]>
The Tcpdump Group git mirrors - libpcap/blob - optimize.c
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
24 static const char rcsid
[] =
25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.70 2001-11-12 22:02:50 fenner Exp $ (LBL)";
32 #include <sys/types.h>
45 #ifdef HAVE_OS_PROTO_H
53 #define A_ATOM BPF_MEMWORDS
54 #define X_ATOM (BPF_MEMWORDS+1)
59 * This define is used to represent *both* the accumulator and
60 * x register in use-def computations.
61 * Currently, the use-def code assumes only one definition per instruction.
63 #define AX_ATOM N_ATOMS
66 * A flag to indicate that further optimization is needed.
67 * Iterative passes are continued until a given pass yields no
73 * A block is marked if only if its mark equals the current mark.
74 * Rather than traverse the code array, marking each item, 'cur_mark' is
75 * incremented. This automatically makes each element unmarked.
78 #define isMarked(p) ((p)->mark == cur_mark)
79 #define unMarkAll() cur_mark += 1
80 #define Mark(p) ((p)->mark = cur_mark)
82 static void opt_init(struct block
*);
83 static void opt_cleanup(void);
85 static void make_marks(struct block
*);
86 static void mark_code(struct block
*);
88 static void intern_blocks(struct block
*);
90 static int eq_slist(struct slist
*, struct slist
*);
92 static void find_levels_r(struct block
*);
94 static void find_levels(struct block
*);
95 static void find_dom(struct block
*);
96 static void propedom(struct edge
*);
97 static void find_edom(struct block
*);
98 static void find_closure(struct block
*);
99 static int atomuse(struct stmt
*);
100 static int atomdef(struct stmt
*);
101 static void compute_local_ud(struct block
*);
102 static void find_ud(struct block
*);
103 static void init_val(void);
104 static int F(int, int, int);
105 static inline void vstore(struct stmt
*, int *, int, int);
106 static void opt_blk(struct block
*, int);
107 static int use_conflict(struct block
*, struct block
*);
108 static void opt_j(struct edge
*);
109 static void or_pullup(struct block
*);
110 static void and_pullup(struct block
*);
111 static void opt_blks(struct block
*, int);
112 static inline void link_inedge(struct edge
*, struct block
*);
113 static void find_inedges(struct block
*);
114 static void opt_root(struct block
**);
115 static void opt_loop(struct block
*, int);
116 static void fold_op(struct stmt
*, int, int);
117 static inline struct slist
*this_op(struct slist
*);
118 static void opt_not(struct block
*);
119 static void opt_peep(struct block
*);
120 static void opt_stmt(struct stmt
*, int[], int);
121 static void deadstmt(struct stmt
*, struct stmt
*[]);
122 static void opt_deadstores(struct block
*);
123 static void opt_blk(struct block
*, int);
124 static int use_conflict(struct block
*, struct block
*);
125 static void opt_j(struct edge
*);
126 static struct block
*fold_edge(struct block
*, struct edge
*);
127 static inline int eq_blk(struct block
*, struct block
*);
128 static int slength(struct slist
*);
129 static int count_blocks(struct block
*);
130 static void number_blks_r(struct block
*);
131 static int count_stmts(struct block
*);
132 static int convert_code_r(struct block
*);
134 static void opt_dump(struct block
*);
138 struct block
**blocks
;
143 * A bit vector set representation of the dominators.
144 * We round up the set size to the next power of two.
146 static int nodewords
;
147 static int edgewords
;
148 struct block
**levels
;
150 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
152 * True if a is in uset {p}
154 #define SET_MEMBER(p, a) \
155 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
160 #define SET_INSERT(p, a) \
161 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
164 * Delete 'a' from uset p.
166 #define SET_DELETE(p, a) \
167 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
172 #define SET_INTERSECT(a, b, n)\
174 register bpf_u_int32 *_x = a, *_y = b;\
175 register int _n = n;\
176 while (--_n >= 0) *_x++ &= *_y++;\
182 #define SET_SUBTRACT(a, b, n)\
184 register bpf_u_int32 *_x = a, *_y = b;\
185 register int _n = n;\
186 while (--_n >= 0) *_x++ &=~ *_y++;\
192 #define SET_UNION(a, b, n)\
194 register bpf_u_int32 *_x = a, *_y = b;\
195 register int _n = n;\
196 while (--_n >= 0) *_x++ |= *_y++;\
199 static uset all_dom_sets
;
200 static uset all_closure_sets
;
201 static uset all_edge_sets
;
204 #define MAX(a,b) ((a)>(b)?(a):(b))
220 find_levels_r(JT(b
));
221 find_levels_r(JF(b
));
222 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
226 b
->link
= levels
[level
];
231 * Level graph. The levels go from 0 at the leaves to
232 * N_LEVELS at the root. The levels[] array points to the
233 * first node of the level list, whose elements are linked
234 * with the 'link' field of the struct block.
240 memset((char *)levels
, 0, n_blocks
* sizeof(*levels
));
246 * Find dominator relationships.
247 * Assumes graph has been leveled.
258 * Initialize sets to contain all nodes.
261 i
= n_blocks
* nodewords
;
264 /* Root starts off empty. */
265 for (i
= nodewords
; --i
>= 0;)
268 /* root->level is the highest level no found. */
269 for (i
= root
->level
; i
>= 0; --i
) {
270 for (b
= levels
[i
]; b
; b
= b
->link
) {
271 SET_INSERT(b
->dom
, b
->id
);
274 SET_INTERSECT(JT(b
)->dom
, b
->dom
, nodewords
);
275 SET_INTERSECT(JF(b
)->dom
, b
->dom
, nodewords
);
284 SET_INSERT(ep
->edom
, ep
->id
);
286 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, edgewords
);
287 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, edgewords
);
292 * Compute edge dominators.
293 * Assumes graph has been leveled and predecessors established.
304 for (i
= n_edges
* edgewords
; --i
>= 0; )
307 /* root->level is the highest level no found. */
308 memset(root
->et
.edom
, 0, edgewords
* sizeof(*(uset
)0));
309 memset(root
->ef
.edom
, 0, edgewords
* sizeof(*(uset
)0));
310 for (i
= root
->level
; i
>= 0; --i
) {
311 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
319 * Find the backwards transitive closure of the flow graph. These sets
320 * are backwards in the sense that we find the set of nodes that reach
321 * a given node, not the set of nodes that can be reached by a node.
323 * Assumes graph has been leveled.
333 * Initialize sets to contain no nodes.
335 memset((char *)all_closure_sets
, 0,
336 n_blocks
* nodewords
* sizeof(*all_closure_sets
));
338 /* root->level is the highest level no found. */
339 for (i
= root
->level
; i
>= 0; --i
) {
340 for (b
= levels
[i
]; b
; b
= b
->link
) {
341 SET_INSERT(b
->closure
, b
->id
);
344 SET_UNION(JT(b
)->closure
, b
->closure
, nodewords
);
345 SET_UNION(JF(b
)->closure
, b
->closure
, nodewords
);
351 * Return the register number that is used by s. If A and X are both
352 * used, return AX_ATOM. If no register is used, return -1.
354 * The implementation should probably change to an array access.
360 register int c
= s
->code
;
365 switch (BPF_CLASS(c
)) {
368 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
369 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
373 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
374 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
384 if (BPF_SRC(c
) == BPF_X
)
389 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
396 * Return the register number that is defined by 's'. We assume that
397 * a single stmt cannot define more than one register. If no register
398 * is defined, return -1.
400 * The implementation should probably change to an array access.
409 switch (BPF_CLASS(s
->code
)) {
423 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
433 atomset def
= 0, use
= 0, kill
= 0;
436 for (s
= b
->stmts
; s
; s
= s
->next
) {
437 if (s
->s
.code
== NOP
)
439 atom
= atomuse(&s
->s
);
441 if (atom
== AX_ATOM
) {
442 if (!ATOMELEM(def
, X_ATOM
))
443 use
|= ATOMMASK(X_ATOM
);
444 if (!ATOMELEM(def
, A_ATOM
))
445 use
|= ATOMMASK(A_ATOM
);
447 else if (atom
< N_ATOMS
) {
448 if (!ATOMELEM(def
, atom
))
449 use
|= ATOMMASK(atom
);
454 atom
= atomdef(&s
->s
);
456 if (!ATOMELEM(use
, atom
))
457 kill
|= ATOMMASK(atom
);
458 def
|= ATOMMASK(atom
);
461 if (!ATOMELEM(def
, A_ATOM
) && BPF_CLASS(b
->s
.code
) == BPF_JMP
)
462 use
|= ATOMMASK(A_ATOM
);
470 * Assume graph is already leveled.
480 * root->level is the highest level no found;
481 * count down from there.
483 maxlevel
= root
->level
;
484 for (i
= maxlevel
; i
>= 0; --i
)
485 for (p
= levels
[i
]; p
; p
= p
->link
) {
490 for (i
= 1; i
<= maxlevel
; ++i
) {
491 for (p
= levels
[i
]; p
; p
= p
->link
) {
492 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
493 p
->in_use
|= p
->out_use
&~ p
->kill
;
499 * These data structures are used in a Cocke and Shwarz style
500 * value numbering scheme. Since the flowgraph is acyclic,
501 * exit values can be propagated from a node's predecessors
502 * provided it is uniquely defined.
508 struct valnode
*next
;
512 static struct valnode
*hashtbl
[MODULUS
];
516 /* Integer constants mapped with the load immediate opcode. */
517 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
524 struct vmapinfo
*vmap
;
525 struct valnode
*vnode_base
;
526 struct valnode
*next_vnode
;
532 next_vnode
= vnode_base
;
533 memset((char *)vmap
, 0, maxval
* sizeof(*vmap
));
534 memset((char *)hashtbl
, 0, sizeof hashtbl
);
537 /* Because we really don't have an IR, this stuff is a little messy. */
547 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
550 for (p
= hashtbl
[hash
]; p
; p
= p
->next
)
551 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
555 if (BPF_MODE(code
) == BPF_IMM
&&
556 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
557 vmap
[val
].const_val
= v0
;
558 vmap
[val
].is_const
= 1;
565 p
->next
= hashtbl
[hash
];
572 vstore(s
, valp
, newval
, alter
)
578 if (alter
&& *valp
== newval
)
591 a
= vmap
[v0
].const_val
;
592 b
= vmap
[v1
].const_val
;
594 switch (BPF_OP(s
->code
)) {
609 bpf_error("division by zero");
637 s
->code
= BPF_LD
|BPF_IMM
;
641 static inline struct slist
*
645 while (s
!= 0 && s
->s
.code
== NOP
)
654 struct block
*tmp
= JT(b
);
665 struct slist
*next
, *last
;
677 next
= this_op(s
->next
);
683 * st M[k] --> st M[k]
686 if (s
->s
.code
== BPF_ST
&&
687 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
688 s
->s
.k
== next
->s
.k
) {
690 next
->s
.code
= BPF_MISC
|BPF_TAX
;
696 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
697 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
698 s
->s
.code
= BPF_LDX
|BPF_IMM
;
699 next
->s
.code
= BPF_MISC
|BPF_TXA
;
703 * This is an ugly special case, but it happens
704 * when you say tcp[k] or udp[k] where k is a constant.
706 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
707 struct slist
*add
, *tax
, *ild
;
710 * Check that X isn't used on exit from this
711 * block (which the optimizer might cause).
712 * We know the code generator won't generate
713 * any local dependencies.
715 if (ATOMELEM(b
->out_use
, X_ATOM
))
718 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
721 add
= this_op(next
->next
);
722 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
725 tax
= this_op(add
->next
);
726 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
729 ild
= this_op(tax
->next
);
730 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
731 BPF_MODE(ild
->s
.code
) != BPF_IND
)
734 * XXX We need to check that X is not
735 * subsequently used. We know we can eliminate the
736 * accumulator modifications since it is defined
737 * by the last stmt of this sequence.
739 * We want to turn this sequence:
742 * (005) ldxms [14] {next} -- optional
745 * (008) ild [x+0] {ild}
747 * into this sequence:
765 * If we have a subtract to do a comparison, and the X register
766 * is a known constant, we can merge this value into the
769 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
) &&
770 !ATOMELEM(b
->out_use
, A_ATOM
)) {
771 val
= b
->val
[X_ATOM
];
772 if (vmap
[val
].is_const
) {
775 b
->s
.k
+= vmap
[val
].const_val
;
776 op
= BPF_OP(b
->s
.code
);
777 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
778 struct block
*t
= JT(b
);
781 b
->s
.k
+= 0x80000000;
785 } else if (b
->s
.k
== 0) {
791 b
->s
.code
= BPF_CLASS(b
->s
.code
) | BPF_OP(b
->s
.code
) |
797 * Likewise, a constant subtract can be simplified.
799 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
) &&
800 !ATOMELEM(b
->out_use
, A_ATOM
)) {
805 op
= BPF_OP(b
->s
.code
);
806 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
807 struct block
*t
= JT(b
);
810 b
->s
.k
+= 0x80000000;
818 if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
819 !ATOMELEM(b
->out_use
, A_ATOM
) && b
->s
.k
== 0) {
821 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
828 * jset #ffffffff -> always
830 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
833 if (b
->s
.k
== 0xffffffff)
837 * If the accumulator is a known constant, we can compute the
840 val
= b
->val
[A_ATOM
];
841 if (vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
842 bpf_int32 v
= vmap
[val
].const_val
;
843 switch (BPF_OP(b
->s
.code
)) {
850 v
= (unsigned)v
> b
->s
.k
;
854 v
= (unsigned)v
>= b
->s
.k
;
874 * Compute the symbolic value of expression of 's', and update
875 * anything it defines in the value table 'val'. If 'alter' is true,
876 * do various optimizations. This code would be cleaner if symbolic
877 * evaluation and code transformations weren't folded together.
880 opt_stmt(s
, val
, alter
)
890 case BPF_LD
|BPF_ABS
|BPF_W
:
891 case BPF_LD
|BPF_ABS
|BPF_H
:
892 case BPF_LD
|BPF_ABS
|BPF_B
:
893 v
= F(s
->code
, s
->k
, 0L);
894 vstore(s
, &val
[A_ATOM
], v
, alter
);
897 case BPF_LD
|BPF_IND
|BPF_W
:
898 case BPF_LD
|BPF_IND
|BPF_H
:
899 case BPF_LD
|BPF_IND
|BPF_B
:
901 if (alter
&& vmap
[v
].is_const
) {
902 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
903 s
->k
+= vmap
[v
].const_val
;
904 v
= F(s
->code
, s
->k
, 0L);
908 v
= F(s
->code
, s
->k
, v
);
909 vstore(s
, &val
[A_ATOM
], v
, alter
);
913 v
= F(s
->code
, 0L, 0L);
914 vstore(s
, &val
[A_ATOM
], v
, alter
);
919 vstore(s
, &val
[A_ATOM
], v
, alter
);
922 case BPF_LDX
|BPF_IMM
:
924 vstore(s
, &val
[X_ATOM
], v
, alter
);
927 case BPF_LDX
|BPF_MSH
|BPF_B
:
928 v
= F(s
->code
, s
->k
, 0L);
929 vstore(s
, &val
[X_ATOM
], v
, alter
);
932 case BPF_ALU
|BPF_NEG
:
933 if (alter
&& vmap
[val
[A_ATOM
]].is_const
) {
934 s
->code
= BPF_LD
|BPF_IMM
;
935 s
->k
= -vmap
[val
[A_ATOM
]].const_val
;
936 val
[A_ATOM
] = K(s
->k
);
939 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], 0L);
942 case BPF_ALU
|BPF_ADD
|BPF_K
:
943 case BPF_ALU
|BPF_SUB
|BPF_K
:
944 case BPF_ALU
|BPF_MUL
|BPF_K
:
945 case BPF_ALU
|BPF_DIV
|BPF_K
:
946 case BPF_ALU
|BPF_AND
|BPF_K
:
947 case BPF_ALU
|BPF_OR
|BPF_K
:
948 case BPF_ALU
|BPF_LSH
|BPF_K
:
949 case BPF_ALU
|BPF_RSH
|BPF_K
:
950 op
= BPF_OP(s
->code
);
953 /* don't optimize away "sub #0"
954 * as it may be needed later to
955 * fixup the generated math code */
957 op
== BPF_LSH
|| op
== BPF_RSH
||
962 if (op
== BPF_MUL
|| op
== BPF_AND
) {
963 s
->code
= BPF_LD
|BPF_IMM
;
964 val
[A_ATOM
] = K(s
->k
);
968 if (vmap
[val
[A_ATOM
]].is_const
) {
969 fold_op(s
, val
[A_ATOM
], K(s
->k
));
970 val
[A_ATOM
] = K(s
->k
);
974 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], K(s
->k
));
977 case BPF_ALU
|BPF_ADD
|BPF_X
:
978 case BPF_ALU
|BPF_SUB
|BPF_X
:
979 case BPF_ALU
|BPF_MUL
|BPF_X
:
980 case BPF_ALU
|BPF_DIV
|BPF_X
:
981 case BPF_ALU
|BPF_AND
|BPF_X
:
982 case BPF_ALU
|BPF_OR
|BPF_X
:
983 case BPF_ALU
|BPF_LSH
|BPF_X
:
984 case BPF_ALU
|BPF_RSH
|BPF_X
:
985 op
= BPF_OP(s
->code
);
986 if (alter
&& vmap
[val
[X_ATOM
]].is_const
) {
987 if (vmap
[val
[A_ATOM
]].is_const
) {
988 fold_op(s
, val
[A_ATOM
], val
[X_ATOM
]);
989 val
[A_ATOM
] = K(s
->k
);
992 s
->code
= BPF_ALU
|BPF_K
|op
;
993 s
->k
= vmap
[val
[X_ATOM
]].const_val
;
996 F(s
->code
, val
[A_ATOM
], K(s
->k
));
1001 * Check if we're doing something to an accumulator
1002 * that is 0, and simplify. This may not seem like
1003 * much of a simplification but it could open up further
1005 * XXX We could also check for mul by 1, and -1, etc.
1007 if (alter
&& vmap
[val
[A_ATOM
]].is_const
1008 && vmap
[val
[A_ATOM
]].const_val
== 0) {
1009 if (op
== BPF_ADD
|| op
== BPF_OR
||
1010 op
== BPF_LSH
|| op
== BPF_RSH
|| op
== BPF_SUB
) {
1011 s
->code
= BPF_MISC
|BPF_TXA
;
1012 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1015 else if (op
== BPF_MUL
|| op
== BPF_DIV
||
1017 s
->code
= BPF_LD
|BPF_IMM
;
1019 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1022 else if (op
== BPF_NEG
) {
1027 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1030 case BPF_MISC
|BPF_TXA
:
1031 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1034 case BPF_LD
|BPF_MEM
:
1036 if (alter
&& vmap
[v
].is_const
) {
1037 s
->code
= BPF_LD
|BPF_IMM
;
1038 s
->k
= vmap
[v
].const_val
;
1041 vstore(s
, &val
[A_ATOM
], v
, alter
);
1044 case BPF_MISC
|BPF_TAX
:
1045 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1048 case BPF_LDX
|BPF_MEM
:
1050 if (alter
&& vmap
[v
].is_const
) {
1051 s
->code
= BPF_LDX
|BPF_IMM
;
1052 s
->k
= vmap
[v
].const_val
;
1055 vstore(s
, &val
[X_ATOM
], v
, alter
);
1059 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1063 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1070 register struct stmt
*s
;
1071 register struct stmt
*last
[];
1077 if (atom
== AX_ATOM
) {
1088 last
[atom
]->code
= NOP
;
1096 register struct block
*b
;
1098 register struct slist
*s
;
1100 struct stmt
*last
[N_ATOMS
];
1102 memset((char *)last
, 0, sizeof last
);
1104 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1105 deadstmt(&s
->s
, last
);
1106 deadstmt(&b
->s
, last
);
1108 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1109 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1110 last
[atom
]->code
= NOP
;
1116 opt_blk(b
, do_stmts
)
1126 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1127 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1134 * Initialize the atom values.
1135 * If we have no predecessors, everything is undefined.
1136 * Otherwise, we inherent our values from our predecessors.
1137 * If any register has an ambiguous value (i.e. control paths are
1138 * merging) give it the undefined value of 0.
1142 memset((char *)b
->val
, 0, sizeof(b
->val
));
1144 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1145 while ((p
= p
->next
) != NULL
) {
1146 for (i
= 0; i
< N_ATOMS
; ++i
)
1147 if (b
->val
[i
] != p
->pred
->val
[i
])
1151 aval
= b
->val
[A_ATOM
];
1152 for (s
= b
->stmts
; s
; s
= s
->next
)
1153 opt_stmt(&s
->s
, b
->val
, do_stmts
);
1156 * This is a special case: if we don't use anything from this
1157 * block, and we load the accumulator with value that is
1158 * already there, or if this block is a return,
1159 * eliminate all the statements.
1162 ((b
->out_use
== 0 && aval
!= 0 &&b
->val
[A_ATOM
] == aval
) ||
1163 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1164 if (b
->stmts
!= 0) {
1173 * Set up values for branch optimizer.
1175 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1176 b
->oval
= K(b
->s
.k
);
1178 b
->oval
= b
->val
[X_ATOM
];
1179 b
->et
.code
= b
->s
.code
;
1180 b
->ef
.code
= -b
->s
.code
;
1184 * Return true if any register that is used on exit from 'succ', has
1185 * an exit value that is different from the corresponding exit value
1189 use_conflict(b
, succ
)
1190 struct block
*b
, *succ
;
1193 atomset use
= succ
->out_use
;
1198 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1199 if (ATOMELEM(use
, atom
))
1200 if (b
->val
[atom
] != succ
->val
[atom
])
1205 static struct block
*
1206 fold_edge(child
, ep
)
1207 struct block
*child
;
1211 int aval0
, aval1
, oval0
, oval1
;
1212 int code
= ep
->code
;
1220 if (child
->s
.code
!= code
)
1223 aval0
= child
->val
[A_ATOM
];
1224 oval0
= child
->oval
;
1225 aval1
= ep
->pred
->val
[A_ATOM
];
1226 oval1
= ep
->pred
->oval
;
1233 * The operands are identical, so the
1234 * result is true if a true branch was
1235 * taken to get here, otherwise false.
1237 return sense
? JT(child
) : JF(child
);
1239 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1241 * At this point, we only know the comparison if we
1242 * came down the true branch, and it was an equality
1243 * comparison with a constant. We rely on the fact that
1244 * distinct constants have distinct value numbers.
1256 register struct block
*target
;
1258 if (JT(ep
->succ
) == 0)
1261 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1263 * Common branch targets can be eliminated, provided
1264 * there is no data dependency.
1266 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1268 ep
->succ
= JT(ep
->succ
);
1272 * For each edge dominator that matches the successor of this
1273 * edge, promote the edge successor to the its grandchild.
1275 * XXX We violate the set abstraction here in favor a reasonably
1279 for (i
= 0; i
< edgewords
; ++i
) {
1280 register bpf_u_int32 x
= ep
->edom
[i
];
1285 k
+= i
* BITS_PER_WORD
;
1287 target
= fold_edge(ep
->succ
, edges
[k
]);
1289 * Check that there is no data dependency between
1290 * nodes that will be violated if we move the edge.
1292 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1295 if (JT(target
) != 0)
1297 * Start over unless we hit a leaf.
1313 struct block
**diffp
, **samep
;
1321 * Make sure each predecessor loads the same value.
1324 val
= ep
->pred
->val
[A_ATOM
];
1325 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1326 if (val
!= ep
->pred
->val
[A_ATOM
])
1329 if (JT(b
->in_edges
->pred
) == b
)
1330 diffp
= &JT(b
->in_edges
->pred
);
1332 diffp
= &JF(b
->in_edges
->pred
);
1339 if (JT(*diffp
) != JT(b
))
1342 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1345 if ((*diffp
)->val
[A_ATOM
] != val
)
1348 diffp
= &JF(*diffp
);
1351 samep
= &JF(*diffp
);
1356 if (JT(*samep
) != JT(b
))
1359 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1362 if ((*samep
)->val
[A_ATOM
] == val
)
1365 /* XXX Need to check that there are no data dependencies
1366 between dp0 and dp1. Currently, the code generator
1367 will not produce such dependencies. */
1368 samep
= &JF(*samep
);
1371 /* XXX This doesn't cover everything. */
1372 for (i
= 0; i
< N_ATOMS
; ++i
)
1373 if ((*samep
)->val
[i
] != pred
->val
[i
])
1376 /* Pull up the node. */
1382 * At the top of the chain, each predecessor needs to point at the
1383 * pulled up node. Inside the chain, there is only one predecessor
1387 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1388 if (JT(ep
->pred
) == b
)
1389 JT(ep
->pred
) = pull
;
1391 JF(ep
->pred
) = pull
;
1406 struct block
**diffp
, **samep
;
1414 * Make sure each predecessor loads the same value.
1416 val
= ep
->pred
->val
[A_ATOM
];
1417 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1418 if (val
!= ep
->pred
->val
[A_ATOM
])
1421 if (JT(b
->in_edges
->pred
) == b
)
1422 diffp
= &JT(b
->in_edges
->pred
);
1424 diffp
= &JF(b
->in_edges
->pred
);
1431 if (JF(*diffp
) != JF(b
))
1434 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1437 if ((*diffp
)->val
[A_ATOM
] != val
)
1440 diffp
= &JT(*diffp
);
1443 samep
= &JT(*diffp
);
1448 if (JF(*samep
) != JF(b
))
1451 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1454 if ((*samep
)->val
[A_ATOM
] == val
)
1457 /* XXX Need to check that there are no data dependencies
1458 between diffp and samep. Currently, the code generator
1459 will not produce such dependencies. */
1460 samep
= &JT(*samep
);
1463 /* XXX This doesn't cover everything. */
1464 for (i
= 0; i
< N_ATOMS
; ++i
)
1465 if ((*samep
)->val
[i
] != pred
->val
[i
])
1468 /* Pull up the node. */
1474 * At the top of the chain, each predecessor needs to point at the
1475 * pulled up node. Inside the chain, there is only one predecessor
1479 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1480 if (JT(ep
->pred
) == b
)
1481 JT(ep
->pred
) = pull
;
1483 JF(ep
->pred
) = pull
;
1493 opt_blks(root
, do_stmts
)
1501 maxlevel
= root
->level
;
1504 for (i
= maxlevel
; i
>= 0; --i
)
1505 for (p
= levels
[i
]; p
; p
= p
->link
)
1506 opt_blk(p
, do_stmts
);
1510 * No point trying to move branches; it can't possibly
1511 * make a difference at this point.
1515 for (i
= 1; i
<= maxlevel
; ++i
) {
1516 for (p
= levels
[i
]; p
; p
= p
->link
) {
1523 for (i
= 1; i
<= maxlevel
; ++i
) {
1524 for (p
= levels
[i
]; p
; p
= p
->link
) {
1532 link_inedge(parent
, child
)
1533 struct edge
*parent
;
1534 struct block
*child
;
1536 parent
->next
= child
->in_edges
;
1537 child
->in_edges
= parent
;
1547 for (i
= 0; i
< n_blocks
; ++i
)
1548 blocks
[i
]->in_edges
= 0;
1551 * Traverse the graph, adding each edge to the predecessor
1552 * list of its successors. Skip the leaves (i.e. level 0).
1554 for (i
= root
->level
; i
> 0; --i
) {
1555 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
1556 link_inedge(&b
->et
, JT(b
));
1557 link_inedge(&b
->ef
, JF(b
));
1566 struct slist
*tmp
, *s
;
1570 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1579 * If the root node is a return, then there is no
1580 * point executing any statements (since the bpf machine
1581 * has no side effects).
1583 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1588 opt_loop(root
, do_stmts
)
1595 printf("opt_loop(root, %d) begin\n", do_stmts
);
1606 opt_blks(root
, do_stmts
);
1609 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, done
);
1617 * Optimize the filter code in its dag representation.
1621 struct block
**rootp
;
1630 intern_blocks(root
);
1633 printf("after intern_blocks()\n");
1640 printf("after opt_root()\n");
1653 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1661 * Mark code array such that isMarked(i) is true
1662 * only for nodes that are alive.
1673 * True iff the two stmt lists load the same value from the packet into
1678 struct slist
*x
, *y
;
1681 while (x
&& x
->s
.code
== NOP
)
1683 while (y
&& y
->s
.code
== NOP
)
1689 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1698 struct block
*b0
, *b1
;
1700 if (b0
->s
.code
== b1
->s
.code
&&
1701 b0
->s
.k
== b1
->s
.k
&&
1702 b0
->et
.succ
== b1
->et
.succ
&&
1703 b0
->ef
.succ
== b1
->ef
.succ
)
1704 return eq_slist(b0
->stmts
, b1
->stmts
);
1717 for (i
= 0; i
< n_blocks
; ++i
)
1718 blocks
[i
]->link
= 0;
1722 for (i
= n_blocks
- 1; --i
>= 0; ) {
1723 if (!isMarked(blocks
[i
]))
1725 for (j
= i
+ 1; j
< n_blocks
; ++j
) {
1726 if (!isMarked(blocks
[j
]))
1728 if (eq_blk(blocks
[i
], blocks
[j
])) {
1729 blocks
[i
]->link
= blocks
[j
]->link
?
1730 blocks
[j
]->link
: blocks
[j
];
1735 for (i
= 0; i
< n_blocks
; ++i
) {
1741 JT(p
) = JT(p
)->link
;
1745 JF(p
) = JF(p
)->link
;
1755 free((void *)vnode_base
);
1757 free((void *)edges
);
1758 free((void *)space
);
1759 free((void *)levels
);
1760 free((void *)blocks
);
1764 * Return the number of stmts in 's'.
1772 for (; s
; s
= s
->next
)
1773 if (s
->s
.code
!= NOP
)
1779 * Return the number of nodes reachable by 'p'.
1780 * All nodes should be initially unmarked.
1786 if (p
== 0 || isMarked(p
))
1789 return count_blocks(JT(p
)) + count_blocks(JF(p
)) + 1;
1793 * Do a depth first search on the flow graph, numbering the
1794 * the basic blocks, and entering them into the 'blocks' array.`
1802 if (p
== 0 || isMarked(p
))
1810 number_blks_r(JT(p
));
1811 number_blks_r(JF(p
));
1815 * Return the number of stmts in the flowgraph reachable by 'p'.
1816 * The nodes should be unmarked before calling.
1818 * Note that "stmts" means "instructions", and that this includes
1820 * side-effect statements in 'p' (slength(p->stmts));
1822 * statements in the true branch from 'p' (count_stmts(JT(p)));
1824 * statements in the false branch from 'p' (count_stmts(JF(p)));
1826 * the conditional jump itself (1);
1828 * an extra long jump if the true branch requires it (p->longjt);
1830 * an extra long jump if the false branch requires it (p->longjf).
1838 if (p
== 0 || isMarked(p
))
1841 n
= count_stmts(JT(p
)) + count_stmts(JF(p
));
1842 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
1846 * Allocate memory. All allocation is done before optimization
1847 * is begun. A linear bound on the size of all data structures is computed
1848 * from the total number of blocks and/or statements.
1855 int i
, n
, max_stmts
;
1858 * First, count the blocks, so we can malloc an array to map
1859 * block number to block. Then, put the blocks into the array.
1862 n
= count_blocks(root
);
1863 blocks
= (struct block
**)malloc(n
* sizeof(*blocks
));
1866 number_blks_r(root
);
1868 n_edges
= 2 * n_blocks
;
1869 edges
= (struct edge
**)malloc(n_edges
* sizeof(*edges
));
1872 * The number of levels is bounded by the number of nodes.
1874 levels
= (struct block
**)malloc(n_blocks
* sizeof(*levels
));
1876 edgewords
= n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
1877 nodewords
= n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
1880 space
= (bpf_u_int32
*)malloc(2 * n_blocks
* nodewords
* sizeof(*space
)
1881 + n_edges
* edgewords
* sizeof(*space
));
1884 for (i
= 0; i
< n
; ++i
) {
1888 all_closure_sets
= p
;
1889 for (i
= 0; i
< n
; ++i
) {
1890 blocks
[i
]->closure
= p
;
1894 for (i
= 0; i
< n
; ++i
) {
1895 register struct block
*b
= blocks
[i
];
1903 b
->ef
.id
= n_blocks
+ i
;
1904 edges
[n_blocks
+ i
] = &b
->ef
;
1909 for (i
= 0; i
< n
; ++i
)
1910 max_stmts
+= slength(blocks
[i
]->stmts
) + 1;
1912 * We allocate at most 3 value numbers per statement,
1913 * so this is an upper bound on the number of valnodes
1916 maxval
= 3 * max_stmts
;
1917 vmap
= (struct vmapinfo
*)malloc(maxval
* sizeof(*vmap
));
1918 vnode_base
= (struct valnode
*)malloc(maxval
* sizeof(*vnode_base
));
1922 * Some pointers used to convert the basic block form of the code,
1923 * into the array form that BPF requires. 'fstart' will point to
1924 * the malloc'd array while 'ftail' is used during the recursive traversal.
1926 static struct bpf_insn
*fstart
;
1927 static struct bpf_insn
*ftail
;
1934 * Returns true if successful. Returns false if a branch has
1935 * an offset that is too large. If so, we have marked that
1936 * branch so that on a subsequent iteration, it will be treated
1943 struct bpf_insn
*dst
;
1947 int extrajmps
; /* number of extra jumps inserted */
1948 struct slist
**offset
= NULL
;
1950 if (p
== 0 || isMarked(p
))
1954 if (convert_code_r(JF(p
)) == 0)
1956 if (convert_code_r(JT(p
)) == 0)
1959 slen
= slength(p
->stmts
);
1960 dst
= ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
1961 /* inflate length by any extra jumps */
1963 p
->offset
= dst
- fstart
;
1965 /* generate offset[] for convenience */
1967 offset
= (struct slist
**)calloc(sizeof(struct slist
*), slen
);
1969 bpf_error("not enough core");
1974 for (off
= 0; off
< slen
&& src
; off
++) {
1976 printf("off=%d src=%x\n", off
, src
);
1983 for (src
= p
->stmts
; src
; src
= src
->next
) {
1984 if (src
->s
.code
== NOP
)
1986 dst
->code
= (u_short
)src
->s
.code
;
1989 /* fill block-local relative jump */
1990 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
1992 if (src
->s
.jt
|| src
->s
.jf
) {
1993 bpf_error("illegal jmp destination");
1999 if (off
== slen
- 2) /*???*/
2005 char *ljerr
= "%s for block-local relative jump: off=%d";
2008 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2009 off
, src
->s
.jt
, src
->s
.jf
);
2012 if (!src
->s
.jt
|| !src
->s
.jf
) {
2013 bpf_error(ljerr
, "no jmp destination", off
);
2018 for (i
= 0; i
< slen
; i
++) {
2019 if (offset
[i
] == src
->s
.jt
) {
2021 bpf_error(ljerr
, "multiple matches", off
);
2025 dst
->jt
= i
- off
- 1;
2028 if (offset
[i
] == src
->s
.jf
) {
2030 bpf_error(ljerr
, "multiple matches", off
);
2033 dst
->jf
= i
- off
- 1;
2038 bpf_error(ljerr
, "no destination found", off
);
2050 bids
[dst
- fstart
] = p
->id
+ 1;
2052 dst
->code
= (u_short
)p
->s
.code
;
2056 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2058 /* offset too large for branch, must add a jump */
2059 if (p
->longjt
== 0) {
2060 /* mark this instruction and retry */
2064 /* branch if T to following jump */
2065 dst
->jt
= extrajmps
;
2067 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2068 dst
[extrajmps
].k
= off
- extrajmps
;
2072 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2074 /* offset too large for branch, must add a jump */
2075 if (p
->longjf
== 0) {
2076 /* mark this instruction and retry */
2080 /* branch if F to following jump */
2081 /* if two jumps are inserted, F goes to second one */
2082 dst
->jf
= extrajmps
;
2084 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2085 dst
[extrajmps
].k
= off
- extrajmps
;
2095 * Convert flowgraph intermediate representation to the
2096 * BPF array representation. Set *lenp to the number of instructions.
2099 icode_to_fcode(root
, lenp
)
2104 struct bpf_insn
*fp
;
2107 * Loop doing convert_code_r() until no branches remain
2108 * with too-large offsets.
2112 n
= *lenp
= count_stmts(root
);
2114 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2115 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2120 if (convert_code_r(root
))
2129 * Make a copy of a BPF program and put it in the "fcode" member of
2132 * If we fail to allocate memory for the copy, fill in the "errbuf"
2133 * member of the "pcap_t" with an error message, and return -1;
2134 * otherwise, return 0.
2137 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2142 * Free up any already installed program.
2144 pcap_freecode(&p
->fcode
);
2146 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2147 p
->fcode
.bf_len
= fp
->bf_len
;
2148 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2149 if (p
->fcode
.bf_insns
== NULL
) {
2150 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2151 "malloc: %s", pcap_strerror(errno
));
2154 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2163 struct bpf_program f
;
2165 memset(bids
, 0, sizeof bids
);
2166 f
.bf_insns
= icode_to_fcode(root
, &f
.bf_len
);
2169 free((char *)f
.bf_insns
);