encapsulated
6439 * Ethernet.
6440 *
6441 * "off_mac" is the offset of the Ethernet header,
6442 * which is 2 bytes past the ATM pseudo-header
6443 * (skipping the pseudo-header and 2-byte LE Client
6444 * field). The other offsets are Ethernet offsets
6445 * relative to "off_mac".
6446 */
6447 is_lane = 1;
6448 off_mac = off_payload + 2; /* MAC header */
6449 off_linktype = off_mac + 12;
6450 off_nl = off_mac + 14; /* Ethernet II */
6451 off_nl_nosnap = off_mac + 17; /* 802.3+802.2 */
6452 break;
6453
6454 case A_LLC:
6455 /* Get all LLC-encapsulated packets */
6456 if (!is_atm)
6457 bpf_error("'llc' supported only on raw ATM");
6458 b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
6459 is_lane = 0;
6460 break;
6461
6462 default:
6463 abort();
6464 }
6465 return b1;
6466 }
6467
6468 struct block *
6469 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
6470 int mtp3field;
6471 bpf_u_int32 jvalue;
6472 bpf_u_int32 jtype;
6473 int reverse;
6474 {
6475 struct block *b0;
6476 bpf_u_int32 val1 , val2 , val3;
6477
6478 switch (mtp3field) {
6479
6480 case M_SIO:
6481 if (off_sio == (u_int)-1)
6482 bpf_error("'sio' supported only on SS7");
6483 /* sio coded on 1 byte so max value 255 */
6484 if(jvalue > 255)
6485 bpf_error("sio value %u too big; max value = 255",
6486 jvalue);
6487 b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
6488 (u_int)jtype, reverse, (u_int)jvalue);
6489 break;
6490
6491 case M_OPC:
6492 if (off_opc == (u_int)-1)
6493 bpf_error("'opc' supported only on SS7");
6494 /* opc coded on 14 bits so max value 16383 */
6495 if (jvalue > 16383)
6496 bpf_error("opc value %u too big; max value = 16383",
6497 jvalue);
6498 /* the following instructions are made to convert jvalue
6499 * to the form used to write opc in an ss7 message*/
6500 val1 = jvalue & 0x00003c00;
6501 val1 = val1 >>10;
6502 val2 = jvalue & 0x000003fc;
6503 val2 = val2 <<6;
6504 val3 = jvalue & 0x00000003;
6505 val3 = val3 <<22;
6506 jvalue = val1 + val2 + val3;
6507 b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
6508 (u_int)jtype, reverse, (u_int)jvalue);
6509 break;
6510
6511 case M_DPC:
6512 if (off_dpc == (u_int)-1)
6513 bpf_error("'dpc' supported only on SS7");
6514 /* dpc coded on 14 bits so max value 16383 */
6515 if (jvalue > 16383)
6516 bpf_error("dpc value %u too big; max value = 16383",
6517 jvalue);
6518 /* the following instructions are made to convert jvalue
6519 * to the forme used to write dpc in an ss7 message*/
6520 val1 = jvalue & 0x000000ff;
6521 val1 = val1 << 24;
6522 val2 = jvalue & 0x00003f00;
6523 val2 = val2 << 8;
6524 jvalue = val1 + val2;
6525 b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
6526 (u_int)jtype, reverse, (u_int)jvalue);
6527 break;
6528
6529 case M_SLS:
6530 if (off_sls == (u_int)-1)
6531 bpf_error("'sls' supported only on SS7");
6532 /* sls coded on 4 bits so max value 15 */
6533 if (jvalue > 15)
6534 bpf_error("sls value %u too big; max value = 15",
6535 jvalue);
6536 /* the following instruction is made to convert jvalue
6537 * to the forme used to write sls in an ss7 message*/
6538 jvalue = jvalue << 4;
6539 b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
6540 (u_int)jtype,reverse, (u_int)jvalue);
6541 break;
6542
6543 default:
6544 abort();
6545 }
6546 return b0;
6547 }
6548
6549 static struct block *
6550 gen_msg_abbrev(type)
6551 int type;
6552 {
6553 struct block *b1;
6554
6555 /*
6556 * Q.2931 signalling protocol messages for handling virtual circuits
6557 * establishment and teardown
6558 */
6559 switch (type) {
6560
6561 case A_SETUP:
6562 b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
6563 break;
6564
6565 case A_CALLPROCEED:
6566 b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
6567 break;
6568
6569 case A_CONNECT:
6570 b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
6571 break;
6572
6573 case A_CONNECTACK:
6574 b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
6575 break;
6576
6577 case A_RELEASE:
6578 b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
6579 break;
6580
6581 case A_RELEASE_DONE:
6582 b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
6583 break;
6584
6585 default:
6586 abort();
6587 }
6588 return b1;
6589 }
6590
6591 struct block *
6592 gen_atmmulti_abbrev(type)
6593 int type;
6594 {
6595 struct block *b0, *b1;
6596
6597 switch (type) {
6598
6599 case A_OAM:
6600 if (!is_atm)
6601 bpf_error("'oam' supported only on raw ATM");
6602 b1 = gen_atmmulti_abbrev(A_OAMF4);
6603 break;
6604
6605 case A_OAMF4:
6606 if (!is_atm)
6607 bpf_error("'oamf4' supported only on raw ATM");
6608 /* OAM F4 type */
6609 b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6610 b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6611 gen_or(b0, b1);
6612 b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6613 gen_and(b0, b1);
6614 break;
6615
6616 case A_CONNECTMSG:
6617 /*
6618 * Get Q.2931 signalling messages for switched
6619 * virtual connection
6620 */
6621 if (!is_atm)
6622 bpf_error("'connectmsg' supported only on raw ATM");
6623 b0 = gen_msg_abbrev(A_SETUP);
6624 b1 = gen_msg_abbrev(A_CALLPROCEED);
6625 gen_or(b0, b1);
6626 b0 = gen_msg_abbrev(A_CONNECT);
6627 gen_or(b0, b1);
6628 b0 = gen_msg_abbrev(A_CONNECTACK);
6629 gen_or(b0, b1);
6630 b0 = gen_msg_abbrev(A_RELEASE);
6631 gen_or(b0, b1);
6632 b0 = gen_msg_abbrev(A_RELEASE_DONE);
6633 gen_or(b0, b1);
6634 b0 = gen_atmtype_abbrev(A_SC);
6635 gen_and(b0, b1);
6636 break;
6637
6638 case A_METACONNECT:
6639 if (!is_atm)
6640 bpf_error("'metaconnect' supported only on raw ATM");
6641 b0 = gen_msg_abbrev(A_SETUP);
6642 b1 = gen_msg_abbrev(A_CALLPROCEED);
6643 gen_or(b0, b1);
6644 b0 = gen_msg_abbrev(A_CONNECT);
6645 gen_or(b0, b1);
6646 b0 = gen_msg_abbrev(A_RELEASE);
6647 gen_or(b0, b1);
6648 b0 = gen_msg_abbrev(A_RELEASE_DONE);
6649 gen_or(b0, b1);
6650 b0 = gen_atmtype_abbrev(A_METAC);
6651 gen_and(b0, b1);
6652 break;
6653
6654 default:
6655 abort();
6656 }
6657 return b1;
6658 }