]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Add/remove some comments.
[libpcap] / gencode.c
1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #include <config.h>
23
24 #ifdef _WIN32
25 #include <ws2tcpip.h>
26 #else
27 #include <netinet/in.h>
28 #endif /* _WIN32 */
29
30 #include <stdlib.h>
31 #include <string.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <stdarg.h>
35 #include <stdio.h>
36 #include <stdint.h>
37 #include <stddef.h>
38
39 #include "pcap-int.h"
40
41 #include "extract.h"
42
43 #include "ethertype.h"
44 #include "llc.h"
45 #include "gencode.h"
46 #include "ieee80211.h"
47 #include "pflog.h"
48 #include "ppp.h"
49 #include "pcap/sll.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
53
54 #include "scanner.h"
55
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
60 #endif
61
62 #ifdef _WIN32
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
66 #endif
67 #ifdef INET6
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
69 /* IPv6 address */
70 struct in6_addr
71 {
72 union
73 {
74 uint8_t u6_addr8[16];
75 uint16_t u6_addr16[8];
76 uint32_t u6_addr32[4];
77 } in6_u;
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
82 };
83
84 typedef unsigned short sa_family_t;
85
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
88
89 /* Ditto, for IPv6. */
90 struct sockaddr_in6
91 {
92 __SOCKADDR_COMMON (sin6_);
93 uint16_t sin6_port; /* Transport layer port # */
94 uint32_t sin6_flowinfo; /* IPv6 flow information */
95 struct in6_addr sin6_addr; /* IPv6 address */
96 };
97
98 #ifndef EAI_ADDRFAMILY
99 struct addrinfo {
100 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family; /* PF_xxx */
102 int ai_socktype; /* SOCK_xxx */
103 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen; /* length of ai_addr */
105 char *ai_canonname; /* canonical name for hostname */
106 struct sockaddr *ai_addr; /* binary address */
107 struct addrinfo *ai_next; /* next structure in linked list */
108 };
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
111 #endif /* INET6 */
112 #else /* _WIN32 */
113 #include <netdb.h> /* for "struct addrinfo" */
114 #endif /* _WIN32 */
115 #include <pcap/namedb.h>
116
117 #include "nametoaddr.h"
118
119 #define ETHERMTU 1500
120
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
123 #endif
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
126 #endif
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
129 #endif
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
132 #endif
133 #ifndef IPPROTO_SCTP
134 #define IPPROTO_SCTP 132
135 #endif
136
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
139
140
141 /*
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
143 */
144
145 /* RFC 1051 */
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
148
149 /* RFC 1201 */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
153
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
157
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
160
161
162 /* Based on UNI3.1 standard by ATM Forum */
163
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
171
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
188
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
201
202 #define Q2931 0x09
203
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
210
211 /* format of signalling messages */
212 #define TYPE_POS 0
213 #define LEN_POS 2
214 #define FIELD_BEGIN_POS 4
215
216
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
222
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
228
229
230 /* Types missing from some systems */
231
232 /*
233 * Network layer protocol identifiers
234 */
235 #ifndef ISO8473_CLNP
236 #define ISO8473_CLNP 0x81
237 #endif
238 #ifndef ISO9542_ESIS
239 #define ISO9542_ESIS 0x82
240 #endif
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
243 #endif
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
246 #endif
247
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
257
258 #ifndef ISO8878A_CONS
259 #define ISO8878A_CONS 0x84
260 #endif
261 #ifndef ISO10747_IDRP
262 #define ISO10747_IDRP 0x85
263 #endif
264
265 // Same as in tcpdump/print-sl.c.
266 #define SLIPDIR_IN 0
267 #define SLIPDIR_OUT 1
268
269 #ifdef HAVE_OS_PROTO_H
270 #include "os-proto.h"
271 #endif
272
273 #define JMP(c) ((c)|BPF_JMP|BPF_K)
274
275 /*
276 * "Push" the current value of the link-layer header type and link-layer
277 * header offset onto a "stack", and set a new value. (It's not a
278 * full-blown stack; we keep only the top two items.)
279 */
280 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
281 { \
282 (cs)->prevlinktype = (cs)->linktype; \
283 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
284 (cs)->linktype = (new_linktype); \
285 (cs)->off_linkhdr.is_variable = (new_is_variable); \
286 (cs)->off_linkhdr.constant_part = (new_constant_part); \
287 (cs)->off_linkhdr.reg = (new_reg); \
288 (cs)->is_encap = 0; \
289 }
290
291 /*
292 * Offset "not set" value.
293 */
294 #define OFFSET_NOT_SET 0xffffffffU
295
296 /*
297 * Absolute offsets, which are offsets from the beginning of the raw
298 * packet data, are, in the general case, the sum of a variable value
299 * and a constant value; the variable value may be absent, in which
300 * case the offset is only the constant value, and the constant value
301 * may be zero, in which case the offset is only the variable value.
302 *
303 * bpf_abs_offset is a structure containing all that information:
304 *
305 * is_variable is 1 if there's a variable part.
306 *
307 * constant_part is the constant part of the value, possibly zero;
308 *
309 * if is_variable is 1, reg is the register number for a register
310 * containing the variable value if the register has been assigned,
311 * and -1 otherwise.
312 */
313 typedef struct {
314 int is_variable;
315 u_int constant_part;
316 int reg;
317 } bpf_abs_offset;
318
319 /*
320 * Value passed to gen_load_a() to indicate what the offset argument
321 * is relative to the beginning of.
322 */
323 enum e_offrel {
324 OR_PACKET, /* full packet data */
325 OR_LINKHDR, /* link-layer header */
326 OR_PREVLINKHDR, /* previous link-layer header */
327 OR_LLC, /* 802.2 LLC header */
328 OR_PREVMPLSHDR, /* previous MPLS header */
329 OR_LINKTYPE, /* link-layer type */
330 OR_LINKPL, /* link-layer payload */
331 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
332 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
333 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
334 };
335
336 /*
337 * We divvy out chunks of memory rather than call malloc each time so
338 * we don't have to worry about leaking memory. It's probably
339 * not a big deal if all this memory was wasted but if this ever
340 * goes into a library that would probably not be a good idea.
341 *
342 * XXX - this *is* in a library....
343 */
344 #define NCHUNKS 16
345 #define CHUNK0SIZE 1024
346 struct chunk {
347 size_t n_left;
348 void *m;
349 };
350
351 /*
352 * A chunk can store any of:
353 * - a string (guaranteed alignment 1 but present for completeness)
354 * - a block
355 * - an slist
356 * - an arth
357 * For this simple allocator every allocated chunk gets rounded up to the
358 * alignment needed for any chunk.
359 */
360 struct chunk_align {
361 char dummy;
362 union {
363 char c;
364 struct block b;
365 struct slist s;
366 struct arth a;
367 } u;
368 };
369 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
370
371 /* Code generator state */
372
373 struct _compiler_state {
374 jmp_buf top_ctx;
375 pcap_t *bpf_pcap;
376 int error_set;
377
378 struct icode ic;
379
380 int snaplen;
381
382 int linktype;
383 int prevlinktype;
384 int outermostlinktype;
385
386 bpf_u_int32 netmask;
387 int no_optimize;
388
389 /* Hack for handling VLAN and MPLS stacks. */
390 u_int label_stack_depth;
391 u_int vlan_stack_depth;
392
393 /* XXX */
394 u_int pcap_fddipad;
395
396 /*
397 * As errors are handled by a longjmp, anything allocated must
398 * be freed in the longjmp handler, so it must be reachable
399 * from that handler.
400 *
401 * One thing that's allocated is the result of pcap_nametoaddrinfo();
402 * it must be freed with freeaddrinfo(). This variable points to
403 * any addrinfo structure that would need to be freed.
404 */
405 struct addrinfo *ai;
406
407 /*
408 * Another thing that's allocated is the result of pcap_ether_aton();
409 * it must be freed with free(). This variable points to any
410 * address that would need to be freed.
411 */
412 u_char *e;
413
414 /*
415 * Various code constructs need to know the layout of the packet.
416 * These values give the necessary offsets from the beginning
417 * of the packet data.
418 */
419
420 /*
421 * Absolute offset of the beginning of the link-layer header.
422 */
423 bpf_abs_offset off_linkhdr;
424
425 /*
426 * If we're checking a link-layer header for a packet encapsulated
427 * in another protocol layer, this is the equivalent information
428 * for the previous layers' link-layer header from the beginning
429 * of the raw packet data.
430 */
431 bpf_abs_offset off_prevlinkhdr;
432
433 /*
434 * This is the equivalent information for the outermost layers'
435 * link-layer header.
436 */
437 bpf_abs_offset off_outermostlinkhdr;
438
439 /*
440 * Absolute offset of the beginning of the link-layer payload.
441 */
442 bpf_abs_offset off_linkpl;
443
444 /*
445 * "off_linktype" is the offset to information in the link-layer
446 * header giving the packet type. This is an absolute offset
447 * from the beginning of the packet.
448 *
449 * For Ethernet, it's the offset of the Ethernet type field; this
450 * means that it must have a value that skips VLAN tags.
451 *
452 * For link-layer types that always use 802.2 headers, it's the
453 * offset of the LLC header; this means that it must have a value
454 * that skips VLAN tags.
455 *
456 * For PPP, it's the offset of the PPP type field.
457 *
458 * For Cisco HDLC, it's the offset of the CHDLC type field.
459 *
460 * For BSD loopback, it's the offset of the AF_ value.
461 *
462 * For Linux cooked sockets, it's the offset of the type field.
463 *
464 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
465 * encapsulation, in which case, IP is assumed.
466 */
467 bpf_abs_offset off_linktype;
468
469 /*
470 * TRUE if the link layer includes an ATM pseudo-header.
471 */
472 int is_atm;
473
474 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
475 * causes us to generate code that checks for a Geneve or
476 * VXLAN header respectively and assume that later filters
477 * apply to the encapsulated payload.
478 */
479 int is_encap;
480
481 /*
482 * TRUE if we need variable length part of VLAN offset
483 */
484 int is_vlan_vloffset;
485
486 /*
487 * These are offsets for the ATM pseudo-header.
488 */
489 u_int off_vpi;
490 u_int off_vci;
491 u_int off_proto;
492
493 /*
494 * These are offsets for the MTP2 fields.
495 */
496 u_int off_li;
497 u_int off_li_hsl;
498
499 /*
500 * These are offsets for the MTP3 fields.
501 */
502 u_int off_sio;
503 u_int off_opc;
504 u_int off_dpc;
505 u_int off_sls;
506
507 /*
508 * This is the offset of the first byte after the ATM pseudo_header,
509 * or -1 if there is no ATM pseudo-header.
510 */
511 u_int off_payload;
512
513 /*
514 * These are offsets to the beginning of the network-layer header.
515 * They are relative to the beginning of the link-layer payload
516 * (i.e., they don't include off_linkhdr.constant_part or
517 * off_linkpl.constant_part).
518 *
519 * If the link layer never uses 802.2 LLC:
520 *
521 * "off_nl" and "off_nl_nosnap" are the same.
522 *
523 * If the link layer always uses 802.2 LLC:
524 *
525 * "off_nl" is the offset if there's a SNAP header following
526 * the 802.2 header;
527 *
528 * "off_nl_nosnap" is the offset if there's no SNAP header.
529 *
530 * If the link layer is Ethernet:
531 *
532 * "off_nl" is the offset if the packet is an Ethernet II packet
533 * (we assume no 802.3+802.2+SNAP);
534 *
535 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
536 * with an 802.2 header following it.
537 */
538 u_int off_nl;
539 u_int off_nl_nosnap;
540
541 /*
542 * Here we handle simple allocation of the scratch registers.
543 * If too many registers are alloc'd, the allocator punts.
544 */
545 int regused[BPF_MEMWORDS];
546 int curreg;
547
548 /*
549 * Memory chunks.
550 */
551 struct chunk chunks[NCHUNKS];
552 int cur_chunk;
553 };
554
555 /*
556 * For use by routines outside this file.
557 */
558 /* VARARGS */
559 void
560 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
561 {
562 va_list ap;
563
564 /*
565 * If we've already set an error, don't override it.
566 * The lexical analyzer reports some errors by setting
567 * the error and then returning a LEX_ERROR token, which
568 * is not recognized by any grammar rule, and thus forces
569 * the parse to stop. We don't want the error reported
570 * by the lexical analyzer to be overwritten by the syntax
571 * error.
572 */
573 if (!cstate->error_set) {
574 va_start(ap, fmt);
575 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
576 fmt, ap);
577 va_end(ap);
578 cstate->error_set = 1;
579 }
580 }
581
582 /*
583 * For use *ONLY* in routines in this file.
584 */
585 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
586 PCAP_PRINTFLIKE(2, 3);
587
588 /* VARARGS */
589 static void PCAP_NORETURN
590 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
591 {
592 va_list ap;
593
594 va_start(ap, fmt);
595 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
596 fmt, ap);
597 va_end(ap);
598 longjmp(cstate->top_ctx, 1);
599 /*NOTREACHED*/
600 #ifdef _AIX
601 PCAP_UNREACHABLE
602 #endif /* _AIX */
603 }
604
605 static int init_linktype(compiler_state_t *, pcap_t *);
606
607 static void init_regs(compiler_state_t *);
608 static int alloc_reg(compiler_state_t *);
609 static void free_reg(compiler_state_t *, int);
610
611 static void initchunks(compiler_state_t *cstate);
612 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
613 static void *newchunk(compiler_state_t *cstate, size_t);
614 static void freechunks(compiler_state_t *cstate);
615 static inline struct block *new_block(compiler_state_t *cstate, int);
616 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
617 static struct block *gen_retblk(compiler_state_t *cstate, int);
618 static inline void syntax(compiler_state_t *cstate);
619
620 static void backpatch(struct block *, struct block *);
621 static void merge(struct block *, struct block *);
622 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
623 u_int, bpf_u_int32);
624 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
625 u_int, bpf_u_int32);
626 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
627 u_int, bpf_u_int32);
628 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
629 u_int, bpf_u_int32);
630 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
631 u_int, bpf_u_int32);
632 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
633 u_int, bpf_u_int32, bpf_u_int32);
634 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
635 u_int, const u_char *);
636 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
637 u_int, bpf_u_int32, int, int, bpf_u_int32);
638 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
639 u_int, u_int);
640 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
641 u_int);
642 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
643 static struct block *gen_uncond(compiler_state_t *, int);
644 static inline struct block *gen_true(compiler_state_t *);
645 static inline struct block *gen_false(compiler_state_t *);
646 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
647 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
648 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
649 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
650 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
651 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
652 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
653 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
654 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
655 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
656 bpf_abs_offset *);
657 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
658 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
659 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
660 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
661 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
662 int, u_int, u_int);
663 #ifdef INET6
664 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
665 struct in6_addr *, int, u_int, u_int);
666 #endif
667 static struct block *gen_ahostop(compiler_state_t *, const uint8_t, int);
668 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
669 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
670 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
671 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
672 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
673 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
674 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
675 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
676 int, int, int);
677 #ifdef INET6
678 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
679 struct in6_addr *, int, int, int);
680 #endif
681 #ifndef INET6
682 static struct block *gen_gateway(compiler_state_t *, const u_char *,
683 struct addrinfo *, int, int);
684 #endif
685 static struct block *gen_ipfrag(compiler_state_t *);
686 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
687 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
688 bpf_u_int32);
689 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
690 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
691 bpf_u_int32);
692 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
693 static struct block *gen_port(compiler_state_t *, u_int, int, int);
694 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
695 bpf_u_int32, int);
696 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
697 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
698 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
699 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
700 bpf_u_int32, int);
701 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
702 static int lookup_proto(compiler_state_t *, const char *, int);
703 #if !defined(NO_PROTOCHAIN)
704 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
705 #endif /* !defined(NO_PROTOCHAIN) */
706 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
707 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
708 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
709 static struct block *gen_mac_multicast(compiler_state_t *, int);
710 static struct block *gen_len(compiler_state_t *, int, int);
711 static struct block *gen_encap_ll_check(compiler_state_t *cstate);
712
713 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
714 bpf_u_int32, int, int);
715 static struct block *gen_atmtype_llc(compiler_state_t *);
716 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
717
718 static void
719 initchunks(compiler_state_t *cstate)
720 {
721 int i;
722
723 for (i = 0; i < NCHUNKS; i++) {
724 cstate->chunks[i].n_left = 0;
725 cstate->chunks[i].m = NULL;
726 }
727 cstate->cur_chunk = 0;
728 }
729
730 static void *
731 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
732 {
733 struct chunk *cp;
734 int k;
735 size_t size;
736
737 /* Round up to chunk alignment. */
738 n = (n + CHUNK_ALIGN - 1) & ~(CHUNK_ALIGN - 1);
739
740 cp = &cstate->chunks[cstate->cur_chunk];
741 if (n > cp->n_left) {
742 ++cp;
743 k = ++cstate->cur_chunk;
744 if (k >= NCHUNKS) {
745 bpf_set_error(cstate, "out of memory");
746 return (NULL);
747 }
748 size = CHUNK0SIZE << k;
749 cp->m = (void *)malloc(size);
750 if (cp->m == NULL) {
751 bpf_set_error(cstate, "out of memory");
752 return (NULL);
753 }
754 memset((char *)cp->m, 0, size);
755 cp->n_left = size;
756 if (n > size) {
757 bpf_set_error(cstate, "out of memory");
758 return (NULL);
759 }
760 }
761 cp->n_left -= n;
762 return (void *)((char *)cp->m + cp->n_left);
763 }
764
765 static void *
766 newchunk(compiler_state_t *cstate, size_t n)
767 {
768 void *p;
769
770 p = newchunk_nolongjmp(cstate, n);
771 if (p == NULL) {
772 longjmp(cstate->top_ctx, 1);
773 /*NOTREACHED*/
774 }
775 return (p);
776 }
777
778 static void
779 freechunks(compiler_state_t *cstate)
780 {
781 int i;
782
783 for (i = 0; i < NCHUNKS; ++i)
784 if (cstate->chunks[i].m != NULL)
785 free(cstate->chunks[i].m);
786 }
787
788 /*
789 * A strdup whose allocations are freed after code generation is over.
790 * This is used by the lexical analyzer, so it can't longjmp; it just
791 * returns NULL on an allocation error, and the callers must check
792 * for it.
793 */
794 char *
795 sdup(compiler_state_t *cstate, const char *s)
796 {
797 size_t n = strlen(s) + 1;
798 char *cp = newchunk_nolongjmp(cstate, n);
799
800 if (cp == NULL)
801 return (NULL);
802 pcapint_strlcpy(cp, s, n);
803 return (cp);
804 }
805
806 static inline struct block *
807 new_block(compiler_state_t *cstate, int code)
808 {
809 struct block *p;
810
811 p = (struct block *)newchunk(cstate, sizeof(*p));
812 p->s.code = code;
813 p->head = p;
814
815 return p;
816 }
817
818 static inline struct slist *
819 new_stmt(compiler_state_t *cstate, int code)
820 {
821 struct slist *p;
822
823 p = (struct slist *)newchunk(cstate, sizeof(*p));
824 p->s.code = code;
825
826 return p;
827 }
828
829 static struct block *
830 gen_retblk_internal(compiler_state_t *cstate, int v)
831 {
832 struct block *b = new_block(cstate, BPF_RET|BPF_K);
833
834 b->s.k = v;
835 return b;
836 }
837
838 static struct block *
839 gen_retblk(compiler_state_t *cstate, int v)
840 {
841 if (setjmp(cstate->top_ctx)) {
842 /*
843 * gen_retblk() only fails because a memory
844 * allocation failed in newchunk(), meaning
845 * that it can't return a pointer.
846 *
847 * Return NULL.
848 */
849 return NULL;
850 }
851 return gen_retblk_internal(cstate, v);
852 }
853
854 static inline PCAP_NORETURN_DEF void
855 syntax(compiler_state_t *cstate)
856 {
857 bpf_error(cstate, "syntax error in filter expression");
858 }
859
860 /*
861 * For the given integer return a string with the keyword (or the nominal
862 * keyword if there is more than one). This is a simpler version of tok2str()
863 * in tcpdump because in this problem space a valid integer value is not
864 * greater than 71.
865 */
866 static const char *
867 qual2kw(const char *kind, const unsigned id, const char *tokens[],
868 const size_t size)
869 {
870 static char buf[4][64];
871 static int idx = 0;
872
873 if (id < size && tokens[id])
874 return tokens[id];
875
876 char *ret = buf[idx];
877 idx = (idx + 1) % (sizeof(buf) / sizeof(buf[0]));
878 ret[0] = '\0'; // just in case
879 snprintf(ret, sizeof(buf[0]), "<invalid %s %u>", kind, id);
880 return ret;
881 }
882
883 // protocol qualifier keywords
884 static const char *
885 pqkw(const unsigned id)
886 {
887 const char * tokens[] = {
888 [Q_LINK] = "link",
889 [Q_IP] = "ip",
890 [Q_ARP] = "arp",
891 [Q_RARP] = "rarp",
892 [Q_SCTP] = "sctp",
893 [Q_TCP] = "tcp",
894 [Q_UDP] = "udp",
895 [Q_ICMP] = "icmp",
896 [Q_IGMP] = "igmp",
897 [Q_IGRP] = "igrp",
898 [Q_ATALK] = "atalk",
899 [Q_DECNET] = "decnet",
900 [Q_LAT] = "lat",
901 [Q_SCA] = "sca",
902 [Q_MOPRC] = "moprc",
903 [Q_MOPDL] = "mopdl",
904 [Q_IPV6] = "ip6",
905 [Q_ICMPV6] = "icmp6",
906 [Q_AH] = "ah",
907 [Q_ESP] = "esp",
908 [Q_PIM] = "pim",
909 [Q_VRRP] = "vrrp",
910 [Q_AARP] = "aarp",
911 [Q_ISO] = "iso",
912 [Q_ESIS] = "esis",
913 [Q_ISIS] = "isis",
914 [Q_CLNP] = "clnp",
915 [Q_STP] = "stp",
916 [Q_IPX] = "ipx",
917 [Q_NETBEUI] = "netbeui",
918 [Q_ISIS_L1] = "l1",
919 [Q_ISIS_L2] = "l2",
920 [Q_ISIS_IIH] = "iih",
921 [Q_ISIS_SNP] = "snp",
922 [Q_ISIS_CSNP] = "csnp",
923 [Q_ISIS_PSNP] = "psnp",
924 [Q_ISIS_LSP] = "lsp",
925 [Q_RADIO] = "radio",
926 [Q_CARP] = "carp",
927 };
928 return qual2kw("proto", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
929 }
930
931 // direction qualifier keywords
932 static const char *
933 dqkw(const unsigned id)
934 {
935 const char * map[] = {
936 [Q_SRC] = "src",
937 [Q_DST] = "dst",
938 [Q_OR] = "src or dst",
939 [Q_AND] = "src and dst",
940 [Q_ADDR1] = "addr1",
941 [Q_ADDR2] = "addr2",
942 [Q_ADDR3] = "addr3",
943 [Q_ADDR4] = "addr4",
944 [Q_RA] = "ra",
945 [Q_TA] = "ta",
946 };
947 return qual2kw("dir", id, map, sizeof(map) / sizeof(map[0]));
948 }
949
950 // ATM keywords
951 static const char *
952 atmkw(const unsigned id)
953 {
954 const char * tokens[] = {
955 [A_METAC] = "metac",
956 [A_BCC] = "bcc",
957 [A_OAMF4SC] = "oamf4sc",
958 [A_OAMF4EC] = "oamf4ec",
959 [A_SC] = "sc",
960 [A_ILMIC] = "ilmic",
961 [A_OAM] = "oam",
962 [A_OAMF4] = "oamf4",
963 [A_LANE] = "lane",
964 // no keyword for A_SETUP
965 // no keyword for A_CALLPROCEED
966 // no keyword for A_CONNECT
967 // no keyword for A_CONNECTACK
968 // no keyword for A_RELEASE
969 // no keyword for A_RELEASE_DONE
970 [A_VPI] = "vpi",
971 [A_VCI] = "vci",
972 // no keyword for A_PROTOTYPE
973 // no keyword for A_MSGTYPE
974 [A_CONNECTMSG] = "connectmsg",
975 [A_METACONNECT] = "metaconnect",
976 };
977 return qual2kw("ATM keyword", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
978 }
979
980 // SS7 keywords
981 static const char *
982 ss7kw(const unsigned id)
983 {
984 const char * tokens[] = {
985 [M_FISU] = "fisu",
986 [M_LSSU] = "lssu",
987 [M_MSU] = "msu",
988 [MH_FISU] = "hfisu",
989 [MH_LSSU] = "hlssu",
990 [MH_MSU] = "hmsu",
991 [M_SIO] = "sio",
992 [M_OPC] = "opc",
993 [M_DPC] = "dpc",
994 [M_SLS] = "sls",
995 [MH_SIO] = "hsio",
996 [MH_OPC] = "hopc",
997 [MH_DPC] = "hdpc",
998 [MH_SLS] = "hsls",
999 };
1000 return qual2kw("MTP keyword", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
1001 }
1002
1003 static PCAP_NORETURN_DEF void
1004 fail_kw_on_dlt(compiler_state_t *cstate, const char *keyword)
1005 {
1006 bpf_error(cstate, "'%s' not supported on %s", keyword,
1007 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
1008 }
1009
1010 static void
1011 assert_pflog(compiler_state_t *cstate, const char *kw)
1012 {
1013 if (cstate->linktype != DLT_PFLOG)
1014 bpf_error(cstate, "'%s' supported only on PFLOG linktype", kw);
1015 }
1016
1017 static void
1018 assert_atm(compiler_state_t *cstate, const char *kw)
1019 {
1020 /*
1021 * Belt and braces: init_linktype() sets either all of these struct
1022 * members (for DLT_SUNATM) or none (otherwise).
1023 */
1024 if (cstate->linktype != DLT_SUNATM ||
1025 ! cstate->is_atm ||
1026 cstate->off_vpi == OFFSET_NOT_SET ||
1027 cstate->off_vci == OFFSET_NOT_SET ||
1028 cstate->off_proto == OFFSET_NOT_SET ||
1029 cstate->off_payload == OFFSET_NOT_SET)
1030 bpf_error(cstate, "'%s' supported only on SUNATM", kw);
1031 }
1032
1033 static void
1034 assert_ss7(compiler_state_t *cstate, const char *kw)
1035 {
1036 switch (cstate->linktype) {
1037 case DLT_MTP2:
1038 case DLT_ERF:
1039 case DLT_MTP2_WITH_PHDR:
1040 // Belt and braces, same as in assert_atm().
1041 if (cstate->off_sio != OFFSET_NOT_SET &&
1042 cstate->off_opc != OFFSET_NOT_SET &&
1043 cstate->off_dpc != OFFSET_NOT_SET &&
1044 cstate->off_sls != OFFSET_NOT_SET)
1045 return;
1046 }
1047 bpf_error(cstate, "'%s' supported only on SS7", kw);
1048 }
1049
1050 static void
1051 assert_maxval(compiler_state_t *cstate, const char *name,
1052 const bpf_u_int32 val, const bpf_u_int32 maxval)
1053 {
1054 if (val > maxval)
1055 bpf_error(cstate, "%s %u greater than maximum %u",
1056 name, val, maxval);
1057 }
1058
1059 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1060 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1061
1062 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1063 static int
1064 port_pq_to_ipproto(compiler_state_t *cstate, const int proto, const char *kw)
1065 {
1066 switch (proto) {
1067 case Q_UDP:
1068 return IPPROTO_UDP;
1069 case Q_TCP:
1070 return IPPROTO_TCP;
1071 case Q_SCTP:
1072 return IPPROTO_SCTP;
1073 case Q_DEFAULT:
1074 return PROTO_UNDEF;
1075 }
1076 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), kw);
1077 }
1078
1079 int
1080 pcap_compile(pcap_t *p, struct bpf_program *program,
1081 const char *buf, int optimize, bpf_u_int32 mask)
1082 {
1083 #ifdef _WIN32
1084 int err;
1085 WSADATA wsaData;
1086 #endif
1087 compiler_state_t cstate;
1088 yyscan_t scanner = NULL;
1089 YY_BUFFER_STATE in_buffer = NULL;
1090 u_int len;
1091 int rc;
1092
1093 /*
1094 * If this pcap_t hasn't been activated, it doesn't have a
1095 * link-layer type, so we can't use it.
1096 */
1097 if (!p->activated) {
1098 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1099 "not-yet-activated pcap_t passed to pcap_compile");
1100 return (PCAP_ERROR);
1101 }
1102
1103 #ifdef _WIN32
1104 /*
1105 * Initialize Winsock, asking for the latest version (2.2),
1106 * as we may be calling Winsock routines to translate
1107 * host names to addresses.
1108 */
1109 err = WSAStartup(MAKEWORD(2, 2), &wsaData);
1110 if (err != 0) {
1111 pcapint_fmt_errmsg_for_win32_err(p->errbuf, PCAP_ERRBUF_SIZE,
1112 err, "Error calling WSAStartup()");
1113 return (PCAP_ERROR);
1114 }
1115 #endif
1116
1117 #ifdef ENABLE_REMOTE
1118 /*
1119 * If the device on which we're capturing need to be notified
1120 * that a new filter is being compiled, do so.
1121 *
1122 * This allows them to save a copy of it, in case, for example,
1123 * they're implementing a form of remote packet capture, and
1124 * want the remote machine to filter out the packets in which
1125 * it's sending the packets it's captured.
1126 *
1127 * XXX - the fact that we happen to be compiling a filter
1128 * doesn't necessarily mean we'll be installing it as the
1129 * filter for this pcap_t; we might be running it from userland
1130 * on captured packets to do packet classification. We really
1131 * need a better way of handling this, but this is all that
1132 * the WinPcap remote capture code did.
1133 */
1134 if (p->save_current_filter_op != NULL)
1135 (p->save_current_filter_op)(p, buf);
1136 #endif
1137
1138 initchunks(&cstate);
1139 cstate.no_optimize = 0;
1140 #ifdef INET6
1141 cstate.ai = NULL;
1142 #endif
1143 cstate.e = NULL;
1144 cstate.ic.root = NULL;
1145 cstate.ic.cur_mark = 0;
1146 cstate.bpf_pcap = p;
1147 cstate.error_set = 0;
1148 init_regs(&cstate);
1149
1150 cstate.netmask = mask;
1151
1152 cstate.snaplen = pcap_snapshot(p);
1153 if (cstate.snaplen == 0) {
1154 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1155 "snaplen of 0 rejects all packets");
1156 rc = PCAP_ERROR;
1157 goto quit;
1158 }
1159
1160 if (pcap_lex_init(&scanner) != 0) {
1161 pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
1162 errno, "can't initialize scanner");
1163 rc = PCAP_ERROR;
1164 goto quit;
1165 }
1166 in_buffer = pcap__scan_string(buf ? buf : "", scanner);
1167
1168 /*
1169 * Associate the compiler state with the lexical analyzer
1170 * state.
1171 */
1172 pcap_set_extra(&cstate, scanner);
1173
1174 if (init_linktype(&cstate, p) == -1) {
1175 rc = PCAP_ERROR;
1176 goto quit;
1177 }
1178 if (pcap_parse(scanner, &cstate) != 0) {
1179 #ifdef INET6
1180 if (cstate.ai != NULL)
1181 freeaddrinfo(cstate.ai);
1182 #endif
1183 if (cstate.e != NULL)
1184 free(cstate.e);
1185 rc = PCAP_ERROR;
1186 goto quit;
1187 }
1188
1189 if (cstate.ic.root == NULL) {
1190 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
1191
1192 /*
1193 * Catch errors reported by gen_retblk().
1194 */
1195 if (cstate.ic.root== NULL) {
1196 rc = PCAP_ERROR;
1197 goto quit;
1198 }
1199 }
1200
1201 if (optimize && !cstate.no_optimize) {
1202 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
1203 /* Failure */
1204 rc = PCAP_ERROR;
1205 goto quit;
1206 }
1207 if (cstate.ic.root == NULL ||
1208 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
1209 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1210 "expression rejects all packets");
1211 rc = PCAP_ERROR;
1212 goto quit;
1213 }
1214 }
1215 program->bf_insns = icode_to_fcode(&cstate.ic,
1216 cstate.ic.root, &len, p->errbuf);
1217 if (program->bf_insns == NULL) {
1218 /* Failure */
1219 rc = PCAP_ERROR;
1220 goto quit;
1221 }
1222 program->bf_len = len;
1223
1224 rc = 0; /* We're all okay */
1225
1226 quit:
1227 /*
1228 * Clean up everything for the lexical analyzer.
1229 */
1230 if (in_buffer != NULL)
1231 pcap__delete_buffer(in_buffer, scanner);
1232 if (scanner != NULL)
1233 pcap_lex_destroy(scanner);
1234
1235 /*
1236 * Clean up our own allocated memory.
1237 */
1238 freechunks(&cstate);
1239
1240 #ifdef _WIN32
1241 WSACleanup();
1242 #endif
1243
1244 return (rc);
1245 }
1246
1247 /*
1248 * entry point for using the compiler with no pcap open
1249 * pass in all the stuff that is needed explicitly instead.
1250 */
1251 int
1252 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
1253 struct bpf_program *program,
1254 const char *buf, int optimize, bpf_u_int32 mask)
1255 {
1256 pcap_t *p;
1257 int ret;
1258
1259 p = pcap_open_dead(linktype_arg, snaplen_arg);
1260 if (p == NULL)
1261 return (PCAP_ERROR);
1262 ret = pcap_compile(p, program, buf, optimize, mask);
1263 pcap_close(p);
1264 return (ret);
1265 }
1266
1267 /*
1268 * Clean up a "struct bpf_program" by freeing all the memory allocated
1269 * in it.
1270 */
1271 void
1272 pcap_freecode(struct bpf_program *program)
1273 {
1274 program->bf_len = 0;
1275 if (program->bf_insns != NULL) {
1276 free((char *)program->bf_insns);
1277 program->bf_insns = NULL;
1278 }
1279 }
1280
1281 /*
1282 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1283 * which of the jt and jf fields has been resolved and which is a pointer
1284 * back to another unresolved block (or nil). At least one of the fields
1285 * in each block is already resolved.
1286 */
1287 static void
1288 backpatch(struct block *list, struct block *target)
1289 {
1290 struct block *next;
1291
1292 while (list) {
1293 if (!list->sense) {
1294 next = JT(list);
1295 JT(list) = target;
1296 } else {
1297 next = JF(list);
1298 JF(list) = target;
1299 }
1300 list = next;
1301 }
1302 }
1303
1304 /*
1305 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1306 * which of jt and jf is the link.
1307 */
1308 static void
1309 merge(struct block *b0, struct block *b1)
1310 {
1311 register struct block **p = &b0;
1312
1313 /* Find end of list. */
1314 while (*p)
1315 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
1316
1317 /* Concatenate the lists. */
1318 *p = b1;
1319 }
1320
1321 int
1322 finish_parse(compiler_state_t *cstate, struct block *p)
1323 {
1324 /*
1325 * Catch errors reported by us and routines below us, and return -1
1326 * on an error.
1327 */
1328 if (setjmp(cstate->top_ctx))
1329 return (-1);
1330
1331 /*
1332 * Insert before the statements of the first (root) block any
1333 * statements needed to load the lengths of any variable-length
1334 * headers into registers.
1335 *
1336 * XXX - a fancier strategy would be to insert those before the
1337 * statements of all blocks that use those lengths and that
1338 * have no predecessors that use them, so that we only compute
1339 * the lengths if we need them. There might be even better
1340 * approaches than that.
1341 *
1342 * However, those strategies would be more complicated, and
1343 * as we don't generate code to compute a length if the
1344 * program has no tests that use the length, and as most
1345 * tests will probably use those lengths, we would just
1346 * postpone computing the lengths so that it's not done
1347 * for tests that fail early, and it's not clear that's
1348 * worth the effort.
1349 */
1350 insert_compute_vloffsets(cstate, p->head);
1351
1352 /*
1353 * For DLT_PPI captures, generate a check of the per-packet
1354 * DLT value to make sure it's DLT_IEEE802_11.
1355 *
1356 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1357 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1358 * with appropriate Ethernet information and use that rather
1359 * than using something such as DLT_PPI where you don't know
1360 * the link-layer header type until runtime, which, in the
1361 * general case, would force us to generate both Ethernet *and*
1362 * 802.11 code (*and* anything else for which PPI is used)
1363 * and choose between them early in the BPF program?
1364 */
1365 if (cstate->linktype == DLT_PPI) {
1366 struct block *ppi_dlt_check = gen_cmp(cstate, OR_PACKET,
1367 4, BPF_W, SWAPLONG(DLT_IEEE802_11));
1368 gen_and(ppi_dlt_check, p);
1369 }
1370
1371 backpatch(p, gen_retblk_internal(cstate, cstate->snaplen));
1372 p->sense = !p->sense;
1373 backpatch(p, gen_retblk_internal(cstate, 0));
1374 cstate->ic.root = p->head;
1375 return (0);
1376 }
1377
1378 void
1379 gen_and(struct block *b0, struct block *b1)
1380 {
1381 backpatch(b0, b1->head);
1382 b0->sense = !b0->sense;
1383 b1->sense = !b1->sense;
1384 merge(b1, b0);
1385 b1->sense = !b1->sense;
1386 b1->head = b0->head;
1387 }
1388
1389 void
1390 gen_or(struct block *b0, struct block *b1)
1391 {
1392 b0->sense = !b0->sense;
1393 backpatch(b0, b1->head);
1394 b0->sense = !b0->sense;
1395 merge(b1, b0);
1396 b1->head = b0->head;
1397 }
1398
1399 void
1400 gen_not(struct block *b)
1401 {
1402 b->sense = !b->sense;
1403 }
1404
1405 static struct block *
1406 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1407 u_int size, bpf_u_int32 v)
1408 {
1409 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1410 }
1411
1412 static struct block *
1413 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1414 u_int size, bpf_u_int32 v)
1415 {
1416 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1417 }
1418
1419 static struct block *
1420 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1421 u_int size, bpf_u_int32 v)
1422 {
1423 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1424 }
1425
1426 static struct block *
1427 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1428 u_int size, bpf_u_int32 v)
1429 {
1430 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1431 }
1432
1433 static struct block *
1434 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1435 u_int size, bpf_u_int32 v)
1436 {
1437 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1438 }
1439
1440 static struct block *
1441 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1442 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1443 {
1444 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1445 }
1446
1447 static struct block *
1448 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1449 u_int size, const u_char *v)
1450 {
1451 register struct block *b, *tmp;
1452
1453 b = NULL;
1454 while (size >= 4) {
1455 register const u_char *p = &v[size - 4];
1456
1457 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1458 EXTRACT_BE_U_4(p));
1459 if (b != NULL)
1460 gen_and(b, tmp);
1461 b = tmp;
1462 size -= 4;
1463 }
1464 while (size >= 2) {
1465 register const u_char *p = &v[size - 2];
1466
1467 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1468 EXTRACT_BE_U_2(p));
1469 if (b != NULL)
1470 gen_and(b, tmp);
1471 b = tmp;
1472 size -= 2;
1473 }
1474 if (size > 0) {
1475 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1476 if (b != NULL)
1477 gen_and(b, tmp);
1478 b = tmp;
1479 }
1480 return b;
1481 }
1482
1483 /*
1484 * AND the field of size "size" at offset "offset" relative to the header
1485 * specified by "offrel" with "mask", and compare it with the value "v"
1486 * with the test specified by "jtype"; if "reverse" is true, the test
1487 * should test the opposite of "jtype".
1488 */
1489 static struct block *
1490 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1491 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1492 bpf_u_int32 v)
1493 {
1494 struct slist *s, *s2;
1495 struct block *b;
1496
1497 s = gen_load_a(cstate, offrel, offset, size);
1498
1499 if (mask != 0xffffffff) {
1500 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1501 s2->s.k = mask;
1502 sappend(s, s2);
1503 }
1504
1505 b = new_block(cstate, JMP(jtype));
1506 b->stmts = s;
1507 b->s.k = v;
1508 if (reverse)
1509 gen_not(b);
1510 return b;
1511 }
1512
1513 static int
1514 init_linktype(compiler_state_t *cstate, pcap_t *p)
1515 {
1516 cstate->pcap_fddipad = p->fddipad;
1517
1518 /*
1519 * We start out with only one link-layer header.
1520 */
1521 cstate->outermostlinktype = pcap_datalink(p);
1522 cstate->off_outermostlinkhdr.constant_part = 0;
1523 cstate->off_outermostlinkhdr.is_variable = 0;
1524 cstate->off_outermostlinkhdr.reg = -1;
1525
1526 cstate->prevlinktype = cstate->outermostlinktype;
1527 cstate->off_prevlinkhdr.constant_part = 0;
1528 cstate->off_prevlinkhdr.is_variable = 0;
1529 cstate->off_prevlinkhdr.reg = -1;
1530
1531 cstate->linktype = cstate->outermostlinktype;
1532 cstate->off_linkhdr.constant_part = 0;
1533 cstate->off_linkhdr.is_variable = 0;
1534 cstate->off_linkhdr.reg = -1;
1535
1536 /*
1537 * XXX
1538 */
1539 cstate->off_linkpl.constant_part = 0;
1540 cstate->off_linkpl.is_variable = 0;
1541 cstate->off_linkpl.reg = -1;
1542
1543 cstate->off_linktype.constant_part = 0;
1544 cstate->off_linktype.is_variable = 0;
1545 cstate->off_linktype.reg = -1;
1546
1547 /*
1548 * Assume it's not raw ATM with a pseudo-header, for now.
1549 */
1550 cstate->is_atm = 0;
1551 cstate->off_vpi = OFFSET_NOT_SET;
1552 cstate->off_vci = OFFSET_NOT_SET;
1553 cstate->off_proto = OFFSET_NOT_SET;
1554 cstate->off_payload = OFFSET_NOT_SET;
1555
1556 /*
1557 * And not encapsulated with either Geneve or VXLAN.
1558 */
1559 cstate->is_encap = 0;
1560
1561 /*
1562 * No variable length VLAN offset by default
1563 */
1564 cstate->is_vlan_vloffset = 0;
1565
1566 /*
1567 * And assume we're not doing SS7.
1568 */
1569 cstate->off_li = OFFSET_NOT_SET;
1570 cstate->off_li_hsl = OFFSET_NOT_SET;
1571 cstate->off_sio = OFFSET_NOT_SET;
1572 cstate->off_opc = OFFSET_NOT_SET;
1573 cstate->off_dpc = OFFSET_NOT_SET;
1574 cstate->off_sls = OFFSET_NOT_SET;
1575
1576 cstate->label_stack_depth = 0;
1577 cstate->vlan_stack_depth = 0;
1578
1579 switch (cstate->linktype) {
1580
1581 case DLT_ARCNET:
1582 cstate->off_linktype.constant_part = 2;
1583 cstate->off_linkpl.constant_part = 6;
1584 cstate->off_nl = 0; /* XXX in reality, variable! */
1585 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1586 break;
1587
1588 case DLT_ARCNET_LINUX:
1589 cstate->off_linktype.constant_part = 4;
1590 cstate->off_linkpl.constant_part = 8;
1591 cstate->off_nl = 0; /* XXX in reality, variable! */
1592 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1593 break;
1594
1595 case DLT_EN10MB:
1596 cstate->off_linktype.constant_part = 12;
1597 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1598 cstate->off_nl = 0; /* Ethernet II */
1599 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1600 break;
1601
1602 case DLT_SLIP:
1603 /*
1604 * SLIP doesn't have a link level type. The 16 byte
1605 * header is hacked into our SLIP driver.
1606 */
1607 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1608 cstate->off_linkpl.constant_part = 16;
1609 cstate->off_nl = 0;
1610 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1611 break;
1612
1613 case DLT_SLIP_BSDOS:
1614 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1615 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1616 /* XXX end */
1617 cstate->off_linkpl.constant_part = 24;
1618 cstate->off_nl = 0;
1619 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1620 break;
1621
1622 case DLT_NULL:
1623 case DLT_LOOP:
1624 cstate->off_linktype.constant_part = 0;
1625 cstate->off_linkpl.constant_part = 4;
1626 cstate->off_nl = 0;
1627 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1628 break;
1629
1630 case DLT_ENC:
1631 cstate->off_linktype.constant_part = 0;
1632 cstate->off_linkpl.constant_part = 12;
1633 cstate->off_nl = 0;
1634 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1635 break;
1636
1637 case DLT_PPP:
1638 case DLT_PPP_PPPD:
1639 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1640 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1641 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1642 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1643 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1644 cstate->off_nl = 0;
1645 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1646 break;
1647
1648 case DLT_PPP_ETHER:
1649 /*
1650 * This does not include the Ethernet header, and
1651 * only covers session state.
1652 */
1653 cstate->off_linktype.constant_part = 6;
1654 cstate->off_linkpl.constant_part = 8;
1655 cstate->off_nl = 0;
1656 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1657 break;
1658
1659 case DLT_PPP_BSDOS:
1660 cstate->off_linktype.constant_part = 5;
1661 cstate->off_linkpl.constant_part = 24;
1662 cstate->off_nl = 0;
1663 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1664 break;
1665
1666 case DLT_FDDI:
1667 /*
1668 * FDDI doesn't really have a link-level type field.
1669 * We set "off_linktype" to the offset of the LLC header.
1670 *
1671 * To check for Ethernet types, we assume that SSAP = SNAP
1672 * is being used and pick out the encapsulated Ethernet type.
1673 * XXX - should we generate code to check for SNAP?
1674 */
1675 cstate->off_linktype.constant_part = 13;
1676 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1677 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1678 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1679 cstate->off_nl = 8; /* 802.2+SNAP */
1680 cstate->off_nl_nosnap = 3; /* 802.2 */
1681 break;
1682
1683 case DLT_IEEE802:
1684 /*
1685 * Token Ring doesn't really have a link-level type field.
1686 * We set "off_linktype" to the offset of the LLC header.
1687 *
1688 * To check for Ethernet types, we assume that SSAP = SNAP
1689 * is being used and pick out the encapsulated Ethernet type.
1690 * XXX - should we generate code to check for SNAP?
1691 *
1692 * XXX - the header is actually variable-length.
1693 * Some various Linux patched versions gave 38
1694 * as "off_linktype" and 40 as "off_nl"; however,
1695 * if a token ring packet has *no* routing
1696 * information, i.e. is not source-routed, the correct
1697 * values are 20 and 22, as they are in the vanilla code.
1698 *
1699 * A packet is source-routed iff the uppermost bit
1700 * of the first byte of the source address, at an
1701 * offset of 8, has the uppermost bit set. If the
1702 * packet is source-routed, the total number of bytes
1703 * of routing information is 2 plus bits 0x1F00 of
1704 * the 16-bit value at an offset of 14 (shifted right
1705 * 8 - figure out which byte that is).
1706 */
1707 cstate->off_linktype.constant_part = 14;
1708 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1709 cstate->off_nl = 8; /* 802.2+SNAP */
1710 cstate->off_nl_nosnap = 3; /* 802.2 */
1711 break;
1712
1713 case DLT_PRISM_HEADER:
1714 case DLT_IEEE802_11_RADIO_AVS:
1715 case DLT_IEEE802_11_RADIO:
1716 cstate->off_linkhdr.is_variable = 1;
1717 /* Fall through, 802.11 doesn't have a variable link
1718 * prefix but is otherwise the same. */
1719 /* FALLTHROUGH */
1720
1721 case DLT_IEEE802_11:
1722 /*
1723 * 802.11 doesn't really have a link-level type field.
1724 * We set "off_linktype.constant_part" to the offset of
1725 * the LLC header.
1726 *
1727 * To check for Ethernet types, we assume that SSAP = SNAP
1728 * is being used and pick out the encapsulated Ethernet type.
1729 * XXX - should we generate code to check for SNAP?
1730 *
1731 * We also handle variable-length radio headers here.
1732 * The Prism header is in theory variable-length, but in
1733 * practice it's always 144 bytes long. However, some
1734 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1735 * sometimes or always supply an AVS header, so we
1736 * have to check whether the radio header is a Prism
1737 * header or an AVS header, so, in practice, it's
1738 * variable-length.
1739 */
1740 cstate->off_linktype.constant_part = 24;
1741 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1742 cstate->off_linkpl.is_variable = 1;
1743 cstate->off_nl = 8; /* 802.2+SNAP */
1744 cstate->off_nl_nosnap = 3; /* 802.2 */
1745 break;
1746
1747 case DLT_PPI:
1748 /*
1749 * At the moment we treat PPI the same way that we treat
1750 * normal Radiotap encoded packets. The difference is in
1751 * the function that generates the code at the beginning
1752 * to compute the header length. Since this code generator
1753 * of PPI supports bare 802.11 encapsulation only (i.e.
1754 * the encapsulated DLT should be DLT_IEEE802_11) we
1755 * generate code to check for this too.
1756 */
1757 cstate->off_linktype.constant_part = 24;
1758 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1759 cstate->off_linkpl.is_variable = 1;
1760 cstate->off_linkhdr.is_variable = 1;
1761 cstate->off_nl = 8; /* 802.2+SNAP */
1762 cstate->off_nl_nosnap = 3; /* 802.2 */
1763 break;
1764
1765 case DLT_ATM_RFC1483:
1766 case DLT_ATM_CLIP: /* Linux ATM defines this */
1767 /*
1768 * assume routed, non-ISO PDUs
1769 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1770 *
1771 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1772 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1773 * latter would presumably be treated the way PPPoE
1774 * should be, so you can do "pppoe and udp port 2049"
1775 * or "pppoa and tcp port 80" and have it check for
1776 * PPPo{A,E} and a PPP protocol of IP and....
1777 */
1778 cstate->off_linktype.constant_part = 0;
1779 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1780 cstate->off_nl = 8; /* 802.2+SNAP */
1781 cstate->off_nl_nosnap = 3; /* 802.2 */
1782 break;
1783
1784 case DLT_SUNATM:
1785 /*
1786 * Full Frontal ATM; you get AALn PDUs with an ATM
1787 * pseudo-header.
1788 */
1789 cstate->is_atm = 1;
1790 cstate->off_vpi = SUNATM_VPI_POS;
1791 cstate->off_vci = SUNATM_VCI_POS;
1792 cstate->off_proto = PROTO_POS;
1793 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1794 cstate->off_linktype.constant_part = cstate->off_payload;
1795 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1796 cstate->off_nl = 8; /* 802.2+SNAP */
1797 cstate->off_nl_nosnap = 3; /* 802.2 */
1798 break;
1799
1800 case DLT_RAW:
1801 case DLT_IPV4:
1802 case DLT_IPV6:
1803 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1804 cstate->off_linkpl.constant_part = 0;
1805 cstate->off_nl = 0;
1806 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1807 break;
1808
1809 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1810 cstate->off_linktype.constant_part = 14;
1811 cstate->off_linkpl.constant_part = 16;
1812 cstate->off_nl = 0;
1813 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1814 break;
1815
1816 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1817 cstate->off_linktype.constant_part = 0;
1818 cstate->off_linkpl.constant_part = 20;
1819 cstate->off_nl = 0;
1820 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1821 break;
1822
1823 case DLT_LTALK:
1824 /*
1825 * LocalTalk does have a 1-byte type field in the LLAP header,
1826 * but really it just indicates whether there is a "short" or
1827 * "long" DDP packet following.
1828 */
1829 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1830 cstate->off_linkpl.constant_part = 0;
1831 cstate->off_nl = 0;
1832 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1833 break;
1834
1835 case DLT_IP_OVER_FC:
1836 /*
1837 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1838 * link-level type field. We set "off_linktype" to the
1839 * offset of the LLC header.
1840 *
1841 * To check for Ethernet types, we assume that SSAP = SNAP
1842 * is being used and pick out the encapsulated Ethernet type.
1843 * XXX - should we generate code to check for SNAP? RFC
1844 * 2625 says SNAP should be used.
1845 */
1846 cstate->off_linktype.constant_part = 16;
1847 cstate->off_linkpl.constant_part = 16;
1848 cstate->off_nl = 8; /* 802.2+SNAP */
1849 cstate->off_nl_nosnap = 3; /* 802.2 */
1850 break;
1851
1852 case DLT_FRELAY:
1853 /*
1854 * XXX - we should set this to handle SNAP-encapsulated
1855 * frames (NLPID of 0x80).
1856 */
1857 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1858 cstate->off_linkpl.constant_part = 0;
1859 cstate->off_nl = 0;
1860 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1861 break;
1862
1863 /*
1864 * the only BPF-interesting FRF.16 frames are non-control frames;
1865 * Frame Relay has a variable length link-layer
1866 * so lets start with offset 4 for now and increments later on (FIXME);
1867 */
1868 case DLT_MFR:
1869 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1870 cstate->off_linkpl.constant_part = 0;
1871 cstate->off_nl = 4;
1872 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1873 break;
1874
1875 case DLT_APPLE_IP_OVER_IEEE1394:
1876 cstate->off_linktype.constant_part = 16;
1877 cstate->off_linkpl.constant_part = 18;
1878 cstate->off_nl = 0;
1879 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1880 break;
1881
1882 case DLT_SYMANTEC_FIREWALL:
1883 cstate->off_linktype.constant_part = 6;
1884 cstate->off_linkpl.constant_part = 44;
1885 cstate->off_nl = 0; /* Ethernet II */
1886 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1887 break;
1888
1889 case DLT_PFLOG:
1890 cstate->off_linktype.constant_part = 0;
1891 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1892 cstate->off_linkpl.is_variable = 1;
1893 cstate->off_nl = 0;
1894 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1895 break;
1896
1897 case DLT_JUNIPER_MFR:
1898 case DLT_JUNIPER_MLFR:
1899 case DLT_JUNIPER_MLPPP:
1900 case DLT_JUNIPER_PPP:
1901 case DLT_JUNIPER_CHDLC:
1902 case DLT_JUNIPER_FRELAY:
1903 cstate->off_linktype.constant_part = 4;
1904 cstate->off_linkpl.constant_part = 4;
1905 cstate->off_nl = 0;
1906 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1907 break;
1908
1909 case DLT_JUNIPER_ATM1:
1910 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1911 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1912 cstate->off_nl = 0;
1913 cstate->off_nl_nosnap = 10;
1914 break;
1915
1916 case DLT_JUNIPER_ATM2:
1917 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1918 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1919 cstate->off_nl = 0;
1920 cstate->off_nl_nosnap = 10;
1921 break;
1922
1923 /* frames captured on a Juniper PPPoE service PIC
1924 * contain raw ethernet frames */
1925 case DLT_JUNIPER_PPPOE:
1926 case DLT_JUNIPER_ETHER:
1927 cstate->off_linkpl.constant_part = 14;
1928 cstate->off_linktype.constant_part = 16;
1929 cstate->off_nl = 18; /* Ethernet II */
1930 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1931 break;
1932
1933 case DLT_JUNIPER_PPPOE_ATM:
1934 cstate->off_linktype.constant_part = 4;
1935 cstate->off_linkpl.constant_part = 6;
1936 cstate->off_nl = 0;
1937 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1938 break;
1939
1940 case DLT_JUNIPER_GGSN:
1941 cstate->off_linktype.constant_part = 6;
1942 cstate->off_linkpl.constant_part = 12;
1943 cstate->off_nl = 0;
1944 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1945 break;
1946
1947 case DLT_JUNIPER_ES:
1948 cstate->off_linktype.constant_part = 6;
1949 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1950 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1951 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1952 break;
1953
1954 case DLT_JUNIPER_MONITOR:
1955 cstate->off_linktype.constant_part = 12;
1956 cstate->off_linkpl.constant_part = 12;
1957 cstate->off_nl = 0; /* raw IP/IP6 header */
1958 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1959 break;
1960
1961 case DLT_BACNET_MS_TP:
1962 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1963 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1964 cstate->off_nl = OFFSET_NOT_SET;
1965 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1966 break;
1967
1968 case DLT_JUNIPER_SERVICES:
1969 cstate->off_linktype.constant_part = 12;
1970 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1971 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1972 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1973 break;
1974
1975 case DLT_JUNIPER_VP:
1976 cstate->off_linktype.constant_part = 18;
1977 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1978 cstate->off_nl = OFFSET_NOT_SET;
1979 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1980 break;
1981
1982 case DLT_JUNIPER_ST:
1983 cstate->off_linktype.constant_part = 18;
1984 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1985 cstate->off_nl = OFFSET_NOT_SET;
1986 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1987 break;
1988
1989 case DLT_JUNIPER_ISM:
1990 cstate->off_linktype.constant_part = 8;
1991 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1992 cstate->off_nl = OFFSET_NOT_SET;
1993 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1994 break;
1995
1996 case DLT_JUNIPER_VS:
1997 case DLT_JUNIPER_SRX_E2E:
1998 case DLT_JUNIPER_FIBRECHANNEL:
1999 case DLT_JUNIPER_ATM_CEMIC:
2000 cstate->off_linktype.constant_part = 8;
2001 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2002 cstate->off_nl = OFFSET_NOT_SET;
2003 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2004 break;
2005
2006 case DLT_MTP2:
2007 cstate->off_li = 2;
2008 cstate->off_li_hsl = 4;
2009 cstate->off_sio = 3;
2010 cstate->off_opc = 4;
2011 cstate->off_dpc = 4;
2012 cstate->off_sls = 7;
2013 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2014 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2015 cstate->off_nl = OFFSET_NOT_SET;
2016 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2017 break;
2018
2019 case DLT_MTP2_WITH_PHDR:
2020 cstate->off_li = 6;
2021 cstate->off_li_hsl = 8;
2022 cstate->off_sio = 7;
2023 cstate->off_opc = 8;
2024 cstate->off_dpc = 8;
2025 cstate->off_sls = 11;
2026 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2027 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2028 cstate->off_nl = OFFSET_NOT_SET;
2029 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2030 break;
2031
2032 case DLT_ERF:
2033 cstate->off_li = 22;
2034 cstate->off_li_hsl = 24;
2035 cstate->off_sio = 23;
2036 cstate->off_opc = 24;
2037 cstate->off_dpc = 24;
2038 cstate->off_sls = 27;
2039 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2040 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2041 cstate->off_nl = OFFSET_NOT_SET;
2042 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2043 break;
2044
2045 case DLT_PFSYNC:
2046 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2047 cstate->off_linkpl.constant_part = 4;
2048 cstate->off_nl = 0;
2049 cstate->off_nl_nosnap = 0;
2050 break;
2051
2052 case DLT_AX25_KISS:
2053 /*
2054 * Currently, only raw "link[N:M]" filtering is supported.
2055 */
2056 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
2057 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2058 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
2059 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2060 break;
2061
2062 case DLT_IPNET:
2063 cstate->off_linktype.constant_part = 1;
2064 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
2065 cstate->off_nl = 0;
2066 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2067 break;
2068
2069 case DLT_NETANALYZER:
2070 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
2071 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
2072 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
2073 cstate->off_nl = 0; /* Ethernet II */
2074 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
2075 break;
2076
2077 case DLT_NETANALYZER_TRANSPARENT:
2078 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2079 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
2080 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2081 cstate->off_nl = 0; /* Ethernet II */
2082 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
2083 break;
2084
2085 default:
2086 /*
2087 * For values in the range in which we've assigned new
2088 * DLT_ values, only raw "link[N:M]" filtering is supported.
2089 */
2090 if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
2091 cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
2092 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2093 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2094 cstate->off_nl = OFFSET_NOT_SET;
2095 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2096 } else {
2097 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
2098 cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
2099 return (-1);
2100 }
2101 break;
2102 }
2103
2104 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
2105 return (0);
2106 }
2107
2108 /*
2109 * Load a value relative to the specified absolute offset.
2110 */
2111 static struct slist *
2112 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
2113 u_int offset, u_int size)
2114 {
2115 struct slist *s, *s2;
2116
2117 s = gen_abs_offset_varpart(cstate, abs_offset);
2118
2119 /*
2120 * If "s" is non-null, it has code to arrange that the X register
2121 * contains the variable part of the absolute offset, so we
2122 * generate a load relative to that, with an offset of
2123 * abs_offset->constant_part + offset.
2124 *
2125 * Otherwise, we can do an absolute load with an offset of
2126 * abs_offset->constant_part + offset.
2127 */
2128 if (s != NULL) {
2129 /*
2130 * "s" points to a list of statements that puts the
2131 * variable part of the absolute offset into the X register.
2132 * Do an indirect load, to use the X register as an offset.
2133 */
2134 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
2135 s2->s.k = abs_offset->constant_part + offset;
2136 sappend(s, s2);
2137 } else {
2138 /*
2139 * There is no variable part of the absolute offset, so
2140 * just do an absolute load.
2141 */
2142 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
2143 s->s.k = abs_offset->constant_part + offset;
2144 }
2145 return s;
2146 }
2147
2148 /*
2149 * Load a value relative to the beginning of the specified header.
2150 */
2151 static struct slist *
2152 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
2153 u_int size)
2154 {
2155 struct slist *s, *s2;
2156
2157 /*
2158 * Squelch warnings from compilers that *don't* assume that
2159 * offrel always has a valid enum value and therefore don't
2160 * assume that we'll always go through one of the case arms.
2161 *
2162 * If we have a default case, compilers that *do* assume that
2163 * will then complain about the default case code being
2164 * unreachable.
2165 *
2166 * Damned if you do, damned if you don't.
2167 */
2168 s = NULL;
2169
2170 switch (offrel) {
2171
2172 case OR_PACKET:
2173 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
2174 s->s.k = offset;
2175 break;
2176
2177 case OR_LINKHDR:
2178 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
2179 break;
2180
2181 case OR_PREVLINKHDR:
2182 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
2183 break;
2184
2185 case OR_LLC:
2186 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
2187 break;
2188
2189 case OR_PREVMPLSHDR:
2190 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
2191 break;
2192
2193 case OR_LINKPL:
2194 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
2195 break;
2196
2197 case OR_LINKPL_NOSNAP:
2198 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
2199 break;
2200
2201 case OR_LINKTYPE:
2202 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
2203 break;
2204
2205 case OR_TRAN_IPV4:
2206 /*
2207 * Load the X register with the length of the IPv4 header
2208 * (plus the offset of the link-layer header, if it's
2209 * preceded by a variable-length header such as a radio
2210 * header), in bytes.
2211 */
2212 s = gen_loadx_iphdrlen(cstate);
2213
2214 /*
2215 * Load the item at {offset of the link-layer payload} +
2216 * {offset, relative to the start of the link-layer
2217 * payload, of the IPv4 header} + {length of the IPv4 header} +
2218 * {specified offset}.
2219 *
2220 * If the offset of the link-layer payload is variable,
2221 * the variable part of that offset is included in the
2222 * value in the X register, and we include the constant
2223 * part in the offset of the load.
2224 */
2225 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
2226 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
2227 sappend(s, s2);
2228 break;
2229
2230 case OR_TRAN_IPV6:
2231 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
2232 break;
2233 }
2234 return s;
2235 }
2236
2237 /*
2238 * Generate code to load into the X register the sum of the length of
2239 * the IPv4 header and the variable part of the offset of the link-layer
2240 * payload.
2241 */
2242 static struct slist *
2243 gen_loadx_iphdrlen(compiler_state_t *cstate)
2244 {
2245 struct slist *s, *s2;
2246
2247 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
2248 if (s != NULL) {
2249 /*
2250 * The offset of the link-layer payload has a variable
2251 * part. "s" points to a list of statements that put
2252 * the variable part of that offset into the X register.
2253 *
2254 * The 4*([k]&0xf) addressing mode can't be used, as we
2255 * don't have a constant offset, so we have to load the
2256 * value in question into the A register and add to it
2257 * the value from the X register.
2258 */
2259 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2260 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
2261 sappend(s, s2);
2262 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2263 s2->s.k = 0xf;
2264 sappend(s, s2);
2265 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2266 s2->s.k = 2;
2267 sappend(s, s2);
2268
2269 /*
2270 * The A register now contains the length of the IP header.
2271 * We need to add to it the variable part of the offset of
2272 * the link-layer payload, which is still in the X
2273 * register, and move the result into the X register.
2274 */
2275 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
2276 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
2277 } else {
2278 /*
2279 * The offset of the link-layer payload is a constant,
2280 * so no code was generated to load the (nonexistent)
2281 * variable part of that offset.
2282 *
2283 * This means we can use the 4*([k]&0xf) addressing
2284 * mode. Load the length of the IPv4 header, which
2285 * is at an offset of cstate->off_nl from the beginning of
2286 * the link-layer payload, and thus at an offset of
2287 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2288 * of the raw packet data, using that addressing mode.
2289 */
2290 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
2291 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
2292 }
2293 return s;
2294 }
2295
2296
2297 static struct block *
2298 gen_uncond(compiler_state_t *cstate, int rsense)
2299 {
2300 struct block *b;
2301 struct slist *s;
2302
2303 s = new_stmt(cstate, BPF_LD|BPF_IMM);
2304 s->s.k = !rsense;
2305 b = new_block(cstate, JMP(BPF_JEQ));
2306 b->stmts = s;
2307
2308 return b;
2309 }
2310
2311 static inline struct block *
2312 gen_true(compiler_state_t *cstate)
2313 {
2314 return gen_uncond(cstate, 1);
2315 }
2316
2317 static inline struct block *
2318 gen_false(compiler_state_t *cstate)
2319 {
2320 return gen_uncond(cstate, 0);
2321 }
2322
2323 /*
2324 * Generate code to match a particular packet type.
2325 *
2326 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2327 * value, if <= ETHERMTU. We use that to determine whether to
2328 * match the type/length field or to check the type/length field for
2329 * a value <= ETHERMTU to see whether it's a type field and then do
2330 * the appropriate test.
2331 */
2332 static struct block *
2333 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2334 {
2335 struct block *b0, *b1;
2336
2337 switch (ll_proto) {
2338
2339 case LLCSAP_ISONS:
2340 case LLCSAP_IP:
2341 case LLCSAP_NETBEUI:
2342 /*
2343 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2344 * so we check the DSAP and SSAP.
2345 *
2346 * LLCSAP_IP checks for IP-over-802.2, rather
2347 * than IP-over-Ethernet or IP-over-SNAP.
2348 *
2349 * XXX - should we check both the DSAP and the
2350 * SSAP, like this, or should we check just the
2351 * DSAP, as we do for other types <= ETHERMTU
2352 * (i.e., other SAP values)?
2353 */
2354 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2355 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2356 gen_and(b0, b1);
2357 return b1;
2358
2359 case LLCSAP_IPX:
2360 /*
2361 * Check for;
2362 *
2363 * Ethernet_II frames, which are Ethernet
2364 * frames with a frame type of ETHERTYPE_IPX;
2365 *
2366 * Ethernet_802.3 frames, which are 802.3
2367 * frames (i.e., the type/length field is
2368 * a length field, <= ETHERMTU, rather than
2369 * a type field) with the first two bytes
2370 * after the Ethernet/802.3 header being
2371 * 0xFFFF;
2372 *
2373 * Ethernet_802.2 frames, which are 802.3
2374 * frames with an 802.2 LLC header and
2375 * with the IPX LSAP as the DSAP in the LLC
2376 * header;
2377 *
2378 * Ethernet_SNAP frames, which are 802.3
2379 * frames with an LLC header and a SNAP
2380 * header and with an OUI of 0x000000
2381 * (encapsulated Ethernet) and a protocol
2382 * ID of ETHERTYPE_IPX in the SNAP header.
2383 *
2384 * XXX - should we generate the same code both
2385 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2386 */
2387
2388 /*
2389 * This generates code to check both for the
2390 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2391 */
2392 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2393 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2394 gen_or(b0, b1);
2395
2396 /*
2397 * Now we add code to check for SNAP frames with
2398 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2399 */
2400 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2401 gen_or(b0, b1);
2402
2403 /*
2404 * Now we generate code to check for 802.3
2405 * frames in general.
2406 */
2407 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2408
2409 /*
2410 * Now add the check for 802.3 frames before the
2411 * check for Ethernet_802.2 and Ethernet_802.3,
2412 * as those checks should only be done on 802.3
2413 * frames, not on Ethernet frames.
2414 */
2415 gen_and(b0, b1);
2416
2417 /*
2418 * Now add the check for Ethernet_II frames, and
2419 * do that before checking for the other frame
2420 * types.
2421 */
2422 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2423 gen_or(b0, b1);
2424 return b1;
2425
2426 case ETHERTYPE_ATALK:
2427 case ETHERTYPE_AARP:
2428 /*
2429 * EtherTalk (AppleTalk protocols on Ethernet link
2430 * layer) may use 802.2 encapsulation.
2431 */
2432
2433 /*
2434 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2435 * we check for an Ethernet type field less or equal than
2436 * 1500, which means it's an 802.3 length field.
2437 */
2438 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2439
2440 /*
2441 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2442 * SNAP packets with an organization code of
2443 * 0x080007 (Apple, for Appletalk) and a protocol
2444 * type of ETHERTYPE_ATALK (Appletalk).
2445 *
2446 * 802.2-encapsulated ETHERTYPE_AARP packets are
2447 * SNAP packets with an organization code of
2448 * 0x000000 (encapsulated Ethernet) and a protocol
2449 * type of ETHERTYPE_AARP (Appletalk ARP).
2450 */
2451 if (ll_proto == ETHERTYPE_ATALK)
2452 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2453 else /* ll_proto == ETHERTYPE_AARP */
2454 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2455 gen_and(b0, b1);
2456
2457 /*
2458 * Check for Ethernet encapsulation (Ethertalk
2459 * phase 1?); we just check for the Ethernet
2460 * protocol type.
2461 */
2462 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2463
2464 gen_or(b0, b1);
2465 return b1;
2466
2467 default:
2468 if (ll_proto <= ETHERMTU) {
2469 /*
2470 * This is an LLC SAP value, so the frames
2471 * that match would be 802.2 frames.
2472 * Check that the frame is an 802.2 frame
2473 * (i.e., that the length/type field is
2474 * a length field, <= ETHERMTU) and
2475 * then check the DSAP.
2476 */
2477 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2478 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2479 gen_and(b0, b1);
2480 return b1;
2481 } else {
2482 /*
2483 * This is an Ethernet type, so compare
2484 * the length/type field with it (if
2485 * the frame is an 802.2 frame, the length
2486 * field will be <= ETHERMTU, and, as
2487 * "ll_proto" is > ETHERMTU, this test
2488 * will fail and the frame won't match,
2489 * which is what we want).
2490 */
2491 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2492 }
2493 }
2494 }
2495
2496 static struct block *
2497 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2498 {
2499 /*
2500 * For DLT_NULL, the link-layer header is a 32-bit word
2501 * containing an AF_ value in *host* byte order, and for
2502 * DLT_ENC, the link-layer header begins with a 32-bit
2503 * word containing an AF_ value in host byte order.
2504 *
2505 * In addition, if we're reading a saved capture file,
2506 * the host byte order in the capture may not be the
2507 * same as the host byte order on this machine.
2508 *
2509 * For DLT_LOOP, the link-layer header is a 32-bit
2510 * word containing an AF_ value in *network* byte order.
2511 */
2512 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2513 /*
2514 * The AF_ value is in host byte order, but the BPF
2515 * interpreter will convert it to network byte order.
2516 *
2517 * If this is a save file, and it's from a machine
2518 * with the opposite byte order to ours, we byte-swap
2519 * the AF_ value.
2520 *
2521 * Then we run it through "htonl()", and generate
2522 * code to compare against the result.
2523 */
2524 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2525 ll_proto = SWAPLONG(ll_proto);
2526 ll_proto = htonl(ll_proto);
2527 }
2528 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2529 }
2530
2531 /*
2532 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2533 * or IPv6 then we have an error.
2534 */
2535 static struct block *
2536 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2537 {
2538 switch (ll_proto) {
2539
2540 case ETHERTYPE_IP:
2541 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2542 /*NOTREACHED*/
2543
2544 case ETHERTYPE_IPV6:
2545 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2546 /*NOTREACHED*/
2547
2548 default:
2549 break;
2550 }
2551
2552 return gen_false(cstate);
2553 }
2554
2555 /*
2556 * Generate code to match a particular packet type.
2557 *
2558 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2559 * value, if <= ETHERMTU. We use that to determine whether to
2560 * match the type field or to check the type field for the special
2561 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2562 */
2563 static struct block *
2564 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2565 {
2566 struct block *b0, *b1;
2567
2568 switch (ll_proto) {
2569
2570 case LLCSAP_ISONS:
2571 case LLCSAP_IP:
2572 case LLCSAP_NETBEUI:
2573 /*
2574 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2575 * so we check the DSAP and SSAP.
2576 *
2577 * LLCSAP_IP checks for IP-over-802.2, rather
2578 * than IP-over-Ethernet or IP-over-SNAP.
2579 *
2580 * XXX - should we check both the DSAP and the
2581 * SSAP, like this, or should we check just the
2582 * DSAP, as we do for other types <= ETHERMTU
2583 * (i.e., other SAP values)?
2584 */
2585 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2586 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2587 gen_and(b0, b1);
2588 return b1;
2589
2590 case LLCSAP_IPX:
2591 /*
2592 * Ethernet_II frames, which are Ethernet
2593 * frames with a frame type of ETHERTYPE_IPX;
2594 *
2595 * Ethernet_802.3 frames, which have a frame
2596 * type of LINUX_SLL_P_802_3;
2597 *
2598 * Ethernet_802.2 frames, which are 802.3
2599 * frames with an 802.2 LLC header (i.e, have
2600 * a frame type of LINUX_SLL_P_802_2) and
2601 * with the IPX LSAP as the DSAP in the LLC
2602 * header;
2603 *
2604 * Ethernet_SNAP frames, which are 802.3
2605 * frames with an LLC header and a SNAP
2606 * header and with an OUI of 0x000000
2607 * (encapsulated Ethernet) and a protocol
2608 * ID of ETHERTYPE_IPX in the SNAP header.
2609 *
2610 * First, do the checks on LINUX_SLL_P_802_2
2611 * frames; generate the check for either
2612 * Ethernet_802.2 or Ethernet_SNAP frames, and
2613 * then put a check for LINUX_SLL_P_802_2 frames
2614 * before it.
2615 */
2616 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2617 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2618 gen_or(b0, b1);
2619 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2620 gen_and(b0, b1);
2621
2622 /*
2623 * Now check for 802.3 frames and OR that with
2624 * the previous test.
2625 */
2626 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2627 gen_or(b0, b1);
2628
2629 /*
2630 * Now add the check for Ethernet_II frames, and
2631 * do that before checking for the other frame
2632 * types.
2633 */
2634 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2635 gen_or(b0, b1);
2636 return b1;
2637
2638 case ETHERTYPE_ATALK:
2639 case ETHERTYPE_AARP:
2640 /*
2641 * EtherTalk (AppleTalk protocols on Ethernet link
2642 * layer) may use 802.2 encapsulation.
2643 */
2644
2645 /*
2646 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2647 * we check for the 802.2 protocol type in the
2648 * "Ethernet type" field.
2649 */
2650 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2651
2652 /*
2653 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2654 * SNAP packets with an organization code of
2655 * 0x080007 (Apple, for Appletalk) and a protocol
2656 * type of ETHERTYPE_ATALK (Appletalk).
2657 *
2658 * 802.2-encapsulated ETHERTYPE_AARP packets are
2659 * SNAP packets with an organization code of
2660 * 0x000000 (encapsulated Ethernet) and a protocol
2661 * type of ETHERTYPE_AARP (Appletalk ARP).
2662 */
2663 if (ll_proto == ETHERTYPE_ATALK)
2664 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2665 else /* ll_proto == ETHERTYPE_AARP */
2666 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2667 gen_and(b0, b1);
2668
2669 /*
2670 * Check for Ethernet encapsulation (Ethertalk
2671 * phase 1?); we just check for the Ethernet
2672 * protocol type.
2673 */
2674 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2675
2676 gen_or(b0, b1);
2677 return b1;
2678
2679 default:
2680 if (ll_proto <= ETHERMTU) {
2681 /*
2682 * This is an LLC SAP value, so the frames
2683 * that match would be 802.2 frames.
2684 * Check for the 802.2 protocol type
2685 * in the "Ethernet type" field, and
2686 * then check the DSAP.
2687 */
2688 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2689 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2690 ll_proto);
2691 gen_and(b0, b1);
2692 return b1;
2693 } else {
2694 /*
2695 * This is an Ethernet type, so compare
2696 * the length/type field with it (if
2697 * the frame is an 802.2 frame, the length
2698 * field will be <= ETHERMTU, and, as
2699 * "ll_proto" is > ETHERMTU, this test
2700 * will fail and the frame won't match,
2701 * which is what we want).
2702 */
2703 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2704 }
2705 }
2706 }
2707
2708 /*
2709 * Load a value relative to the beginning of the link-layer header after the
2710 * pflog header.
2711 */
2712 static struct slist *
2713 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2714 {
2715 struct slist *s1, *s2;
2716
2717 /*
2718 * Generate code to load the length of the pflog header into
2719 * the register assigned to hold that length, if one has been
2720 * assigned. (If one hasn't been assigned, no code we've
2721 * generated uses that prefix, so we don't need to generate any
2722 * code to load it.)
2723 */
2724 if (cstate->off_linkpl.reg != -1) {
2725 /*
2726 * The length is in the first byte of the header.
2727 */
2728 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2729 s1->s.k = 0;
2730
2731 /*
2732 * Round it up to a multiple of 4.
2733 * Add 3, and clear the lower 2 bits.
2734 */
2735 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2736 s2->s.k = 3;
2737 sappend(s1, s2);
2738 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2739 s2->s.k = 0xfffffffc;
2740 sappend(s1, s2);
2741
2742 /*
2743 * Now allocate a register to hold that value and store
2744 * it.
2745 */
2746 s2 = new_stmt(cstate, BPF_ST);
2747 s2->s.k = cstate->off_linkpl.reg;
2748 sappend(s1, s2);
2749
2750 /*
2751 * Now move it into the X register.
2752 */
2753 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2754 sappend(s1, s2);
2755
2756 return (s1);
2757 } else
2758 return (NULL);
2759 }
2760
2761 static struct slist *
2762 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2763 {
2764 struct slist *s1, *s2;
2765 struct slist *sjeq_avs_cookie;
2766 struct slist *sjcommon;
2767
2768 /*
2769 * This code is not compatible with the optimizer, as
2770 * we are generating jmp instructions within a normal
2771 * slist of instructions
2772 */
2773 cstate->no_optimize = 1;
2774
2775 /*
2776 * Generate code to load the length of the radio header into
2777 * the register assigned to hold that length, if one has been
2778 * assigned. (If one hasn't been assigned, no code we've
2779 * generated uses that prefix, so we don't need to generate any
2780 * code to load it.)
2781 *
2782 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2783 * or always use the AVS header rather than the Prism header.
2784 * We load a 4-byte big-endian value at the beginning of the
2785 * raw packet data, and see whether, when masked with 0xFFFFF000,
2786 * it's equal to 0x80211000. If so, that indicates that it's
2787 * an AVS header (the masked-out bits are the version number).
2788 * Otherwise, it's a Prism header.
2789 *
2790 * XXX - the Prism header is also, in theory, variable-length,
2791 * but no known software generates headers that aren't 144
2792 * bytes long.
2793 */
2794 if (cstate->off_linkhdr.reg != -1) {
2795 /*
2796 * Load the cookie.
2797 */
2798 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2799 s1->s.k = 0;
2800
2801 /*
2802 * AND it with 0xFFFFF000.
2803 */
2804 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2805 s2->s.k = 0xFFFFF000;
2806 sappend(s1, s2);
2807
2808 /*
2809 * Compare with 0x80211000.
2810 */
2811 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2812 sjeq_avs_cookie->s.k = 0x80211000;
2813 sappend(s1, sjeq_avs_cookie);
2814
2815 /*
2816 * If it's AVS:
2817 *
2818 * The 4 bytes at an offset of 4 from the beginning of
2819 * the AVS header are the length of the AVS header.
2820 * That field is big-endian.
2821 */
2822 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2823 s2->s.k = 4;
2824 sappend(s1, s2);
2825 sjeq_avs_cookie->s.jt = s2;
2826
2827 /*
2828 * Now jump to the code to allocate a register
2829 * into which to save the header length and
2830 * store the length there. (The "jump always"
2831 * instruction needs to have the k field set;
2832 * it's added to the PC, so, as we're jumping
2833 * over a single instruction, it should be 1.)
2834 */
2835 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2836 sjcommon->s.k = 1;
2837 sappend(s1, sjcommon);
2838
2839 /*
2840 * Now for the code that handles the Prism header.
2841 * Just load the length of the Prism header (144)
2842 * into the A register. Have the test for an AVS
2843 * header branch here if we don't have an AVS header.
2844 */
2845 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2846 s2->s.k = 144;
2847 sappend(s1, s2);
2848 sjeq_avs_cookie->s.jf = s2;
2849
2850 /*
2851 * Now allocate a register to hold that value and store
2852 * it. The code for the AVS header will jump here after
2853 * loading the length of the AVS header.
2854 */
2855 s2 = new_stmt(cstate, BPF_ST);
2856 s2->s.k = cstate->off_linkhdr.reg;
2857 sappend(s1, s2);
2858 sjcommon->s.jf = s2;
2859
2860 /*
2861 * Now move it into the X register.
2862 */
2863 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2864 sappend(s1, s2);
2865
2866 return (s1);
2867 } else
2868 return (NULL);
2869 }
2870
2871 static struct slist *
2872 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2873 {
2874 struct slist *s1, *s2;
2875
2876 /*
2877 * Generate code to load the length of the AVS header into
2878 * the register assigned to hold that length, if one has been
2879 * assigned. (If one hasn't been assigned, no code we've
2880 * generated uses that prefix, so we don't need to generate any
2881 * code to load it.)
2882 */
2883 if (cstate->off_linkhdr.reg != -1) {
2884 /*
2885 * The 4 bytes at an offset of 4 from the beginning of
2886 * the AVS header are the length of the AVS header.
2887 * That field is big-endian.
2888 */
2889 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2890 s1->s.k = 4;
2891
2892 /*
2893 * Now allocate a register to hold that value and store
2894 * it.
2895 */
2896 s2 = new_stmt(cstate, BPF_ST);
2897 s2->s.k = cstate->off_linkhdr.reg;
2898 sappend(s1, s2);
2899
2900 /*
2901 * Now move it into the X register.
2902 */
2903 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2904 sappend(s1, s2);
2905
2906 return (s1);
2907 } else
2908 return (NULL);
2909 }
2910
2911 static struct slist *
2912 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2913 {
2914 struct slist *s1, *s2;
2915
2916 /*
2917 * Generate code to load the length of the radiotap header into
2918 * the register assigned to hold that length, if one has been
2919 * assigned. (If one hasn't been assigned, no code we've
2920 * generated uses that prefix, so we don't need to generate any
2921 * code to load it.)
2922 */
2923 if (cstate->off_linkhdr.reg != -1) {
2924 /*
2925 * The 2 bytes at offsets of 2 and 3 from the beginning
2926 * of the radiotap header are the length of the radiotap
2927 * header; unfortunately, it's little-endian, so we have
2928 * to load it a byte at a time and construct the value.
2929 */
2930
2931 /*
2932 * Load the high-order byte, at an offset of 3, shift it
2933 * left a byte, and put the result in the X register.
2934 */
2935 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2936 s1->s.k = 3;
2937 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2938 sappend(s1, s2);
2939 s2->s.k = 8;
2940 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2941 sappend(s1, s2);
2942
2943 /*
2944 * Load the next byte, at an offset of 2, and OR the
2945 * value from the X register into it.
2946 */
2947 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2948 sappend(s1, s2);
2949 s2->s.k = 2;
2950 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2951 sappend(s1, s2);
2952
2953 /*
2954 * Now allocate a register to hold that value and store
2955 * it.
2956 */
2957 s2 = new_stmt(cstate, BPF_ST);
2958 s2->s.k = cstate->off_linkhdr.reg;
2959 sappend(s1, s2);
2960
2961 /*
2962 * Now move it into the X register.
2963 */
2964 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2965 sappend(s1, s2);
2966
2967 return (s1);
2968 } else
2969 return (NULL);
2970 }
2971
2972 /*
2973 * At the moment we treat PPI as normal Radiotap encoded
2974 * packets. The difference is in the function that generates
2975 * the code at the beginning to compute the header length.
2976 * Since this code generator of PPI supports bare 802.11
2977 * encapsulation only (i.e. the encapsulated DLT should be
2978 * DLT_IEEE802_11) we generate code to check for this too;
2979 * that's done in finish_parse().
2980 */
2981 static struct slist *
2982 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2983 {
2984 struct slist *s1, *s2;
2985
2986 /*
2987 * Generate code to load the length of the radiotap header
2988 * into the register assigned to hold that length, if one has
2989 * been assigned.
2990 */
2991 if (cstate->off_linkhdr.reg != -1) {
2992 /*
2993 * The 2 bytes at offsets of 2 and 3 from the beginning
2994 * of the radiotap header are the length of the radiotap
2995 * header; unfortunately, it's little-endian, so we have
2996 * to load it a byte at a time and construct the value.
2997 */
2998
2999 /*
3000 * Load the high-order byte, at an offset of 3, shift it
3001 * left a byte, and put the result in the X register.
3002 */
3003 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3004 s1->s.k = 3;
3005 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
3006 sappend(s1, s2);
3007 s2->s.k = 8;
3008 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3009 sappend(s1, s2);
3010
3011 /*
3012 * Load the next byte, at an offset of 2, and OR the
3013 * value from the X register into it.
3014 */
3015 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3016 sappend(s1, s2);
3017 s2->s.k = 2;
3018 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
3019 sappend(s1, s2);
3020
3021 /*
3022 * Now allocate a register to hold that value and store
3023 * it.
3024 */
3025 s2 = new_stmt(cstate, BPF_ST);
3026 s2->s.k = cstate->off_linkhdr.reg;
3027 sappend(s1, s2);
3028
3029 /*
3030 * Now move it into the X register.
3031 */
3032 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3033 sappend(s1, s2);
3034
3035 return (s1);
3036 } else
3037 return (NULL);
3038 }
3039
3040 /*
3041 * Load a value relative to the beginning of the link-layer header after the 802.11
3042 * header, i.e. LLC_SNAP.
3043 * The link-layer header doesn't necessarily begin at the beginning
3044 * of the packet data; there might be a variable-length prefix containing
3045 * radio information.
3046 */
3047 static struct slist *
3048 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
3049 {
3050 struct slist *s2;
3051 struct slist *sjset_data_frame_1;
3052 struct slist *sjset_data_frame_2;
3053 struct slist *sjset_qos;
3054 struct slist *sjset_radiotap_flags_present;
3055 struct slist *sjset_radiotap_ext_present;
3056 struct slist *sjset_radiotap_tsft_present;
3057 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
3058 struct slist *s_roundup;
3059
3060 if (cstate->off_linkpl.reg == -1) {
3061 /*
3062 * No register has been assigned to the offset of
3063 * the link-layer payload, which means nobody needs
3064 * it; don't bother computing it - just return
3065 * what we already have.
3066 */
3067 return (s);
3068 }
3069
3070 /*
3071 * This code is not compatible with the optimizer, as
3072 * we are generating jmp instructions within a normal
3073 * slist of instructions
3074 */
3075 cstate->no_optimize = 1;
3076
3077 /*
3078 * If "s" is non-null, it has code to arrange that the X register
3079 * contains the length of the prefix preceding the link-layer
3080 * header.
3081 *
3082 * Otherwise, the length of the prefix preceding the link-layer
3083 * header is "off_outermostlinkhdr.constant_part".
3084 */
3085 if (s == NULL) {
3086 /*
3087 * There is no variable-length header preceding the
3088 * link-layer header.
3089 *
3090 * Load the length of the fixed-length prefix preceding
3091 * the link-layer header (if any) into the X register,
3092 * and store it in the cstate->off_linkpl.reg register.
3093 * That length is off_outermostlinkhdr.constant_part.
3094 */
3095 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
3096 s->s.k = cstate->off_outermostlinkhdr.constant_part;
3097 }
3098
3099 /*
3100 * The X register contains the offset of the beginning of the
3101 * link-layer header; add 24, which is the minimum length
3102 * of the MAC header for a data frame, to that, and store it
3103 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3104 * which is at the offset in the X register, with an indexed load.
3105 */
3106 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
3107 sappend(s, s2);
3108 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
3109 s2->s.k = 24;
3110 sappend(s, s2);
3111 s2 = new_stmt(cstate, BPF_ST);
3112 s2->s.k = cstate->off_linkpl.reg;
3113 sappend(s, s2);
3114
3115 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
3116 s2->s.k = 0;
3117 sappend(s, s2);
3118
3119 /*
3120 * Check the Frame Control field to see if this is a data frame;
3121 * a data frame has the 0x08 bit (b3) in that field set and the
3122 * 0x04 bit (b2) clear.
3123 */
3124 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
3125 sjset_data_frame_1->s.k = 0x08;
3126 sappend(s, sjset_data_frame_1);
3127
3128 /*
3129 * If b3 is set, test b2, otherwise go to the first statement of
3130 * the rest of the program.
3131 */
3132 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
3133 sjset_data_frame_2->s.k = 0x04;
3134 sappend(s, sjset_data_frame_2);
3135 sjset_data_frame_1->s.jf = snext;
3136
3137 /*
3138 * If b2 is not set, this is a data frame; test the QoS bit.
3139 * Otherwise, go to the first statement of the rest of the
3140 * program.
3141 */
3142 sjset_data_frame_2->s.jt = snext;
3143 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
3144 sjset_qos->s.k = 0x80; /* QoS bit */
3145 sappend(s, sjset_qos);
3146
3147 /*
3148 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3149 * field.
3150 * Otherwise, go to the first statement of the rest of the
3151 * program.
3152 */
3153 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
3154 s2->s.k = cstate->off_linkpl.reg;
3155 sappend(s, s2);
3156 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
3157 s2->s.k = 2;
3158 sappend(s, s2);
3159 s2 = new_stmt(cstate, BPF_ST);
3160 s2->s.k = cstate->off_linkpl.reg;
3161 sappend(s, s2);
3162
3163 /*
3164 * If we have a radiotap header, look at it to see whether
3165 * there's Atheros padding between the MAC-layer header
3166 * and the payload.
3167 *
3168 * Note: all of the fields in the radiotap header are
3169 * little-endian, so we byte-swap all of the values
3170 * we test against, as they will be loaded as big-endian
3171 * values.
3172 *
3173 * XXX - in the general case, we would have to scan through
3174 * *all* the presence bits, if there's more than one word of
3175 * presence bits. That would require a loop, meaning that
3176 * we wouldn't be able to run the filter in the kernel.
3177 *
3178 * We assume here that the Atheros adapters that insert the
3179 * annoying padding don't have multiple antennae and therefore
3180 * do not generate radiotap headers with multiple presence words.
3181 */
3182 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
3183 /*
3184 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3185 * in the first presence flag word?
3186 */
3187 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
3188 s2->s.k = 4;
3189 sappend(s, s2);
3190
3191 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
3192 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
3193 sappend(s, sjset_radiotap_flags_present);
3194
3195 /*
3196 * If not, skip all of this.
3197 */
3198 sjset_radiotap_flags_present->s.jf = snext;
3199
3200 /*
3201 * Otherwise, is the "extension" bit set in that word?
3202 */
3203 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
3204 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
3205 sappend(s, sjset_radiotap_ext_present);
3206 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
3207
3208 /*
3209 * If so, skip all of this.
3210 */
3211 sjset_radiotap_ext_present->s.jt = snext;
3212
3213 /*
3214 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3215 */
3216 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
3217 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
3218 sappend(s, sjset_radiotap_tsft_present);
3219 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
3220
3221 /*
3222 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3223 * at an offset of 16 from the beginning of the raw packet
3224 * data (8 bytes for the radiotap header and 8 bytes for
3225 * the TSFT field).
3226 *
3227 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3228 * is set.
3229 */
3230 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
3231 s2->s.k = 16;
3232 sappend(s, s2);
3233 sjset_radiotap_tsft_present->s.jt = s2;
3234
3235 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
3236 sjset_tsft_datapad->s.k = 0x20;
3237 sappend(s, sjset_tsft_datapad);
3238
3239 /*
3240 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3241 * at an offset of 8 from the beginning of the raw packet
3242 * data (8 bytes for the radiotap header).
3243 *
3244 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3245 * is set.
3246 */
3247 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
3248 s2->s.k = 8;
3249 sappend(s, s2);
3250 sjset_radiotap_tsft_present->s.jf = s2;
3251
3252 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
3253 sjset_notsft_datapad->s.k = 0x20;
3254 sappend(s, sjset_notsft_datapad);
3255
3256 /*
3257 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3258 * set, round the length of the 802.11 header to
3259 * a multiple of 4. Do that by adding 3 and then
3260 * dividing by and multiplying by 4, which we do by
3261 * ANDing with ~3.
3262 */
3263 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
3264 s_roundup->s.k = cstate->off_linkpl.reg;
3265 sappend(s, s_roundup);
3266 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
3267 s2->s.k = 3;
3268 sappend(s, s2);
3269 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
3270 s2->s.k = (bpf_u_int32)~3;
3271 sappend(s, s2);
3272 s2 = new_stmt(cstate, BPF_ST);
3273 s2->s.k = cstate->off_linkpl.reg;
3274 sappend(s, s2);
3275
3276 sjset_tsft_datapad->s.jt = s_roundup;
3277 sjset_tsft_datapad->s.jf = snext;
3278 sjset_notsft_datapad->s.jt = s_roundup;
3279 sjset_notsft_datapad->s.jf = snext;
3280 } else
3281 sjset_qos->s.jf = snext;
3282
3283 return s;
3284 }
3285
3286 static void
3287 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
3288 {
3289 struct slist *s;
3290
3291 /* There is an implicit dependency between the link
3292 * payload and link header since the payload computation
3293 * includes the variable part of the header. Therefore,
3294 * if nobody else has allocated a register for the link
3295 * header and we need it, do it now. */
3296 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
3297 cstate->off_linkhdr.reg == -1)
3298 cstate->off_linkhdr.reg = alloc_reg(cstate);
3299
3300 /*
3301 * For link-layer types that have a variable-length header
3302 * preceding the link-layer header, generate code to load
3303 * the offset of the link-layer header into the register
3304 * assigned to that offset, if any.
3305 *
3306 * XXX - this, and the next switch statement, won't handle
3307 * encapsulation of 802.11 or 802.11+radio information in
3308 * some other protocol stack. That's significantly more
3309 * complicated.
3310 */
3311 switch (cstate->outermostlinktype) {
3312
3313 case DLT_PRISM_HEADER:
3314 s = gen_load_prism_llprefixlen(cstate);
3315 break;
3316
3317 case DLT_IEEE802_11_RADIO_AVS:
3318 s = gen_load_avs_llprefixlen(cstate);
3319 break;
3320
3321 case DLT_IEEE802_11_RADIO:
3322 s = gen_load_radiotap_llprefixlen(cstate);
3323 break;
3324
3325 case DLT_PPI:
3326 s = gen_load_ppi_llprefixlen(cstate);
3327 break;
3328
3329 default:
3330 s = NULL;
3331 break;
3332 }
3333
3334 /*
3335 * For link-layer types that have a variable-length link-layer
3336 * header, generate code to load the offset of the link-layer
3337 * payload into the register assigned to that offset, if any.
3338 */
3339 switch (cstate->outermostlinktype) {
3340
3341 case DLT_IEEE802_11:
3342 case DLT_PRISM_HEADER:
3343 case DLT_IEEE802_11_RADIO_AVS:
3344 case DLT_IEEE802_11_RADIO:
3345 case DLT_PPI:
3346 s = gen_load_802_11_header_len(cstate, s, b->stmts);
3347 break;
3348
3349 case DLT_PFLOG:
3350 s = gen_load_pflog_llprefixlen(cstate);
3351 break;
3352 }
3353
3354 /*
3355 * If there is no initialization yet and we need variable
3356 * length offsets for VLAN, initialize them to zero
3357 */
3358 if (s == NULL && cstate->is_vlan_vloffset) {
3359 struct slist *s2;
3360
3361 if (cstate->off_linkpl.reg == -1)
3362 cstate->off_linkpl.reg = alloc_reg(cstate);
3363 if (cstate->off_linktype.reg == -1)
3364 cstate->off_linktype.reg = alloc_reg(cstate);
3365
3366 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3367 s->s.k = 0;
3368 s2 = new_stmt(cstate, BPF_ST);
3369 s2->s.k = cstate->off_linkpl.reg;
3370 sappend(s, s2);
3371 s2 = new_stmt(cstate, BPF_ST);
3372 s2->s.k = cstate->off_linktype.reg;
3373 sappend(s, s2);
3374 }
3375
3376 /*
3377 * If we have any offset-loading code, append all the
3378 * existing statements in the block to those statements,
3379 * and make the resulting list the list of statements
3380 * for the block.
3381 */
3382 if (s != NULL) {
3383 sappend(s, b->stmts);
3384 b->stmts = s;
3385 }
3386 }
3387
3388 /*
3389 * Take an absolute offset, and:
3390 *
3391 * if it has no variable part, return NULL;
3392 *
3393 * if it has a variable part, generate code to load the register
3394 * containing that variable part into the X register, returning
3395 * a pointer to that code - if no register for that offset has
3396 * been allocated, allocate it first.
3397 *
3398 * (The code to set that register will be generated later, but will
3399 * be placed earlier in the code sequence.)
3400 */
3401 static struct slist *
3402 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3403 {
3404 struct slist *s;
3405
3406 if (off->is_variable) {
3407 if (off->reg == -1) {
3408 /*
3409 * We haven't yet assigned a register for the
3410 * variable part of the offset of the link-layer
3411 * header; allocate one.
3412 */
3413 off->reg = alloc_reg(cstate);
3414 }
3415
3416 /*
3417 * Load the register containing the variable part of the
3418 * offset of the link-layer header into the X register.
3419 */
3420 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3421 s->s.k = off->reg;
3422 return s;
3423 } else {
3424 /*
3425 * That offset isn't variable, there's no variable part,
3426 * so we don't need to generate any code.
3427 */
3428 return NULL;
3429 }
3430 }
3431
3432 /*
3433 * Map an Ethernet type to the equivalent PPP type.
3434 */
3435 static bpf_u_int32
3436 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3437 {
3438 switch (ll_proto) {
3439
3440 case ETHERTYPE_IP:
3441 ll_proto = PPP_IP;
3442 break;
3443
3444 case ETHERTYPE_IPV6:
3445 ll_proto = PPP_IPV6;
3446 break;
3447
3448 case ETHERTYPE_DN:
3449 ll_proto = PPP_DECNET;
3450 break;
3451
3452 case ETHERTYPE_ATALK:
3453 ll_proto = PPP_APPLE;
3454 break;
3455
3456 case ETHERTYPE_NS:
3457 ll_proto = PPP_NS;
3458 break;
3459
3460 case LLCSAP_ISONS:
3461 ll_proto = PPP_OSI;
3462 break;
3463
3464 case LLCSAP_8021D:
3465 /*
3466 * I'm assuming the "Bridging PDU"s that go
3467 * over PPP are Spanning Tree Protocol
3468 * Bridging PDUs.
3469 */
3470 ll_proto = PPP_BRPDU;
3471 break;
3472
3473 case LLCSAP_IPX:
3474 ll_proto = PPP_IPX;
3475 break;
3476 }
3477 return (ll_proto);
3478 }
3479
3480 /*
3481 * Generate any tests that, for encapsulation of a link-layer packet
3482 * inside another protocol stack, need to be done to check for those
3483 * link-layer packets (and that haven't already been done by a check
3484 * for that encapsulation).
3485 */
3486 static struct block *
3487 gen_prevlinkhdr_check(compiler_state_t *cstate)
3488 {
3489 struct block *b0;
3490
3491 if (cstate->is_encap)
3492 return gen_encap_ll_check(cstate);
3493
3494 switch (cstate->prevlinktype) {
3495
3496 case DLT_SUNATM:
3497 /*
3498 * This is LANE-encapsulated Ethernet; check that the LANE
3499 * packet doesn't begin with an LE Control marker, i.e.
3500 * that it's data, not a control message.
3501 *
3502 * (We've already generated a test for LANE.)
3503 */
3504 b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3505 gen_not(b0);
3506 return b0;
3507
3508 default:
3509 /*
3510 * No such tests are necessary.
3511 */
3512 return NULL;
3513 }
3514 /*NOTREACHED*/
3515 }
3516
3517 /*
3518 * The three different values we should check for when checking for an
3519 * IPv6 packet with DLT_NULL.
3520 */
3521 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3522 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3523 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3524
3525 /*
3526 * Generate code to match a particular packet type by matching the
3527 * link-layer type field or fields in the 802.2 LLC header.
3528 *
3529 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3530 * value, if <= ETHERMTU.
3531 */
3532 static struct block *
3533 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3534 {
3535 struct block *b0, *b1, *b2;
3536
3537 /* are we checking MPLS-encapsulated packets? */
3538 if (cstate->label_stack_depth > 0)
3539 return gen_mpls_linktype(cstate, ll_proto);
3540
3541 switch (cstate->linktype) {
3542
3543 case DLT_EN10MB:
3544 case DLT_NETANALYZER:
3545 case DLT_NETANALYZER_TRANSPARENT:
3546 /* Geneve has an EtherType regardless of whether there is an
3547 * L2 header. VXLAN always has an EtherType. */
3548 if (!cstate->is_encap)
3549 b0 = gen_prevlinkhdr_check(cstate);
3550 else
3551 b0 = NULL;
3552
3553 b1 = gen_ether_linktype(cstate, ll_proto);
3554 if (b0 != NULL)
3555 gen_and(b0, b1);
3556 return b1;
3557 /*NOTREACHED*/
3558
3559 case DLT_C_HDLC:
3560 case DLT_HDLC:
3561 switch (ll_proto) {
3562
3563 case LLCSAP_ISONS:
3564 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3565 /* fall through */
3566
3567 default:
3568 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3569 /*NOTREACHED*/
3570 }
3571
3572 case DLT_IEEE802_11:
3573 case DLT_PRISM_HEADER:
3574 case DLT_IEEE802_11_RADIO_AVS:
3575 case DLT_IEEE802_11_RADIO:
3576 case DLT_PPI:
3577 /*
3578 * Check that we have a data frame.
3579 */
3580 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B,
3581 IEEE80211_FC0_TYPE_DATA,
3582 IEEE80211_FC0_TYPE_MASK);
3583
3584 /*
3585 * Now check for the specified link-layer type.
3586 */
3587 b1 = gen_llc_linktype(cstate, ll_proto);
3588 gen_and(b0, b1);
3589 return b1;
3590 /*NOTREACHED*/
3591
3592 case DLT_FDDI:
3593 /*
3594 * XXX - check for LLC frames.
3595 */
3596 return gen_llc_linktype(cstate, ll_proto);
3597 /*NOTREACHED*/
3598
3599 case DLT_IEEE802:
3600 /*
3601 * XXX - check for LLC PDUs, as per IEEE 802.5.
3602 */
3603 return gen_llc_linktype(cstate, ll_proto);
3604 /*NOTREACHED*/
3605
3606 case DLT_ATM_RFC1483:
3607 case DLT_ATM_CLIP:
3608 case DLT_IP_OVER_FC:
3609 return gen_llc_linktype(cstate, ll_proto);
3610 /*NOTREACHED*/
3611
3612 case DLT_SUNATM:
3613 /*
3614 * Check for an LLC-encapsulated version of this protocol;
3615 * if we were checking for LANE, linktype would no longer
3616 * be DLT_SUNATM.
3617 *
3618 * Check for LLC encapsulation and then check the protocol.
3619 */
3620 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3621 b1 = gen_llc_linktype(cstate, ll_proto);
3622 gen_and(b0, b1);
3623 return b1;
3624 /*NOTREACHED*/
3625
3626 case DLT_LINUX_SLL:
3627 return gen_linux_sll_linktype(cstate, ll_proto);
3628 /*NOTREACHED*/
3629
3630 case DLT_SLIP:
3631 case DLT_SLIP_BSDOS:
3632 case DLT_RAW:
3633 /*
3634 * These types don't provide any type field; packets
3635 * are always IPv4 or IPv6.
3636 *
3637 * XXX - for IPv4, check for a version number of 4, and,
3638 * for IPv6, check for a version number of 6?
3639 */
3640 switch (ll_proto) {
3641
3642 case ETHERTYPE_IP:
3643 /* Check for a version number of 4. */
3644 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3645
3646 case ETHERTYPE_IPV6:
3647 /* Check for a version number of 6. */
3648 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3649
3650 default:
3651 return gen_false(cstate); /* always false */
3652 }
3653 /*NOTREACHED*/
3654
3655 case DLT_IPV4:
3656 /*
3657 * Raw IPv4, so no type field.
3658 */
3659 if (ll_proto == ETHERTYPE_IP)
3660 return gen_true(cstate); /* always true */
3661
3662 /* Checking for something other than IPv4; always false */
3663 return gen_false(cstate);
3664 /*NOTREACHED*/
3665
3666 case DLT_IPV6:
3667 /*
3668 * Raw IPv6, so no type field.
3669 */
3670 if (ll_proto == ETHERTYPE_IPV6)
3671 return gen_true(cstate); /* always true */
3672
3673 /* Checking for something other than IPv6; always false */
3674 return gen_false(cstate);
3675 /*NOTREACHED*/
3676
3677 case DLT_PPP:
3678 case DLT_PPP_PPPD:
3679 case DLT_PPP_SERIAL:
3680 case DLT_PPP_ETHER:
3681 /*
3682 * We use Ethernet protocol types inside libpcap;
3683 * map them to the corresponding PPP protocol types.
3684 */
3685 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3686 ethertype_to_ppptype(ll_proto));
3687 /*NOTREACHED*/
3688
3689 case DLT_PPP_BSDOS:
3690 /*
3691 * We use Ethernet protocol types inside libpcap;
3692 * map them to the corresponding PPP protocol types.
3693 */
3694 switch (ll_proto) {
3695
3696 case ETHERTYPE_IP:
3697 /*
3698 * Also check for Van Jacobson-compressed IP.
3699 * XXX - do this for other forms of PPP?
3700 */
3701 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3702 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3703 gen_or(b0, b1);
3704 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3705 gen_or(b1, b0);
3706 return b0;
3707
3708 default:
3709 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3710 ethertype_to_ppptype(ll_proto));
3711 }
3712 /*NOTREACHED*/
3713
3714 case DLT_NULL:
3715 case DLT_LOOP:
3716 case DLT_ENC:
3717 switch (ll_proto) {
3718
3719 case ETHERTYPE_IP:
3720 return (gen_loopback_linktype(cstate, AF_INET));
3721
3722 case ETHERTYPE_IPV6:
3723 /*
3724 * AF_ values may, unfortunately, be platform-
3725 * dependent; AF_INET isn't, because everybody
3726 * used 4.2BSD's value, but AF_INET6 is, because
3727 * 4.2BSD didn't have a value for it (given that
3728 * IPv6 didn't exist back in the early 1980's),
3729 * and they all picked their own values.
3730 *
3731 * This means that, if we're reading from a
3732 * savefile, we need to check for all the
3733 * possible values.
3734 *
3735 * If we're doing a live capture, we only need
3736 * to check for this platform's value; however,
3737 * Npcap uses 24, which isn't Windows's AF_INET6
3738 * value. (Given the multiple different values,
3739 * programs that read pcap files shouldn't be
3740 * checking for their platform's AF_INET6 value
3741 * anyway, they should check for all of the
3742 * possible values. and they might as well do
3743 * that even for live captures.)
3744 */
3745 if (cstate->bpf_pcap->rfile != NULL) {
3746 /*
3747 * Savefile - check for all three
3748 * possible IPv6 values.
3749 */
3750 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3751 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3752 gen_or(b0, b1);
3753 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3754 gen_or(b0, b1);
3755 return (b1);
3756 } else {
3757 /*
3758 * Live capture, so we only need to
3759 * check for the value used on this
3760 * platform.
3761 */
3762 #ifdef _WIN32
3763 /*
3764 * Npcap doesn't use Windows's AF_INET6,
3765 * as that collides with AF_IPX on
3766 * some BSDs (both have the value 23).
3767 * Instead, it uses 24.
3768 */
3769 return (gen_loopback_linktype(cstate, 24));
3770 #else /* _WIN32 */
3771 #ifdef AF_INET6
3772 return (gen_loopback_linktype(cstate, AF_INET6));
3773 #else /* AF_INET6 */
3774 /*
3775 * I guess this platform doesn't support
3776 * IPv6, so we just reject all packets.
3777 */
3778 return gen_false(cstate);
3779 #endif /* AF_INET6 */
3780 #endif /* _WIN32 */
3781 }
3782
3783 default:
3784 /*
3785 * Not a type on which we support filtering.
3786 * XXX - support those that have AF_ values
3787 * #defined on this platform, at least?
3788 */
3789 return gen_false(cstate);
3790 }
3791
3792 case DLT_PFLOG:
3793 /*
3794 * af field is host byte order in contrast to the rest of
3795 * the packet.
3796 */
3797 if (ll_proto == ETHERTYPE_IP)
3798 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3799 BPF_B, AF_INET));
3800 else if (ll_proto == ETHERTYPE_IPV6)
3801 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3802 BPF_B, AF_INET6));
3803 else
3804 return gen_false(cstate);
3805 /*NOTREACHED*/
3806
3807 case DLT_ARCNET:
3808 case DLT_ARCNET_LINUX:
3809 /*
3810 * XXX should we check for first fragment if the protocol
3811 * uses PHDS?
3812 */
3813 switch (ll_proto) {
3814
3815 default:
3816 return gen_false(cstate);
3817
3818 case ETHERTYPE_IPV6:
3819 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3820 ARCTYPE_INET6));
3821
3822 case ETHERTYPE_IP:
3823 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3824 ARCTYPE_IP);
3825 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3826 ARCTYPE_IP_OLD);
3827 gen_or(b0, b1);
3828 return (b1);
3829
3830 case ETHERTYPE_ARP:
3831 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3832 ARCTYPE_ARP);
3833 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3834 ARCTYPE_ARP_OLD);
3835 gen_or(b0, b1);
3836 return (b1);
3837
3838 case ETHERTYPE_REVARP:
3839 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3840 ARCTYPE_REVARP));
3841
3842 case ETHERTYPE_ATALK:
3843 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3844 ARCTYPE_ATALK));
3845 }
3846 /*NOTREACHED*/
3847
3848 case DLT_LTALK:
3849 switch (ll_proto) {
3850 case ETHERTYPE_ATALK:
3851 return gen_true(cstate);
3852 default:
3853 return gen_false(cstate);
3854 }
3855 /*NOTREACHED*/
3856
3857 case DLT_FRELAY:
3858 /*
3859 * XXX - assumes a 2-byte Frame Relay header with
3860 * DLCI and flags. What if the address is longer?
3861 */
3862 switch (ll_proto) {
3863
3864 case ETHERTYPE_IP:
3865 /*
3866 * Check for the special NLPID for IP.
3867 */
3868 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3869
3870 case ETHERTYPE_IPV6:
3871 /*
3872 * Check for the special NLPID for IPv6.
3873 */
3874 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3875
3876 case LLCSAP_ISONS:
3877 /*
3878 * Check for several OSI protocols.
3879 *
3880 * Frame Relay packets typically have an OSI
3881 * NLPID at the beginning; we check for each
3882 * of them.
3883 *
3884 * What we check for is the NLPID and a frame
3885 * control field of UI, i.e. 0x03 followed
3886 * by the NLPID.
3887 */
3888 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3889 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3890 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3891 gen_or(b1, b2);
3892 gen_or(b0, b2);
3893 return b2;
3894
3895 default:
3896 return gen_false(cstate);
3897 }
3898 /*NOTREACHED*/
3899
3900 case DLT_MFR:
3901 break; // not implemented
3902
3903 case DLT_JUNIPER_MFR:
3904 case DLT_JUNIPER_MLFR:
3905 case DLT_JUNIPER_MLPPP:
3906 case DLT_JUNIPER_ATM1:
3907 case DLT_JUNIPER_ATM2:
3908 case DLT_JUNIPER_PPPOE:
3909 case DLT_JUNIPER_PPPOE_ATM:
3910 case DLT_JUNIPER_GGSN:
3911 case DLT_JUNIPER_ES:
3912 case DLT_JUNIPER_MONITOR:
3913 case DLT_JUNIPER_SERVICES:
3914 case DLT_JUNIPER_ETHER:
3915 case DLT_JUNIPER_PPP:
3916 case DLT_JUNIPER_FRELAY:
3917 case DLT_JUNIPER_CHDLC:
3918 case DLT_JUNIPER_VP:
3919 case DLT_JUNIPER_ST:
3920 case DLT_JUNIPER_ISM:
3921 case DLT_JUNIPER_VS:
3922 case DLT_JUNIPER_SRX_E2E:
3923 case DLT_JUNIPER_FIBRECHANNEL:
3924 case DLT_JUNIPER_ATM_CEMIC:
3925
3926 /* just lets verify the magic number for now -
3927 * on ATM we may have up to 6 different encapsulations on the wire
3928 * and need a lot of heuristics to figure out that the payload
3929 * might be;
3930 *
3931 * FIXME encapsulation specific BPF_ filters
3932 */
3933 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3934
3935 case DLT_BACNET_MS_TP:
3936 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3937
3938 case DLT_IPNET:
3939 return gen_ipnet_linktype(cstate, ll_proto);
3940
3941 case DLT_LINUX_IRDA:
3942 case DLT_DOCSIS:
3943 case DLT_MTP2:
3944 case DLT_MTP2_WITH_PHDR:
3945 case DLT_ERF:
3946 case DLT_PFSYNC:
3947 case DLT_LINUX_LAPD:
3948 case DLT_USB_FREEBSD:
3949 case DLT_USB_LINUX:
3950 case DLT_USB_LINUX_MMAPPED:
3951 case DLT_USBPCAP:
3952 case DLT_BLUETOOTH_HCI_H4:
3953 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3954 case DLT_CAN20B:
3955 case DLT_CAN_SOCKETCAN:
3956 case DLT_IEEE802_15_4:
3957 case DLT_IEEE802_15_4_LINUX:
3958 case DLT_IEEE802_15_4_NONASK_PHY:
3959 case DLT_IEEE802_15_4_NOFCS:
3960 case DLT_IEEE802_15_4_TAP:
3961 case DLT_IEEE802_16_MAC_CPS_RADIO:
3962 case DLT_SITA:
3963 case DLT_RAIF1:
3964 case DLT_IPMB_KONTRON:
3965 case DLT_I2C_LINUX:
3966 case DLT_AX25_KISS:
3967 case DLT_NFLOG:
3968 /* Using the fixed-size NFLOG header it is possible to tell only
3969 * the address family of the packet, other meaningful data is
3970 * either missing or behind TLVs.
3971 */
3972 break; // not implemented
3973
3974 default:
3975 /*
3976 * Does this link-layer header type have a field
3977 * indicating the type of the next protocol? If
3978 * so, off_linktype.constant_part will be the offset of that
3979 * field in the packet; if not, it will be OFFSET_NOT_SET.
3980 */
3981 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3982 /*
3983 * Yes; assume it's an Ethernet type. (If
3984 * it's not, it needs to be handled specially
3985 * above.)
3986 */
3987 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3988 /*NOTREACHED */
3989 }
3990 }
3991 bpf_error(cstate, "link-layer type filtering not implemented for %s",
3992 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3993 }
3994
3995 /*
3996 * Check for an LLC SNAP packet with a given organization code and
3997 * protocol type; we check the entire contents of the 802.2 LLC and
3998 * snap headers, checking for DSAP and SSAP of SNAP and a control
3999 * field of 0x03 in the LLC header, and for the specified organization
4000 * code and protocol type in the SNAP header.
4001 */
4002 static struct block *
4003 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
4004 {
4005 u_char snapblock[8];
4006
4007 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
4008 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
4009 snapblock[2] = 0x03; /* control = UI */
4010 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
4011 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
4012 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
4013 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
4014 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
4015 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
4016 }
4017
4018 /*
4019 * Generate code to match frames with an LLC header.
4020 */
4021 static struct block *
4022 gen_llc_internal(compiler_state_t *cstate)
4023 {
4024 struct block *b0, *b1;
4025
4026 switch (cstate->linktype) {
4027
4028 case DLT_EN10MB:
4029 /*
4030 * We check for an Ethernet type field less or equal than
4031 * 1500, which means it's an 802.3 length field.
4032 */
4033 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
4034
4035 /*
4036 * Now check for the purported DSAP and SSAP not being
4037 * 0xFF, to rule out NetWare-over-802.3.
4038 */
4039 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
4040 gen_not(b1);
4041 gen_and(b0, b1);
4042 return b1;
4043
4044 case DLT_SUNATM:
4045 /*
4046 * We check for LLC traffic.
4047 */
4048 b0 = gen_atmtype_llc(cstate);
4049 return b0;
4050
4051 case DLT_IEEE802: /* Token Ring */
4052 /*
4053 * XXX - check for LLC frames.
4054 */
4055 return gen_true(cstate);
4056
4057 case DLT_FDDI:
4058 /*
4059 * XXX - check for LLC frames.
4060 */
4061 return gen_true(cstate);
4062
4063 case DLT_ATM_RFC1483:
4064 /*
4065 * For LLC encapsulation, these are defined to have an
4066 * 802.2 LLC header.
4067 *
4068 * For VC encapsulation, they don't, but there's no
4069 * way to check for that; the protocol used on the VC
4070 * is negotiated out of band.
4071 */
4072 return gen_true(cstate);
4073
4074 case DLT_IEEE802_11:
4075 case DLT_PRISM_HEADER:
4076 case DLT_IEEE802_11_RADIO:
4077 case DLT_IEEE802_11_RADIO_AVS:
4078 case DLT_PPI:
4079 /*
4080 * Check that we have a data frame.
4081 */
4082 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B,
4083 IEEE80211_FC0_TYPE_DATA,
4084 IEEE80211_FC0_TYPE_MASK);
4085
4086 default:
4087 fail_kw_on_dlt(cstate, "llc");
4088 /*NOTREACHED*/
4089 }
4090 }
4091
4092 struct block *
4093 gen_llc(compiler_state_t *cstate)
4094 {
4095 /*
4096 * Catch errors reported by us and routines below us, and return NULL
4097 * on an error.
4098 */
4099 if (setjmp(cstate->top_ctx))
4100 return (NULL);
4101
4102 return gen_llc_internal(cstate);
4103 }
4104
4105 struct block *
4106 gen_llc_i(compiler_state_t *cstate)
4107 {
4108 struct block *b0, *b1;
4109 struct slist *s;
4110
4111 /*
4112 * Catch errors reported by us and routines below us, and return NULL
4113 * on an error.
4114 */
4115 if (setjmp(cstate->top_ctx))
4116 return (NULL);
4117
4118 /*
4119 * Check whether this is an LLC frame.
4120 */
4121 b0 = gen_llc_internal(cstate);
4122
4123 /*
4124 * Load the control byte and test the low-order bit; it must
4125 * be clear for I frames.
4126 */
4127 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
4128 b1 = new_block(cstate, JMP(BPF_JSET));
4129 b1->s.k = 0x01;
4130 b1->stmts = s;
4131 gen_not(b1);
4132 gen_and(b0, b1);
4133 return b1;
4134 }
4135
4136 struct block *
4137 gen_llc_s(compiler_state_t *cstate)
4138 {
4139 struct block *b0, *b1;
4140
4141 /*
4142 * Catch errors reported by us and routines below us, and return NULL
4143 * on an error.
4144 */
4145 if (setjmp(cstate->top_ctx))
4146 return (NULL);
4147
4148 /*
4149 * Check whether this is an LLC frame.
4150 */
4151 b0 = gen_llc_internal(cstate);
4152
4153 /*
4154 * Now compare the low-order 2 bit of the control byte against
4155 * the appropriate value for S frames.
4156 */
4157 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
4158 gen_and(b0, b1);
4159 return b1;
4160 }
4161
4162 struct block *
4163 gen_llc_u(compiler_state_t *cstate)
4164 {
4165 struct block *b0, *b1;
4166
4167 /*
4168 * Catch errors reported by us and routines below us, and return NULL
4169 * on an error.
4170 */
4171 if (setjmp(cstate->top_ctx))
4172 return (NULL);
4173
4174 /*
4175 * Check whether this is an LLC frame.
4176 */
4177 b0 = gen_llc_internal(cstate);
4178
4179 /*
4180 * Now compare the low-order 2 bit of the control byte against
4181 * the appropriate value for U frames.
4182 */
4183 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
4184 gen_and(b0, b1);
4185 return b1;
4186 }
4187
4188 struct block *
4189 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
4190 {
4191 struct block *b0, *b1;
4192
4193 /*
4194 * Catch errors reported by us and routines below us, and return NULL
4195 * on an error.
4196 */
4197 if (setjmp(cstate->top_ctx))
4198 return (NULL);
4199
4200 /*
4201 * Check whether this is an LLC frame.
4202 */
4203 b0 = gen_llc_internal(cstate);
4204
4205 /*
4206 * Now check for an S frame with the appropriate type.
4207 */
4208 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
4209 gen_and(b0, b1);
4210 return b1;
4211 }
4212
4213 struct block *
4214 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
4215 {
4216 struct block *b0, *b1;
4217
4218 /*
4219 * Catch errors reported by us and routines below us, and return NULL
4220 * on an error.
4221 */
4222 if (setjmp(cstate->top_ctx))
4223 return (NULL);
4224
4225 /*
4226 * Check whether this is an LLC frame.
4227 */
4228 b0 = gen_llc_internal(cstate);
4229
4230 /*
4231 * Now check for a U frame with the appropriate type.
4232 */
4233 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
4234 gen_and(b0, b1);
4235 return b1;
4236 }
4237
4238 /*
4239 * Generate code to match a particular packet type, for link-layer types
4240 * using 802.2 LLC headers.
4241 *
4242 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4243 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4244 *
4245 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4246 * value, if <= ETHERMTU. We use that to determine whether to
4247 * match the DSAP or both DSAP and LSAP or to check the OUI and
4248 * protocol ID in a SNAP header.
4249 */
4250 static struct block *
4251 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4252 {
4253 /*
4254 * XXX - handle token-ring variable-length header.
4255 */
4256 switch (ll_proto) {
4257
4258 case LLCSAP_IP:
4259 case LLCSAP_ISONS:
4260 case LLCSAP_NETBEUI:
4261 /*
4262 * XXX - should we check both the DSAP and the
4263 * SSAP, like this, or should we check just the
4264 * DSAP, as we do for other SAP values?
4265 */
4266 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
4267 ((ll_proto << 8) | ll_proto));
4268
4269 case LLCSAP_IPX:
4270 /*
4271 * XXX - are there ever SNAP frames for IPX on
4272 * non-Ethernet 802.x networks?
4273 */
4274 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
4275
4276 case ETHERTYPE_ATALK:
4277 /*
4278 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4279 * SNAP packets with an organization code of
4280 * 0x080007 (Apple, for Appletalk) and a protocol
4281 * type of ETHERTYPE_ATALK (Appletalk).
4282 *
4283 * XXX - check for an organization code of
4284 * encapsulated Ethernet as well?
4285 */
4286 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
4287
4288 default:
4289 /*
4290 * XXX - we don't have to check for IPX 802.3
4291 * here, but should we check for the IPX Ethertype?
4292 */
4293 if (ll_proto <= ETHERMTU) {
4294 /*
4295 * This is an LLC SAP value, so check
4296 * the DSAP.
4297 */
4298 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
4299 } else {
4300 /*
4301 * This is an Ethernet type; we assume that it's
4302 * unlikely that it'll appear in the right place
4303 * at random, and therefore check only the
4304 * location that would hold the Ethernet type
4305 * in a SNAP frame with an organization code of
4306 * 0x000000 (encapsulated Ethernet).
4307 *
4308 * XXX - if we were to check for the SNAP DSAP and
4309 * LSAP, as per XXX, and were also to check for an
4310 * organization code of 0x000000 (encapsulated
4311 * Ethernet), we'd do
4312 *
4313 * return gen_snap(cstate, 0x000000, ll_proto);
4314 *
4315 * here; for now, we don't, as per the above.
4316 * I don't know whether it's worth the extra CPU
4317 * time to do the right check or not.
4318 */
4319 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4320 }
4321 }
4322 }
4323
4324 static struct block *
4325 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4326 int dir, u_int src_off, u_int dst_off)
4327 {
4328 struct block *b0, *b1;
4329 u_int offset;
4330
4331 switch (dir) {
4332
4333 case Q_SRC:
4334 offset = src_off;
4335 break;
4336
4337 case Q_DST:
4338 offset = dst_off;
4339 break;
4340
4341 case Q_AND:
4342 b0 = gen_hostop(cstate, addr, mask, Q_SRC, src_off, dst_off);
4343 b1 = gen_hostop(cstate, addr, mask, Q_DST, src_off, dst_off);
4344 gen_and(b0, b1);
4345 return b1;
4346
4347 case Q_DEFAULT:
4348 case Q_OR:
4349 b0 = gen_hostop(cstate, addr, mask, Q_SRC, src_off, dst_off);
4350 b1 = gen_hostop(cstate, addr, mask, Q_DST, src_off, dst_off);
4351 gen_or(b0, b1);
4352 return b1;
4353
4354 case Q_ADDR1:
4355 case Q_ADDR2:
4356 case Q_ADDR3:
4357 case Q_ADDR4:
4358 case Q_RA:
4359 case Q_TA:
4360 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4361 /*NOTREACHED*/
4362
4363 default:
4364 abort();
4365 /*NOTREACHED*/
4366 }
4367 return gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4368 }
4369
4370 #ifdef INET6
4371 static struct block *
4372 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4373 struct in6_addr *mask, int dir, u_int src_off, u_int dst_off)
4374 {
4375 struct block *b0, *b1;
4376 u_int offset;
4377 /*
4378 * Code below needs to access four separate 32-bit parts of the 128-bit
4379 * IPv6 address and mask. In some OSes this is as simple as using the
4380 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4381 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4382 * far as libpcap sees it. Hence copy the data before use to avoid
4383 * potential unaligned memory access and the associated compiler
4384 * warnings (whether genuine or not).
4385 */
4386 bpf_u_int32 a[4], m[4];
4387
4388 switch (dir) {
4389
4390 case Q_SRC:
4391 offset = src_off;
4392 break;
4393
4394 case Q_DST:
4395 offset = dst_off;
4396 break;
4397
4398 case Q_AND:
4399 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, src_off, dst_off);
4400 b1 = gen_hostop6(cstate, addr, mask, Q_DST, src_off, dst_off);
4401 gen_and(b0, b1);
4402 return b1;
4403
4404 case Q_DEFAULT:
4405 case Q_OR:
4406 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, src_off, dst_off);
4407 b1 = gen_hostop6(cstate, addr, mask, Q_DST, src_off, dst_off);
4408 gen_or(b0, b1);
4409 return b1;
4410
4411 case Q_ADDR1:
4412 case Q_ADDR2:
4413 case Q_ADDR3:
4414 case Q_ADDR4:
4415 case Q_RA:
4416 case Q_TA:
4417 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4418 /*NOTREACHED*/
4419
4420 default:
4421 abort();
4422 /*NOTREACHED*/
4423 }
4424 /* this order is important */
4425 memcpy(a, addr, sizeof(a));
4426 memcpy(m, mask, sizeof(m));
4427 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4428 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4429 gen_and(b0, b1);
4430 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4431 gen_and(b0, b1);
4432 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4433 gen_and(b0, b1);
4434 return b1;
4435 }
4436 #endif
4437
4438 static struct block *
4439 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4440 {
4441 register struct block *b0, *b1;
4442
4443 switch (dir) {
4444 case Q_SRC:
4445 return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4446
4447 case Q_DST:
4448 return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4449
4450 case Q_AND:
4451 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4452 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4453 gen_and(b0, b1);
4454 return b1;
4455
4456 case Q_DEFAULT:
4457 case Q_OR:
4458 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4459 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4460 gen_or(b0, b1);
4461 return b1;
4462
4463 case Q_ADDR1:
4464 case Q_ADDR2:
4465 case Q_ADDR3:
4466 case Q_ADDR4:
4467 case Q_RA:
4468 case Q_TA:
4469 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4470 /*NOTREACHED*/
4471 }
4472 abort();
4473 /*NOTREACHED*/
4474 }
4475
4476 /*
4477 * Like gen_ehostop, but for DLT_FDDI
4478 */
4479 static struct block *
4480 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4481 {
4482 struct block *b0, *b1;
4483
4484 switch (dir) {
4485 case Q_SRC:
4486 return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4487
4488 case Q_DST:
4489 return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4490
4491 case Q_AND:
4492 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4493 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4494 gen_and(b0, b1);
4495 return b1;
4496
4497 case Q_DEFAULT:
4498 case Q_OR:
4499 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4500 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4501 gen_or(b0, b1);
4502 return b1;
4503
4504 case Q_ADDR1:
4505 case Q_ADDR2:
4506 case Q_ADDR3:
4507 case Q_ADDR4:
4508 case Q_RA:
4509 case Q_TA:
4510 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4511 /*NOTREACHED*/
4512 }
4513 abort();
4514 /*NOTREACHED*/
4515 }
4516
4517 /*
4518 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4519 */
4520 static struct block *
4521 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4522 {
4523 register struct block *b0, *b1;
4524
4525 switch (dir) {
4526 case Q_SRC:
4527 return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4528
4529 case Q_DST:
4530 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4531
4532 case Q_AND:
4533 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4534 b1 = gen_thostop(cstate, eaddr, Q_DST);
4535 gen_and(b0, b1);
4536 return b1;
4537
4538 case Q_DEFAULT:
4539 case Q_OR:
4540 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4541 b1 = gen_thostop(cstate, eaddr, Q_DST);
4542 gen_or(b0, b1);
4543 return b1;
4544
4545 case Q_ADDR1:
4546 case Q_ADDR2:
4547 case Q_ADDR3:
4548 case Q_ADDR4:
4549 case Q_RA:
4550 case Q_TA:
4551 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4552 /*NOTREACHED*/
4553 }
4554 abort();
4555 /*NOTREACHED*/
4556 }
4557
4558 /*
4559 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4560 * various 802.11 + radio headers.
4561 */
4562 static struct block *
4563 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4564 {
4565 register struct block *b0, *b1, *b2;
4566 register struct slist *s;
4567
4568 #ifdef ENABLE_WLAN_FILTERING_PATCH
4569 /*
4570 * TODO GV 20070613
4571 * We need to disable the optimizer because the optimizer is buggy
4572 * and wipes out some LD instructions generated by the below
4573 * code to validate the Frame Control bits
4574 */
4575 cstate->no_optimize = 1;
4576 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4577
4578 switch (dir) {
4579 case Q_SRC:
4580 /*
4581 * Oh, yuk.
4582 *
4583 * For control frames, there is no SA.
4584 *
4585 * For management frames, SA is at an
4586 * offset of 10 from the beginning of
4587 * the packet.
4588 *
4589 * For data frames, SA is at an offset
4590 * of 10 from the beginning of the packet
4591 * if From DS is clear, at an offset of
4592 * 16 from the beginning of the packet
4593 * if From DS is set and To DS is clear,
4594 * and an offset of 24 from the beginning
4595 * of the packet if From DS is set and To DS
4596 * is set.
4597 */
4598
4599 /*
4600 * Generate the tests to be done for data frames
4601 * with From DS set.
4602 *
4603 * First, check for To DS set, i.e. check "link[1] & 0x01".
4604 */
4605 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4606 b1 = new_block(cstate, JMP(BPF_JSET));
4607 b1->s.k = 0x01; /* To DS */
4608 b1->stmts = s;
4609
4610 /*
4611 * If To DS is set, the SA is at 24.
4612 */
4613 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4614 gen_and(b1, b0);
4615
4616 /*
4617 * Now, check for To DS not set, i.e. check
4618 * "!(link[1] & 0x01)".
4619 */
4620 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4621 b2 = new_block(cstate, JMP(BPF_JSET));
4622 b2->s.k = 0x01; /* To DS */
4623 b2->stmts = s;
4624 gen_not(b2);
4625
4626 /*
4627 * If To DS is not set, the SA is at 16.
4628 */
4629 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4630 gen_and(b2, b1);
4631
4632 /*
4633 * Now OR together the last two checks. That gives
4634 * the complete set of checks for data frames with
4635 * From DS set.
4636 */
4637 gen_or(b1, b0);
4638
4639 /*
4640 * Now check for From DS being set, and AND that with
4641 * the ORed-together checks.
4642 */
4643 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4644 b1 = new_block(cstate, JMP(BPF_JSET));
4645 b1->s.k = 0x02; /* From DS */
4646 b1->stmts = s;
4647 gen_and(b1, b0);
4648
4649 /*
4650 * Now check for data frames with From DS not set.
4651 */
4652 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4653 b2 = new_block(cstate, JMP(BPF_JSET));
4654 b2->s.k = 0x02; /* From DS */
4655 b2->stmts = s;
4656 gen_not(b2);
4657
4658 /*
4659 * If From DS isn't set, the SA is at 10.
4660 */
4661 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4662 gen_and(b2, b1);
4663
4664 /*
4665 * Now OR together the checks for data frames with
4666 * From DS not set and for data frames with From DS
4667 * set; that gives the checks done for data frames.
4668 */
4669 gen_or(b1, b0);
4670
4671 /*
4672 * Now check for a data frame.
4673 * I.e, check "link[0] & 0x08".
4674 */
4675 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4676 b1 = new_block(cstate, JMP(BPF_JSET));
4677 b1->s.k = 0x08;
4678 b1->stmts = s;
4679
4680 /*
4681 * AND that with the checks done for data frames.
4682 */
4683 gen_and(b1, b0);
4684
4685 /*
4686 * If the high-order bit of the type value is 0, this
4687 * is a management frame.
4688 * I.e, check "!(link[0] & 0x08)".
4689 */
4690 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4691 b2 = new_block(cstate, JMP(BPF_JSET));
4692 b2->s.k = 0x08;
4693 b2->stmts = s;
4694 gen_not(b2);
4695
4696 /*
4697 * For management frames, the SA is at 10.
4698 */
4699 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4700 gen_and(b2, b1);
4701
4702 /*
4703 * OR that with the checks done for data frames.
4704 * That gives the checks done for management and
4705 * data frames.
4706 */
4707 gen_or(b1, b0);
4708
4709 /*
4710 * If the low-order bit of the type value is 1,
4711 * this is either a control frame or a frame
4712 * with a reserved type, and thus not a
4713 * frame with an SA.
4714 *
4715 * I.e., check "!(link[0] & 0x04)".
4716 */
4717 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4718 b1 = new_block(cstate, JMP(BPF_JSET));
4719 b1->s.k = 0x04;
4720 b1->stmts = s;
4721 gen_not(b1);
4722
4723 /*
4724 * AND that with the checks for data and management
4725 * frames.
4726 */
4727 gen_and(b1, b0);
4728 return b0;
4729
4730 case Q_DST:
4731 /*
4732 * Oh, yuk.
4733 *
4734 * For control frames, there is no DA.
4735 *
4736 * For management frames, DA is at an
4737 * offset of 4 from the beginning of
4738 * the packet.
4739 *
4740 * For data frames, DA is at an offset
4741 * of 4 from the beginning of the packet
4742 * if To DS is clear and at an offset of
4743 * 16 from the beginning of the packet
4744 * if To DS is set.
4745 */
4746
4747 /*
4748 * Generate the tests to be done for data frames.
4749 *
4750 * First, check for To DS set, i.e. "link[1] & 0x01".
4751 */
4752 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4753 b1 = new_block(cstate, JMP(BPF_JSET));
4754 b1->s.k = 0x01; /* To DS */
4755 b1->stmts = s;
4756
4757 /*
4758 * If To DS is set, the DA is at 16.
4759 */
4760 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4761 gen_and(b1, b0);
4762
4763 /*
4764 * Now, check for To DS not set, i.e. check
4765 * "!(link[1] & 0x01)".
4766 */
4767 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4768 b2 = new_block(cstate, JMP(BPF_JSET));
4769 b2->s.k = 0x01; /* To DS */
4770 b2->stmts = s;
4771 gen_not(b2);
4772
4773 /*
4774 * If To DS is not set, the DA is at 4.
4775 */
4776 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4777 gen_and(b2, b1);
4778
4779 /*
4780 * Now OR together the last two checks. That gives
4781 * the complete set of checks for data frames.
4782 */
4783 gen_or(b1, b0);
4784
4785 /*
4786 * Now check for a data frame.
4787 * I.e, check "link[0] & 0x08".
4788 */
4789 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4790 b1 = new_block(cstate, JMP(BPF_JSET));
4791 b1->s.k = 0x08;
4792 b1->stmts = s;
4793
4794 /*
4795 * AND that with the checks done for data frames.
4796 */
4797 gen_and(b1, b0);
4798
4799 /*
4800 * If the high-order bit of the type value is 0, this
4801 * is a management frame.
4802 * I.e, check "!(link[0] & 0x08)".
4803 */
4804 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4805 b2 = new_block(cstate, JMP(BPF_JSET));
4806 b2->s.k = 0x08;
4807 b2->stmts = s;
4808 gen_not(b2);
4809
4810 /*
4811 * For management frames, the DA is at 4.
4812 */
4813 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4814 gen_and(b2, b1);
4815
4816 /*
4817 * OR that with the checks done for data frames.
4818 * That gives the checks done for management and
4819 * data frames.
4820 */
4821 gen_or(b1, b0);
4822
4823 /*
4824 * If the low-order bit of the type value is 1,
4825 * this is either a control frame or a frame
4826 * with a reserved type, and thus not a
4827 * frame with an SA.
4828 *
4829 * I.e., check "!(link[0] & 0x04)".
4830 */
4831 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4832 b1 = new_block(cstate, JMP(BPF_JSET));
4833 b1->s.k = 0x04;
4834 b1->stmts = s;
4835 gen_not(b1);
4836
4837 /*
4838 * AND that with the checks for data and management
4839 * frames.
4840 */
4841 gen_and(b1, b0);
4842 return b0;
4843
4844 case Q_AND:
4845 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4846 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4847 gen_and(b0, b1);
4848 return b1;
4849
4850 case Q_DEFAULT:
4851 case Q_OR:
4852 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4853 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4854 gen_or(b0, b1);
4855 return b1;
4856
4857 /*
4858 * XXX - add BSSID keyword?
4859 */
4860 case Q_ADDR1:
4861 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4862
4863 case Q_ADDR2:
4864 /*
4865 * Not present in CTS or ACK control frames.
4866 */
4867 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4868 IEEE80211_FC0_TYPE_MASK);
4869 gen_not(b0);
4870 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4871 IEEE80211_FC0_SUBTYPE_MASK);
4872 gen_not(b1);
4873 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4874 IEEE80211_FC0_SUBTYPE_MASK);
4875 gen_not(b2);
4876 gen_and(b1, b2);
4877 gen_or(b0, b2);
4878 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4879 gen_and(b2, b1);
4880 return b1;
4881
4882 case Q_ADDR3:
4883 /*
4884 * Not present in control frames.
4885 */
4886 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4887 IEEE80211_FC0_TYPE_MASK);
4888 gen_not(b0);
4889 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4890 gen_and(b0, b1);
4891 return b1;
4892
4893 case Q_ADDR4:
4894 /*
4895 * Present only if the direction mask has both "From DS"
4896 * and "To DS" set. Neither control frames nor management
4897 * frames should have both of those set, so we don't
4898 * check the frame type.
4899 */
4900 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4901 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4902 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4903 gen_and(b0, b1);
4904 return b1;
4905
4906 case Q_RA:
4907 /*
4908 * Not present in management frames; addr1 in other
4909 * frames.
4910 */
4911
4912 /*
4913 * If the high-order bit of the type value is 0, this
4914 * is a management frame.
4915 * I.e, check "(link[0] & 0x08)".
4916 */
4917 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4918 b1 = new_block(cstate, JMP(BPF_JSET));
4919 b1->s.k = 0x08;
4920 b1->stmts = s;
4921
4922 /*
4923 * Check addr1.
4924 */
4925 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4926
4927 /*
4928 * AND that with the check of addr1.
4929 */
4930 gen_and(b1, b0);
4931 return (b0);
4932
4933 case Q_TA:
4934 /*
4935 * Not present in management frames; addr2, if present,
4936 * in other frames.
4937 */
4938
4939 /*
4940 * Not present in CTS or ACK control frames.
4941 */
4942 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4943 IEEE80211_FC0_TYPE_MASK);
4944 gen_not(b0);
4945 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4946 IEEE80211_FC0_SUBTYPE_MASK);
4947 gen_not(b1);
4948 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4949 IEEE80211_FC0_SUBTYPE_MASK);
4950 gen_not(b2);
4951 gen_and(b1, b2);
4952 gen_or(b0, b2);
4953
4954 /*
4955 * If the high-order bit of the type value is 0, this
4956 * is a management frame.
4957 * I.e, check "(link[0] & 0x08)".
4958 */
4959 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4960 b1 = new_block(cstate, JMP(BPF_JSET));
4961 b1->s.k = 0x08;
4962 b1->stmts = s;
4963
4964 /*
4965 * AND that with the check for frames other than
4966 * CTS and ACK frames.
4967 */
4968 gen_and(b1, b2);
4969
4970 /*
4971 * Check addr2.
4972 */
4973 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4974 gen_and(b2, b1);
4975 return b1;
4976 }
4977 abort();
4978 /*NOTREACHED*/
4979 }
4980
4981 /*
4982 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4983 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4984 * as the RFC states.)
4985 */
4986 static struct block *
4987 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4988 {
4989 register struct block *b0, *b1;
4990
4991 switch (dir) {
4992 case Q_SRC:
4993 return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4994
4995 case Q_DST:
4996 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4997
4998 case Q_AND:
4999 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
5000 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
5001 gen_and(b0, b1);
5002 return b1;
5003
5004 case Q_DEFAULT:
5005 case Q_OR:
5006 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
5007 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
5008 gen_or(b0, b1);
5009 return b1;
5010
5011 case Q_ADDR1:
5012 case Q_ADDR2:
5013 case Q_ADDR3:
5014 case Q_ADDR4:
5015 case Q_RA:
5016 case Q_TA:
5017 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
5018 /*NOTREACHED*/
5019 }
5020 abort();
5021 /*NOTREACHED*/
5022 }
5023
5024 /*
5025 * This is quite tricky because there may be pad bytes in front of the
5026 * DECNET header, and then there are two possible data packet formats that
5027 * carry both src and dst addresses, plus 5 packet types in a format that
5028 * carries only the src node, plus 2 types that use a different format and
5029 * also carry just the src node.
5030 *
5031 * Yuck.
5032 *
5033 * Instead of doing those all right, we just look for data packets with
5034 * 0 or 1 bytes of padding. If you want to look at other packets, that
5035 * will require a lot more hacking.
5036 *
5037 * To add support for filtering on DECNET "areas" (network numbers)
5038 * one would want to add a "mask" argument to this routine. That would
5039 * make the filter even more inefficient, although one could be clever
5040 * and not generate masking instructions if the mask is 0xFFFF.
5041 */
5042 static struct block *
5043 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
5044 {
5045 struct block *b0, *b1, *b2, *tmp;
5046 u_int offset_lh; /* offset if long header is received */
5047 u_int offset_sh; /* offset if short header is received */
5048
5049 switch (dir) {
5050
5051 case Q_DST:
5052 offset_sh = 1; /* follows flags */
5053 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
5054 break;
5055
5056 case Q_SRC:
5057 offset_sh = 3; /* follows flags, dstnode */
5058 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
5059 break;
5060
5061 case Q_AND:
5062 /* Inefficient because we do our Calvinball dance twice */
5063 b0 = gen_dnhostop(cstate, addr, Q_SRC);
5064 b1 = gen_dnhostop(cstate, addr, Q_DST);
5065 gen_and(b0, b1);
5066 return b1;
5067
5068 case Q_DEFAULT:
5069 case Q_OR:
5070 /* Inefficient because we do our Calvinball dance twice */
5071 b0 = gen_dnhostop(cstate, addr, Q_SRC);
5072 b1 = gen_dnhostop(cstate, addr, Q_DST);
5073 gen_or(b0, b1);
5074 return b1;
5075
5076 case Q_ADDR1:
5077 case Q_ADDR2:
5078 case Q_ADDR3:
5079 case Q_ADDR4:
5080 case Q_RA:
5081 case Q_TA:
5082 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
5083 /*NOTREACHED*/
5084
5085 default:
5086 abort();
5087 /*NOTREACHED*/
5088 }
5089 /*
5090 * In a DECnet message inside an Ethernet frame the first two bytes
5091 * immediately after EtherType are the [litle-endian] DECnet message
5092 * length, which is irrelevant in this context.
5093 *
5094 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
5095 * 8-bit bitmap of the optional padding before the packet route header.
5096 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
5097 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
5098 * means there aren't any PAD bytes after the bitmap, so the header
5099 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
5100 * is set to 0, thus the header begins at the third byte.
5101 *
5102 * The header can be in several (as mentioned above) formats, all of
5103 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
5104 * (PF, "pad field") set to 0 regardless of any padding present before
5105 * the header. "Short header" means bits 0-2 of the bitmap encode the
5106 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
5107 *
5108 * To test PLENGTH and FLAGS, use multiple-byte constants with the
5109 * values and the masks, this maps to the required single bytes of
5110 * the message correctly on both big-endian and little-endian hosts.
5111 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
5112 * because the wire encoding is little-endian and BPF multiple-byte
5113 * loads are big-endian. When the destination address is near enough
5114 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
5115 * smaller ones.
5116 */
5117 /* Check for pad = 1, long header case */
5118 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, 0x8106U, 0xFF07U);
5119 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
5120 BPF_H, SWAPSHORT(addr));
5121 gen_and(tmp, b1);
5122 /* Check for pad = 0, long header case */
5123 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, 0x06U, 0x07U);
5124 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
5125 SWAPSHORT(addr));
5126 gen_and(tmp, b2);
5127 gen_or(b2, b1);
5128 /* Check for pad = 1, short header case */
5129 if (dir == Q_DST) {
5130 b2 = gen_mcmp(cstate, OR_LINKPL, 2, BPF_W,
5131 0x81020000U | SWAPSHORT(addr),
5132 0xFF07FFFFU);
5133 } else {
5134 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, 0x8102U, 0xFF07U);
5135 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
5136 SWAPSHORT(addr));
5137 gen_and(tmp, b2);
5138 }
5139 gen_or(b2, b1);
5140 /* Check for pad = 0, short header case */
5141 if (dir == Q_DST) {
5142 b2 = gen_mcmp(cstate, OR_LINKPL, 2, BPF_W,
5143 0x02000000U | SWAPSHORT(addr) << 8,
5144 0x07FFFF00U);
5145 } else {
5146 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, 0x02U, 0x07U);
5147 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
5148 SWAPSHORT(addr));
5149 gen_and(tmp, b2);
5150 }
5151 gen_or(b2, b1);
5152
5153 return b1;
5154 }
5155
5156 /*
5157 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5158 * test the bottom-of-stack bit, and then check the version number
5159 * field in the IP header.
5160 */
5161 static struct block *
5162 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
5163 {
5164 struct block *b0, *b1;
5165
5166 switch (ll_proto) {
5167
5168 case ETHERTYPE_IP:
5169 /* match the bottom-of-stack bit */
5170 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
5171 /* match the IPv4 version number */
5172 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
5173 gen_and(b0, b1);
5174 return b1;
5175
5176 case ETHERTYPE_IPV6:
5177 /* match the bottom-of-stack bit */
5178 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
5179 /* match the IPv4 version number */
5180 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
5181 gen_and(b0, b1);
5182 return b1;
5183
5184 default:
5185 /* FIXME add other L3 proto IDs */
5186 bpf_error(cstate, "unsupported protocol over mpls");
5187 /*NOTREACHED*/
5188 }
5189 }
5190
5191 static struct block *
5192 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
5193 int proto, int dir, int type)
5194 {
5195 struct block *b0, *b1;
5196
5197 switch (proto) {
5198
5199 case Q_DEFAULT:
5200 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
5201 /*
5202 * Only check for non-IPv4 addresses if we're not
5203 * checking MPLS-encapsulated packets.
5204 */
5205 if (cstate->label_stack_depth == 0) {
5206 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
5207 gen_or(b0, b1);
5208 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
5209 gen_or(b1, b0);
5210 }
5211 return b0;
5212
5213 case Q_LINK:
5214 // "link net NETNAME" and variations thereof
5215 break; // invalid qualifier
5216
5217 case Q_IP:
5218 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5219 b1 = gen_hostop(cstate, addr, mask, dir, 12, 16);
5220 gen_and(b0, b1);
5221 return b1;
5222
5223 case Q_RARP:
5224 b0 = gen_linktype(cstate, ETHERTYPE_REVARP);
5225 b1 = gen_hostop(cstate, addr, mask, dir, 14, 24);
5226 gen_and(b0, b1);
5227 return b1;
5228
5229 case Q_ARP:
5230 b0 = gen_linktype(cstate, ETHERTYPE_ARP);
5231 b1 = gen_hostop(cstate, addr, mask, dir, 14, 24);
5232 gen_and(b0, b1);
5233 return b1;
5234
5235 case Q_SCTP:
5236 case Q_TCP:
5237 case Q_UDP:
5238 case Q_ICMP:
5239 case Q_IGMP:
5240 case Q_IGRP:
5241 case Q_ATALK:
5242 break; // invalid qualifier
5243
5244 case Q_DECNET:
5245 b0 = gen_linktype(cstate, ETHERTYPE_DN);
5246 b1 = gen_dnhostop(cstate, addr, dir);
5247 gen_and(b0, b1);
5248 return b1;
5249
5250 case Q_LAT:
5251 case Q_SCA:
5252 case Q_MOPRC:
5253 case Q_MOPDL:
5254 case Q_IPV6:
5255 case Q_ICMPV6:
5256 case Q_AH:
5257 case Q_ESP:
5258 case Q_PIM:
5259 case Q_VRRP:
5260 case Q_AARP:
5261 case Q_ISO:
5262 case Q_ESIS:
5263 case Q_ISIS:
5264 case Q_CLNP:
5265 case Q_STP:
5266 case Q_IPX:
5267 case Q_NETBEUI:
5268 case Q_ISIS_L1:
5269 case Q_ISIS_L2:
5270 case Q_ISIS_IIH:
5271 case Q_ISIS_SNP:
5272 case Q_ISIS_CSNP:
5273 case Q_ISIS_PSNP:
5274 case Q_ISIS_LSP:
5275 case Q_RADIO:
5276 case Q_CARP:
5277 break; // invalid qualifier
5278
5279 default:
5280 abort();
5281 }
5282 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto),
5283 type == Q_NET ? "ip net" : "ip host");
5284 /*NOTREACHED*/
5285 }
5286
5287 #ifdef INET6
5288 static struct block *
5289 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5290 struct in6_addr *mask, int proto, int dir, int type)
5291 {
5292 struct block *b0, *b1;
5293
5294 switch (proto) {
5295
5296 case Q_DEFAULT:
5297 case Q_IPV6:
5298 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5299 b1 = gen_hostop6(cstate, addr, mask, dir, 8, 24);
5300 gen_and(b0, b1);
5301 return b1;
5302
5303 case Q_LINK:
5304 case Q_IP:
5305 case Q_RARP:
5306 case Q_ARP:
5307 case Q_SCTP:
5308 case Q_TCP:
5309 case Q_UDP:
5310 case Q_ICMP:
5311 case Q_IGMP:
5312 case Q_IGRP:
5313 case Q_ATALK:
5314 case Q_DECNET:
5315 case Q_LAT:
5316 case Q_SCA:
5317 case Q_MOPRC:
5318 case Q_MOPDL:
5319 case Q_ICMPV6:
5320 case Q_AH:
5321 case Q_ESP:
5322 case Q_PIM:
5323 case Q_VRRP:
5324 case Q_AARP:
5325 case Q_ISO:
5326 case Q_ESIS:
5327 case Q_ISIS:
5328 case Q_CLNP:
5329 case Q_STP:
5330 case Q_IPX:
5331 case Q_NETBEUI:
5332 case Q_ISIS_L1:
5333 case Q_ISIS_L2:
5334 case Q_ISIS_IIH:
5335 case Q_ISIS_SNP:
5336 case Q_ISIS_CSNP:
5337 case Q_ISIS_PSNP:
5338 case Q_ISIS_LSP:
5339 case Q_RADIO:
5340 case Q_CARP:
5341 break; // invalid qualifier
5342
5343 default:
5344 abort();
5345 }
5346 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto),
5347 type == Q_NET ? "ip6 net" : "ip6 host");
5348 /*NOTREACHED*/
5349 }
5350 #endif
5351
5352 #ifndef INET6
5353 static struct block *
5354 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5355 struct addrinfo *alist, int proto, int dir)
5356 {
5357 struct block *b0, *b1, *tmp;
5358 struct addrinfo *ai;
5359 struct sockaddr_in *sin;
5360
5361 if (dir != 0)
5362 bpf_error(cstate, "direction applied to 'gateway'");
5363
5364 switch (proto) {
5365 case Q_DEFAULT:
5366 case Q_IP:
5367 case Q_ARP:
5368 case Q_RARP:
5369 switch (cstate->linktype) {
5370 case DLT_EN10MB:
5371 case DLT_NETANALYZER:
5372 case DLT_NETANALYZER_TRANSPARENT:
5373 b1 = gen_prevlinkhdr_check(cstate);
5374 b0 = gen_ehostop(cstate, eaddr, Q_OR);
5375 if (b1 != NULL)
5376 gen_and(b1, b0);
5377 break;
5378 case DLT_FDDI:
5379 b0 = gen_fhostop(cstate, eaddr, Q_OR);
5380 break;
5381 case DLT_IEEE802:
5382 b0 = gen_thostop(cstate, eaddr, Q_OR);
5383 break;
5384 case DLT_IEEE802_11:
5385 case DLT_PRISM_HEADER:
5386 case DLT_IEEE802_11_RADIO_AVS:
5387 case DLT_IEEE802_11_RADIO:
5388 case DLT_PPI:
5389 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5390 break;
5391 case DLT_IP_OVER_FC:
5392 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5393 break;
5394 case DLT_SUNATM:
5395 /*
5396 * This is LLC-multiplexed traffic; if it were
5397 * LANE, cstate->linktype would have been set to
5398 * DLT_EN10MB.
5399 */
5400 /* FALLTHROUGH */
5401 default:
5402 bpf_error(cstate,
5403 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5404 }
5405 b1 = NULL;
5406 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5407 /*
5408 * Does it have an address?
5409 */
5410 if (ai->ai_addr != NULL) {
5411 /*
5412 * Yes. Is it an IPv4 address?
5413 */
5414 if (ai->ai_addr->sa_family == AF_INET) {
5415 /*
5416 * Generate an entry for it.
5417 */
5418 sin = (struct sockaddr_in *)ai->ai_addr;
5419 tmp = gen_host(cstate,
5420 ntohl(sin->sin_addr.s_addr),
5421 0xffffffff, proto, Q_OR, Q_HOST);
5422 /*
5423 * Is it the *first* IPv4 address?
5424 */
5425 if (b1 == NULL) {
5426 /*
5427 * Yes, so start with it.
5428 */
5429 b1 = tmp;
5430 } else {
5431 /*
5432 * No, so OR it into the
5433 * existing set of
5434 * addresses.
5435 */
5436 gen_or(b1, tmp);
5437 b1 = tmp;
5438 }
5439 }
5440 }
5441 }
5442 if (b1 == NULL) {
5443 /*
5444 * No IPv4 addresses found.
5445 */
5446 return (NULL);
5447 }
5448 gen_not(b1);
5449 gen_and(b0, b1);
5450 return b1;
5451 }
5452 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "gateway");
5453 /*NOTREACHED*/
5454 }
5455 #endif
5456
5457 static struct block *
5458 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5459 {
5460 struct block *b0;
5461 struct block *b1 = NULL;
5462
5463 switch (proto) {
5464
5465 case Q_SCTP:
5466 b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5467 break;
5468
5469 case Q_TCP:
5470 b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5471 break;
5472
5473 case Q_UDP:
5474 b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5475 break;
5476
5477 case Q_ICMP:
5478 b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5479 break;
5480
5481 #ifndef IPPROTO_IGMP
5482 #define IPPROTO_IGMP 2
5483 #endif
5484
5485 case Q_IGMP:
5486 b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5487 break;
5488
5489 #ifndef IPPROTO_IGRP
5490 #define IPPROTO_IGRP 9
5491 #endif
5492 case Q_IGRP:
5493 b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5494 break;
5495
5496 #ifndef IPPROTO_PIM
5497 #define IPPROTO_PIM 103
5498 #endif
5499
5500 case Q_PIM:
5501 b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5502 break;
5503
5504 #ifndef IPPROTO_VRRP
5505 #define IPPROTO_VRRP 112
5506 #endif
5507
5508 case Q_VRRP:
5509 b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5510 break;
5511
5512 #ifndef IPPROTO_CARP
5513 #define IPPROTO_CARP 112
5514 #endif
5515
5516 case Q_CARP:
5517 b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5518 break;
5519
5520 case Q_IP:
5521 b1 = gen_linktype(cstate, ETHERTYPE_IP);
5522 break;
5523
5524 case Q_ARP:
5525 b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5526 break;
5527
5528 case Q_RARP:
5529 b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5530 break;
5531
5532 case Q_LINK:
5533 break; // invalid syntax
5534
5535 case Q_ATALK:
5536 b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5537 break;
5538
5539 case Q_AARP:
5540 b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5541 break;
5542
5543 case Q_DECNET:
5544 b1 = gen_linktype(cstate, ETHERTYPE_DN);
5545 break;
5546
5547 case Q_SCA:
5548 b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5549 break;
5550
5551 case Q_LAT:
5552 b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5553 break;
5554
5555 case Q_MOPDL:
5556 b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5557 break;
5558
5559 case Q_MOPRC:
5560 b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5561 break;
5562
5563 case Q_IPV6:
5564 b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5565 break;
5566
5567 #ifndef IPPROTO_ICMPV6
5568 #define IPPROTO_ICMPV6 58
5569 #endif
5570 case Q_ICMPV6:
5571 b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5572 break;
5573
5574 #ifndef IPPROTO_AH
5575 #define IPPROTO_AH 51
5576 #endif
5577 case Q_AH:
5578 b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5579 break;
5580
5581 #ifndef IPPROTO_ESP
5582 #define IPPROTO_ESP 50
5583 #endif
5584 case Q_ESP:
5585 b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5586 break;
5587
5588 case Q_ISO:
5589 b1 = gen_linktype(cstate, LLCSAP_ISONS);
5590 break;
5591
5592 case Q_ESIS:
5593 b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5594 break;
5595
5596 case Q_ISIS:
5597 b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5598 break;
5599
5600 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5601 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5602 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5603 gen_or(b0, b1);
5604 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5605 gen_or(b0, b1);
5606 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5607 gen_or(b0, b1);
5608 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5609 gen_or(b0, b1);
5610 break;
5611
5612 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5613 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5614 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5615 gen_or(b0, b1);
5616 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5617 gen_or(b0, b1);
5618 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5619 gen_or(b0, b1);
5620 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5621 gen_or(b0, b1);
5622 break;
5623
5624 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5625 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5626 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5627 gen_or(b0, b1);
5628 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5629 gen_or(b0, b1);
5630 break;
5631
5632 case Q_ISIS_LSP:
5633 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5634 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5635 gen_or(b0, b1);
5636 break;
5637
5638 case Q_ISIS_SNP:
5639 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5640 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5641 gen_or(b0, b1);
5642 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5643 gen_or(b0, b1);
5644 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5645 gen_or(b0, b1);
5646 break;
5647
5648 case Q_ISIS_CSNP:
5649 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5650 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5651 gen_or(b0, b1);
5652 break;
5653
5654 case Q_ISIS_PSNP:
5655 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5656 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5657 gen_or(b0, b1);
5658 break;
5659
5660 case Q_CLNP:
5661 b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5662 break;
5663
5664 case Q_STP:
5665 b1 = gen_linktype(cstate, LLCSAP_8021D);
5666 break;
5667
5668 case Q_IPX:
5669 b1 = gen_linktype(cstate, LLCSAP_IPX);
5670 break;
5671
5672 case Q_NETBEUI:
5673 b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5674 break;
5675
5676 case Q_RADIO:
5677 break; // invalid syntax
5678
5679 default:
5680 abort();
5681 }
5682 if (b1)
5683 return b1;
5684 bpf_error(cstate, "'%s' cannot be used as an abbreviation", pqkw(proto));
5685 }
5686
5687 struct block *
5688 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5689 {
5690 /*
5691 * Catch errors reported by us and routines below us, and return NULL
5692 * on an error.
5693 */
5694 if (setjmp(cstate->top_ctx))
5695 return (NULL);
5696
5697 return gen_proto_abbrev_internal(cstate, proto);
5698 }
5699
5700 static struct block *
5701 gen_ipfrag(compiler_state_t *cstate)
5702 {
5703 struct slist *s;
5704 struct block *b;
5705
5706 /* not IPv4 frag other than the first frag */
5707 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5708 b = new_block(cstate, JMP(BPF_JSET));
5709 b->s.k = 0x1fff;
5710 b->stmts = s;
5711 gen_not(b);
5712
5713 return b;
5714 }
5715
5716 /*
5717 * Generate a comparison to a port value in the transport-layer header
5718 * at the specified offset from the beginning of that header.
5719 *
5720 * XXX - this handles a variable-length prefix preceding the link-layer
5721 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5722 * variable-length link-layer headers (such as Token Ring or 802.11
5723 * headers).
5724 */
5725 static struct block *
5726 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5727 {
5728 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5729 }
5730
5731 static struct block *
5732 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5733 {
5734 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5735 }
5736
5737 static struct block *
5738 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5739 {
5740 struct block *b0, *b1, *tmp;
5741
5742 /* ip proto 'proto' and not a fragment other than the first fragment */
5743 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5744 b0 = gen_ipfrag(cstate);
5745 gen_and(tmp, b0);
5746
5747 switch (dir) {
5748 case Q_SRC:
5749 b1 = gen_portatom(cstate, 0, port);
5750 break;
5751
5752 case Q_DST:
5753 b1 = gen_portatom(cstate, 2, port);
5754 break;
5755
5756 case Q_AND:
5757 tmp = gen_portatom(cstate, 0, port);
5758 b1 = gen_portatom(cstate, 2, port);
5759 gen_and(tmp, b1);
5760 break;
5761
5762 case Q_DEFAULT:
5763 case Q_OR:
5764 tmp = gen_portatom(cstate, 0, port);
5765 b1 = gen_portatom(cstate, 2, port);
5766 gen_or(tmp, b1);
5767 break;
5768
5769 case Q_ADDR1:
5770 case Q_ADDR2:
5771 case Q_ADDR3:
5772 case Q_ADDR4:
5773 case Q_RA:
5774 case Q_TA:
5775 bpf_error(cstate, ERRSTR_INVALID_QUAL, dqkw(dir), "port");
5776 /*NOTREACHED*/
5777
5778 default:
5779 abort();
5780 /*NOTREACHED*/
5781 }
5782 gen_and(b0, b1);
5783
5784 return b1;
5785 }
5786
5787 static struct block *
5788 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5789 {
5790 struct block *b0, *b1, *tmp;
5791
5792 /*
5793 * ether proto ip
5794 *
5795 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5796 * not LLC encapsulation with LLCSAP_IP.
5797 *
5798 * For IEEE 802 networks - which includes 802.5 token ring
5799 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5800 * says that SNAP encapsulation is used, not LLC encapsulation
5801 * with LLCSAP_IP.
5802 *
5803 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5804 * RFC 2225 say that SNAP encapsulation is used, not LLC
5805 * encapsulation with LLCSAP_IP.
5806 *
5807 * So we always check for ETHERTYPE_IP.
5808 */
5809 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5810
5811 switch (ip_proto) {
5812 case IPPROTO_UDP:
5813 case IPPROTO_TCP:
5814 case IPPROTO_SCTP:
5815 b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5816 break;
5817
5818 case PROTO_UNDEF:
5819 tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5820 b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5821 gen_or(tmp, b1);
5822 tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5823 gen_or(tmp, b1);
5824 break;
5825
5826 default:
5827 abort();
5828 }
5829 gen_and(b0, b1);
5830 return b1;
5831 }
5832
5833 struct block *
5834 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5835 {
5836 struct block *b0, *b1, *tmp;
5837
5838 /* ip6 proto 'proto' */
5839 /* XXX - catch the first fragment of a fragmented packet? */
5840 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5841
5842 switch (dir) {
5843 case Q_SRC:
5844 b1 = gen_portatom6(cstate, 0, port);
5845 break;
5846
5847 case Q_DST:
5848 b1 = gen_portatom6(cstate, 2, port);
5849 break;
5850
5851 case Q_AND:
5852 tmp = gen_portatom6(cstate, 0, port);
5853 b1 = gen_portatom6(cstate, 2, port);
5854 gen_and(tmp, b1);
5855 break;
5856
5857 case Q_DEFAULT:
5858 case Q_OR:
5859 tmp = gen_portatom6(cstate, 0, port);
5860 b1 = gen_portatom6(cstate, 2, port);
5861 gen_or(tmp, b1);
5862 break;
5863
5864 default:
5865 abort();
5866 }
5867 gen_and(b0, b1);
5868
5869 return b1;
5870 }
5871
5872 static struct block *
5873 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5874 {
5875 struct block *b0, *b1, *tmp;
5876
5877 /* link proto ip6 */
5878 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5879
5880 switch (ip_proto) {
5881 case IPPROTO_UDP:
5882 case IPPROTO_TCP:
5883 case IPPROTO_SCTP:
5884 b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5885 break;
5886
5887 case PROTO_UNDEF:
5888 tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5889 b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5890 gen_or(tmp, b1);
5891 tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5892 gen_or(tmp, b1);
5893 break;
5894
5895 default:
5896 abort();
5897 }
5898 gen_and(b0, b1);
5899 return b1;
5900 }
5901
5902 /* gen_portrange code */
5903 static struct block *
5904 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5905 bpf_u_int32 v2)
5906 {
5907 struct block *b1, *b2;
5908
5909 if (v1 > v2) {
5910 /*
5911 * Reverse the order of the ports, so v1 is the lower one.
5912 */
5913 bpf_u_int32 vtemp;
5914
5915 vtemp = v1;
5916 v1 = v2;
5917 v2 = vtemp;
5918 }
5919
5920 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5921 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5922
5923 gen_and(b1, b2);
5924
5925 return b2;
5926 }
5927
5928 static struct block *
5929 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5930 bpf_u_int32 proto, int dir)
5931 {
5932 struct block *b0, *b1, *tmp;
5933
5934 /* ip proto 'proto' and not a fragment other than the first fragment */
5935 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5936 b0 = gen_ipfrag(cstate);
5937 gen_and(tmp, b0);
5938
5939 switch (dir) {
5940 case Q_SRC:
5941 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5942 break;
5943
5944 case Q_DST:
5945 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5946 break;
5947
5948 case Q_AND:
5949 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5950 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5951 gen_and(tmp, b1);
5952 break;
5953
5954 case Q_DEFAULT:
5955 case Q_OR:
5956 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5957 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5958 gen_or(tmp, b1);
5959 break;
5960
5961 case Q_ADDR1:
5962 case Q_ADDR2:
5963 case Q_ADDR3:
5964 case Q_ADDR4:
5965 case Q_RA:
5966 case Q_TA:
5967 bpf_error(cstate, ERRSTR_INVALID_QUAL, dqkw(dir), "portrange");
5968 /*NOTREACHED*/
5969
5970 default:
5971 abort();
5972 /*NOTREACHED*/
5973 }
5974 gen_and(b0, b1);
5975
5976 return b1;
5977 }
5978
5979 static struct block *
5980 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5981 int dir)
5982 {
5983 struct block *b0, *b1, *tmp;
5984
5985 /* link proto ip */
5986 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5987
5988 switch (ip_proto) {
5989 case IPPROTO_UDP:
5990 case IPPROTO_TCP:
5991 case IPPROTO_SCTP:
5992 b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5993 dir);
5994 break;
5995
5996 case PROTO_UNDEF:
5997 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5998 b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5999 gen_or(tmp, b1);
6000 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
6001 gen_or(tmp, b1);
6002 break;
6003
6004 default:
6005 abort();
6006 }
6007 gen_and(b0, b1);
6008 return b1;
6009 }
6010
6011 static struct block *
6012 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
6013 bpf_u_int32 v2)
6014 {
6015 struct block *b1, *b2;
6016
6017 if (v1 > v2) {
6018 /*
6019 * Reverse the order of the ports, so v1 is the lower one.
6020 */
6021 bpf_u_int32 vtemp;
6022
6023 vtemp = v1;
6024 v1 = v2;
6025 v2 = vtemp;
6026 }
6027
6028 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
6029 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
6030
6031 gen_and(b1, b2);
6032
6033 return b2;
6034 }
6035
6036 static struct block *
6037 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
6038 bpf_u_int32 proto, int dir)
6039 {
6040 struct block *b0, *b1, *tmp;
6041
6042 /* ip6 proto 'proto' */
6043 /* XXX - catch the first fragment of a fragmented packet? */
6044 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
6045
6046 switch (dir) {
6047 case Q_SRC:
6048 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
6049 break;
6050
6051 case Q_DST:
6052 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6053 break;
6054
6055 case Q_AND:
6056 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6057 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6058 gen_and(tmp, b1);
6059 break;
6060
6061 case Q_DEFAULT:
6062 case Q_OR:
6063 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6064 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6065 gen_or(tmp, b1);
6066 break;
6067
6068 default:
6069 abort();
6070 }
6071 gen_and(b0, b1);
6072
6073 return b1;
6074 }
6075
6076 static struct block *
6077 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6078 int dir)
6079 {
6080 struct block *b0, *b1, *tmp;
6081
6082 /* link proto ip6 */
6083 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6084
6085 switch (ip_proto) {
6086 case IPPROTO_UDP:
6087 case IPPROTO_TCP:
6088 case IPPROTO_SCTP:
6089 b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6090 dir);
6091 break;
6092
6093 case PROTO_UNDEF:
6094 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6095 b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6096 gen_or(tmp, b1);
6097 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6098 gen_or(tmp, b1);
6099 break;
6100
6101 default:
6102 abort();
6103 }
6104 gen_and(b0, b1);
6105 return b1;
6106 }
6107
6108 static int
6109 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6110 {
6111 register int v;
6112
6113 switch (proto) {
6114
6115 case Q_DEFAULT:
6116 case Q_IP:
6117 case Q_IPV6:
6118 v = pcap_nametoproto(name);
6119 if (v == PROTO_UNDEF)
6120 bpf_error(cstate, "unknown ip proto '%s'", name);
6121 break;
6122
6123 case Q_LINK:
6124 /* XXX should look up h/w protocol type based on cstate->linktype */
6125 v = pcap_nametoeproto(name);
6126 if (v == PROTO_UNDEF) {
6127 v = pcap_nametollc(name);
6128 if (v == PROTO_UNDEF)
6129 bpf_error(cstate, "unknown ether proto '%s'", name);
6130 }
6131 break;
6132
6133 case Q_ISO:
6134 if (strcmp(name, "esis") == 0)
6135 v = ISO9542_ESIS;
6136 else if (strcmp(name, "isis") == 0)
6137 v = ISO10589_ISIS;
6138 else if (strcmp(name, "clnp") == 0)
6139 v = ISO8473_CLNP;
6140 else
6141 bpf_error(cstate, "unknown osi proto '%s'", name);
6142 break;
6143
6144 default:
6145 v = PROTO_UNDEF;
6146 break;
6147 }
6148 return v;
6149 }
6150
6151 #if !defined(NO_PROTOCHAIN)
6152 static struct block *
6153 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6154 {
6155 struct block *b0, *b;
6156 struct slist *s[100];
6157 int fix2, fix3, fix4, fix5;
6158 int ahcheck, again, end;
6159 int i, max;
6160 int reg2 = alloc_reg(cstate);
6161
6162 memset(s, 0, sizeof(s));
6163 fix3 = fix4 = fix5 = 0;
6164
6165 switch (proto) {
6166 case Q_IP:
6167 case Q_IPV6:
6168 break;
6169 case Q_DEFAULT:
6170 b0 = gen_protochain(cstate, v, Q_IP);
6171 b = gen_protochain(cstate, v, Q_IPV6);
6172 gen_or(b0, b);
6173 return b;
6174 default:
6175 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "protochain");
6176 /*NOTREACHED*/
6177 }
6178
6179 /*
6180 * We don't handle variable-length prefixes before the link-layer
6181 * header, or variable-length link-layer headers, here yet.
6182 * We might want to add BPF instructions to do the protochain
6183 * work, to simplify that and, on platforms that have a BPF
6184 * interpreter with the new instructions, let the filtering
6185 * be done in the kernel. (We already require a modified BPF
6186 * engine to do the protochain stuff, to support backward
6187 * branches, and backward branch support is unlikely to appear
6188 * in kernel BPF engines.)
6189 */
6190 if (cstate->off_linkpl.is_variable)
6191 bpf_error(cstate, "'protochain' not supported with variable length headers");
6192
6193 /*
6194 * To quote a comment in optimize.c:
6195 *
6196 * "These data structures are used in a Cocke and Schwartz style
6197 * value numbering scheme. Since the flowgraph is acyclic,
6198 * exit values can be propagated from a node's predecessors
6199 * provided it is uniquely defined."
6200 *
6201 * "Acyclic" means "no backward branches", which means "no
6202 * loops", so we have to turn the optimizer off.
6203 */
6204 cstate->no_optimize = 1;
6205
6206 /*
6207 * s[0] is a dummy entry to protect other BPF insn from damage
6208 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6209 * hard to find interdependency made by jump table fixup.
6210 */
6211 i = 0;
6212 s[i] = new_stmt(cstate, 0); /*dummy*/
6213 i++;
6214
6215 switch (proto) {
6216 case Q_IP:
6217 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6218
6219 /* A = ip->ip_p */
6220 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6221 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6222 i++;
6223 /* X = ip->ip_hl << 2 */
6224 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6225 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6226 i++;
6227 break;
6228
6229 case Q_IPV6:
6230 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6231
6232 /* A = ip6->ip_nxt */
6233 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6234 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6235 i++;
6236 /* X = sizeof(struct ip6_hdr) */
6237 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6238 s[i]->s.k = 40;
6239 i++;
6240 break;
6241
6242 default:
6243 bpf_error(cstate, "unsupported proto to gen_protochain");
6244 /*NOTREACHED*/
6245 }
6246
6247 /* again: if (A == v) goto end; else fall through; */
6248 again = i;
6249 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6250 s[i]->s.k = v;
6251 s[i]->s.jt = NULL; /*later*/
6252 s[i]->s.jf = NULL; /*update in next stmt*/
6253 fix5 = i;
6254 i++;
6255
6256 #ifndef IPPROTO_NONE
6257 #define IPPROTO_NONE 59
6258 #endif
6259 /* if (A == IPPROTO_NONE) goto end */
6260 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6261 s[i]->s.jt = NULL; /*later*/
6262 s[i]->s.jf = NULL; /*update in next stmt*/
6263 s[i]->s.k = IPPROTO_NONE;
6264 s[fix5]->s.jf = s[i];
6265 fix2 = i;
6266 i++;
6267
6268 if (proto == Q_IPV6) {
6269 int v6start, v6end, v6advance, j;
6270
6271 v6start = i;
6272 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6273 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6274 s[i]->s.jt = NULL; /*later*/
6275 s[i]->s.jf = NULL; /*update in next stmt*/
6276 s[i]->s.k = IPPROTO_HOPOPTS;
6277 s[fix2]->s.jf = s[i];
6278 i++;
6279 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6280 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6281 s[i]->s.jt = NULL; /*later*/
6282 s[i]->s.jf = NULL; /*update in next stmt*/
6283 s[i]->s.k = IPPROTO_DSTOPTS;
6284 i++;
6285 /* if (A == IPPROTO_ROUTING) goto v6advance */
6286 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6287 s[i]->s.jt = NULL; /*later*/
6288 s[i]->s.jf = NULL; /*update in next stmt*/
6289 s[i]->s.k = IPPROTO_ROUTING;
6290 i++;
6291 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6292 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6293 s[i]->s.jt = NULL; /*later*/
6294 s[i]->s.jf = NULL; /*later*/
6295 s[i]->s.k = IPPROTO_FRAGMENT;
6296 fix3 = i;
6297 v6end = i;
6298 i++;
6299
6300 /* v6advance: */
6301 v6advance = i;
6302
6303 /*
6304 * in short,
6305 * A = P[X + packet head];
6306 * X = X + (P[X + packet head + 1] + 1) * 8;
6307 */
6308 /* A = P[X + packet head] */
6309 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6310 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6311 i++;
6312 /* MEM[reg2] = A */
6313 s[i] = new_stmt(cstate, BPF_ST);
6314 s[i]->s.k = reg2;
6315 i++;
6316 /* A = P[X + packet head + 1]; */
6317 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6318 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6319 i++;
6320 /* A += 1 */
6321 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6322 s[i]->s.k = 1;
6323 i++;
6324 /* A *= 8 */
6325 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6326 s[i]->s.k = 8;
6327 i++;
6328 /* A += X */
6329 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6330 s[i]->s.k = 0;
6331 i++;
6332 /* X = A; */
6333 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6334 i++;
6335 /* A = MEM[reg2] */
6336 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6337 s[i]->s.k = reg2;
6338 i++;
6339
6340 /* goto again; (must use BPF_JA for backward jump) */
6341 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6342 s[i]->s.k = again - i - 1;
6343 s[i - 1]->s.jf = s[i];
6344 i++;
6345
6346 /* fixup */
6347 for (j = v6start; j <= v6end; j++)
6348 s[j]->s.jt = s[v6advance];
6349 } else {
6350 /* nop */
6351 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6352 s[i]->s.k = 0;
6353 s[fix2]->s.jf = s[i];
6354 i++;
6355 }
6356
6357 /* ahcheck: */
6358 ahcheck = i;
6359 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6360 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6361 s[i]->s.jt = NULL; /*later*/
6362 s[i]->s.jf = NULL; /*later*/
6363 s[i]->s.k = IPPROTO_AH;
6364 if (fix3)
6365 s[fix3]->s.jf = s[ahcheck];
6366 fix4 = i;
6367 i++;
6368
6369 /*
6370 * in short,
6371 * A = P[X];
6372 * X = X + (P[X + 1] + 2) * 4;
6373 */
6374 /* A = X */
6375 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6376 i++;
6377 /* A = P[X + packet head]; */
6378 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6379 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6380 i++;
6381 /* MEM[reg2] = A */
6382 s[i] = new_stmt(cstate, BPF_ST);
6383 s[i]->s.k = reg2;
6384 i++;
6385 /* A = X */
6386 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6387 i++;
6388 /* A += 1 */
6389 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6390 s[i]->s.k = 1;
6391 i++;
6392 /* X = A */
6393 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6394 i++;
6395 /* A = P[X + packet head] */
6396 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6397 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6398 i++;
6399 /* A += 2 */
6400 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6401 s[i]->s.k = 2;
6402 i++;
6403 /* A *= 4 */
6404 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6405 s[i]->s.k = 4;
6406 i++;
6407 /* X = A; */
6408 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6409 i++;
6410 /* A = MEM[reg2] */
6411 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6412 s[i]->s.k = reg2;
6413 i++;
6414
6415 /* goto again; (must use BPF_JA for backward jump) */
6416 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6417 s[i]->s.k = again - i - 1;
6418 i++;
6419
6420 /* end: nop */
6421 end = i;
6422 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6423 s[i]->s.k = 0;
6424 s[fix2]->s.jt = s[end];
6425 s[fix4]->s.jf = s[end];
6426 s[fix5]->s.jt = s[end];
6427 i++;
6428
6429 /*
6430 * make slist chain
6431 */
6432 max = i;
6433 for (i = 0; i < max - 1; i++)
6434 s[i]->next = s[i + 1];
6435 s[max - 1]->next = NULL;
6436
6437 /*
6438 * emit final check
6439 */
6440 b = new_block(cstate, JMP(BPF_JEQ));
6441 b->stmts = s[1]; /*remember, s[0] is dummy*/
6442 b->s.k = v;
6443
6444 free_reg(cstate, reg2);
6445
6446 gen_and(b0, b);
6447 return b;
6448 }
6449 #endif /* !defined(NO_PROTOCHAIN) */
6450
6451 /*
6452 * Generate code that checks whether the packet is a packet for protocol
6453 * <proto> and whether the type field in that protocol's header has
6454 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6455 * IP packet and checks the protocol number in the IP header against <v>.
6456 *
6457 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6458 * against Q_IP and Q_IPV6.
6459 */
6460 static struct block *
6461 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6462 {
6463 struct block *b0, *b1;
6464 struct block *b2;
6465
6466 if (dir != Q_DEFAULT)
6467 bpf_error(cstate, "direction applied to 'proto'");
6468
6469 switch (proto) {
6470 case Q_DEFAULT:
6471 b0 = gen_proto(cstate, v, Q_IP, dir);
6472 b1 = gen_proto(cstate, v, Q_IPV6, dir);
6473 gen_or(b0, b1);
6474 return b1;
6475
6476 case Q_LINK:
6477 return gen_linktype(cstate, v);
6478
6479 case Q_IP:
6480 /*
6481 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6482 * not LLC encapsulation with LLCSAP_IP.
6483 *
6484 * For IEEE 802 networks - which includes 802.5 token ring
6485 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6486 * says that SNAP encapsulation is used, not LLC encapsulation
6487 * with LLCSAP_IP.
6488 *
6489 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6490 * RFC 2225 say that SNAP encapsulation is used, not LLC
6491 * encapsulation with LLCSAP_IP.
6492 *
6493 * So we always check for ETHERTYPE_IP.
6494 */
6495 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6496 b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6497 gen_and(b0, b1);
6498 return b1;
6499
6500 case Q_ARP:
6501 case Q_RARP:
6502 case Q_SCTP:
6503 case Q_TCP:
6504 case Q_UDP:
6505 case Q_ICMP:
6506 case Q_IGMP:
6507 case Q_IGRP:
6508 case Q_ATALK:
6509 case Q_DECNET:
6510 case Q_LAT:
6511 case Q_SCA:
6512 case Q_MOPRC:
6513 case Q_MOPDL:
6514 break; // invalid qualifier
6515
6516 case Q_IPV6:
6517 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6518 /*
6519 * Also check for a fragment header before the final
6520 * header.
6521 */
6522 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6523 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6524 gen_and(b2, b1);
6525 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6526 gen_or(b2, b1);
6527 gen_and(b0, b1);
6528 return b1;
6529
6530 case Q_ICMPV6:
6531 case Q_AH:
6532 case Q_ESP:
6533 case Q_PIM:
6534 case Q_VRRP:
6535 case Q_AARP:
6536 break; // invalid qualifier
6537
6538 case Q_ISO:
6539 switch (cstate->linktype) {
6540
6541 case DLT_FRELAY:
6542 /*
6543 * Frame Relay packets typically have an OSI
6544 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6545 * generates code to check for all the OSI
6546 * NLPIDs, so calling it and then adding a check
6547 * for the particular NLPID for which we're
6548 * looking is bogus, as we can just check for
6549 * the NLPID.
6550 *
6551 * What we check for is the NLPID and a frame
6552 * control field value of UI, i.e. 0x03 followed
6553 * by the NLPID.
6554 *
6555 * XXX - assumes a 2-byte Frame Relay header with
6556 * DLCI and flags. What if the address is longer?
6557 *
6558 * XXX - what about SNAP-encapsulated frames?
6559 */
6560 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6561 /*NOTREACHED*/
6562
6563 case DLT_C_HDLC:
6564 case DLT_HDLC:
6565 /*
6566 * Cisco uses an Ethertype lookalike - for OSI,
6567 * it's 0xfefe.
6568 */
6569 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6570 /* OSI in C-HDLC is stuffed with a fudge byte */
6571 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6572 gen_and(b0, b1);
6573 return b1;
6574
6575 default:
6576 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6577 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6578 gen_and(b0, b1);
6579 return b1;
6580 }
6581
6582 case Q_ESIS:
6583 break; // invalid qualifier
6584
6585 case Q_ISIS:
6586 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6587 /*
6588 * 4 is the offset of the PDU type relative to the IS-IS
6589 * header.
6590 */
6591 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6592 gen_and(b0, b1);
6593 return b1;
6594
6595 case Q_CLNP:
6596 case Q_STP:
6597 case Q_IPX:
6598 case Q_NETBEUI:
6599 case Q_ISIS_L1:
6600 case Q_ISIS_L2:
6601 case Q_ISIS_IIH:
6602 case Q_ISIS_SNP:
6603 case Q_ISIS_CSNP:
6604 case Q_ISIS_PSNP:
6605 case Q_ISIS_LSP:
6606 case Q_RADIO:
6607 case Q_CARP:
6608 break; // invalid qualifier
6609
6610 default:
6611 abort();
6612 /*NOTREACHED*/
6613 }
6614 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "proto");
6615 /*NOTREACHED*/
6616 }
6617
6618 /*
6619 * Convert a non-numeric name to a port number.
6620 */
6621 static int
6622 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6623 {
6624 struct addrinfo hints, *res, *ai;
6625 int error;
6626 struct sockaddr_in *in4;
6627 #ifdef INET6
6628 struct sockaddr_in6 *in6;
6629 #endif
6630 int port = -1;
6631
6632 /*
6633 * We check for both TCP and UDP in case there are
6634 * ambiguous entries.
6635 */
6636 memset(&hints, 0, sizeof(hints));
6637 hints.ai_family = PF_UNSPEC;
6638 hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6639 hints.ai_protocol = ipproto;
6640 error = getaddrinfo(NULL, name, &hints, &res);
6641 if (error != 0) {
6642 switch (error) {
6643
6644 case EAI_NONAME:
6645 case EAI_SERVICE:
6646 /*
6647 * No such port. Just return -1.
6648 */
6649 break;
6650
6651 #ifdef EAI_SYSTEM
6652 case EAI_SYSTEM:
6653 /*
6654 * We don't use strerror() because it's not
6655 * guaranteed to be thread-safe on all platforms
6656 * (probably because it might use a non-thread-local
6657 * buffer into which to format an error message
6658 * if the error code isn't one for which it has
6659 * a canned string; three cheers for C string
6660 * handling).
6661 */
6662 bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6663 name, errno);
6664 port = -2; /* a real error */
6665 break;
6666 #endif
6667
6668 default:
6669 /*
6670 * This is a real error, not just "there's
6671 * no such service name".
6672 *
6673 * We don't use gai_strerror() because it's not
6674 * guaranteed to be thread-safe on all platforms
6675 * (probably because it might use a non-thread-local
6676 * buffer into which to format an error message
6677 * if the error code isn't one for which it has
6678 * a canned string; three cheers for C string
6679 * handling).
6680 */
6681 bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6682 name, error);
6683 port = -2; /* a real error */
6684 break;
6685 }
6686 } else {
6687 /*
6688 * OK, we found it. Did it find anything?
6689 */
6690 for (ai = res; ai != NULL; ai = ai->ai_next) {
6691 /*
6692 * Does it have an address?
6693 */
6694 if (ai->ai_addr != NULL) {
6695 /*
6696 * Yes. Get a port number; we're done.
6697 */
6698 if (ai->ai_addr->sa_family == AF_INET) {
6699 in4 = (struct sockaddr_in *)ai->ai_addr;
6700 port = ntohs(in4->sin_port);
6701 break;
6702 }
6703 #ifdef INET6
6704 if (ai->ai_addr->sa_family == AF_INET6) {
6705 in6 = (struct sockaddr_in6 *)ai->ai_addr;
6706 port = ntohs(in6->sin6_port);
6707 break;
6708 }
6709 #endif
6710 }
6711 }
6712 freeaddrinfo(res);
6713 }
6714 return port;
6715 }
6716
6717 /*
6718 * Convert a string to a port number.
6719 */
6720 static bpf_u_int32
6721 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6722 int *proto)
6723 {
6724 stoulen_ret ret;
6725 char *cpy;
6726 bpf_u_int32 val;
6727 int tcp_port = -1;
6728 int udp_port = -1;
6729
6730 /*
6731 * See if it's a number.
6732 */
6733 ret = stoulen(string, string_size, &val, cstate);
6734 switch (ret) {
6735
6736 case STOULEN_OK:
6737 /* Unknown port type - it's just a number. */
6738 *proto = PROTO_UNDEF;
6739 break;
6740
6741 case STOULEN_NOT_OCTAL_NUMBER:
6742 case STOULEN_NOT_HEX_NUMBER:
6743 case STOULEN_NOT_DECIMAL_NUMBER:
6744 /*
6745 * Not a valid number; try looking it up as a port.
6746 */
6747 cpy = malloc(string_size + 1); /* +1 for terminating '\0' */
6748 memcpy(cpy, string, string_size);
6749 cpy[string_size] = '\0';
6750 tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6751 if (tcp_port == -2) {
6752 /*
6753 * We got a hard error; the error string has
6754 * already been set.
6755 */
6756 free(cpy);
6757 longjmp(cstate->top_ctx, 1);
6758 /*NOTREACHED*/
6759 }
6760 udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6761 if (udp_port == -2) {
6762 /*
6763 * We got a hard error; the error string has
6764 * already been set.
6765 */
6766 free(cpy);
6767 longjmp(cstate->top_ctx, 1);
6768 /*NOTREACHED*/
6769 }
6770
6771 /*
6772 * We need to check /etc/services for ambiguous entries.
6773 * If we find an ambiguous entry, and it has the
6774 * same port number, change the proto to PROTO_UNDEF
6775 * so both TCP and UDP will be checked.
6776 */
6777 if (tcp_port >= 0) {
6778 val = (bpf_u_int32)tcp_port;
6779 *proto = IPPROTO_TCP;
6780 if (udp_port >= 0) {
6781 if (udp_port == tcp_port)
6782 *proto = PROTO_UNDEF;
6783 #ifdef notdef
6784 else
6785 /* Can't handle ambiguous names that refer
6786 to different port numbers. */
6787 warning("ambiguous port %s in /etc/services",
6788 cpy);
6789 #endif
6790 }
6791 free(cpy);
6792 break;
6793 }
6794 if (udp_port >= 0) {
6795 val = (bpf_u_int32)udp_port;
6796 *proto = IPPROTO_UDP;
6797 free(cpy);
6798 break;
6799 }
6800 bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6801 free(cpy);
6802 longjmp(cstate->top_ctx, 1);
6803 /*NOTREACHED*/
6804 #ifdef _AIX
6805 PCAP_UNREACHABLE
6806 #endif /* _AIX */
6807
6808 case STOULEN_ERROR:
6809 /* Error already set. */
6810 longjmp(cstate->top_ctx, 1);
6811 /*NOTREACHED*/
6812 #ifdef _AIX
6813 PCAP_UNREACHABLE
6814 #endif /* _AIX */
6815
6816 default:
6817 /* Should not happen */
6818 bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6819 longjmp(cstate->top_ctx, 1);
6820 /*NOTREACHED*/
6821 }
6822 return (val);
6823 }
6824
6825 /*
6826 * Convert a string in the form PPP-PPP, which correspond to ports, to
6827 * a starting and ending port in a port range.
6828 */
6829 static void
6830 stringtoportrange(compiler_state_t *cstate, const char *string,
6831 bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6832 {
6833 char *hyphen_off;
6834 const char *first, *second;
6835 size_t first_size, second_size;
6836 int save_proto;
6837
6838 if ((hyphen_off = strchr(string, '-')) == NULL)
6839 bpf_error(cstate, "port range '%s' contains no hyphen", string);
6840
6841 /*
6842 * Make sure there are no other hyphens.
6843 *
6844 * XXX - we support named ports, but there are some port names
6845 * in /etc/services that include hyphens, so this would rule
6846 * that out.
6847 */
6848 if (strchr(hyphen_off + 1, '-') != NULL)
6849 bpf_error(cstate, "port range '%s' contains more than one hyphen",
6850 string);
6851
6852 /*
6853 * Get the length of the first port.
6854 */
6855 first = string;
6856 first_size = hyphen_off - string;
6857 if (first_size == 0) {
6858 /* Range of "-port", which we don't support. */
6859 bpf_error(cstate, "port range '%s' has no starting port", string);
6860 }
6861
6862 /*
6863 * Try to convert it to a port.
6864 */
6865 *port1 = stringtoport(cstate, first, first_size, proto);
6866 save_proto = *proto;
6867
6868 /*
6869 * Get the length of the second port.
6870 */
6871 second = hyphen_off + 1;
6872 second_size = strlen(second);
6873 if (second_size == 0) {
6874 /* Range of "port-", which we don't support. */
6875 bpf_error(cstate, "port range '%s' has no ending port", string);
6876 }
6877
6878 /*
6879 * Try to convert it to a port.
6880 */
6881 *port2 = stringtoport(cstate, second, second_size, proto);
6882 if (*proto != save_proto)
6883 *proto = PROTO_UNDEF;
6884 }
6885
6886 struct block *
6887 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6888 {
6889 int proto = q.proto;
6890 int dir = q.dir;
6891 int tproto;
6892 u_char *eaddr;
6893 bpf_u_int32 mask, addr;
6894 struct addrinfo *res, *res0;
6895 struct sockaddr_in *sin4;
6896 #ifdef INET6
6897 int tproto6;
6898 struct sockaddr_in6 *sin6;
6899 struct in6_addr mask128;
6900 #endif /*INET6*/
6901 struct block *b, *tmp;
6902 int port, real_proto;
6903 bpf_u_int32 port1, port2;
6904
6905 /*
6906 * Catch errors reported by us and routines below us, and return NULL
6907 * on an error.
6908 */
6909 if (setjmp(cstate->top_ctx))
6910 return (NULL);
6911
6912 switch (q.addr) {
6913
6914 case Q_NET:
6915 addr = pcap_nametonetaddr(name);
6916 if (addr == 0)
6917 bpf_error(cstate, "unknown network '%s'", name);
6918 /* Left justify network addr and calculate its network mask */
6919 mask = 0xffffffff;
6920 while (addr && (addr & 0xff000000) == 0) {
6921 addr <<= 8;
6922 mask <<= 8;
6923 }
6924 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6925
6926 case Q_DEFAULT:
6927 case Q_HOST:
6928 if (proto == Q_LINK) {
6929 switch (cstate->linktype) {
6930
6931 case DLT_EN10MB:
6932 case DLT_NETANALYZER:
6933 case DLT_NETANALYZER_TRANSPARENT:
6934 eaddr = pcap_ether_hostton(name);
6935 if (eaddr == NULL)
6936 bpf_error(cstate,
6937 "unknown ether host '%s'", name);
6938 tmp = gen_prevlinkhdr_check(cstate);
6939 b = gen_ehostop(cstate, eaddr, dir);
6940 if (tmp != NULL)
6941 gen_and(tmp, b);
6942 free(eaddr);
6943 return b;
6944
6945 case DLT_FDDI:
6946 eaddr = pcap_ether_hostton(name);
6947 if (eaddr == NULL)
6948 bpf_error(cstate,
6949 "unknown FDDI host '%s'", name);
6950 b = gen_fhostop(cstate, eaddr, dir);
6951 free(eaddr);
6952 return b;
6953
6954 case DLT_IEEE802:
6955 eaddr = pcap_ether_hostton(name);
6956 if (eaddr == NULL)
6957 bpf_error(cstate,
6958 "unknown token ring host '%s'", name);
6959 b = gen_thostop(cstate, eaddr, dir);
6960 free(eaddr);
6961 return b;
6962
6963 case DLT_IEEE802_11:
6964 case DLT_PRISM_HEADER:
6965 case DLT_IEEE802_11_RADIO_AVS:
6966 case DLT_IEEE802_11_RADIO:
6967 case DLT_PPI:
6968 eaddr = pcap_ether_hostton(name);
6969 if (eaddr == NULL)
6970 bpf_error(cstate,
6971 "unknown 802.11 host '%s'", name);
6972 b = gen_wlanhostop(cstate, eaddr, dir);
6973 free(eaddr);
6974 return b;
6975
6976 case DLT_IP_OVER_FC:
6977 eaddr = pcap_ether_hostton(name);
6978 if (eaddr == NULL)
6979 bpf_error(cstate,
6980 "unknown Fibre Channel host '%s'", name);
6981 b = gen_ipfchostop(cstate, eaddr, dir);
6982 free(eaddr);
6983 return b;
6984 }
6985
6986 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6987 } else if (proto == Q_DECNET) {
6988 /*
6989 * A long time ago on Ultrix libpcap supported
6990 * translation of DECnet host names into DECnet
6991 * addresses, but this feature is history now.
6992 */
6993 bpf_error(cstate, "invalid DECnet address '%s'", name);
6994 } else {
6995 #ifdef INET6
6996 memset(&mask128, 0xff, sizeof(mask128));
6997 #endif
6998 res0 = res = pcap_nametoaddrinfo(name);
6999 if (res == NULL)
7000 bpf_error(cstate, "unknown host '%s'", name);
7001 cstate->ai = res;
7002 b = tmp = NULL;
7003 tproto = proto;
7004 #ifdef INET6
7005 tproto6 = proto;
7006 #endif
7007 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
7008 tproto == Q_DEFAULT) {
7009 tproto = Q_IP;
7010 #ifdef INET6
7011 tproto6 = Q_IPV6;
7012 #endif
7013 }
7014 for (res = res0; res; res = res->ai_next) {
7015 switch (res->ai_family) {
7016 case AF_INET:
7017 #ifdef INET6
7018 if (tproto == Q_IPV6)
7019 continue;
7020 #endif
7021
7022 sin4 = (struct sockaddr_in *)
7023 res->ai_addr;
7024 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
7025 0xffffffff, tproto, dir, q.addr);
7026 break;
7027 #ifdef INET6
7028 case AF_INET6:
7029 if (tproto6 == Q_IP)
7030 continue;
7031
7032 sin6 = (struct sockaddr_in6 *)
7033 res->ai_addr;
7034 tmp = gen_host6(cstate, &sin6->sin6_addr,
7035 &mask128, tproto6, dir, q.addr);
7036 break;
7037 #endif
7038 default:
7039 continue;
7040 }
7041 if (b)
7042 gen_or(b, tmp);
7043 b = tmp;
7044 }
7045 cstate->ai = NULL;
7046 freeaddrinfo(res0);
7047 if (b == NULL) {
7048 bpf_error(cstate, "unknown host '%s'%s", name,
7049 (proto == Q_DEFAULT)
7050 ? ""
7051 : " for specified address family");
7052 }
7053 return b;
7054 }
7055
7056 case Q_PORT:
7057 (void)port_pq_to_ipproto(cstate, proto, "port"); // validate only
7058 if (pcap_nametoport(name, &port, &real_proto) == 0)
7059 bpf_error(cstate, "unknown port '%s'", name);
7060 if (proto == Q_UDP) {
7061 if (real_proto == IPPROTO_TCP)
7062 bpf_error(cstate, "port '%s' is tcp", name);
7063 else if (real_proto == IPPROTO_SCTP)
7064 bpf_error(cstate, "port '%s' is sctp", name);
7065 else
7066 /* override PROTO_UNDEF */
7067 real_proto = IPPROTO_UDP;
7068 }
7069 if (proto == Q_TCP) {
7070 if (real_proto == IPPROTO_UDP)
7071 bpf_error(cstate, "port '%s' is udp", name);
7072
7073 else if (real_proto == IPPROTO_SCTP)
7074 bpf_error(cstate, "port '%s' is sctp", name);
7075 else
7076 /* override PROTO_UNDEF */
7077 real_proto = IPPROTO_TCP;
7078 }
7079 if (proto == Q_SCTP) {
7080 if (real_proto == IPPROTO_UDP)
7081 bpf_error(cstate, "port '%s' is udp", name);
7082
7083 else if (real_proto == IPPROTO_TCP)
7084 bpf_error(cstate, "port '%s' is tcp", name);
7085 else
7086 /* override PROTO_UNDEF */
7087 real_proto = IPPROTO_SCTP;
7088 }
7089 if (port < 0)
7090 bpf_error(cstate, "illegal port number %d < 0", port);
7091 if (port > 65535)
7092 bpf_error(cstate, "illegal port number %d > 65535", port);
7093 b = gen_port(cstate, port, real_proto, dir);
7094 gen_or(gen_port6(cstate, port, real_proto, dir), b);
7095 return b;
7096
7097 case Q_PORTRANGE:
7098 (void)port_pq_to_ipproto(cstate, proto, "portrange"); // validate only
7099 stringtoportrange(cstate, name, &port1, &port2, &real_proto);
7100 if (proto == Q_UDP) {
7101 if (real_proto == IPPROTO_TCP)
7102 bpf_error(cstate, "port in range '%s' is tcp", name);
7103 else if (real_proto == IPPROTO_SCTP)
7104 bpf_error(cstate, "port in range '%s' is sctp", name);
7105 else
7106 /* override PROTO_UNDEF */
7107 real_proto = IPPROTO_UDP;
7108 }
7109 if (proto == Q_TCP) {
7110 if (real_proto == IPPROTO_UDP)
7111 bpf_error(cstate, "port in range '%s' is udp", name);
7112 else if (real_proto == IPPROTO_SCTP)
7113 bpf_error(cstate, "port in range '%s' is sctp", name);
7114 else
7115 /* override PROTO_UNDEF */
7116 real_proto = IPPROTO_TCP;
7117 }
7118 if (proto == Q_SCTP) {
7119 if (real_proto == IPPROTO_UDP)
7120 bpf_error(cstate, "port in range '%s' is udp", name);
7121 else if (real_proto == IPPROTO_TCP)
7122 bpf_error(cstate, "port in range '%s' is tcp", name);
7123 else
7124 /* override PROTO_UNDEF */
7125 real_proto = IPPROTO_SCTP;
7126 }
7127 if (port1 > 65535)
7128 bpf_error(cstate, "illegal port number %d > 65535", port1);
7129 if (port2 > 65535)
7130 bpf_error(cstate, "illegal port number %d > 65535", port2);
7131
7132 b = gen_portrange(cstate, port1, port2, real_proto, dir);
7133 gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
7134 return b;
7135
7136 case Q_GATEWAY:
7137 #ifndef INET6
7138 eaddr = pcap_ether_hostton(name);
7139 if (eaddr == NULL)
7140 bpf_error(cstate, "unknown ether host: %s", name);
7141
7142 res = pcap_nametoaddrinfo(name);
7143 cstate->ai = res;
7144 if (res == NULL)
7145 bpf_error(cstate, "unknown host '%s'", name);
7146 b = gen_gateway(cstate, eaddr, res, proto, dir);
7147 cstate->ai = NULL;
7148 freeaddrinfo(res);
7149 free(eaddr);
7150 if (b == NULL)
7151 bpf_error(cstate, "unknown host '%s'", name);
7152 return b;
7153 #else
7154 bpf_error(cstate, "'gateway' not supported in this configuration");
7155 #endif /*INET6*/
7156
7157 case Q_PROTO:
7158 real_proto = lookup_proto(cstate, name, proto);
7159 if (real_proto >= 0)
7160 return gen_proto(cstate, real_proto, proto, dir);
7161 else
7162 bpf_error(cstate, "unknown protocol: %s", name);
7163
7164 #if !defined(NO_PROTOCHAIN)
7165 case Q_PROTOCHAIN:
7166 real_proto = lookup_proto(cstate, name, proto);
7167 if (real_proto >= 0)
7168 return gen_protochain(cstate, real_proto, proto);
7169 else
7170 bpf_error(cstate, "unknown protocol: %s", name);
7171 #endif /* !defined(NO_PROTOCHAIN) */
7172
7173 case Q_UNDEF:
7174 syntax(cstate);
7175 /*NOTREACHED*/
7176 }
7177 abort();
7178 /*NOTREACHED*/
7179 }
7180
7181 struct block *
7182 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7183 bpf_u_int32 masklen, struct qual q)
7184 {
7185 register int nlen, mlen;
7186 bpf_u_int32 n, m;
7187 uint64_t m64;
7188
7189 /*
7190 * Catch errors reported by us and routines below us, and return NULL
7191 * on an error.
7192 */
7193 if (setjmp(cstate->top_ctx))
7194 return (NULL);
7195
7196 nlen = pcapint_atoin(s1, &n);
7197 if (nlen < 0)
7198 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7199 /* Promote short ipaddr */
7200 n <<= 32 - nlen;
7201
7202 if (s2 != NULL) {
7203 mlen = pcapint_atoin(s2, &m);
7204 if (mlen < 0)
7205 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7206 /* Promote short ipaddr */
7207 m <<= 32 - mlen;
7208 if ((n & ~m) != 0)
7209 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7210 s1, s2);
7211 } else {
7212 /* Convert mask len to mask */
7213 if (masklen > 32)
7214 bpf_error(cstate, "mask length must be <= 32");
7215 m64 = UINT64_C(0xffffffff) << (32 - masklen);
7216 m = (bpf_u_int32)m64;
7217 if ((n & ~m) != 0)
7218 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7219 s1, masklen);
7220 }
7221
7222 switch (q.addr) {
7223
7224 case Q_NET:
7225 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7226
7227 default:
7228 // Q_HOST and Q_GATEWAY only (see the grammar)
7229 bpf_error(cstate, "Mask syntax for networks only");
7230 /*NOTREACHED*/
7231 }
7232 /*NOTREACHED*/
7233 }
7234
7235 struct block *
7236 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7237 {
7238 bpf_u_int32 mask;
7239 int proto;
7240 int dir;
7241 register int vlen;
7242
7243 /*
7244 * Catch errors reported by us and routines below us, and return NULL
7245 * on an error.
7246 */
7247 if (setjmp(cstate->top_ctx))
7248 return (NULL);
7249
7250 proto = q.proto;
7251 dir = q.dir;
7252 if (s == NULL) {
7253 /*
7254 * v contains a 32-bit unsigned parsed from a string of the
7255 * form {N}, which could be decimal, hexadecimal or octal.
7256 * Although it would be possible to use the value as a raw
7257 * 16-bit DECnet address when the value fits into 16 bits, this
7258 * would be a questionable feature: DECnet address wire
7259 * encoding is little-endian, so this would not work as
7260 * intuitively as the same works for [big-endian] IPv4
7261 * addresses (0x01020304 means 1.2.3.4).
7262 */
7263 if (proto == Q_DECNET)
7264 bpf_error(cstate, "invalid DECnet address '%u'", v);
7265 vlen = 32;
7266 } else if (proto == Q_DECNET) {
7267 /*
7268 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7269 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7270 * for a valid DECnet address.
7271 */
7272 vlen = pcapint_atodn(s, &v);
7273 if (vlen == 0)
7274 bpf_error(cstate, "invalid DECnet address '%s'", s);
7275 } else {
7276 /*
7277 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7278 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7279 * IPv4 address.
7280 */
7281 vlen = pcapint_atoin(s, &v);
7282 if (vlen < 0)
7283 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7284 }
7285
7286 switch (q.addr) {
7287
7288 case Q_DEFAULT:
7289 case Q_HOST:
7290 case Q_NET:
7291 if (proto == Q_DECNET)
7292 return gen_host(cstate, v, 0, proto, dir, q.addr);
7293 else if (proto == Q_LINK) {
7294 // "link (host|net) IPV4ADDR" and variations thereof
7295 bpf_error(cstate, "illegal link layer address");
7296 } else {
7297 mask = 0xffffffff;
7298 if (s == NULL && q.addr == Q_NET) {
7299 /* Promote short net number */
7300 while (v && (v & 0xff000000) == 0) {
7301 v <<= 8;
7302 mask <<= 8;
7303 }
7304 } else {
7305 /* Promote short ipaddr */
7306 v <<= 32 - vlen;
7307 mask <<= 32 - vlen ;
7308 }
7309 return gen_host(cstate, v, mask, proto, dir, q.addr);
7310 }
7311
7312 case Q_PORT:
7313 proto = port_pq_to_ipproto(cstate, proto, "port");
7314
7315 if (v > 65535)
7316 bpf_error(cstate, "illegal port number %u > 65535", v);
7317
7318 {
7319 struct block *b;
7320 b = gen_port(cstate, v, proto, dir);
7321 gen_or(gen_port6(cstate, v, proto, dir), b);
7322 return b;
7323 }
7324
7325 case Q_PORTRANGE:
7326 proto = port_pq_to_ipproto(cstate, proto, "portrange");
7327
7328 if (v > 65535)
7329 bpf_error(cstate, "illegal port number %u > 65535", v);
7330
7331 {
7332 struct block *b;
7333 b = gen_portrange(cstate, v, v, proto, dir);
7334 gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7335 return b;
7336 }
7337
7338 case Q_GATEWAY:
7339 bpf_error(cstate, "'gateway' requires a name");
7340 /*NOTREACHED*/
7341
7342 case Q_PROTO:
7343 return gen_proto(cstate, v, proto, dir);
7344
7345 #if !defined(NO_PROTOCHAIN)
7346 case Q_PROTOCHAIN:
7347 return gen_protochain(cstate, v, proto);
7348 #endif
7349
7350 case Q_UNDEF:
7351 syntax(cstate);
7352 /*NOTREACHED*/
7353
7354 default:
7355 abort();
7356 /*NOTREACHED*/
7357 }
7358 /*NOTREACHED*/
7359 }
7360
7361 #ifdef INET6
7362 struct block *
7363 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7364 struct qual q)
7365 {
7366 struct addrinfo *res;
7367 struct in6_addr *addr;
7368 struct in6_addr mask;
7369 struct block *b;
7370 bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7371
7372 /*
7373 * Catch errors reported by us and routines below us, and return NULL
7374 * on an error.
7375 */
7376 if (setjmp(cstate->top_ctx))
7377 return (NULL);
7378
7379 res = pcap_nametoaddrinfo(s);
7380 if (!res)
7381 bpf_error(cstate, "invalid ip6 address %s", s);
7382 cstate->ai = res;
7383 if (res->ai_next)
7384 bpf_error(cstate, "%s resolved to multiple address", s);
7385 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7386
7387 if (masklen > sizeof(mask.s6_addr) * 8)
7388 bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7389 memset(&mask, 0, sizeof(mask));
7390 memset(&mask.s6_addr, 0xff, masklen / 8);
7391 if (masklen % 8) {
7392 mask.s6_addr[masklen / 8] =
7393 (0xff << (8 - masklen % 8)) & 0xff;
7394 }
7395
7396 memcpy(a, addr, sizeof(a));
7397 memcpy(m, &mask, sizeof(m));
7398 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7399 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7400 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7401 }
7402
7403 switch (q.addr) {
7404
7405 case Q_DEFAULT:
7406 case Q_HOST:
7407 if (masklen != 128)
7408 bpf_error(cstate, "Mask syntax for networks only");
7409 /* FALLTHROUGH */
7410
7411 case Q_NET:
7412 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7413 cstate->ai = NULL;
7414 freeaddrinfo(res);
7415 return b;
7416
7417 default:
7418 // Q_GATEWAY only (see the grammar)
7419 bpf_error(cstate, "invalid qualifier against IPv6 address");
7420 /*NOTREACHED*/
7421 }
7422 }
7423 #endif /*INET6*/
7424
7425 struct block *
7426 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7427 {
7428 struct block *b, *tmp;
7429
7430 /*
7431 * Catch errors reported by us and routines below us, and return NULL
7432 * on an error.
7433 */
7434 if (setjmp(cstate->top_ctx))
7435 return (NULL);
7436
7437 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7438 cstate->e = pcap_ether_aton(s);
7439 if (cstate->e == NULL)
7440 bpf_error(cstate, "malloc");
7441 switch (cstate->linktype) {
7442 case DLT_EN10MB:
7443 case DLT_NETANALYZER:
7444 case DLT_NETANALYZER_TRANSPARENT:
7445 tmp = gen_prevlinkhdr_check(cstate);
7446 b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7447 if (tmp != NULL)
7448 gen_and(tmp, b);
7449 break;
7450 case DLT_FDDI:
7451 b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7452 break;
7453 case DLT_IEEE802:
7454 b = gen_thostop(cstate, cstate->e, (int)q.dir);
7455 break;
7456 case DLT_IEEE802_11:
7457 case DLT_PRISM_HEADER:
7458 case DLT_IEEE802_11_RADIO_AVS:
7459 case DLT_IEEE802_11_RADIO:
7460 case DLT_PPI:
7461 b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7462 break;
7463 case DLT_IP_OVER_FC:
7464 b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7465 break;
7466 default:
7467 free(cstate->e);
7468 cstate->e = NULL;
7469 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7470 /*NOTREACHED*/
7471 }
7472 free(cstate->e);
7473 cstate->e = NULL;
7474 return (b);
7475 }
7476 bpf_error(cstate, "ethernet address used in non-ether expression");
7477 /*NOTREACHED*/
7478 }
7479
7480 void
7481 sappend(struct slist *s0, struct slist *s1)
7482 {
7483 /*
7484 * This is definitely not the best way to do this, but the
7485 * lists will rarely get long.
7486 */
7487 while (s0->next)
7488 s0 = s0->next;
7489 s0->next = s1;
7490 }
7491
7492 static struct slist *
7493 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7494 {
7495 struct slist *s;
7496
7497 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7498 s->s.k = a->regno;
7499 return s;
7500 }
7501
7502 static struct slist *
7503 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7504 {
7505 struct slist *s;
7506
7507 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7508 s->s.k = a->regno;
7509 return s;
7510 }
7511
7512 /*
7513 * Modify "index" to use the value stored into its register as an
7514 * offset relative to the beginning of the header for the protocol
7515 * "proto", and allocate a register and put an item "size" bytes long
7516 * (1, 2, or 4) at that offset into that register, making it the register
7517 * for "index".
7518 */
7519 static struct arth *
7520 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7521 bpf_u_int32 size)
7522 {
7523 int size_code;
7524 struct slist *s, *tmp;
7525 struct block *b;
7526 int regno = alloc_reg(cstate);
7527
7528 free_reg(cstate, inst->regno);
7529 switch (size) {
7530
7531 default:
7532 bpf_error(cstate, "data size must be 1, 2, or 4");
7533 /*NOTREACHED*/
7534
7535 case 1:
7536 size_code = BPF_B;
7537 break;
7538
7539 case 2:
7540 size_code = BPF_H;
7541 break;
7542
7543 case 4:
7544 size_code = BPF_W;
7545 break;
7546 }
7547 switch (proto) {
7548 default:
7549 bpf_error(cstate, "'%s' does not support the index operation", pqkw(proto));
7550
7551 case Q_RADIO:
7552 /*
7553 * The offset is relative to the beginning of the packet
7554 * data, if we have a radio header. (If we don't, this
7555 * is an error.)
7556 */
7557 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7558 cstate->linktype != DLT_IEEE802_11_RADIO &&
7559 cstate->linktype != DLT_PRISM_HEADER)
7560 bpf_error(cstate, "radio information not present in capture");
7561
7562 /*
7563 * Load into the X register the offset computed into the
7564 * register specified by "index".
7565 */
7566 s = xfer_to_x(cstate, inst);
7567
7568 /*
7569 * Load the item at that offset.
7570 */
7571 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7572 sappend(s, tmp);
7573 sappend(inst->s, s);
7574 break;
7575
7576 case Q_LINK:
7577 /*
7578 * The offset is relative to the beginning of
7579 * the link-layer header.
7580 *
7581 * XXX - what about ATM LANE? Should the index be
7582 * relative to the beginning of the AAL5 frame, so
7583 * that 0 refers to the beginning of the LE Control
7584 * field, or relative to the beginning of the LAN
7585 * frame, so that 0 refers, for Ethernet LANE, to
7586 * the beginning of the destination address?
7587 */
7588 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7589
7590 /*
7591 * If "s" is non-null, it has code to arrange that the
7592 * X register contains the length of the prefix preceding
7593 * the link-layer header. Add to it the offset computed
7594 * into the register specified by "index", and move that
7595 * into the X register. Otherwise, just load into the X
7596 * register the offset computed into the register specified
7597 * by "index".
7598 */
7599 if (s != NULL) {
7600 sappend(s, xfer_to_a(cstate, inst));
7601 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7602 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7603 } else
7604 s = xfer_to_x(cstate, inst);
7605
7606 /*
7607 * Load the item at the sum of the offset we've put in the
7608 * X register and the offset of the start of the link
7609 * layer header (which is 0 if the radio header is
7610 * variable-length; that header length is what we put
7611 * into the X register and then added to the index).
7612 */
7613 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7614 tmp->s.k = cstate->off_linkhdr.constant_part;
7615 sappend(s, tmp);
7616 sappend(inst->s, s);
7617 break;
7618
7619 case Q_IP:
7620 case Q_ARP:
7621 case Q_RARP:
7622 case Q_ATALK:
7623 case Q_DECNET:
7624 case Q_SCA:
7625 case Q_LAT:
7626 case Q_MOPRC:
7627 case Q_MOPDL:
7628 case Q_IPV6:
7629 /*
7630 * The offset is relative to the beginning of
7631 * the network-layer header.
7632 * XXX - are there any cases where we want
7633 * cstate->off_nl_nosnap?
7634 */
7635 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7636
7637 /*
7638 * If "s" is non-null, it has code to arrange that the
7639 * X register contains the variable part of the offset
7640 * of the link-layer payload. Add to it the offset
7641 * computed into the register specified by "index",
7642 * and move that into the X register. Otherwise, just
7643 * load into the X register the offset computed into
7644 * the register specified by "index".
7645 */
7646 if (s != NULL) {
7647 sappend(s, xfer_to_a(cstate, inst));
7648 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7649 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7650 } else
7651 s = xfer_to_x(cstate, inst);
7652
7653 /*
7654 * Load the item at the sum of the offset we've put in the
7655 * X register, the offset of the start of the network
7656 * layer header from the beginning of the link-layer
7657 * payload, and the constant part of the offset of the
7658 * start of the link-layer payload.
7659 */
7660 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7661 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7662 sappend(s, tmp);
7663 sappend(inst->s, s);
7664
7665 /*
7666 * Do the computation only if the packet contains
7667 * the protocol in question.
7668 */
7669 b = gen_proto_abbrev_internal(cstate, proto);
7670 if (inst->b)
7671 gen_and(inst->b, b);
7672 inst->b = b;
7673 break;
7674
7675 case Q_SCTP:
7676 case Q_TCP:
7677 case Q_UDP:
7678 case Q_ICMP:
7679 case Q_IGMP:
7680 case Q_IGRP:
7681 case Q_PIM:
7682 case Q_VRRP:
7683 case Q_CARP:
7684 /*
7685 * The offset is relative to the beginning of
7686 * the transport-layer header.
7687 *
7688 * Load the X register with the length of the IPv4 header
7689 * (plus the offset of the link-layer header, if it's
7690 * a variable-length header), in bytes.
7691 *
7692 * XXX - are there any cases where we want
7693 * cstate->off_nl_nosnap?
7694 * XXX - we should, if we're built with
7695 * IPv6 support, generate code to load either
7696 * IPv4, IPv6, or both, as appropriate.
7697 */
7698 s = gen_loadx_iphdrlen(cstate);
7699
7700 /*
7701 * The X register now contains the sum of the variable
7702 * part of the offset of the link-layer payload and the
7703 * length of the network-layer header.
7704 *
7705 * Load into the A register the offset relative to
7706 * the beginning of the transport layer header,
7707 * add the X register to that, move that to the
7708 * X register, and load with an offset from the
7709 * X register equal to the sum of the constant part of
7710 * the offset of the link-layer payload and the offset,
7711 * relative to the beginning of the link-layer payload,
7712 * of the network-layer header.
7713 */
7714 sappend(s, xfer_to_a(cstate, inst));
7715 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7716 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7717 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7718 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7719 sappend(inst->s, s);
7720
7721 /*
7722 * Do the computation only if the packet contains
7723 * the protocol in question - which is true only
7724 * if this is an IP datagram and is the first or
7725 * only fragment of that datagram.
7726 */
7727 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7728 if (inst->b)
7729 gen_and(inst->b, b);
7730 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7731 inst->b = b;
7732 break;
7733 case Q_ICMPV6:
7734 /*
7735 * Do the computation only if the packet contains
7736 * the protocol in question.
7737 */
7738 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7739 if (inst->b)
7740 gen_and(inst->b, b);
7741 inst->b = b;
7742
7743 /*
7744 * Check if we have an icmp6 next header
7745 */
7746 b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7747 if (inst->b)
7748 gen_and(inst->b, b);
7749 inst->b = b;
7750
7751 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7752 /*
7753 * If "s" is non-null, it has code to arrange that the
7754 * X register contains the variable part of the offset
7755 * of the link-layer payload. Add to it the offset
7756 * computed into the register specified by "index",
7757 * and move that into the X register. Otherwise, just
7758 * load into the X register the offset computed into
7759 * the register specified by "index".
7760 */
7761 if (s != NULL) {
7762 sappend(s, xfer_to_a(cstate, inst));
7763 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7764 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7765 } else
7766 s = xfer_to_x(cstate, inst);
7767
7768 /*
7769 * Load the item at the sum of the offset we've put in the
7770 * X register, the offset of the start of the network
7771 * layer header from the beginning of the link-layer
7772 * payload, and the constant part of the offset of the
7773 * start of the link-layer payload.
7774 */
7775 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7776 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7777
7778 sappend(s, tmp);
7779 sappend(inst->s, s);
7780
7781 break;
7782 }
7783 inst->regno = regno;
7784 s = new_stmt(cstate, BPF_ST);
7785 s->s.k = regno;
7786 sappend(inst->s, s);
7787
7788 return inst;
7789 }
7790
7791 struct arth *
7792 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7793 bpf_u_int32 size)
7794 {
7795 /*
7796 * Catch errors reported by us and routines below us, and return NULL
7797 * on an error.
7798 */
7799 if (setjmp(cstate->top_ctx))
7800 return (NULL);
7801
7802 return gen_load_internal(cstate, proto, inst, size);
7803 }
7804
7805 static struct block *
7806 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7807 struct arth *a1, int reversed)
7808 {
7809 struct slist *s0, *s1, *s2;
7810 struct block *b, *tmp;
7811
7812 s0 = xfer_to_x(cstate, a1);
7813 s1 = xfer_to_a(cstate, a0);
7814 if (code == BPF_JEQ) {
7815 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7816 b = new_block(cstate, JMP(code));
7817 sappend(s1, s2);
7818 }
7819 else
7820 b = new_block(cstate, BPF_JMP|code|BPF_X);
7821 if (reversed)
7822 gen_not(b);
7823
7824 sappend(s0, s1);
7825 sappend(a1->s, s0);
7826 sappend(a0->s, a1->s);
7827
7828 b->stmts = a0->s;
7829
7830 free_reg(cstate, a0->regno);
7831 free_reg(cstate, a1->regno);
7832
7833 /* 'and' together protocol checks */
7834 if (a0->b) {
7835 if (a1->b) {
7836 gen_and(a0->b, tmp = a1->b);
7837 }
7838 else
7839 tmp = a0->b;
7840 } else
7841 tmp = a1->b;
7842
7843 if (tmp)
7844 gen_and(tmp, b);
7845
7846 return b;
7847 }
7848
7849 struct block *
7850 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7851 struct arth *a1, int reversed)
7852 {
7853 /*
7854 * Catch errors reported by us and routines below us, and return NULL
7855 * on an error.
7856 */
7857 if (setjmp(cstate->top_ctx))
7858 return (NULL);
7859
7860 return gen_relation_internal(cstate, code, a0, a1, reversed);
7861 }
7862
7863 struct arth *
7864 gen_loadlen(compiler_state_t *cstate)
7865 {
7866 int regno;
7867 struct arth *a;
7868 struct slist *s;
7869
7870 /*
7871 * Catch errors reported by us and routines below us, and return NULL
7872 * on an error.
7873 */
7874 if (setjmp(cstate->top_ctx))
7875 return (NULL);
7876
7877 regno = alloc_reg(cstate);
7878 a = (struct arth *)newchunk(cstate, sizeof(*a));
7879 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7880 s->next = new_stmt(cstate, BPF_ST);
7881 s->next->s.k = regno;
7882 a->s = s;
7883 a->regno = regno;
7884
7885 return a;
7886 }
7887
7888 static struct arth *
7889 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7890 {
7891 struct arth *a;
7892 struct slist *s;
7893 int reg;
7894
7895 a = (struct arth *)newchunk(cstate, sizeof(*a));
7896
7897 reg = alloc_reg(cstate);
7898
7899 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7900 s->s.k = val;
7901 s->next = new_stmt(cstate, BPF_ST);
7902 s->next->s.k = reg;
7903 a->s = s;
7904 a->regno = reg;
7905
7906 return a;
7907 }
7908
7909 struct arth *
7910 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7911 {
7912 /*
7913 * Catch errors reported by us and routines below us, and return NULL
7914 * on an error.
7915 */
7916 if (setjmp(cstate->top_ctx))
7917 return (NULL);
7918
7919 return gen_loadi_internal(cstate, val);
7920 }
7921
7922 /*
7923 * The a_arg dance is to avoid annoying whining by compilers that
7924 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7925 * It's not *used* after setjmp returns.
7926 */
7927 struct arth *
7928 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7929 {
7930 struct arth *a = a_arg;
7931 struct slist *s;
7932
7933 /*
7934 * Catch errors reported by us and routines below us, and return NULL
7935 * on an error.
7936 */
7937 if (setjmp(cstate->top_ctx))
7938 return (NULL);
7939
7940 s = xfer_to_a(cstate, a);
7941 sappend(a->s, s);
7942 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7943 s->s.k = 0;
7944 sappend(a->s, s);
7945 s = new_stmt(cstate, BPF_ST);
7946 s->s.k = a->regno;
7947 sappend(a->s, s);
7948
7949 return a;
7950 }
7951
7952 /*
7953 * The a0_arg dance is to avoid annoying whining by compilers that
7954 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7955 * It's not *used* after setjmp returns.
7956 */
7957 struct arth *
7958 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7959 struct arth *a1)
7960 {
7961 struct arth *a0 = a0_arg;
7962 struct slist *s0, *s1, *s2;
7963
7964 /*
7965 * Catch errors reported by us and routines below us, and return NULL
7966 * on an error.
7967 */
7968 if (setjmp(cstate->top_ctx))
7969 return (NULL);
7970
7971 /*
7972 * Disallow division by, or modulus by, zero; we do this here
7973 * so that it gets done even if the optimizer is disabled.
7974 *
7975 * Also disallow shifts by a value greater than 31; we do this
7976 * here, for the same reason.
7977 */
7978 if (code == BPF_DIV) {
7979 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7980 bpf_error(cstate, "division by zero");
7981 } else if (code == BPF_MOD) {
7982 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7983 bpf_error(cstate, "modulus by zero");
7984 } else if (code == BPF_LSH || code == BPF_RSH) {
7985 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
7986 bpf_error(cstate, "shift by more than 31 bits");
7987 }
7988 s0 = xfer_to_x(cstate, a1);
7989 s1 = xfer_to_a(cstate, a0);
7990 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7991
7992 sappend(s1, s2);
7993 sappend(s0, s1);
7994 sappend(a1->s, s0);
7995 sappend(a0->s, a1->s);
7996
7997 free_reg(cstate, a0->regno);
7998 free_reg(cstate, a1->regno);
7999
8000 s0 = new_stmt(cstate, BPF_ST);
8001 a0->regno = s0->s.k = alloc_reg(cstate);
8002 sappend(a0->s, s0);
8003
8004 return a0;
8005 }
8006
8007 /*
8008 * Initialize the table of used registers and the current register.
8009 */
8010 static void
8011 init_regs(compiler_state_t *cstate)
8012 {
8013 cstate->curreg = 0;
8014 memset(cstate->regused, 0, sizeof cstate->regused);
8015 }
8016
8017 /*
8018 * Return the next free register.
8019 */
8020 static int
8021 alloc_reg(compiler_state_t *cstate)
8022 {
8023 int n = BPF_MEMWORDS;
8024
8025 while (--n >= 0) {
8026 if (cstate->regused[cstate->curreg])
8027 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
8028 else {
8029 cstate->regused[cstate->curreg] = 1;
8030 return cstate->curreg;
8031 }
8032 }
8033 bpf_error(cstate, "too many registers needed to evaluate expression");
8034 /*NOTREACHED*/
8035 }
8036
8037 /*
8038 * Return a register to the table so it can
8039 * be used later.
8040 */
8041 static void
8042 free_reg(compiler_state_t *cstate, int n)
8043 {
8044 cstate->regused[n] = 0;
8045 }
8046
8047 static struct block *
8048 gen_len(compiler_state_t *cstate, int jmp, int n)
8049 {
8050 struct slist *s;
8051 struct block *b;
8052
8053 s = new_stmt(cstate, BPF_LD|BPF_LEN);
8054 b = new_block(cstate, JMP(jmp));
8055 b->stmts = s;
8056 b->s.k = n;
8057
8058 return b;
8059 }
8060
8061 struct block *
8062 gen_greater(compiler_state_t *cstate, int n)
8063 {
8064 /*
8065 * Catch errors reported by us and routines below us, and return NULL
8066 * on an error.
8067 */
8068 if (setjmp(cstate->top_ctx))
8069 return (NULL);
8070
8071 return gen_len(cstate, BPF_JGE, n);
8072 }
8073
8074 /*
8075 * Actually, this is less than or equal.
8076 */
8077 struct block *
8078 gen_less(compiler_state_t *cstate, int n)
8079 {
8080 struct block *b;
8081
8082 /*
8083 * Catch errors reported by us and routines below us, and return NULL
8084 * on an error.
8085 */
8086 if (setjmp(cstate->top_ctx))
8087 return (NULL);
8088
8089 b = gen_len(cstate, BPF_JGT, n);
8090 gen_not(b);
8091
8092 return b;
8093 }
8094
8095 /*
8096 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8097 * the beginning of the link-layer header.
8098 * XXX - that means you can't test values in the radiotap header, but
8099 * as that header is difficult if not impossible to parse generally
8100 * without a loop, that might not be a severe problem. A new keyword
8101 * "radio" could be added for that, although what you'd really want
8102 * would be a way of testing particular radio header values, which
8103 * would generate code appropriate to the radio header in question.
8104 */
8105 struct block *
8106 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
8107 {
8108 struct block *b;
8109 struct slist *s;
8110
8111 /*
8112 * Catch errors reported by us and routines below us, and return NULL
8113 * on an error.
8114 */
8115 if (setjmp(cstate->top_ctx))
8116 return (NULL);
8117
8118 switch (op) {
8119 default:
8120 abort();
8121
8122 case '=':
8123 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8124
8125 case '<':
8126 b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8127 return b;
8128
8129 case '>':
8130 b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8131 return b;
8132
8133 case '|':
8134 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
8135 break;
8136
8137 case '&':
8138 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8139 break;
8140 }
8141 s->s.k = val;
8142 b = new_block(cstate, JMP(BPF_JEQ));
8143 b->stmts = s;
8144 gen_not(b);
8145
8146 return b;
8147 }
8148
8149 struct block *
8150 gen_broadcast(compiler_state_t *cstate, int proto)
8151 {
8152 bpf_u_int32 hostmask;
8153 struct block *b0, *b1, *b2;
8154 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8155
8156 /*
8157 * Catch errors reported by us and routines below us, and return NULL
8158 * on an error.
8159 */
8160 if (setjmp(cstate->top_ctx))
8161 return (NULL);
8162
8163 switch (proto) {
8164
8165 case Q_DEFAULT:
8166 case Q_LINK:
8167 switch (cstate->linktype) {
8168 case DLT_ARCNET:
8169 case DLT_ARCNET_LINUX:
8170 // ARCnet broadcast is [8-bit] destination address 0.
8171 return gen_ahostop(cstate, 0, Q_DST);
8172 case DLT_EN10MB:
8173 case DLT_NETANALYZER:
8174 case DLT_NETANALYZER_TRANSPARENT:
8175 b1 = gen_prevlinkhdr_check(cstate);
8176 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8177 if (b1 != NULL)
8178 gen_and(b1, b0);
8179 return b0;
8180 case DLT_FDDI:
8181 return gen_fhostop(cstate, ebroadcast, Q_DST);
8182 case DLT_IEEE802:
8183 return gen_thostop(cstate, ebroadcast, Q_DST);
8184 case DLT_IEEE802_11:
8185 case DLT_PRISM_HEADER:
8186 case DLT_IEEE802_11_RADIO_AVS:
8187 case DLT_IEEE802_11_RADIO:
8188 case DLT_PPI:
8189 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8190 case DLT_IP_OVER_FC:
8191 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8192 }
8193 fail_kw_on_dlt(cstate, "broadcast");
8194 /*NOTREACHED*/
8195
8196 case Q_IP:
8197 /*
8198 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8199 * as an indication that we don't know the netmask, and fail
8200 * in that case.
8201 */
8202 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8203 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8204 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8205 hostmask = ~cstate->netmask;
8206 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8207 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, hostmask, hostmask);
8208 gen_or(b1, b2);
8209 gen_and(b0, b2);
8210 return b2;
8211 }
8212 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "broadcast");
8213 /*NOTREACHED*/
8214 }
8215
8216 /*
8217 * Generate code to test the low-order bit of a MAC address (that's
8218 * the bottom bit of the *first* byte).
8219 */
8220 static struct block *
8221 gen_mac_multicast(compiler_state_t *cstate, int offset)
8222 {
8223 register struct block *b0;
8224 register struct slist *s;
8225
8226 /* link[offset] & 1 != 0 */
8227 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8228 b0 = new_block(cstate, JMP(BPF_JSET));
8229 b0->s.k = 1;
8230 b0->stmts = s;
8231 return b0;
8232 }
8233
8234 struct block *
8235 gen_multicast(compiler_state_t *cstate, int proto)
8236 {
8237 register struct block *b0, *b1, *b2;
8238 register struct slist *s;
8239
8240 /*
8241 * Catch errors reported by us and routines below us, and return NULL
8242 * on an error.
8243 */
8244 if (setjmp(cstate->top_ctx))
8245 return (NULL);
8246
8247 switch (proto) {
8248
8249 case Q_DEFAULT:
8250 case Q_LINK:
8251 switch (cstate->linktype) {
8252 case DLT_ARCNET:
8253 case DLT_ARCNET_LINUX:
8254 // ARCnet multicast is the same as broadcast.
8255 return gen_ahostop(cstate, 0, Q_DST);
8256 case DLT_EN10MB:
8257 case DLT_NETANALYZER:
8258 case DLT_NETANALYZER_TRANSPARENT:
8259 b1 = gen_prevlinkhdr_check(cstate);
8260 /* ether[0] & 1 != 0 */
8261 b0 = gen_mac_multicast(cstate, 0);
8262 if (b1 != NULL)
8263 gen_and(b1, b0);
8264 return b0;
8265 case DLT_FDDI:
8266 /*
8267 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8268 *
8269 * XXX - was that referring to bit-order issues?
8270 */
8271 /* fddi[1] & 1 != 0 */
8272 return gen_mac_multicast(cstate, 1);
8273 case DLT_IEEE802:
8274 /* tr[2] & 1 != 0 */
8275 return gen_mac_multicast(cstate, 2);
8276 case DLT_IEEE802_11:
8277 case DLT_PRISM_HEADER:
8278 case DLT_IEEE802_11_RADIO_AVS:
8279 case DLT_IEEE802_11_RADIO:
8280 case DLT_PPI:
8281 /*
8282 * Oh, yuk.
8283 *
8284 * For control frames, there is no DA.
8285 *
8286 * For management frames, DA is at an
8287 * offset of 4 from the beginning of
8288 * the packet.
8289 *
8290 * For data frames, DA is at an offset
8291 * of 4 from the beginning of the packet
8292 * if To DS is clear and at an offset of
8293 * 16 from the beginning of the packet
8294 * if To DS is set.
8295 */
8296
8297 /*
8298 * Generate the tests to be done for data frames.
8299 *
8300 * First, check for To DS set, i.e. "link[1] & 0x01".
8301 */
8302 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8303 b1 = new_block(cstate, JMP(BPF_JSET));
8304 b1->s.k = 0x01; /* To DS */
8305 b1->stmts = s;
8306
8307 /*
8308 * If To DS is set, the DA is at 16.
8309 */
8310 b0 = gen_mac_multicast(cstate, 16);
8311 gen_and(b1, b0);
8312
8313 /*
8314 * Now, check for To DS not set, i.e. check
8315 * "!(link[1] & 0x01)".
8316 */
8317 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8318 b2 = new_block(cstate, JMP(BPF_JSET));
8319 b2->s.k = 0x01; /* To DS */
8320 b2->stmts = s;
8321 gen_not(b2);
8322
8323 /*
8324 * If To DS is not set, the DA is at 4.
8325 */
8326 b1 = gen_mac_multicast(cstate, 4);
8327 gen_and(b2, b1);
8328
8329 /*
8330 * Now OR together the last two checks. That gives
8331 * the complete set of checks for data frames.
8332 */
8333 gen_or(b1, b0);
8334
8335 /*
8336 * Now check for a data frame.
8337 * I.e, check "link[0] & 0x08".
8338 */
8339 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8340 b1 = new_block(cstate, JMP(BPF_JSET));
8341 b1->s.k = 0x08;
8342 b1->stmts = s;
8343
8344 /*
8345 * AND that with the checks done for data frames.
8346 */
8347 gen_and(b1, b0);
8348
8349 /*
8350 * If the high-order bit of the type value is 0, this
8351 * is a management frame.
8352 * I.e, check "!(link[0] & 0x08)".
8353 */
8354 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8355 b2 = new_block(cstate, JMP(BPF_JSET));
8356 b2->s.k = 0x08;
8357 b2->stmts = s;
8358 gen_not(b2);
8359
8360 /*
8361 * For management frames, the DA is at 4.
8362 */
8363 b1 = gen_mac_multicast(cstate, 4);
8364 gen_and(b2, b1);
8365
8366 /*
8367 * OR that with the checks done for data frames.
8368 * That gives the checks done for management and
8369 * data frames.
8370 */
8371 gen_or(b1, b0);
8372
8373 /*
8374 * If the low-order bit of the type value is 1,
8375 * this is either a control frame or a frame
8376 * with a reserved type, and thus not a
8377 * frame with an SA.
8378 *
8379 * I.e., check "!(link[0] & 0x04)".
8380 */
8381 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8382 b1 = new_block(cstate, JMP(BPF_JSET));
8383 b1->s.k = 0x04;
8384 b1->stmts = s;
8385 gen_not(b1);
8386
8387 /*
8388 * AND that with the checks for data and management
8389 * frames.
8390 */
8391 gen_and(b1, b0);
8392 return b0;
8393 case DLT_IP_OVER_FC:
8394 b0 = gen_mac_multicast(cstate, 2);
8395 return b0;
8396 default:
8397 break;
8398 }
8399 fail_kw_on_dlt(cstate, "multicast");
8400 /*NOTREACHED*/
8401
8402 case Q_IP:
8403 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8404 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8405 gen_and(b0, b1);
8406 return b1;
8407
8408 case Q_IPV6:
8409 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8410 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8411 gen_and(b0, b1);
8412 return b1;
8413 }
8414 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "multicast");
8415 /*NOTREACHED*/
8416 }
8417
8418 #ifdef __linux__
8419 /*
8420 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8421 * we can look at special meta-data in the filter expression; otherwise we
8422 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8423 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8424 * pcap_activate() conditionally sets.
8425 */
8426 static void
8427 require_basic_bpf_extensions(compiler_state_t *cstate, const char *keyword)
8428 {
8429 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_BASIC_HANDLING)
8430 return;
8431 bpf_error(cstate, "%s not supported on %s (not a live capture)",
8432 keyword,
8433 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8434 }
8435 #endif // __linux__
8436
8437 struct block *
8438 gen_ifindex(compiler_state_t *cstate, int ifindex)
8439 {
8440 register struct block *b0;
8441
8442 /*
8443 * Catch errors reported by us and routines below us, and return NULL
8444 * on an error.
8445 */
8446 if (setjmp(cstate->top_ctx))
8447 return (NULL);
8448
8449 /*
8450 * Only some data link types support ifindex qualifiers.
8451 */
8452 switch (cstate->linktype) {
8453 case DLT_LINUX_SLL2:
8454 /* match packets on this interface */
8455 b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8456 break;
8457 default:
8458 #if defined(__linux__)
8459 require_basic_bpf_extensions(cstate, "ifindex");
8460 /* match ifindex */
8461 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8462 ifindex);
8463 #else /* defined(__linux__) */
8464 fail_kw_on_dlt(cstate, "ifindex");
8465 /*NOTREACHED*/
8466 #endif /* defined(__linux__) */
8467 }
8468 return (b0);
8469 }
8470
8471 /*
8472 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8473 * Outbound traffic is sent by this machine, while inbound traffic is
8474 * sent by a remote machine (and may include packets destined for a
8475 * unicast or multicast link-layer address we are not subscribing to).
8476 * These are the same definitions implemented by pcap_setdirection().
8477 * Capturing only unicast traffic destined for this host is probably
8478 * better accomplished using a higher-layer filter.
8479 */
8480 struct block *
8481 gen_inbound_outbound(compiler_state_t *cstate, const int outbound)
8482 {
8483 register struct block *b0;
8484
8485 /*
8486 * Catch errors reported by us and routines below us, and return NULL
8487 * on an error.
8488 */
8489 if (setjmp(cstate->top_ctx))
8490 return (NULL);
8491
8492 /*
8493 * Only some data link types support inbound/outbound qualifiers.
8494 */
8495 switch (cstate->linktype) {
8496 case DLT_SLIP:
8497 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B,
8498 outbound ? SLIPDIR_OUT : SLIPDIR_IN);
8499 break;
8500
8501 case DLT_IPNET:
8502 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H,
8503 outbound ? IPNET_OUTBOUND : IPNET_INBOUND);
8504 break;
8505
8506 case DLT_LINUX_SLL:
8507 /* match outgoing packets */
8508 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8509 if (! outbound) {
8510 /* to filter on inbound traffic, invert the match */
8511 gen_not(b0);
8512 }
8513 break;
8514
8515 case DLT_LINUX_SLL2:
8516 /* match outgoing packets */
8517 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8518 if (! outbound) {
8519 /* to filter on inbound traffic, invert the match */
8520 gen_not(b0);
8521 }
8522 break;
8523
8524 case DLT_PFLOG:
8525 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8526 outbound ? PF_OUT : PF_IN);
8527 break;
8528
8529 case DLT_PPP_PPPD:
8530 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, outbound ? PPP_PPPD_OUT : PPP_PPPD_IN);
8531 break;
8532
8533 case DLT_JUNIPER_MFR:
8534 case DLT_JUNIPER_MLFR:
8535 case DLT_JUNIPER_MLPPP:
8536 case DLT_JUNIPER_ATM1:
8537 case DLT_JUNIPER_ATM2:
8538 case DLT_JUNIPER_PPPOE:
8539 case DLT_JUNIPER_PPPOE_ATM:
8540 case DLT_JUNIPER_GGSN:
8541 case DLT_JUNIPER_ES:
8542 case DLT_JUNIPER_MONITOR:
8543 case DLT_JUNIPER_SERVICES:
8544 case DLT_JUNIPER_ETHER:
8545 case DLT_JUNIPER_PPP:
8546 case DLT_JUNIPER_FRELAY:
8547 case DLT_JUNIPER_CHDLC:
8548 case DLT_JUNIPER_VP:
8549 case DLT_JUNIPER_ST:
8550 case DLT_JUNIPER_ISM:
8551 case DLT_JUNIPER_VS:
8552 case DLT_JUNIPER_SRX_E2E:
8553 case DLT_JUNIPER_FIBRECHANNEL:
8554 case DLT_JUNIPER_ATM_CEMIC:
8555 /* juniper flags (including direction) are stored
8556 * the byte after the 3-byte magic number */
8557 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, outbound ? 0 : 1, 0x01);
8558 break;
8559
8560 default:
8561 /*
8562 * If we have packet meta-data indicating a direction,
8563 * and that metadata can be checked by BPF code, check
8564 * it. Otherwise, give up, as this link-layer type has
8565 * nothing in the packet data.
8566 *
8567 * Currently, the only platform where a BPF filter can
8568 * check that metadata is Linux with the in-kernel
8569 * BPF interpreter. If other packet capture mechanisms
8570 * and BPF filters also supported this, it would be
8571 * nice. It would be even better if they made that
8572 * metadata available so that we could provide it
8573 * with newer capture APIs, allowing it to be saved
8574 * in pcapng files.
8575 */
8576 #if defined(__linux__)
8577 require_basic_bpf_extensions(cstate, outbound ? "outbound" : "inbound");
8578 /* match outgoing packets */
8579 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8580 PACKET_OUTGOING);
8581 if (! outbound) {
8582 /* to filter on inbound traffic, invert the match */
8583 gen_not(b0);
8584 }
8585 #else /* defined(__linux__) */
8586 fail_kw_on_dlt(cstate, outbound ? "outbound" : "inbound");
8587 /*NOTREACHED*/
8588 #endif /* defined(__linux__) */
8589 }
8590 return (b0);
8591 }
8592
8593 /* PF firewall log matched interface */
8594 struct block *
8595 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8596 {
8597 struct block *b0;
8598 u_int len, off;
8599
8600 /*
8601 * Catch errors reported by us and routines below us, and return NULL
8602 * on an error.
8603 */
8604 if (setjmp(cstate->top_ctx))
8605 return (NULL);
8606
8607 assert_pflog(cstate, "ifname");
8608
8609 len = sizeof(((struct pfloghdr *)0)->ifname);
8610 off = offsetof(struct pfloghdr, ifname);
8611 if (strlen(ifname) >= len) {
8612 bpf_error(cstate, "ifname interface names can only be %d characters",
8613 len-1);
8614 /*NOTREACHED*/
8615 }
8616 b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8617 (const u_char *)ifname);
8618 return (b0);
8619 }
8620
8621 /* PF firewall log ruleset name */
8622 struct block *
8623 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8624 {
8625 struct block *b0;
8626
8627 /*
8628 * Catch errors reported by us and routines below us, and return NULL
8629 * on an error.
8630 */
8631 if (setjmp(cstate->top_ctx))
8632 return (NULL);
8633
8634 assert_pflog(cstate, "ruleset");
8635
8636 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8637 bpf_error(cstate, "ruleset names can only be %ld characters",
8638 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8639 /*NOTREACHED*/
8640 }
8641
8642 b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8643 (u_int)strlen(ruleset), (const u_char *)ruleset);
8644 return (b0);
8645 }
8646
8647 /* PF firewall log rule number */
8648 struct block *
8649 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8650 {
8651 struct block *b0;
8652
8653 /*
8654 * Catch errors reported by us and routines below us, and return NULL
8655 * on an error.
8656 */
8657 if (setjmp(cstate->top_ctx))
8658 return (NULL);
8659
8660 assert_pflog(cstate, "rnr");
8661
8662 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8663 (bpf_u_int32)rnr);
8664 return (b0);
8665 }
8666
8667 /* PF firewall log sub-rule number */
8668 struct block *
8669 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8670 {
8671 struct block *b0;
8672
8673 /*
8674 * Catch errors reported by us and routines below us, and return NULL
8675 * on an error.
8676 */
8677 if (setjmp(cstate->top_ctx))
8678 return (NULL);
8679
8680 assert_pflog(cstate, "srnr");
8681
8682 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8683 (bpf_u_int32)srnr);
8684 return (b0);
8685 }
8686
8687 /* PF firewall log reason code */
8688 struct block *
8689 gen_pf_reason(compiler_state_t *cstate, int reason)
8690 {
8691 struct block *b0;
8692
8693 /*
8694 * Catch errors reported by us and routines below us, and return NULL
8695 * on an error.
8696 */
8697 if (setjmp(cstate->top_ctx))
8698 return (NULL);
8699
8700 assert_pflog(cstate, "reason");
8701
8702 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8703 (bpf_u_int32)reason);
8704 return (b0);
8705 }
8706
8707 /* PF firewall log action */
8708 struct block *
8709 gen_pf_action(compiler_state_t *cstate, int action)
8710 {
8711 struct block *b0;
8712
8713 /*
8714 * Catch errors reported by us and routines below us, and return NULL
8715 * on an error.
8716 */
8717 if (setjmp(cstate->top_ctx))
8718 return (NULL);
8719
8720 assert_pflog(cstate, "action");
8721
8722 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8723 (bpf_u_int32)action);
8724 return (b0);
8725 }
8726
8727 /* IEEE 802.11 wireless header */
8728 struct block *
8729 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8730 {
8731 struct block *b0;
8732
8733 /*
8734 * Catch errors reported by us and routines below us, and return NULL
8735 * on an error.
8736 */
8737 if (setjmp(cstate->top_ctx))
8738 return (NULL);
8739
8740 switch (cstate->linktype) {
8741
8742 case DLT_IEEE802_11:
8743 case DLT_PRISM_HEADER:
8744 case DLT_IEEE802_11_RADIO_AVS:
8745 case DLT_IEEE802_11_RADIO:
8746 case DLT_PPI:
8747 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8748 break;
8749
8750 default:
8751 fail_kw_on_dlt(cstate, "type/subtype");
8752 /*NOTREACHED*/
8753 }
8754
8755 return (b0);
8756 }
8757
8758 struct block *
8759 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8760 {
8761 struct block *b0;
8762
8763 /*
8764 * Catch errors reported by us and routines below us, and return NULL
8765 * on an error.
8766 */
8767 if (setjmp(cstate->top_ctx))
8768 return (NULL);
8769
8770 switch (cstate->linktype) {
8771
8772 case DLT_IEEE802_11:
8773 case DLT_PRISM_HEADER:
8774 case DLT_IEEE802_11_RADIO_AVS:
8775 case DLT_IEEE802_11_RADIO:
8776 case DLT_PPI:
8777 break;
8778
8779 default:
8780 fail_kw_on_dlt(cstate, "dir");
8781 /*NOTREACHED*/
8782 }
8783
8784 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8785 IEEE80211_FC1_DIR_MASK);
8786
8787 return (b0);
8788 }
8789
8790 // Process an ARCnet host address string.
8791 struct block *
8792 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8793 {
8794 /*
8795 * Catch errors reported by us and routines below us, and return NULL
8796 * on an error.
8797 */
8798 if (setjmp(cstate->top_ctx))
8799 return (NULL);
8800
8801 switch (cstate->linktype) {
8802
8803 case DLT_ARCNET:
8804 case DLT_ARCNET_LINUX:
8805 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8806 q.proto == Q_LINK) {
8807 uint8_t addr;
8808 /*
8809 * The lexer currently defines the address format in a
8810 * way that makes this error condition never true.
8811 * Let's check it anyway in case this part of the lexer
8812 * changes in future.
8813 */
8814 if (! pcapint_atoan(s, &addr))
8815 bpf_error(cstate, "invalid ARCnet address '%s'", s);
8816 return gen_ahostop(cstate, addr, (int)q.dir);
8817 } else
8818 bpf_error(cstate, "ARCnet address used in non-arc expression");
8819 /*NOTREACHED*/
8820
8821 default:
8822 bpf_error(cstate, "aid supported only on ARCnet");
8823 /*NOTREACHED*/
8824 }
8825 }
8826
8827 // Compare an ARCnet host address with the given value.
8828 static struct block *
8829 gen_ahostop(compiler_state_t *cstate, const uint8_t eaddr, int dir)
8830 {
8831 register struct block *b0, *b1;
8832
8833 switch (dir) {
8834 /*
8835 * ARCnet is different from Ethernet: the source address comes before
8836 * the destination address, each is one byte long. This holds for all
8837 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8838 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8839 * by Datapoint (document number 61610-01).
8840 */
8841 case Q_SRC:
8842 return gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, eaddr);
8843
8844 case Q_DST:
8845 return gen_cmp(cstate, OR_LINKHDR, 1, BPF_B, eaddr);
8846
8847 case Q_AND:
8848 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8849 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8850 gen_and(b0, b1);
8851 return b1;
8852
8853 case Q_DEFAULT:
8854 case Q_OR:
8855 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8856 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8857 gen_or(b0, b1);
8858 return b1;
8859
8860 case Q_ADDR1:
8861 case Q_ADDR2:
8862 case Q_ADDR3:
8863 case Q_ADDR4:
8864 case Q_RA:
8865 case Q_TA:
8866 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
8867 /*NOTREACHED*/
8868 }
8869 abort();
8870 /*NOTREACHED*/
8871 }
8872
8873 static struct block *
8874 gen_vlan_tpid_test(compiler_state_t *cstate)
8875 {
8876 struct block *b0, *b1;
8877
8878 /* check for VLAN, including 802.1ad and QinQ */
8879 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8880 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8881 gen_or(b0,b1);
8882 b0 = b1;
8883 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8884 gen_or(b0,b1);
8885
8886 return b1;
8887 }
8888
8889 static struct block *
8890 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8891 {
8892 assert_maxval(cstate, "VLAN tag", vlan_num, 0x0fff);
8893 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
8894 }
8895
8896 static struct block *
8897 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8898 int has_vlan_tag)
8899 {
8900 struct block *b0, *b1;
8901
8902 b0 = gen_vlan_tpid_test(cstate);
8903
8904 if (has_vlan_tag) {
8905 b1 = gen_vlan_vid_test(cstate, vlan_num);
8906 gen_and(b0, b1);
8907 b0 = b1;
8908 }
8909
8910 /*
8911 * Both payload and link header type follow the VLAN tags so that
8912 * both need to be updated.
8913 */
8914 cstate->off_linkpl.constant_part += 4;
8915 cstate->off_linktype.constant_part += 4;
8916
8917 return b0;
8918 }
8919
8920 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8921 /* add v to variable part of off */
8922 static void
8923 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
8924 bpf_u_int32 v, struct slist *s)
8925 {
8926 struct slist *s2;
8927
8928 if (!off->is_variable)
8929 off->is_variable = 1;
8930 if (off->reg == -1)
8931 off->reg = alloc_reg(cstate);
8932
8933 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8934 s2->s.k = off->reg;
8935 sappend(s, s2);
8936 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8937 s2->s.k = v;
8938 sappend(s, s2);
8939 s2 = new_stmt(cstate, BPF_ST);
8940 s2->s.k = off->reg;
8941 sappend(s, s2);
8942 }
8943
8944 /*
8945 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8946 * and link type offsets first
8947 */
8948 static void
8949 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8950 {
8951 struct slist s;
8952
8953 /* offset determined at run time, shift variable part */
8954 s.next = NULL;
8955 cstate->is_vlan_vloffset = 1;
8956 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8957 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8958
8959 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8960 sappend(s.next, b_tpid->head->stmts);
8961 b_tpid->head->stmts = s.next;
8962 }
8963
8964 /*
8965 * patch block b_vid (VLAN id test) to load VID value either from packet
8966 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8967 */
8968 static void
8969 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8970 {
8971 struct slist *s, *s2, *sjeq;
8972 unsigned cnt;
8973
8974 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8975 s->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT);
8976
8977 /* true -> next instructions, false -> beginning of b_vid */
8978 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8979 sjeq->s.k = 1;
8980 sjeq->s.jf = b_vid->stmts;
8981 sappend(s, sjeq);
8982
8983 s2 = new_stmt(cstate, BPF_LD|BPF_H|BPF_ABS);
8984 s2->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG);
8985 sappend(s, s2);
8986 sjeq->s.jt = s2;
8987
8988 /* Jump to the test in b_vid. We need to jump one instruction before
8989 * the end of the b_vid block so that we only skip loading the TCI
8990 * from packet data and not the 'and' instruction extracting VID.
8991 */
8992 cnt = 0;
8993 for (s2 = b_vid->stmts; s2; s2 = s2->next)
8994 cnt++;
8995 s2 = new_stmt(cstate, JMP(BPF_JA));
8996 s2->s.k = cnt - 1;
8997 sappend(s, s2);
8998
8999 /* insert our statements at the beginning of b_vid */
9000 sappend(s, b_vid->stmts);
9001 b_vid->stmts = s;
9002 }
9003
9004 /*
9005 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9006 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9007 * tag can be either in metadata or in packet data; therefore if the
9008 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9009 * header for VLAN tag. As the decision is done at run time, we need
9010 * update variable part of the offsets
9011 */
9012 static struct block *
9013 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9014 int has_vlan_tag)
9015 {
9016 struct block *b0, *b_tpid, *b_vid = NULL;
9017 struct slist *s;
9018
9019 /* generate new filter code based on extracting packet
9020 * metadata */
9021 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9022 s->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT);
9023
9024 b0 = new_block(cstate, JMP(BPF_JEQ));
9025 b0->stmts = s;
9026 b0->s.k = 1;
9027
9028 /*
9029 * This is tricky. We need to insert the statements updating variable
9030 * parts of offsets before the traditional TPID and VID tests so
9031 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9032 * we do not want this update to affect those checks. That's why we
9033 * generate both test blocks first and insert the statements updating
9034 * variable parts of both offsets after that. This wouldn't work if
9035 * there already were variable length link header when entering this
9036 * function but gen_vlan_bpf_extensions() isn't called in that case.
9037 */
9038 b_tpid = gen_vlan_tpid_test(cstate);
9039 if (has_vlan_tag)
9040 b_vid = gen_vlan_vid_test(cstate, vlan_num);
9041
9042 gen_vlan_patch_tpid_test(cstate, b_tpid);
9043 gen_or(b0, b_tpid);
9044 b0 = b_tpid;
9045
9046 if (has_vlan_tag) {
9047 gen_vlan_patch_vid_test(cstate, b_vid);
9048 gen_and(b0, b_vid);
9049 b0 = b_vid;
9050 }
9051
9052 return b0;
9053 }
9054 #endif
9055
9056 /*
9057 * support IEEE 802.1Q VLAN trunk over ethernet
9058 */
9059 struct block *
9060 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
9061 {
9062 struct block *b0;
9063
9064 /*
9065 * Catch errors reported by us and routines below us, and return NULL
9066 * on an error.
9067 */
9068 if (setjmp(cstate->top_ctx))
9069 return (NULL);
9070
9071 /* can't check for VLAN-encapsulated packets inside MPLS */
9072 if (cstate->label_stack_depth > 0)
9073 bpf_error(cstate, "no VLAN match after MPLS");
9074
9075 /*
9076 * Check for a VLAN packet, and then change the offsets to point
9077 * to the type and data fields within the VLAN packet. Just
9078 * increment the offsets, so that we can support a hierarchy, e.g.
9079 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
9080 * VLAN 100.
9081 *
9082 * XXX - this is a bit of a kludge. If we were to split the
9083 * compiler into a parser that parses an expression and
9084 * generates an expression tree, and a code generator that
9085 * takes an expression tree (which could come from our
9086 * parser or from some other parser) and generates BPF code,
9087 * we could perhaps make the offsets parameters of routines
9088 * and, in the handler for an "AND" node, pass to subnodes
9089 * other than the VLAN node the adjusted offsets.
9090 *
9091 * This would mean that "vlan" would, instead of changing the
9092 * behavior of *all* tests after it, change only the behavior
9093 * of tests ANDed with it. That would change the documented
9094 * semantics of "vlan", which might break some expressions.
9095 * However, it would mean that "(vlan and ip) or ip" would check
9096 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9097 * checking only for VLAN-encapsulated IP, so that could still
9098 * be considered worth doing; it wouldn't break expressions
9099 * that are of the form "vlan and ..." or "vlan N and ...",
9100 * which I suspect are the most common expressions involving
9101 * "vlan". "vlan or ..." doesn't necessarily do what the user
9102 * would really want, now, as all the "or ..." tests would
9103 * be done assuming a VLAN, even though the "or" could be viewed
9104 * as meaning "or, if this isn't a VLAN packet...".
9105 */
9106 switch (cstate->linktype) {
9107
9108 case DLT_EN10MB:
9109 /*
9110 * Newer version of the Linux kernel pass around
9111 * packets in which the VLAN tag has been removed
9112 * from the packet data and put into metadata.
9113 *
9114 * This requires special treatment.
9115 */
9116 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9117 /* Verify that this is the outer part of the packet and
9118 * not encapsulated somehow. */
9119 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9120 cstate->off_linkhdr.constant_part ==
9121 cstate->off_outermostlinkhdr.constant_part) {
9122 /*
9123 * Do we need special VLAN handling?
9124 */
9125 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9126 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9127 has_vlan_tag);
9128 else
9129 b0 = gen_vlan_no_bpf_extensions(cstate,
9130 vlan_num, has_vlan_tag);
9131 } else
9132 #endif
9133 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9134 has_vlan_tag);
9135 break;
9136
9137 case DLT_NETANALYZER:
9138 case DLT_NETANALYZER_TRANSPARENT:
9139 case DLT_IEEE802_11:
9140 case DLT_PRISM_HEADER:
9141 case DLT_IEEE802_11_RADIO_AVS:
9142 case DLT_IEEE802_11_RADIO:
9143 /*
9144 * These are either Ethernet packets with an additional
9145 * metadata header (the NetAnalyzer types), or 802.11
9146 * packets, possibly with an additional metadata header.
9147 *
9148 * For the first of those, the VLAN tag is in the normal
9149 * place, so the special-case handling above isn't
9150 * necessary.
9151 *
9152 * For the second of those, we don't do the special-case
9153 * handling for now.
9154 */
9155 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9156 break;
9157
9158 default:
9159 bpf_error(cstate, "no VLAN support for %s",
9160 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9161 /*NOTREACHED*/
9162 }
9163
9164 cstate->vlan_stack_depth++;
9165
9166 return (b0);
9167 }
9168
9169 /*
9170 * support for MPLS
9171 *
9172 * The label_num_arg dance is to avoid annoying whining by compilers that
9173 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9174 * It's not *used* after setjmp returns.
9175 */
9176 static struct block *
9177 gen_mpls_internal(compiler_state_t *cstate, bpf_u_int32 label_num,
9178 int has_label_num)
9179 {
9180 struct block *b0, *b1;
9181
9182 if (cstate->label_stack_depth > 0) {
9183 /* just match the bottom-of-stack bit clear */
9184 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9185 } else {
9186 /*
9187 * We're not in an MPLS stack yet, so check the link-layer
9188 * type against MPLS.
9189 */
9190 switch (cstate->linktype) {
9191
9192 case DLT_C_HDLC: /* fall through */
9193 case DLT_HDLC:
9194 case DLT_EN10MB:
9195 case DLT_NETANALYZER:
9196 case DLT_NETANALYZER_TRANSPARENT:
9197 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9198 break;
9199
9200 case DLT_PPP:
9201 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9202 break;
9203
9204 /* FIXME add other DLT_s ...
9205 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9206 * leave it for now */
9207
9208 default:
9209 bpf_error(cstate, "no MPLS support for %s",
9210 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9211 /*NOTREACHED*/
9212 }
9213 }
9214
9215 /* If a specific MPLS label is requested, check it */
9216 if (has_label_num) {
9217 assert_maxval(cstate, "MPLS label", label_num, 0xFFFFF);
9218 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9219 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9220 0xfffff000); /* only compare the first 20 bits */
9221 gen_and(b0, b1);
9222 b0 = b1;
9223 }
9224
9225 /*
9226 * Change the offsets to point to the type and data fields within
9227 * the MPLS packet. Just increment the offsets, so that we
9228 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9229 * capture packets with an outer label of 100000 and an inner
9230 * label of 1024.
9231 *
9232 * Increment the MPLS stack depth as well; this indicates that
9233 * we're checking MPLS-encapsulated headers, to make sure higher
9234 * level code generators don't try to match against IP-related
9235 * protocols such as Q_ARP, Q_RARP etc.
9236 *
9237 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9238 */
9239 cstate->off_nl_nosnap += 4;
9240 cstate->off_nl += 4;
9241 cstate->label_stack_depth++;
9242 return (b0);
9243 }
9244
9245 struct block *
9246 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num, int has_label_num)
9247 {
9248 /*
9249 * Catch errors reported by us and routines below us, and return NULL
9250 * on an error.
9251 */
9252 if (setjmp(cstate->top_ctx))
9253 return (NULL);
9254
9255 return gen_mpls_internal(cstate, label_num, has_label_num);
9256 }
9257
9258 /*
9259 * Support PPPOE discovery and session.
9260 */
9261 struct block *
9262 gen_pppoed(compiler_state_t *cstate)
9263 {
9264 /*
9265 * Catch errors reported by us and routines below us, and return NULL
9266 * on an error.
9267 */
9268 if (setjmp(cstate->top_ctx))
9269 return (NULL);
9270
9271 /* check for PPPoE discovery */
9272 return gen_linktype(cstate, ETHERTYPE_PPPOED);
9273 }
9274
9275 /*
9276 * RFC 2516 Section 4:
9277 *
9278 * The Ethernet payload for PPPoE is as follows:
9279 *
9280 * 1 2 3
9281 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
9282 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9283 * | VER | TYPE | CODE | SESSION_ID |
9284 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9285 * | LENGTH | payload ~
9286 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9287 */
9288 struct block *
9289 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9290 {
9291 struct block *b0, *b1;
9292
9293 /*
9294 * Catch errors reported by us and routines below us, and return NULL
9295 * on an error.
9296 */
9297 if (setjmp(cstate->top_ctx))
9298 return (NULL);
9299
9300 /*
9301 * Test against the PPPoE session link-layer type.
9302 */
9303 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9304
9305 /* If a specific session is requested, check PPPoE session id */
9306 if (has_sess_num) {
9307 assert_maxval(cstate, "PPPoE session number", sess_num, UINT16_MAX);
9308 b1 = gen_cmp(cstate, OR_LINKPL, 2, BPF_H, sess_num);
9309 gen_and(b0, b1);
9310 b0 = b1;
9311 }
9312
9313 /*
9314 * Change the offsets to point to the type and data fields within
9315 * the PPP packet, and note that this is PPPoE rather than
9316 * raw PPP.
9317 *
9318 * XXX - this is a bit of a kludge. See the comments in
9319 * gen_vlan().
9320 *
9321 * The "network-layer" protocol is PPPoE, which has a 6-byte
9322 * PPPoE header, followed by a PPP packet.
9323 *
9324 * There is no HDLC encapsulation for the PPP packet (it's
9325 * encapsulated in PPPoES instead), so the link-layer type
9326 * starts at the first byte of the PPP packet. For PPPoE,
9327 * that offset is relative to the beginning of the total
9328 * link-layer payload, including any 802.2 LLC header, so
9329 * it's 6 bytes past cstate->off_nl.
9330 */
9331 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9332 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9333 cstate->off_linkpl.reg);
9334
9335 cstate->off_linktype = cstate->off_linkhdr;
9336 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9337
9338 cstate->off_nl = 0;
9339 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9340
9341 return b0;
9342 }
9343
9344 /* Check that this is Geneve and the VNI is correct if
9345 * specified. Parameterized to handle both IPv4 and IPv6. */
9346 static struct block *
9347 gen_geneve_check(compiler_state_t *cstate,
9348 struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9349 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9350 {
9351 struct block *b0, *b1;
9352
9353 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9354
9355 /* Check that we are operating on version 0. Otherwise, we
9356 * can't decode the rest of the fields. The version is 2 bits
9357 * in the first byte of the Geneve header. */
9358 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9359 gen_and(b0, b1);
9360 b0 = b1;
9361
9362 if (has_vni) {
9363 assert_maxval(cstate, "Geneve VNI", vni, 0xffffff);
9364 vni <<= 8; /* VNI is in the upper 3 bytes */
9365 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9366 gen_and(b0, b1);
9367 b0 = b1;
9368 }
9369
9370 return b0;
9371 }
9372
9373 /* The IPv4 and IPv6 Geneve checks need to do two things:
9374 * - Verify that this actually is Geneve with the right VNI.
9375 * - Place the IP header length (plus variable link prefix if
9376 * needed) into register A to be used later to compute
9377 * the inner packet offsets. */
9378 static struct block *
9379 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9380 {
9381 struct block *b0, *b1;
9382 struct slist *s, *s1;
9383
9384 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9385
9386 /* Load the IP header length into A. */
9387 s = gen_loadx_iphdrlen(cstate);
9388
9389 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9390 sappend(s, s1);
9391
9392 /* Forcibly append these statements to the true condition
9393 * of the protocol check by creating a new block that is
9394 * always true and ANDing them. */
9395 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9396 b1->stmts = s;
9397 b1->s.k = 0;
9398
9399 gen_and(b0, b1);
9400
9401 return b1;
9402 }
9403
9404 static struct block *
9405 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9406 {
9407 struct block *b0, *b1;
9408 struct slist *s, *s1;
9409
9410 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9411
9412 /* Load the IP header length. We need to account for a
9413 * variable length link prefix if there is one. */
9414 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9415 if (s) {
9416 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9417 s1->s.k = 40;
9418 sappend(s, s1);
9419
9420 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9421 s1->s.k = 0;
9422 sappend(s, s1);
9423 } else {
9424 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9425 s->s.k = 40;
9426 }
9427
9428 /* Forcibly append these statements to the true condition
9429 * of the protocol check by creating a new block that is
9430 * always true and ANDing them. */
9431 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9432 sappend(s, s1);
9433
9434 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9435 b1->stmts = s;
9436 b1->s.k = 0;
9437
9438 gen_and(b0, b1);
9439
9440 return b1;
9441 }
9442
9443 /* We need to store three values based on the Geneve header::
9444 * - The offset of the linktype.
9445 * - The offset of the end of the Geneve header.
9446 * - The offset of the end of the encapsulated MAC header. */
9447 static struct slist *
9448 gen_geneve_offsets(compiler_state_t *cstate)
9449 {
9450 struct slist *s, *s1, *s_proto;
9451
9452 /* First we need to calculate the offset of the Geneve header
9453 * itself. This is composed of the IP header previously calculated
9454 * (include any variable link prefix) and stored in A plus the
9455 * fixed sized headers (fixed link prefix, MAC length, and UDP
9456 * header). */
9457 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9458 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9459
9460 /* Stash this in X since we'll need it later. */
9461 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9462 sappend(s, s1);
9463
9464 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9465 * store it. */
9466 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9467 s1->s.k = 2;
9468 sappend(s, s1);
9469
9470 cstate->off_linktype.reg = alloc_reg(cstate);
9471 cstate->off_linktype.is_variable = 1;
9472 cstate->off_linktype.constant_part = 0;
9473
9474 s1 = new_stmt(cstate, BPF_ST);
9475 s1->s.k = cstate->off_linktype.reg;
9476 sappend(s, s1);
9477
9478 /* Load the Geneve option length and mask and shift to get the
9479 * number of bytes. It is stored in the first byte of the Geneve
9480 * header. */
9481 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9482 s1->s.k = 0;
9483 sappend(s, s1);
9484
9485 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9486 s1->s.k = 0x3f;
9487 sappend(s, s1);
9488
9489 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9490 s1->s.k = 4;
9491 sappend(s, s1);
9492
9493 /* Add in the rest of the Geneve base header. */
9494 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9495 s1->s.k = 8;
9496 sappend(s, s1);
9497
9498 /* Add the Geneve header length to its offset and store. */
9499 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9500 s1->s.k = 0;
9501 sappend(s, s1);
9502
9503 /* Set the encapsulated type as Ethernet. Even though we may
9504 * not actually have Ethernet inside there are two reasons this
9505 * is useful:
9506 * - The linktype field is always in EtherType format regardless
9507 * of whether it is in Geneve or an inner Ethernet frame.
9508 * - The only link layer that we have specific support for is
9509 * Ethernet. We will confirm that the packet actually is
9510 * Ethernet at runtime before executing these checks. */
9511 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9512
9513 s1 = new_stmt(cstate, BPF_ST);
9514 s1->s.k = cstate->off_linkhdr.reg;
9515 sappend(s, s1);
9516
9517 /* Calculate whether we have an Ethernet header or just raw IP/
9518 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9519 * and linktype by 14 bytes so that the network header can be found
9520 * seamlessly. Otherwise, keep what we've calculated already. */
9521
9522 /* We have a bare jmp so we can't use the optimizer. */
9523 cstate->no_optimize = 1;
9524
9525 /* Load the EtherType in the Geneve header, 2 bytes in. */
9526 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9527 s1->s.k = 2;
9528 sappend(s, s1);
9529
9530 /* Load X with the end of the Geneve header. */
9531 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9532 s1->s.k = cstate->off_linkhdr.reg;
9533 sappend(s, s1);
9534
9535 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9536 * end of this check, we should have the total length in X. In
9537 * the non-Ethernet case, it's already there. */
9538 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9539 s_proto->s.k = ETHERTYPE_TEB;
9540 sappend(s, s_proto);
9541
9542 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9543 sappend(s, s1);
9544 s_proto->s.jt = s1;
9545
9546 /* Since this is Ethernet, use the EtherType of the payload
9547 * directly as the linktype. Overwrite what we already have. */
9548 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9549 s1->s.k = 12;
9550 sappend(s, s1);
9551
9552 s1 = new_stmt(cstate, BPF_ST);
9553 s1->s.k = cstate->off_linktype.reg;
9554 sappend(s, s1);
9555
9556 /* Advance two bytes further to get the end of the Ethernet
9557 * header. */
9558 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9559 s1->s.k = 2;
9560 sappend(s, s1);
9561
9562 /* Move the result to X. */
9563 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9564 sappend(s, s1);
9565
9566 /* Store the final result of our linkpl calculation. */
9567 cstate->off_linkpl.reg = alloc_reg(cstate);
9568 cstate->off_linkpl.is_variable = 1;
9569 cstate->off_linkpl.constant_part = 0;
9570
9571 s1 = new_stmt(cstate, BPF_STX);
9572 s1->s.k = cstate->off_linkpl.reg;
9573 sappend(s, s1);
9574 s_proto->s.jf = s1;
9575
9576 cstate->off_nl = 0;
9577
9578 return s;
9579 }
9580
9581 /* Check to see if this is a Geneve packet. */
9582 struct block *
9583 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9584 {
9585 struct block *b0, *b1;
9586 struct slist *s;
9587
9588 /*
9589 * Catch errors reported by us and routines below us, and return NULL
9590 * on an error.
9591 */
9592 if (setjmp(cstate->top_ctx))
9593 return (NULL);
9594
9595 b0 = gen_geneve4(cstate, vni, has_vni);
9596 b1 = gen_geneve6(cstate, vni, has_vni);
9597
9598 gen_or(b0, b1);
9599 b0 = b1;
9600
9601 /* Later filters should act on the payload of the Geneve frame,
9602 * update all of the header pointers. Attach this code so that
9603 * it gets executed in the event that the Geneve filter matches. */
9604 s = gen_geneve_offsets(cstate);
9605
9606 b1 = gen_true(cstate);
9607 sappend(s, b1->stmts);
9608 b1->stmts = s;
9609
9610 gen_and(b0, b1);
9611
9612 cstate->is_encap = 1;
9613
9614 return b1;
9615 }
9616
9617 /* Check that this is VXLAN and the VNI is correct if
9618 * specified. Parameterized to handle both IPv4 and IPv6. */
9619 static struct block *
9620 gen_vxlan_check(compiler_state_t *cstate,
9621 struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9622 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9623 {
9624 struct block *b0, *b1;
9625
9626 b0 = gen_portfn(cstate, VXLAN_PORT, IPPROTO_UDP, Q_DST);
9627
9628 /* Check that the VXLAN header has the flag bits set
9629 * correctly. */
9630 b1 = gen_cmp(cstate, offrel, 8, BPF_B, 0x08);
9631 gen_and(b0, b1);
9632 b0 = b1;
9633
9634 if (has_vni) {
9635 assert_maxval(cstate, "VXLAN VNI", vni, 0xffffff);
9636 vni <<= 8; /* VNI is in the upper 3 bytes */
9637 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9638 gen_and(b0, b1);
9639 b0 = b1;
9640 }
9641
9642 return b0;
9643 }
9644
9645 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9646 * - Verify that this actually is VXLAN with the right VNI.
9647 * - Place the IP header length (plus variable link prefix if
9648 * needed) into register A to be used later to compute
9649 * the inner packet offsets. */
9650 static struct block *
9651 gen_vxlan4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9652 {
9653 struct block *b0, *b1;
9654 struct slist *s, *s1;
9655
9656 b0 = gen_vxlan_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9657
9658 /* Load the IP header length into A. */
9659 s = gen_loadx_iphdrlen(cstate);
9660
9661 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9662 sappend(s, s1);
9663
9664 /* Forcibly append these statements to the true condition
9665 * of the protocol check by creating a new block that is
9666 * always true and ANDing them. */
9667 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9668 b1->stmts = s;
9669 b1->s.k = 0;
9670
9671 gen_and(b0, b1);
9672
9673 return b1;
9674 }
9675
9676 static struct block *
9677 gen_vxlan6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9678 {
9679 struct block *b0, *b1;
9680 struct slist *s, *s1;
9681
9682 b0 = gen_vxlan_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9683
9684 /* Load the IP header length. We need to account for a
9685 * variable length link prefix if there is one. */
9686 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9687 if (s) {
9688 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9689 s1->s.k = 40;
9690 sappend(s, s1);
9691
9692 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9693 s1->s.k = 0;
9694 sappend(s, s1);
9695 } else {
9696 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9697 s->s.k = 40;
9698 }
9699
9700 /* Forcibly append these statements to the true condition
9701 * of the protocol check by creating a new block that is
9702 * always true and ANDing them. */
9703 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9704 sappend(s, s1);
9705
9706 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9707 b1->stmts = s;
9708 b1->s.k = 0;
9709
9710 gen_and(b0, b1);
9711
9712 return b1;
9713 }
9714
9715 /* We need to store three values based on the VXLAN header:
9716 * - The offset of the linktype.
9717 * - The offset of the end of the VXLAN header.
9718 * - The offset of the end of the encapsulated MAC header. */
9719 static struct slist *
9720 gen_vxlan_offsets(compiler_state_t *cstate)
9721 {
9722 struct slist *s, *s1;
9723
9724 /* Calculate the offset of the VXLAN header itself. This
9725 * includes the IP header computed previously (including any
9726 * variable link prefix) and stored in A plus the fixed size
9727 * headers (fixed link prefix, MAC length, UDP header). */
9728 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9729 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9730
9731 /* Add the VXLAN header length to its offset and store */
9732 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9733 s1->s.k = 8;
9734 sappend(s, s1);
9735
9736 /* Push the link header. VXLAN packets always contain Ethernet
9737 * frames. */
9738 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9739
9740 s1 = new_stmt(cstate, BPF_ST);
9741 s1->s.k = cstate->off_linkhdr.reg;
9742 sappend(s, s1);
9743
9744 /* As the payload is an Ethernet packet, we can use the
9745 * EtherType of the payload directly as the linktype. */
9746 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9747 s1->s.k = 12;
9748 sappend(s, s1);
9749
9750 cstate->off_linktype.reg = alloc_reg(cstate);
9751 cstate->off_linktype.is_variable = 1;
9752 cstate->off_linktype.constant_part = 0;
9753
9754 s1 = new_stmt(cstate, BPF_ST);
9755 s1->s.k = cstate->off_linktype.reg;
9756 sappend(s, s1);
9757
9758 /* Two bytes further is the end of the Ethernet header and the
9759 * start of the payload. */
9760 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9761 s1->s.k = 2;
9762 sappend(s, s1);
9763
9764 /* Move the result to X. */
9765 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9766 sappend(s, s1);
9767
9768 /* Store the final result of our linkpl calculation. */
9769 cstate->off_linkpl.reg = alloc_reg(cstate);
9770 cstate->off_linkpl.is_variable = 1;
9771 cstate->off_linkpl.constant_part = 0;
9772
9773 s1 = new_stmt(cstate, BPF_STX);
9774 s1->s.k = cstate->off_linkpl.reg;
9775 sappend(s, s1);
9776
9777 cstate->off_nl = 0;
9778
9779 return s;
9780 }
9781
9782 /* Check to see if this is a VXLAN packet. */
9783 struct block *
9784 gen_vxlan(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9785 {
9786 struct block *b0, *b1;
9787 struct slist *s;
9788
9789 /*
9790 * Catch errors reported by us and routines below us, and return NULL
9791 * on an error.
9792 */
9793 if (setjmp(cstate->top_ctx))
9794 return (NULL);
9795
9796 b0 = gen_vxlan4(cstate, vni, has_vni);
9797 b1 = gen_vxlan6(cstate, vni, has_vni);
9798
9799 gen_or(b0, b1);
9800 b0 = b1;
9801
9802 /* Later filters should act on the payload of the VXLAN frame,
9803 * update all of the header pointers. Attach this code so that
9804 * it gets executed in the event that the VXLAN filter matches. */
9805 s = gen_vxlan_offsets(cstate);
9806
9807 b1 = gen_true(cstate);
9808 sappend(s, b1->stmts);
9809 b1->stmts = s;
9810
9811 gen_and(b0, b1);
9812
9813 cstate->is_encap = 1;
9814
9815 return b1;
9816 }
9817
9818 /* Check that the encapsulated frame has a link layer header
9819 * for Ethernet filters. */
9820 static struct block *
9821 gen_encap_ll_check(compiler_state_t *cstate)
9822 {
9823 struct block *b0;
9824 struct slist *s, *s1;
9825
9826 /* The easiest way to see if there is a link layer present
9827 * is to check if the link layer header and payload are not
9828 * the same. */
9829
9830 /* Geneve always generates pure variable offsets so we can
9831 * compare only the registers. */
9832 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9833 s->s.k = cstate->off_linkhdr.reg;
9834
9835 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9836 s1->s.k = cstate->off_linkpl.reg;
9837 sappend(s, s1);
9838
9839 b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9840 b0->stmts = s;
9841 b0->s.k = 0;
9842 gen_not(b0);
9843
9844 return b0;
9845 }
9846
9847 static struct block *
9848 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9849 bpf_u_int32 jvalue, int jtype, int reverse)
9850 {
9851 struct block *b0;
9852
9853 /*
9854 * This check is a no-op for A_MSGTYPE so long as the only incoming
9855 * code path is from gen_atmmulti_abbrev(), which makes the same
9856 * check first; also for A_PROTOTYPE so long as the only incoming code
9857 * paths are from gen_atmtype_abbrev(), which makes the same check
9858 * first, or from gen_llc_internal() or gen_linktype(), which restrict
9859 * it to DLT_SUNATM.
9860 */
9861 assert_atm(cstate, atmkw(atmfield));
9862
9863 switch (atmfield) {
9864
9865 case A_VPI:
9866 assert_maxval(cstate, "VPI", jvalue, UINT8_MAX);
9867 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9868 0xffffffffU, jtype, reverse, jvalue);
9869 break;
9870
9871 case A_VCI:
9872 assert_maxval(cstate, "VCI", jvalue, UINT16_MAX);
9873 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9874 0xffffffffU, jtype, reverse, jvalue);
9875 break;
9876
9877 case A_PROTOTYPE:
9878 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9879 0x0fU, jtype, reverse, jvalue);
9880 break;
9881
9882 case A_MSGTYPE:
9883 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9884 0xffffffffU, jtype, reverse, jvalue);
9885 break;
9886
9887 default:
9888 abort();
9889 }
9890 return b0;
9891 }
9892
9893 static struct block *
9894 gen_atmtype_metac(compiler_state_t *cstate)
9895 {
9896 struct block *b0, *b1;
9897
9898 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9899 b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9900 gen_and(b0, b1);
9901 return b1;
9902 }
9903
9904 static struct block *
9905 gen_atmtype_sc(compiler_state_t *cstate)
9906 {
9907 struct block *b0, *b1;
9908
9909 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9910 b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9911 gen_and(b0, b1);
9912 return b1;
9913 }
9914
9915 static struct block *
9916 gen_atmtype_llc(compiler_state_t *cstate)
9917 {
9918 struct block *b0;
9919
9920 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9921 cstate->linktype = cstate->prevlinktype;
9922 return b0;
9923 }
9924
9925 struct block *
9926 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9927 bpf_u_int32 jvalue, int jtype, int reverse)
9928 {
9929 /*
9930 * Catch errors reported by us and routines below us, and return NULL
9931 * on an error.
9932 */
9933 if (setjmp(cstate->top_ctx))
9934 return (NULL);
9935
9936 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9937 reverse);
9938 }
9939
9940 struct block *
9941 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9942 {
9943 struct block *b0, *b1;
9944
9945 /*
9946 * Catch errors reported by us and routines below us, and return NULL
9947 * on an error.
9948 */
9949 if (setjmp(cstate->top_ctx))
9950 return (NULL);
9951
9952 assert_atm(cstate, atmkw(type));
9953
9954 switch (type) {
9955
9956 case A_METAC:
9957 /* Get all packets in Meta signalling Circuit */
9958 b1 = gen_atmtype_metac(cstate);
9959 break;
9960
9961 case A_BCC:
9962 /* Get all packets in Broadcast Circuit*/
9963 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9964 b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9965 gen_and(b0, b1);
9966 break;
9967
9968 case A_OAMF4SC:
9969 /* Get all cells in Segment OAM F4 circuit*/
9970 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9971 b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9972 gen_and(b0, b1);
9973 break;
9974
9975 case A_OAMF4EC:
9976 /* Get all cells in End-to-End OAM F4 Circuit*/
9977 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9978 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9979 gen_and(b0, b1);
9980 break;
9981
9982 case A_SC:
9983 /* Get all packets in connection Signalling Circuit */
9984 b1 = gen_atmtype_sc(cstate);
9985 break;
9986
9987 case A_ILMIC:
9988 /* Get all packets in ILMI Circuit */
9989 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9990 b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9991 gen_and(b0, b1);
9992 break;
9993
9994 case A_LANE:
9995 /* Get all LANE packets */
9996 b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9997
9998 /*
9999 * Arrange that all subsequent tests assume LANE
10000 * rather than LLC-encapsulated packets, and set
10001 * the offsets appropriately for LANE-encapsulated
10002 * Ethernet.
10003 *
10004 * We assume LANE means Ethernet, not Token Ring.
10005 */
10006 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
10007 cstate->off_payload + 2, /* Ethernet header */
10008 -1);
10009 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
10010 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
10011 cstate->off_nl = 0; /* Ethernet II */
10012 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
10013 break;
10014
10015 default:
10016 abort();
10017 }
10018 return b1;
10019 }
10020
10021 /*
10022 * Filtering for MTP2 messages based on li value
10023 * FISU, length is null
10024 * LSSU, length is 1 or 2
10025 * MSU, length is 3 or more
10026 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
10027 */
10028 struct block *
10029 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
10030 {
10031 struct block *b0, *b1;
10032
10033 /*
10034 * Catch errors reported by us and routines below us, and return NULL
10035 * on an error.
10036 */
10037 if (setjmp(cstate->top_ctx))
10038 return (NULL);
10039
10040 assert_ss7(cstate, ss7kw(type));
10041
10042 switch (type) {
10043
10044 case M_FISU:
10045 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10046 0x3fU, BPF_JEQ, 0, 0U);
10047 break;
10048
10049 case M_LSSU:
10050 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10051 0x3fU, BPF_JGT, 1, 2U);
10052 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10053 0x3fU, BPF_JGT, 0, 0U);
10054 gen_and(b1, b0);
10055 break;
10056
10057 case M_MSU:
10058 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10059 0x3fU, BPF_JGT, 0, 2U);
10060 break;
10061
10062 case MH_FISU:
10063 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10064 0xff80U, BPF_JEQ, 0, 0U);
10065 break;
10066
10067 case MH_LSSU:
10068 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10069 0xff80U, BPF_JGT, 1, 0x0100U);
10070 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10071 0xff80U, BPF_JGT, 0, 0U);
10072 gen_and(b1, b0);
10073 break;
10074
10075 case MH_MSU:
10076 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10077 0xff80U, BPF_JGT, 0, 0x0100U);
10078 break;
10079
10080 default:
10081 abort();
10082 }
10083 return b0;
10084 }
10085
10086 /*
10087 * These maximum valid values are all-ones, so they double as the bitmasks
10088 * before any bitwise shifting.
10089 */
10090 #define MTP2_SIO_MAXVAL UINT8_MAX
10091 #define MTP3_PC_MAXVAL 0x3fffU
10092 #define MTP3_SLS_MAXVAL 0xfU
10093
10094 static struct block *
10095 gen_mtp3field_code_internal(compiler_state_t *cstate, int mtp3field,
10096 bpf_u_int32 jvalue, int jtype, int reverse)
10097 {
10098 struct block *b0;
10099 u_int newoff_sio;
10100 u_int newoff_opc;
10101 u_int newoff_dpc;
10102 u_int newoff_sls;
10103
10104 newoff_sio = cstate->off_sio;
10105 newoff_opc = cstate->off_opc;
10106 newoff_dpc = cstate->off_dpc;
10107 newoff_sls = cstate->off_sls;
10108
10109 assert_ss7(cstate, ss7kw(mtp3field));
10110
10111 switch (mtp3field) {
10112
10113 /*
10114 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
10115 *
10116 * SIO is the simplest field: the size is one byte and the offset is a
10117 * multiple of bytes, so the only detail to get right is the value of
10118 * the [right-to-left] field offset.
10119 */
10120 case MH_SIO:
10121 newoff_sio += 3; /* offset for MTP2_HSL */
10122 /* FALLTHROUGH */
10123
10124 case M_SIO:
10125 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP2_SIO_MAXVAL);
10126 // Here the bitmask means "do not apply a bitmask".
10127 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, UINT32_MAX,
10128 jtype, reverse, jvalue);
10129 break;
10130
10131 /*
10132 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
10133 *
10134 * SLS, OPC and DPC are more complicated: none of these is sized in a
10135 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
10136 * diagrams are meant to be read right-to-left. This means in the
10137 * diagrams within individual fields and concatenations thereof
10138 * bitwise shifts and masks can be noted in the common left-to-right
10139 * manner until each final value is ready to be byte-swapped and
10140 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
10141 * similar problem in a similar way.
10142 *
10143 * Offsets of fields within the packet header always have the
10144 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
10145 * DLTs the offset does not include the F (Flag) field at the
10146 * beginning of each message.
10147 *
10148 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
10149 * 32-bit standard routing header has a 4 byte [RTL] offset and could
10150 * be tested entirely using a single BPF_W comparison. In this case
10151 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
10152 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
10153 * [LTR] bitmask would be (0xF << 28), all of which conveniently
10154 * correlates with the [RTL] packet diagram until the byte-swapping is
10155 * done before use.
10156 *
10157 * The code below uses this approach for OPC, which spans 3 bytes.
10158 * DPC and SLS use shorter loads, SLS also uses a different offset.
10159 */
10160 case MH_OPC:
10161 newoff_opc += 3;
10162
10163 /* FALLTHROUGH */
10164 case M_OPC:
10165 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_PC_MAXVAL);
10166 b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W,
10167 SWAPLONG(MTP3_PC_MAXVAL << 14), jtype, reverse,
10168 SWAPLONG(jvalue << 14));
10169 break;
10170
10171 case MH_DPC:
10172 newoff_dpc += 3;
10173 /* FALLTHROUGH */
10174
10175 case M_DPC:
10176 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_PC_MAXVAL);
10177 b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_H,
10178 SWAPSHORT(MTP3_PC_MAXVAL), jtype, reverse,
10179 SWAPSHORT(jvalue));
10180 break;
10181
10182 case MH_SLS:
10183 newoff_sls += 3;
10184 /* FALLTHROUGH */
10185
10186 case M_SLS:
10187 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_SLS_MAXVAL);
10188 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B,
10189 MTP3_SLS_MAXVAL << 4, jtype, reverse,
10190 jvalue << 4);
10191 break;
10192
10193 default:
10194 abort();
10195 }
10196 return b0;
10197 }
10198
10199 struct block *
10200 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
10201 bpf_u_int32 jvalue, int jtype, int reverse)
10202 {
10203 /*
10204 * Catch errors reported by us and routines below us, and return NULL
10205 * on an error.
10206 */
10207 if (setjmp(cstate->top_ctx))
10208 return (NULL);
10209
10210 return gen_mtp3field_code_internal(cstate, mtp3field, jvalue, jtype,
10211 reverse);
10212 }
10213
10214 static struct block *
10215 gen_msg_abbrev(compiler_state_t *cstate, int type)
10216 {
10217 struct block *b1;
10218
10219 /*
10220 * Q.2931 signalling protocol messages for handling virtual circuits
10221 * establishment and teardown
10222 */
10223 switch (type) {
10224
10225 case A_SETUP:
10226 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
10227 break;
10228
10229 case A_CALLPROCEED:
10230 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
10231 break;
10232
10233 case A_CONNECT:
10234 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
10235 break;
10236
10237 case A_CONNECTACK:
10238 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
10239 break;
10240
10241 case A_RELEASE:
10242 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
10243 break;
10244
10245 case A_RELEASE_DONE:
10246 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
10247 break;
10248
10249 default:
10250 abort();
10251 }
10252 return b1;
10253 }
10254
10255 struct block *
10256 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
10257 {
10258 struct block *b0, *b1;
10259
10260 /*
10261 * Catch errors reported by us and routines below us, and return NULL
10262 * on an error.
10263 */
10264 if (setjmp(cstate->top_ctx))
10265 return (NULL);
10266
10267 assert_atm(cstate, atmkw(type));
10268
10269 switch (type) {
10270
10271 case A_OAM:
10272 /* OAM F4 type */
10273 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10274 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10275 gen_or(b0, b1);
10276 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10277 gen_and(b0, b1);
10278 break;
10279
10280 case A_OAMF4:
10281 /* OAM F4 type */
10282 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10283 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10284 gen_or(b0, b1);
10285 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10286 gen_and(b0, b1);
10287 break;
10288
10289 case A_CONNECTMSG:
10290 /*
10291 * Get Q.2931 signalling messages for switched
10292 * virtual connection
10293 */
10294 b0 = gen_msg_abbrev(cstate, A_SETUP);
10295 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10296 gen_or(b0, b1);
10297 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10298 gen_or(b0, b1);
10299 b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10300 gen_or(b0, b1);
10301 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10302 gen_or(b0, b1);
10303 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10304 gen_or(b0, b1);
10305 b0 = gen_atmtype_sc(cstate);
10306 gen_and(b0, b1);
10307 break;
10308
10309 case A_METACONNECT:
10310 b0 = gen_msg_abbrev(cstate, A_SETUP);
10311 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10312 gen_or(b0, b1);
10313 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10314 gen_or(b0, b1);
10315 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10316 gen_or(b0, b1);
10317 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10318 gen_or(b0, b1);
10319 b0 = gen_atmtype_metac(cstate);
10320 gen_and(b0, b1);
10321 break;
10322
10323 default:
10324 abort();
10325 }
10326 return b1;
10327 }