2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <sys/socket.h>
30 #include <sys/param.h>
33 #include <netinet/in.h>
34 #include <arpa/inet.h>
48 #include "ethertype.h"
52 #include "ieee80211.h"
54 #include "sunatmpos.h"
58 #include "pcap/ipnet.h"
60 #include "diag-control.h"
65 #include <linux/types.h>
66 #include <linux/if_packet.h>
67 #include <linux/filter.h>
71 #define offsetof(s, e) ((size_t)&((s *)0)->e)
76 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
83 uint16_t u6_addr16
[8];
84 uint32_t u6_addr32
[4];
86 #define s6_addr in6_u.u6_addr8
87 #define s6_addr16 in6_u.u6_addr16
88 #define s6_addr32 in6_u.u6_addr32
89 #define s6_addr64 in6_u.u6_addr64
92 typedef unsigned short sa_family_t
;
94 #define __SOCKADDR_COMMON(sa_prefix) \
95 sa_family_t sa_prefix##family
97 /* Ditto, for IPv6. */
100 __SOCKADDR_COMMON (sin6_
);
101 uint16_t sin6_port
; /* Transport layer port # */
102 uint32_t sin6_flowinfo
; /* IPv6 flow information */
103 struct in6_addr sin6_addr
; /* IPv6 address */
106 #ifndef EAI_ADDRFAMILY
108 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
109 int ai_family
; /* PF_xxx */
110 int ai_socktype
; /* SOCK_xxx */
111 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
112 size_t ai_addrlen
; /* length of ai_addr */
113 char *ai_canonname
; /* canonical name for hostname */
114 struct sockaddr
*ai_addr
; /* binary address */
115 struct addrinfo
*ai_next
; /* next structure in linked list */
117 #endif /* EAI_ADDRFAMILY */
118 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
121 #include <netdb.h> /* for "struct addrinfo" */
123 #include <pcap/namedb.h>
125 #include "nametoaddr.h"
127 #define ETHERMTU 1500
129 #ifndef IPPROTO_HOPOPTS
130 #define IPPROTO_HOPOPTS 0
132 #ifndef IPPROTO_ROUTING
133 #define IPPROTO_ROUTING 43
135 #ifndef IPPROTO_FRAGMENT
136 #define IPPROTO_FRAGMENT 44
138 #ifndef IPPROTO_DSTOPTS
139 #define IPPROTO_DSTOPTS 60
142 #define IPPROTO_SCTP 132
145 #define GENEVE_PORT 6081
147 #ifdef HAVE_OS_PROTO_H
148 #include "os-proto.h"
151 #define JMP(c) ((c)|BPF_JMP|BPF_K)
154 * "Push" the current value of the link-layer header type and link-layer
155 * header offset onto a "stack", and set a new value. (It's not a
156 * full-blown stack; we keep only the top two items.)
158 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
160 (cs)->prevlinktype = (cs)->linktype; \
161 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
162 (cs)->linktype = (new_linktype); \
163 (cs)->off_linkhdr.is_variable = (new_is_variable); \
164 (cs)->off_linkhdr.constant_part = (new_constant_part); \
165 (cs)->off_linkhdr.reg = (new_reg); \
166 (cs)->is_geneve = 0; \
170 * Offset "not set" value.
172 #define OFFSET_NOT_SET 0xffffffffU
175 * Absolute offsets, which are offsets from the beginning of the raw
176 * packet data, are, in the general case, the sum of a variable value
177 * and a constant value; the variable value may be absent, in which
178 * case the offset is only the constant value, and the constant value
179 * may be zero, in which case the offset is only the variable value.
181 * bpf_abs_offset is a structure containing all that information:
183 * is_variable is 1 if there's a variable part.
185 * constant_part is the constant part of the value, possibly zero;
187 * if is_variable is 1, reg is the register number for a register
188 * containing the variable value if the register has been assigned,
198 * Value passed to gen_load_a() to indicate what the offset argument
199 * is relative to the beginning of.
202 OR_PACKET
, /* full packet data */
203 OR_LINKHDR
, /* link-layer header */
204 OR_PREVLINKHDR
, /* previous link-layer header */
205 OR_LLC
, /* 802.2 LLC header */
206 OR_PREVMPLSHDR
, /* previous MPLS header */
207 OR_LINKTYPE
, /* link-layer type */
208 OR_LINKPL
, /* link-layer payload */
209 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
210 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
211 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
215 * We divvy out chunks of memory rather than call malloc each time so
216 * we don't have to worry about leaking memory. It's probably
217 * not a big deal if all this memory was wasted but if this ever
218 * goes into a library that would probably not be a good idea.
220 * XXX - this *is* in a library....
223 #define CHUNK0SIZE 1024
230 * A chunk can store any of:
231 * - a string (guaranteed alignment 1 but present for completeness)
235 * For this simple allocator every allocated chunk gets rounded up to the
236 * alignment needed for any chunk.
247 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
249 /* Code generator state */
251 struct _compiler_state
{
262 int outermostlinktype
;
267 /* Hack for handling VLAN and MPLS stacks. */
268 u_int label_stack_depth
;
269 u_int vlan_stack_depth
;
275 * As errors are handled by a longjmp, anything allocated must
276 * be freed in the longjmp handler, so it must be reachable
279 * One thing that's allocated is the result of pcap_nametoaddrinfo();
280 * it must be freed with freeaddrinfo(). This variable points to
281 * any addrinfo structure that would need to be freed.
286 * Another thing that's allocated is the result of pcap_ether_aton();
287 * it must be freed with free(). This variable points to any
288 * address that would need to be freed.
293 * Various code constructs need to know the layout of the packet.
294 * These values give the necessary offsets from the beginning
295 * of the packet data.
299 * Absolute offset of the beginning of the link-layer header.
301 bpf_abs_offset off_linkhdr
;
304 * If we're checking a link-layer header for a packet encapsulated
305 * in another protocol layer, this is the equivalent information
306 * for the previous layers' link-layer header from the beginning
307 * of the raw packet data.
309 bpf_abs_offset off_prevlinkhdr
;
312 * This is the equivalent information for the outermost layers'
315 bpf_abs_offset off_outermostlinkhdr
;
318 * Absolute offset of the beginning of the link-layer payload.
320 bpf_abs_offset off_linkpl
;
323 * "off_linktype" is the offset to information in the link-layer
324 * header giving the packet type. This is an absolute offset
325 * from the beginning of the packet.
327 * For Ethernet, it's the offset of the Ethernet type field; this
328 * means that it must have a value that skips VLAN tags.
330 * For link-layer types that always use 802.2 headers, it's the
331 * offset of the LLC header; this means that it must have a value
332 * that skips VLAN tags.
334 * For PPP, it's the offset of the PPP type field.
336 * For Cisco HDLC, it's the offset of the CHDLC type field.
338 * For BSD loopback, it's the offset of the AF_ value.
340 * For Linux cooked sockets, it's the offset of the type field.
342 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
343 * encapsulation, in which case, IP is assumed.
345 bpf_abs_offset off_linktype
;
348 * TRUE if the link layer includes an ATM pseudo-header.
353 * TRUE if "geneve" appeared in the filter; it causes us to
354 * generate code that checks for a Geneve header and assume
355 * that later filters apply to the encapsulated payload.
360 * TRUE if we need variable length part of VLAN offset
362 int is_vlan_vloffset
;
365 * These are offsets for the ATM pseudo-header.
372 * These are offsets for the MTP2 fields.
378 * These are offsets for the MTP3 fields.
386 * This is the offset of the first byte after the ATM pseudo_header,
387 * or -1 if there is no ATM pseudo-header.
392 * These are offsets to the beginning of the network-layer header.
393 * They are relative to the beginning of the link-layer payload
394 * (i.e., they don't include off_linkhdr.constant_part or
395 * off_linkpl.constant_part).
397 * If the link layer never uses 802.2 LLC:
399 * "off_nl" and "off_nl_nosnap" are the same.
401 * If the link layer always uses 802.2 LLC:
403 * "off_nl" is the offset if there's a SNAP header following
406 * "off_nl_nosnap" is the offset if there's no SNAP header.
408 * If the link layer is Ethernet:
410 * "off_nl" is the offset if the packet is an Ethernet II packet
411 * (we assume no 802.3+802.2+SNAP);
413 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
414 * with an 802.2 header following it.
420 * Here we handle simple allocation of the scratch registers.
421 * If too many registers are alloc'd, the allocator punts.
423 int regused
[BPF_MEMWORDS
];
429 struct chunk chunks
[NCHUNKS
];
434 * For use by routines outside this file.
438 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
443 * If we've already set an error, don't override it.
444 * The lexical analyzer reports some errors by setting
445 * the error and then returning a LEX_ERROR token, which
446 * is not recognized by any grammar rule, and thus forces
447 * the parse to stop. We don't want the error reported
448 * by the lexical analyzer to be overwritten by the syntax
451 if (!cstate
->error_set
) {
453 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
456 cstate
->error_set
= 1;
461 * For use *ONLY* in routines in this file.
463 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
464 PCAP_PRINTFLIKE(2, 3);
467 static void PCAP_NORETURN
468 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
473 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
476 longjmp(cstate
->top_ctx
, 1);
483 static int init_linktype(compiler_state_t
*, pcap_t
*);
485 static void init_regs(compiler_state_t
*);
486 static int alloc_reg(compiler_state_t
*);
487 static void free_reg(compiler_state_t
*, int);
489 static void initchunks(compiler_state_t
*cstate
);
490 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
491 static void *newchunk(compiler_state_t
*cstate
, size_t);
492 static void freechunks(compiler_state_t
*cstate
);
493 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
494 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
495 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
496 static inline void syntax(compiler_state_t
*cstate
);
498 static void backpatch(struct block
*, struct block
*);
499 static void merge(struct block
*, struct block
*);
500 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
502 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
504 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
506 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
508 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
510 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
511 u_int
, bpf_u_int32
, bpf_u_int32
);
512 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
513 u_int
, const u_char
*);
514 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
515 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
516 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
518 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
520 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
521 static struct block
*gen_uncond(compiler_state_t
*, int);
522 static inline struct block
*gen_true(compiler_state_t
*);
523 static inline struct block
*gen_false(compiler_state_t
*);
524 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
525 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
526 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
527 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
528 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
529 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
530 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
531 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
532 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
533 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
535 static bpf_u_int32
ethertype_to_ppptype(bpf_u_int32
);
536 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
537 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
538 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
539 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
540 int, bpf_u_int32
, u_int
, u_int
);
542 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
543 struct in6_addr
*, int, bpf_u_int32
, u_int
, u_int
);
545 static struct block
*gen_ahostop(compiler_state_t
*, const u_char
*, int);
546 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
547 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
548 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
549 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
550 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
551 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
552 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
553 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
556 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
557 struct in6_addr
*, int, int, int);
560 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
561 struct addrinfo
*, int, int);
563 static struct block
*gen_ipfrag(compiler_state_t
*);
564 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_u_int32
);
565 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, bpf_u_int32
,
567 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_u_int32
);
568 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, bpf_u_int32
,
570 static struct block
*gen_portop(compiler_state_t
*, u_int
, u_int
, int);
571 static struct block
*gen_port(compiler_state_t
*, u_int
, int, int);
572 static struct block
*gen_portrangeop(compiler_state_t
*, u_int
, u_int
,
574 static struct block
*gen_portrange(compiler_state_t
*, u_int
, u_int
, int, int);
575 struct block
*gen_portop6(compiler_state_t
*, u_int
, u_int
, int);
576 static struct block
*gen_port6(compiler_state_t
*, u_int
, int, int);
577 static struct block
*gen_portrangeop6(compiler_state_t
*, u_int
, u_int
,
579 static struct block
*gen_portrange6(compiler_state_t
*, u_int
, u_int
, int, int);
580 static int lookup_proto(compiler_state_t
*, const char *, int);
581 #if !defined(NO_PROTOCHAIN)
582 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
583 #endif /* !defined(NO_PROTOCHAIN) */
584 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int, int);
585 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
586 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
587 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
588 static struct block
*gen_len(compiler_state_t
*, int, int);
589 static struct block
*gen_check_802_11_data_frame(compiler_state_t
*);
590 static struct block
*gen_geneve_ll_check(compiler_state_t
*cstate
);
592 static struct block
*gen_ppi_dlt_check(compiler_state_t
*);
593 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
594 bpf_u_int32
, int, int);
595 static struct block
*gen_atmtype_llc(compiler_state_t
*);
596 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
599 initchunks(compiler_state_t
*cstate
)
603 for (i
= 0; i
< NCHUNKS
; i
++) {
604 cstate
->chunks
[i
].n_left
= 0;
605 cstate
->chunks
[i
].m
= NULL
;
607 cstate
->cur_chunk
= 0;
611 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
617 /* Round up to chunk alignment. */
618 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
620 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
621 if (n
> cp
->n_left
) {
623 k
= ++cstate
->cur_chunk
;
625 bpf_set_error(cstate
, "out of memory");
628 size
= CHUNK0SIZE
<< k
;
629 cp
->m
= (void *)malloc(size
);
631 bpf_set_error(cstate
, "out of memory");
634 memset((char *)cp
->m
, 0, size
);
637 bpf_set_error(cstate
, "out of memory");
642 return (void *)((char *)cp
->m
+ cp
->n_left
);
646 newchunk(compiler_state_t
*cstate
, size_t n
)
650 p
= newchunk_nolongjmp(cstate
, n
);
652 longjmp(cstate
->top_ctx
, 1);
659 freechunks(compiler_state_t
*cstate
)
663 for (i
= 0; i
< NCHUNKS
; ++i
)
664 if (cstate
->chunks
[i
].m
!= NULL
)
665 free(cstate
->chunks
[i
].m
);
669 * A strdup whose allocations are freed after code generation is over.
670 * This is used by the lexical analyzer, so it can't longjmp; it just
671 * returns NULL on an allocation error, and the callers must check
675 sdup(compiler_state_t
*cstate
, const char *s
)
677 size_t n
= strlen(s
) + 1;
678 char *cp
= newchunk_nolongjmp(cstate
, n
);
682 pcapint_strlcpy(cp
, s
, n
);
686 static inline struct block
*
687 new_block(compiler_state_t
*cstate
, int code
)
691 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
698 static inline struct slist
*
699 new_stmt(compiler_state_t
*cstate
, int code
)
703 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
709 static struct block
*
710 gen_retblk(compiler_state_t
*cstate
, int v
)
712 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
718 static inline PCAP_NORETURN_DEF
void
719 syntax(compiler_state_t
*cstate
)
721 bpf_error(cstate
, "syntax error in filter expression");
725 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
726 const char *buf
, int optimize
, bpf_u_int32 mask
)
731 compiler_state_t cstate
;
732 const char * volatile xbuf
= buf
;
733 yyscan_t scanner
= NULL
;
734 volatile YY_BUFFER_STATE in_buffer
= NULL
;
739 * If this pcap_t hasn't been activated, it doesn't have a
740 * link-layer type, so we can't use it.
743 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
744 "not-yet-activated pcap_t passed to pcap_compile");
757 * If the device on which we're capturing need to be notified
758 * that a new filter is being compiled, do so.
760 * This allows them to save a copy of it, in case, for example,
761 * they're implementing a form of remote packet capture, and
762 * want the remote machine to filter out the packets in which
763 * it's sending the packets it's captured.
765 * XXX - the fact that we happen to be compiling a filter
766 * doesn't necessarily mean we'll be installing it as the
767 * filter for this pcap_t; we might be running it from userland
768 * on captured packets to do packet classification. We really
769 * need a better way of handling this, but this is all that
770 * the WinPcap remote capture code did.
772 if (p
->save_current_filter_op
!= NULL
)
773 (p
->save_current_filter_op
)(p
, buf
);
777 cstate
.no_optimize
= 0;
782 cstate
.ic
.root
= NULL
;
783 cstate
.ic
.cur_mark
= 0;
785 cstate
.error_set
= 0;
788 cstate
.netmask
= mask
;
790 cstate
.snaplen
= pcap_snapshot(p
);
791 if (cstate
.snaplen
== 0) {
792 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
793 "snaplen of 0 rejects all packets");
798 if (pcap_lex_init(&scanner
) != 0) {
799 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
800 errno
, "can't initialize scanner");
804 in_buffer
= pcap__scan_string(xbuf
? xbuf
: "", scanner
);
807 * Associate the compiler state with the lexical analyzer
810 pcap_set_extra(&cstate
, scanner
);
812 if (init_linktype(&cstate
, p
) == -1) {
816 if (pcap_parse(scanner
, &cstate
) != 0) {
818 if (cstate
.ai
!= NULL
)
819 freeaddrinfo(cstate
.ai
);
821 if (cstate
.e
!= NULL
)
827 if (cstate
.ic
.root
== NULL
) {
829 * Catch errors reported by gen_retblk().
831 if (setjmp(cstate
.top_ctx
)) {
835 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
838 if (optimize
&& !cstate
.no_optimize
) {
839 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
844 if (cstate
.ic
.root
== NULL
||
845 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
846 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
847 "expression rejects all packets");
852 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
853 cstate
.ic
.root
, &len
, p
->errbuf
);
854 if (program
->bf_insns
== NULL
) {
859 program
->bf_len
= len
;
861 rc
= 0; /* We're all okay */
865 * Clean up everything for the lexical analyzer.
867 if (in_buffer
!= NULL
)
868 pcap__delete_buffer(in_buffer
, scanner
);
870 pcap_lex_destroy(scanner
);
873 * Clean up our own allocated memory.
881 * entry point for using the compiler with no pcap open
882 * pass in all the stuff that is needed explicitly instead.
885 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
886 struct bpf_program
*program
,
887 const char *buf
, int optimize
, bpf_u_int32 mask
)
892 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
895 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
901 * Clean up a "struct bpf_program" by freeing all the memory allocated
905 pcap_freecode(struct bpf_program
*program
)
908 if (program
->bf_insns
!= NULL
) {
909 free((char *)program
->bf_insns
);
910 program
->bf_insns
= NULL
;
915 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
916 * which of the jt and jf fields has been resolved and which is a pointer
917 * back to another unresolved block (or nil). At least one of the fields
918 * in each block is already resolved.
921 backpatch(struct block
*list
, struct block
*target
)
938 * Merge the lists in b0 and b1, using the 'sense' field to indicate
939 * which of jt and jf is the link.
942 merge(struct block
*b0
, struct block
*b1
)
944 register struct block
**p
= &b0
;
946 /* Find end of list. */
948 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
950 /* Concatenate the lists. */
955 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
957 struct block
*ppi_dlt_check
;
960 * Catch errors reported by us and routines below us, and return -1
963 if (setjmp(cstate
->top_ctx
))
967 * Insert before the statements of the first (root) block any
968 * statements needed to load the lengths of any variable-length
969 * headers into registers.
971 * XXX - a fancier strategy would be to insert those before the
972 * statements of all blocks that use those lengths and that
973 * have no predecessors that use them, so that we only compute
974 * the lengths if we need them. There might be even better
975 * approaches than that.
977 * However, those strategies would be more complicated, and
978 * as we don't generate code to compute a length if the
979 * program has no tests that use the length, and as most
980 * tests will probably use those lengths, we would just
981 * postpone computing the lengths so that it's not done
982 * for tests that fail early, and it's not clear that's
985 insert_compute_vloffsets(cstate
, p
->head
);
988 * For DLT_PPI captures, generate a check of the per-packet
989 * DLT value to make sure it's DLT_IEEE802_11.
991 * XXX - TurboCap cards use DLT_PPI for Ethernet.
992 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
993 * with appropriate Ethernet information and use that rather
994 * than using something such as DLT_PPI where you don't know
995 * the link-layer header type until runtime, which, in the
996 * general case, would force us to generate both Ethernet *and*
997 * 802.11 code (*and* anything else for which PPI is used)
998 * and choose between them early in the BPF program?
1000 ppi_dlt_check
= gen_ppi_dlt_check(cstate
);
1001 if (ppi_dlt_check
!= NULL
)
1002 gen_and(ppi_dlt_check
, p
);
1004 backpatch(p
, gen_retblk(cstate
, cstate
->snaplen
));
1005 p
->sense
= !p
->sense
;
1006 backpatch(p
, gen_retblk(cstate
, 0));
1007 cstate
->ic
.root
= p
->head
;
1012 gen_and(struct block
*b0
, struct block
*b1
)
1014 backpatch(b0
, b1
->head
);
1015 b0
->sense
= !b0
->sense
;
1016 b1
->sense
= !b1
->sense
;
1018 b1
->sense
= !b1
->sense
;
1019 b1
->head
= b0
->head
;
1023 gen_or(struct block
*b0
, struct block
*b1
)
1025 b0
->sense
= !b0
->sense
;
1026 backpatch(b0
, b1
->head
);
1027 b0
->sense
= !b0
->sense
;
1029 b1
->head
= b0
->head
;
1033 gen_not(struct block
*b
)
1035 b
->sense
= !b
->sense
;
1038 static struct block
*
1039 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1040 u_int size
, bpf_u_int32 v
)
1042 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1045 static struct block
*
1046 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1047 u_int size
, bpf_u_int32 v
)
1049 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1052 static struct block
*
1053 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1054 u_int size
, bpf_u_int32 v
)
1056 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1059 static struct block
*
1060 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1061 u_int size
, bpf_u_int32 v
)
1063 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1066 static struct block
*
1067 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1068 u_int size
, bpf_u_int32 v
)
1070 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1073 static struct block
*
1074 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1075 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1077 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1080 static struct block
*
1081 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1082 u_int size
, const u_char
*v
)
1084 register struct block
*b
, *tmp
;
1088 register const u_char
*p
= &v
[size
- 4];
1090 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1098 register const u_char
*p
= &v
[size
- 2];
1100 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1108 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1117 * AND the field of size "size" at offset "offset" relative to the header
1118 * specified by "offrel" with "mask", and compare it with the value "v"
1119 * with the test specified by "jtype"; if "reverse" is true, the test
1120 * should test the opposite of "jtype".
1122 static struct block
*
1123 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1124 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1127 struct slist
*s
, *s2
;
1130 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1132 if (mask
!= 0xffffffff) {
1133 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1138 b
= new_block(cstate
, JMP(jtype
));
1141 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
1147 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1149 cstate
->pcap_fddipad
= p
->fddipad
;
1152 * We start out with only one link-layer header.
1154 cstate
->outermostlinktype
= pcap_datalink(p
);
1155 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1156 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1157 cstate
->off_outermostlinkhdr
.reg
= -1;
1159 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1160 cstate
->off_prevlinkhdr
.constant_part
= 0;
1161 cstate
->off_prevlinkhdr
.is_variable
= 0;
1162 cstate
->off_prevlinkhdr
.reg
= -1;
1164 cstate
->linktype
= cstate
->outermostlinktype
;
1165 cstate
->off_linkhdr
.constant_part
= 0;
1166 cstate
->off_linkhdr
.is_variable
= 0;
1167 cstate
->off_linkhdr
.reg
= -1;
1172 cstate
->off_linkpl
.constant_part
= 0;
1173 cstate
->off_linkpl
.is_variable
= 0;
1174 cstate
->off_linkpl
.reg
= -1;
1176 cstate
->off_linktype
.constant_part
= 0;
1177 cstate
->off_linktype
.is_variable
= 0;
1178 cstate
->off_linktype
.reg
= -1;
1181 * Assume it's not raw ATM with a pseudo-header, for now.
1184 cstate
->off_vpi
= OFFSET_NOT_SET
;
1185 cstate
->off_vci
= OFFSET_NOT_SET
;
1186 cstate
->off_proto
= OFFSET_NOT_SET
;
1187 cstate
->off_payload
= OFFSET_NOT_SET
;
1192 cstate
->is_geneve
= 0;
1195 * No variable length VLAN offset by default
1197 cstate
->is_vlan_vloffset
= 0;
1200 * And assume we're not doing SS7.
1202 cstate
->off_li
= OFFSET_NOT_SET
;
1203 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1204 cstate
->off_sio
= OFFSET_NOT_SET
;
1205 cstate
->off_opc
= OFFSET_NOT_SET
;
1206 cstate
->off_dpc
= OFFSET_NOT_SET
;
1207 cstate
->off_sls
= OFFSET_NOT_SET
;
1209 cstate
->label_stack_depth
= 0;
1210 cstate
->vlan_stack_depth
= 0;
1212 switch (cstate
->linktype
) {
1215 cstate
->off_linktype
.constant_part
= 2;
1216 cstate
->off_linkpl
.constant_part
= 6;
1217 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1218 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1221 case DLT_ARCNET_LINUX
:
1222 cstate
->off_linktype
.constant_part
= 4;
1223 cstate
->off_linkpl
.constant_part
= 8;
1224 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1225 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1229 cstate
->off_linktype
.constant_part
= 12;
1230 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1231 cstate
->off_nl
= 0; /* Ethernet II */
1232 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1237 * SLIP doesn't have a link level type. The 16 byte
1238 * header is hacked into our SLIP driver.
1240 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1241 cstate
->off_linkpl
.constant_part
= 16;
1243 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1246 case DLT_SLIP_BSDOS
:
1247 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1248 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1250 cstate
->off_linkpl
.constant_part
= 24;
1252 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1257 cstate
->off_linktype
.constant_part
= 0;
1258 cstate
->off_linkpl
.constant_part
= 4;
1260 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1264 cstate
->off_linktype
.constant_part
= 0;
1265 cstate
->off_linkpl
.constant_part
= 12;
1267 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1272 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1273 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1274 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1275 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1276 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1278 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1283 * This does no include the Ethernet header, and
1284 * only covers session state.
1286 cstate
->off_linktype
.constant_part
= 6;
1287 cstate
->off_linkpl
.constant_part
= 8;
1289 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1293 cstate
->off_linktype
.constant_part
= 5;
1294 cstate
->off_linkpl
.constant_part
= 24;
1296 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1301 * FDDI doesn't really have a link-level type field.
1302 * We set "off_linktype" to the offset of the LLC header.
1304 * To check for Ethernet types, we assume that SSAP = SNAP
1305 * is being used and pick out the encapsulated Ethernet type.
1306 * XXX - should we generate code to check for SNAP?
1308 cstate
->off_linktype
.constant_part
= 13;
1309 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1310 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1311 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1312 cstate
->off_nl
= 8; /* 802.2+SNAP */
1313 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1318 * Token Ring doesn't really have a link-level type field.
1319 * We set "off_linktype" to the offset of the LLC header.
1321 * To check for Ethernet types, we assume that SSAP = SNAP
1322 * is being used and pick out the encapsulated Ethernet type.
1323 * XXX - should we generate code to check for SNAP?
1325 * XXX - the header is actually variable-length.
1326 * Some various Linux patched versions gave 38
1327 * as "off_linktype" and 40 as "off_nl"; however,
1328 * if a token ring packet has *no* routing
1329 * information, i.e. is not source-routed, the correct
1330 * values are 20 and 22, as they are in the vanilla code.
1332 * A packet is source-routed iff the uppermost bit
1333 * of the first byte of the source address, at an
1334 * offset of 8, has the uppermost bit set. If the
1335 * packet is source-routed, the total number of bytes
1336 * of routing information is 2 plus bits 0x1F00 of
1337 * the 16-bit value at an offset of 14 (shifted right
1338 * 8 - figure out which byte that is).
1340 cstate
->off_linktype
.constant_part
= 14;
1341 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1342 cstate
->off_nl
= 8; /* 802.2+SNAP */
1343 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1346 case DLT_PRISM_HEADER
:
1347 case DLT_IEEE802_11_RADIO_AVS
:
1348 case DLT_IEEE802_11_RADIO
:
1349 cstate
->off_linkhdr
.is_variable
= 1;
1350 /* Fall through, 802.11 doesn't have a variable link
1351 * prefix but is otherwise the same. */
1354 case DLT_IEEE802_11
:
1356 * 802.11 doesn't really have a link-level type field.
1357 * We set "off_linktype.constant_part" to the offset of
1360 * To check for Ethernet types, we assume that SSAP = SNAP
1361 * is being used and pick out the encapsulated Ethernet type.
1362 * XXX - should we generate code to check for SNAP?
1364 * We also handle variable-length radio headers here.
1365 * The Prism header is in theory variable-length, but in
1366 * practice it's always 144 bytes long. However, some
1367 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1368 * sometimes or always supply an AVS header, so we
1369 * have to check whether the radio header is a Prism
1370 * header or an AVS header, so, in practice, it's
1373 cstate
->off_linktype
.constant_part
= 24;
1374 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1375 cstate
->off_linkpl
.is_variable
= 1;
1376 cstate
->off_nl
= 8; /* 802.2+SNAP */
1377 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1382 * At the moment we treat PPI the same way that we treat
1383 * normal Radiotap encoded packets. The difference is in
1384 * the function that generates the code at the beginning
1385 * to compute the header length. Since this code generator
1386 * of PPI supports bare 802.11 encapsulation only (i.e.
1387 * the encapsulated DLT should be DLT_IEEE802_11) we
1388 * generate code to check for this too.
1390 cstate
->off_linktype
.constant_part
= 24;
1391 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1392 cstate
->off_linkpl
.is_variable
= 1;
1393 cstate
->off_linkhdr
.is_variable
= 1;
1394 cstate
->off_nl
= 8; /* 802.2+SNAP */
1395 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1398 case DLT_ATM_RFC1483
:
1399 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1401 * assume routed, non-ISO PDUs
1402 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1404 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1405 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1406 * latter would presumably be treated the way PPPoE
1407 * should be, so you can do "pppoe and udp port 2049"
1408 * or "pppoa and tcp port 80" and have it check for
1409 * PPPo{A,E} and a PPP protocol of IP and....
1411 cstate
->off_linktype
.constant_part
= 0;
1412 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1413 cstate
->off_nl
= 8; /* 802.2+SNAP */
1414 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1419 * Full Frontal ATM; you get AALn PDUs with an ATM
1423 cstate
->off_vpi
= SUNATM_VPI_POS
;
1424 cstate
->off_vci
= SUNATM_VCI_POS
;
1425 cstate
->off_proto
= PROTO_POS
;
1426 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1427 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1428 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1429 cstate
->off_nl
= 8; /* 802.2+SNAP */
1430 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1436 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1437 cstate
->off_linkpl
.constant_part
= 0;
1439 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1442 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1443 cstate
->off_linktype
.constant_part
= 14;
1444 cstate
->off_linkpl
.constant_part
= 16;
1446 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1449 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1450 cstate
->off_linktype
.constant_part
= 0;
1451 cstate
->off_linkpl
.constant_part
= 20;
1453 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1458 * LocalTalk does have a 1-byte type field in the LLAP header,
1459 * but really it just indicates whether there is a "short" or
1460 * "long" DDP packet following.
1462 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1463 cstate
->off_linkpl
.constant_part
= 0;
1465 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1468 case DLT_IP_OVER_FC
:
1470 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1471 * link-level type field. We set "off_linktype" to the
1472 * offset of the LLC header.
1474 * To check for Ethernet types, we assume that SSAP = SNAP
1475 * is being used and pick out the encapsulated Ethernet type.
1476 * XXX - should we generate code to check for SNAP? RFC
1477 * 2625 says SNAP should be used.
1479 cstate
->off_linktype
.constant_part
= 16;
1480 cstate
->off_linkpl
.constant_part
= 16;
1481 cstate
->off_nl
= 8; /* 802.2+SNAP */
1482 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1487 * XXX - we should set this to handle SNAP-encapsulated
1488 * frames (NLPID of 0x80).
1490 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1491 cstate
->off_linkpl
.constant_part
= 0;
1493 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1497 * the only BPF-interesting FRF.16 frames are non-control frames;
1498 * Frame Relay has a variable length link-layer
1499 * so lets start with offset 4 for now and increments later on (FIXME);
1502 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1503 cstate
->off_linkpl
.constant_part
= 0;
1505 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1508 case DLT_APPLE_IP_OVER_IEEE1394
:
1509 cstate
->off_linktype
.constant_part
= 16;
1510 cstate
->off_linkpl
.constant_part
= 18;
1512 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1515 case DLT_SYMANTEC_FIREWALL
:
1516 cstate
->off_linktype
.constant_part
= 6;
1517 cstate
->off_linkpl
.constant_part
= 44;
1518 cstate
->off_nl
= 0; /* Ethernet II */
1519 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1523 cstate
->off_linktype
.constant_part
= 0;
1524 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1525 cstate
->off_linkpl
.is_variable
= 1;
1527 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1530 case DLT_JUNIPER_MFR
:
1531 case DLT_JUNIPER_MLFR
:
1532 case DLT_JUNIPER_MLPPP
:
1533 case DLT_JUNIPER_PPP
:
1534 case DLT_JUNIPER_CHDLC
:
1535 case DLT_JUNIPER_FRELAY
:
1536 cstate
->off_linktype
.constant_part
= 4;
1537 cstate
->off_linkpl
.constant_part
= 4;
1539 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1542 case DLT_JUNIPER_ATM1
:
1543 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1544 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1546 cstate
->off_nl_nosnap
= 10;
1549 case DLT_JUNIPER_ATM2
:
1550 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1551 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1553 cstate
->off_nl_nosnap
= 10;
1556 /* frames captured on a Juniper PPPoE service PIC
1557 * contain raw ethernet frames */
1558 case DLT_JUNIPER_PPPOE
:
1559 case DLT_JUNIPER_ETHER
:
1560 cstate
->off_linkpl
.constant_part
= 14;
1561 cstate
->off_linktype
.constant_part
= 16;
1562 cstate
->off_nl
= 18; /* Ethernet II */
1563 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1566 case DLT_JUNIPER_PPPOE_ATM
:
1567 cstate
->off_linktype
.constant_part
= 4;
1568 cstate
->off_linkpl
.constant_part
= 6;
1570 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1573 case DLT_JUNIPER_GGSN
:
1574 cstate
->off_linktype
.constant_part
= 6;
1575 cstate
->off_linkpl
.constant_part
= 12;
1577 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1580 case DLT_JUNIPER_ES
:
1581 cstate
->off_linktype
.constant_part
= 6;
1582 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1583 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1584 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1587 case DLT_JUNIPER_MONITOR
:
1588 cstate
->off_linktype
.constant_part
= 12;
1589 cstate
->off_linkpl
.constant_part
= 12;
1590 cstate
->off_nl
= 0; /* raw IP/IP6 header */
1591 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1594 case DLT_BACNET_MS_TP
:
1595 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1596 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1597 cstate
->off_nl
= OFFSET_NOT_SET
;
1598 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1601 case DLT_JUNIPER_SERVICES
:
1602 cstate
->off_linktype
.constant_part
= 12;
1603 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1604 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1605 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1608 case DLT_JUNIPER_VP
:
1609 cstate
->off_linktype
.constant_part
= 18;
1610 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1611 cstate
->off_nl
= OFFSET_NOT_SET
;
1612 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1615 case DLT_JUNIPER_ST
:
1616 cstate
->off_linktype
.constant_part
= 18;
1617 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1618 cstate
->off_nl
= OFFSET_NOT_SET
;
1619 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1622 case DLT_JUNIPER_ISM
:
1623 cstate
->off_linktype
.constant_part
= 8;
1624 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1625 cstate
->off_nl
= OFFSET_NOT_SET
;
1626 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1629 case DLT_JUNIPER_VS
:
1630 case DLT_JUNIPER_SRX_E2E
:
1631 case DLT_JUNIPER_FIBRECHANNEL
:
1632 case DLT_JUNIPER_ATM_CEMIC
:
1633 cstate
->off_linktype
.constant_part
= 8;
1634 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1635 cstate
->off_nl
= OFFSET_NOT_SET
;
1636 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1641 cstate
->off_li_hsl
= 4;
1642 cstate
->off_sio
= 3;
1643 cstate
->off_opc
= 4;
1644 cstate
->off_dpc
= 4;
1645 cstate
->off_sls
= 7;
1646 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1647 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1648 cstate
->off_nl
= OFFSET_NOT_SET
;
1649 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1652 case DLT_MTP2_WITH_PHDR
:
1654 cstate
->off_li_hsl
= 8;
1655 cstate
->off_sio
= 7;
1656 cstate
->off_opc
= 8;
1657 cstate
->off_dpc
= 8;
1658 cstate
->off_sls
= 11;
1659 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1660 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1661 cstate
->off_nl
= OFFSET_NOT_SET
;
1662 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1666 cstate
->off_li
= 22;
1667 cstate
->off_li_hsl
= 24;
1668 cstate
->off_sio
= 23;
1669 cstate
->off_opc
= 24;
1670 cstate
->off_dpc
= 24;
1671 cstate
->off_sls
= 27;
1672 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1673 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1674 cstate
->off_nl
= OFFSET_NOT_SET
;
1675 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1679 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1680 cstate
->off_linkpl
.constant_part
= 4;
1682 cstate
->off_nl_nosnap
= 0;
1687 * Currently, only raw "link[N:M]" filtering is supported.
1689 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
1690 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1691 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
1692 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1696 cstate
->off_linktype
.constant_part
= 1;
1697 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
1699 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1702 case DLT_NETANALYZER
:
1703 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
1704 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1705 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
1706 cstate
->off_nl
= 0; /* Ethernet II */
1707 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1710 case DLT_NETANALYZER_TRANSPARENT
:
1711 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1712 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1713 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1714 cstate
->off_nl
= 0; /* Ethernet II */
1715 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1720 * For values in the range in which we've assigned new
1721 * DLT_ values, only raw "link[N:M]" filtering is supported.
1723 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
1724 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
1725 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1726 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1727 cstate
->off_nl
= OFFSET_NOT_SET
;
1728 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1730 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
1731 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
1737 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
1742 * Load a value relative to the specified absolute offset.
1744 static struct slist
*
1745 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
1746 u_int offset
, u_int size
)
1748 struct slist
*s
, *s2
;
1750 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
1753 * If "s" is non-null, it has code to arrange that the X register
1754 * contains the variable part of the absolute offset, so we
1755 * generate a load relative to that, with an offset of
1756 * abs_offset->constant_part + offset.
1758 * Otherwise, we can do an absolute load with an offset of
1759 * abs_offset->constant_part + offset.
1763 * "s" points to a list of statements that puts the
1764 * variable part of the absolute offset into the X register.
1765 * Do an indirect load, to use the X register as an offset.
1767 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1768 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
1772 * There is no variable part of the absolute offset, so
1773 * just do an absolute load.
1775 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1776 s
->s
.k
= abs_offset
->constant_part
+ offset
;
1782 * Load a value relative to the beginning of the specified header.
1784 static struct slist
*
1785 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1788 struct slist
*s
, *s2
;
1791 * Squelch warnings from compilers that *don't* assume that
1792 * offrel always has a valid enum value and therefore don't
1793 * assume that we'll always go through one of the case arms.
1795 * If we have a default case, compilers that *do* assume that
1796 * will then complain about the default case code being
1799 * Damned if you do, damned if you don't.
1806 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1811 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
1814 case OR_PREVLINKHDR
:
1815 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
1819 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
1822 case OR_PREVMPLSHDR
:
1823 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
1827 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
1830 case OR_LINKPL_NOSNAP
:
1831 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
1835 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
1840 * Load the X register with the length of the IPv4 header
1841 * (plus the offset of the link-layer header, if it's
1842 * preceded by a variable-length header such as a radio
1843 * header), in bytes.
1845 s
= gen_loadx_iphdrlen(cstate
);
1848 * Load the item at {offset of the link-layer payload} +
1849 * {offset, relative to the start of the link-layer
1850 * payload, of the IPv4 header} + {length of the IPv4 header} +
1851 * {specified offset}.
1853 * If the offset of the link-layer payload is variable,
1854 * the variable part of that offset is included in the
1855 * value in the X register, and we include the constant
1856 * part in the offset of the load.
1858 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1859 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
1864 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
1871 * Generate code to load into the X register the sum of the length of
1872 * the IPv4 header and the variable part of the offset of the link-layer
1875 static struct slist
*
1876 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
1878 struct slist
*s
, *s2
;
1880 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
1883 * The offset of the link-layer payload has a variable
1884 * part. "s" points to a list of statements that put
1885 * the variable part of that offset into the X register.
1887 * The 4*([k]&0xf) addressing mode can't be used, as we
1888 * don't have a constant offset, so we have to load the
1889 * value in question into the A register and add to it
1890 * the value from the X register.
1892 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
1893 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1895 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1898 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
1903 * The A register now contains the length of the IP header.
1904 * We need to add to it the variable part of the offset of
1905 * the link-layer payload, which is still in the X
1906 * register, and move the result into the X register.
1908 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
1909 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
1912 * The offset of the link-layer payload is a constant,
1913 * so no code was generated to load the (nonexistent)
1914 * variable part of that offset.
1916 * This means we can use the 4*([k]&0xf) addressing
1917 * mode. Load the length of the IPv4 header, which
1918 * is at an offset of cstate->off_nl from the beginning of
1919 * the link-layer payload, and thus at an offset of
1920 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1921 * of the raw packet data, using that addressing mode.
1923 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
1924 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1930 static struct block
*
1931 gen_uncond(compiler_state_t
*cstate
, int rsense
)
1936 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
1938 b
= new_block(cstate
, JMP(BPF_JEQ
));
1944 static inline struct block
*
1945 gen_true(compiler_state_t
*cstate
)
1947 return gen_uncond(cstate
, 1);
1950 static inline struct block
*
1951 gen_false(compiler_state_t
*cstate
)
1953 return gen_uncond(cstate
, 0);
1957 * Byte-swap a 32-bit number.
1958 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1959 * big-endian platforms.)
1961 #define SWAPLONG(y) \
1962 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1965 * Generate code to match a particular packet type.
1967 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1968 * value, if <= ETHERMTU. We use that to determine whether to
1969 * match the type/length field or to check the type/length field for
1970 * a value <= ETHERMTU to see whether it's a type field and then do
1971 * the appropriate test.
1973 static struct block
*
1974 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
1976 struct block
*b0
, *b1
;
1982 case LLCSAP_NETBEUI
:
1984 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1985 * so we check the DSAP and SSAP.
1987 * LLCSAP_IP checks for IP-over-802.2, rather
1988 * than IP-over-Ethernet or IP-over-SNAP.
1990 * XXX - should we check both the DSAP and the
1991 * SSAP, like this, or should we check just the
1992 * DSAP, as we do for other types <= ETHERMTU
1993 * (i.e., other SAP values)?
1995 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1997 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2005 * Ethernet_II frames, which are Ethernet
2006 * frames with a frame type of ETHERTYPE_IPX;
2008 * Ethernet_802.3 frames, which are 802.3
2009 * frames (i.e., the type/length field is
2010 * a length field, <= ETHERMTU, rather than
2011 * a type field) with the first two bytes
2012 * after the Ethernet/802.3 header being
2015 * Ethernet_802.2 frames, which are 802.3
2016 * frames with an 802.2 LLC header and
2017 * with the IPX LSAP as the DSAP in the LLC
2020 * Ethernet_SNAP frames, which are 802.3
2021 * frames with an LLC header and a SNAP
2022 * header and with an OUI of 0x000000
2023 * (encapsulated Ethernet) and a protocol
2024 * ID of ETHERTYPE_IPX in the SNAP header.
2026 * XXX - should we generate the same code both
2027 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2031 * This generates code to check both for the
2032 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2034 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2035 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2039 * Now we add code to check for SNAP frames with
2040 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2042 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2046 * Now we generate code to check for 802.3
2047 * frames in general.
2049 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2053 * Now add the check for 802.3 frames before the
2054 * check for Ethernet_802.2 and Ethernet_802.3,
2055 * as those checks should only be done on 802.3
2056 * frames, not on Ethernet frames.
2061 * Now add the check for Ethernet_II frames, and
2062 * do that before checking for the other frame
2065 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2069 case ETHERTYPE_ATALK
:
2070 case ETHERTYPE_AARP
:
2072 * EtherTalk (AppleTalk protocols on Ethernet link
2073 * layer) may use 802.2 encapsulation.
2077 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2078 * we check for an Ethernet type field less than
2079 * 1500, which means it's an 802.3 length field.
2081 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2085 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2086 * SNAP packets with an organization code of
2087 * 0x080007 (Apple, for Appletalk) and a protocol
2088 * type of ETHERTYPE_ATALK (Appletalk).
2090 * 802.2-encapsulated ETHERTYPE_AARP packets are
2091 * SNAP packets with an organization code of
2092 * 0x000000 (encapsulated Ethernet) and a protocol
2093 * type of ETHERTYPE_AARP (Appletalk ARP).
2095 if (ll_proto
== ETHERTYPE_ATALK
)
2096 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2097 else /* ll_proto == ETHERTYPE_AARP */
2098 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2102 * Check for Ethernet encapsulation (Ethertalk
2103 * phase 1?); we just check for the Ethernet
2106 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2112 if (ll_proto
<= ETHERMTU
) {
2114 * This is an LLC SAP value, so the frames
2115 * that match would be 802.2 frames.
2116 * Check that the frame is an 802.2 frame
2117 * (i.e., that the length/type field is
2118 * a length field, <= ETHERMTU) and
2119 * then check the DSAP.
2121 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2123 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2128 * This is an Ethernet type, so compare
2129 * the length/type field with it (if
2130 * the frame is an 802.2 frame, the length
2131 * field will be <= ETHERMTU, and, as
2132 * "ll_proto" is > ETHERMTU, this test
2133 * will fail and the frame won't match,
2134 * which is what we want).
2136 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2141 static struct block
*
2142 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2145 * For DLT_NULL, the link-layer header is a 32-bit word
2146 * containing an AF_ value in *host* byte order, and for
2147 * DLT_ENC, the link-layer header begins with a 32-bit
2148 * word containing an AF_ value in host byte order.
2150 * In addition, if we're reading a saved capture file,
2151 * the host byte order in the capture may not be the
2152 * same as the host byte order on this machine.
2154 * For DLT_LOOP, the link-layer header is a 32-bit
2155 * word containing an AF_ value in *network* byte order.
2157 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2159 * The AF_ value is in host byte order, but the BPF
2160 * interpreter will convert it to network byte order.
2162 * If this is a save file, and it's from a machine
2163 * with the opposite byte order to ours, we byte-swap
2166 * Then we run it through "htonl()", and generate
2167 * code to compare against the result.
2169 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2170 ll_proto
= SWAPLONG(ll_proto
);
2171 ll_proto
= htonl(ll_proto
);
2173 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2177 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2178 * or IPv6 then we have an error.
2180 static struct block
*
2181 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2186 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2189 case ETHERTYPE_IPV6
:
2190 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2197 return gen_false(cstate
);
2201 * Generate code to match a particular packet type.
2203 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2204 * value, if <= ETHERMTU. We use that to determine whether to
2205 * match the type field or to check the type field for the special
2206 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2208 static struct block
*
2209 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2211 struct block
*b0
, *b1
;
2217 case LLCSAP_NETBEUI
:
2219 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2220 * so we check the DSAP and SSAP.
2222 * LLCSAP_IP checks for IP-over-802.2, rather
2223 * than IP-over-Ethernet or IP-over-SNAP.
2225 * XXX - should we check both the DSAP and the
2226 * SSAP, like this, or should we check just the
2227 * DSAP, as we do for other types <= ETHERMTU
2228 * (i.e., other SAP values)?
2230 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2231 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2237 * Ethernet_II frames, which are Ethernet
2238 * frames with a frame type of ETHERTYPE_IPX;
2240 * Ethernet_802.3 frames, which have a frame
2241 * type of LINUX_SLL_P_802_3;
2243 * Ethernet_802.2 frames, which are 802.3
2244 * frames with an 802.2 LLC header (i.e, have
2245 * a frame type of LINUX_SLL_P_802_2) and
2246 * with the IPX LSAP as the DSAP in the LLC
2249 * Ethernet_SNAP frames, which are 802.3
2250 * frames with an LLC header and a SNAP
2251 * header and with an OUI of 0x000000
2252 * (encapsulated Ethernet) and a protocol
2253 * ID of ETHERTYPE_IPX in the SNAP header.
2255 * First, do the checks on LINUX_SLL_P_802_2
2256 * frames; generate the check for either
2257 * Ethernet_802.2 or Ethernet_SNAP frames, and
2258 * then put a check for LINUX_SLL_P_802_2 frames
2261 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2262 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2264 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2268 * Now check for 802.3 frames and OR that with
2269 * the previous test.
2271 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2275 * Now add the check for Ethernet_II frames, and
2276 * do that before checking for the other frame
2279 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2283 case ETHERTYPE_ATALK
:
2284 case ETHERTYPE_AARP
:
2286 * EtherTalk (AppleTalk protocols on Ethernet link
2287 * layer) may use 802.2 encapsulation.
2291 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2292 * we check for the 802.2 protocol type in the
2293 * "Ethernet type" field.
2295 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2298 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2299 * SNAP packets with an organization code of
2300 * 0x080007 (Apple, for Appletalk) and a protocol
2301 * type of ETHERTYPE_ATALK (Appletalk).
2303 * 802.2-encapsulated ETHERTYPE_AARP packets are
2304 * SNAP packets with an organization code of
2305 * 0x000000 (encapsulated Ethernet) and a protocol
2306 * type of ETHERTYPE_AARP (Appletalk ARP).
2308 if (ll_proto
== ETHERTYPE_ATALK
)
2309 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2310 else /* ll_proto == ETHERTYPE_AARP */
2311 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2315 * Check for Ethernet encapsulation (Ethertalk
2316 * phase 1?); we just check for the Ethernet
2319 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2325 if (ll_proto
<= ETHERMTU
) {
2327 * This is an LLC SAP value, so the frames
2328 * that match would be 802.2 frames.
2329 * Check for the 802.2 protocol type
2330 * in the "Ethernet type" field, and
2331 * then check the DSAP.
2333 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2334 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2340 * This is an Ethernet type, so compare
2341 * the length/type field with it (if
2342 * the frame is an 802.2 frame, the length
2343 * field will be <= ETHERMTU, and, as
2344 * "ll_proto" is > ETHERMTU, this test
2345 * will fail and the frame won't match,
2346 * which is what we want).
2348 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2354 * Load a value relative to the beginning of the link-layer header after the
2357 static struct slist
*
2358 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2360 struct slist
*s1
, *s2
;
2363 * Generate code to load the length of the pflog header into
2364 * the register assigned to hold that length, if one has been
2365 * assigned. (If one hasn't been assigned, no code we've
2366 * generated uses that prefix, so we don't need to generate any
2369 if (cstate
->off_linkpl
.reg
!= -1) {
2371 * The length is in the first byte of the header.
2373 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2377 * Round it up to a multiple of 4.
2378 * Add 3, and clear the lower 2 bits.
2380 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2383 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2384 s2
->s
.k
= 0xfffffffc;
2388 * Now allocate a register to hold that value and store
2391 s2
= new_stmt(cstate
, BPF_ST
);
2392 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2396 * Now move it into the X register.
2398 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2406 static struct slist
*
2407 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2409 struct slist
*s1
, *s2
;
2410 struct slist
*sjeq_avs_cookie
;
2411 struct slist
*sjcommon
;
2414 * This code is not compatible with the optimizer, as
2415 * we are generating jmp instructions within a normal
2416 * slist of instructions
2418 cstate
->no_optimize
= 1;
2421 * Generate code to load the length of the radio header into
2422 * the register assigned to hold that length, if one has been
2423 * assigned. (If one hasn't been assigned, no code we've
2424 * generated uses that prefix, so we don't need to generate any
2427 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2428 * or always use the AVS header rather than the Prism header.
2429 * We load a 4-byte big-endian value at the beginning of the
2430 * raw packet data, and see whether, when masked with 0xFFFFF000,
2431 * it's equal to 0x80211000. If so, that indicates that it's
2432 * an AVS header (the masked-out bits are the version number).
2433 * Otherwise, it's a Prism header.
2435 * XXX - the Prism header is also, in theory, variable-length,
2436 * but no known software generates headers that aren't 144
2439 if (cstate
->off_linkhdr
.reg
!= -1) {
2443 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2447 * AND it with 0xFFFFF000.
2449 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2450 s2
->s
.k
= 0xFFFFF000;
2454 * Compare with 0x80211000.
2456 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2457 sjeq_avs_cookie
->s
.k
= 0x80211000;
2458 sappend(s1
, sjeq_avs_cookie
);
2463 * The 4 bytes at an offset of 4 from the beginning of
2464 * the AVS header are the length of the AVS header.
2465 * That field is big-endian.
2467 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2470 sjeq_avs_cookie
->s
.jt
= s2
;
2473 * Now jump to the code to allocate a register
2474 * into which to save the header length and
2475 * store the length there. (The "jump always"
2476 * instruction needs to have the k field set;
2477 * it's added to the PC, so, as we're jumping
2478 * over a single instruction, it should be 1.)
2480 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2482 sappend(s1
, sjcommon
);
2485 * Now for the code that handles the Prism header.
2486 * Just load the length of the Prism header (144)
2487 * into the A register. Have the test for an AVS
2488 * header branch here if we don't have an AVS header.
2490 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2493 sjeq_avs_cookie
->s
.jf
= s2
;
2496 * Now allocate a register to hold that value and store
2497 * it. The code for the AVS header will jump here after
2498 * loading the length of the AVS header.
2500 s2
= new_stmt(cstate
, BPF_ST
);
2501 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2503 sjcommon
->s
.jf
= s2
;
2506 * Now move it into the X register.
2508 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2516 static struct slist
*
2517 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2519 struct slist
*s1
, *s2
;
2522 * Generate code to load the length of the AVS header into
2523 * the register assigned to hold that length, if one has been
2524 * assigned. (If one hasn't been assigned, no code we've
2525 * generated uses that prefix, so we don't need to generate any
2528 if (cstate
->off_linkhdr
.reg
!= -1) {
2530 * The 4 bytes at an offset of 4 from the beginning of
2531 * the AVS header are the length of the AVS header.
2532 * That field is big-endian.
2534 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2538 * Now allocate a register to hold that value and store
2541 s2
= new_stmt(cstate
, BPF_ST
);
2542 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2546 * Now move it into the X register.
2548 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2556 static struct slist
*
2557 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2559 struct slist
*s1
, *s2
;
2562 * Generate code to load the length of the radiotap header into
2563 * the register assigned to hold that length, if one has been
2564 * assigned. (If one hasn't been assigned, no code we've
2565 * generated uses that prefix, so we don't need to generate any
2568 if (cstate
->off_linkhdr
.reg
!= -1) {
2570 * The 2 bytes at offsets of 2 and 3 from the beginning
2571 * of the radiotap header are the length of the radiotap
2572 * header; unfortunately, it's little-endian, so we have
2573 * to load it a byte at a time and construct the value.
2577 * Load the high-order byte, at an offset of 3, shift it
2578 * left a byte, and put the result in the X register.
2580 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2582 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2585 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2589 * Load the next byte, at an offset of 2, and OR the
2590 * value from the X register into it.
2592 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2595 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2599 * Now allocate a register to hold that value and store
2602 s2
= new_stmt(cstate
, BPF_ST
);
2603 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2607 * Now move it into the X register.
2609 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2618 * At the moment we treat PPI as normal Radiotap encoded
2619 * packets. The difference is in the function that generates
2620 * the code at the beginning to compute the header length.
2621 * Since this code generator of PPI supports bare 802.11
2622 * encapsulation only (i.e. the encapsulated DLT should be
2623 * DLT_IEEE802_11) we generate code to check for this too;
2624 * that's done in finish_parse().
2626 static struct slist
*
2627 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
2629 struct slist
*s1
, *s2
;
2632 * Generate code to load the length of the radiotap header
2633 * into the register assigned to hold that length, if one has
2636 if (cstate
->off_linkhdr
.reg
!= -1) {
2638 * The 2 bytes at offsets of 2 and 3 from the beginning
2639 * of the radiotap header are the length of the radiotap
2640 * header; unfortunately, it's little-endian, so we have
2641 * to load it a byte at a time and construct the value.
2645 * Load the high-order byte, at an offset of 3, shift it
2646 * left a byte, and put the result in the X register.
2648 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2650 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2653 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2657 * Load the next byte, at an offset of 2, and OR the
2658 * value from the X register into it.
2660 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2663 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2667 * Now allocate a register to hold that value and store
2670 s2
= new_stmt(cstate
, BPF_ST
);
2671 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2675 * Now move it into the X register.
2677 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2686 * Load a value relative to the beginning of the link-layer header after the 802.11
2687 * header, i.e. LLC_SNAP.
2688 * The link-layer header doesn't necessarily begin at the beginning
2689 * of the packet data; there might be a variable-length prefix containing
2690 * radio information.
2692 static struct slist
*
2693 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
2696 struct slist
*sjset_data_frame_1
;
2697 struct slist
*sjset_data_frame_2
;
2698 struct slist
*sjset_qos
;
2699 struct slist
*sjset_radiotap_flags_present
;
2700 struct slist
*sjset_radiotap_ext_present
;
2701 struct slist
*sjset_radiotap_tsft_present
;
2702 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
2703 struct slist
*s_roundup
;
2705 if (cstate
->off_linkpl
.reg
== -1) {
2707 * No register has been assigned to the offset of
2708 * the link-layer payload, which means nobody needs
2709 * it; don't bother computing it - just return
2710 * what we already have.
2716 * This code is not compatible with the optimizer, as
2717 * we are generating jmp instructions within a normal
2718 * slist of instructions
2720 cstate
->no_optimize
= 1;
2723 * If "s" is non-null, it has code to arrange that the X register
2724 * contains the length of the prefix preceding the link-layer
2727 * Otherwise, the length of the prefix preceding the link-layer
2728 * header is "off_outermostlinkhdr.constant_part".
2732 * There is no variable-length header preceding the
2733 * link-layer header.
2735 * Load the length of the fixed-length prefix preceding
2736 * the link-layer header (if any) into the X register,
2737 * and store it in the cstate->off_linkpl.reg register.
2738 * That length is off_outermostlinkhdr.constant_part.
2740 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
2741 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
2745 * The X register contains the offset of the beginning of the
2746 * link-layer header; add 24, which is the minimum length
2747 * of the MAC header for a data frame, to that, and store it
2748 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2749 * which is at the offset in the X register, with an indexed load.
2751 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
2753 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2756 s2
= new_stmt(cstate
, BPF_ST
);
2757 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2760 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2765 * Check the Frame Control field to see if this is a data frame;
2766 * a data frame has the 0x08 bit (b3) in that field set and the
2767 * 0x04 bit (b2) clear.
2769 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
2770 sjset_data_frame_1
->s
.k
= 0x08;
2771 sappend(s
, sjset_data_frame_1
);
2774 * If b3 is set, test b2, otherwise go to the first statement of
2775 * the rest of the program.
2777 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
2778 sjset_data_frame_2
->s
.k
= 0x04;
2779 sappend(s
, sjset_data_frame_2
);
2780 sjset_data_frame_1
->s
.jf
= snext
;
2783 * If b2 is not set, this is a data frame; test the QoS bit.
2784 * Otherwise, go to the first statement of the rest of the
2787 sjset_data_frame_2
->s
.jt
= snext
;
2788 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
2789 sjset_qos
->s
.k
= 0x80; /* QoS bit */
2790 sappend(s
, sjset_qos
);
2793 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2795 * Otherwise, go to the first statement of the rest of the
2798 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2799 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2801 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2804 s2
= new_stmt(cstate
, BPF_ST
);
2805 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2809 * If we have a radiotap header, look at it to see whether
2810 * there's Atheros padding between the MAC-layer header
2813 * Note: all of the fields in the radiotap header are
2814 * little-endian, so we byte-swap all of the values
2815 * we test against, as they will be loaded as big-endian
2818 * XXX - in the general case, we would have to scan through
2819 * *all* the presence bits, if there's more than one word of
2820 * presence bits. That would require a loop, meaning that
2821 * we wouldn't be able to run the filter in the kernel.
2823 * We assume here that the Atheros adapters that insert the
2824 * annoying padding don't have multiple antennae and therefore
2825 * do not generate radiotap headers with multiple presence words.
2827 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
2829 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2830 * in the first presence flag word?
2832 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
2836 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2837 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
2838 sappend(s
, sjset_radiotap_flags_present
);
2841 * If not, skip all of this.
2843 sjset_radiotap_flags_present
->s
.jf
= snext
;
2846 * Otherwise, is the "extension" bit set in that word?
2848 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2849 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
2850 sappend(s
, sjset_radiotap_ext_present
);
2851 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
2854 * If so, skip all of this.
2856 sjset_radiotap_ext_present
->s
.jt
= snext
;
2859 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2861 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2862 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
2863 sappend(s
, sjset_radiotap_tsft_present
);
2864 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
2867 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2868 * at an offset of 16 from the beginning of the raw packet
2869 * data (8 bytes for the radiotap header and 8 bytes for
2872 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2875 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2878 sjset_radiotap_tsft_present
->s
.jt
= s2
;
2880 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2881 sjset_tsft_datapad
->s
.k
= 0x20;
2882 sappend(s
, sjset_tsft_datapad
);
2885 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2886 * at an offset of 8 from the beginning of the raw packet
2887 * data (8 bytes for the radiotap header).
2889 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2892 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2895 sjset_radiotap_tsft_present
->s
.jf
= s2
;
2897 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2898 sjset_notsft_datapad
->s
.k
= 0x20;
2899 sappend(s
, sjset_notsft_datapad
);
2902 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2903 * set, round the length of the 802.11 header to
2904 * a multiple of 4. Do that by adding 3 and then
2905 * dividing by and multiplying by 4, which we do by
2908 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2909 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
2910 sappend(s
, s_roundup
);
2911 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2914 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
2915 s2
->s
.k
= (bpf_u_int32
)~3;
2917 s2
= new_stmt(cstate
, BPF_ST
);
2918 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2921 sjset_tsft_datapad
->s
.jt
= s_roundup
;
2922 sjset_tsft_datapad
->s
.jf
= snext
;
2923 sjset_notsft_datapad
->s
.jt
= s_roundup
;
2924 sjset_notsft_datapad
->s
.jf
= snext
;
2926 sjset_qos
->s
.jf
= snext
;
2932 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
2936 /* There is an implicit dependency between the link
2937 * payload and link header since the payload computation
2938 * includes the variable part of the header. Therefore,
2939 * if nobody else has allocated a register for the link
2940 * header and we need it, do it now. */
2941 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
2942 cstate
->off_linkhdr
.reg
== -1)
2943 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
2946 * For link-layer types that have a variable-length header
2947 * preceding the link-layer header, generate code to load
2948 * the offset of the link-layer header into the register
2949 * assigned to that offset, if any.
2951 * XXX - this, and the next switch statement, won't handle
2952 * encapsulation of 802.11 or 802.11+radio information in
2953 * some other protocol stack. That's significantly more
2956 switch (cstate
->outermostlinktype
) {
2958 case DLT_PRISM_HEADER
:
2959 s
= gen_load_prism_llprefixlen(cstate
);
2962 case DLT_IEEE802_11_RADIO_AVS
:
2963 s
= gen_load_avs_llprefixlen(cstate
);
2966 case DLT_IEEE802_11_RADIO
:
2967 s
= gen_load_radiotap_llprefixlen(cstate
);
2971 s
= gen_load_ppi_llprefixlen(cstate
);
2980 * For link-layer types that have a variable-length link-layer
2981 * header, generate code to load the offset of the link-layer
2982 * payload into the register assigned to that offset, if any.
2984 switch (cstate
->outermostlinktype
) {
2986 case DLT_IEEE802_11
:
2987 case DLT_PRISM_HEADER
:
2988 case DLT_IEEE802_11_RADIO_AVS
:
2989 case DLT_IEEE802_11_RADIO
:
2991 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
2995 s
= gen_load_pflog_llprefixlen(cstate
);
3000 * If there is no initialization yet and we need variable
3001 * length offsets for VLAN, initialize them to zero
3003 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3006 if (cstate
->off_linkpl
.reg
== -1)
3007 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3008 if (cstate
->off_linktype
.reg
== -1)
3009 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3011 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3013 s2
= new_stmt(cstate
, BPF_ST
);
3014 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3016 s2
= new_stmt(cstate
, BPF_ST
);
3017 s2
->s
.k
= cstate
->off_linktype
.reg
;
3022 * If we have any offset-loading code, append all the
3023 * existing statements in the block to those statements,
3024 * and make the resulting list the list of statements
3028 sappend(s
, b
->stmts
);
3033 static struct block
*
3034 gen_ppi_dlt_check(compiler_state_t
*cstate
)
3036 struct slist
*s_load_dlt
;
3039 if (cstate
->linktype
== DLT_PPI
)
3041 /* Create the statements that check for the DLT
3043 s_load_dlt
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
3044 s_load_dlt
->s
.k
= 4;
3046 b
= new_block(cstate
, JMP(BPF_JEQ
));
3048 b
->stmts
= s_load_dlt
;
3049 b
->s
.k
= SWAPLONG(DLT_IEEE802_11
);
3060 * Take an absolute offset, and:
3062 * if it has no variable part, return NULL;
3064 * if it has a variable part, generate code to load the register
3065 * containing that variable part into the X register, returning
3066 * a pointer to that code - if no register for that offset has
3067 * been allocated, allocate it first.
3069 * (The code to set that register will be generated later, but will
3070 * be placed earlier in the code sequence.)
3072 static struct slist
*
3073 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3077 if (off
->is_variable
) {
3078 if (off
->reg
== -1) {
3080 * We haven't yet assigned a register for the
3081 * variable part of the offset of the link-layer
3082 * header; allocate one.
3084 off
->reg
= alloc_reg(cstate
);
3088 * Load the register containing the variable part of the
3089 * offset of the link-layer header into the X register.
3091 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3096 * That offset isn't variable, there's no variable part,
3097 * so we don't need to generate any code.
3104 * Map an Ethernet type to the equivalent PPP type.
3107 ethertype_to_ppptype(bpf_u_int32 ll_proto
)
3115 case ETHERTYPE_IPV6
:
3116 ll_proto
= PPP_IPV6
;
3120 ll_proto
= PPP_DECNET
;
3123 case ETHERTYPE_ATALK
:
3124 ll_proto
= PPP_APPLE
;
3137 * I'm assuming the "Bridging PDU"s that go
3138 * over PPP are Spanning Tree Protocol
3141 ll_proto
= PPP_BRPDU
;
3152 * Generate any tests that, for encapsulation of a link-layer packet
3153 * inside another protocol stack, need to be done to check for those
3154 * link-layer packets (and that haven't already been done by a check
3155 * for that encapsulation).
3157 static struct block
*
3158 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3162 if (cstate
->is_geneve
)
3163 return gen_geneve_ll_check(cstate
);
3165 switch (cstate
->prevlinktype
) {
3169 * This is LANE-encapsulated Ethernet; check that the LANE
3170 * packet doesn't begin with an LE Control marker, i.e.
3171 * that it's data, not a control message.
3173 * (We've already generated a test for LANE.)
3175 b0
= gen_cmp(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3181 * No such tests are necessary.
3189 * The three different values we should check for when checking for an
3190 * IPv6 packet with DLT_NULL.
3192 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3193 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3194 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3197 * Generate code to match a particular packet type by matching the
3198 * link-layer type field or fields in the 802.2 LLC header.
3200 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3201 * value, if <= ETHERMTU.
3203 static struct block
*
3204 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3206 struct block
*b0
, *b1
, *b2
;
3207 const char *description
;
3209 /* are we checking MPLS-encapsulated packets? */
3210 if (cstate
->label_stack_depth
> 0)
3211 return gen_mpls_linktype(cstate
, ll_proto
);
3213 switch (cstate
->linktype
) {
3216 case DLT_NETANALYZER
:
3217 case DLT_NETANALYZER_TRANSPARENT
:
3218 /* Geneve has an EtherType regardless of whether there is an
3220 if (!cstate
->is_geneve
)
3221 b0
= gen_prevlinkhdr_check(cstate
);
3225 b1
= gen_ether_linktype(cstate
, ll_proto
);
3236 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3240 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3244 case DLT_IEEE802_11
:
3245 case DLT_PRISM_HEADER
:
3246 case DLT_IEEE802_11_RADIO_AVS
:
3247 case DLT_IEEE802_11_RADIO
:
3250 * Check that we have a data frame.
3252 b0
= gen_check_802_11_data_frame(cstate
);
3255 * Now check for the specified link-layer type.
3257 b1
= gen_llc_linktype(cstate
, ll_proto
);
3264 * XXX - check for LLC frames.
3266 return gen_llc_linktype(cstate
, ll_proto
);
3271 * XXX - check for LLC PDUs, as per IEEE 802.5.
3273 return gen_llc_linktype(cstate
, ll_proto
);
3276 case DLT_ATM_RFC1483
:
3278 case DLT_IP_OVER_FC
:
3279 return gen_llc_linktype(cstate
, ll_proto
);
3284 * Check for an LLC-encapsulated version of this protocol;
3285 * if we were checking for LANE, linktype would no longer
3288 * Check for LLC encapsulation and then check the protocol.
3290 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3291 b1
= gen_llc_linktype(cstate
, ll_proto
);
3297 return gen_linux_sll_linktype(cstate
, ll_proto
);
3301 case DLT_SLIP_BSDOS
:
3304 * These types don't provide any type field; packets
3305 * are always IPv4 or IPv6.
3307 * XXX - for IPv4, check for a version number of 4, and,
3308 * for IPv6, check for a version number of 6?
3313 /* Check for a version number of 4. */
3314 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3316 case ETHERTYPE_IPV6
:
3317 /* Check for a version number of 6. */
3318 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3321 return gen_false(cstate
); /* always false */
3327 * Raw IPv4, so no type field.
3329 if (ll_proto
== ETHERTYPE_IP
)
3330 return gen_true(cstate
); /* always true */
3332 /* Checking for something other than IPv4; always false */
3333 return gen_false(cstate
);
3338 * Raw IPv6, so no type field.
3340 if (ll_proto
== ETHERTYPE_IPV6
)
3341 return gen_true(cstate
); /* always true */
3343 /* Checking for something other than IPv6; always false */
3344 return gen_false(cstate
);
3349 case DLT_PPP_SERIAL
:
3352 * We use Ethernet protocol types inside libpcap;
3353 * map them to the corresponding PPP protocol types.
3355 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3356 ethertype_to_ppptype(ll_proto
));
3361 * We use Ethernet protocol types inside libpcap;
3362 * map them to the corresponding PPP protocol types.
3368 * Also check for Van Jacobson-compressed IP.
3369 * XXX - do this for other forms of PPP?
3371 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3372 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3374 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3379 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3380 ethertype_to_ppptype(ll_proto
));
3390 return (gen_loopback_linktype(cstate
, AF_INET
));
3392 case ETHERTYPE_IPV6
:
3394 * AF_ values may, unfortunately, be platform-
3395 * dependent; AF_INET isn't, because everybody
3396 * used 4.2BSD's value, but AF_INET6 is, because
3397 * 4.2BSD didn't have a value for it (given that
3398 * IPv6 didn't exist back in the early 1980's),
3399 * and they all picked their own values.
3401 * This means that, if we're reading from a
3402 * savefile, we need to check for all the
3405 * If we're doing a live capture, we only need
3406 * to check for this platform's value; however,
3407 * Npcap uses 24, which isn't Windows's AF_INET6
3408 * value. (Given the multiple different values,
3409 * programs that read pcap files shouldn't be
3410 * checking for their platform's AF_INET6 value
3411 * anyway, they should check for all of the
3412 * possible values. and they might as well do
3413 * that even for live captures.)
3415 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3417 * Savefile - check for all three
3418 * possible IPv6 values.
3420 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3421 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3423 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3428 * Live capture, so we only need to
3429 * check for the value used on this
3434 * Npcap doesn't use Windows's AF_INET6,
3435 * as that collides with AF_IPX on
3436 * some BSDs (both have the value 23).
3437 * Instead, it uses 24.
3439 return (gen_loopback_linktype(cstate
, 24));
3442 return (gen_loopback_linktype(cstate
, AF_INET6
));
3443 #else /* AF_INET6 */
3445 * I guess this platform doesn't support
3446 * IPv6, so we just reject all packets.
3448 return gen_false(cstate
);
3449 #endif /* AF_INET6 */
3455 * Not a type on which we support filtering.
3456 * XXX - support those that have AF_ values
3457 * #defined on this platform, at least?
3459 return gen_false(cstate
);
3464 * af field is host byte order in contrast to the rest of
3467 if (ll_proto
== ETHERTYPE_IP
)
3468 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3470 else if (ll_proto
== ETHERTYPE_IPV6
)
3471 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3474 return gen_false(cstate
);
3478 case DLT_ARCNET_LINUX
:
3480 * XXX should we check for first fragment if the protocol
3486 return gen_false(cstate
);
3488 case ETHERTYPE_IPV6
:
3489 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3493 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3495 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3501 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3503 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3508 case ETHERTYPE_REVARP
:
3509 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3512 case ETHERTYPE_ATALK
:
3513 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3520 case ETHERTYPE_ATALK
:
3521 return gen_true(cstate
);
3523 return gen_false(cstate
);
3529 * XXX - assumes a 2-byte Frame Relay header with
3530 * DLCI and flags. What if the address is longer?
3536 * Check for the special NLPID for IP.
3538 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3540 case ETHERTYPE_IPV6
:
3542 * Check for the special NLPID for IPv6.
3544 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3548 * Check for several OSI protocols.
3550 * Frame Relay packets typically have an OSI
3551 * NLPID at the beginning; we check for each
3554 * What we check for is the NLPID and a frame
3555 * control field of UI, i.e. 0x03 followed
3558 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3559 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3560 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3566 return gen_false(cstate
);
3571 bpf_error(cstate
, "Multi-link Frame Relay link-layer type filtering not implemented");
3573 case DLT_JUNIPER_MFR
:
3574 case DLT_JUNIPER_MLFR
:
3575 case DLT_JUNIPER_MLPPP
:
3576 case DLT_JUNIPER_ATM1
:
3577 case DLT_JUNIPER_ATM2
:
3578 case DLT_JUNIPER_PPPOE
:
3579 case DLT_JUNIPER_PPPOE_ATM
:
3580 case DLT_JUNIPER_GGSN
:
3581 case DLT_JUNIPER_ES
:
3582 case DLT_JUNIPER_MONITOR
:
3583 case DLT_JUNIPER_SERVICES
:
3584 case DLT_JUNIPER_ETHER
:
3585 case DLT_JUNIPER_PPP
:
3586 case DLT_JUNIPER_FRELAY
:
3587 case DLT_JUNIPER_CHDLC
:
3588 case DLT_JUNIPER_VP
:
3589 case DLT_JUNIPER_ST
:
3590 case DLT_JUNIPER_ISM
:
3591 case DLT_JUNIPER_VS
:
3592 case DLT_JUNIPER_SRX_E2E
:
3593 case DLT_JUNIPER_FIBRECHANNEL
:
3594 case DLT_JUNIPER_ATM_CEMIC
:
3596 /* just lets verify the magic number for now -
3597 * on ATM we may have up to 6 different encapsulations on the wire
3598 * and need a lot of heuristics to figure out that the payload
3601 * FIXME encapsulation specific BPF_ filters
3603 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3605 case DLT_BACNET_MS_TP
:
3606 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3609 return gen_ipnet_linktype(cstate
, ll_proto
);
3611 case DLT_LINUX_IRDA
:
3612 bpf_error(cstate
, "IrDA link-layer type filtering not implemented");
3615 bpf_error(cstate
, "DOCSIS link-layer type filtering not implemented");
3618 case DLT_MTP2_WITH_PHDR
:
3619 bpf_error(cstate
, "MTP2 link-layer type filtering not implemented");
3622 bpf_error(cstate
, "ERF link-layer type filtering not implemented");
3625 bpf_error(cstate
, "PFSYNC link-layer type filtering not implemented");
3627 case DLT_LINUX_LAPD
:
3628 bpf_error(cstate
, "LAPD link-layer type filtering not implemented");
3630 case DLT_USB_FREEBSD
:
3632 case DLT_USB_LINUX_MMAPPED
:
3634 bpf_error(cstate
, "USB link-layer type filtering not implemented");
3636 case DLT_BLUETOOTH_HCI_H4
:
3637 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3638 bpf_error(cstate
, "Bluetooth link-layer type filtering not implemented");
3641 case DLT_CAN_SOCKETCAN
:
3642 bpf_error(cstate
, "CAN link-layer type filtering not implemented");
3644 case DLT_IEEE802_15_4
:
3645 case DLT_IEEE802_15_4_LINUX
:
3646 case DLT_IEEE802_15_4_NONASK_PHY
:
3647 case DLT_IEEE802_15_4_NOFCS
:
3648 case DLT_IEEE802_15_4_TAP
:
3649 bpf_error(cstate
, "IEEE 802.15.4 link-layer type filtering not implemented");
3651 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3652 bpf_error(cstate
, "IEEE 802.16 link-layer type filtering not implemented");
3655 bpf_error(cstate
, "SITA link-layer type filtering not implemented");
3658 bpf_error(cstate
, "RAIF1 link-layer type filtering not implemented");
3660 case DLT_IPMB_KONTRON
:
3661 bpf_error(cstate
, "IPMB link-layer type filtering not implemented");
3664 bpf_error(cstate
, "I2C link-layer type filtering not implemented");
3667 bpf_error(cstate
, "AX.25 link-layer type filtering not implemented");
3670 /* Using the fixed-size NFLOG header it is possible to tell only
3671 * the address family of the packet, other meaningful data is
3672 * either missing or behind TLVs.
3674 bpf_error(cstate
, "NFLOG link-layer type filtering not implemented");
3678 * Does this link-layer header type have a field
3679 * indicating the type of the next protocol? If
3680 * so, off_linktype.constant_part will be the offset of that
3681 * field in the packet; if not, it will be OFFSET_NOT_SET.
3683 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
3685 * Yes; assume it's an Ethernet type. (If
3686 * it's not, it needs to be handled specially
3689 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3693 * No; report an error.
3695 description
= pcap_datalink_val_to_description_or_dlt(cstate
->linktype
);
3696 bpf_error(cstate
, "%s link-layer type filtering not implemented",
3704 * Check for an LLC SNAP packet with a given organization code and
3705 * protocol type; we check the entire contents of the 802.2 LLC and
3706 * snap headers, checking for DSAP and SSAP of SNAP and a control
3707 * field of 0x03 in the LLC header, and for the specified organization
3708 * code and protocol type in the SNAP header.
3710 static struct block
*
3711 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
3713 u_char snapblock
[8];
3715 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
3716 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
3717 snapblock
[2] = 0x03; /* control = UI */
3718 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
3719 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
3720 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
3721 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
3722 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
3723 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
3727 * Generate code to match frames with an LLC header.
3729 static struct block
*
3730 gen_llc_internal(compiler_state_t
*cstate
)
3732 struct block
*b0
, *b1
;
3734 switch (cstate
->linktype
) {
3738 * We check for an Ethernet type field less than
3739 * 1500, which means it's an 802.3 length field.
3741 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
3745 * Now check for the purported DSAP and SSAP not being
3746 * 0xFF, to rule out NetWare-over-802.3.
3748 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
3755 * We check for LLC traffic.
3757 b0
= gen_atmtype_llc(cstate
);
3760 case DLT_IEEE802
: /* Token Ring */
3762 * XXX - check for LLC frames.
3764 return gen_true(cstate
);
3768 * XXX - check for LLC frames.
3770 return gen_true(cstate
);
3772 case DLT_ATM_RFC1483
:
3774 * For LLC encapsulation, these are defined to have an
3777 * For VC encapsulation, they don't, but there's no
3778 * way to check for that; the protocol used on the VC
3779 * is negotiated out of band.
3781 return gen_true(cstate
);
3783 case DLT_IEEE802_11
:
3784 case DLT_PRISM_HEADER
:
3785 case DLT_IEEE802_11_RADIO
:
3786 case DLT_IEEE802_11_RADIO_AVS
:
3789 * Check that we have a data frame.
3791 b0
= gen_check_802_11_data_frame(cstate
);
3795 bpf_error(cstate
, "'llc' not supported for %s",
3796 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
3802 gen_llc(compiler_state_t
*cstate
)
3805 * Catch errors reported by us and routines below us, and return NULL
3808 if (setjmp(cstate
->top_ctx
))
3811 return gen_llc_internal(cstate
);
3815 gen_llc_i(compiler_state_t
*cstate
)
3817 struct block
*b0
, *b1
;
3821 * Catch errors reported by us and routines below us, and return NULL
3824 if (setjmp(cstate
->top_ctx
))
3828 * Check whether this is an LLC frame.
3830 b0
= gen_llc_internal(cstate
);
3833 * Load the control byte and test the low-order bit; it must
3834 * be clear for I frames.
3836 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
3837 b1
= new_block(cstate
, JMP(BPF_JSET
));
3846 gen_llc_s(compiler_state_t
*cstate
)
3848 struct block
*b0
, *b1
;
3851 * Catch errors reported by us and routines below us, and return NULL
3854 if (setjmp(cstate
->top_ctx
))
3858 * Check whether this is an LLC frame.
3860 b0
= gen_llc_internal(cstate
);
3863 * Now compare the low-order 2 bit of the control byte against
3864 * the appropriate value for S frames.
3866 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
3872 gen_llc_u(compiler_state_t
*cstate
)
3874 struct block
*b0
, *b1
;
3877 * Catch errors reported by us and routines below us, and return NULL
3880 if (setjmp(cstate
->top_ctx
))
3884 * Check whether this is an LLC frame.
3886 b0
= gen_llc_internal(cstate
);
3889 * Now compare the low-order 2 bit of the control byte against
3890 * the appropriate value for U frames.
3892 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
3898 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3900 struct block
*b0
, *b1
;
3903 * Catch errors reported by us and routines below us, and return NULL
3906 if (setjmp(cstate
->top_ctx
))
3910 * Check whether this is an LLC frame.
3912 b0
= gen_llc_internal(cstate
);
3915 * Now check for an S frame with the appropriate type.
3917 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
3923 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3925 struct block
*b0
, *b1
;
3928 * Catch errors reported by us and routines below us, and return NULL
3931 if (setjmp(cstate
->top_ctx
))
3935 * Check whether this is an LLC frame.
3937 b0
= gen_llc_internal(cstate
);
3940 * Now check for a U frame with the appropriate type.
3942 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
3948 * Generate code to match a particular packet type, for link-layer types
3949 * using 802.2 LLC headers.
3951 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3952 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3954 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3955 * value, if <= ETHERMTU. We use that to determine whether to
3956 * match the DSAP or both DSAP and LSAP or to check the OUI and
3957 * protocol ID in a SNAP header.
3959 static struct block
*
3960 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3963 * XXX - handle token-ring variable-length header.
3969 case LLCSAP_NETBEUI
:
3971 * XXX - should we check both the DSAP and the
3972 * SSAP, like this, or should we check just the
3973 * DSAP, as we do for other SAP values?
3975 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
3976 ((ll_proto
<< 8) | ll_proto
));
3980 * XXX - are there ever SNAP frames for IPX on
3981 * non-Ethernet 802.x networks?
3983 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
3985 case ETHERTYPE_ATALK
:
3987 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3988 * SNAP packets with an organization code of
3989 * 0x080007 (Apple, for Appletalk) and a protocol
3990 * type of ETHERTYPE_ATALK (Appletalk).
3992 * XXX - check for an organization code of
3993 * encapsulated Ethernet as well?
3995 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
3999 * XXX - we don't have to check for IPX 802.3
4000 * here, but should we check for the IPX Ethertype?
4002 if (ll_proto
<= ETHERMTU
) {
4004 * This is an LLC SAP value, so check
4007 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4010 * This is an Ethernet type; we assume that it's
4011 * unlikely that it'll appear in the right place
4012 * at random, and therefore check only the
4013 * location that would hold the Ethernet type
4014 * in a SNAP frame with an organization code of
4015 * 0x000000 (encapsulated Ethernet).
4017 * XXX - if we were to check for the SNAP DSAP and
4018 * LSAP, as per XXX, and were also to check for an
4019 * organization code of 0x000000 (encapsulated
4020 * Ethernet), we'd do
4022 * return gen_snap(cstate, 0x000000, ll_proto);
4024 * here; for now, we don't, as per the above.
4025 * I don't know whether it's worth the extra CPU
4026 * time to do the right check or not.
4028 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4033 static struct block
*
4034 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4035 int dir
, bpf_u_int32 ll_proto
, u_int src_off
, u_int dst_off
)
4037 struct block
*b0
, *b1
;
4051 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, ll_proto
, src_off
, dst_off
);
4052 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, ll_proto
, src_off
, dst_off
);
4058 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, ll_proto
, src_off
, dst_off
);
4059 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, ll_proto
, src_off
, dst_off
);
4064 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4068 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4072 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4076 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4080 bpf_error(cstate
, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4084 bpf_error(cstate
, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4091 b0
= gen_linktype(cstate
, ll_proto
);
4092 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4098 static struct block
*
4099 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4100 struct in6_addr
*mask
, int dir
, bpf_u_int32 ll_proto
, u_int src_off
,
4103 struct block
*b0
, *b1
;
4106 * Code below needs to access four separate 32-bit parts of the 128-bit
4107 * IPv6 address and mask. In some OSes this is as simple as using the
4108 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4109 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4110 * far as libpcap sees it. Hence copy the data before use to avoid
4111 * potential unaligned memory access and the associated compiler
4112 * warnings (whether genuine or not).
4114 bpf_u_int32 a
[4], m
[4];
4127 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, ll_proto
, src_off
, dst_off
);
4128 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, ll_proto
, src_off
, dst_off
);
4134 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, ll_proto
, src_off
, dst_off
);
4135 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, ll_proto
, src_off
, dst_off
);
4140 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4144 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4148 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4152 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4156 bpf_error(cstate
, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4160 bpf_error(cstate
, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4167 /* this order is important */
4168 memcpy(a
, addr
, sizeof(a
));
4169 memcpy(m
, mask
, sizeof(m
));
4170 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
4171 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
4173 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
4175 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
4177 b0
= gen_linktype(cstate
, ll_proto
);
4183 static struct block
*
4184 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4186 register struct block
*b0
, *b1
;
4190 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
4193 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
4196 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4197 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4203 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4204 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4209 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4213 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4217 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4221 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4225 bpf_error(cstate
, "'ra' is only supported on 802.11 with 802.11 headers");
4229 bpf_error(cstate
, "'ta' is only supported on 802.11 with 802.11 headers");
4237 * Like gen_ehostop, but for DLT_FDDI
4239 static struct block
*
4240 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4242 struct block
*b0
, *b1
;
4246 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4249 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4252 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4253 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4259 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4260 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4265 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
4269 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
4273 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
4277 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
4281 bpf_error(cstate
, "'ra' is only supported on 802.11");
4285 bpf_error(cstate
, "'ta' is only supported on 802.11");
4293 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4295 static struct block
*
4296 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4298 register struct block
*b0
, *b1
;
4302 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4305 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4308 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4309 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4315 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4316 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4321 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
4325 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
4329 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
4333 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
4337 bpf_error(cstate
, "'ra' is only supported on 802.11");
4341 bpf_error(cstate
, "'ta' is only supported on 802.11");
4349 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4350 * various 802.11 + radio headers.
4352 static struct block
*
4353 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4355 register struct block
*b0
, *b1
, *b2
;
4356 register struct slist
*s
;
4358 #ifdef ENABLE_WLAN_FILTERING_PATCH
4361 * We need to disable the optimizer because the optimizer is buggy
4362 * and wipes out some LD instructions generated by the below
4363 * code to validate the Frame Control bits
4365 cstate
->no_optimize
= 1;
4366 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4373 * For control frames, there is no SA.
4375 * For management frames, SA is at an
4376 * offset of 10 from the beginning of
4379 * For data frames, SA is at an offset
4380 * of 10 from the beginning of the packet
4381 * if From DS is clear, at an offset of
4382 * 16 from the beginning of the packet
4383 * if From DS is set and To DS is clear,
4384 * and an offset of 24 from the beginning
4385 * of the packet if From DS is set and To DS
4390 * Generate the tests to be done for data frames
4393 * First, check for To DS set, i.e. check "link[1] & 0x01".
4395 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4396 b1
= new_block(cstate
, JMP(BPF_JSET
));
4397 b1
->s
.k
= 0x01; /* To DS */
4401 * If To DS is set, the SA is at 24.
4403 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4407 * Now, check for To DS not set, i.e. check
4408 * "!(link[1] & 0x01)".
4410 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4411 b2
= new_block(cstate
, JMP(BPF_JSET
));
4412 b2
->s
.k
= 0x01; /* To DS */
4417 * If To DS is not set, the SA is at 16.
4419 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4423 * Now OR together the last two checks. That gives
4424 * the complete set of checks for data frames with
4430 * Now check for From DS being set, and AND that with
4431 * the ORed-together checks.
4433 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4434 b1
= new_block(cstate
, JMP(BPF_JSET
));
4435 b1
->s
.k
= 0x02; /* From DS */
4440 * Now check for data frames with From DS not set.
4442 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4443 b2
= new_block(cstate
, JMP(BPF_JSET
));
4444 b2
->s
.k
= 0x02; /* From DS */
4449 * If From DS isn't set, the SA is at 10.
4451 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4455 * Now OR together the checks for data frames with
4456 * From DS not set and for data frames with From DS
4457 * set; that gives the checks done for data frames.
4462 * Now check for a data frame.
4463 * I.e, check "link[0] & 0x08".
4465 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4466 b1
= new_block(cstate
, JMP(BPF_JSET
));
4471 * AND that with the checks done for data frames.
4476 * If the high-order bit of the type value is 0, this
4477 * is a management frame.
4478 * I.e, check "!(link[0] & 0x08)".
4480 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4481 b2
= new_block(cstate
, JMP(BPF_JSET
));
4487 * For management frames, the SA is at 10.
4489 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4493 * OR that with the checks done for data frames.
4494 * That gives the checks done for management and
4500 * If the low-order bit of the type value is 1,
4501 * this is either a control frame or a frame
4502 * with a reserved type, and thus not a
4505 * I.e., check "!(link[0] & 0x04)".
4507 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4508 b1
= new_block(cstate
, JMP(BPF_JSET
));
4514 * AND that with the checks for data and management
4524 * For control frames, there is no DA.
4526 * For management frames, DA is at an
4527 * offset of 4 from the beginning of
4530 * For data frames, DA is at an offset
4531 * of 4 from the beginning of the packet
4532 * if To DS is clear and at an offset of
4533 * 16 from the beginning of the packet
4538 * Generate the tests to be done for data frames.
4540 * First, check for To DS set, i.e. "link[1] & 0x01".
4542 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4543 b1
= new_block(cstate
, JMP(BPF_JSET
));
4544 b1
->s
.k
= 0x01; /* To DS */
4548 * If To DS is set, the DA is at 16.
4550 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4554 * Now, check for To DS not set, i.e. check
4555 * "!(link[1] & 0x01)".
4557 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4558 b2
= new_block(cstate
, JMP(BPF_JSET
));
4559 b2
->s
.k
= 0x01; /* To DS */
4564 * If To DS is not set, the DA is at 4.
4566 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4570 * Now OR together the last two checks. That gives
4571 * the complete set of checks for data frames.
4576 * Now check for a data frame.
4577 * I.e, check "link[0] & 0x08".
4579 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4580 b1
= new_block(cstate
, JMP(BPF_JSET
));
4585 * AND that with the checks done for data frames.
4590 * If the high-order bit of the type value is 0, this
4591 * is a management frame.
4592 * I.e, check "!(link[0] & 0x08)".
4594 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4595 b2
= new_block(cstate
, JMP(BPF_JSET
));
4601 * For management frames, the DA is at 4.
4603 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4607 * OR that with the checks done for data frames.
4608 * That gives the checks done for management and
4614 * If the low-order bit of the type value is 1,
4615 * this is either a control frame or a frame
4616 * with a reserved type, and thus not a
4619 * I.e., check "!(link[0] & 0x04)".
4621 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4622 b1
= new_block(cstate
, JMP(BPF_JSET
));
4628 * AND that with the checks for data and management
4635 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4636 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4642 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4643 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4648 * XXX - add BSSID keyword?
4651 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4655 * Not present in CTS or ACK control frames.
4657 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4658 IEEE80211_FC0_TYPE_MASK
);
4660 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4661 IEEE80211_FC0_SUBTYPE_MASK
);
4663 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4664 IEEE80211_FC0_SUBTYPE_MASK
);
4668 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4674 * Not present in control frames.
4676 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4677 IEEE80211_FC0_TYPE_MASK
);
4679 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4685 * Present only if the direction mask has both "From DS"
4686 * and "To DS" set. Neither control frames nor management
4687 * frames should have both of those set, so we don't
4688 * check the frame type.
4690 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4691 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4692 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4698 * Not present in management frames; addr1 in other
4703 * If the high-order bit of the type value is 0, this
4704 * is a management frame.
4705 * I.e, check "(link[0] & 0x08)".
4707 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4708 b1
= new_block(cstate
, JMP(BPF_JSET
));
4715 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4718 * AND that with the check of addr1.
4725 * Not present in management frames; addr2, if present,
4730 * Not present in CTS or ACK control frames.
4732 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4733 IEEE80211_FC0_TYPE_MASK
);
4735 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4736 IEEE80211_FC0_SUBTYPE_MASK
);
4738 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4739 IEEE80211_FC0_SUBTYPE_MASK
);
4745 * If the high-order bit of the type value is 0, this
4746 * is a management frame.
4747 * I.e, check "(link[0] & 0x08)".
4749 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4750 b1
= new_block(cstate
, JMP(BPF_JSET
));
4755 * AND that with the check for frames other than
4756 * CTS and ACK frames.
4763 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4772 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4773 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4774 * as the RFC states.)
4776 static struct block
*
4777 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4779 register struct block
*b0
, *b1
;
4783 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4786 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4789 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4790 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4796 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4797 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4802 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
4806 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
4810 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
4814 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
4818 bpf_error(cstate
, "'ra' is only supported on 802.11");
4822 bpf_error(cstate
, "'ta' is only supported on 802.11");
4830 * This is quite tricky because there may be pad bytes in front of the
4831 * DECNET header, and then there are two possible data packet formats that
4832 * carry both src and dst addresses, plus 5 packet types in a format that
4833 * carries only the src node, plus 2 types that use a different format and
4834 * also carry just the src node.
4838 * Instead of doing those all right, we just look for data packets with
4839 * 0 or 1 bytes of padding. If you want to look at other packets, that
4840 * will require a lot more hacking.
4842 * To add support for filtering on DECNET "areas" (network numbers)
4843 * one would want to add a "mask" argument to this routine. That would
4844 * make the filter even more inefficient, although one could be clever
4845 * and not generate masking instructions if the mask is 0xFFFF.
4847 static struct block
*
4848 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
4850 struct block
*b0
, *b1
, *b2
, *tmp
;
4851 u_int offset_lh
; /* offset if long header is received */
4852 u_int offset_sh
; /* offset if short header is received */
4857 offset_sh
= 1; /* follows flags */
4858 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4862 offset_sh
= 3; /* follows flags, dstnode */
4863 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4867 /* Inefficient because we do our Calvinball dance twice */
4868 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4869 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4875 /* Inefficient because we do our Calvinball dance twice */
4876 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4877 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4882 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4886 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4890 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4894 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4898 bpf_error(cstate
, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4902 bpf_error(cstate
, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4909 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
4910 /* Check for pad = 1, long header case */
4911 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4912 (bpf_u_int32
)ntohs(0x0681), (bpf_u_int32
)ntohs(0x07FF));
4913 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
4914 BPF_H
, (bpf_u_int32
)ntohs((u_short
)addr
));
4916 /* Check for pad = 0, long header case */
4917 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_u_int32
)0x06,
4919 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
4920 (bpf_u_int32
)ntohs((u_short
)addr
));
4923 /* Check for pad = 1, short header case */
4924 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4925 (bpf_u_int32
)ntohs(0x0281), (bpf_u_int32
)ntohs(0x07FF));
4926 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
4927 (bpf_u_int32
)ntohs((u_short
)addr
));
4930 /* Check for pad = 0, short header case */
4931 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_u_int32
)0x02,
4933 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
4934 (bpf_u_int32
)ntohs((u_short
)addr
));
4938 /* Combine with test for cstate->linktype */
4944 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4945 * test the bottom-of-stack bit, and then check the version number
4946 * field in the IP header.
4948 static struct block
*
4949 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4951 struct block
*b0
, *b1
;
4956 /* match the bottom-of-stack bit */
4957 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
4958 /* match the IPv4 version number */
4959 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
4963 case ETHERTYPE_IPV6
:
4964 /* match the bottom-of-stack bit */
4965 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
4966 /* match the IPv4 version number */
4967 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
4972 /* FIXME add other L3 proto IDs */
4973 bpf_error(cstate
, "unsupported protocol over mpls");
4978 static struct block
*
4979 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4980 int proto
, int dir
, int type
)
4982 struct block
*b0
, *b1
;
4983 const char *typestr
;
4993 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
4995 * Only check for non-IPv4 addresses if we're not
4996 * checking MPLS-encapsulated packets.
4998 if (cstate
->label_stack_depth
== 0) {
4999 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5001 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5007 bpf_error(cstate
, "link-layer modifier applied to %s", typestr
);
5010 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
5013 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
5016 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
5019 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
5022 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
5025 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
5028 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
5031 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
5034 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
5037 bpf_error(cstate
, "AppleTalk host filtering not implemented");
5040 return gen_dnhostop(cstate
, addr
, dir
);
5043 bpf_error(cstate
, "LAT host filtering not implemented");
5046 bpf_error(cstate
, "SCA host filtering not implemented");
5049 bpf_error(cstate
, "MOPRC host filtering not implemented");
5052 bpf_error(cstate
, "MOPDL host filtering not implemented");
5055 bpf_error(cstate
, "'ip6' modifier applied to ip host");
5058 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
5061 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
5064 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
5067 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
5070 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
5073 bpf_error(cstate
, "AARP host filtering not implemented");
5076 bpf_error(cstate
, "ISO host filtering not implemented");
5079 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
5082 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
5085 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
5088 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
5091 bpf_error(cstate
, "IPX host filtering not implemented");
5094 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
5097 bpf_error(cstate
, "'l1' modifier applied to %s", typestr
);
5100 bpf_error(cstate
, "'l2' modifier applied to %s", typestr
);
5103 bpf_error(cstate
, "'iih' modifier applied to %s", typestr
);
5106 bpf_error(cstate
, "'snp' modifier applied to %s", typestr
);
5109 bpf_error(cstate
, "'csnp' modifier applied to %s", typestr
);
5112 bpf_error(cstate
, "'psnp' modifier applied to %s", typestr
);
5115 bpf_error(cstate
, "'lsp' modifier applied to %s", typestr
);
5118 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
5121 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
5130 static struct block
*
5131 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5132 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5134 const char *typestr
;
5144 return gen_host6(cstate
, addr
, mask
, Q_IPV6
, dir
, type
);
5147 bpf_error(cstate
, "link-layer modifier applied to ip6 %s", typestr
);
5150 bpf_error(cstate
, "'ip' modifier applied to ip6 %s", typestr
);
5153 bpf_error(cstate
, "'rarp' modifier applied to ip6 %s", typestr
);
5156 bpf_error(cstate
, "'arp' modifier applied to ip6 %s", typestr
);
5159 bpf_error(cstate
, "'sctp' modifier applied to ip6 %s", typestr
);
5162 bpf_error(cstate
, "'tcp' modifier applied to ip6 %s", typestr
);
5165 bpf_error(cstate
, "'udp' modifier applied to ip6 %s", typestr
);
5168 bpf_error(cstate
, "'icmp' modifier applied to ip6 %s", typestr
);
5171 bpf_error(cstate
, "'igmp' modifier applied to ip6 %s", typestr
);
5174 bpf_error(cstate
, "'igrp' modifier applied to ip6 %s", typestr
);
5177 bpf_error(cstate
, "AppleTalk modifier applied to ip6 %s", typestr
);
5180 bpf_error(cstate
, "'decnet' modifier applied to ip6 %s", typestr
);
5183 bpf_error(cstate
, "'lat' modifier applied to ip6 %s", typestr
);
5186 bpf_error(cstate
, "'sca' modifier applied to ip6 %s", typestr
);
5189 bpf_error(cstate
, "'moprc' modifier applied to ip6 %s", typestr
);
5192 bpf_error(cstate
, "'mopdl' modifier applied to ip6 %s", typestr
);
5195 return gen_hostop6(cstate
, addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
5198 bpf_error(cstate
, "'icmp6' modifier applied to ip6 %s", typestr
);
5201 bpf_error(cstate
, "'ah' modifier applied to ip6 %s", typestr
);
5204 bpf_error(cstate
, "'esp' modifier applied to ip6 %s", typestr
);
5207 bpf_error(cstate
, "'pim' modifier applied to ip6 %s", typestr
);
5210 bpf_error(cstate
, "'vrrp' modifier applied to ip6 %s", typestr
);
5213 bpf_error(cstate
, "'aarp' modifier applied to ip6 %s", typestr
);
5216 bpf_error(cstate
, "'iso' modifier applied to ip6 %s", typestr
);
5219 bpf_error(cstate
, "'esis' modifier applied to ip6 %s", typestr
);
5222 bpf_error(cstate
, "'isis' modifier applied to ip6 %s", typestr
);
5225 bpf_error(cstate
, "'clnp' modifier applied to ip6 %s", typestr
);
5228 bpf_error(cstate
, "'stp' modifier applied to ip6 %s", typestr
);
5231 bpf_error(cstate
, "'ipx' modifier applied to ip6 %s", typestr
);
5234 bpf_error(cstate
, "'netbeui' modifier applied to ip6 %s", typestr
);
5237 bpf_error(cstate
, "'l1' modifier applied to ip6 %s", typestr
);
5240 bpf_error(cstate
, "'l2' modifier applied to ip6 %s", typestr
);
5243 bpf_error(cstate
, "'iih' modifier applied to ip6 %s", typestr
);
5246 bpf_error(cstate
, "'snp' modifier applied to ip6 %s", typestr
);
5249 bpf_error(cstate
, "'csnp' modifier applied to ip6 %s", typestr
);
5252 bpf_error(cstate
, "'psnp' modifier applied to ip6 %s", typestr
);
5255 bpf_error(cstate
, "'lsp' modifier applied to ip6 %s", typestr
);
5258 bpf_error(cstate
, "'radio' modifier applied to ip6 %s", typestr
);
5261 bpf_error(cstate
, "'carp' modifier applied to ip6 %s", typestr
);
5271 static struct block
*
5272 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5273 struct addrinfo
*alist
, int proto
, int dir
)
5275 struct block
*b0
, *b1
, *tmp
;
5276 struct addrinfo
*ai
;
5277 struct sockaddr_in
*sin
;
5280 bpf_error(cstate
, "direction applied to 'gateway'");
5287 switch (cstate
->linktype
) {
5289 case DLT_NETANALYZER
:
5290 case DLT_NETANALYZER_TRANSPARENT
:
5291 b1
= gen_prevlinkhdr_check(cstate
);
5292 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
5297 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
5300 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
5302 case DLT_IEEE802_11
:
5303 case DLT_PRISM_HEADER
:
5304 case DLT_IEEE802_11_RADIO_AVS
:
5305 case DLT_IEEE802_11_RADIO
:
5307 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
5311 * This is LLC-multiplexed traffic; if it were
5312 * LANE, cstate->linktype would have been set to
5316 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5317 case DLT_IP_OVER_FC
:
5318 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
5322 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5325 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5327 * Does it have an address?
5329 if (ai
->ai_addr
!= NULL
) {
5331 * Yes. Is it an IPv4 address?
5333 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5335 * Generate an entry for it.
5337 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5338 tmp
= gen_host(cstate
,
5339 ntohl(sin
->sin_addr
.s_addr
),
5340 0xffffffff, proto
, Q_OR
, Q_HOST
);
5342 * Is it the *first* IPv4 address?
5346 * Yes, so start with it.
5351 * No, so OR it into the
5363 * No IPv4 addresses found.
5371 bpf_error(cstate
, "illegal modifier of 'gateway'");
5376 static struct block
*
5377 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5385 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
, Q_DEFAULT
);
5389 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
, Q_DEFAULT
);
5393 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
, Q_DEFAULT
);
5397 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
5400 #ifndef IPPROTO_IGMP
5401 #define IPPROTO_IGMP 2
5405 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
5408 #ifndef IPPROTO_IGRP
5409 #define IPPROTO_IGRP 9
5412 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
5416 #define IPPROTO_PIM 103
5420 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
, Q_DEFAULT
);
5423 #ifndef IPPROTO_VRRP
5424 #define IPPROTO_VRRP 112
5428 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
5431 #ifndef IPPROTO_CARP
5432 #define IPPROTO_CARP 112
5436 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
, Q_DEFAULT
);
5440 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
5444 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5448 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5452 bpf_error(cstate
, "link layer applied in wrong context");
5455 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5459 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5463 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5467 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5471 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5475 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5479 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5483 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5486 #ifndef IPPROTO_ICMPV6
5487 #define IPPROTO_ICMPV6 58
5490 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
5494 #define IPPROTO_AH 51
5497 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
, Q_DEFAULT
);
5501 #define IPPROTO_ESP 50
5504 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
, Q_DEFAULT
);
5508 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5512 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
5516 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
5519 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5520 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5521 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5523 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5525 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5527 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5531 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5532 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5533 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5535 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5537 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5539 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5543 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5544 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5545 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5547 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
5552 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5553 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5558 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5559 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5561 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5563 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5568 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5569 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5574 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5575 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5580 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
5584 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5588 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5592 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5596 bpf_error(cstate
, "'radio' is not a valid protocol type");
5605 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5608 * Catch errors reported by us and routines below us, and return NULL
5611 if (setjmp(cstate
->top_ctx
))
5614 return gen_proto_abbrev_internal(cstate
, proto
);
5617 static struct block
*
5618 gen_ipfrag(compiler_state_t
*cstate
)
5623 /* not IPv4 frag other than the first frag */
5624 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5625 b
= new_block(cstate
, JMP(BPF_JSET
));
5634 * Generate a comparison to a port value in the transport-layer header
5635 * at the specified offset from the beginning of that header.
5637 * XXX - this handles a variable-length prefix preceding the link-layer
5638 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5639 * variable-length link-layer headers (such as Token Ring or 802.11
5642 static struct block
*
5643 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5645 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5648 static struct block
*
5649 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5651 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5654 static struct block
*
5655 gen_portop(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5657 struct block
*b0
, *b1
, *tmp
;
5659 /* ip proto 'proto' and not a fragment other than the first fragment */
5660 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5661 b0
= gen_ipfrag(cstate
);
5666 b1
= gen_portatom(cstate
, 0, port
);
5670 b1
= gen_portatom(cstate
, 2, port
);
5674 tmp
= gen_portatom(cstate
, 0, port
);
5675 b1
= gen_portatom(cstate
, 2, port
);
5681 tmp
= gen_portatom(cstate
, 0, port
);
5682 b1
= gen_portatom(cstate
, 2, port
);
5687 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for ports");
5691 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for ports");
5695 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for ports");
5699 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for ports");
5703 bpf_error(cstate
, "'ra' is not a valid qualifier for ports");
5707 bpf_error(cstate
, "'ta' is not a valid qualifier for ports");
5719 static struct block
*
5720 gen_port(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5722 struct block
*b0
, *b1
, *tmp
;
5727 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5728 * not LLC encapsulation with LLCSAP_IP.
5730 * For IEEE 802 networks - which includes 802.5 token ring
5731 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5732 * says that SNAP encapsulation is used, not LLC encapsulation
5735 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5736 * RFC 2225 say that SNAP encapsulation is used, not LLC
5737 * encapsulation with LLCSAP_IP.
5739 * So we always check for ETHERTYPE_IP.
5741 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5747 b1
= gen_portop(cstate
, port
, (u_int
)ip_proto
, dir
);
5751 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5752 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5754 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5766 gen_portop6(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5768 struct block
*b0
, *b1
, *tmp
;
5770 /* ip6 proto 'proto' */
5771 /* XXX - catch the first fragment of a fragmented packet? */
5772 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5776 b1
= gen_portatom6(cstate
, 0, port
);
5780 b1
= gen_portatom6(cstate
, 2, port
);
5784 tmp
= gen_portatom6(cstate
, 0, port
);
5785 b1
= gen_portatom6(cstate
, 2, port
);
5791 tmp
= gen_portatom6(cstate
, 0, port
);
5792 b1
= gen_portatom6(cstate
, 2, port
);
5804 static struct block
*
5805 gen_port6(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5807 struct block
*b0
, *b1
, *tmp
;
5809 /* link proto ip6 */
5810 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5816 b1
= gen_portop6(cstate
, port
, (u_int
)ip_proto
, dir
);
5820 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5821 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5823 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5834 /* gen_portrange code */
5835 static struct block
*
5836 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
5839 struct block
*b1
, *b2
;
5843 * Reverse the order of the ports, so v1 is the lower one.
5852 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v1
);
5853 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v2
);
5860 static struct block
*
5861 gen_portrangeop(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
5862 bpf_u_int32 proto
, int dir
)
5864 struct block
*b0
, *b1
, *tmp
;
5866 /* ip proto 'proto' and not a fragment other than the first fragment */
5867 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5868 b0
= gen_ipfrag(cstate
);
5873 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5877 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5881 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5882 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5888 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5889 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5894 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5898 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5902 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5906 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5910 bpf_error(cstate
, "'ra' is not a valid qualifier for port ranges");
5914 bpf_error(cstate
, "'ta' is not a valid qualifier for port ranges");
5926 static struct block
*
5927 gen_portrange(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
5930 struct block
*b0
, *b1
, *tmp
;
5933 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5939 b1
= gen_portrangeop(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
5944 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5945 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5947 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5958 static struct block
*
5959 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
5962 struct block
*b1
, *b2
;
5966 * Reverse the order of the ports, so v1 is the lower one.
5975 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v1
);
5976 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v2
);
5983 static struct block
*
5984 gen_portrangeop6(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
5985 bpf_u_int32 proto
, int dir
)
5987 struct block
*b0
, *b1
, *tmp
;
5989 /* ip6 proto 'proto' */
5990 /* XXX - catch the first fragment of a fragmented packet? */
5991 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5995 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5999 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6003 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6004 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6010 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6011 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6023 static struct block
*
6024 gen_portrange6(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
6027 struct block
*b0
, *b1
, *tmp
;
6029 /* link proto ip6 */
6030 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6036 b1
= gen_portrangeop6(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
6041 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
6042 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
6044 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
6056 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
6065 v
= pcap_nametoproto(name
);
6066 if (v
== PROTO_UNDEF
)
6067 bpf_error(cstate
, "unknown ip proto '%s'", name
);
6071 /* XXX should look up h/w protocol type based on cstate->linktype */
6072 v
= pcap_nametoeproto(name
);
6073 if (v
== PROTO_UNDEF
) {
6074 v
= pcap_nametollc(name
);
6075 if (v
== PROTO_UNDEF
)
6076 bpf_error(cstate
, "unknown ether proto '%s'", name
);
6081 if (strcmp(name
, "esis") == 0)
6083 else if (strcmp(name
, "isis") == 0)
6085 else if (strcmp(name
, "clnp") == 0)
6088 bpf_error(cstate
, "unknown osi proto '%s'", name
);
6098 #if !defined(NO_PROTOCHAIN)
6099 static struct block
*
6100 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6102 struct block
*b0
, *b
;
6103 struct slist
*s
[100];
6104 int fix2
, fix3
, fix4
, fix5
;
6105 int ahcheck
, again
, end
;
6107 int reg2
= alloc_reg(cstate
);
6109 memset(s
, 0, sizeof(s
));
6110 fix3
= fix4
= fix5
= 0;
6117 b0
= gen_protochain(cstate
, v
, Q_IP
);
6118 b
= gen_protochain(cstate
, v
, Q_IPV6
);
6122 bpf_error(cstate
, "bad protocol applied for 'protochain'");
6127 * We don't handle variable-length prefixes before the link-layer
6128 * header, or variable-length link-layer headers, here yet.
6129 * We might want to add BPF instructions to do the protochain
6130 * work, to simplify that and, on platforms that have a BPF
6131 * interpreter with the new instructions, let the filtering
6132 * be done in the kernel. (We already require a modified BPF
6133 * engine to do the protochain stuff, to support backward
6134 * branches, and backward branch support is unlikely to appear
6135 * in kernel BPF engines.)
6137 if (cstate
->off_linkpl
.is_variable
)
6138 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6141 * To quote a comment in optimize.c:
6143 * "These data structures are used in a Cocke and Schwartz style
6144 * value numbering scheme. Since the flowgraph is acyclic,
6145 * exit values can be propagated from a node's predecessors
6146 * provided it is uniquely defined."
6148 * "Acyclic" means "no backward branches", which means "no
6149 * loops", so we have to turn the optimizer off.
6151 cstate
->no_optimize
= 1;
6154 * s[0] is a dummy entry to protect other BPF insn from damage
6155 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6156 * hard to find interdependency made by jump table fixup.
6159 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6164 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6167 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6168 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6170 /* X = ip->ip_hl << 2 */
6171 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6172 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6177 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6179 /* A = ip6->ip_nxt */
6180 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6181 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6183 /* X = sizeof(struct ip6_hdr) */
6184 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6190 bpf_error(cstate
, "unsupported proto to gen_protochain");
6194 /* again: if (A == v) goto end; else fall through; */
6196 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6198 s
[i
]->s
.jt
= NULL
; /*later*/
6199 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6203 #ifndef IPPROTO_NONE
6204 #define IPPROTO_NONE 59
6206 /* if (A == IPPROTO_NONE) goto end */
6207 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6208 s
[i
]->s
.jt
= NULL
; /*later*/
6209 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6210 s
[i
]->s
.k
= IPPROTO_NONE
;
6211 s
[fix5
]->s
.jf
= s
[i
];
6215 if (proto
== Q_IPV6
) {
6216 int v6start
, v6end
, v6advance
, j
;
6219 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6220 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6221 s
[i
]->s
.jt
= NULL
; /*later*/
6222 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6223 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6224 s
[fix2
]->s
.jf
= s
[i
];
6226 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6227 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6228 s
[i
]->s
.jt
= NULL
; /*later*/
6229 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6230 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6232 /* if (A == IPPROTO_ROUTING) goto v6advance */
6233 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6234 s
[i
]->s
.jt
= NULL
; /*later*/
6235 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6236 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6238 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6239 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6240 s
[i
]->s
.jt
= NULL
; /*later*/
6241 s
[i
]->s
.jf
= NULL
; /*later*/
6242 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6252 * A = P[X + packet head];
6253 * X = X + (P[X + packet head + 1] + 1) * 8;
6255 /* A = P[X + packet head] */
6256 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6257 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6260 s
[i
] = new_stmt(cstate
, BPF_ST
);
6263 /* A = P[X + packet head + 1]; */
6264 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6265 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6268 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6272 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6276 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6280 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6283 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6287 /* goto again; (must use BPF_JA for backward jump) */
6288 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6289 s
[i
]->s
.k
= again
- i
- 1;
6290 s
[i
- 1]->s
.jf
= s
[i
];
6294 for (j
= v6start
; j
<= v6end
; j
++)
6295 s
[j
]->s
.jt
= s
[v6advance
];
6298 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6300 s
[fix2
]->s
.jf
= s
[i
];
6306 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6307 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6308 s
[i
]->s
.jt
= NULL
; /*later*/
6309 s
[i
]->s
.jf
= NULL
; /*later*/
6310 s
[i
]->s
.k
= IPPROTO_AH
;
6312 s
[fix3
]->s
.jf
= s
[ahcheck
];
6319 * X = X + (P[X + 1] + 2) * 4;
6322 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6324 /* A = P[X + packet head]; */
6325 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6326 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6329 s
[i
] = new_stmt(cstate
, BPF_ST
);
6333 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6336 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6340 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6342 /* A = P[X + packet head] */
6343 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6344 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6347 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6351 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6355 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6358 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6362 /* goto again; (must use BPF_JA for backward jump) */
6363 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6364 s
[i
]->s
.k
= again
- i
- 1;
6369 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6371 s
[fix2
]->s
.jt
= s
[end
];
6372 s
[fix4
]->s
.jf
= s
[end
];
6373 s
[fix5
]->s
.jt
= s
[end
];
6380 for (i
= 0; i
< max
- 1; i
++)
6381 s
[i
]->next
= s
[i
+ 1];
6382 s
[max
- 1]->next
= NULL
;
6387 b
= new_block(cstate
, JMP(BPF_JEQ
));
6388 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
6391 free_reg(cstate
, reg2
);
6396 #endif /* !defined(NO_PROTOCHAIN) */
6398 static struct block
*
6399 gen_check_802_11_data_frame(compiler_state_t
*cstate
)
6402 struct block
*b0
, *b1
;
6405 * A data frame has the 0x08 bit (b3) in the frame control field set
6406 * and the 0x04 bit (b2) clear.
6408 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
6409 b0
= new_block(cstate
, JMP(BPF_JSET
));
6413 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
6414 b1
= new_block(cstate
, JMP(BPF_JSET
));
6425 * Generate code that checks whether the packet is a packet for protocol
6426 * <proto> and whether the type field in that protocol's header has
6427 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6428 * IP packet and checks the protocol number in the IP header against <v>.
6430 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6431 * against Q_IP and Q_IPV6.
6433 static struct block
*
6434 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
, int dir
)
6436 struct block
*b0
, *b1
;
6439 if (dir
!= Q_DEFAULT
)
6440 bpf_error(cstate
, "direction applied to 'proto'");
6444 b0
= gen_proto(cstate
, v
, Q_IP
, dir
);
6445 b1
= gen_proto(cstate
, v
, Q_IPV6
, dir
);
6450 return gen_linktype(cstate
, v
);
6454 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6455 * not LLC encapsulation with LLCSAP_IP.
6457 * For IEEE 802 networks - which includes 802.5 token ring
6458 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6459 * says that SNAP encapsulation is used, not LLC encapsulation
6462 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6463 * RFC 2225 say that SNAP encapsulation is used, not LLC
6464 * encapsulation with LLCSAP_IP.
6466 * So we always check for ETHERTYPE_IP.
6468 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6469 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, v
);
6474 bpf_error(cstate
, "arp does not encapsulate another protocol");
6478 bpf_error(cstate
, "rarp does not encapsulate another protocol");
6482 bpf_error(cstate
, "'sctp proto' is bogus");
6486 bpf_error(cstate
, "'tcp proto' is bogus");
6490 bpf_error(cstate
, "'udp proto' is bogus");
6494 bpf_error(cstate
, "'icmp proto' is bogus");
6498 bpf_error(cstate
, "'igmp proto' is bogus");
6502 bpf_error(cstate
, "'igrp proto' is bogus");
6506 bpf_error(cstate
, "AppleTalk encapsulation is not specifiable");
6510 bpf_error(cstate
, "DECNET encapsulation is not specifiable");
6514 bpf_error(cstate
, "LAT does not encapsulate another protocol");
6518 bpf_error(cstate
, "SCA does not encapsulate another protocol");
6522 bpf_error(cstate
, "MOPRC does not encapsulate another protocol");
6526 bpf_error(cstate
, "MOPDL does not encapsulate another protocol");
6530 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6532 * Also check for a fragment header before the final
6535 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6536 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6538 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, v
);
6544 bpf_error(cstate
, "'icmp6 proto' is bogus");
6548 bpf_error(cstate
, "'ah proto' is bogus");
6552 bpf_error(cstate
, "'esp proto' is bogus");
6556 bpf_error(cstate
, "'pim proto' is bogus");
6560 bpf_error(cstate
, "'vrrp proto' is bogus");
6564 bpf_error(cstate
, "'aarp proto' is bogus");
6568 switch (cstate
->linktype
) {
6572 * Frame Relay packets typically have an OSI
6573 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6574 * generates code to check for all the OSI
6575 * NLPIDs, so calling it and then adding a check
6576 * for the particular NLPID for which we're
6577 * looking is bogus, as we can just check for
6580 * What we check for is the NLPID and a frame
6581 * control field value of UI, i.e. 0x03 followed
6584 * XXX - assumes a 2-byte Frame Relay header with
6585 * DLCI and flags. What if the address is longer?
6587 * XXX - what about SNAP-encapsulated frames?
6589 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6595 * Cisco uses an Ethertype lookalike - for OSI,
6598 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6599 /* OSI in C-HDLC is stuffed with a fudge byte */
6600 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6605 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6606 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6612 bpf_error(cstate
, "'esis proto' is bogus");
6616 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
6618 * 4 is the offset of the PDU type relative to the IS-IS
6621 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 4, BPF_B
, v
);
6626 bpf_error(cstate
, "'clnp proto' is not supported");
6630 bpf_error(cstate
, "'stp proto' is bogus");
6634 bpf_error(cstate
, "'ipx proto' is bogus");
6638 bpf_error(cstate
, "'netbeui proto' is bogus");
6642 bpf_error(cstate
, "'l1 proto' is bogus");
6646 bpf_error(cstate
, "'l2 proto' is bogus");
6650 bpf_error(cstate
, "'iih proto' is bogus");
6654 bpf_error(cstate
, "'snp proto' is bogus");
6658 bpf_error(cstate
, "'csnp proto' is bogus");
6662 bpf_error(cstate
, "'psnp proto' is bogus");
6666 bpf_error(cstate
, "'lsp proto' is bogus");
6670 bpf_error(cstate
, "'radio proto' is bogus");
6674 bpf_error(cstate
, "'carp proto' is bogus");
6685 * Convert a non-numeric name to a port number.
6688 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6690 struct addrinfo hints
, *res
, *ai
;
6692 struct sockaddr_in
*in4
;
6694 struct sockaddr_in6
*in6
;
6699 * We check for both TCP and UDP in case there are
6700 * ambiguous entries.
6702 memset(&hints
, 0, sizeof(hints
));
6703 hints
.ai_family
= PF_UNSPEC
;
6704 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6705 hints
.ai_protocol
= ipproto
;
6706 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6713 * No such port. Just return -1.
6720 * We don't use strerror() because it's not
6721 * guaranteed to be thread-safe on all platforms
6722 * (probably because it might use a non-thread-local
6723 * buffer into which to format an error message
6724 * if the error code isn't one for which it has
6725 * a canned string; three cheers for C string
6728 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6730 port
= -2; /* a real error */
6736 * This is a real error, not just "there's
6737 * no such service name".
6739 * We don't use gai_strerror() because it's not
6740 * guaranteed to be thread-safe on all platforms
6741 * (probably because it might use a non-thread-local
6742 * buffer into which to format an error message
6743 * if the error code isn't one for which it has
6744 * a canned string; three cheers for C string
6747 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6749 port
= -2; /* a real error */
6754 * OK, we found it. Did it find anything?
6756 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6758 * Does it have an address?
6760 if (ai
->ai_addr
!= NULL
) {
6762 * Yes. Get a port number; we're done.
6764 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6765 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6766 port
= ntohs(in4
->sin_port
);
6770 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6771 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6772 port
= ntohs(in6
->sin6_port
);
6784 * Convert a string to a port number.
6787 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6797 * See if it's a number.
6799 ret
= stoulen(string
, string_size
, &val
, cstate
);
6803 /* Unknown port type - it's just a number. */
6804 *proto
= PROTO_UNDEF
;
6807 case STOULEN_NOT_OCTAL_NUMBER
:
6808 case STOULEN_NOT_HEX_NUMBER
:
6809 case STOULEN_NOT_DECIMAL_NUMBER
:
6811 * Not a valid number; try looking it up as a port.
6813 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6814 memcpy(cpy
, string
, string_size
);
6815 cpy
[string_size
] = '\0';
6816 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6817 if (tcp_port
== -2) {
6819 * We got a hard error; the error string has
6823 longjmp(cstate
->top_ctx
, 1);
6826 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6827 if (udp_port
== -2) {
6829 * We got a hard error; the error string has
6833 longjmp(cstate
->top_ctx
, 1);
6838 * We need to check /etc/services for ambiguous entries.
6839 * If we find an ambiguous entry, and it has the
6840 * same port number, change the proto to PROTO_UNDEF
6841 * so both TCP and UDP will be checked.
6843 if (tcp_port
>= 0) {
6844 val
= (bpf_u_int32
)tcp_port
;
6845 *proto
= IPPROTO_TCP
;
6846 if (udp_port
>= 0) {
6847 if (udp_port
== tcp_port
)
6848 *proto
= PROTO_UNDEF
;
6851 /* Can't handle ambiguous names that refer
6852 to different port numbers. */
6853 warning("ambiguous port %s in /etc/services",
6860 if (udp_port
>= 0) {
6861 val
= (bpf_u_int32
)udp_port
;
6862 *proto
= IPPROTO_UDP
;
6866 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6868 longjmp(cstate
->top_ctx
, 1);
6875 /* Error already set. */
6876 longjmp(cstate
->top_ctx
, 1);
6883 /* Should not happen */
6884 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6885 longjmp(cstate
->top_ctx
, 1);
6892 * Convert a string in the form PPP-PPP, which correspond to ports, to
6893 * a starting and ending port in a port range.
6896 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6897 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6900 const char *first
, *second
;
6901 size_t first_size
, second_size
;
6904 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6905 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6908 * Make sure there are no other hyphens.
6910 * XXX - we support named ports, but there are some port names
6911 * in /etc/services that include hyphens, so this would rule
6914 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6915 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6919 * Get the length of the first port.
6922 first_size
= hyphen_off
- string
;
6923 if (first_size
== 0) {
6924 /* Range of "-port", which we don't support. */
6925 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6929 * Try to convert it to a port.
6931 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6932 save_proto
= *proto
;
6935 * Get the length of the second port.
6937 second
= hyphen_off
+ 1;
6938 second_size
= strlen(second
);
6939 if (second_size
== 0) {
6940 /* Range of "port-", which we don't support. */
6941 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6945 * Try to convert it to a port.
6947 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6948 if (*proto
!= save_proto
)
6949 *proto
= PROTO_UNDEF
;
6953 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6955 int proto
= q
.proto
;
6959 bpf_u_int32 mask
, addr
;
6960 struct addrinfo
*res
, *res0
;
6961 struct sockaddr_in
*sin4
;
6964 struct sockaddr_in6
*sin6
;
6965 struct in6_addr mask128
;
6967 struct block
*b
, *tmp
;
6968 int port
, real_proto
;
6969 bpf_u_int32 port1
, port2
;
6972 * Catch errors reported by us and routines below us, and return NULL
6975 if (setjmp(cstate
->top_ctx
))
6981 addr
= pcap_nametonetaddr(name
);
6983 bpf_error(cstate
, "unknown network '%s'", name
);
6984 /* Left justify network addr and calculate its network mask */
6986 while (addr
&& (addr
& 0xff000000) == 0) {
6990 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6994 if (proto
== Q_LINK
) {
6995 switch (cstate
->linktype
) {
6998 case DLT_NETANALYZER
:
6999 case DLT_NETANALYZER_TRANSPARENT
:
7000 eaddr
= pcap_ether_hostton(name
);
7003 "unknown ether host '%s'", name
);
7004 tmp
= gen_prevlinkhdr_check(cstate
);
7005 b
= gen_ehostop(cstate
, eaddr
, dir
);
7012 eaddr
= pcap_ether_hostton(name
);
7015 "unknown FDDI host '%s'", name
);
7016 b
= gen_fhostop(cstate
, eaddr
, dir
);
7021 eaddr
= pcap_ether_hostton(name
);
7024 "unknown token ring host '%s'", name
);
7025 b
= gen_thostop(cstate
, eaddr
, dir
);
7029 case DLT_IEEE802_11
:
7030 case DLT_PRISM_HEADER
:
7031 case DLT_IEEE802_11_RADIO_AVS
:
7032 case DLT_IEEE802_11_RADIO
:
7034 eaddr
= pcap_ether_hostton(name
);
7037 "unknown 802.11 host '%s'", name
);
7038 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
7042 case DLT_IP_OVER_FC
:
7043 eaddr
= pcap_ether_hostton(name
);
7046 "unknown Fibre Channel host '%s'", name
);
7047 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
7052 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
7053 } else if (proto
== Q_DECNET
) {
7055 * A long time ago on Ultrix libpcap supported
7056 * translation of DECnet host names into DECnet
7057 * addresses, but this feature is history now.
7059 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
7062 memset(&mask128
, 0xff, sizeof(mask128
));
7064 res0
= res
= pcap_nametoaddrinfo(name
);
7066 bpf_error(cstate
, "unknown host '%s'", name
);
7073 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
7074 tproto
== Q_DEFAULT
) {
7080 for (res
= res0
; res
; res
= res
->ai_next
) {
7081 switch (res
->ai_family
) {
7084 if (tproto
== Q_IPV6
)
7088 sin4
= (struct sockaddr_in
*)
7090 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
7091 0xffffffff, tproto
, dir
, q
.addr
);
7095 if (tproto6
== Q_IP
)
7098 sin6
= (struct sockaddr_in6
*)
7100 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
7101 &mask128
, tproto6
, dir
, q
.addr
);
7114 bpf_error(cstate
, "unknown host '%s'%s", name
,
7115 (proto
== Q_DEFAULT
)
7117 : " for specified address family");
7123 if (proto
!= Q_DEFAULT
&&
7124 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
7125 bpf_error(cstate
, "illegal qualifier of 'port'");
7126 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
7127 bpf_error(cstate
, "unknown port '%s'", name
);
7128 if (proto
== Q_UDP
) {
7129 if (real_proto
== IPPROTO_TCP
)
7130 bpf_error(cstate
, "port '%s' is tcp", name
);
7131 else if (real_proto
== IPPROTO_SCTP
)
7132 bpf_error(cstate
, "port '%s' is sctp", name
);
7134 /* override PROTO_UNDEF */
7135 real_proto
= IPPROTO_UDP
;
7137 if (proto
== Q_TCP
) {
7138 if (real_proto
== IPPROTO_UDP
)
7139 bpf_error(cstate
, "port '%s' is udp", name
);
7141 else if (real_proto
== IPPROTO_SCTP
)
7142 bpf_error(cstate
, "port '%s' is sctp", name
);
7144 /* override PROTO_UNDEF */
7145 real_proto
= IPPROTO_TCP
;
7147 if (proto
== Q_SCTP
) {
7148 if (real_proto
== IPPROTO_UDP
)
7149 bpf_error(cstate
, "port '%s' is udp", name
);
7151 else if (real_proto
== IPPROTO_TCP
)
7152 bpf_error(cstate
, "port '%s' is tcp", name
);
7154 /* override PROTO_UNDEF */
7155 real_proto
= IPPROTO_SCTP
;
7158 bpf_error(cstate
, "illegal port number %d < 0", port
);
7160 bpf_error(cstate
, "illegal port number %d > 65535", port
);
7161 b
= gen_port(cstate
, port
, real_proto
, dir
);
7162 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
7166 if (proto
!= Q_DEFAULT
&&
7167 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
7168 bpf_error(cstate
, "illegal qualifier of 'portrange'");
7169 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
7170 if (proto
== Q_UDP
) {
7171 if (real_proto
== IPPROTO_TCP
)
7172 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7173 else if (real_proto
== IPPROTO_SCTP
)
7174 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7176 /* override PROTO_UNDEF */
7177 real_proto
= IPPROTO_UDP
;
7179 if (proto
== Q_TCP
) {
7180 if (real_proto
== IPPROTO_UDP
)
7181 bpf_error(cstate
, "port in range '%s' is udp", name
);
7182 else if (real_proto
== IPPROTO_SCTP
)
7183 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7185 /* override PROTO_UNDEF */
7186 real_proto
= IPPROTO_TCP
;
7188 if (proto
== Q_SCTP
) {
7189 if (real_proto
== IPPROTO_UDP
)
7190 bpf_error(cstate
, "port in range '%s' is udp", name
);
7191 else if (real_proto
== IPPROTO_TCP
)
7192 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7194 /* override PROTO_UNDEF */
7195 real_proto
= IPPROTO_SCTP
;
7198 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
7200 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
7202 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
7203 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
7208 eaddr
= pcap_ether_hostton(name
);
7210 bpf_error(cstate
, "unknown ether host: %s", name
);
7212 res
= pcap_nametoaddrinfo(name
);
7215 bpf_error(cstate
, "unknown host '%s'", name
);
7216 b
= gen_gateway(cstate
, eaddr
, res
, proto
, dir
);
7220 bpf_error(cstate
, "unknown host '%s'", name
);
7223 bpf_error(cstate
, "'gateway' not supported in this configuration");
7227 real_proto
= lookup_proto(cstate
, name
, proto
);
7228 if (real_proto
>= 0)
7229 return gen_proto(cstate
, real_proto
, proto
, dir
);
7231 bpf_error(cstate
, "unknown protocol: %s", name
);
7233 #if !defined(NO_PROTOCHAIN)
7235 real_proto
= lookup_proto(cstate
, name
, proto
);
7236 if (real_proto
>= 0)
7237 return gen_protochain(cstate
, real_proto
, proto
);
7239 bpf_error(cstate
, "unknown protocol: %s", name
);
7240 #endif /* !defined(NO_PROTOCHAIN) */
7251 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
7252 bpf_u_int32 masklen
, struct qual q
)
7254 register int nlen
, mlen
;
7258 * Catch errors reported by us and routines below us, and return NULL
7261 if (setjmp(cstate
->top_ctx
))
7264 nlen
= __pcap_atoin(s1
, &n
);
7266 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
7267 /* Promote short ipaddr */
7271 mlen
= __pcap_atoin(s2
, &m
);
7273 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
7274 /* Promote short ipaddr */
7277 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
7280 /* Convert mask len to mask */
7282 bpf_error(cstate
, "mask length must be <= 32");
7285 * X << 32 is not guaranteed by C to be 0; it's
7290 m
= 0xffffffff << (32 - masklen
);
7292 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7299 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7302 bpf_error(cstate
, "Mask syntax for networks only");
7309 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7317 * Catch errors reported by us and routines below us, and return NULL
7320 if (setjmp(cstate
->top_ctx
))
7327 * v contains a 32-bit unsigned parsed from a string of the
7328 * form {N}, which could be decimal, hexadecimal or octal.
7329 * Although it would be possible to use the value as a raw
7330 * 16-bit DECnet address when the value fits into 16 bits, this
7331 * would be a questionable feature: DECnet address wire
7332 * encoding is little-endian, so this would not work as
7333 * intuitively as the same works for [big-endian] IPv4
7334 * addresses (0x01020304 means 1.2.3.4).
7336 if (proto
== Q_DECNET
)
7337 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7339 } else if (proto
== Q_DECNET
) {
7341 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7342 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7343 * for a valid DECnet address.
7345 vlen
= __pcap_atodn(s
, &v
);
7347 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7350 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7351 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7354 vlen
= __pcap_atoin(s
, &v
);
7356 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7364 if (proto
== Q_DECNET
)
7365 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7366 else if (proto
== Q_LINK
) {
7367 bpf_error(cstate
, "illegal link layer address");
7370 if (s
== NULL
&& q
.addr
== Q_NET
) {
7371 /* Promote short net number */
7372 while (v
&& (v
& 0xff000000) == 0) {
7377 /* Promote short ipaddr */
7379 mask
<<= 32 - vlen
;
7381 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7386 proto
= IPPROTO_UDP
;
7387 else if (proto
== Q_TCP
)
7388 proto
= IPPROTO_TCP
;
7389 else if (proto
== Q_SCTP
)
7390 proto
= IPPROTO_SCTP
;
7391 else if (proto
== Q_DEFAULT
)
7392 proto
= PROTO_UNDEF
;
7394 bpf_error(cstate
, "illegal qualifier of 'port'");
7397 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7401 b
= gen_port(cstate
, v
, proto
, dir
);
7402 gen_or(gen_port6(cstate
, v
, proto
, dir
), b
);
7408 proto
= IPPROTO_UDP
;
7409 else if (proto
== Q_TCP
)
7410 proto
= IPPROTO_TCP
;
7411 else if (proto
== Q_SCTP
)
7412 proto
= IPPROTO_SCTP
;
7413 else if (proto
== Q_DEFAULT
)
7414 proto
= PROTO_UNDEF
;
7416 bpf_error(cstate
, "illegal qualifier of 'portrange'");
7419 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7423 b
= gen_portrange(cstate
, v
, v
, proto
, dir
);
7424 gen_or(gen_portrange6(cstate
, v
, v
, proto
, dir
), b
);
7429 bpf_error(cstate
, "'gateway' requires a name");
7433 return gen_proto(cstate
, v
, proto
, dir
);
7435 #if !defined(NO_PROTOCHAIN)
7437 return gen_protochain(cstate
, v
, proto
);
7453 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7456 struct addrinfo
*res
;
7457 struct in6_addr
*addr
;
7458 struct in6_addr mask
;
7460 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7463 * Catch errors reported by us and routines below us, and return NULL
7466 if (setjmp(cstate
->top_ctx
))
7469 res
= pcap_nametoaddrinfo(s
);
7471 bpf_error(cstate
, "invalid ip6 address %s", s
);
7474 bpf_error(cstate
, "%s resolved to multiple address", s
);
7475 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7477 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7478 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7479 memset(&mask
, 0, sizeof(mask
));
7480 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7482 mask
.s6_addr
[masklen
/ 8] =
7483 (0xff << (8 - masklen
% 8)) & 0xff;
7486 memcpy(a
, addr
, sizeof(a
));
7487 memcpy(m
, &mask
, sizeof(m
));
7488 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7489 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7490 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7498 bpf_error(cstate
, "Mask syntax for networks only");
7502 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7508 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7515 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7517 struct block
*b
, *tmp
;
7520 * Catch errors reported by us and routines below us, and return NULL
7523 if (setjmp(cstate
->top_ctx
))
7526 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7527 cstate
->e
= pcap_ether_aton(s
);
7528 if (cstate
->e
== NULL
)
7529 bpf_error(cstate
, "malloc");
7530 switch (cstate
->linktype
) {
7532 case DLT_NETANALYZER
:
7533 case DLT_NETANALYZER_TRANSPARENT
:
7534 tmp
= gen_prevlinkhdr_check(cstate
);
7535 b
= gen_ehostop(cstate
, cstate
->e
, (int)q
.dir
);
7540 b
= gen_fhostop(cstate
, cstate
->e
, (int)q
.dir
);
7543 b
= gen_thostop(cstate
, cstate
->e
, (int)q
.dir
);
7545 case DLT_IEEE802_11
:
7546 case DLT_PRISM_HEADER
:
7547 case DLT_IEEE802_11_RADIO_AVS
:
7548 case DLT_IEEE802_11_RADIO
:
7550 b
= gen_wlanhostop(cstate
, cstate
->e
, (int)q
.dir
);
7552 case DLT_IP_OVER_FC
:
7553 b
= gen_ipfchostop(cstate
, cstate
->e
, (int)q
.dir
);
7558 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7565 bpf_error(cstate
, "ethernet address used in non-ether expression");
7570 sappend(struct slist
*s0
, struct slist
*s1
)
7573 * This is definitely not the best way to do this, but the
7574 * lists will rarely get long.
7581 static struct slist
*
7582 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7586 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7591 static struct slist
*
7592 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7596 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7602 * Modify "index" to use the value stored into its register as an
7603 * offset relative to the beginning of the header for the protocol
7604 * "proto", and allocate a register and put an item "size" bytes long
7605 * (1, 2, or 4) at that offset into that register, making it the register
7608 static struct arth
*
7609 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7613 struct slist
*s
, *tmp
;
7615 int regno
= alloc_reg(cstate
);
7617 free_reg(cstate
, inst
->regno
);
7621 bpf_error(cstate
, "data size must be 1, 2, or 4");
7638 bpf_error(cstate
, "unsupported index operation");
7642 * The offset is relative to the beginning of the packet
7643 * data, if we have a radio header. (If we don't, this
7646 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7647 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7648 cstate
->linktype
!= DLT_PRISM_HEADER
)
7649 bpf_error(cstate
, "radio information not present in capture");
7652 * Load into the X register the offset computed into the
7653 * register specified by "index".
7655 s
= xfer_to_x(cstate
, inst
);
7658 * Load the item at that offset.
7660 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7662 sappend(inst
->s
, s
);
7667 * The offset is relative to the beginning of
7668 * the link-layer header.
7670 * XXX - what about ATM LANE? Should the index be
7671 * relative to the beginning of the AAL5 frame, so
7672 * that 0 refers to the beginning of the LE Control
7673 * field, or relative to the beginning of the LAN
7674 * frame, so that 0 refers, for Ethernet LANE, to
7675 * the beginning of the destination address?
7677 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7680 * If "s" is non-null, it has code to arrange that the
7681 * X register contains the length of the prefix preceding
7682 * the link-layer header. Add to it the offset computed
7683 * into the register specified by "index", and move that
7684 * into the X register. Otherwise, just load into the X
7685 * register the offset computed into the register specified
7689 sappend(s
, xfer_to_a(cstate
, inst
));
7690 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7691 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7693 s
= xfer_to_x(cstate
, inst
);
7696 * Load the item at the sum of the offset we've put in the
7697 * X register and the offset of the start of the link
7698 * layer header (which is 0 if the radio header is
7699 * variable-length; that header length is what we put
7700 * into the X register and then added to the index).
7702 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7703 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7705 sappend(inst
->s
, s
);
7719 * The offset is relative to the beginning of
7720 * the network-layer header.
7721 * XXX - are there any cases where we want
7722 * cstate->off_nl_nosnap?
7724 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7727 * If "s" is non-null, it has code to arrange that the
7728 * X register contains the variable part of the offset
7729 * of the link-layer payload. Add to it the offset
7730 * computed into the register specified by "index",
7731 * and move that into the X register. Otherwise, just
7732 * load into the X register the offset computed into
7733 * the register specified by "index".
7736 sappend(s
, xfer_to_a(cstate
, inst
));
7737 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7738 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7740 s
= xfer_to_x(cstate
, inst
);
7743 * Load the item at the sum of the offset we've put in the
7744 * X register, the offset of the start of the network
7745 * layer header from the beginning of the link-layer
7746 * payload, and the constant part of the offset of the
7747 * start of the link-layer payload.
7749 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7750 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7752 sappend(inst
->s
, s
);
7755 * Do the computation only if the packet contains
7756 * the protocol in question.
7758 b
= gen_proto_abbrev_internal(cstate
, proto
);
7760 gen_and(inst
->b
, b
);
7774 * The offset is relative to the beginning of
7775 * the transport-layer header.
7777 * Load the X register with the length of the IPv4 header
7778 * (plus the offset of the link-layer header, if it's
7779 * a variable-length header), in bytes.
7781 * XXX - are there any cases where we want
7782 * cstate->off_nl_nosnap?
7783 * XXX - we should, if we're built with
7784 * IPv6 support, generate code to load either
7785 * IPv4, IPv6, or both, as appropriate.
7787 s
= gen_loadx_iphdrlen(cstate
);
7790 * The X register now contains the sum of the variable
7791 * part of the offset of the link-layer payload and the
7792 * length of the network-layer header.
7794 * Load into the A register the offset relative to
7795 * the beginning of the transport layer header,
7796 * add the X register to that, move that to the
7797 * X register, and load with an offset from the
7798 * X register equal to the sum of the constant part of
7799 * the offset of the link-layer payload and the offset,
7800 * relative to the beginning of the link-layer payload,
7801 * of the network-layer header.
7803 sappend(s
, xfer_to_a(cstate
, inst
));
7804 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7805 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7806 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7807 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7808 sappend(inst
->s
, s
);
7811 * Do the computation only if the packet contains
7812 * the protocol in question - which is true only
7813 * if this is an IP datagram and is the first or
7814 * only fragment of that datagram.
7816 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7818 gen_and(inst
->b
, b
);
7819 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7824 * Do the computation only if the packet contains
7825 * the protocol in question.
7827 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7829 gen_and(inst
->b
, b
);
7833 * Check if we have an icmp6 next header
7835 b
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, 58);
7837 gen_and(inst
->b
, b
);
7840 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7842 * If "s" is non-null, it has code to arrange that the
7843 * X register contains the variable part of the offset
7844 * of the link-layer payload. Add to it the offset
7845 * computed into the register specified by "index",
7846 * and move that into the X register. Otherwise, just
7847 * load into the X register the offset computed into
7848 * the register specified by "index".
7851 sappend(s
, xfer_to_a(cstate
, inst
));
7852 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7853 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7855 s
= xfer_to_x(cstate
, inst
);
7858 * Load the item at the sum of the offset we've put in the
7859 * X register, the offset of the start of the network
7860 * layer header from the beginning of the link-layer
7861 * payload, and the constant part of the offset of the
7862 * start of the link-layer payload.
7864 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7865 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7868 sappend(inst
->s
, s
);
7872 inst
->regno
= regno
;
7873 s
= new_stmt(cstate
, BPF_ST
);
7875 sappend(inst
->s
, s
);
7881 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7885 * Catch errors reported by us and routines below us, and return NULL
7888 if (setjmp(cstate
->top_ctx
))
7891 return gen_load_internal(cstate
, proto
, inst
, size
);
7894 static struct block
*
7895 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7896 struct arth
*a1
, int reversed
)
7898 struct slist
*s0
, *s1
, *s2
;
7899 struct block
*b
, *tmp
;
7901 s0
= xfer_to_x(cstate
, a1
);
7902 s1
= xfer_to_a(cstate
, a0
);
7903 if (code
== BPF_JEQ
) {
7904 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7905 b
= new_block(cstate
, JMP(code
));
7909 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7915 sappend(a0
->s
, a1
->s
);
7919 free_reg(cstate
, a0
->regno
);
7920 free_reg(cstate
, a1
->regno
);
7922 /* 'and' together protocol checks */
7925 gen_and(a0
->b
, tmp
= a1
->b
);
7939 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7940 struct arth
*a1
, int reversed
)
7943 * Catch errors reported by us and routines below us, and return NULL
7946 if (setjmp(cstate
->top_ctx
))
7949 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7953 gen_loadlen(compiler_state_t
*cstate
)
7960 * Catch errors reported by us and routines below us, and return NULL
7963 if (setjmp(cstate
->top_ctx
))
7966 regno
= alloc_reg(cstate
);
7967 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7968 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7969 s
->next
= new_stmt(cstate
, BPF_ST
);
7970 s
->next
->s
.k
= regno
;
7977 static struct arth
*
7978 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7984 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7986 reg
= alloc_reg(cstate
);
7988 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7990 s
->next
= new_stmt(cstate
, BPF_ST
);
7999 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
8002 * Catch errors reported by us and routines below us, and return NULL
8005 if (setjmp(cstate
->top_ctx
))
8008 return gen_loadi_internal(cstate
, val
);
8012 * The a_arg dance is to avoid annoying whining by compilers that
8013 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8014 * It's not *used* after setjmp returns.
8017 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
8019 struct arth
*a
= a_arg
;
8023 * Catch errors reported by us and routines below us, and return NULL
8026 if (setjmp(cstate
->top_ctx
))
8029 s
= xfer_to_a(cstate
, a
);
8031 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
8034 s
= new_stmt(cstate
, BPF_ST
);
8042 * The a0_arg dance is to avoid annoying whining by compilers that
8043 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8044 * It's not *used* after setjmp returns.
8047 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
8050 struct arth
*a0
= a0_arg
;
8051 struct slist
*s0
, *s1
, *s2
;
8054 * Catch errors reported by us and routines below us, and return NULL
8057 if (setjmp(cstate
->top_ctx
))
8061 * Disallow division by, or modulus by, zero; we do this here
8062 * so that it gets done even if the optimizer is disabled.
8064 * Also disallow shifts by a value greater than 31; we do this
8065 * here, for the same reason.
8067 if (code
== BPF_DIV
) {
8068 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
8069 bpf_error(cstate
, "division by zero");
8070 } else if (code
== BPF_MOD
) {
8071 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
8072 bpf_error(cstate
, "modulus by zero");
8073 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
8074 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
8075 bpf_error(cstate
, "shift by more than 31 bits");
8077 s0
= xfer_to_x(cstate
, a1
);
8078 s1
= xfer_to_a(cstate
, a0
);
8079 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
8084 sappend(a0
->s
, a1
->s
);
8086 free_reg(cstate
, a0
->regno
);
8087 free_reg(cstate
, a1
->regno
);
8089 s0
= new_stmt(cstate
, BPF_ST
);
8090 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
8097 * Initialize the table of used registers and the current register.
8100 init_regs(compiler_state_t
*cstate
)
8103 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
8107 * Return the next free register.
8110 alloc_reg(compiler_state_t
*cstate
)
8112 int n
= BPF_MEMWORDS
;
8115 if (cstate
->regused
[cstate
->curreg
])
8116 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
8118 cstate
->regused
[cstate
->curreg
] = 1;
8119 return cstate
->curreg
;
8122 bpf_error(cstate
, "too many registers needed to evaluate expression");
8127 * Return a register to the table so it can
8131 free_reg(compiler_state_t
*cstate
, int n
)
8133 cstate
->regused
[n
] = 0;
8136 static struct block
*
8137 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
8142 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
8143 b
= new_block(cstate
, JMP(jmp
));
8151 gen_greater(compiler_state_t
*cstate
, int n
)
8154 * Catch errors reported by us and routines below us, and return NULL
8157 if (setjmp(cstate
->top_ctx
))
8160 return gen_len(cstate
, BPF_JGE
, n
);
8164 * Actually, this is less than or equal.
8167 gen_less(compiler_state_t
*cstate
, int n
)
8172 * Catch errors reported by us and routines below us, and return NULL
8175 if (setjmp(cstate
->top_ctx
))
8178 b
= gen_len(cstate
, BPF_JGT
, n
);
8185 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8186 * the beginning of the link-layer header.
8187 * XXX - that means you can't test values in the radiotap header, but
8188 * as that header is difficult if not impossible to parse generally
8189 * without a loop, that might not be a severe problem. A new keyword
8190 * "radio" could be added for that, although what you'd really want
8191 * would be a way of testing particular radio header values, which
8192 * would generate code appropriate to the radio header in question.
8195 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
8201 * Catch errors reported by us and routines below us, and return NULL
8204 if (setjmp(cstate
->top_ctx
))
8212 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8215 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8219 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8223 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
8227 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8231 b
= new_block(cstate
, JMP(BPF_JEQ
));
8238 static const u_char abroadcast
[] = { 0x0 };
8241 gen_broadcast(compiler_state_t
*cstate
, int proto
)
8243 bpf_u_int32 hostmask
;
8244 struct block
*b0
, *b1
, *b2
;
8245 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8248 * Catch errors reported by us and routines below us, and return NULL
8251 if (setjmp(cstate
->top_ctx
))
8258 switch (cstate
->linktype
) {
8260 case DLT_ARCNET_LINUX
:
8261 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
8263 case DLT_NETANALYZER
:
8264 case DLT_NETANALYZER_TRANSPARENT
:
8265 b1
= gen_prevlinkhdr_check(cstate
);
8266 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
8271 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
8273 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
8274 case DLT_IEEE802_11
:
8275 case DLT_PRISM_HEADER
:
8276 case DLT_IEEE802_11_RADIO_AVS
:
8277 case DLT_IEEE802_11_RADIO
:
8279 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
8280 case DLT_IP_OVER_FC
:
8281 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
8283 bpf_error(cstate
, "not a broadcast link");
8289 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8290 * as an indication that we don't know the netmask, and fail
8293 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
8294 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
8295 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8296 hostmask
= ~cstate
->netmask
;
8297 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
8298 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
,
8299 ~0 & hostmask
, hostmask
);
8304 bpf_error(cstate
, "only link-layer/IP broadcast filters supported");
8309 * Generate code to test the low-order bit of a MAC address (that's
8310 * the bottom bit of the *first* byte).
8312 static struct block
*
8313 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
8315 register struct block
*b0
;
8316 register struct slist
*s
;
8318 /* link[offset] & 1 != 0 */
8319 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
8320 b0
= new_block(cstate
, JMP(BPF_JSET
));
8327 gen_multicast(compiler_state_t
*cstate
, int proto
)
8329 register struct block
*b0
, *b1
, *b2
;
8330 register struct slist
*s
;
8333 * Catch errors reported by us and routines below us, and return NULL
8336 if (setjmp(cstate
->top_ctx
))
8343 switch (cstate
->linktype
) {
8345 case DLT_ARCNET_LINUX
:
8346 /* all ARCnet multicasts use the same address */
8347 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
8349 case DLT_NETANALYZER
:
8350 case DLT_NETANALYZER_TRANSPARENT
:
8351 b1
= gen_prevlinkhdr_check(cstate
);
8352 /* ether[0] & 1 != 0 */
8353 b0
= gen_mac_multicast(cstate
, 0);
8359 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8361 * XXX - was that referring to bit-order issues?
8363 /* fddi[1] & 1 != 0 */
8364 return gen_mac_multicast(cstate
, 1);
8366 /* tr[2] & 1 != 0 */
8367 return gen_mac_multicast(cstate
, 2);
8368 case DLT_IEEE802_11
:
8369 case DLT_PRISM_HEADER
:
8370 case DLT_IEEE802_11_RADIO_AVS
:
8371 case DLT_IEEE802_11_RADIO
:
8376 * For control frames, there is no DA.
8378 * For management frames, DA is at an
8379 * offset of 4 from the beginning of
8382 * For data frames, DA is at an offset
8383 * of 4 from the beginning of the packet
8384 * if To DS is clear and at an offset of
8385 * 16 from the beginning of the packet
8390 * Generate the tests to be done for data frames.
8392 * First, check for To DS set, i.e. "link[1] & 0x01".
8394 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8395 b1
= new_block(cstate
, JMP(BPF_JSET
));
8396 b1
->s
.k
= 0x01; /* To DS */
8400 * If To DS is set, the DA is at 16.
8402 b0
= gen_mac_multicast(cstate
, 16);
8406 * Now, check for To DS not set, i.e. check
8407 * "!(link[1] & 0x01)".
8409 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8410 b2
= new_block(cstate
, JMP(BPF_JSET
));
8411 b2
->s
.k
= 0x01; /* To DS */
8416 * If To DS is not set, the DA is at 4.
8418 b1
= gen_mac_multicast(cstate
, 4);
8422 * Now OR together the last two checks. That gives
8423 * the complete set of checks for data frames.
8428 * Now check for a data frame.
8429 * I.e, check "link[0] & 0x08".
8431 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8432 b1
= new_block(cstate
, JMP(BPF_JSET
));
8437 * AND that with the checks done for data frames.
8442 * If the high-order bit of the type value is 0, this
8443 * is a management frame.
8444 * I.e, check "!(link[0] & 0x08)".
8446 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8447 b2
= new_block(cstate
, JMP(BPF_JSET
));
8453 * For management frames, the DA is at 4.
8455 b1
= gen_mac_multicast(cstate
, 4);
8459 * OR that with the checks done for data frames.
8460 * That gives the checks done for management and
8466 * If the low-order bit of the type value is 1,
8467 * this is either a control frame or a frame
8468 * with a reserved type, and thus not a
8471 * I.e., check "!(link[0] & 0x04)".
8473 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8474 b1
= new_block(cstate
, JMP(BPF_JSET
));
8480 * AND that with the checks for data and management
8485 case DLT_IP_OVER_FC
:
8486 b0
= gen_mac_multicast(cstate
, 2);
8491 /* Link not known to support multicasts */
8495 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8496 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8501 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8502 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8506 bpf_error(cstate
, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8511 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8513 register struct block
*b0
;
8516 * Catch errors reported by us and routines below us, and return NULL
8519 if (setjmp(cstate
->top_ctx
))
8523 * Only some data link types support ifindex qualifiers.
8525 switch (cstate
->linktype
) {
8526 case DLT_LINUX_SLL2
:
8527 /* match packets on this interface */
8528 b0
= gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8533 * This is Linux; we require PF_PACKET support.
8534 * If this is a *live* capture, we can look at
8535 * special meta-data in the filter expression;
8536 * if it's a savefile, we can't.
8538 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
8539 /* We have a FILE *, so this is a savefile */
8540 bpf_error(cstate
, "ifindex not supported on %s when reading savefiles",
8541 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8545 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8547 #else /* defined(linux) */
8548 bpf_error(cstate
, "ifindex not supported on %s",
8549 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8551 #endif /* defined(linux) */
8557 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8558 * Outbound traffic is sent by this machine, while inbound traffic is
8559 * sent by a remote machine (and may include packets destined for a
8560 * unicast or multicast link-layer address we are not subscribing to).
8561 * These are the same definitions implemented by pcap_setdirection().
8562 * Capturing only unicast traffic destined for this host is probably
8563 * better accomplished using a higher-layer filter.
8566 gen_inbound(compiler_state_t
*cstate
, int dir
)
8568 register struct block
*b0
;
8571 * Catch errors reported by us and routines below us, and return NULL
8574 if (setjmp(cstate
->top_ctx
))
8578 * Only some data link types support inbound/outbound qualifiers.
8580 switch (cstate
->linktype
) {
8582 b0
= gen_relation_internal(cstate
, BPF_JEQ
,
8583 gen_load_internal(cstate
, Q_LINK
, gen_loadi_internal(cstate
, 0), 1),
8584 gen_loadi_internal(cstate
, 0),
8590 /* match outgoing packets */
8591 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_OUTBOUND
);
8593 /* match incoming packets */
8594 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_INBOUND
);
8599 /* match outgoing packets */
8600 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8602 /* to filter on inbound traffic, invert the match */
8607 case DLT_LINUX_SLL2
:
8608 /* match outgoing packets */
8609 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8611 /* to filter on inbound traffic, invert the match */
8617 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8618 ((dir
== 0) ? PF_IN
: PF_OUT
));
8623 /* match outgoing packets */
8624 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_OUT
);
8626 /* match incoming packets */
8627 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_IN
);
8631 case DLT_JUNIPER_MFR
:
8632 case DLT_JUNIPER_MLFR
:
8633 case DLT_JUNIPER_MLPPP
:
8634 case DLT_JUNIPER_ATM1
:
8635 case DLT_JUNIPER_ATM2
:
8636 case DLT_JUNIPER_PPPOE
:
8637 case DLT_JUNIPER_PPPOE_ATM
:
8638 case DLT_JUNIPER_GGSN
:
8639 case DLT_JUNIPER_ES
:
8640 case DLT_JUNIPER_MONITOR
:
8641 case DLT_JUNIPER_SERVICES
:
8642 case DLT_JUNIPER_ETHER
:
8643 case DLT_JUNIPER_PPP
:
8644 case DLT_JUNIPER_FRELAY
:
8645 case DLT_JUNIPER_CHDLC
:
8646 case DLT_JUNIPER_VP
:
8647 case DLT_JUNIPER_ST
:
8648 case DLT_JUNIPER_ISM
:
8649 case DLT_JUNIPER_VS
:
8650 case DLT_JUNIPER_SRX_E2E
:
8651 case DLT_JUNIPER_FIBRECHANNEL
:
8652 case DLT_JUNIPER_ATM_CEMIC
:
8654 /* juniper flags (including direction) are stored
8655 * the byte after the 3-byte magic number */
8657 /* match outgoing packets */
8658 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 0, 0x01);
8660 /* match incoming packets */
8661 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 1, 0x01);
8667 * If we have packet meta-data indicating a direction,
8668 * and that metadata can be checked by BPF code, check
8669 * it. Otherwise, give up, as this link-layer type has
8670 * nothing in the packet data.
8672 * Currently, the only platform where a BPF filter can
8673 * check that metadata is Linux with the in-kernel
8674 * BPF interpreter. If other packet capture mechanisms
8675 * and BPF filters also supported this, it would be
8676 * nice. It would be even better if they made that
8677 * metadata available so that we could provide it
8678 * with newer capture APIs, allowing it to be saved
8683 * This is Linux; we require PF_PACKET support.
8684 * If this is a *live* capture, we can look at
8685 * special meta-data in the filter expression;
8686 * if it's a savefile, we can't.
8688 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
8689 /* We have a FILE *, so this is a savefile */
8690 bpf_error(cstate
, "inbound/outbound not supported on %s when reading savefiles",
8691 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8694 /* match outgoing packets */
8695 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8698 /* to filter on inbound traffic, invert the match */
8701 #else /* defined(linux) */
8702 bpf_error(cstate
, "inbound/outbound not supported on %s",
8703 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8705 #endif /* defined(linux) */
8710 /* PF firewall log matched interface */
8712 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8718 * Catch errors reported by us and routines below us, and return NULL
8721 if (setjmp(cstate
->top_ctx
))
8724 if (cstate
->linktype
!= DLT_PFLOG
) {
8725 bpf_error(cstate
, "ifname supported only on PF linktype");
8728 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8729 off
= offsetof(struct pfloghdr
, ifname
);
8730 if (strlen(ifname
) >= len
) {
8731 bpf_error(cstate
, "ifname interface names can only be %d characters",
8735 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8736 (const u_char
*)ifname
);
8740 /* PF firewall log ruleset name */
8742 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8747 * Catch errors reported by us and routines below us, and return NULL
8750 if (setjmp(cstate
->top_ctx
))
8753 if (cstate
->linktype
!= DLT_PFLOG
) {
8754 bpf_error(cstate
, "ruleset supported only on PF linktype");
8758 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8759 bpf_error(cstate
, "ruleset names can only be %ld characters",
8760 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8764 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8765 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8769 /* PF firewall log rule number */
8771 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8776 * Catch errors reported by us and routines below us, and return NULL
8779 if (setjmp(cstate
->top_ctx
))
8782 if (cstate
->linktype
!= DLT_PFLOG
) {
8783 bpf_error(cstate
, "rnr supported only on PF linktype");
8787 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8792 /* PF firewall log sub-rule number */
8794 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8799 * Catch errors reported by us and routines below us, and return NULL
8802 if (setjmp(cstate
->top_ctx
))
8805 if (cstate
->linktype
!= DLT_PFLOG
) {
8806 bpf_error(cstate
, "srnr supported only on PF linktype");
8810 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8815 /* PF firewall log reason code */
8817 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8822 * Catch errors reported by us and routines below us, and return NULL
8825 if (setjmp(cstate
->top_ctx
))
8828 if (cstate
->linktype
!= DLT_PFLOG
) {
8829 bpf_error(cstate
, "reason supported only on PF linktype");
8833 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8834 (bpf_u_int32
)reason
);
8838 /* PF firewall log action */
8840 gen_pf_action(compiler_state_t
*cstate
, int action
)
8845 * Catch errors reported by us and routines below us, and return NULL
8848 if (setjmp(cstate
->top_ctx
))
8851 if (cstate
->linktype
!= DLT_PFLOG
) {
8852 bpf_error(cstate
, "action supported only on PF linktype");
8856 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8857 (bpf_u_int32
)action
);
8861 /* IEEE 802.11 wireless header */
8863 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8868 * Catch errors reported by us and routines below us, and return NULL
8871 if (setjmp(cstate
->top_ctx
))
8874 switch (cstate
->linktype
) {
8876 case DLT_IEEE802_11
:
8877 case DLT_PRISM_HEADER
:
8878 case DLT_IEEE802_11_RADIO_AVS
:
8879 case DLT_IEEE802_11_RADIO
:
8880 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8884 bpf_error(cstate
, "802.11 link-layer types supported only on 802.11");
8892 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8897 * Catch errors reported by us and routines below us, and return NULL
8900 if (setjmp(cstate
->top_ctx
))
8903 switch (cstate
->linktype
) {
8905 case DLT_IEEE802_11
:
8906 case DLT_PRISM_HEADER
:
8907 case DLT_IEEE802_11_RADIO_AVS
:
8908 case DLT_IEEE802_11_RADIO
:
8912 bpf_error(cstate
, "frame direction supported only with 802.11 headers");
8916 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8917 IEEE80211_FC1_DIR_MASK
);
8923 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8928 * Catch errors reported by us and routines below us, and return NULL
8931 if (setjmp(cstate
->top_ctx
))
8934 switch (cstate
->linktype
) {
8937 case DLT_ARCNET_LINUX
:
8938 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8939 q
.proto
== Q_LINK
) {
8940 cstate
->e
= pcap_ether_aton(s
);
8941 if (cstate
->e
== NULL
)
8942 bpf_error(cstate
, "malloc");
8943 b
= gen_ahostop(cstate
, cstate
->e
, (int)q
.dir
);
8948 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8952 bpf_error(cstate
, "aid supported only on ARCnet");
8957 static struct block
*
8958 gen_ahostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
8960 register struct block
*b0
, *b1
;
8963 /* src comes first, different from Ethernet */
8965 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 1, eaddr
);
8968 return gen_bcmp(cstate
, OR_LINKHDR
, 1, 1, eaddr
);
8971 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8972 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8978 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8979 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8984 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
8988 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
8992 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
8996 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
9000 bpf_error(cstate
, "'ra' is only supported on 802.11");
9004 bpf_error(cstate
, "'ta' is only supported on 802.11");
9011 static struct block
*
9012 gen_vlan_tpid_test(compiler_state_t
*cstate
)
9014 struct block
*b0
, *b1
;
9016 /* check for VLAN, including 802.1ad and QinQ */
9017 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
9018 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
9021 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
9027 static struct block
*
9028 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
9030 if (vlan_num
> 0x0fff) {
9031 bpf_error(cstate
, "VLAN tag %u greater than maximum %u",
9034 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
9037 static struct block
*
9038 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
9041 struct block
*b0
, *b1
;
9043 b0
= gen_vlan_tpid_test(cstate
);
9046 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
9052 * Both payload and link header type follow the VLAN tags so that
9053 * both need to be updated.
9055 cstate
->off_linkpl
.constant_part
+= 4;
9056 cstate
->off_linktype
.constant_part
+= 4;
9061 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9062 /* add v to variable part of off */
9064 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
9065 bpf_u_int32 v
, struct slist
*s
)
9069 if (!off
->is_variable
)
9070 off
->is_variable
= 1;
9072 off
->reg
= alloc_reg(cstate
);
9074 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9077 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
9080 s2
= new_stmt(cstate
, BPF_ST
);
9086 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
9087 * and link type offsets first
9090 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
9094 /* offset determined at run time, shift variable part */
9096 cstate
->is_vlan_vloffset
= 1;
9097 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
9098 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
9100 /* we get a pointer to a chain of or-ed blocks, patch first of them */
9101 sappend(s
.next
, b_tpid
->head
->stmts
);
9102 b_tpid
->head
->stmts
= s
.next
;
9106 * patch block b_vid (VLAN id test) to load VID value either from packet
9107 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
9110 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
9112 struct slist
*s
, *s2
, *sjeq
;
9115 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
9116 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
9118 /* true -> next instructions, false -> beginning of b_vid */
9119 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
9121 sjeq
->s
.jf
= b_vid
->stmts
;
9124 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
9125 s2
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG
;
9129 /* Jump to the test in b_vid. We need to jump one instruction before
9130 * the end of the b_vid block so that we only skip loading the TCI
9131 * from packet data and not the 'and' instruction extracting VID.
9134 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
9136 s2
= new_stmt(cstate
, JMP(BPF_JA
));
9140 /* insert our statements at the beginning of b_vid */
9141 sappend(s
, b_vid
->stmts
);
9146 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9147 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9148 * tag can be either in metadata or in packet data; therefore if the
9149 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9150 * header for VLAN tag. As the decision is done at run time, we need
9151 * update variable part of the offsets
9153 static struct block
*
9154 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
9157 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
9160 /* generate new filter code based on extracting packet
9162 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
9163 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
9165 b0
= new_block(cstate
, JMP(BPF_JEQ
));
9170 * This is tricky. We need to insert the statements updating variable
9171 * parts of offsets before the traditional TPID and VID tests so
9172 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9173 * we do not want this update to affect those checks. That's why we
9174 * generate both test blocks first and insert the statements updating
9175 * variable parts of both offsets after that. This wouldn't work if
9176 * there already were variable length link header when entering this
9177 * function but gen_vlan_bpf_extensions() isn't called in that case.
9179 b_tpid
= gen_vlan_tpid_test(cstate
);
9181 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
9183 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
9188 gen_vlan_patch_vid_test(cstate
, b_vid
);
9198 * support IEEE 802.1Q VLAN trunk over ethernet
9201 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
9206 * Catch errors reported by us and routines below us, and return NULL
9209 if (setjmp(cstate
->top_ctx
))
9212 /* can't check for VLAN-encapsulated packets inside MPLS */
9213 if (cstate
->label_stack_depth
> 0)
9214 bpf_error(cstate
, "no VLAN match after MPLS");
9217 * Check for a VLAN packet, and then change the offsets to point
9218 * to the type and data fields within the VLAN packet. Just
9219 * increment the offsets, so that we can support a hierarchy, e.g.
9220 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
9223 * XXX - this is a bit of a kludge. If we were to split the
9224 * compiler into a parser that parses an expression and
9225 * generates an expression tree, and a code generator that
9226 * takes an expression tree (which could come from our
9227 * parser or from some other parser) and generates BPF code,
9228 * we could perhaps make the offsets parameters of routines
9229 * and, in the handler for an "AND" node, pass to subnodes
9230 * other than the VLAN node the adjusted offsets.
9232 * This would mean that "vlan" would, instead of changing the
9233 * behavior of *all* tests after it, change only the behavior
9234 * of tests ANDed with it. That would change the documented
9235 * semantics of "vlan", which might break some expressions.
9236 * However, it would mean that "(vlan and ip) or ip" would check
9237 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9238 * checking only for VLAN-encapsulated IP, so that could still
9239 * be considered worth doing; it wouldn't break expressions
9240 * that are of the form "vlan and ..." or "vlan N and ...",
9241 * which I suspect are the most common expressions involving
9242 * "vlan". "vlan or ..." doesn't necessarily do what the user
9243 * would really want, now, as all the "or ..." tests would
9244 * be done assuming a VLAN, even though the "or" could be viewed
9245 * as meaning "or, if this isn't a VLAN packet...".
9247 switch (cstate
->linktype
) {
9251 * Newer version of the Linux kernel pass around
9252 * packets in which the VLAN tag has been removed
9253 * from the packet data and put into metadata.
9255 * This requires special treatment.
9257 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9258 /* Verify that this is the outer part of the packet and
9259 * not encapsulated somehow. */
9260 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
9261 cstate
->off_linkhdr
.constant_part
==
9262 cstate
->off_outermostlinkhdr
.constant_part
) {
9264 * Do we need special VLAN handling?
9266 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
9267 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
9270 b0
= gen_vlan_no_bpf_extensions(cstate
,
9271 vlan_num
, has_vlan_tag
);
9274 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
9278 case DLT_NETANALYZER
:
9279 case DLT_NETANALYZER_TRANSPARENT
:
9280 case DLT_IEEE802_11
:
9281 case DLT_PRISM_HEADER
:
9282 case DLT_IEEE802_11_RADIO_AVS
:
9283 case DLT_IEEE802_11_RADIO
:
9285 * These are either Ethernet packets with an additional
9286 * metadata header (the NetAnalyzer types), or 802.11
9287 * packets, possibly with an additional metadata header.
9289 * For the first of those, the VLAN tag is in the normal
9290 * place, so the special-case handling above isn't
9293 * For the second of those, we don't do the special-case
9296 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
9300 bpf_error(cstate
, "no VLAN support for %s",
9301 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9305 cstate
->vlan_stack_depth
++;
9313 * The label_num_arg dance is to avoid annoying whining by compilers that
9314 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9315 * It's not *used* after setjmp returns.
9318 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num_arg
,
9321 volatile bpf_u_int32 label_num
= label_num_arg
;
9322 struct block
*b0
, *b1
;
9325 * Catch errors reported by us and routines below us, and return NULL
9328 if (setjmp(cstate
->top_ctx
))
9331 if (cstate
->label_stack_depth
> 0) {
9332 /* just match the bottom-of-stack bit clear */
9333 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
9336 * We're not in an MPLS stack yet, so check the link-layer
9337 * type against MPLS.
9339 switch (cstate
->linktype
) {
9341 case DLT_C_HDLC
: /* fall through */
9344 case DLT_NETANALYZER
:
9345 case DLT_NETANALYZER_TRANSPARENT
:
9346 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
9350 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
9353 /* FIXME add other DLT_s ...
9354 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9355 * leave it for now */
9358 bpf_error(cstate
, "no MPLS support for %s",
9359 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9364 /* If a specific MPLS label is requested, check it */
9365 if (has_label_num
) {
9366 if (label_num
> 0xFFFFF) {
9367 bpf_error(cstate
, "MPLS label %u greater than maximum %u",
9368 label_num
, 0xFFFFF);
9370 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
9371 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
9372 0xfffff000); /* only compare the first 20 bits */
9378 * Change the offsets to point to the type and data fields within
9379 * the MPLS packet. Just increment the offsets, so that we
9380 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9381 * capture packets with an outer label of 100000 and an inner
9384 * Increment the MPLS stack depth as well; this indicates that
9385 * we're checking MPLS-encapsulated headers, to make sure higher
9386 * level code generators don't try to match against IP-related
9387 * protocols such as Q_ARP, Q_RARP etc.
9389 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9391 cstate
->off_nl_nosnap
+= 4;
9392 cstate
->off_nl
+= 4;
9393 cstate
->label_stack_depth
++;
9398 * Support PPPOE discovery and session.
9401 gen_pppoed(compiler_state_t
*cstate
)
9404 * Catch errors reported by us and routines below us, and return NULL
9407 if (setjmp(cstate
->top_ctx
))
9410 /* check for PPPoE discovery */
9411 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
9415 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
9417 struct block
*b0
, *b1
;
9420 * Catch errors reported by us and routines below us, and return NULL
9423 if (setjmp(cstate
->top_ctx
))
9427 * Test against the PPPoE session link-layer type.
9429 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
9431 /* If a specific session is requested, check PPPoE session id */
9433 if (sess_num
> 0x0000ffff) {
9434 bpf_error(cstate
, "PPPoE session number %u greater than maximum %u",
9435 sess_num
, 0x0000ffff);
9437 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, sess_num
, 0x0000ffff);
9443 * Change the offsets to point to the type and data fields within
9444 * the PPP packet, and note that this is PPPoE rather than
9447 * XXX - this is a bit of a kludge. See the comments in
9450 * The "network-layer" protocol is PPPoE, which has a 6-byte
9451 * PPPoE header, followed by a PPP packet.
9453 * There is no HDLC encapsulation for the PPP packet (it's
9454 * encapsulated in PPPoES instead), so the link-layer type
9455 * starts at the first byte of the PPP packet. For PPPoE,
9456 * that offset is relative to the beginning of the total
9457 * link-layer payload, including any 802.2 LLC header, so
9458 * it's 6 bytes past cstate->off_nl.
9460 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9461 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9462 cstate
->off_linkpl
.reg
);
9464 cstate
->off_linktype
= cstate
->off_linkhdr
;
9465 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9468 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9473 /* Check that this is Geneve and the VNI is correct if
9474 * specified. Parameterized to handle both IPv4 and IPv6. */
9475 static struct block
*
9476 gen_geneve_check(compiler_state_t
*cstate
,
9477 struct block
*(*gen_portfn
)(compiler_state_t
*, u_int
, int, int),
9478 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9480 struct block
*b0
, *b1
;
9482 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9484 /* Check that we are operating on version 0. Otherwise, we
9485 * can't decode the rest of the fields. The version is 2 bits
9486 * in the first byte of the Geneve header. */
9487 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9492 if (vni
> 0xffffff) {
9493 bpf_error(cstate
, "Geneve VNI %u greater than maximum %u",
9496 vni
<<= 8; /* VNI is in the upper 3 bytes */
9497 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9505 /* The IPv4 and IPv6 Geneve checks need to do two things:
9506 * - Verify that this actually is Geneve with the right VNI.
9507 * - Place the IP header length (plus variable link prefix if
9508 * needed) into register A to be used later to compute
9509 * the inner packet offsets. */
9510 static struct block
*
9511 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9513 struct block
*b0
, *b1
;
9514 struct slist
*s
, *s1
;
9516 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9518 /* Load the IP header length into A. */
9519 s
= gen_loadx_iphdrlen(cstate
);
9521 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9524 /* Forcibly append these statements to the true condition
9525 * of the protocol check by creating a new block that is
9526 * always true and ANDing them. */
9527 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9536 static struct block
*
9537 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9539 struct block
*b0
, *b1
;
9540 struct slist
*s
, *s1
;
9542 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9544 /* Load the IP header length. We need to account for a
9545 * variable length link prefix if there is one. */
9546 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9548 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9552 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9556 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9560 /* Forcibly append these statements to the true condition
9561 * of the protocol check by creating a new block that is
9562 * always true and ANDing them. */
9563 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9566 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9575 /* We need to store three values based on the Geneve header::
9576 * - The offset of the linktype.
9577 * - The offset of the end of the Geneve header.
9578 * - The offset of the end of the encapsulated MAC header. */
9579 static struct slist
*
9580 gen_geneve_offsets(compiler_state_t
*cstate
)
9582 struct slist
*s
, *s1
, *s_proto
;
9584 /* First we need to calculate the offset of the Geneve header
9585 * itself. This is composed of the IP header previously calculated
9586 * (include any variable link prefix) and stored in A plus the
9587 * fixed sized headers (fixed link prefix, MAC length, and UDP
9589 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9590 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9592 /* Stash this in X since we'll need it later. */
9593 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9596 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9598 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9602 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9603 cstate
->off_linktype
.is_variable
= 1;
9604 cstate
->off_linktype
.constant_part
= 0;
9606 s1
= new_stmt(cstate
, BPF_ST
);
9607 s1
->s
.k
= cstate
->off_linktype
.reg
;
9610 /* Load the Geneve option length and mask and shift to get the
9611 * number of bytes. It is stored in the first byte of the Geneve
9613 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9617 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9621 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9625 /* Add in the rest of the Geneve base header. */
9626 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9630 /* Add the Geneve header length to its offset and store. */
9631 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9635 /* Set the encapsulated type as Ethernet. Even though we may
9636 * not actually have Ethernet inside there are two reasons this
9638 * - The linktype field is always in EtherType format regardless
9639 * of whether it is in Geneve or an inner Ethernet frame.
9640 * - The only link layer that we have specific support for is
9641 * Ethernet. We will confirm that the packet actually is
9642 * Ethernet at runtime before executing these checks. */
9643 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9645 s1
= new_stmt(cstate
, BPF_ST
);
9646 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9649 /* Calculate whether we have an Ethernet header or just raw IP/
9650 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9651 * and linktype by 14 bytes so that the network header can be found
9652 * seamlessly. Otherwise, keep what we've calculated already. */
9654 /* We have a bare jmp so we can't use the optimizer. */
9655 cstate
->no_optimize
= 1;
9657 /* Load the EtherType in the Geneve header, 2 bytes in. */
9658 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9662 /* Load X with the end of the Geneve header. */
9663 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9664 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9667 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9668 * end of this check, we should have the total length in X. In
9669 * the non-Ethernet case, it's already there. */
9670 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9671 s_proto
->s
.k
= ETHERTYPE_TEB
;
9672 sappend(s
, s_proto
);
9674 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9678 /* Since this is Ethernet, use the EtherType of the payload
9679 * directly as the linktype. Overwrite what we already have. */
9680 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9684 s1
= new_stmt(cstate
, BPF_ST
);
9685 s1
->s
.k
= cstate
->off_linktype
.reg
;
9688 /* Advance two bytes further to get the end of the Ethernet
9690 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9694 /* Move the result to X. */
9695 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9698 /* Store the final result of our linkpl calculation. */
9699 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9700 cstate
->off_linkpl
.is_variable
= 1;
9701 cstate
->off_linkpl
.constant_part
= 0;
9703 s1
= new_stmt(cstate
, BPF_STX
);
9704 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9713 /* Check to see if this is a Geneve packet. */
9715 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9717 struct block
*b0
, *b1
;
9721 * Catch errors reported by us and routines below us, and return NULL
9724 if (setjmp(cstate
->top_ctx
))
9727 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9728 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9733 /* Later filters should act on the payload of the Geneve frame,
9734 * update all of the header pointers. Attach this code so that
9735 * it gets executed in the event that the Geneve filter matches. */
9736 s
= gen_geneve_offsets(cstate
);
9738 b1
= gen_true(cstate
);
9739 sappend(s
, b1
->stmts
);
9744 cstate
->is_geneve
= 1;
9749 /* Check that the encapsulated frame has a link layer header
9750 * for Ethernet filters. */
9751 static struct block
*
9752 gen_geneve_ll_check(compiler_state_t
*cstate
)
9755 struct slist
*s
, *s1
;
9757 /* The easiest way to see if there is a link layer present
9758 * is to check if the link layer header and payload are not
9761 /* Geneve always generates pure variable offsets so we can
9762 * compare only the registers. */
9763 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9764 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9766 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9767 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9770 b0
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9778 static struct block
*
9779 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9780 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9787 if (!cstate
->is_atm
)
9788 bpf_error(cstate
, "'vpi' supported only on raw ATM");
9789 if (cstate
->off_vpi
== OFFSET_NOT_SET
)
9791 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9792 0xffffffffU
, jtype
, reverse
, jvalue
);
9796 if (!cstate
->is_atm
)
9797 bpf_error(cstate
, "'vci' supported only on raw ATM");
9798 if (cstate
->off_vci
== OFFSET_NOT_SET
)
9800 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9801 0xffffffffU
, jtype
, reverse
, jvalue
);
9805 if (cstate
->off_proto
== OFFSET_NOT_SET
)
9806 abort(); /* XXX - this isn't on FreeBSD */
9807 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
,
9808 0x0fU
, jtype
, reverse
, jvalue
);
9812 if (cstate
->off_payload
== OFFSET_NOT_SET
)
9814 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
9815 0xffffffffU
, jtype
, reverse
, jvalue
);
9819 if (!cstate
->is_atm
)
9820 bpf_error(cstate
, "'callref' supported only on raw ATM");
9821 if (cstate
->off_proto
== OFFSET_NOT_SET
)
9823 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
,
9824 0xffffffffU
, jtype
, reverse
, jvalue
);
9833 static struct block
*
9834 gen_atmtype_metac(compiler_state_t
*cstate
)
9836 struct block
*b0
, *b1
;
9838 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9839 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
9844 static struct block
*
9845 gen_atmtype_sc(compiler_state_t
*cstate
)
9847 struct block
*b0
, *b1
;
9849 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9850 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
9855 static struct block
*
9856 gen_atmtype_llc(compiler_state_t
*cstate
)
9860 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
9861 cstate
->linktype
= cstate
->prevlinktype
;
9866 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9867 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9870 * Catch errors reported by us and routines below us, and return NULL
9873 if (setjmp(cstate
->top_ctx
))
9876 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9881 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9883 struct block
*b0
, *b1
;
9886 * Catch errors reported by us and routines below us, and return NULL
9889 if (setjmp(cstate
->top_ctx
))
9895 /* Get all packets in Meta signalling Circuit */
9896 if (!cstate
->is_atm
)
9897 bpf_error(cstate
, "'metac' supported only on raw ATM");
9898 b1
= gen_atmtype_metac(cstate
);
9902 /* Get all packets in Broadcast Circuit*/
9903 if (!cstate
->is_atm
)
9904 bpf_error(cstate
, "'bcc' supported only on raw ATM");
9905 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9906 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
9911 /* Get all cells in Segment OAM F4 circuit*/
9912 if (!cstate
->is_atm
)
9913 bpf_error(cstate
, "'oam4sc' supported only on raw ATM");
9914 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9915 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9920 /* Get all cells in End-to-End OAM F4 Circuit*/
9921 if (!cstate
->is_atm
)
9922 bpf_error(cstate
, "'oam4ec' supported only on raw ATM");
9923 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9924 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9929 /* Get all packets in connection Signalling Circuit */
9930 if (!cstate
->is_atm
)
9931 bpf_error(cstate
, "'sc' supported only on raw ATM");
9932 b1
= gen_atmtype_sc(cstate
);
9936 /* Get all packets in ILMI Circuit */
9937 if (!cstate
->is_atm
)
9938 bpf_error(cstate
, "'ilmic' supported only on raw ATM");
9939 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9940 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
9945 /* Get all LANE packets */
9946 if (!cstate
->is_atm
)
9947 bpf_error(cstate
, "'lane' supported only on raw ATM");
9948 b1
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
9951 * Arrange that all subsequent tests assume LANE
9952 * rather than LLC-encapsulated packets, and set
9953 * the offsets appropriately for LANE-encapsulated
9956 * We assume LANE means Ethernet, not Token Ring.
9958 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9959 cstate
->off_payload
+ 2, /* Ethernet header */
9961 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
9962 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
9963 cstate
->off_nl
= 0; /* Ethernet II */
9964 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
9968 /* Get all LLC-encapsulated packets */
9969 if (!cstate
->is_atm
)
9970 bpf_error(cstate
, "'llc' supported only on raw ATM");
9971 b1
= gen_atmtype_llc(cstate
);
9981 * Filtering for MTP2 messages based on li value
9982 * FISU, length is null
9983 * LSSU, length is 1 or 2
9984 * MSU, length is 3 or more
9985 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9988 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
9990 struct block
*b0
, *b1
;
9993 * Catch errors reported by us and routines below us, and return NULL
9996 if (setjmp(cstate
->top_ctx
))
10002 if ( (cstate
->linktype
!= DLT_MTP2
) &&
10003 (cstate
->linktype
!= DLT_ERF
) &&
10004 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
10005 bpf_error(cstate
, "'fisu' supported only on MTP2");
10006 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
10007 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10008 0x3fU
, BPF_JEQ
, 0, 0U);
10012 if ( (cstate
->linktype
!= DLT_MTP2
) &&
10013 (cstate
->linktype
!= DLT_ERF
) &&
10014 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
10015 bpf_error(cstate
, "'lssu' supported only on MTP2");
10016 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10017 0x3fU
, BPF_JGT
, 1, 2U);
10018 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10019 0x3fU
, BPF_JGT
, 0, 0U);
10024 if ( (cstate
->linktype
!= DLT_MTP2
) &&
10025 (cstate
->linktype
!= DLT_ERF
) &&
10026 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
10027 bpf_error(cstate
, "'msu' supported only on MTP2");
10028 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10029 0x3fU
, BPF_JGT
, 0, 2U);
10033 if ( (cstate
->linktype
!= DLT_MTP2
) &&
10034 (cstate
->linktype
!= DLT_ERF
) &&
10035 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
10036 bpf_error(cstate
, "'hfisu' supported only on MTP2_HSL");
10037 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
10038 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10039 0xff80U
, BPF_JEQ
, 0, 0U);
10043 if ( (cstate
->linktype
!= DLT_MTP2
) &&
10044 (cstate
->linktype
!= DLT_ERF
) &&
10045 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
10046 bpf_error(cstate
, "'hlssu' supported only on MTP2_HSL");
10047 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10048 0xff80U
, BPF_JGT
, 1, 0x0100U
);
10049 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10050 0xff80U
, BPF_JGT
, 0, 0U);
10055 if ( (cstate
->linktype
!= DLT_MTP2
) &&
10056 (cstate
->linktype
!= DLT_ERF
) &&
10057 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
10058 bpf_error(cstate
, "'hmsu' supported only on MTP2_HSL");
10059 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10060 0xff80U
, BPF_JGT
, 0, 0x0100U
);
10070 * The jvalue_arg dance is to avoid annoying whining by compilers that
10071 * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
10072 * It's not *used* after setjmp returns.
10075 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
10076 bpf_u_int32 jvalue_arg
, int jtype
, int reverse
)
10078 volatile bpf_u_int32 jvalue
= jvalue_arg
;
10080 bpf_u_int32 val1
, val2
, val3
;
10087 * Catch errors reported by us and routines below us, and return NULL
10090 if (setjmp(cstate
->top_ctx
))
10093 newoff_sio
= cstate
->off_sio
;
10094 newoff_opc
= cstate
->off_opc
;
10095 newoff_dpc
= cstate
->off_dpc
;
10096 newoff_sls
= cstate
->off_sls
;
10097 switch (mtp3field
) {
10100 newoff_sio
+= 3; /* offset for MTP2_HSL */
10104 if (cstate
->off_sio
== OFFSET_NOT_SET
)
10105 bpf_error(cstate
, "'sio' supported only on SS7");
10106 /* sio coded on 1 byte so max value 255 */
10108 bpf_error(cstate
, "sio value %u too big; max value = 255",
10110 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, 0xffffffffU
,
10111 jtype
, reverse
, jvalue
);
10119 if (cstate
->off_opc
== OFFSET_NOT_SET
)
10120 bpf_error(cstate
, "'opc' supported only on SS7");
10121 /* opc coded on 14 bits so max value 16383 */
10122 if (jvalue
> 16383)
10123 bpf_error(cstate
, "opc value %u too big; max value = 16383",
10125 /* the following instructions are made to convert jvalue
10126 * to the form used to write opc in an ss7 message*/
10127 val1
= jvalue
& 0x00003c00;
10129 val2
= jvalue
& 0x000003fc;
10131 val3
= jvalue
& 0x00000003;
10133 jvalue
= val1
+ val2
+ val3
;
10134 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
, 0x00c0ff0fU
,
10135 jtype
, reverse
, jvalue
);
10143 if (cstate
->off_dpc
== OFFSET_NOT_SET
)
10144 bpf_error(cstate
, "'dpc' supported only on SS7");
10145 /* dpc coded on 14 bits so max value 16383 */
10146 if (jvalue
> 16383)
10147 bpf_error(cstate
, "dpc value %u too big; max value = 16383",
10149 /* the following instructions are made to convert jvalue
10150 * to the forme used to write dpc in an ss7 message*/
10151 val1
= jvalue
& 0x000000ff;
10153 val2
= jvalue
& 0x00003f00;
10155 jvalue
= val1
+ val2
;
10156 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_W
, 0xff3f0000U
,
10157 jtype
, reverse
, jvalue
);
10165 if (cstate
->off_sls
== OFFSET_NOT_SET
)
10166 bpf_error(cstate
, "'sls' supported only on SS7");
10167 /* sls coded on 4 bits so max value 15 */
10169 bpf_error(cstate
, "sls value %u too big; max value = 15",
10171 /* the following instruction is made to convert jvalue
10172 * to the forme used to write sls in an ss7 message*/
10173 jvalue
= jvalue
<< 4;
10174 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
, 0xf0U
,
10175 jtype
, reverse
, jvalue
);
10184 static struct block
*
10185 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
10190 * Q.2931 signalling protocol messages for handling virtual circuits
10191 * establishment and teardown
10196 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
10199 case A_CALLPROCEED
:
10200 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
10204 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
10208 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
10212 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
10215 case A_RELEASE_DONE
:
10216 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
10226 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
10228 struct block
*b0
, *b1
;
10231 * Catch errors reported by us and routines below us, and return NULL
10234 if (setjmp(cstate
->top_ctx
))
10240 if (!cstate
->is_atm
)
10241 bpf_error(cstate
, "'oam' supported only on raw ATM");
10243 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10244 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10246 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10251 if (!cstate
->is_atm
)
10252 bpf_error(cstate
, "'oamf4' supported only on raw ATM");
10254 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10255 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10257 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10263 * Get Q.2931 signalling messages for switched
10264 * virtual connection
10266 if (!cstate
->is_atm
)
10267 bpf_error(cstate
, "'connectmsg' supported only on raw ATM");
10268 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10269 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10271 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10273 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
10275 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10277 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10279 b0
= gen_atmtype_sc(cstate
);
10283 case A_METACONNECT
:
10284 if (!cstate
->is_atm
)
10285 bpf_error(cstate
, "'metaconnect' supported only on raw ATM");
10286 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10287 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10289 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10291 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10293 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10295 b0
= gen_atmtype_metac(cstate
);