1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 static const char rcsid
[] _U_
=
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
32 #include <pcap-stdinc.h>
39 #ifdef HAVE_SYS_BITYPES_H
40 #include <sys/bitypes.h>
42 #include <sys/types.h>
43 #include <sys/socket.h>
47 * XXX - why was this included even on UNIX?
56 #include <sys/param.h>
59 #include <netinet/in.h>
60 #include <arpa/inet.h>
76 #include "ethertype.h"
80 #include "ieee80211.h"
82 #include "sunatmpos.h"
85 #include "pcap/ipnet.h"
87 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
88 #include <linux/if_packet.h>
89 #include <linux/filter.h>
91 #ifdef HAVE_NET_PFVAR_H
92 #include <sys/socket.h>
94 #include <net/pfvar.h>
95 #include <net/if_pflog.h>
98 #define offsetof(s, e) ((size_t)&((s *)0)->e)
102 #include <netdb.h> /* for "struct addrinfo" */
105 #include <pcap/namedb.h>
107 #define ETHERMTU 1500
110 #define IPPROTO_SCTP 132
113 #ifdef HAVE_OS_PROTO_H
114 #include "os-proto.h"
117 #define JMP(c) ((c)|BPF_JMP|BPF_K)
120 static jmp_buf top_ctx
;
121 static pcap_t
*bpf_pcap
;
123 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
125 static u_int orig_linktype
= (u_int
)-1, orig_nl
= (u_int
)-1, label_stack_depth
= (u_int
)-1;
127 static u_int orig_linktype
= -1U, orig_nl
= -1U, label_stack_depth
= -1U;
132 static int pcap_fddipad
;
137 bpf_error(const char *fmt
, ...)
142 if (bpf_pcap
!= NULL
)
143 (void)vsnprintf(pcap_geterr(bpf_pcap
), PCAP_ERRBUF_SIZE
,
150 static void init_linktype(pcap_t
*);
152 static void init_regs(void);
153 static int alloc_reg(void);
154 static void free_reg(int);
156 static struct block
*root
;
159 * Value passed to gen_load_a() to indicate what the offset argument
163 OR_PACKET
, /* relative to the beginning of the packet */
164 OR_LINK
, /* relative to the beginning of the link-layer header */
165 OR_MACPL
, /* relative to the end of the MAC-layer header */
166 OR_NET
, /* relative to the network-layer header */
167 OR_NET_NOSNAP
, /* relative to the network-layer header, with no SNAP header at the link layer */
168 OR_TRAN_IPV4
, /* relative to the transport-layer header, with IPv4 network layer */
169 OR_TRAN_IPV6
/* relative to the transport-layer header, with IPv6 network layer */
174 * As errors are handled by a longjmp, anything allocated must be freed
175 * in the longjmp handler, so it must be reachable from that handler.
176 * One thing that's allocated is the result of pcap_nametoaddrinfo();
177 * it must be freed with freeaddrinfo(). This variable points to any
178 * addrinfo structure that would need to be freed.
180 static struct addrinfo
*ai
;
184 * We divy out chunks of memory rather than call malloc each time so
185 * we don't have to worry about leaking memory. It's probably
186 * not a big deal if all this memory was wasted but if this ever
187 * goes into a library that would probably not be a good idea.
189 * XXX - this *is* in a library....
192 #define CHUNK0SIZE 1024
198 static struct chunk chunks
[NCHUNKS
];
199 static int cur_chunk
;
201 static void *newchunk(u_int
);
202 static void freechunks(void);
203 static inline struct block
*new_block(int);
204 static inline struct slist
*new_stmt(int);
205 static struct block
*gen_retblk(int);
206 static inline void syntax(void);
208 static void backpatch(struct block
*, struct block
*);
209 static void merge(struct block
*, struct block
*);
210 static struct block
*gen_cmp(enum e_offrel
, u_int
, u_int
, bpf_int32
);
211 static struct block
*gen_cmp_gt(enum e_offrel
, u_int
, u_int
, bpf_int32
);
212 static struct block
*gen_cmp_ge(enum e_offrel
, u_int
, u_int
, bpf_int32
);
213 static struct block
*gen_cmp_lt(enum e_offrel
, u_int
, u_int
, bpf_int32
);
214 static struct block
*gen_cmp_le(enum e_offrel
, u_int
, u_int
, bpf_int32
);
215 static struct block
*gen_mcmp(enum e_offrel
, u_int
, u_int
, bpf_int32
,
217 static struct block
*gen_bcmp(enum e_offrel
, u_int
, u_int
, const u_char
*);
218 static struct block
*gen_ncmp(enum e_offrel
, bpf_u_int32
, bpf_u_int32
,
219 bpf_u_int32
, bpf_u_int32
, int, bpf_int32
);
220 static struct slist
*gen_load_llrel(u_int
, u_int
);
221 static struct slist
*gen_load_macplrel(u_int
, u_int
);
222 static struct slist
*gen_load_a(enum e_offrel
, u_int
, u_int
);
223 static struct slist
*gen_loadx_iphdrlen(void);
224 static struct block
*gen_uncond(int);
225 static inline struct block
*gen_true(void);
226 static inline struct block
*gen_false(void);
227 static struct block
*gen_ether_linktype(int);
228 static struct block
*gen_ipnet_linktype(int);
229 static struct block
*gen_linux_sll_linktype(int);
230 static struct slist
*gen_load_prism_llprefixlen(void);
231 static struct slist
*gen_load_avs_llprefixlen(void);
232 static struct slist
*gen_load_radiotap_llprefixlen(void);
233 static struct slist
*gen_load_ppi_llprefixlen(void);
234 static void insert_compute_vloffsets(struct block
*);
235 static struct slist
*gen_llprefixlen(void);
236 static struct slist
*gen_off_macpl(void);
237 static int ethertype_to_ppptype(int);
238 static struct block
*gen_linktype(int);
239 static struct block
*gen_snap(bpf_u_int32
, bpf_u_int32
);
240 static struct block
*gen_llc_linktype(int);
241 static struct block
*gen_hostop(bpf_u_int32
, bpf_u_int32
, int, int, u_int
, u_int
);
243 static struct block
*gen_hostop6(struct in6_addr
*, struct in6_addr
*, int, int, u_int
, u_int
);
245 static struct block
*gen_ahostop(const u_char
*, int);
246 static struct block
*gen_ehostop(const u_char
*, int);
247 static struct block
*gen_fhostop(const u_char
*, int);
248 static struct block
*gen_thostop(const u_char
*, int);
249 static struct block
*gen_wlanhostop(const u_char
*, int);
250 static struct block
*gen_ipfchostop(const u_char
*, int);
251 static struct block
*gen_dnhostop(bpf_u_int32
, int);
252 static struct block
*gen_mpls_linktype(int);
253 static struct block
*gen_host(bpf_u_int32
, bpf_u_int32
, int, int, int);
255 static struct block
*gen_host6(struct in6_addr
*, struct in6_addr
*, int, int, int);
258 static struct block
*gen_gateway(const u_char
*, bpf_u_int32
**, int, int);
260 static struct block
*gen_ipfrag(void);
261 static struct block
*gen_portatom(int, bpf_int32
);
262 static struct block
*gen_portrangeatom(int, bpf_int32
, bpf_int32
);
264 static struct block
*gen_portatom6(int, bpf_int32
);
265 static struct block
*gen_portrangeatom6(int, bpf_int32
, bpf_int32
);
267 struct block
*gen_portop(int, int, int);
268 static struct block
*gen_port(int, int, int);
269 struct block
*gen_portrangeop(int, int, int, int);
270 static struct block
*gen_portrange(int, int, int, int);
272 struct block
*gen_portop6(int, int, int);
273 static struct block
*gen_port6(int, int, int);
274 struct block
*gen_portrangeop6(int, int, int, int);
275 static struct block
*gen_portrange6(int, int, int, int);
277 static int lookup_proto(const char *, int);
278 static struct block
*gen_protochain(int, int, int);
279 static struct block
*gen_proto(int, int, int);
280 static struct slist
*xfer_to_x(struct arth
*);
281 static struct slist
*xfer_to_a(struct arth
*);
282 static struct block
*gen_mac_multicast(int);
283 static struct block
*gen_len(int, int);
284 static struct block
*gen_check_802_11_data_frame(void);
286 static struct block
*gen_ppi_dlt_check(void);
287 static struct block
*gen_msg_abbrev(int type
);
298 /* XXX Round up to nearest long. */
299 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
301 /* XXX Round up to structure boundary. */
305 cp
= &chunks
[cur_chunk
];
306 if (n
> cp
->n_left
) {
307 ++cp
, k
= ++cur_chunk
;
309 bpf_error("out of memory");
310 size
= CHUNK0SIZE
<< k
;
311 cp
->m
= (void *)malloc(size
);
313 bpf_error("out of memory");
314 memset((char *)cp
->m
, 0, size
);
317 bpf_error("out of memory");
320 return (void *)((char *)cp
->m
+ cp
->n_left
);
329 for (i
= 0; i
< NCHUNKS
; ++i
)
330 if (chunks
[i
].m
!= NULL
) {
337 * A strdup whose allocations are freed after code generation is over.
341 register const char *s
;
343 int n
= strlen(s
) + 1;
344 char *cp
= newchunk(n
);
350 static inline struct block
*
356 p
= (struct block
*)newchunk(sizeof(*p
));
363 static inline struct slist
*
369 p
= (struct slist
*)newchunk(sizeof(*p
));
375 static struct block
*
379 struct block
*b
= new_block(BPF_RET
|BPF_K
);
388 bpf_error("syntax error in filter expression");
391 static bpf_u_int32 netmask
;
396 pcap_compile_unsafe(pcap_t
*p
, struct bpf_program
*program
,
397 const char *buf
, int optimize
, bpf_u_int32 mask
);
400 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
401 const char *buf
, int optimize
, bpf_u_int32 mask
)
405 EnterCriticalSection(&g_PcapCompileCriticalSection
);
407 result
= pcap_compile_unsafe(p
, program
, buf
, optimize
, mask
);
409 LeaveCriticalSection(&g_PcapCompileCriticalSection
);
415 pcap_compile_unsafe(pcap_t
*p
, struct bpf_program
*program
,
416 const char *buf
, int optimize
, bpf_u_int32 mask
)
419 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
420 const char *buf
, int optimize
, bpf_u_int32 mask
)
424 const char * volatile xbuf
= buf
;
432 if (setjmp(top_ctx
)) {
446 snaplen
= pcap_snapshot(p
);
448 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
449 "snaplen of 0 rejects all packets");
453 lex_init(xbuf
? xbuf
: "");
461 root
= gen_retblk(snaplen
);
463 if (optimize
&& !no_optimize
) {
466 (root
->s
.code
== (BPF_RET
|BPF_K
) && root
->s
.k
== 0))
467 bpf_error("expression rejects all packets");
469 program
->bf_insns
= icode_to_fcode(root
, &len
);
470 program
->bf_len
= len
;
478 * entry point for using the compiler with no pcap open
479 * pass in all the stuff that is needed explicitly instead.
482 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
483 struct bpf_program
*program
,
484 const char *buf
, int optimize
, bpf_u_int32 mask
)
489 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
492 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
498 * Clean up a "struct bpf_program" by freeing all the memory allocated
502 pcap_freecode(struct bpf_program
*program
)
505 if (program
->bf_insns
!= NULL
) {
506 free((char *)program
->bf_insns
);
507 program
->bf_insns
= NULL
;
512 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
513 * which of the jt and jf fields has been resolved and which is a pointer
514 * back to another unresolved block (or nil). At least one of the fields
515 * in each block is already resolved.
518 backpatch(list
, target
)
519 struct block
*list
, *target
;
536 * Merge the lists in b0 and b1, using the 'sense' field to indicate
537 * which of jt and jf is the link.
541 struct block
*b0
, *b1
;
543 register struct block
**p
= &b0
;
545 /* Find end of list. */
547 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
549 /* Concatenate the lists. */
557 struct block
*ppi_dlt_check
;
560 * Insert before the statements of the first (root) block any
561 * statements needed to load the lengths of any variable-length
562 * headers into registers.
564 * XXX - a fancier strategy would be to insert those before the
565 * statements of all blocks that use those lengths and that
566 * have no predecessors that use them, so that we only compute
567 * the lengths if we need them. There might be even better
568 * approaches than that.
570 * However, those strategies would be more complicated, and
571 * as we don't generate code to compute a length if the
572 * program has no tests that use the length, and as most
573 * tests will probably use those lengths, we would just
574 * postpone computing the lengths so that it's not done
575 * for tests that fail early, and it's not clear that's
578 insert_compute_vloffsets(p
->head
);
581 * For DLT_PPI captures, generate a check of the per-packet
582 * DLT value to make sure it's DLT_IEEE802_11.
584 ppi_dlt_check
= gen_ppi_dlt_check();
585 if (ppi_dlt_check
!= NULL
)
586 gen_and(ppi_dlt_check
, p
);
588 backpatch(p
, gen_retblk(snaplen
));
589 p
->sense
= !p
->sense
;
590 backpatch(p
, gen_retblk(0));
596 struct block
*b0
, *b1
;
598 backpatch(b0
, b1
->head
);
599 b0
->sense
= !b0
->sense
;
600 b1
->sense
= !b1
->sense
;
602 b1
->sense
= !b1
->sense
;
608 struct block
*b0
, *b1
;
610 b0
->sense
= !b0
->sense
;
611 backpatch(b0
, b1
->head
);
612 b0
->sense
= !b0
->sense
;
621 b
->sense
= !b
->sense
;
624 static struct block
*
625 gen_cmp(offrel
, offset
, size
, v
)
626 enum e_offrel offrel
;
630 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
633 static struct block
*
634 gen_cmp_gt(offrel
, offset
, size
, v
)
635 enum e_offrel offrel
;
639 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
642 static struct block
*
643 gen_cmp_ge(offrel
, offset
, size
, v
)
644 enum e_offrel offrel
;
648 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
651 static struct block
*
652 gen_cmp_lt(offrel
, offset
, size
, v
)
653 enum e_offrel offrel
;
657 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
660 static struct block
*
661 gen_cmp_le(offrel
, offset
, size
, v
)
662 enum e_offrel offrel
;
666 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
669 static struct block
*
670 gen_mcmp(offrel
, offset
, size
, v
, mask
)
671 enum e_offrel offrel
;
676 return gen_ncmp(offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
679 static struct block
*
680 gen_bcmp(offrel
, offset
, size
, v
)
681 enum e_offrel offrel
;
682 register u_int offset
, size
;
683 register const u_char
*v
;
685 register struct block
*b
, *tmp
;
689 register const u_char
*p
= &v
[size
- 4];
690 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
691 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
693 tmp
= gen_cmp(offrel
, offset
+ size
- 4, BPF_W
, w
);
700 register const u_char
*p
= &v
[size
- 2];
701 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
703 tmp
= gen_cmp(offrel
, offset
+ size
- 2, BPF_H
, w
);
710 tmp
= gen_cmp(offrel
, offset
, BPF_B
, (bpf_int32
)v
[0]);
719 * AND the field of size "size" at offset "offset" relative to the header
720 * specified by "offrel" with "mask", and compare it with the value "v"
721 * with the test specified by "jtype"; if "reverse" is true, the test
722 * should test the opposite of "jtype".
724 static struct block
*
725 gen_ncmp(offrel
, offset
, size
, mask
, jtype
, reverse
, v
)
726 enum e_offrel offrel
;
728 bpf_u_int32 offset
, size
, mask
, jtype
;
731 struct slist
*s
, *s2
;
734 s
= gen_load_a(offrel
, offset
, size
);
736 if (mask
!= 0xffffffff) {
737 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
742 b
= new_block(JMP(jtype
));
745 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
751 * Various code constructs need to know the layout of the data link
752 * layer. These variables give the necessary offsets from the beginning
753 * of the packet data.
757 * This is the offset of the beginning of the link-layer header from
758 * the beginning of the raw packet data.
760 * It's usually 0, except for 802.11 with a fixed-length radio header.
761 * (For 802.11 with a variable-length radio header, we have to generate
762 * code to compute that offset; off_ll is 0 in that case.)
767 * If there's a variable-length header preceding the link-layer header,
768 * "reg_off_ll" is the register number for a register containing the
769 * length of that header, and therefore the offset of the link-layer
770 * header from the beginning of the raw packet data. Otherwise,
771 * "reg_off_ll" is -1.
773 static int reg_off_ll
;
776 * This is the offset of the beginning of the MAC-layer header from
777 * the beginning of the link-layer header.
778 * It's usually 0, except for ATM LANE, where it's the offset, relative
779 * to the beginning of the raw packet data, of the Ethernet header, and
780 * for Ethernet with various additional information.
782 static u_int off_mac
;
785 * This is the offset of the beginning of the MAC-layer payload,
786 * from the beginning of the raw packet data.
788 * I.e., it's the sum of the length of the link-layer header (without,
789 * for example, any 802.2 LLC header, so it's the MAC-layer
790 * portion of that header), plus any prefix preceding the
793 static u_int off_macpl
;
796 * This is 1 if the offset of the beginning of the MAC-layer payload
797 * from the beginning of the link-layer header is variable-length.
799 static int off_macpl_is_variable
;
802 * If the link layer has variable_length headers, "reg_off_macpl"
803 * is the register number for a register containing the length of the
804 * link-layer header plus the length of any variable-length header
805 * preceding the link-layer header. Otherwise, "reg_off_macpl"
808 static int reg_off_macpl
;
811 * "off_linktype" is the offset to information in the link-layer header
812 * giving the packet type. This offset is relative to the beginning
813 * of the link-layer header (i.e., it doesn't include off_ll).
815 * For Ethernet, it's the offset of the Ethernet type field.
817 * For link-layer types that always use 802.2 headers, it's the
818 * offset of the LLC header.
820 * For PPP, it's the offset of the PPP type field.
822 * For Cisco HDLC, it's the offset of the CHDLC type field.
824 * For BSD loopback, it's the offset of the AF_ value.
826 * For Linux cooked sockets, it's the offset of the type field.
828 * It's set to -1 for no encapsulation, in which case, IP is assumed.
830 static u_int off_linktype
;
833 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
834 * checks to check the PPP header, assumed to follow a LAN-style link-
835 * layer header and a PPPoE session header.
837 static int is_pppoes
= 0;
840 * TRUE if the link layer includes an ATM pseudo-header.
842 static int is_atm
= 0;
845 * TRUE if "lane" appeared in the filter; it causes us to generate
846 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
848 static int is_lane
= 0;
851 * These are offsets for the ATM pseudo-header.
853 static u_int off_vpi
;
854 static u_int off_vci
;
855 static u_int off_proto
;
858 * These are offsets for the MTP2 fields.
863 * These are offsets for the MTP3 fields.
865 static u_int off_sio
;
866 static u_int off_opc
;
867 static u_int off_dpc
;
868 static u_int off_sls
;
871 * This is the offset of the first byte after the ATM pseudo_header,
872 * or -1 if there is no ATM pseudo-header.
874 static u_int off_payload
;
877 * These are offsets to the beginning of the network-layer header.
878 * They are relative to the beginning of the MAC-layer payload (i.e.,
879 * they don't include off_ll or off_macpl).
881 * If the link layer never uses 802.2 LLC:
883 * "off_nl" and "off_nl_nosnap" are the same.
885 * If the link layer always uses 802.2 LLC:
887 * "off_nl" is the offset if there's a SNAP header following
890 * "off_nl_nosnap" is the offset if there's no SNAP header.
892 * If the link layer is Ethernet:
894 * "off_nl" is the offset if the packet is an Ethernet II packet
895 * (we assume no 802.3+802.2+SNAP);
897 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
898 * with an 802.2 header following it.
901 static u_int off_nl_nosnap
;
909 linktype
= pcap_datalink(p
);
911 pcap_fddipad
= p
->fddipad
;
915 * Assume it's not raw ATM with a pseudo-header, for now.
926 * And that we're not doing PPPoE.
931 * And assume we're not doing SS7.
940 * Also assume it's not 802.11.
944 off_macpl_is_variable
= 0;
948 label_stack_depth
= 0;
958 off_nl
= 0; /* XXX in reality, variable! */
959 off_nl_nosnap
= 0; /* no 802.2 LLC */
962 case DLT_ARCNET_LINUX
:
965 off_nl
= 0; /* XXX in reality, variable! */
966 off_nl_nosnap
= 0; /* no 802.2 LLC */
971 off_macpl
= 14; /* Ethernet header length */
972 off_nl
= 0; /* Ethernet II */
973 off_nl_nosnap
= 3; /* 802.3+802.2 */
978 * SLIP doesn't have a link level type. The 16 byte
979 * header is hacked into our SLIP driver.
984 off_nl_nosnap
= 0; /* no 802.2 LLC */
988 /* XXX this may be the same as the DLT_PPP_BSDOS case */
993 off_nl_nosnap
= 0; /* no 802.2 LLC */
1001 off_nl_nosnap
= 0; /* no 802.2 LLC */
1008 off_nl_nosnap
= 0; /* no 802.2 LLC */
1013 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1014 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1018 off_nl_nosnap
= 0; /* no 802.2 LLC */
1023 * This does no include the Ethernet header, and
1024 * only covers session state.
1029 off_nl_nosnap
= 0; /* no 802.2 LLC */
1036 off_nl_nosnap
= 0; /* no 802.2 LLC */
1041 * FDDI doesn't really have a link-level type field.
1042 * We set "off_linktype" to the offset of the LLC header.
1044 * To check for Ethernet types, we assume that SSAP = SNAP
1045 * is being used and pick out the encapsulated Ethernet type.
1046 * XXX - should we generate code to check for SNAP?
1050 off_linktype
+= pcap_fddipad
;
1052 off_macpl
= 13; /* FDDI MAC header length */
1054 off_macpl
+= pcap_fddipad
;
1056 off_nl
= 8; /* 802.2+SNAP */
1057 off_nl_nosnap
= 3; /* 802.2 */
1062 * Token Ring doesn't really have a link-level type field.
1063 * We set "off_linktype" to the offset of the LLC header.
1065 * To check for Ethernet types, we assume that SSAP = SNAP
1066 * is being used and pick out the encapsulated Ethernet type.
1067 * XXX - should we generate code to check for SNAP?
1069 * XXX - the header is actually variable-length.
1070 * Some various Linux patched versions gave 38
1071 * as "off_linktype" and 40 as "off_nl"; however,
1072 * if a token ring packet has *no* routing
1073 * information, i.e. is not source-routed, the correct
1074 * values are 20 and 22, as they are in the vanilla code.
1076 * A packet is source-routed iff the uppermost bit
1077 * of the first byte of the source address, at an
1078 * offset of 8, has the uppermost bit set. If the
1079 * packet is source-routed, the total number of bytes
1080 * of routing information is 2 plus bits 0x1F00 of
1081 * the 16-bit value at an offset of 14 (shifted right
1082 * 8 - figure out which byte that is).
1085 off_macpl
= 14; /* Token Ring MAC header length */
1086 off_nl
= 8; /* 802.2+SNAP */
1087 off_nl_nosnap
= 3; /* 802.2 */
1090 case DLT_IEEE802_11
:
1091 case DLT_PRISM_HEADER
:
1092 case DLT_IEEE802_11_RADIO_AVS
:
1093 case DLT_IEEE802_11_RADIO
:
1095 * 802.11 doesn't really have a link-level type field.
1096 * We set "off_linktype" to the offset of the LLC header.
1098 * To check for Ethernet types, we assume that SSAP = SNAP
1099 * is being used and pick out the encapsulated Ethernet type.
1100 * XXX - should we generate code to check for SNAP?
1102 * We also handle variable-length radio headers here.
1103 * The Prism header is in theory variable-length, but in
1104 * practice it's always 144 bytes long. However, some
1105 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1106 * sometimes or always supply an AVS header, so we
1107 * have to check whether the radio header is a Prism
1108 * header or an AVS header, so, in practice, it's
1112 off_macpl
= 0; /* link-layer header is variable-length */
1113 off_macpl_is_variable
= 1;
1114 off_nl
= 8; /* 802.2+SNAP */
1115 off_nl_nosnap
= 3; /* 802.2 */
1120 * At the moment we treat PPI the same way that we treat
1121 * normal Radiotap encoded packets. The difference is in
1122 * the function that generates the code at the beginning
1123 * to compute the header length. Since this code generator
1124 * of PPI supports bare 802.11 encapsulation only (i.e.
1125 * the encapsulated DLT should be DLT_IEEE802_11) we
1126 * generate code to check for this too.
1129 off_macpl
= 0; /* link-layer header is variable-length */
1130 off_macpl_is_variable
= 1;
1131 off_nl
= 8; /* 802.2+SNAP */
1132 off_nl_nosnap
= 3; /* 802.2 */
1135 case DLT_ATM_RFC1483
:
1136 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1138 * assume routed, non-ISO PDUs
1139 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1141 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1142 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1143 * latter would presumably be treated the way PPPoE
1144 * should be, so you can do "pppoe and udp port 2049"
1145 * or "pppoa and tcp port 80" and have it check for
1146 * PPPo{A,E} and a PPP protocol of IP and....
1149 off_macpl
= 0; /* packet begins with LLC header */
1150 off_nl
= 8; /* 802.2+SNAP */
1151 off_nl_nosnap
= 3; /* 802.2 */
1156 * Full Frontal ATM; you get AALn PDUs with an ATM
1160 off_vpi
= SUNATM_VPI_POS
;
1161 off_vci
= SUNATM_VCI_POS
;
1162 off_proto
= PROTO_POS
;
1163 off_mac
= -1; /* assume LLC-encapsulated, so no MAC-layer header */
1164 off_payload
= SUNATM_PKT_BEGIN_POS
;
1165 off_linktype
= off_payload
;
1166 off_macpl
= off_payload
; /* if LLC-encapsulated */
1167 off_nl
= 8; /* 802.2+SNAP */
1168 off_nl_nosnap
= 3; /* 802.2 */
1177 off_nl_nosnap
= 0; /* no 802.2 LLC */
1180 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
1184 off_nl_nosnap
= 0; /* no 802.2 LLC */
1189 * LocalTalk does have a 1-byte type field in the LLAP header,
1190 * but really it just indicates whether there is a "short" or
1191 * "long" DDP packet following.
1196 off_nl_nosnap
= 0; /* no 802.2 LLC */
1199 case DLT_IP_OVER_FC
:
1201 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1202 * link-level type field. We set "off_linktype" to the
1203 * offset of the LLC header.
1205 * To check for Ethernet types, we assume that SSAP = SNAP
1206 * is being used and pick out the encapsulated Ethernet type.
1207 * XXX - should we generate code to check for SNAP? RFC
1208 * 2625 says SNAP should be used.
1212 off_nl
= 8; /* 802.2+SNAP */
1213 off_nl_nosnap
= 3; /* 802.2 */
1218 * XXX - we should set this to handle SNAP-encapsulated
1219 * frames (NLPID of 0x80).
1224 off_nl_nosnap
= 0; /* no 802.2 LLC */
1228 * the only BPF-interesting FRF.16 frames are non-control frames;
1229 * Frame Relay has a variable length link-layer
1230 * so lets start with offset 4 for now and increments later on (FIXME);
1236 off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1239 case DLT_APPLE_IP_OVER_IEEE1394
:
1243 off_nl_nosnap
= 0; /* no 802.2 LLC */
1246 case DLT_SYMANTEC_FIREWALL
:
1249 off_nl
= 0; /* Ethernet II */
1250 off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1253 #ifdef HAVE_NET_PFVAR_H
1256 off_macpl
= PFLOG_HDRLEN
;
1258 off_nl_nosnap
= 0; /* no 802.2 LLC */
1262 case DLT_JUNIPER_MFR
:
1263 case DLT_JUNIPER_MLFR
:
1264 case DLT_JUNIPER_MLPPP
:
1265 case DLT_JUNIPER_PPP
:
1266 case DLT_JUNIPER_CHDLC
:
1267 case DLT_JUNIPER_FRELAY
:
1271 off_nl_nosnap
= -1; /* no 802.2 LLC */
1274 case DLT_JUNIPER_ATM1
:
1275 off_linktype
= 4; /* in reality variable between 4-8 */
1276 off_macpl
= 4; /* in reality variable between 4-8 */
1281 case DLT_JUNIPER_ATM2
:
1282 off_linktype
= 8; /* in reality variable between 8-12 */
1283 off_macpl
= 8; /* in reality variable between 8-12 */
1288 /* frames captured on a Juniper PPPoE service PIC
1289 * contain raw ethernet frames */
1290 case DLT_JUNIPER_PPPOE
:
1291 case DLT_JUNIPER_ETHER
:
1294 off_nl
= 18; /* Ethernet II */
1295 off_nl_nosnap
= 21; /* 802.3+802.2 */
1298 case DLT_JUNIPER_PPPOE_ATM
:
1302 off_nl_nosnap
= -1; /* no 802.2 LLC */
1305 case DLT_JUNIPER_GGSN
:
1309 off_nl_nosnap
= -1; /* no 802.2 LLC */
1312 case DLT_JUNIPER_ES
:
1314 off_macpl
= -1; /* not really a network layer but raw IP addresses */
1315 off_nl
= -1; /* not really a network layer but raw IP addresses */
1316 off_nl_nosnap
= -1; /* no 802.2 LLC */
1319 case DLT_JUNIPER_MONITOR
:
1322 off_nl
= 0; /* raw IP/IP6 header */
1323 off_nl_nosnap
= -1; /* no 802.2 LLC */
1326 case DLT_JUNIPER_SERVICES
:
1328 off_macpl
= -1; /* L3 proto location dep. on cookie type */
1329 off_nl
= -1; /* L3 proto location dep. on cookie type */
1330 off_nl_nosnap
= -1; /* no 802.2 LLC */
1333 case DLT_JUNIPER_VP
:
1340 case DLT_JUNIPER_ST
:
1347 case DLT_JUNIPER_ISM
:
1354 case DLT_JUNIPER_VS
:
1355 case DLT_JUNIPER_SRX_E2E
:
1356 case DLT_JUNIPER_FIBRECHANNEL
:
1357 case DLT_JUNIPER_ATM_CEMIC
:
1376 case DLT_MTP2_WITH_PHDR
:
1411 * Currently, only raw "link[N:M]" filtering is supported.
1413 off_linktype
= -1; /* variable, min 15, max 71 steps of 7 */
1415 off_nl
= -1; /* variable, min 16, max 71 steps of 7 */
1416 off_nl_nosnap
= -1; /* no 802.2 LLC */
1417 off_mac
= 1; /* step over the kiss length byte */
1422 off_macpl
= 24; /* ipnet header length */
1427 case DLT_NETANALYZER
:
1428 off_mac
= 4; /* MAC header is past 4-byte pseudo-header */
1429 off_linktype
= 16; /* includes 4-byte pseudo-header */
1430 off_macpl
= 18; /* pseudo-header+Ethernet header length */
1431 off_nl
= 0; /* Ethernet II */
1432 off_nl_nosnap
= 3; /* 802.3+802.2 */
1435 case DLT_NETANALYZER_TRANSPARENT
:
1436 off_mac
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1437 off_linktype
= 24; /* includes 4-byte pseudo-header+preamble+SFD */
1438 off_macpl
= 26; /* pseudo-header+preamble+SFD+Ethernet header length */
1439 off_nl
= 0; /* Ethernet II */
1440 off_nl_nosnap
= 3; /* 802.3+802.2 */
1445 * For values in the range in which we've assigned new
1446 * DLT_ values, only raw "link[N:M]" filtering is supported.
1448 if (linktype
>= DLT_MATCHING_MIN
&&
1449 linktype
<= DLT_MATCHING_MAX
) {
1458 bpf_error("unknown data link type %d", linktype
);
1463 * Load a value relative to the beginning of the link-layer header.
1464 * The link-layer header doesn't necessarily begin at the beginning
1465 * of the packet data; there might be a variable-length prefix containing
1466 * radio information.
1468 static struct slist
*
1469 gen_load_llrel(offset
, size
)
1472 struct slist
*s
, *s2
;
1474 s
= gen_llprefixlen();
1477 * If "s" is non-null, it has code to arrange that the X register
1478 * contains the length of the prefix preceding the link-layer
1481 * Otherwise, the length of the prefix preceding the link-layer
1482 * header is "off_ll".
1486 * There's a variable-length prefix preceding the
1487 * link-layer header. "s" points to a list of statements
1488 * that put the length of that prefix into the X register.
1489 * do an indirect load, to use the X register as an offset.
1491 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1496 * There is no variable-length header preceding the
1497 * link-layer header; add in off_ll, which, if there's
1498 * a fixed-length header preceding the link-layer header,
1499 * is the length of that header.
1501 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
1502 s
->s
.k
= offset
+ off_ll
;
1508 * Load a value relative to the beginning of the MAC-layer payload.
1510 static struct slist
*
1511 gen_load_macplrel(offset
, size
)
1514 struct slist
*s
, *s2
;
1516 s
= gen_off_macpl();
1519 * If s is non-null, the offset of the MAC-layer payload is
1520 * variable, and s points to a list of instructions that
1521 * arrange that the X register contains that offset.
1523 * Otherwise, the offset of the MAC-layer payload is constant,
1524 * and is in off_macpl.
1528 * The offset of the MAC-layer payload is in the X
1529 * register. Do an indirect load, to use the X register
1532 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1537 * The offset of the MAC-layer payload is constant,
1538 * and is in off_macpl; load the value at that offset
1539 * plus the specified offset.
1541 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
1542 s
->s
.k
= off_macpl
+ offset
;
1548 * Load a value relative to the beginning of the specified header.
1550 static struct slist
*
1551 gen_load_a(offrel
, offset
, size
)
1552 enum e_offrel offrel
;
1555 struct slist
*s
, *s2
;
1560 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
1565 s
= gen_load_llrel(offset
, size
);
1569 s
= gen_load_macplrel(offset
, size
);
1573 s
= gen_load_macplrel(off_nl
+ offset
, size
);
1577 s
= gen_load_macplrel(off_nl_nosnap
+ offset
, size
);
1582 * Load the X register with the length of the IPv4 header
1583 * (plus the offset of the link-layer header, if it's
1584 * preceded by a variable-length header such as a radio
1585 * header), in bytes.
1587 s
= gen_loadx_iphdrlen();
1590 * Load the item at {offset of the MAC-layer payload} +
1591 * {offset, relative to the start of the MAC-layer
1592 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1593 * {specified offset}.
1595 * (If the offset of the MAC-layer payload is variable,
1596 * it's included in the value in the X register, and
1599 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1600 s2
->s
.k
= off_macpl
+ off_nl
+ offset
;
1605 s
= gen_load_macplrel(off_nl
+ 40 + offset
, size
);
1616 * Generate code to load into the X register the sum of the length of
1617 * the IPv4 header and any variable-length header preceding the link-layer
1620 static struct slist
*
1621 gen_loadx_iphdrlen()
1623 struct slist
*s
, *s2
;
1625 s
= gen_off_macpl();
1628 * There's a variable-length prefix preceding the
1629 * link-layer header, or the link-layer header is itself
1630 * variable-length. "s" points to a list of statements
1631 * that put the offset of the MAC-layer payload into
1634 * The 4*([k]&0xf) addressing mode can't be used, as we
1635 * don't have a constant offset, so we have to load the
1636 * value in question into the A register and add to it
1637 * the value from the X register.
1639 s2
= new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
1642 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
1645 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
1650 * The A register now contains the length of the
1651 * IP header. We need to add to it the offset of
1652 * the MAC-layer payload, which is still in the X
1653 * register, and move the result into the X register.
1655 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
1656 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
1659 * There is no variable-length header preceding the
1660 * link-layer header, and the link-layer header is
1661 * fixed-length; load the length of the IPv4 header,
1662 * which is at an offset of off_nl from the beginning
1663 * of the MAC-layer payload, and thus at an offset
1664 * of off_mac_pl + off_nl from the beginning of the
1667 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
1668 s
->s
.k
= off_macpl
+ off_nl
;
1673 static struct block
*
1680 s
= new_stmt(BPF_LD
|BPF_IMM
);
1682 b
= new_block(JMP(BPF_JEQ
));
1688 static inline struct block
*
1691 return gen_uncond(1);
1694 static inline struct block
*
1697 return gen_uncond(0);
1701 * Byte-swap a 32-bit number.
1702 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1703 * big-endian platforms.)
1705 #define SWAPLONG(y) \
1706 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1709 * Generate code to match a particular packet type.
1711 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1712 * value, if <= ETHERMTU. We use that to determine whether to
1713 * match the type/length field or to check the type/length field for
1714 * a value <= ETHERMTU to see whether it's a type field and then do
1715 * the appropriate test.
1717 static struct block
*
1718 gen_ether_linktype(proto
)
1721 struct block
*b0
, *b1
;
1727 case LLCSAP_NETBEUI
:
1729 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1730 * so we check the DSAP and SSAP.
1732 * LLCSAP_IP checks for IP-over-802.2, rather
1733 * than IP-over-Ethernet or IP-over-SNAP.
1735 * XXX - should we check both the DSAP and the
1736 * SSAP, like this, or should we check just the
1737 * DSAP, as we do for other types <= ETHERMTU
1738 * (i.e., other SAP values)?
1740 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1742 b1
= gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_int32
)
1743 ((proto
<< 8) | proto
));
1751 * Ethernet_II frames, which are Ethernet
1752 * frames with a frame type of ETHERTYPE_IPX;
1754 * Ethernet_802.3 frames, which are 802.3
1755 * frames (i.e., the type/length field is
1756 * a length field, <= ETHERMTU, rather than
1757 * a type field) with the first two bytes
1758 * after the Ethernet/802.3 header being
1761 * Ethernet_802.2 frames, which are 802.3
1762 * frames with an 802.2 LLC header and
1763 * with the IPX LSAP as the DSAP in the LLC
1766 * Ethernet_SNAP frames, which are 802.3
1767 * frames with an LLC header and a SNAP
1768 * header and with an OUI of 0x000000
1769 * (encapsulated Ethernet) and a protocol
1770 * ID of ETHERTYPE_IPX in the SNAP header.
1772 * XXX - should we generate the same code both
1773 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1777 * This generates code to check both for the
1778 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1780 b0
= gen_cmp(OR_MACPL
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1781 b1
= gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_int32
)0xFFFF);
1785 * Now we add code to check for SNAP frames with
1786 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1788 b0
= gen_snap(0x000000, ETHERTYPE_IPX
);
1792 * Now we generate code to check for 802.3
1793 * frames in general.
1795 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1799 * Now add the check for 802.3 frames before the
1800 * check for Ethernet_802.2 and Ethernet_802.3,
1801 * as those checks should only be done on 802.3
1802 * frames, not on Ethernet frames.
1807 * Now add the check for Ethernet_II frames, and
1808 * do that before checking for the other frame
1811 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1812 (bpf_int32
)ETHERTYPE_IPX
);
1816 case ETHERTYPE_ATALK
:
1817 case ETHERTYPE_AARP
:
1819 * EtherTalk (AppleTalk protocols on Ethernet link
1820 * layer) may use 802.2 encapsulation.
1824 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1825 * we check for an Ethernet type field less than
1826 * 1500, which means it's an 802.3 length field.
1828 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1832 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1833 * SNAP packets with an organization code of
1834 * 0x080007 (Apple, for Appletalk) and a protocol
1835 * type of ETHERTYPE_ATALK (Appletalk).
1837 * 802.2-encapsulated ETHERTYPE_AARP packets are
1838 * SNAP packets with an organization code of
1839 * 0x000000 (encapsulated Ethernet) and a protocol
1840 * type of ETHERTYPE_AARP (Appletalk ARP).
1842 if (proto
== ETHERTYPE_ATALK
)
1843 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
);
1844 else /* proto == ETHERTYPE_AARP */
1845 b1
= gen_snap(0x000000, ETHERTYPE_AARP
);
1849 * Check for Ethernet encapsulation (Ethertalk
1850 * phase 1?); we just check for the Ethernet
1853 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
1859 if (proto
<= ETHERMTU
) {
1861 * This is an LLC SAP value, so the frames
1862 * that match would be 802.2 frames.
1863 * Check that the frame is an 802.2 frame
1864 * (i.e., that the length/type field is
1865 * a length field, <= ETHERMTU) and
1866 * then check the DSAP.
1868 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1870 b1
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_B
,
1876 * This is an Ethernet type, so compare
1877 * the length/type field with it (if
1878 * the frame is an 802.2 frame, the length
1879 * field will be <= ETHERMTU, and, as
1880 * "proto" is > ETHERMTU, this test
1881 * will fail and the frame won't match,
1882 * which is what we want).
1884 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1891 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1892 * or IPv6 then we have an error.
1894 static struct block
*
1895 gen_ipnet_linktype(proto
)
1901 return gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
1902 (bpf_int32
)IPH_AF_INET
);
1905 case ETHERTYPE_IPV6
:
1906 return gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
1907 (bpf_int32
)IPH_AF_INET6
);
1918 * Generate code to match a particular packet type.
1920 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1921 * value, if <= ETHERMTU. We use that to determine whether to
1922 * match the type field or to check the type field for the special
1923 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1925 static struct block
*
1926 gen_linux_sll_linktype(proto
)
1929 struct block
*b0
, *b1
;
1935 case LLCSAP_NETBEUI
:
1937 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1938 * so we check the DSAP and SSAP.
1940 * LLCSAP_IP checks for IP-over-802.2, rather
1941 * than IP-over-Ethernet or IP-over-SNAP.
1943 * XXX - should we check both the DSAP and the
1944 * SSAP, like this, or should we check just the
1945 * DSAP, as we do for other types <= ETHERMTU
1946 * (i.e., other SAP values)?
1948 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1949 b1
= gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_int32
)
1950 ((proto
<< 8) | proto
));
1956 * Ethernet_II frames, which are Ethernet
1957 * frames with a frame type of ETHERTYPE_IPX;
1959 * Ethernet_802.3 frames, which have a frame
1960 * type of LINUX_SLL_P_802_3;
1962 * Ethernet_802.2 frames, which are 802.3
1963 * frames with an 802.2 LLC header (i.e, have
1964 * a frame type of LINUX_SLL_P_802_2) and
1965 * with the IPX LSAP as the DSAP in the LLC
1968 * Ethernet_SNAP frames, which are 802.3
1969 * frames with an LLC header and a SNAP
1970 * header and with an OUI of 0x000000
1971 * (encapsulated Ethernet) and a protocol
1972 * ID of ETHERTYPE_IPX in the SNAP header.
1974 * First, do the checks on LINUX_SLL_P_802_2
1975 * frames; generate the check for either
1976 * Ethernet_802.2 or Ethernet_SNAP frames, and
1977 * then put a check for LINUX_SLL_P_802_2 frames
1980 b0
= gen_cmp(OR_MACPL
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1981 b1
= gen_snap(0x000000, ETHERTYPE_IPX
);
1983 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1987 * Now check for 802.3 frames and OR that with
1988 * the previous test.
1990 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_3
);
1994 * Now add the check for Ethernet_II frames, and
1995 * do that before checking for the other frame
1998 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1999 (bpf_int32
)ETHERTYPE_IPX
);
2003 case ETHERTYPE_ATALK
:
2004 case ETHERTYPE_AARP
:
2006 * EtherTalk (AppleTalk protocols on Ethernet link
2007 * layer) may use 802.2 encapsulation.
2011 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2012 * we check for the 802.2 protocol type in the
2013 * "Ethernet type" field.
2015 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
2018 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2019 * SNAP packets with an organization code of
2020 * 0x080007 (Apple, for Appletalk) and a protocol
2021 * type of ETHERTYPE_ATALK (Appletalk).
2023 * 802.2-encapsulated ETHERTYPE_AARP packets are
2024 * SNAP packets with an organization code of
2025 * 0x000000 (encapsulated Ethernet) and a protocol
2026 * type of ETHERTYPE_AARP (Appletalk ARP).
2028 if (proto
== ETHERTYPE_ATALK
)
2029 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
);
2030 else /* proto == ETHERTYPE_AARP */
2031 b1
= gen_snap(0x000000, ETHERTYPE_AARP
);
2035 * Check for Ethernet encapsulation (Ethertalk
2036 * phase 1?); we just check for the Ethernet
2039 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
2045 if (proto
<= ETHERMTU
) {
2047 * This is an LLC SAP value, so the frames
2048 * that match would be 802.2 frames.
2049 * Check for the 802.2 protocol type
2050 * in the "Ethernet type" field, and
2051 * then check the DSAP.
2053 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
2055 b1
= gen_cmp(OR_LINK
, off_macpl
, BPF_B
,
2061 * This is an Ethernet type, so compare
2062 * the length/type field with it (if
2063 * the frame is an 802.2 frame, the length
2064 * field will be <= ETHERMTU, and, as
2065 * "proto" is > ETHERMTU, this test
2066 * will fail and the frame won't match,
2067 * which is what we want).
2069 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
2075 static struct slist
*
2076 gen_load_prism_llprefixlen()
2078 struct slist
*s1
, *s2
;
2079 struct slist
*sjeq_avs_cookie
;
2080 struct slist
*sjcommon
;
2083 * This code is not compatible with the optimizer, as
2084 * we are generating jmp instructions within a normal
2085 * slist of instructions
2090 * Generate code to load the length of the radio header into
2091 * the register assigned to hold that length, if one has been
2092 * assigned. (If one hasn't been assigned, no code we've
2093 * generated uses that prefix, so we don't need to generate any
2096 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2097 * or always use the AVS header rather than the Prism header.
2098 * We load a 4-byte big-endian value at the beginning of the
2099 * raw packet data, and see whether, when masked with 0xFFFFF000,
2100 * it's equal to 0x80211000. If so, that indicates that it's
2101 * an AVS header (the masked-out bits are the version number).
2102 * Otherwise, it's a Prism header.
2104 * XXX - the Prism header is also, in theory, variable-length,
2105 * but no known software generates headers that aren't 144
2108 if (reg_off_ll
!= -1) {
2112 s1
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2116 * AND it with 0xFFFFF000.
2118 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
2119 s2
->s
.k
= 0xFFFFF000;
2123 * Compare with 0x80211000.
2125 sjeq_avs_cookie
= new_stmt(JMP(BPF_JEQ
));
2126 sjeq_avs_cookie
->s
.k
= 0x80211000;
2127 sappend(s1
, sjeq_avs_cookie
);
2132 * The 4 bytes at an offset of 4 from the beginning of
2133 * the AVS header are the length of the AVS header.
2134 * That field is big-endian.
2136 s2
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2139 sjeq_avs_cookie
->s
.jt
= s2
;
2142 * Now jump to the code to allocate a register
2143 * into which to save the header length and
2144 * store the length there. (The "jump always"
2145 * instruction needs to have the k field set;
2146 * it's added to the PC, so, as we're jumping
2147 * over a single instruction, it should be 1.)
2149 sjcommon
= new_stmt(JMP(BPF_JA
));
2151 sappend(s1
, sjcommon
);
2154 * Now for the code that handles the Prism header.
2155 * Just load the length of the Prism header (144)
2156 * into the A register. Have the test for an AVS
2157 * header branch here if we don't have an AVS header.
2159 s2
= new_stmt(BPF_LD
|BPF_W
|BPF_IMM
);
2162 sjeq_avs_cookie
->s
.jf
= s2
;
2165 * Now allocate a register to hold that value and store
2166 * it. The code for the AVS header will jump here after
2167 * loading the length of the AVS header.
2169 s2
= new_stmt(BPF_ST
);
2170 s2
->s
.k
= reg_off_ll
;
2172 sjcommon
->s
.jf
= s2
;
2175 * Now move it into the X register.
2177 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2185 static struct slist
*
2186 gen_load_avs_llprefixlen()
2188 struct slist
*s1
, *s2
;
2191 * Generate code to load the length of the AVS header into
2192 * the register assigned to hold that length, if one has been
2193 * assigned. (If one hasn't been assigned, no code we've
2194 * generated uses that prefix, so we don't need to generate any
2197 if (reg_off_ll
!= -1) {
2199 * The 4 bytes at an offset of 4 from the beginning of
2200 * the AVS header are the length of the AVS header.
2201 * That field is big-endian.
2203 s1
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2207 * Now allocate a register to hold that value and store
2210 s2
= new_stmt(BPF_ST
);
2211 s2
->s
.k
= reg_off_ll
;
2215 * Now move it into the X register.
2217 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2225 static struct slist
*
2226 gen_load_radiotap_llprefixlen()
2228 struct slist
*s1
, *s2
;
2231 * Generate code to load the length of the radiotap header into
2232 * the register assigned to hold that length, if one has been
2233 * assigned. (If one hasn't been assigned, no code we've
2234 * generated uses that prefix, so we don't need to generate any
2237 if (reg_off_ll
!= -1) {
2239 * The 2 bytes at offsets of 2 and 3 from the beginning
2240 * of the radiotap header are the length of the radiotap
2241 * header; unfortunately, it's little-endian, so we have
2242 * to load it a byte at a time and construct the value.
2246 * Load the high-order byte, at an offset of 3, shift it
2247 * left a byte, and put the result in the X register.
2249 s1
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2251 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
2254 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2258 * Load the next byte, at an offset of 2, and OR the
2259 * value from the X register into it.
2261 s2
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2264 s2
= new_stmt(BPF_ALU
|BPF_OR
|BPF_X
);
2268 * Now allocate a register to hold that value and store
2271 s2
= new_stmt(BPF_ST
);
2272 s2
->s
.k
= reg_off_ll
;
2276 * Now move it into the X register.
2278 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2287 * At the moment we treat PPI as normal Radiotap encoded
2288 * packets. The difference is in the function that generates
2289 * the code at the beginning to compute the header length.
2290 * Since this code generator of PPI supports bare 802.11
2291 * encapsulation only (i.e. the encapsulated DLT should be
2292 * DLT_IEEE802_11) we generate code to check for this too;
2293 * that's done in finish_parse().
2295 static struct slist
*
2296 gen_load_ppi_llprefixlen()
2298 struct slist
*s1
, *s2
;
2301 * Generate code to load the length of the radiotap header
2302 * into the register assigned to hold that length, if one has
2305 if (reg_off_ll
!= -1) {
2307 * The 2 bytes at offsets of 2 and 3 from the beginning
2308 * of the radiotap header are the length of the radiotap
2309 * header; unfortunately, it's little-endian, so we have
2310 * to load it a byte at a time and construct the value.
2314 * Load the high-order byte, at an offset of 3, shift it
2315 * left a byte, and put the result in the X register.
2317 s1
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2319 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
2322 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2326 * Load the next byte, at an offset of 2, and OR the
2327 * value from the X register into it.
2329 s2
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2332 s2
= new_stmt(BPF_ALU
|BPF_OR
|BPF_X
);
2336 * Now allocate a register to hold that value and store
2339 s2
= new_stmt(BPF_ST
);
2340 s2
->s
.k
= reg_off_ll
;
2344 * Now move it into the X register.
2346 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2355 * Load a value relative to the beginning of the link-layer header after the 802.11
2356 * header, i.e. LLC_SNAP.
2357 * The link-layer header doesn't necessarily begin at the beginning
2358 * of the packet data; there might be a variable-length prefix containing
2359 * radio information.
2361 static struct slist
*
2362 gen_load_802_11_header_len(struct slist
*s
, struct slist
*snext
)
2365 struct slist
*sjset_data_frame_1
;
2366 struct slist
*sjset_data_frame_2
;
2367 struct slist
*sjset_qos
;
2368 struct slist
*sjset_radiotap_flags
;
2369 struct slist
*sjset_radiotap_tsft
;
2370 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
2371 struct slist
*s_roundup
;
2373 if (reg_off_macpl
== -1) {
2375 * No register has been assigned to the offset of
2376 * the MAC-layer payload, which means nobody needs
2377 * it; don't bother computing it - just return
2378 * what we already have.
2384 * This code is not compatible with the optimizer, as
2385 * we are generating jmp instructions within a normal
2386 * slist of instructions
2391 * If "s" is non-null, it has code to arrange that the X register
2392 * contains the length of the prefix preceding the link-layer
2395 * Otherwise, the length of the prefix preceding the link-layer
2396 * header is "off_ll".
2400 * There is no variable-length header preceding the
2401 * link-layer header.
2403 * Load the length of the fixed-length prefix preceding
2404 * the link-layer header (if any) into the X register,
2405 * and store it in the reg_off_macpl register.
2406 * That length is off_ll.
2408 s
= new_stmt(BPF_LDX
|BPF_IMM
);
2413 * The X register contains the offset of the beginning of the
2414 * link-layer header; add 24, which is the minimum length
2415 * of the MAC header for a data frame, to that, and store it
2416 * in reg_off_macpl, and then load the Frame Control field,
2417 * which is at the offset in the X register, with an indexed load.
2419 s2
= new_stmt(BPF_MISC
|BPF_TXA
);
2421 s2
= new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
2424 s2
= new_stmt(BPF_ST
);
2425 s2
->s
.k
= reg_off_macpl
;
2428 s2
= new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
2433 * Check the Frame Control field to see if this is a data frame;
2434 * a data frame has the 0x08 bit (b3) in that field set and the
2435 * 0x04 bit (b2) clear.
2437 sjset_data_frame_1
= new_stmt(JMP(BPF_JSET
));
2438 sjset_data_frame_1
->s
.k
= 0x08;
2439 sappend(s
, sjset_data_frame_1
);
2442 * If b3 is set, test b2, otherwise go to the first statement of
2443 * the rest of the program.
2445 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(JMP(BPF_JSET
));
2446 sjset_data_frame_2
->s
.k
= 0x04;
2447 sappend(s
, sjset_data_frame_2
);
2448 sjset_data_frame_1
->s
.jf
= snext
;
2451 * If b2 is not set, this is a data frame; test the QoS bit.
2452 * Otherwise, go to the first statement of the rest of the
2455 sjset_data_frame_2
->s
.jt
= snext
;
2456 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(JMP(BPF_JSET
));
2457 sjset_qos
->s
.k
= 0x80; /* QoS bit */
2458 sappend(s
, sjset_qos
);
2461 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2463 * Otherwise, go to the first statement of the rest of the
2466 sjset_qos
->s
.jt
= s2
= new_stmt(BPF_LD
|BPF_MEM
);
2467 s2
->s
.k
= reg_off_macpl
;
2469 s2
= new_stmt(BPF_ALU
|BPF_ADD
|BPF_IMM
);
2472 s2
= new_stmt(BPF_ST
);
2473 s2
->s
.k
= reg_off_macpl
;
2477 * If we have a radiotap header, look at it to see whether
2478 * there's Atheros padding between the MAC-layer header
2481 * Note: all of the fields in the radiotap header are
2482 * little-endian, so we byte-swap all of the values
2483 * we test against, as they will be loaded as big-endian
2486 if (linktype
== DLT_IEEE802_11_RADIO
) {
2488 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2489 * in the presence flag?
2491 sjset_qos
->s
.jf
= s2
= new_stmt(BPF_LD
|BPF_ABS
|BPF_W
);
2495 sjset_radiotap_flags
= new_stmt(JMP(BPF_JSET
));
2496 sjset_radiotap_flags
->s
.k
= SWAPLONG(0x00000002);
2497 sappend(s
, sjset_radiotap_flags
);
2500 * If not, skip all of this.
2502 sjset_radiotap_flags
->s
.jf
= snext
;
2505 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2507 sjset_radiotap_tsft
= sjset_radiotap_flags
->s
.jt
=
2508 new_stmt(JMP(BPF_JSET
));
2509 sjset_radiotap_tsft
->s
.k
= SWAPLONG(0x00000001);
2510 sappend(s
, sjset_radiotap_tsft
);
2513 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2514 * at an offset of 16 from the beginning of the raw packet
2515 * data (8 bytes for the radiotap header and 8 bytes for
2518 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2521 sjset_radiotap_tsft
->s
.jt
= s2
= new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
2525 sjset_tsft_datapad
= new_stmt(JMP(BPF_JSET
));
2526 sjset_tsft_datapad
->s
.k
= 0x20;
2527 sappend(s
, sjset_tsft_datapad
);
2530 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2531 * at an offset of 8 from the beginning of the raw packet
2532 * data (8 bytes for the radiotap header).
2534 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2537 sjset_radiotap_tsft
->s
.jf
= s2
= new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
2541 sjset_notsft_datapad
= new_stmt(JMP(BPF_JSET
));
2542 sjset_notsft_datapad
->s
.k
= 0x20;
2543 sappend(s
, sjset_notsft_datapad
);
2546 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2547 * set, round the length of the 802.11 header to
2548 * a multiple of 4. Do that by adding 3 and then
2549 * dividing by and multiplying by 4, which we do by
2552 s_roundup
= new_stmt(BPF_LD
|BPF_MEM
);
2553 s_roundup
->s
.k
= reg_off_macpl
;
2554 sappend(s
, s_roundup
);
2555 s2
= new_stmt(BPF_ALU
|BPF_ADD
|BPF_IMM
);
2558 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_IMM
);
2561 s2
= new_stmt(BPF_ST
);
2562 s2
->s
.k
= reg_off_macpl
;
2565 sjset_tsft_datapad
->s
.jt
= s_roundup
;
2566 sjset_tsft_datapad
->s
.jf
= snext
;
2567 sjset_notsft_datapad
->s
.jt
= s_roundup
;
2568 sjset_notsft_datapad
->s
.jf
= snext
;
2570 sjset_qos
->s
.jf
= snext
;
2576 insert_compute_vloffsets(b
)
2582 * For link-layer types that have a variable-length header
2583 * preceding the link-layer header, generate code to load
2584 * the offset of the link-layer header into the register
2585 * assigned to that offset, if any.
2589 case DLT_PRISM_HEADER
:
2590 s
= gen_load_prism_llprefixlen();
2593 case DLT_IEEE802_11_RADIO_AVS
:
2594 s
= gen_load_avs_llprefixlen();
2597 case DLT_IEEE802_11_RADIO
:
2598 s
= gen_load_radiotap_llprefixlen();
2602 s
= gen_load_ppi_llprefixlen();
2611 * For link-layer types that have a variable-length link-layer
2612 * header, generate code to load the offset of the MAC-layer
2613 * payload into the register assigned to that offset, if any.
2617 case DLT_IEEE802_11
:
2618 case DLT_PRISM_HEADER
:
2619 case DLT_IEEE802_11_RADIO_AVS
:
2620 case DLT_IEEE802_11_RADIO
:
2622 s
= gen_load_802_11_header_len(s
, b
->stmts
);
2627 * If we have any offset-loading code, append all the
2628 * existing statements in the block to those statements,
2629 * and make the resulting list the list of statements
2633 sappend(s
, b
->stmts
);
2638 static struct block
*
2639 gen_ppi_dlt_check(void)
2641 struct slist
*s_load_dlt
;
2644 if (linktype
== DLT_PPI
)
2646 /* Create the statements that check for the DLT
2648 s_load_dlt
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2649 s_load_dlt
->s
.k
= 4;
2651 b
= new_block(JMP(BPF_JEQ
));
2653 b
->stmts
= s_load_dlt
;
2654 b
->s
.k
= SWAPLONG(DLT_IEEE802_11
);
2664 static struct slist
*
2665 gen_prism_llprefixlen(void)
2669 if (reg_off_ll
== -1) {
2671 * We haven't yet assigned a register for the length
2672 * of the radio header; allocate one.
2674 reg_off_ll
= alloc_reg();
2678 * Load the register containing the radio length
2679 * into the X register.
2681 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2682 s
->s
.k
= reg_off_ll
;
2686 static struct slist
*
2687 gen_avs_llprefixlen(void)
2691 if (reg_off_ll
== -1) {
2693 * We haven't yet assigned a register for the length
2694 * of the AVS header; allocate one.
2696 reg_off_ll
= alloc_reg();
2700 * Load the register containing the AVS length
2701 * into the X register.
2703 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2704 s
->s
.k
= reg_off_ll
;
2708 static struct slist
*
2709 gen_radiotap_llprefixlen(void)
2713 if (reg_off_ll
== -1) {
2715 * We haven't yet assigned a register for the length
2716 * of the radiotap header; allocate one.
2718 reg_off_ll
= alloc_reg();
2722 * Load the register containing the radiotap length
2723 * into the X register.
2725 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2726 s
->s
.k
= reg_off_ll
;
2731 * At the moment we treat PPI as normal Radiotap encoded
2732 * packets. The difference is in the function that generates
2733 * the code at the beginning to compute the header length.
2734 * Since this code generator of PPI supports bare 802.11
2735 * encapsulation only (i.e. the encapsulated DLT should be
2736 * DLT_IEEE802_11) we generate code to check for this too.
2738 static struct slist
*
2739 gen_ppi_llprefixlen(void)
2743 if (reg_off_ll
== -1) {
2745 * We haven't yet assigned a register for the length
2746 * of the radiotap header; allocate one.
2748 reg_off_ll
= alloc_reg();
2752 * Load the register containing the PPI length
2753 * into the X register.
2755 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2756 s
->s
.k
= reg_off_ll
;
2761 * Generate code to compute the link-layer header length, if necessary,
2762 * putting it into the X register, and to return either a pointer to a
2763 * "struct slist" for the list of statements in that code, or NULL if
2764 * no code is necessary.
2766 static struct slist
*
2767 gen_llprefixlen(void)
2771 case DLT_PRISM_HEADER
:
2772 return gen_prism_llprefixlen();
2774 case DLT_IEEE802_11_RADIO_AVS
:
2775 return gen_avs_llprefixlen();
2777 case DLT_IEEE802_11_RADIO
:
2778 return gen_radiotap_llprefixlen();
2781 return gen_ppi_llprefixlen();
2789 * Generate code to load the register containing the offset of the
2790 * MAC-layer payload into the X register; if no register for that offset
2791 * has been allocated, allocate it first.
2793 static struct slist
*
2798 if (off_macpl_is_variable
) {
2799 if (reg_off_macpl
== -1) {
2801 * We haven't yet assigned a register for the offset
2802 * of the MAC-layer payload; allocate one.
2804 reg_off_macpl
= alloc_reg();
2808 * Load the register containing the offset of the MAC-layer
2809 * payload into the X register.
2811 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2812 s
->s
.k
= reg_off_macpl
;
2816 * That offset isn't variable, so we don't need to
2817 * generate any code.
2824 * Map an Ethernet type to the equivalent PPP type.
2827 ethertype_to_ppptype(proto
)
2837 case ETHERTYPE_IPV6
:
2846 case ETHERTYPE_ATALK
:
2860 * I'm assuming the "Bridging PDU"s that go
2861 * over PPP are Spanning Tree Protocol
2875 * Generate code to match a particular packet type by matching the
2876 * link-layer type field or fields in the 802.2 LLC header.
2878 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2879 * value, if <= ETHERMTU.
2881 static struct block
*
2885 struct block
*b0
, *b1
, *b2
;
2887 /* are we checking MPLS-encapsulated packets? */
2888 if (label_stack_depth
> 0) {
2892 /* FIXME add other L3 proto IDs */
2893 return gen_mpls_linktype(Q_IP
);
2895 case ETHERTYPE_IPV6
:
2897 /* FIXME add other L3 proto IDs */
2898 return gen_mpls_linktype(Q_IPV6
);
2901 bpf_error("unsupported protocol over mpls");
2907 * Are we testing PPPoE packets?
2911 * The PPPoE session header is part of the
2912 * MAC-layer payload, so all references
2913 * should be relative to the beginning of
2918 * We use Ethernet protocol types inside libpcap;
2919 * map them to the corresponding PPP protocol types.
2921 proto
= ethertype_to_ppptype(proto
);
2922 return gen_cmp(OR_MACPL
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
2928 case DLT_NETANALYZER
:
2929 case DLT_NETANALYZER_TRANSPARENT
:
2930 return gen_ether_linktype(proto
);
2938 proto
= (proto
<< 8 | LLCSAP_ISONS
);
2942 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
2949 case DLT_IEEE802_11
:
2950 case DLT_PRISM_HEADER
:
2951 case DLT_IEEE802_11_RADIO_AVS
:
2952 case DLT_IEEE802_11_RADIO
:
2955 * Check that we have a data frame.
2957 b0
= gen_check_802_11_data_frame();
2960 * Now check for the specified link-layer type.
2962 b1
= gen_llc_linktype(proto
);
2970 * XXX - check for asynchronous frames, as per RFC 1103.
2972 return gen_llc_linktype(proto
);
2978 * XXX - check for LLC PDUs, as per IEEE 802.5.
2980 return gen_llc_linktype(proto
);
2984 case DLT_ATM_RFC1483
:
2986 case DLT_IP_OVER_FC
:
2987 return gen_llc_linktype(proto
);
2993 * If "is_lane" is set, check for a LANE-encapsulated
2994 * version of this protocol, otherwise check for an
2995 * LLC-encapsulated version of this protocol.
2997 * We assume LANE means Ethernet, not Token Ring.
3001 * Check that the packet doesn't begin with an
3002 * LE Control marker. (We've already generated
3005 b0
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
3010 * Now generate an Ethernet test.
3012 b1
= gen_ether_linktype(proto
);
3017 * Check for LLC encapsulation and then check the
3020 b0
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3021 b1
= gen_llc_linktype(proto
);
3029 return gen_linux_sll_linktype(proto
);
3034 case DLT_SLIP_BSDOS
:
3037 * These types don't provide any type field; packets
3038 * are always IPv4 or IPv6.
3040 * XXX - for IPv4, check for a version number of 4, and,
3041 * for IPv6, check for a version number of 6?
3046 /* Check for a version number of 4. */
3047 return gen_mcmp(OR_LINK
, 0, BPF_B
, 0x40, 0xF0);
3049 case ETHERTYPE_IPV6
:
3050 /* Check for a version number of 6. */
3051 return gen_mcmp(OR_LINK
, 0, BPF_B
, 0x60, 0xF0);
3055 return gen_false(); /* always false */
3062 * Raw IPv4, so no type field.
3064 if (proto
== ETHERTYPE_IP
)
3065 return gen_true(); /* always true */
3067 /* Checking for something other than IPv4; always false */
3074 * Raw IPv6, so no type field.
3077 if (proto
== ETHERTYPE_IPV6
)
3078 return gen_true(); /* always true */
3081 /* Checking for something other than IPv6; always false */
3088 case DLT_PPP_SERIAL
:
3091 * We use Ethernet protocol types inside libpcap;
3092 * map them to the corresponding PPP protocol types.
3094 proto
= ethertype_to_ppptype(proto
);
3095 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
3101 * We use Ethernet protocol types inside libpcap;
3102 * map them to the corresponding PPP protocol types.
3108 * Also check for Van Jacobson-compressed IP.
3109 * XXX - do this for other forms of PPP?
3111 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_IP
);
3112 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_VJC
);
3114 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_VJNC
);
3119 proto
= ethertype_to_ppptype(proto
);
3120 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
3130 * For DLT_NULL, the link-layer header is a 32-bit
3131 * word containing an AF_ value in *host* byte order,
3132 * and for DLT_ENC, the link-layer header begins
3133 * with a 32-bit work containing an AF_ value in
3136 * In addition, if we're reading a saved capture file,
3137 * the host byte order in the capture may not be the
3138 * same as the host byte order on this machine.
3140 * For DLT_LOOP, the link-layer header is a 32-bit
3141 * word containing an AF_ value in *network* byte order.
3143 * XXX - AF_ values may, unfortunately, be platform-
3144 * dependent; for example, FreeBSD's AF_INET6 is 24
3145 * whilst NetBSD's and OpenBSD's is 26.
3147 * This means that, when reading a capture file, just
3148 * checking for our AF_INET6 value won't work if the
3149 * capture file came from another OS.
3158 case ETHERTYPE_IPV6
:
3165 * Not a type on which we support filtering.
3166 * XXX - support those that have AF_ values
3167 * #defined on this platform, at least?
3172 if (linktype
== DLT_NULL
|| linktype
== DLT_ENC
) {
3174 * The AF_ value is in host byte order, but
3175 * the BPF interpreter will convert it to
3176 * network byte order.
3178 * If this is a save file, and it's from a
3179 * machine with the opposite byte order to
3180 * ours, we byte-swap the AF_ value.
3182 * Then we run it through "htonl()", and
3183 * generate code to compare against the result.
3185 if (bpf_pcap
->sf
.rfile
!= NULL
&&
3186 bpf_pcap
->sf
.swapped
)
3187 proto
= SWAPLONG(proto
);
3188 proto
= htonl(proto
);
3190 return (gen_cmp(OR_LINK
, 0, BPF_W
, (bpf_int32
)proto
));
3192 #ifdef HAVE_NET_PFVAR_H
3195 * af field is host byte order in contrast to the rest of
3198 if (proto
== ETHERTYPE_IP
)
3199 return (gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, af
),
3200 BPF_B
, (bpf_int32
)AF_INET
));
3202 else if (proto
== ETHERTYPE_IPV6
)
3203 return (gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, af
),
3204 BPF_B
, (bpf_int32
)AF_INET6
));
3210 #endif /* HAVE_NET_PFVAR_H */
3213 case DLT_ARCNET_LINUX
:
3215 * XXX should we check for first fragment if the protocol
3224 case ETHERTYPE_IPV6
:
3225 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3226 (bpf_int32
)ARCTYPE_INET6
));
3230 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3231 (bpf_int32
)ARCTYPE_IP
);
3232 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3233 (bpf_int32
)ARCTYPE_IP_OLD
);
3238 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3239 (bpf_int32
)ARCTYPE_ARP
);
3240 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3241 (bpf_int32
)ARCTYPE_ARP_OLD
);
3245 case ETHERTYPE_REVARP
:
3246 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3247 (bpf_int32
)ARCTYPE_REVARP
));
3249 case ETHERTYPE_ATALK
:
3250 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3251 (bpf_int32
)ARCTYPE_ATALK
));
3258 case ETHERTYPE_ATALK
:
3268 * XXX - assumes a 2-byte Frame Relay header with
3269 * DLCI and flags. What if the address is longer?
3275 * Check for the special NLPID for IP.
3277 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | 0xcc);
3280 case ETHERTYPE_IPV6
:
3282 * Check for the special NLPID for IPv6.
3284 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | 0x8e);
3289 * Check for several OSI protocols.
3291 * Frame Relay packets typically have an OSI
3292 * NLPID at the beginning; we check for each
3295 * What we check for is the NLPID and a frame
3296 * control field of UI, i.e. 0x03 followed
3299 b0
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3300 b1
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3301 b2
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3313 bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3315 case DLT_JUNIPER_MFR
:
3316 case DLT_JUNIPER_MLFR
:
3317 case DLT_JUNIPER_MLPPP
:
3318 case DLT_JUNIPER_ATM1
:
3319 case DLT_JUNIPER_ATM2
:
3320 case DLT_JUNIPER_PPPOE
:
3321 case DLT_JUNIPER_PPPOE_ATM
:
3322 case DLT_JUNIPER_GGSN
:
3323 case DLT_JUNIPER_ES
:
3324 case DLT_JUNIPER_MONITOR
:
3325 case DLT_JUNIPER_SERVICES
:
3326 case DLT_JUNIPER_ETHER
:
3327 case DLT_JUNIPER_PPP
:
3328 case DLT_JUNIPER_FRELAY
:
3329 case DLT_JUNIPER_CHDLC
:
3330 case DLT_JUNIPER_VP
:
3331 case DLT_JUNIPER_ST
:
3332 case DLT_JUNIPER_ISM
:
3333 case DLT_JUNIPER_VS
:
3334 case DLT_JUNIPER_SRX_E2E
:
3335 case DLT_JUNIPER_FIBRECHANNEL
:
3336 case DLT_JUNIPER_ATM_CEMIC
:
3338 /* just lets verify the magic number for now -
3339 * on ATM we may have up to 6 different encapsulations on the wire
3340 * and need a lot of heuristics to figure out that the payload
3343 * FIXME encapsulation specific BPF_ filters
3345 return gen_mcmp(OR_LINK
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3348 return gen_ipnet_linktype(proto
);
3350 case DLT_LINUX_IRDA
:
3351 bpf_error("IrDA link-layer type filtering not implemented");
3354 bpf_error("DOCSIS link-layer type filtering not implemented");
3357 case DLT_MTP2_WITH_PHDR
:
3358 bpf_error("MTP2 link-layer type filtering not implemented");
3361 bpf_error("ERF link-layer type filtering not implemented");
3365 bpf_error("PFSYNC link-layer type filtering not implemented");
3368 case DLT_LINUX_LAPD
:
3369 bpf_error("LAPD link-layer type filtering not implemented");
3373 case DLT_USB_LINUX_MMAPPED
:
3374 bpf_error("USB link-layer type filtering not implemented");
3376 case DLT_BLUETOOTH_HCI_H4
:
3377 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3378 bpf_error("Bluetooth link-layer type filtering not implemented");
3381 case DLT_CAN_SOCKETCAN
:
3382 bpf_error("CAN link-layer type filtering not implemented");
3384 case DLT_IEEE802_15_4
:
3385 case DLT_IEEE802_15_4_LINUX
:
3386 case DLT_IEEE802_15_4_NONASK_PHY
:
3387 case DLT_IEEE802_15_4_NOFCS
:
3388 bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3390 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3391 bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3394 bpf_error("SITA link-layer type filtering not implemented");
3397 bpf_error("RAIF1 link-layer type filtering not implemented");
3400 bpf_error("IPMB link-layer type filtering not implemented");
3403 bpf_error("AX.25 link-layer type filtering not implemented");
3407 * All the types that have no encapsulation should either be
3408 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3409 * all packets are IP packets, or should be handled in some
3410 * special case, if none of them are (if some are and some
3411 * aren't, the lack of encapsulation is a problem, as we'd
3412 * have to find some other way of determining the packet type).
3414 * Therefore, if "off_linktype" is -1, there's an error.
3416 if (off_linktype
== (u_int
)-1)
3420 * Any type not handled above should always have an Ethernet
3421 * type at an offset of "off_linktype".
3423 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
3427 * Check for an LLC SNAP packet with a given organization code and
3428 * protocol type; we check the entire contents of the 802.2 LLC and
3429 * snap headers, checking for DSAP and SSAP of SNAP and a control
3430 * field of 0x03 in the LLC header, and for the specified organization
3431 * code and protocol type in the SNAP header.
3433 static struct block
*
3434 gen_snap(orgcode
, ptype
)
3435 bpf_u_int32 orgcode
;
3438 u_char snapblock
[8];
3440 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
3441 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
3442 snapblock
[2] = 0x03; /* control = UI */
3443 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
3444 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
3445 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
3446 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
3447 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
3448 return gen_bcmp(OR_MACPL
, 0, 8, snapblock
);
3452 * Generate code to match a particular packet type, for link-layer types
3453 * using 802.2 LLC headers.
3455 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3456 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3458 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3459 * value, if <= ETHERMTU. We use that to determine whether to
3460 * match the DSAP or both DSAP and LSAP or to check the OUI and
3461 * protocol ID in a SNAP header.
3463 static struct block
*
3464 gen_llc_linktype(proto
)
3468 * XXX - handle token-ring variable-length header.
3474 case LLCSAP_NETBEUI
:
3476 * XXX - should we check both the DSAP and the
3477 * SSAP, like this, or should we check just the
3478 * DSAP, as we do for other types <= ETHERMTU
3479 * (i.e., other SAP values)?
3481 return gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_u_int32
)
3482 ((proto
<< 8) | proto
));
3486 * XXX - are there ever SNAP frames for IPX on
3487 * non-Ethernet 802.x networks?
3489 return gen_cmp(OR_MACPL
, 0, BPF_B
,
3490 (bpf_int32
)LLCSAP_IPX
);
3492 case ETHERTYPE_ATALK
:
3494 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3495 * SNAP packets with an organization code of
3496 * 0x080007 (Apple, for Appletalk) and a protocol
3497 * type of ETHERTYPE_ATALK (Appletalk).
3499 * XXX - check for an organization code of
3500 * encapsulated Ethernet as well?
3502 return gen_snap(0x080007, ETHERTYPE_ATALK
);
3506 * XXX - we don't have to check for IPX 802.3
3507 * here, but should we check for the IPX Ethertype?
3509 if (proto
<= ETHERMTU
) {
3511 * This is an LLC SAP value, so check
3514 return gen_cmp(OR_MACPL
, 0, BPF_B
, (bpf_int32
)proto
);
3517 * This is an Ethernet type; we assume that it's
3518 * unlikely that it'll appear in the right place
3519 * at random, and therefore check only the
3520 * location that would hold the Ethernet type
3521 * in a SNAP frame with an organization code of
3522 * 0x000000 (encapsulated Ethernet).
3524 * XXX - if we were to check for the SNAP DSAP and
3525 * LSAP, as per XXX, and were also to check for an
3526 * organization code of 0x000000 (encapsulated
3527 * Ethernet), we'd do
3529 * return gen_snap(0x000000, proto);
3531 * here; for now, we don't, as per the above.
3532 * I don't know whether it's worth the extra CPU
3533 * time to do the right check or not.
3535 return gen_cmp(OR_MACPL
, 6, BPF_H
, (bpf_int32
)proto
);
3540 static struct block
*
3541 gen_hostop(addr
, mask
, dir
, proto
, src_off
, dst_off
)
3545 u_int src_off
, dst_off
;
3547 struct block
*b0
, *b1
;
3561 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3562 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3568 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3569 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3576 b0
= gen_linktype(proto
);
3577 b1
= gen_mcmp(OR_NET
, offset
, BPF_W
, (bpf_int32
)addr
, mask
);
3583 static struct block
*
3584 gen_hostop6(addr
, mask
, dir
, proto
, src_off
, dst_off
)
3585 struct in6_addr
*addr
;
3586 struct in6_addr
*mask
;
3588 u_int src_off
, dst_off
;
3590 struct block
*b0
, *b1
;
3605 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3606 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3612 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3613 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3620 /* this order is important */
3621 a
= (u_int32_t
*)addr
;
3622 m
= (u_int32_t
*)mask
;
3623 b1
= gen_mcmp(OR_NET
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
3624 b0
= gen_mcmp(OR_NET
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
3626 b0
= gen_mcmp(OR_NET
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
3628 b0
= gen_mcmp(OR_NET
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
3630 b0
= gen_linktype(proto
);
3636 static struct block
*
3637 gen_ehostop(eaddr
, dir
)
3638 register const u_char
*eaddr
;
3641 register struct block
*b0
, *b1
;
3645 return gen_bcmp(OR_LINK
, off_mac
+ 6, 6, eaddr
);
3648 return gen_bcmp(OR_LINK
, off_mac
+ 0, 6, eaddr
);
3651 b0
= gen_ehostop(eaddr
, Q_SRC
);
3652 b1
= gen_ehostop(eaddr
, Q_DST
);
3658 b0
= gen_ehostop(eaddr
, Q_SRC
);
3659 b1
= gen_ehostop(eaddr
, Q_DST
);
3664 bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3668 bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3672 bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3676 bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3680 bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3684 bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3692 * Like gen_ehostop, but for DLT_FDDI
3694 static struct block
*
3695 gen_fhostop(eaddr
, dir
)
3696 register const u_char
*eaddr
;
3699 struct block
*b0
, *b1
;
3704 return gen_bcmp(OR_LINK
, 6 + 1 + pcap_fddipad
, 6, eaddr
);
3706 return gen_bcmp(OR_LINK
, 6 + 1, 6, eaddr
);
3711 return gen_bcmp(OR_LINK
, 0 + 1 + pcap_fddipad
, 6, eaddr
);
3713 return gen_bcmp(OR_LINK
, 0 + 1, 6, eaddr
);
3717 b0
= gen_fhostop(eaddr
, Q_SRC
);
3718 b1
= gen_fhostop(eaddr
, Q_DST
);
3724 b0
= gen_fhostop(eaddr
, Q_SRC
);
3725 b1
= gen_fhostop(eaddr
, Q_DST
);
3730 bpf_error("'addr1' is only supported on 802.11");
3734 bpf_error("'addr2' is only supported on 802.11");
3738 bpf_error("'addr3' is only supported on 802.11");
3742 bpf_error("'addr4' is only supported on 802.11");
3746 bpf_error("'ra' is only supported on 802.11");
3750 bpf_error("'ta' is only supported on 802.11");
3758 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3760 static struct block
*
3761 gen_thostop(eaddr
, dir
)
3762 register const u_char
*eaddr
;
3765 register struct block
*b0
, *b1
;
3769 return gen_bcmp(OR_LINK
, 8, 6, eaddr
);
3772 return gen_bcmp(OR_LINK
, 2, 6, eaddr
);
3775 b0
= gen_thostop(eaddr
, Q_SRC
);
3776 b1
= gen_thostop(eaddr
, Q_DST
);
3782 b0
= gen_thostop(eaddr
, Q_SRC
);
3783 b1
= gen_thostop(eaddr
, Q_DST
);
3788 bpf_error("'addr1' is only supported on 802.11");
3792 bpf_error("'addr2' is only supported on 802.11");
3796 bpf_error("'addr3' is only supported on 802.11");
3800 bpf_error("'addr4' is only supported on 802.11");
3804 bpf_error("'ra' is only supported on 802.11");
3808 bpf_error("'ta' is only supported on 802.11");
3816 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3817 * various 802.11 + radio headers.
3819 static struct block
*
3820 gen_wlanhostop(eaddr
, dir
)
3821 register const u_char
*eaddr
;
3824 register struct block
*b0
, *b1
, *b2
;
3825 register struct slist
*s
;
3827 #ifdef ENABLE_WLAN_FILTERING_PATCH
3830 * We need to disable the optimizer because the optimizer is buggy
3831 * and wipes out some LD instructions generated by the below
3832 * code to validate the Frame Control bits
3835 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3842 * For control frames, there is no SA.
3844 * For management frames, SA is at an
3845 * offset of 10 from the beginning of
3848 * For data frames, SA is at an offset
3849 * of 10 from the beginning of the packet
3850 * if From DS is clear, at an offset of
3851 * 16 from the beginning of the packet
3852 * if From DS is set and To DS is clear,
3853 * and an offset of 24 from the beginning
3854 * of the packet if From DS is set and To DS
3859 * Generate the tests to be done for data frames
3862 * First, check for To DS set, i.e. check "link[1] & 0x01".
3864 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3865 b1
= new_block(JMP(BPF_JSET
));
3866 b1
->s
.k
= 0x01; /* To DS */
3870 * If To DS is set, the SA is at 24.
3872 b0
= gen_bcmp(OR_LINK
, 24, 6, eaddr
);
3876 * Now, check for To DS not set, i.e. check
3877 * "!(link[1] & 0x01)".
3879 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3880 b2
= new_block(JMP(BPF_JSET
));
3881 b2
->s
.k
= 0x01; /* To DS */
3886 * If To DS is not set, the SA is at 16.
3888 b1
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
3892 * Now OR together the last two checks. That gives
3893 * the complete set of checks for data frames with
3899 * Now check for From DS being set, and AND that with
3900 * the ORed-together checks.
3902 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3903 b1
= new_block(JMP(BPF_JSET
));
3904 b1
->s
.k
= 0x02; /* From DS */
3909 * Now check for data frames with From DS not set.
3911 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3912 b2
= new_block(JMP(BPF_JSET
));
3913 b2
->s
.k
= 0x02; /* From DS */
3918 * If From DS isn't set, the SA is at 10.
3920 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
3924 * Now OR together the checks for data frames with
3925 * From DS not set and for data frames with From DS
3926 * set; that gives the checks done for data frames.
3931 * Now check for a data frame.
3932 * I.e, check "link[0] & 0x08".
3934 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
3935 b1
= new_block(JMP(BPF_JSET
));
3940 * AND that with the checks done for data frames.
3945 * If the high-order bit of the type value is 0, this
3946 * is a management frame.
3947 * I.e, check "!(link[0] & 0x08)".
3949 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
3950 b2
= new_block(JMP(BPF_JSET
));
3956 * For management frames, the SA is at 10.
3958 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
3962 * OR that with the checks done for data frames.
3963 * That gives the checks done for management and
3969 * If the low-order bit of the type value is 1,
3970 * this is either a control frame or a frame
3971 * with a reserved type, and thus not a
3974 * I.e., check "!(link[0] & 0x04)".
3976 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
3977 b1
= new_block(JMP(BPF_JSET
));
3983 * AND that with the checks for data and management
3993 * For control frames, there is no DA.
3995 * For management frames, DA is at an
3996 * offset of 4 from the beginning of
3999 * For data frames, DA is at an offset
4000 * of 4 from the beginning of the packet
4001 * if To DS is clear and at an offset of
4002 * 16 from the beginning of the packet
4007 * Generate the tests to be done for data frames.
4009 * First, check for To DS set, i.e. "link[1] & 0x01".
4011 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
4012 b1
= new_block(JMP(BPF_JSET
));
4013 b1
->s
.k
= 0x01; /* To DS */
4017 * If To DS is set, the DA is at 16.
4019 b0
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
4023 * Now, check for To DS not set, i.e. check
4024 * "!(link[1] & 0x01)".
4026 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
4027 b2
= new_block(JMP(BPF_JSET
));
4028 b2
->s
.k
= 0x01; /* To DS */
4033 * If To DS is not set, the DA is at 4.
4035 b1
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
4039 * Now OR together the last two checks. That gives
4040 * the complete set of checks for data frames.
4045 * Now check for a data frame.
4046 * I.e, check "link[0] & 0x08".
4048 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4049 b1
= new_block(JMP(BPF_JSET
));
4054 * AND that with the checks done for data frames.
4059 * If the high-order bit of the type value is 0, this
4060 * is a management frame.
4061 * I.e, check "!(link[0] & 0x08)".
4063 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4064 b2
= new_block(JMP(BPF_JSET
));
4070 * For management frames, the DA is at 4.
4072 b1
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
4076 * OR that with the checks done for data frames.
4077 * That gives the checks done for management and
4083 * If the low-order bit of the type value is 1,
4084 * this is either a control frame or a frame
4085 * with a reserved type, and thus not a
4088 * I.e., check "!(link[0] & 0x04)".
4090 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4091 b1
= new_block(JMP(BPF_JSET
));
4097 * AND that with the checks for data and management
4105 * Not present in management frames; addr1 in other
4110 * If the high-order bit of the type value is 0, this
4111 * is a management frame.
4112 * I.e, check "(link[0] & 0x08)".
4114 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4115 b1
= new_block(JMP(BPF_JSET
));
4122 b0
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
4125 * AND that with the check of addr1.
4132 * Not present in management frames; addr2, if present,
4137 * Not present in CTS or ACK control frames.
4139 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4140 IEEE80211_FC0_TYPE_MASK
);
4142 b1
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4143 IEEE80211_FC0_SUBTYPE_MASK
);
4145 b2
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4146 IEEE80211_FC0_SUBTYPE_MASK
);
4152 * If the high-order bit of the type value is 0, this
4153 * is a management frame.
4154 * I.e, check "(link[0] & 0x08)".
4156 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4157 b1
= new_block(JMP(BPF_JSET
));
4162 * AND that with the check for frames other than
4163 * CTS and ACK frames.
4170 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
4175 * XXX - add BSSID keyword?
4178 return (gen_bcmp(OR_LINK
, 4, 6, eaddr
));
4182 * Not present in CTS or ACK control frames.
4184 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4185 IEEE80211_FC0_TYPE_MASK
);
4187 b1
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4188 IEEE80211_FC0_SUBTYPE_MASK
);
4190 b2
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4191 IEEE80211_FC0_SUBTYPE_MASK
);
4195 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
4201 * Not present in control frames.
4203 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4204 IEEE80211_FC0_TYPE_MASK
);
4206 b1
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
4212 * Present only if the direction mask has both "From DS"
4213 * and "To DS" set. Neither control frames nor management
4214 * frames should have both of those set, so we don't
4215 * check the frame type.
4217 b0
= gen_mcmp(OR_LINK
, 1, BPF_B
,
4218 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4219 b1
= gen_bcmp(OR_LINK
, 24, 6, eaddr
);
4224 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
4225 b1
= gen_wlanhostop(eaddr
, Q_DST
);
4231 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
4232 b1
= gen_wlanhostop(eaddr
, Q_DST
);
4241 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4242 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4243 * as the RFC states.)
4245 static struct block
*
4246 gen_ipfchostop(eaddr
, dir
)
4247 register const u_char
*eaddr
;
4250 register struct block
*b0
, *b1
;
4254 return gen_bcmp(OR_LINK
, 10, 6, eaddr
);
4257 return gen_bcmp(OR_LINK
, 2, 6, eaddr
);
4260 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
4261 b1
= gen_ipfchostop(eaddr
, Q_DST
);
4267 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
4268 b1
= gen_ipfchostop(eaddr
, Q_DST
);
4273 bpf_error("'addr1' is only supported on 802.11");
4277 bpf_error("'addr2' is only supported on 802.11");
4281 bpf_error("'addr3' is only supported on 802.11");
4285 bpf_error("'addr4' is only supported on 802.11");
4289 bpf_error("'ra' is only supported on 802.11");
4293 bpf_error("'ta' is only supported on 802.11");
4301 * This is quite tricky because there may be pad bytes in front of the
4302 * DECNET header, and then there are two possible data packet formats that
4303 * carry both src and dst addresses, plus 5 packet types in a format that
4304 * carries only the src node, plus 2 types that use a different format and
4305 * also carry just the src node.
4309 * Instead of doing those all right, we just look for data packets with
4310 * 0 or 1 bytes of padding. If you want to look at other packets, that
4311 * will require a lot more hacking.
4313 * To add support for filtering on DECNET "areas" (network numbers)
4314 * one would want to add a "mask" argument to this routine. That would
4315 * make the filter even more inefficient, although one could be clever
4316 * and not generate masking instructions if the mask is 0xFFFF.
4318 static struct block
*
4319 gen_dnhostop(addr
, dir
)
4323 struct block
*b0
, *b1
, *b2
, *tmp
;
4324 u_int offset_lh
; /* offset if long header is received */
4325 u_int offset_sh
; /* offset if short header is received */
4330 offset_sh
= 1; /* follows flags */
4331 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4335 offset_sh
= 3; /* follows flags, dstnode */
4336 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4340 /* Inefficient because we do our Calvinball dance twice */
4341 b0
= gen_dnhostop(addr
, Q_SRC
);
4342 b1
= gen_dnhostop(addr
, Q_DST
);
4348 /* Inefficient because we do our Calvinball dance twice */
4349 b0
= gen_dnhostop(addr
, Q_SRC
);
4350 b1
= gen_dnhostop(addr
, Q_DST
);
4355 bpf_error("ISO host filtering not implemented");
4360 b0
= gen_linktype(ETHERTYPE_DN
);
4361 /* Check for pad = 1, long header case */
4362 tmp
= gen_mcmp(OR_NET
, 2, BPF_H
,
4363 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
4364 b1
= gen_cmp(OR_NET
, 2 + 1 + offset_lh
,
4365 BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4367 /* Check for pad = 0, long header case */
4368 tmp
= gen_mcmp(OR_NET
, 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
4369 b2
= gen_cmp(OR_NET
, 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4372 /* Check for pad = 1, short header case */
4373 tmp
= gen_mcmp(OR_NET
, 2, BPF_H
,
4374 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
4375 b2
= gen_cmp(OR_NET
, 2 + 1 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4378 /* Check for pad = 0, short header case */
4379 tmp
= gen_mcmp(OR_NET
, 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
4380 b2
= gen_cmp(OR_NET
, 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4384 /* Combine with test for linktype */
4390 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4391 * test the bottom-of-stack bit, and then check the version number
4392 * field in the IP header.
4394 static struct block
*
4395 gen_mpls_linktype(proto
)
4398 struct block
*b0
, *b1
;
4403 /* match the bottom-of-stack bit */
4404 b0
= gen_mcmp(OR_NET
, -2, BPF_B
, 0x01, 0x01);
4405 /* match the IPv4 version number */
4406 b1
= gen_mcmp(OR_NET
, 0, BPF_B
, 0x40, 0xf0);
4411 /* match the bottom-of-stack bit */
4412 b0
= gen_mcmp(OR_NET
, -2, BPF_B
, 0x01, 0x01);
4413 /* match the IPv4 version number */
4414 b1
= gen_mcmp(OR_NET
, 0, BPF_B
, 0x60, 0xf0);
4423 static struct block
*
4424 gen_host(addr
, mask
, proto
, dir
, type
)
4431 struct block
*b0
, *b1
;
4432 const char *typestr
;
4442 b0
= gen_host(addr
, mask
, Q_IP
, dir
, type
);
4444 * Only check for non-IPv4 addresses if we're not
4445 * checking MPLS-encapsulated packets.
4447 if (label_stack_depth
== 0) {
4448 b1
= gen_host(addr
, mask
, Q_ARP
, dir
, type
);
4450 b0
= gen_host(addr
, mask
, Q_RARP
, dir
, type
);
4456 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
4459 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
4462 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
4465 bpf_error("'tcp' modifier applied to %s", typestr
);
4468 bpf_error("'sctp' modifier applied to %s", typestr
);
4471 bpf_error("'udp' modifier applied to %s", typestr
);
4474 bpf_error("'icmp' modifier applied to %s", typestr
);
4477 bpf_error("'igmp' modifier applied to %s", typestr
);
4480 bpf_error("'igrp' modifier applied to %s", typestr
);
4483 bpf_error("'pim' modifier applied to %s", typestr
);
4486 bpf_error("'vrrp' modifier applied to %s", typestr
);
4489 bpf_error("'carp' modifier applied to %s", typestr
);
4492 bpf_error("ATALK host filtering not implemented");
4495 bpf_error("AARP host filtering not implemented");
4498 return gen_dnhostop(addr
, dir
);
4501 bpf_error("SCA host filtering not implemented");
4504 bpf_error("LAT host filtering not implemented");
4507 bpf_error("MOPDL host filtering not implemented");
4510 bpf_error("MOPRC host filtering not implemented");
4514 bpf_error("'ip6' modifier applied to ip host");
4517 bpf_error("'icmp6' modifier applied to %s", typestr
);
4521 bpf_error("'ah' modifier applied to %s", typestr
);
4524 bpf_error("'esp' modifier applied to %s", typestr
);
4527 bpf_error("ISO host filtering not implemented");
4530 bpf_error("'esis' modifier applied to %s", typestr
);
4533 bpf_error("'isis' modifier applied to %s", typestr
);
4536 bpf_error("'clnp' modifier applied to %s", typestr
);
4539 bpf_error("'stp' modifier applied to %s", typestr
);
4542 bpf_error("IPX host filtering not implemented");
4545 bpf_error("'netbeui' modifier applied to %s", typestr
);
4548 bpf_error("'radio' modifier applied to %s", typestr
);
4557 static struct block
*
4558 gen_host6(addr
, mask
, proto
, dir
, type
)
4559 struct in6_addr
*addr
;
4560 struct in6_addr
*mask
;
4565 const char *typestr
;
4575 return gen_host6(addr
, mask
, Q_IPV6
, dir
, type
);
4578 bpf_error("'ip' modifier applied to ip6 %s", typestr
);
4581 bpf_error("'rarp' modifier applied to ip6 %s", typestr
);
4584 bpf_error("'arp' modifier applied to ip6 %s", typestr
);
4587 bpf_error("'sctp' modifier applied to %s", typestr
);
4590 bpf_error("'tcp' modifier applied to %s", typestr
);
4593 bpf_error("'udp' modifier applied to %s", typestr
);
4596 bpf_error("'icmp' modifier applied to %s", typestr
);
4599 bpf_error("'igmp' modifier applied to %s", typestr
);
4602 bpf_error("'igrp' modifier applied to %s", typestr
);
4605 bpf_error("'pim' modifier applied to %s", typestr
);
4608 bpf_error("'vrrp' modifier applied to %s", typestr
);
4611 bpf_error("'carp' modifier applied to %s", typestr
);
4614 bpf_error("ATALK host filtering not implemented");
4617 bpf_error("AARP host filtering not implemented");
4620 bpf_error("'decnet' modifier applied to ip6 %s", typestr
);
4623 bpf_error("SCA host filtering not implemented");
4626 bpf_error("LAT host filtering not implemented");
4629 bpf_error("MOPDL host filtering not implemented");
4632 bpf_error("MOPRC host filtering not implemented");
4635 return gen_hostop6(addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
4638 bpf_error("'icmp6' modifier applied to %s", typestr
);
4641 bpf_error("'ah' modifier applied to %s", typestr
);
4644 bpf_error("'esp' modifier applied to %s", typestr
);
4647 bpf_error("ISO host filtering not implemented");
4650 bpf_error("'esis' modifier applied to %s", typestr
);
4653 bpf_error("'isis' modifier applied to %s", typestr
);
4656 bpf_error("'clnp' modifier applied to %s", typestr
);
4659 bpf_error("'stp' modifier applied to %s", typestr
);
4662 bpf_error("IPX host filtering not implemented");
4665 bpf_error("'netbeui' modifier applied to %s", typestr
);
4668 bpf_error("'radio' modifier applied to %s", typestr
);
4678 static struct block
*
4679 gen_gateway(eaddr
, alist
, proto
, dir
)
4680 const u_char
*eaddr
;
4681 bpf_u_int32
**alist
;
4685 struct block
*b0
, *b1
, *tmp
;
4688 bpf_error("direction applied to 'gateway'");
4697 case DLT_NETANALYZER
:
4698 case DLT_NETANALYZER_TRANSPARENT
:
4699 b0
= gen_ehostop(eaddr
, Q_OR
);
4702 b0
= gen_fhostop(eaddr
, Q_OR
);
4705 b0
= gen_thostop(eaddr
, Q_OR
);
4707 case DLT_IEEE802_11
:
4708 case DLT_PRISM_HEADER
:
4709 case DLT_IEEE802_11_RADIO_AVS
:
4710 case DLT_IEEE802_11_RADIO
:
4712 b0
= gen_wlanhostop(eaddr
, Q_OR
);
4717 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4719 * Check that the packet doesn't begin with an
4720 * LE Control marker. (We've already generated
4723 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
4728 * Now check the MAC address.
4730 b0
= gen_ehostop(eaddr
, Q_OR
);
4733 case DLT_IP_OVER_FC
:
4734 b0
= gen_ipfchostop(eaddr
, Q_OR
);
4738 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4740 b1
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
, Q_HOST
);
4742 tmp
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
,
4751 bpf_error("illegal modifier of 'gateway'");
4757 gen_proto_abbrev(proto
)
4766 b1
= gen_proto(IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
4768 b0
= gen_proto(IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
4774 b1
= gen_proto(IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
4776 b0
= gen_proto(IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
4782 b1
= gen_proto(IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
4784 b0
= gen_proto(IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
4790 b1
= gen_proto(IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
4793 #ifndef IPPROTO_IGMP
4794 #define IPPROTO_IGMP 2
4798 b1
= gen_proto(IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
4801 #ifndef IPPROTO_IGRP
4802 #define IPPROTO_IGRP 9
4805 b1
= gen_proto(IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
4809 #define IPPROTO_PIM 103
4813 b1
= gen_proto(IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
4815 b0
= gen_proto(IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
4820 #ifndef IPPROTO_VRRP
4821 #define IPPROTO_VRRP 112
4825 b1
= gen_proto(IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
4828 #ifndef IPPROTO_CARP
4829 #define IPPROTO_CARP 112
4833 b1
= gen_proto(IPPROTO_CARP
, Q_IP
, Q_DEFAULT
);
4837 b1
= gen_linktype(ETHERTYPE_IP
);
4841 b1
= gen_linktype(ETHERTYPE_ARP
);
4845 b1
= gen_linktype(ETHERTYPE_REVARP
);
4849 bpf_error("link layer applied in wrong context");
4852 b1
= gen_linktype(ETHERTYPE_ATALK
);
4856 b1
= gen_linktype(ETHERTYPE_AARP
);
4860 b1
= gen_linktype(ETHERTYPE_DN
);
4864 b1
= gen_linktype(ETHERTYPE_SCA
);
4868 b1
= gen_linktype(ETHERTYPE_LAT
);
4872 b1
= gen_linktype(ETHERTYPE_MOPDL
);
4876 b1
= gen_linktype(ETHERTYPE_MOPRC
);
4881 b1
= gen_linktype(ETHERTYPE_IPV6
);
4884 #ifndef IPPROTO_ICMPV6
4885 #define IPPROTO_ICMPV6 58
4888 b1
= gen_proto(IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
4893 #define IPPROTO_AH 51
4896 b1
= gen_proto(IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
4898 b0
= gen_proto(IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
4904 #define IPPROTO_ESP 50
4907 b1
= gen_proto(IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
4909 b0
= gen_proto(IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
4915 b1
= gen_linktype(LLCSAP_ISONS
);
4919 b1
= gen_proto(ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
4923 b1
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
4926 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
4927 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4928 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
4930 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
4932 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
4934 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
4938 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
4939 b0
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4940 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
4942 b0
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
4944 b0
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
4946 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
4950 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
4951 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4952 b1
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4954 b0
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
4959 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
4960 b1
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
4965 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
4966 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
4968 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
4970 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
4975 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
4976 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
4981 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
4982 b1
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
4987 b1
= gen_proto(ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
4991 b1
= gen_linktype(LLCSAP_8021D
);
4995 b1
= gen_linktype(LLCSAP_IPX
);
4999 b1
= gen_linktype(LLCSAP_NETBEUI
);
5003 bpf_error("'radio' is not a valid protocol type");
5011 static struct block
*
5017 /* not IPv4 frag other than the first frag */
5018 s
= gen_load_a(OR_NET
, 6, BPF_H
);
5019 b
= new_block(JMP(BPF_JSET
));
5028 * Generate a comparison to a port value in the transport-layer header
5029 * at the specified offset from the beginning of that header.
5031 * XXX - this handles a variable-length prefix preceding the link-layer
5032 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5033 * variable-length link-layer headers (such as Token Ring or 802.11
5036 static struct block
*
5037 gen_portatom(off
, v
)
5041 return gen_cmp(OR_TRAN_IPV4
, off
, BPF_H
, v
);
5045 static struct block
*
5046 gen_portatom6(off
, v
)
5050 return gen_cmp(OR_TRAN_IPV6
, off
, BPF_H
, v
);
5055 gen_portop(port
, proto
, dir
)
5056 int port
, proto
, dir
;
5058 struct block
*b0
, *b1
, *tmp
;
5060 /* ip proto 'proto' and not a fragment other than the first fragment */
5061 tmp
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)proto
);
5067 b1
= gen_portatom(0, (bpf_int32
)port
);
5071 b1
= gen_portatom(2, (bpf_int32
)port
);
5076 tmp
= gen_portatom(0, (bpf_int32
)port
);
5077 b1
= gen_portatom(2, (bpf_int32
)port
);
5082 tmp
= gen_portatom(0, (bpf_int32
)port
);
5083 b1
= gen_portatom(2, (bpf_int32
)port
);
5095 static struct block
*
5096 gen_port(port
, ip_proto
, dir
)
5101 struct block
*b0
, *b1
, *tmp
;
5106 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5107 * not LLC encapsulation with LLCSAP_IP.
5109 * For IEEE 802 networks - which includes 802.5 token ring
5110 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5111 * says that SNAP encapsulation is used, not LLC encapsulation
5114 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5115 * RFC 2225 say that SNAP encapsulation is used, not LLC
5116 * encapsulation with LLCSAP_IP.
5118 * So we always check for ETHERTYPE_IP.
5120 b0
= gen_linktype(ETHERTYPE_IP
);
5126 b1
= gen_portop(port
, ip_proto
, dir
);
5130 tmp
= gen_portop(port
, IPPROTO_TCP
, dir
);
5131 b1
= gen_portop(port
, IPPROTO_UDP
, dir
);
5133 tmp
= gen_portop(port
, IPPROTO_SCTP
, dir
);
5146 gen_portop6(port
, proto
, dir
)
5147 int port
, proto
, dir
;
5149 struct block
*b0
, *b1
, *tmp
;
5151 /* ip6 proto 'proto' */
5152 /* XXX - catch the first fragment of a fragmented packet? */
5153 b0
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)proto
);
5157 b1
= gen_portatom6(0, (bpf_int32
)port
);
5161 b1
= gen_portatom6(2, (bpf_int32
)port
);
5166 tmp
= gen_portatom6(0, (bpf_int32
)port
);
5167 b1
= gen_portatom6(2, (bpf_int32
)port
);
5172 tmp
= gen_portatom6(0, (bpf_int32
)port
);
5173 b1
= gen_portatom6(2, (bpf_int32
)port
);
5185 static struct block
*
5186 gen_port6(port
, ip_proto
, dir
)
5191 struct block
*b0
, *b1
, *tmp
;
5193 /* link proto ip6 */
5194 b0
= gen_linktype(ETHERTYPE_IPV6
);
5200 b1
= gen_portop6(port
, ip_proto
, dir
);
5204 tmp
= gen_portop6(port
, IPPROTO_TCP
, dir
);
5205 b1
= gen_portop6(port
, IPPROTO_UDP
, dir
);
5207 tmp
= gen_portop6(port
, IPPROTO_SCTP
, dir
);
5219 /* gen_portrange code */
5220 static struct block
*
5221 gen_portrangeatom(off
, v1
, v2
)
5225 struct block
*b1
, *b2
;
5229 * Reverse the order of the ports, so v1 is the lower one.
5238 b1
= gen_cmp_ge(OR_TRAN_IPV4
, off
, BPF_H
, v1
);
5239 b2
= gen_cmp_le(OR_TRAN_IPV4
, off
, BPF_H
, v2
);
5247 gen_portrangeop(port1
, port2
, proto
, dir
)
5252 struct block
*b0
, *b1
, *tmp
;
5254 /* ip proto 'proto' and not a fragment other than the first fragment */
5255 tmp
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)proto
);
5261 b1
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5265 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5270 tmp
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5271 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5276 tmp
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5277 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5289 static struct block
*
5290 gen_portrange(port1
, port2
, ip_proto
, dir
)
5295 struct block
*b0
, *b1
, *tmp
;
5298 b0
= gen_linktype(ETHERTYPE_IP
);
5304 b1
= gen_portrangeop(port1
, port2
, ip_proto
, dir
);
5308 tmp
= gen_portrangeop(port1
, port2
, IPPROTO_TCP
, dir
);
5309 b1
= gen_portrangeop(port1
, port2
, IPPROTO_UDP
, dir
);
5311 tmp
= gen_portrangeop(port1
, port2
, IPPROTO_SCTP
, dir
);
5323 static struct block
*
5324 gen_portrangeatom6(off
, v1
, v2
)
5328 struct block
*b1
, *b2
;
5332 * Reverse the order of the ports, so v1 is the lower one.
5341 b1
= gen_cmp_ge(OR_TRAN_IPV6
, off
, BPF_H
, v1
);
5342 b2
= gen_cmp_le(OR_TRAN_IPV6
, off
, BPF_H
, v2
);
5350 gen_portrangeop6(port1
, port2
, proto
, dir
)
5355 struct block
*b0
, *b1
, *tmp
;
5357 /* ip6 proto 'proto' */
5358 /* XXX - catch the first fragment of a fragmented packet? */
5359 b0
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)proto
);
5363 b1
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5367 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5372 tmp
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5373 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5378 tmp
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5379 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5391 static struct block
*
5392 gen_portrange6(port1
, port2
, ip_proto
, dir
)
5397 struct block
*b0
, *b1
, *tmp
;
5399 /* link proto ip6 */
5400 b0
= gen_linktype(ETHERTYPE_IPV6
);
5406 b1
= gen_portrangeop6(port1
, port2
, ip_proto
, dir
);
5410 tmp
= gen_portrangeop6(port1
, port2
, IPPROTO_TCP
, dir
);
5411 b1
= gen_portrangeop6(port1
, port2
, IPPROTO_UDP
, dir
);
5413 tmp
= gen_portrangeop6(port1
, port2
, IPPROTO_SCTP
, dir
);
5426 lookup_proto(name
, proto
)
5427 register const char *name
;
5437 v
= pcap_nametoproto(name
);
5438 if (v
== PROTO_UNDEF
)
5439 bpf_error("unknown ip proto '%s'", name
);
5443 /* XXX should look up h/w protocol type based on linktype */
5444 v
= pcap_nametoeproto(name
);
5445 if (v
== PROTO_UNDEF
) {
5446 v
= pcap_nametollc(name
);
5447 if (v
== PROTO_UNDEF
)
5448 bpf_error("unknown ether proto '%s'", name
);
5453 if (strcmp(name
, "esis") == 0)
5455 else if (strcmp(name
, "isis") == 0)
5457 else if (strcmp(name
, "clnp") == 0)
5460 bpf_error("unknown osi proto '%s'", name
);
5480 static struct block
*
5481 gen_protochain(v
, proto
, dir
)
5486 #ifdef NO_PROTOCHAIN
5487 return gen_proto(v
, proto
, dir
);
5489 struct block
*b0
, *b
;
5490 struct slist
*s
[100];
5491 int fix2
, fix3
, fix4
, fix5
;
5492 int ahcheck
, again
, end
;
5494 int reg2
= alloc_reg();
5496 memset(s
, 0, sizeof(s
));
5497 fix2
= fix3
= fix4
= fix5
= 0;
5504 b0
= gen_protochain(v
, Q_IP
, dir
);
5505 b
= gen_protochain(v
, Q_IPV6
, dir
);
5509 bpf_error("bad protocol applied for 'protochain'");
5514 * We don't handle variable-length prefixes before the link-layer
5515 * header, or variable-length link-layer headers, here yet.
5516 * We might want to add BPF instructions to do the protochain
5517 * work, to simplify that and, on platforms that have a BPF
5518 * interpreter with the new instructions, let the filtering
5519 * be done in the kernel. (We already require a modified BPF
5520 * engine to do the protochain stuff, to support backward
5521 * branches, and backward branch support is unlikely to appear
5522 * in kernel BPF engines.)
5526 case DLT_IEEE802_11
:
5527 case DLT_PRISM_HEADER
:
5528 case DLT_IEEE802_11_RADIO_AVS
:
5529 case DLT_IEEE802_11_RADIO
:
5531 bpf_error("'protochain' not supported with 802.11");
5534 no_optimize
= 1; /*this code is not compatible with optimzer yet */
5537 * s[0] is a dummy entry to protect other BPF insn from damage
5538 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5539 * hard to find interdependency made by jump table fixup.
5542 s
[i
] = new_stmt(0); /*dummy*/
5547 b0
= gen_linktype(ETHERTYPE_IP
);
5550 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
5551 s
[i
]->s
.k
= off_macpl
+ off_nl
+ 9;
5553 /* X = ip->ip_hl << 2 */
5554 s
[i
] = new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
5555 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5560 b0
= gen_linktype(ETHERTYPE_IPV6
);
5562 /* A = ip6->ip_nxt */
5563 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
5564 s
[i
]->s
.k
= off_macpl
+ off_nl
+ 6;
5566 /* X = sizeof(struct ip6_hdr) */
5567 s
[i
] = new_stmt(BPF_LDX
|BPF_IMM
);
5573 bpf_error("unsupported proto to gen_protochain");
5577 /* again: if (A == v) goto end; else fall through; */
5579 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5581 s
[i
]->s
.jt
= NULL
; /*later*/
5582 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5586 #ifndef IPPROTO_NONE
5587 #define IPPROTO_NONE 59
5589 /* if (A == IPPROTO_NONE) goto end */
5590 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5591 s
[i
]->s
.jt
= NULL
; /*later*/
5592 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5593 s
[i
]->s
.k
= IPPROTO_NONE
;
5594 s
[fix5
]->s
.jf
= s
[i
];
5599 if (proto
== Q_IPV6
) {
5600 int v6start
, v6end
, v6advance
, j
;
5603 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5604 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5605 s
[i
]->s
.jt
= NULL
; /*later*/
5606 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5607 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
5608 s
[fix2
]->s
.jf
= s
[i
];
5610 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5611 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5612 s
[i
]->s
.jt
= NULL
; /*later*/
5613 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5614 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
5616 /* if (A == IPPROTO_ROUTING) goto v6advance */
5617 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5618 s
[i
]->s
.jt
= NULL
; /*later*/
5619 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5620 s
[i
]->s
.k
= IPPROTO_ROUTING
;
5622 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5623 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5624 s
[i
]->s
.jt
= NULL
; /*later*/
5625 s
[i
]->s
.jf
= NULL
; /*later*/
5626 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
5636 * A = P[X + packet head];
5637 * X = X + (P[X + packet head + 1] + 1) * 8;
5639 /* A = P[X + packet head] */
5640 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5641 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5644 s
[i
] = new_stmt(BPF_ST
);
5647 /* A = P[X + packet head + 1]; */
5648 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5649 s
[i
]->s
.k
= off_macpl
+ off_nl
+ 1;
5652 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5656 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
5660 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
);
5664 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
5667 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
5671 /* goto again; (must use BPF_JA for backward jump) */
5672 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
5673 s
[i
]->s
.k
= again
- i
- 1;
5674 s
[i
- 1]->s
.jf
= s
[i
];
5678 for (j
= v6start
; j
<= v6end
; j
++)
5679 s
[j
]->s
.jt
= s
[v6advance
];
5684 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5686 s
[fix2
]->s
.jf
= s
[i
];
5692 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5693 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5694 s
[i
]->s
.jt
= NULL
; /*later*/
5695 s
[i
]->s
.jf
= NULL
; /*later*/
5696 s
[i
]->s
.k
= IPPROTO_AH
;
5698 s
[fix3
]->s
.jf
= s
[ahcheck
];
5705 * X = X + (P[X + 1] + 2) * 4;
5708 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
5710 /* A = P[X + packet head]; */
5711 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5712 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5715 s
[i
] = new_stmt(BPF_ST
);
5719 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
5722 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5726 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
5728 /* A = P[X + packet head] */
5729 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5730 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5733 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5737 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
5741 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
5744 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
5748 /* goto again; (must use BPF_JA for backward jump) */
5749 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
5750 s
[i
]->s
.k
= again
- i
- 1;
5755 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5757 s
[fix2
]->s
.jt
= s
[end
];
5758 s
[fix4
]->s
.jf
= s
[end
];
5759 s
[fix5
]->s
.jt
= s
[end
];
5766 for (i
= 0; i
< max
- 1; i
++)
5767 s
[i
]->next
= s
[i
+ 1];
5768 s
[max
- 1]->next
= NULL
;
5773 b
= new_block(JMP(BPF_JEQ
));
5774 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
5784 static struct block
*
5785 gen_check_802_11_data_frame()
5788 struct block
*b0
, *b1
;
5791 * A data frame has the 0x08 bit (b3) in the frame control field set
5792 * and the 0x04 bit (b2) clear.
5794 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
5795 b0
= new_block(JMP(BPF_JSET
));
5799 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
5800 b1
= new_block(JMP(BPF_JSET
));
5811 * Generate code that checks whether the packet is a packet for protocol
5812 * <proto> and whether the type field in that protocol's header has
5813 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5814 * IP packet and checks the protocol number in the IP header against <v>.
5816 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5817 * against Q_IP and Q_IPV6.
5819 static struct block
*
5820 gen_proto(v
, proto
, dir
)
5825 struct block
*b0
, *b1
;
5832 if (dir
!= Q_DEFAULT
)
5833 bpf_error("direction applied to 'proto'");
5838 b0
= gen_proto(v
, Q_IP
, dir
);
5839 b1
= gen_proto(v
, Q_IPV6
, dir
);
5847 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5848 * not LLC encapsulation with LLCSAP_IP.
5850 * For IEEE 802 networks - which includes 802.5 token ring
5851 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5852 * says that SNAP encapsulation is used, not LLC encapsulation
5855 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5856 * RFC 2225 say that SNAP encapsulation is used, not LLC
5857 * encapsulation with LLCSAP_IP.
5859 * So we always check for ETHERTYPE_IP.
5861 b0
= gen_linktype(ETHERTYPE_IP
);
5863 b1
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)v
);
5865 b1
= gen_protochain(v
, Q_IP
);
5875 * Frame Relay packets typically have an OSI
5876 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5877 * generates code to check for all the OSI
5878 * NLPIDs, so calling it and then adding a check
5879 * for the particular NLPID for which we're
5880 * looking is bogus, as we can just check for
5883 * What we check for is the NLPID and a frame
5884 * control field value of UI, i.e. 0x03 followed
5887 * XXX - assumes a 2-byte Frame Relay header with
5888 * DLCI and flags. What if the address is longer?
5890 * XXX - what about SNAP-encapsulated frames?
5892 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | v
);
5898 * Cisco uses an Ethertype lookalike - for OSI,
5901 b0
= gen_linktype(LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
5902 /* OSI in C-HDLC is stuffed with a fudge byte */
5903 b1
= gen_cmp(OR_NET_NOSNAP
, 1, BPF_B
, (long)v
);
5908 b0
= gen_linktype(LLCSAP_ISONS
);
5909 b1
= gen_cmp(OR_NET_NOSNAP
, 0, BPF_B
, (long)v
);
5915 b0
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
5917 * 4 is the offset of the PDU type relative to the IS-IS
5920 b1
= gen_cmp(OR_NET_NOSNAP
, 4, BPF_B
, (long)v
);
5925 bpf_error("arp does not encapsulate another protocol");
5929 bpf_error("rarp does not encapsulate another protocol");
5933 bpf_error("atalk encapsulation is not specifiable");
5937 bpf_error("decnet encapsulation is not specifiable");
5941 bpf_error("sca does not encapsulate another protocol");
5945 bpf_error("lat does not encapsulate another protocol");
5949 bpf_error("moprc does not encapsulate another protocol");
5953 bpf_error("mopdl does not encapsulate another protocol");
5957 return gen_linktype(v
);
5960 bpf_error("'udp proto' is bogus");
5964 bpf_error("'tcp proto' is bogus");
5968 bpf_error("'sctp proto' is bogus");
5972 bpf_error("'icmp proto' is bogus");
5976 bpf_error("'igmp proto' is bogus");
5980 bpf_error("'igrp proto' is bogus");
5984 bpf_error("'pim proto' is bogus");
5988 bpf_error("'vrrp proto' is bogus");
5992 bpf_error("'carp proto' is bogus");
5997 b0
= gen_linktype(ETHERTYPE_IPV6
);
6000 * Also check for a fragment header before the final
6003 b2
= gen_cmp(OR_NET
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6004 b1
= gen_cmp(OR_NET
, 40, BPF_B
, (bpf_int32
)v
);
6006 b2
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)v
);
6009 b1
= gen_protochain(v
, Q_IPV6
);
6015 bpf_error("'icmp6 proto' is bogus");
6019 bpf_error("'ah proto' is bogus");
6022 bpf_error("'ah proto' is bogus");
6025 bpf_error("'stp proto' is bogus");
6028 bpf_error("'ipx proto' is bogus");
6031 bpf_error("'netbeui proto' is bogus");
6034 bpf_error("'radio proto' is bogus");
6045 register const char *name
;
6048 int proto
= q
.proto
;
6052 bpf_u_int32 mask
, addr
;
6054 bpf_u_int32
**alist
;
6057 struct sockaddr_in
*sin4
;
6058 struct sockaddr_in6
*sin6
;
6059 struct addrinfo
*res
, *res0
;
6060 struct in6_addr mask128
;
6062 struct block
*b
, *tmp
;
6063 int port
, real_proto
;
6069 addr
= pcap_nametonetaddr(name
);
6071 bpf_error("unknown network '%s'", name
);
6072 /* Left justify network addr and calculate its network mask */
6074 while (addr
&& (addr
& 0xff000000) == 0) {
6078 return gen_host(addr
, mask
, proto
, dir
, q
.addr
);
6082 if (proto
== Q_LINK
) {
6086 case DLT_NETANALYZER
:
6087 case DLT_NETANALYZER_TRANSPARENT
:
6088 eaddr
= pcap_ether_hostton(name
);
6091 "unknown ether host '%s'", name
);
6092 b
= gen_ehostop(eaddr
, dir
);
6097 eaddr
= pcap_ether_hostton(name
);
6100 "unknown FDDI host '%s'", name
);
6101 b
= gen_fhostop(eaddr
, dir
);
6106 eaddr
= pcap_ether_hostton(name
);
6109 "unknown token ring host '%s'", name
);
6110 b
= gen_thostop(eaddr
, dir
);
6114 case DLT_IEEE802_11
:
6115 case DLT_PRISM_HEADER
:
6116 case DLT_IEEE802_11_RADIO_AVS
:
6117 case DLT_IEEE802_11_RADIO
:
6119 eaddr
= pcap_ether_hostton(name
);
6122 "unknown 802.11 host '%s'", name
);
6123 b
= gen_wlanhostop(eaddr
, dir
);
6127 case DLT_IP_OVER_FC
:
6128 eaddr
= pcap_ether_hostton(name
);
6131 "unknown Fibre Channel host '%s'", name
);
6132 b
= gen_ipfchostop(eaddr
, dir
);
6141 * Check that the packet doesn't begin
6142 * with an LE Control marker. (We've
6143 * already generated a test for LANE.)
6145 tmp
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
6149 eaddr
= pcap_ether_hostton(name
);
6152 "unknown ether host '%s'", name
);
6153 b
= gen_ehostop(eaddr
, dir
);
6159 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6160 } else if (proto
== Q_DECNET
) {
6161 unsigned short dn_addr
= __pcap_nametodnaddr(name
);
6163 * I don't think DECNET hosts can be multihomed, so
6164 * there is no need to build up a list of addresses
6166 return (gen_host(dn_addr
, 0, proto
, dir
, q
.addr
));
6169 alist
= pcap_nametoaddr(name
);
6170 if (alist
== NULL
|| *alist
== NULL
)
6171 bpf_error("unknown host '%s'", name
);
6173 if (off_linktype
== (u_int
)-1 && tproto
== Q_DEFAULT
)
6175 b
= gen_host(**alist
++, 0xffffffff, tproto
, dir
, q
.addr
);
6177 tmp
= gen_host(**alist
++, 0xffffffff,
6178 tproto
, dir
, q
.addr
);
6184 memset(&mask128
, 0xff, sizeof(mask128
));
6185 res0
= res
= pcap_nametoaddrinfo(name
);
6187 bpf_error("unknown host '%s'", name
);
6190 tproto
= tproto6
= proto
;
6191 if (off_linktype
== -1 && tproto
== Q_DEFAULT
) {
6195 for (res
= res0
; res
; res
= res
->ai_next
) {
6196 switch (res
->ai_family
) {
6198 if (tproto
== Q_IPV6
)
6201 sin4
= (struct sockaddr_in
*)
6203 tmp
= gen_host(ntohl(sin4
->sin_addr
.s_addr
),
6204 0xffffffff, tproto
, dir
, q
.addr
);
6207 if (tproto6
== Q_IP
)
6210 sin6
= (struct sockaddr_in6
*)
6212 tmp
= gen_host6(&sin6
->sin6_addr
,
6213 &mask128
, tproto6
, dir
, q
.addr
);
6225 bpf_error("unknown host '%s'%s", name
,
6226 (proto
== Q_DEFAULT
)
6228 : " for specified address family");
6235 if (proto
!= Q_DEFAULT
&&
6236 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6237 bpf_error("illegal qualifier of 'port'");
6238 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6239 bpf_error("unknown port '%s'", name
);
6240 if (proto
== Q_UDP
) {
6241 if (real_proto
== IPPROTO_TCP
)
6242 bpf_error("port '%s' is tcp", name
);
6243 else if (real_proto
== IPPROTO_SCTP
)
6244 bpf_error("port '%s' is sctp", name
);
6246 /* override PROTO_UNDEF */
6247 real_proto
= IPPROTO_UDP
;
6249 if (proto
== Q_TCP
) {
6250 if (real_proto
== IPPROTO_UDP
)
6251 bpf_error("port '%s' is udp", name
);
6253 else if (real_proto
== IPPROTO_SCTP
)
6254 bpf_error("port '%s' is sctp", name
);
6256 /* override PROTO_UNDEF */
6257 real_proto
= IPPROTO_TCP
;
6259 if (proto
== Q_SCTP
) {
6260 if (real_proto
== IPPROTO_UDP
)
6261 bpf_error("port '%s' is udp", name
);
6263 else if (real_proto
== IPPROTO_TCP
)
6264 bpf_error("port '%s' is tcp", name
);
6266 /* override PROTO_UNDEF */
6267 real_proto
= IPPROTO_SCTP
;
6270 bpf_error("illegal port number %d < 0", port
);
6272 bpf_error("illegal port number %d > 65535", port
);
6274 return gen_port(port
, real_proto
, dir
);
6276 b
= gen_port(port
, real_proto
, dir
);
6277 gen_or(gen_port6(port
, real_proto
, dir
), b
);
6282 if (proto
!= Q_DEFAULT
&&
6283 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6284 bpf_error("illegal qualifier of 'portrange'");
6285 if (pcap_nametoportrange(name
, &port1
, &port2
, &real_proto
) == 0)
6286 bpf_error("unknown port in range '%s'", name
);
6287 if (proto
== Q_UDP
) {
6288 if (real_proto
== IPPROTO_TCP
)
6289 bpf_error("port in range '%s' is tcp", name
);
6290 else if (real_proto
== IPPROTO_SCTP
)
6291 bpf_error("port in range '%s' is sctp", name
);
6293 /* override PROTO_UNDEF */
6294 real_proto
= IPPROTO_UDP
;
6296 if (proto
== Q_TCP
) {
6297 if (real_proto
== IPPROTO_UDP
)
6298 bpf_error("port in range '%s' is udp", name
);
6299 else if (real_proto
== IPPROTO_SCTP
)
6300 bpf_error("port in range '%s' is sctp", name
);
6302 /* override PROTO_UNDEF */
6303 real_proto
= IPPROTO_TCP
;
6305 if (proto
== Q_SCTP
) {
6306 if (real_proto
== IPPROTO_UDP
)
6307 bpf_error("port in range '%s' is udp", name
);
6308 else if (real_proto
== IPPROTO_TCP
)
6309 bpf_error("port in range '%s' is tcp", name
);
6311 /* override PROTO_UNDEF */
6312 real_proto
= IPPROTO_SCTP
;
6315 bpf_error("illegal port number %d < 0", port1
);
6317 bpf_error("illegal port number %d > 65535", port1
);
6319 bpf_error("illegal port number %d < 0", port2
);
6321 bpf_error("illegal port number %d > 65535", port2
);
6324 return gen_portrange(port1
, port2
, real_proto
, dir
);
6326 b
= gen_portrange(port1
, port2
, real_proto
, dir
);
6327 gen_or(gen_portrange6(port1
, port2
, real_proto
, dir
), b
);
6333 eaddr
= pcap_ether_hostton(name
);
6335 bpf_error("unknown ether host: %s", name
);
6337 alist
= pcap_nametoaddr(name
);
6338 if (alist
== NULL
|| *alist
== NULL
)
6339 bpf_error("unknown host '%s'", name
);
6340 b
= gen_gateway(eaddr
, alist
, proto
, dir
);
6344 bpf_error("'gateway' not supported in this configuration");
6348 real_proto
= lookup_proto(name
, proto
);
6349 if (real_proto
>= 0)
6350 return gen_proto(real_proto
, proto
, dir
);
6352 bpf_error("unknown protocol: %s", name
);
6355 real_proto
= lookup_proto(name
, proto
);
6356 if (real_proto
>= 0)
6357 return gen_protochain(real_proto
, proto
, dir
);
6359 bpf_error("unknown protocol: %s", name
);
6370 gen_mcode(s1
, s2
, masklen
, q
)
6371 register const char *s1
, *s2
;
6372 register int masklen
;
6375 register int nlen
, mlen
;
6378 nlen
= __pcap_atoin(s1
, &n
);
6379 /* Promote short ipaddr */
6383 mlen
= __pcap_atoin(s2
, &m
);
6384 /* Promote short ipaddr */
6387 bpf_error("non-network bits set in \"%s mask %s\"",
6390 /* Convert mask len to mask */
6392 bpf_error("mask length must be <= 32");
6395 * X << 32 is not guaranteed by C to be 0; it's
6400 m
= 0xffffffff << (32 - masklen
);
6402 bpf_error("non-network bits set in \"%s/%d\"",
6409 return gen_host(n
, m
, q
.proto
, q
.dir
, q
.addr
);
6412 bpf_error("Mask syntax for networks only");
6421 register const char *s
;
6426 int proto
= q
.proto
;
6432 else if (q
.proto
== Q_DECNET
)
6433 vlen
= __pcap_atodn(s
, &v
);
6435 vlen
= __pcap_atoin(s
, &v
);
6442 if (proto
== Q_DECNET
)
6443 return gen_host(v
, 0, proto
, dir
, q
.addr
);
6444 else if (proto
== Q_LINK
) {
6445 bpf_error("illegal link layer address");
6448 if (s
== NULL
&& q
.addr
== Q_NET
) {
6449 /* Promote short net number */
6450 while (v
&& (v
& 0xff000000) == 0) {
6455 /* Promote short ipaddr */
6459 return gen_host(v
, mask
, proto
, dir
, q
.addr
);
6464 proto
= IPPROTO_UDP
;
6465 else if (proto
== Q_TCP
)
6466 proto
= IPPROTO_TCP
;
6467 else if (proto
== Q_SCTP
)
6468 proto
= IPPROTO_SCTP
;
6469 else if (proto
== Q_DEFAULT
)
6470 proto
= PROTO_UNDEF
;
6472 bpf_error("illegal qualifier of 'port'");
6475 bpf_error("illegal port number %u > 65535", v
);
6478 return gen_port((int)v
, proto
, dir
);
6482 b
= gen_port((int)v
, proto
, dir
);
6483 gen_or(gen_port6((int)v
, proto
, dir
), b
);
6490 proto
= IPPROTO_UDP
;
6491 else if (proto
== Q_TCP
)
6492 proto
= IPPROTO_TCP
;
6493 else if (proto
== Q_SCTP
)
6494 proto
= IPPROTO_SCTP
;
6495 else if (proto
== Q_DEFAULT
)
6496 proto
= PROTO_UNDEF
;
6498 bpf_error("illegal qualifier of 'portrange'");
6501 bpf_error("illegal port number %u > 65535", v
);
6504 return gen_portrange((int)v
, (int)v
, proto
, dir
);
6508 b
= gen_portrange((int)v
, (int)v
, proto
, dir
);
6509 gen_or(gen_portrange6((int)v
, (int)v
, proto
, dir
), b
);
6515 bpf_error("'gateway' requires a name");
6519 return gen_proto((int)v
, proto
, dir
);
6522 return gen_protochain((int)v
, proto
, dir
);
6537 gen_mcode6(s1
, s2
, masklen
, q
)
6538 register const char *s1
, *s2
;
6539 register int masklen
;
6542 struct addrinfo
*res
;
6543 struct in6_addr
*addr
;
6544 struct in6_addr mask
;
6549 bpf_error("no mask %s supported", s2
);
6551 res
= pcap_nametoaddrinfo(s1
);
6553 bpf_error("invalid ip6 address %s", s1
);
6556 bpf_error("%s resolved to multiple address", s1
);
6557 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
6559 if (sizeof(mask
) * 8 < masklen
)
6560 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
6561 memset(&mask
, 0, sizeof(mask
));
6562 memset(&mask
, 0xff, masklen
/ 8);
6564 mask
.s6_addr
[masklen
/ 8] =
6565 (0xff << (8 - masklen
% 8)) & 0xff;
6568 a
= (u_int32_t
*)addr
;
6569 m
= (u_int32_t
*)&mask
;
6570 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
6571 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
6572 bpf_error("non-network bits set in \"%s/%d\"", s1
, masklen
);
6580 bpf_error("Mask syntax for networks only");
6584 b
= gen_host6(addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
6590 bpf_error("invalid qualifier against IPv6 address");
6599 register const u_char
*eaddr
;
6602 struct block
*b
, *tmp
;
6604 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
6607 case DLT_NETANALYZER
:
6608 case DLT_NETANALYZER_TRANSPARENT
:
6609 return gen_ehostop(eaddr
, (int)q
.dir
);
6611 return gen_fhostop(eaddr
, (int)q
.dir
);
6613 return gen_thostop(eaddr
, (int)q
.dir
);
6614 case DLT_IEEE802_11
:
6615 case DLT_PRISM_HEADER
:
6616 case DLT_IEEE802_11_RADIO_AVS
:
6617 case DLT_IEEE802_11_RADIO
:
6619 return gen_wlanhostop(eaddr
, (int)q
.dir
);
6623 * Check that the packet doesn't begin with an
6624 * LE Control marker. (We've already generated
6627 tmp
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
6632 * Now check the MAC address.
6634 b
= gen_ehostop(eaddr
, (int)q
.dir
);
6639 case DLT_IP_OVER_FC
:
6640 return gen_ipfchostop(eaddr
, (int)q
.dir
);
6642 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6646 bpf_error("ethernet address used in non-ether expression");
6653 struct slist
*s0
, *s1
;
6656 * This is definitely not the best way to do this, but the
6657 * lists will rarely get long.
6664 static struct slist
*
6670 s
= new_stmt(BPF_LDX
|BPF_MEM
);
6675 static struct slist
*
6681 s
= new_stmt(BPF_LD
|BPF_MEM
);
6687 * Modify "index" to use the value stored into its register as an
6688 * offset relative to the beginning of the header for the protocol
6689 * "proto", and allocate a register and put an item "size" bytes long
6690 * (1, 2, or 4) at that offset into that register, making it the register
6694 gen_load(proto
, inst
, size
)
6699 struct slist
*s
, *tmp
;
6701 int regno
= alloc_reg();
6703 free_reg(inst
->regno
);
6707 bpf_error("data size must be 1, 2, or 4");
6723 bpf_error("unsupported index operation");
6727 * The offset is relative to the beginning of the packet
6728 * data, if we have a radio header. (If we don't, this
6731 if (linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
6732 linktype
!= DLT_IEEE802_11_RADIO
&&
6733 linktype
!= DLT_PRISM_HEADER
)
6734 bpf_error("radio information not present in capture");
6737 * Load into the X register the offset computed into the
6738 * register specified by "index".
6740 s
= xfer_to_x(inst
);
6743 * Load the item at that offset.
6745 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
6747 sappend(inst
->s
, s
);
6752 * The offset is relative to the beginning of
6753 * the link-layer header.
6755 * XXX - what about ATM LANE? Should the index be
6756 * relative to the beginning of the AAL5 frame, so
6757 * that 0 refers to the beginning of the LE Control
6758 * field, or relative to the beginning of the LAN
6759 * frame, so that 0 refers, for Ethernet LANE, to
6760 * the beginning of the destination address?
6762 s
= gen_llprefixlen();
6765 * If "s" is non-null, it has code to arrange that the
6766 * X register contains the length of the prefix preceding
6767 * the link-layer header. Add to it the offset computed
6768 * into the register specified by "index", and move that
6769 * into the X register. Otherwise, just load into the X
6770 * register the offset computed into the register specified
6774 sappend(s
, xfer_to_a(inst
));
6775 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
6776 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
6778 s
= xfer_to_x(inst
);
6781 * Load the item at the sum of the offset we've put in the
6782 * X register and the offset of the start of the link
6783 * layer header (which is 0 if the radio header is
6784 * variable-length; that header length is what we put
6785 * into the X register and then added to the index).
6787 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
6790 sappend(inst
->s
, s
);
6806 * The offset is relative to the beginning of
6807 * the network-layer header.
6808 * XXX - are there any cases where we want
6811 s
= gen_off_macpl();
6814 * If "s" is non-null, it has code to arrange that the
6815 * X register contains the offset of the MAC-layer
6816 * payload. Add to it the offset computed into the
6817 * register specified by "index", and move that into
6818 * the X register. Otherwise, just load into the X
6819 * register the offset computed into the register specified
6823 sappend(s
, xfer_to_a(inst
));
6824 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
6825 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
6827 s
= xfer_to_x(inst
);
6830 * Load the item at the sum of the offset we've put in the
6831 * X register, the offset of the start of the network
6832 * layer header from the beginning of the MAC-layer
6833 * payload, and the purported offset of the start of the
6834 * MAC-layer payload (which might be 0 if there's a
6835 * variable-length prefix before the link-layer header
6836 * or the link-layer header itself is variable-length;
6837 * the variable-length offset of the start of the
6838 * MAC-layer payload is what we put into the X register
6839 * and then added to the index).
6841 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
6842 tmp
->s
.k
= off_macpl
+ off_nl
;
6844 sappend(inst
->s
, s
);
6847 * Do the computation only if the packet contains
6848 * the protocol in question.
6850 b
= gen_proto_abbrev(proto
);
6852 gen_and(inst
->b
, b
);
6866 * The offset is relative to the beginning of
6867 * the transport-layer header.
6869 * Load the X register with the length of the IPv4 header
6870 * (plus the offset of the link-layer header, if it's
6871 * a variable-length header), in bytes.
6873 * XXX - are there any cases where we want
6875 * XXX - we should, if we're built with
6876 * IPv6 support, generate code to load either
6877 * IPv4, IPv6, or both, as appropriate.
6879 s
= gen_loadx_iphdrlen();
6882 * The X register now contains the sum of the length
6883 * of any variable-length header preceding the link-layer
6884 * header, any variable-length link-layer header, and the
6885 * length of the network-layer header.
6887 * Load into the A register the offset relative to
6888 * the beginning of the transport layer header,
6889 * add the X register to that, move that to the
6890 * X register, and load with an offset from the
6891 * X register equal to the offset of the network
6892 * layer header relative to the beginning of
6893 * the MAC-layer payload plus the fixed-length
6894 * portion of the offset of the MAC-layer payload
6895 * from the beginning of the raw packet data.
6897 sappend(s
, xfer_to_a(inst
));
6898 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
6899 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
6900 sappend(s
, tmp
= new_stmt(BPF_LD
|BPF_IND
|size
));
6901 tmp
->s
.k
= off_macpl
+ off_nl
;
6902 sappend(inst
->s
, s
);
6905 * Do the computation only if the packet contains
6906 * the protocol in question - which is true only
6907 * if this is an IP datagram and is the first or
6908 * only fragment of that datagram.
6910 gen_and(gen_proto_abbrev(proto
), b
= gen_ipfrag());
6912 gen_and(inst
->b
, b
);
6914 gen_and(gen_proto_abbrev(Q_IP
), b
);
6920 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6924 inst
->regno
= regno
;
6925 s
= new_stmt(BPF_ST
);
6927 sappend(inst
->s
, s
);
6933 gen_relation(code
, a0
, a1
, reversed
)
6935 struct arth
*a0
, *a1
;
6938 struct slist
*s0
, *s1
, *s2
;
6939 struct block
*b
, *tmp
;
6943 if (code
== BPF_JEQ
) {
6944 s2
= new_stmt(BPF_ALU
|BPF_SUB
|BPF_X
);
6945 b
= new_block(JMP(code
));
6949 b
= new_block(BPF_JMP
|code
|BPF_X
);
6955 sappend(a0
->s
, a1
->s
);
6959 free_reg(a0
->regno
);
6960 free_reg(a1
->regno
);
6962 /* 'and' together protocol checks */
6965 gen_and(a0
->b
, tmp
= a1
->b
);
6981 int regno
= alloc_reg();
6982 struct arth
*a
= (struct arth
*)newchunk(sizeof(*a
));
6985 s
= new_stmt(BPF_LD
|BPF_LEN
);
6986 s
->next
= new_stmt(BPF_ST
);
6987 s
->next
->s
.k
= regno
;
7002 a
= (struct arth
*)newchunk(sizeof(*a
));
7006 s
= new_stmt(BPF_LD
|BPF_IMM
);
7008 s
->next
= new_stmt(BPF_ST
);
7024 s
= new_stmt(BPF_ALU
|BPF_NEG
);
7027 s
= new_stmt(BPF_ST
);
7035 gen_arth(code
, a0
, a1
)
7037 struct arth
*a0
, *a1
;
7039 struct slist
*s0
, *s1
, *s2
;
7043 s2
= new_stmt(BPF_ALU
|BPF_X
|code
);
7048 sappend(a0
->s
, a1
->s
);
7050 free_reg(a0
->regno
);
7051 free_reg(a1
->regno
);
7053 s0
= new_stmt(BPF_ST
);
7054 a0
->regno
= s0
->s
.k
= alloc_reg();
7061 * Here we handle simple allocation of the scratch registers.
7062 * If too many registers are alloc'd, the allocator punts.
7064 static int regused
[BPF_MEMWORDS
];
7068 * Initialize the table of used registers and the current register.
7074 memset(regused
, 0, sizeof regused
);
7078 * Return the next free register.
7083 int n
= BPF_MEMWORDS
;
7086 if (regused
[curreg
])
7087 curreg
= (curreg
+ 1) % BPF_MEMWORDS
;
7089 regused
[curreg
] = 1;
7093 bpf_error("too many registers needed to evaluate expression");
7099 * Return a register to the table so it can
7109 static struct block
*
7116 s
= new_stmt(BPF_LD
|BPF_LEN
);
7117 b
= new_block(JMP(jmp
));
7128 return gen_len(BPF_JGE
, n
);
7132 * Actually, this is less than or equal.
7140 b
= gen_len(BPF_JGT
, n
);
7147 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7148 * the beginning of the link-layer header.
7149 * XXX - that means you can't test values in the radiotap header, but
7150 * as that header is difficult if not impossible to parse generally
7151 * without a loop, that might not be a severe problem. A new keyword
7152 * "radio" could be added for that, although what you'd really want
7153 * would be a way of testing particular radio header values, which
7154 * would generate code appropriate to the radio header in question.
7157 gen_byteop(op
, idx
, val
)
7168 return gen_cmp(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7171 b
= gen_cmp_lt(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7175 b
= gen_cmp_gt(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7179 s
= new_stmt(BPF_ALU
|BPF_OR
|BPF_K
);
7183 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
7187 b
= new_block(JMP(BPF_JEQ
));
7194 static u_char abroadcast
[] = { 0x0 };
7197 gen_broadcast(proto
)
7200 bpf_u_int32 hostmask
;
7201 struct block
*b0
, *b1
, *b2
;
7202 static u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7210 case DLT_ARCNET_LINUX
:
7211 return gen_ahostop(abroadcast
, Q_DST
);
7213 case DLT_NETANALYZER
:
7214 case DLT_NETANALYZER_TRANSPARENT
:
7215 return gen_ehostop(ebroadcast
, Q_DST
);
7217 return gen_fhostop(ebroadcast
, Q_DST
);
7219 return gen_thostop(ebroadcast
, Q_DST
);
7220 case DLT_IEEE802_11
:
7221 case DLT_PRISM_HEADER
:
7222 case DLT_IEEE802_11_RADIO_AVS
:
7223 case DLT_IEEE802_11_RADIO
:
7225 return gen_wlanhostop(ebroadcast
, Q_DST
);
7226 case DLT_IP_OVER_FC
:
7227 return gen_ipfchostop(ebroadcast
, Q_DST
);
7231 * Check that the packet doesn't begin with an
7232 * LE Control marker. (We've already generated
7235 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
7240 * Now check the MAC address.
7242 b0
= gen_ehostop(ebroadcast
, Q_DST
);
7248 bpf_error("not a broadcast link");
7254 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7255 * as an indication that we don't know the netmask, and fail
7258 if (netmask
== PCAP_NETMASK_UNKNOWN
)
7259 bpf_error("netmask not known, so 'ip broadcast' not supported");
7260 b0
= gen_linktype(ETHERTYPE_IP
);
7261 hostmask
= ~netmask
;
7262 b1
= gen_mcmp(OR_NET
, 16, BPF_W
, (bpf_int32
)0, hostmask
);
7263 b2
= gen_mcmp(OR_NET
, 16, BPF_W
,
7264 (bpf_int32
)(~0 & hostmask
), hostmask
);
7269 bpf_error("only link-layer/IP broadcast filters supported");
7275 * Generate code to test the low-order bit of a MAC address (that's
7276 * the bottom bit of the *first* byte).
7278 static struct block
*
7279 gen_mac_multicast(offset
)
7282 register struct block
*b0
;
7283 register struct slist
*s
;
7285 /* link[offset] & 1 != 0 */
7286 s
= gen_load_a(OR_LINK
, offset
, BPF_B
);
7287 b0
= new_block(JMP(BPF_JSET
));
7294 gen_multicast(proto
)
7297 register struct block
*b0
, *b1
, *b2
;
7298 register struct slist
*s
;
7306 case DLT_ARCNET_LINUX
:
7307 /* all ARCnet multicasts use the same address */
7308 return gen_ahostop(abroadcast
, Q_DST
);
7310 case DLT_NETANALYZER
:
7311 case DLT_NETANALYZER_TRANSPARENT
:
7312 /* ether[0] & 1 != 0 */
7313 return gen_mac_multicast(0);
7316 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7318 * XXX - was that referring to bit-order issues?
7320 /* fddi[1] & 1 != 0 */
7321 return gen_mac_multicast(1);
7323 /* tr[2] & 1 != 0 */
7324 return gen_mac_multicast(2);
7325 case DLT_IEEE802_11
:
7326 case DLT_PRISM_HEADER
:
7327 case DLT_IEEE802_11_RADIO_AVS
:
7328 case DLT_IEEE802_11_RADIO
:
7333 * For control frames, there is no DA.
7335 * For management frames, DA is at an
7336 * offset of 4 from the beginning of
7339 * For data frames, DA is at an offset
7340 * of 4 from the beginning of the packet
7341 * if To DS is clear and at an offset of
7342 * 16 from the beginning of the packet
7347 * Generate the tests to be done for data frames.
7349 * First, check for To DS set, i.e. "link[1] & 0x01".
7351 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
7352 b1
= new_block(JMP(BPF_JSET
));
7353 b1
->s
.k
= 0x01; /* To DS */
7357 * If To DS is set, the DA is at 16.
7359 b0
= gen_mac_multicast(16);
7363 * Now, check for To DS not set, i.e. check
7364 * "!(link[1] & 0x01)".
7366 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
7367 b2
= new_block(JMP(BPF_JSET
));
7368 b2
->s
.k
= 0x01; /* To DS */
7373 * If To DS is not set, the DA is at 4.
7375 b1
= gen_mac_multicast(4);
7379 * Now OR together the last two checks. That gives
7380 * the complete set of checks for data frames.
7385 * Now check for a data frame.
7386 * I.e, check "link[0] & 0x08".
7388 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
7389 b1
= new_block(JMP(BPF_JSET
));
7394 * AND that with the checks done for data frames.
7399 * If the high-order bit of the type value is 0, this
7400 * is a management frame.
7401 * I.e, check "!(link[0] & 0x08)".
7403 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
7404 b2
= new_block(JMP(BPF_JSET
));
7410 * For management frames, the DA is at 4.
7412 b1
= gen_mac_multicast(4);
7416 * OR that with the checks done for data frames.
7417 * That gives the checks done for management and
7423 * If the low-order bit of the type value is 1,
7424 * this is either a control frame or a frame
7425 * with a reserved type, and thus not a
7428 * I.e., check "!(link[0] & 0x04)".
7430 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
7431 b1
= new_block(JMP(BPF_JSET
));
7437 * AND that with the checks for data and management
7442 case DLT_IP_OVER_FC
:
7443 b0
= gen_mac_multicast(2);
7448 * Check that the packet doesn't begin with an
7449 * LE Control marker. (We've already generated
7452 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
7456 /* ether[off_mac] & 1 != 0 */
7457 b0
= gen_mac_multicast(off_mac
);
7465 /* Link not known to support multicasts */
7469 b0
= gen_linktype(ETHERTYPE_IP
);
7470 b1
= gen_cmp_ge(OR_NET
, 16, BPF_B
, (bpf_int32
)224);
7476 b0
= gen_linktype(ETHERTYPE_IPV6
);
7477 b1
= gen_cmp(OR_NET
, 24, BPF_B
, (bpf_int32
)255);
7482 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7488 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7489 * Outbound traffic is sent by this machine, while inbound traffic is
7490 * sent by a remote machine (and may include packets destined for a
7491 * unicast or multicast link-layer address we are not subscribing to).
7492 * These are the same definitions implemented by pcap_setdirection().
7493 * Capturing only unicast traffic destined for this host is probably
7494 * better accomplished using a higher-layer filter.
7500 register struct block
*b0
;
7503 * Only some data link types support inbound/outbound qualifiers.
7507 b0
= gen_relation(BPF_JEQ
,
7508 gen_load(Q_LINK
, gen_loadi(0), 1),
7515 /* match outgoing packets */
7516 b0
= gen_cmp(OR_LINK
, 2, BPF_H
, IPNET_OUTBOUND
);
7518 /* match incoming packets */
7519 b0
= gen_cmp(OR_LINK
, 2, BPF_H
, IPNET_INBOUND
);
7524 /* match outgoing packets */
7525 b0
= gen_cmp(OR_LINK
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
7527 /* to filter on inbound traffic, invert the match */
7532 #ifdef HAVE_NET_PFVAR_H
7534 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, dir
), BPF_B
,
7535 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
7541 /* match outgoing packets */
7542 b0
= gen_cmp(OR_LINK
, 0, BPF_B
, PPP_PPPD_OUT
);
7544 /* match incoming packets */
7545 b0
= gen_cmp(OR_LINK
, 0, BPF_B
, PPP_PPPD_IN
);
7549 case DLT_JUNIPER_MFR
:
7550 case DLT_JUNIPER_MLFR
:
7551 case DLT_JUNIPER_MLPPP
:
7552 case DLT_JUNIPER_ATM1
:
7553 case DLT_JUNIPER_ATM2
:
7554 case DLT_JUNIPER_PPPOE
:
7555 case DLT_JUNIPER_PPPOE_ATM
:
7556 case DLT_JUNIPER_GGSN
:
7557 case DLT_JUNIPER_ES
:
7558 case DLT_JUNIPER_MONITOR
:
7559 case DLT_JUNIPER_SERVICES
:
7560 case DLT_JUNIPER_ETHER
:
7561 case DLT_JUNIPER_PPP
:
7562 case DLT_JUNIPER_FRELAY
:
7563 case DLT_JUNIPER_CHDLC
:
7564 case DLT_JUNIPER_VP
:
7565 case DLT_JUNIPER_ST
:
7566 case DLT_JUNIPER_ISM
:
7567 case DLT_JUNIPER_VS
:
7568 case DLT_JUNIPER_SRX_E2E
:
7569 case DLT_JUNIPER_FIBRECHANNEL
:
7570 case DLT_JUNIPER_ATM_CEMIC
:
7572 /* juniper flags (including direction) are stored
7573 * the byte after the 3-byte magic number */
7575 /* match outgoing packets */
7576 b0
= gen_mcmp(OR_LINK
, 3, BPF_B
, 0, 0x01);
7578 /* match incoming packets */
7579 b0
= gen_mcmp(OR_LINK
, 3, BPF_B
, 1, 0x01);
7584 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7585 /* match outgoing packets */
7586 b0
= gen_cmp(OR_LINK
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
7589 /* to filter on inbound traffic, invert the match */
7592 #else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7593 bpf_error("inbound/outbound not supported on linktype %d",
7597 #endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7602 #ifdef HAVE_NET_PFVAR_H
7603 /* PF firewall log matched interface */
7605 gen_pf_ifname(const char *ifname
)
7610 if (linktype
!= DLT_PFLOG
) {
7611 bpf_error("ifname supported only on PF linktype");
7614 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
7615 off
= offsetof(struct pfloghdr
, ifname
);
7616 if (strlen(ifname
) >= len
) {
7617 bpf_error("ifname interface names can only be %d characters",
7621 b0
= gen_bcmp(OR_LINK
, off
, strlen(ifname
), (const u_char
*)ifname
);
7625 /* PF firewall log ruleset name */
7627 gen_pf_ruleset(char *ruleset
)
7631 if (linktype
!= DLT_PFLOG
) {
7632 bpf_error("ruleset supported only on PF linktype");
7636 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
7637 bpf_error("ruleset names can only be %ld characters",
7638 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
7642 b0
= gen_bcmp(OR_LINK
, offsetof(struct pfloghdr
, ruleset
),
7643 strlen(ruleset
), (const u_char
*)ruleset
);
7647 /* PF firewall log rule number */
7653 if (linktype
!= DLT_PFLOG
) {
7654 bpf_error("rnr supported only on PF linktype");
7658 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
7663 /* PF firewall log sub-rule number */
7665 gen_pf_srnr(int srnr
)
7669 if (linktype
!= DLT_PFLOG
) {
7670 bpf_error("srnr supported only on PF linktype");
7674 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
7679 /* PF firewall log reason code */
7681 gen_pf_reason(int reason
)
7685 if (linktype
!= DLT_PFLOG
) {
7686 bpf_error("reason supported only on PF linktype");
7690 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, reason
), BPF_B
,
7695 /* PF firewall log action */
7697 gen_pf_action(int action
)
7701 if (linktype
!= DLT_PFLOG
) {
7702 bpf_error("action supported only on PF linktype");
7706 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, action
), BPF_B
,
7710 #else /* !HAVE_NET_PFVAR_H */
7712 gen_pf_ifname(const char *ifname
)
7714 bpf_error("libpcap was compiled without pf support");
7720 gen_pf_ruleset(char *ruleset
)
7722 bpf_error("libpcap was compiled on a machine without pf support");
7730 bpf_error("libpcap was compiled on a machine without pf support");
7736 gen_pf_srnr(int srnr
)
7738 bpf_error("libpcap was compiled on a machine without pf support");
7744 gen_pf_reason(int reason
)
7746 bpf_error("libpcap was compiled on a machine without pf support");
7752 gen_pf_action(int action
)
7754 bpf_error("libpcap was compiled on a machine without pf support");
7758 #endif /* HAVE_NET_PFVAR_H */
7760 /* IEEE 802.11 wireless header */
7762 gen_p80211_type(int type
, int mask
)
7768 case DLT_IEEE802_11
:
7769 case DLT_PRISM_HEADER
:
7770 case DLT_IEEE802_11_RADIO_AVS
:
7771 case DLT_IEEE802_11_RADIO
:
7772 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, (bpf_int32
)type
,
7777 bpf_error("802.11 link-layer types supported only on 802.11");
7785 gen_p80211_fcdir(int fcdir
)
7791 case DLT_IEEE802_11
:
7792 case DLT_PRISM_HEADER
:
7793 case DLT_IEEE802_11_RADIO_AVS
:
7794 case DLT_IEEE802_11_RADIO
:
7798 bpf_error("frame direction supported only with 802.11 headers");
7802 b0
= gen_mcmp(OR_LINK
, 1, BPF_B
, (bpf_int32
)fcdir
,
7803 (bpf_u_int32
)IEEE80211_FC1_DIR_MASK
);
7810 register const u_char
*eaddr
;
7816 case DLT_ARCNET_LINUX
:
7817 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
7819 return (gen_ahostop(eaddr
, (int)q
.dir
));
7821 bpf_error("ARCnet address used in non-arc expression");
7827 bpf_error("aid supported only on ARCnet");
7830 bpf_error("ARCnet address used in non-arc expression");
7835 static struct block
*
7836 gen_ahostop(eaddr
, dir
)
7837 register const u_char
*eaddr
;
7840 register struct block
*b0
, *b1
;
7843 /* src comes first, different from Ethernet */
7845 return gen_bcmp(OR_LINK
, 0, 1, eaddr
);
7848 return gen_bcmp(OR_LINK
, 1, 1, eaddr
);
7851 b0
= gen_ahostop(eaddr
, Q_SRC
);
7852 b1
= gen_ahostop(eaddr
, Q_DST
);
7858 b0
= gen_ahostop(eaddr
, Q_SRC
);
7859 b1
= gen_ahostop(eaddr
, Q_DST
);
7864 bpf_error("'addr1' is only supported on 802.11");
7868 bpf_error("'addr2' is only supported on 802.11");
7872 bpf_error("'addr3' is only supported on 802.11");
7876 bpf_error("'addr4' is only supported on 802.11");
7880 bpf_error("'ra' is only supported on 802.11");
7884 bpf_error("'ta' is only supported on 802.11");
7892 * support IEEE 802.1Q VLAN trunk over ethernet
7898 struct block
*b0
, *b1
;
7900 /* can't check for VLAN-encapsulated packets inside MPLS */
7901 if (label_stack_depth
> 0)
7902 bpf_error("no VLAN match after MPLS");
7905 * Check for a VLAN packet, and then change the offsets to point
7906 * to the type and data fields within the VLAN packet. Just
7907 * increment the offsets, so that we can support a hierarchy, e.g.
7908 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7911 * XXX - this is a bit of a kludge. If we were to split the
7912 * compiler into a parser that parses an expression and
7913 * generates an expression tree, and a code generator that
7914 * takes an expression tree (which could come from our
7915 * parser or from some other parser) and generates BPF code,
7916 * we could perhaps make the offsets parameters of routines
7917 * and, in the handler for an "AND" node, pass to subnodes
7918 * other than the VLAN node the adjusted offsets.
7920 * This would mean that "vlan" would, instead of changing the
7921 * behavior of *all* tests after it, change only the behavior
7922 * of tests ANDed with it. That would change the documented
7923 * semantics of "vlan", which might break some expressions.
7924 * However, it would mean that "(vlan and ip) or ip" would check
7925 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7926 * checking only for VLAN-encapsulated IP, so that could still
7927 * be considered worth doing; it wouldn't break expressions
7928 * that are of the form "vlan and ..." or "vlan N and ...",
7929 * which I suspect are the most common expressions involving
7930 * "vlan". "vlan or ..." doesn't necessarily do what the user
7931 * would really want, now, as all the "or ..." tests would
7932 * be done assuming a VLAN, even though the "or" could be viewed
7933 * as meaning "or, if this isn't a VLAN packet...".
7940 case DLT_NETANALYZER
:
7941 case DLT_NETANALYZER_TRANSPARENT
:
7942 /* check for VLAN, including QinQ */
7943 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
7944 (bpf_int32
)ETHERTYPE_8021Q
);
7945 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
7946 (bpf_int32
)ETHERTYPE_8021QINQ
);
7950 /* If a specific VLAN is requested, check VLAN id */
7951 if (vlan_num
>= 0) {
7952 b1
= gen_mcmp(OR_MACPL
, 0, BPF_H
,
7953 (bpf_int32
)vlan_num
, 0x0fff);
7967 bpf_error("no VLAN support for data link type %d",
7982 struct block
*b0
,*b1
;
7985 * Change the offsets to point to the type and data fields within
7986 * the MPLS packet. Just increment the offsets, so that we
7987 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7988 * capture packets with an outer label of 100000 and an inner
7991 * XXX - this is a bit of a kludge. See comments in gen_vlan().
7995 if (label_stack_depth
> 0) {
7996 /* just match the bottom-of-stack bit clear */
7997 b0
= gen_mcmp(OR_MACPL
, orig_nl
-2, BPF_B
, 0, 0x01);
8000 * Indicate that we're checking MPLS-encapsulated headers,
8001 * to make sure higher level code generators don't try to
8002 * match against IP-related protocols such as Q_ARP, Q_RARP
8007 case DLT_C_HDLC
: /* fall through */
8009 case DLT_NETANALYZER
:
8010 case DLT_NETANALYZER_TRANSPARENT
:
8011 b0
= gen_linktype(ETHERTYPE_MPLS
);
8015 b0
= gen_linktype(PPP_MPLS_UCAST
);
8018 /* FIXME add other DLT_s ...
8019 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8020 * leave it for now */
8023 bpf_error("no MPLS support for data link type %d",
8031 /* If a specific MPLS label is requested, check it */
8032 if (label_num
>= 0) {
8033 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
8034 b1
= gen_mcmp(OR_MACPL
, orig_nl
, BPF_W
, (bpf_int32
)label_num
,
8035 0xfffff000); /* only compare the first 20 bits */
8042 label_stack_depth
++;
8047 * Support PPPOE discovery and session.
8052 /* check for PPPoE discovery */
8053 return gen_linktype((bpf_int32
)ETHERTYPE_PPPOED
);
8062 * Test against the PPPoE session link-layer type.
8064 b0
= gen_linktype((bpf_int32
)ETHERTYPE_PPPOES
);
8067 * Change the offsets to point to the type and data fields within
8068 * the PPP packet, and note that this is PPPoE rather than
8071 * XXX - this is a bit of a kludge. If we were to split the
8072 * compiler into a parser that parses an expression and
8073 * generates an expression tree, and a code generator that
8074 * takes an expression tree (which could come from our
8075 * parser or from some other parser) and generates BPF code,
8076 * we could perhaps make the offsets parameters of routines
8077 * and, in the handler for an "AND" node, pass to subnodes
8078 * other than the PPPoE node the adjusted offsets.
8080 * This would mean that "pppoes" would, instead of changing the
8081 * behavior of *all* tests after it, change only the behavior
8082 * of tests ANDed with it. That would change the documented
8083 * semantics of "pppoes", which might break some expressions.
8084 * However, it would mean that "(pppoes and ip) or ip" would check
8085 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8086 * checking only for VLAN-encapsulated IP, so that could still
8087 * be considered worth doing; it wouldn't break expressions
8088 * that are of the form "pppoes and ..." which I suspect are the
8089 * most common expressions involving "pppoes". "pppoes or ..."
8090 * doesn't necessarily do what the user would really want, now,
8091 * as all the "or ..." tests would be done assuming PPPoE, even
8092 * though the "or" could be viewed as meaning "or, if this isn't
8093 * a PPPoE packet...".
8095 orig_linktype
= off_linktype
; /* save original values */
8100 * The "network-layer" protocol is PPPoE, which has a 6-byte
8101 * PPPoE header, followed by a PPP packet.
8103 * There is no HDLC encapsulation for the PPP packet (it's
8104 * encapsulated in PPPoES instead), so the link-layer type
8105 * starts at the first byte of the PPP packet. For PPPoE,
8106 * that offset is relative to the beginning of the total
8107 * link-layer payload, including any 802.2 LLC header, so
8108 * it's 6 bytes past off_nl.
8110 off_linktype
= off_nl
+ 6;
8113 * The network-layer offsets are relative to the beginning
8114 * of the MAC-layer payload; that's past the 6-byte
8115 * PPPoE header and the 2-byte PPP header.
8118 off_nl_nosnap
= 6+2;
8124 gen_atmfield_code(atmfield
, jvalue
, jtype
, reverse
)
8136 bpf_error("'vpi' supported only on raw ATM");
8137 if (off_vpi
== (u_int
)-1)
8139 b0
= gen_ncmp(OR_LINK
, off_vpi
, BPF_B
, 0xffffffff, jtype
,
8145 bpf_error("'vci' supported only on raw ATM");
8146 if (off_vci
== (u_int
)-1)
8148 b0
= gen_ncmp(OR_LINK
, off_vci
, BPF_H
, 0xffffffff, jtype
,
8153 if (off_proto
== (u_int
)-1)
8154 abort(); /* XXX - this isn't on FreeBSD */
8155 b0
= gen_ncmp(OR_LINK
, off_proto
, BPF_B
, 0x0f, jtype
,
8160 if (off_payload
== (u_int
)-1)
8162 b0
= gen_ncmp(OR_LINK
, off_payload
+ MSG_TYPE_POS
, BPF_B
,
8163 0xffffffff, jtype
, reverse
, jvalue
);
8168 bpf_error("'callref' supported only on raw ATM");
8169 if (off_proto
== (u_int
)-1)
8171 b0
= gen_ncmp(OR_LINK
, off_proto
, BPF_B
, 0xffffffff,
8172 jtype
, reverse
, jvalue
);
8182 gen_atmtype_abbrev(type
)
8185 struct block
*b0
, *b1
;
8190 /* Get all packets in Meta signalling Circuit */
8192 bpf_error("'metac' supported only on raw ATM");
8193 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8194 b1
= gen_atmfield_code(A_VCI
, 1, BPF_JEQ
, 0);
8199 /* Get all packets in Broadcast Circuit*/
8201 bpf_error("'bcc' supported only on raw ATM");
8202 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8203 b1
= gen_atmfield_code(A_VCI
, 2, BPF_JEQ
, 0);
8208 /* Get all cells in Segment OAM F4 circuit*/
8210 bpf_error("'oam4sc' supported only on raw ATM");
8211 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8212 b1
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
8217 /* Get all cells in End-to-End OAM F4 Circuit*/
8219 bpf_error("'oam4ec' supported only on raw ATM");
8220 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8221 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
8226 /* Get all packets in connection Signalling Circuit */
8228 bpf_error("'sc' supported only on raw ATM");
8229 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8230 b1
= gen_atmfield_code(A_VCI
, 5, BPF_JEQ
, 0);
8235 /* Get all packets in ILMI Circuit */
8237 bpf_error("'ilmic' supported only on raw ATM");
8238 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8239 b1
= gen_atmfield_code(A_VCI
, 16, BPF_JEQ
, 0);
8244 /* Get all LANE packets */
8246 bpf_error("'lane' supported only on raw ATM");
8247 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
8250 * Arrange that all subsequent tests assume LANE
8251 * rather than LLC-encapsulated packets, and set
8252 * the offsets appropriately for LANE-encapsulated
8255 * "off_mac" is the offset of the Ethernet header,
8256 * which is 2 bytes past the ATM pseudo-header
8257 * (skipping the pseudo-header and 2-byte LE Client
8258 * field). The other offsets are Ethernet offsets
8259 * relative to "off_mac".
8262 off_mac
= off_payload
+ 2; /* MAC header */
8263 off_linktype
= off_mac
+ 12;
8264 off_macpl
= off_mac
+ 14; /* Ethernet */
8265 off_nl
= 0; /* Ethernet II */
8266 off_nl_nosnap
= 3; /* 802.3+802.2 */
8270 /* Get all LLC-encapsulated packets */
8272 bpf_error("'llc' supported only on raw ATM");
8273 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
8284 * Filtering for MTP2 messages based on li value
8285 * FISU, length is null
8286 * LSSU, length is 1 or 2
8287 * MSU, length is 3 or more
8290 gen_mtp2type_abbrev(type
)
8293 struct block
*b0
, *b1
;
8298 if ( (linktype
!= DLT_MTP2
) &&
8299 (linktype
!= DLT_ERF
) &&
8300 (linktype
!= DLT_MTP2_WITH_PHDR
) )
8301 bpf_error("'fisu' supported only on MTP2");
8302 /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8303 b0
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JEQ
, 0, 0);
8307 if ( (linktype
!= DLT_MTP2
) &&
8308 (linktype
!= DLT_ERF
) &&
8309 (linktype
!= DLT_MTP2_WITH_PHDR
) )
8310 bpf_error("'lssu' supported only on MTP2");
8311 b0
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JGT
, 1, 2);
8312 b1
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 0);
8317 if ( (linktype
!= DLT_MTP2
) &&
8318 (linktype
!= DLT_ERF
) &&
8319 (linktype
!= DLT_MTP2_WITH_PHDR
) )
8320 bpf_error("'msu' supported only on MTP2");
8321 b0
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 2);
8331 gen_mtp3field_code(mtp3field
, jvalue
, jtype
, reverse
)
8338 bpf_u_int32 val1
, val2
, val3
;
8340 switch (mtp3field
) {
8343 if (off_sio
== (u_int
)-1)
8344 bpf_error("'sio' supported only on SS7");
8345 /* sio coded on 1 byte so max value 255 */
8347 bpf_error("sio value %u too big; max value = 255",
8349 b0
= gen_ncmp(OR_PACKET
, off_sio
, BPF_B
, 0xffffffff,
8350 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8354 if (off_opc
== (u_int
)-1)
8355 bpf_error("'opc' supported only on SS7");
8356 /* opc coded on 14 bits so max value 16383 */
8358 bpf_error("opc value %u too big; max value = 16383",
8360 /* the following instructions are made to convert jvalue
8361 * to the form used to write opc in an ss7 message*/
8362 val1
= jvalue
& 0x00003c00;
8364 val2
= jvalue
& 0x000003fc;
8366 val3
= jvalue
& 0x00000003;
8368 jvalue
= val1
+ val2
+ val3
;
8369 b0
= gen_ncmp(OR_PACKET
, off_opc
, BPF_W
, 0x00c0ff0f,
8370 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8374 if (off_dpc
== (u_int
)-1)
8375 bpf_error("'dpc' supported only on SS7");
8376 /* dpc coded on 14 bits so max value 16383 */
8378 bpf_error("dpc value %u too big; max value = 16383",
8380 /* the following instructions are made to convert jvalue
8381 * to the forme used to write dpc in an ss7 message*/
8382 val1
= jvalue
& 0x000000ff;
8384 val2
= jvalue
& 0x00003f00;
8386 jvalue
= val1
+ val2
;
8387 b0
= gen_ncmp(OR_PACKET
, off_dpc
, BPF_W
, 0xff3f0000,
8388 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8392 if (off_sls
== (u_int
)-1)
8393 bpf_error("'sls' supported only on SS7");
8394 /* sls coded on 4 bits so max value 15 */
8396 bpf_error("sls value %u too big; max value = 15",
8398 /* the following instruction is made to convert jvalue
8399 * to the forme used to write sls in an ss7 message*/
8400 jvalue
= jvalue
<< 4;
8401 b0
= gen_ncmp(OR_PACKET
, off_sls
, BPF_B
, 0xf0,
8402 (u_int
)jtype
,reverse
, (u_int
)jvalue
);
8411 static struct block
*
8412 gen_msg_abbrev(type
)
8418 * Q.2931 signalling protocol messages for handling virtual circuits
8419 * establishment and teardown
8424 b1
= gen_atmfield_code(A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
8428 b1
= gen_atmfield_code(A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
8432 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
8436 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
8440 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
8443 case A_RELEASE_DONE
:
8444 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
8454 gen_atmmulti_abbrev(type
)
8457 struct block
*b0
, *b1
;
8463 bpf_error("'oam' supported only on raw ATM");
8464 b1
= gen_atmmulti_abbrev(A_OAMF4
);
8469 bpf_error("'oamf4' supported only on raw ATM");
8471 b0
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
8472 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
8474 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8480 * Get Q.2931 signalling messages for switched
8481 * virtual connection
8484 bpf_error("'connectmsg' supported only on raw ATM");
8485 b0
= gen_msg_abbrev(A_SETUP
);
8486 b1
= gen_msg_abbrev(A_CALLPROCEED
);
8488 b0
= gen_msg_abbrev(A_CONNECT
);
8490 b0
= gen_msg_abbrev(A_CONNECTACK
);
8492 b0
= gen_msg_abbrev(A_RELEASE
);
8494 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
8496 b0
= gen_atmtype_abbrev(A_SC
);
8502 bpf_error("'metaconnect' supported only on raw ATM");
8503 b0
= gen_msg_abbrev(A_SETUP
);
8504 b1
= gen_msg_abbrev(A_CALLPROCEED
);
8506 b0
= gen_msg_abbrev(A_CONNECT
);
8508 b0
= gen_msg_abbrev(A_RELEASE
);
8510 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
8512 b0
= gen_atmtype_abbrev(A_METAC
);