]> The Tcpdump Group git mirrors - libpcap/blob - pcap-linux.c
Add a "pcap_get_selectable_fd()" API to get an FD on which you can do a
[libpcap] / pcap-linux.c
1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 */
27
28 #ifndef lint
29 static const char rcsid[] _U_ =
30 "@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.102 2003-11-21 10:19:34 guy Exp $ (LBL)";
31 #endif
32
33 /*
34 * Known problems with 2.0[.x] kernels:
35 *
36 * - The loopback device gives every packet twice; on 2.2[.x] kernels,
37 * if we use PF_PACKET, we can filter out the transmitted version
38 * of the packet by using data in the "sockaddr_ll" returned by
39 * "recvfrom()", but, on 2.0[.x] kernels, we have to use
40 * PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a
41 * "sockaddr_pkt" which doesn't give us enough information to let
42 * us do that.
43 *
44 * - We have to set the interface's IFF_PROMISC flag ourselves, if
45 * we're to run in promiscuous mode, which means we have to turn
46 * it off ourselves when we're done; the kernel doesn't keep track
47 * of how many sockets are listening promiscuously, which means
48 * it won't get turned off automatically when no sockets are
49 * listening promiscuously. We catch "pcap_close()" and, for
50 * interfaces we put into promiscuous mode, take them out of
51 * promiscuous mode - which isn't necessarily the right thing to
52 * do, if another socket also requested promiscuous mode between
53 * the time when we opened the socket and the time when we close
54 * the socket.
55 *
56 * - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()"
57 * return the amount of data that you could have read, rather than
58 * the amount that was returned, so we can't just allocate a buffer
59 * whose size is the snapshot length and pass the snapshot length
60 * as the byte count, and also pass MSG_TRUNC, so that the return
61 * value tells us how long the packet was on the wire.
62 *
63 * This means that, if we want to get the actual size of the packet,
64 * so we can return it in the "len" field of the packet header,
65 * we have to read the entire packet, not just the part that fits
66 * within the snapshot length, and thus waste CPU time copying data
67 * from the kernel that our caller won't see.
68 *
69 * We have to get the actual size, and supply it in "len", because
70 * otherwise, the IP dissector in tcpdump, for example, will complain
71 * about "truncated-ip", as the packet will appear to have been
72 * shorter, on the wire, than the IP header said it should have been.
73 */
74
75
76 #ifdef HAVE_CONFIG_H
77 #include "config.h"
78 #endif
79
80 #include "pcap-int.h"
81 #include "sll.h"
82
83 #ifdef HAVE_DAG_API
84 #include "pcap-dag.h"
85 #endif /* HAVE_DAG_API */
86
87 #include <errno.h>
88 #include <stdlib.h>
89 #include <unistd.h>
90 #include <fcntl.h>
91 #include <string.h>
92 #include <sys/socket.h>
93 #include <sys/ioctl.h>
94 #include <sys/utsname.h>
95 #include <net/if.h>
96 #include <netinet/in.h>
97 #include <linux/if_ether.h>
98 #include <net/if_arp.h>
99
100 /*
101 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET
102 * sockets rather than SOCK_PACKET sockets.
103 *
104 * To use them, we include <linux/if_packet.h> rather than
105 * <netpacket/packet.h>; we do so because
106 *
107 * some Linux distributions (e.g., Slackware 4.0) have 2.2 or
108 * later kernels and libc5, and don't provide a <netpacket/packet.h>
109 * file;
110 *
111 * not all versions of glibc2 have a <netpacket/packet.h> file
112 * that defines stuff needed for some of the 2.4-or-later-kernel
113 * features, so if the system has a 2.4 or later kernel, we
114 * still can't use those features.
115 *
116 * We're already including a number of other <linux/XXX.h> headers, and
117 * this code is Linux-specific (no other OS has PF_PACKET sockets as
118 * a raw packet capture mechanism), so it's not as if you gain any
119 * useful portability by using <netpacket/packet.h>
120 *
121 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET
122 * isn't defined? It only defines one data structure in 2.0.x, so
123 * it shouldn't cause any problems.
124 */
125 #ifdef PF_PACKET
126 # include <linux/if_packet.h>
127
128 /*
129 * On at least some Linux distributions (for example, Red Hat 5.2),
130 * there's no <netpacket/packet.h> file, but PF_PACKET is defined if
131 * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define
132 * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of
133 * the PACKET_xxx stuff.
134 *
135 * So we check whether PACKET_HOST is defined, and assume that we have
136 * PF_PACKET sockets only if it is defined.
137 */
138 # ifdef PACKET_HOST
139 # define HAVE_PF_PACKET_SOCKETS
140 # endif /* PACKET_HOST */
141 #endif /* PF_PACKET */
142
143 #ifdef SO_ATTACH_FILTER
144 #include <linux/types.h>
145 #include <linux/filter.h>
146 #endif
147
148 #ifndef __GLIBC__
149 typedef int socklen_t;
150 #endif
151
152 #ifndef MSG_TRUNC
153 /*
154 * This is being compiled on a system that lacks MSG_TRUNC; define it
155 * with the value it has in the 2.2 and later kernels, so that, on
156 * those kernels, when we pass it in the flags argument to "recvfrom()"
157 * we're passing the right value and thus get the MSG_TRUNC behavior
158 * we want. (We don't get that behavior on 2.0[.x] kernels, because
159 * they didn't support MSG_TRUNC.)
160 */
161 #define MSG_TRUNC 0x20
162 #endif
163
164 #ifndef SOL_PACKET
165 /*
166 * This is being compiled on a system that lacks SOL_PACKET; define it
167 * with the value it has in the 2.2 and later kernels, so that we can
168 * set promiscuous mode in the good modern way rather than the old
169 * 2.0-kernel crappy way.
170 */
171 #define SOL_PACKET 263
172 #endif
173
174 #define MAX_LINKHEADER_SIZE 256
175
176 /*
177 * When capturing on all interfaces we use this as the buffer size.
178 * Should be bigger then all MTUs that occur in real life.
179 * 64kB should be enough for now.
180 */
181 #define BIGGER_THAN_ALL_MTUS (64*1024)
182
183 /*
184 * Prototypes for internal functions
185 */
186 static void map_arphrd_to_dlt(pcap_t *, int, int);
187 static int live_open_old(pcap_t *, const char *, int, int, char *);
188 static int live_open_new(pcap_t *, const char *, int, int, char *);
189 static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *);
190 static int pcap_read_packet(pcap_t *, pcap_handler, u_char *);
191 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
192 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
193 static void pcap_close_linux(pcap_t *);
194
195 /*
196 * Wrap some ioctl calls
197 */
198 #ifdef HAVE_PF_PACKET_SOCKETS
199 static int iface_get_id(int fd, const char *device, char *ebuf);
200 #endif
201 static int iface_get_mtu(int fd, const char *device, char *ebuf);
202 static int iface_get_arptype(int fd, const char *device, char *ebuf);
203 #ifdef HAVE_PF_PACKET_SOCKETS
204 static int iface_bind(int fd, int ifindex, char *ebuf);
205 #endif
206 static int iface_bind_old(int fd, const char *device, char *ebuf);
207
208 #ifdef SO_ATTACH_FILTER
209 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
210 static int fix_offset(struct bpf_insn *p);
211 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
212 static int reset_kernel_filter(pcap_t *handle);
213
214 static struct sock_filter total_insn
215 = BPF_STMT(BPF_RET | BPF_K, 0);
216 static struct sock_fprog total_fcode
217 = { 1, &total_insn };
218 #endif
219
220 /*
221 * Get a handle for a live capture from the given device. You can
222 * pass NULL as device to get all packages (without link level
223 * information of course). If you pass 1 as promisc the interface
224 * will be set to promiscous mode (XXX: I think this usage should
225 * be deprecated and functions be added to select that later allow
226 * modification of that values -- Torsten).
227 *
228 * See also pcap(3).
229 */
230 pcap_t *
231 pcap_open_live(const char *device, int snaplen, int promisc, int to_ms,
232 char *ebuf)
233 {
234 pcap_t *handle;
235 int mtu;
236 int err;
237 int live_open_ok = 0;
238 struct utsname utsname;
239
240 #ifdef HAVE_DAG_API
241 if (strstr(device, "dag")) {
242 return dag_open_live(device, snaplen, promisc, to_ms, ebuf);
243 }
244 #endif /* HAVE_DAG_API */
245
246 /* Allocate a handle for this session. */
247
248 handle = malloc(sizeof(*handle));
249 if (handle == NULL) {
250 snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",
251 pcap_strerror(errno));
252 return NULL;
253 }
254
255 /* Initialize some components of the pcap structure. */
256
257 memset(handle, 0, sizeof(*handle));
258 handle->snapshot = snaplen;
259 handle->md.timeout = to_ms;
260
261 /*
262 * NULL and "any" are special devices which give us the hint to
263 * monitor all devices.
264 */
265 if (!device || strcmp(device, "any") == 0) {
266 device = NULL;
267 handle->md.device = strdup("any");
268 if (promisc) {
269 promisc = 0;
270 /* Just a warning. */
271 snprintf(ebuf, PCAP_ERRBUF_SIZE,
272 "Promiscuous mode not supported on the \"any\" device");
273 }
274
275 } else
276 handle->md.device = strdup(device);
277
278 if (handle->md.device == NULL) {
279 snprintf(ebuf, PCAP_ERRBUF_SIZE, "strdup: %s",
280 pcap_strerror(errno) );
281 free(handle);
282 return NULL;
283 }
284
285 /*
286 * Current Linux kernels use the protocol family PF_PACKET to
287 * allow direct access to all packets on the network while
288 * older kernels had a special socket type SOCK_PACKET to
289 * implement this feature.
290 * While this old implementation is kind of obsolete we need
291 * to be compatible with older kernels for a while so we are
292 * trying both methods with the newer method preferred.
293 */
294
295 if ((err = live_open_new(handle, device, promisc, to_ms, ebuf)) == 1)
296 live_open_ok = 1;
297 else if (err == 0) {
298 /* Non-fatal error; try old way */
299 if (live_open_old(handle, device, promisc, to_ms, ebuf))
300 live_open_ok = 1;
301 }
302 if (!live_open_ok) {
303 /*
304 * Both methods to open the packet socket failed. Tidy
305 * up and report our failure (ebuf is expected to be
306 * set by the functions above).
307 */
308
309 if (handle->md.device != NULL)
310 free(handle->md.device);
311 free(handle);
312 return NULL;
313 }
314
315 /*
316 * Compute the buffer size.
317 *
318 * If we're using SOCK_PACKET, this might be a 2.0[.x] kernel,
319 * and might require special handling - check.
320 */
321 if (handle->md.sock_packet && (uname(&utsname) < 0 ||
322 strncmp(utsname.release, "2.0", 3) == 0)) {
323 /*
324 * We're using a SOCK_PACKET structure, and either
325 * we couldn't find out what kernel release this is,
326 * or it's a 2.0[.x] kernel.
327 *
328 * In the 2.0[.x] kernel, a "recvfrom()" on
329 * a SOCK_PACKET socket, with MSG_TRUNC set, will
330 * return the number of bytes read, so if we pass
331 * a length based on the snapshot length, it'll
332 * return the number of bytes from the packet
333 * copied to userland, not the actual length
334 * of the packet.
335 *
336 * This means that, for example, the IP dissector
337 * in tcpdump will get handed a packet length less
338 * than the length in the IP header, and will
339 * complain about "truncated-ip".
340 *
341 * So we don't bother trying to copy from the
342 * kernel only the bytes in which we're interested,
343 * but instead copy them all, just as the older
344 * versions of libpcap for Linux did.
345 *
346 * The buffer therefore needs to be big enough to
347 * hold the largest packet we can get from this
348 * device. Unfortunately, we can't get the MRU
349 * of the network; we can only get the MTU. The
350 * MTU may be too small, in which case a packet larger
351 * than the buffer size will be truncated *and* we
352 * won't get the actual packet size.
353 *
354 * However, if the snapshot length is larger than
355 * the buffer size based on the MTU, we use the
356 * snapshot length as the buffer size, instead;
357 * this means that with a sufficiently large snapshot
358 * length we won't artificially truncate packets
359 * to the MTU-based size.
360 *
361 * This mess just one of many problems with packet
362 * capture on 2.0[.x] kernels; you really want a
363 * 2.2[.x] or later kernel if you want packet capture
364 * to work well.
365 */
366 mtu = iface_get_mtu(handle->fd, device, ebuf);
367 if (mtu == -1) {
368 pcap_close_linux(handle);
369 free(handle);
370 return NULL;
371 }
372 handle->bufsize = MAX_LINKHEADER_SIZE + mtu;
373 if (handle->bufsize < handle->snapshot)
374 handle->bufsize = handle->snapshot;
375 } else {
376 /*
377 * This is a 2.2[.x] or later kernel (we know that
378 * either because we're not using a SOCK_PACKET
379 * socket - PF_PACKET is supported only in 2.2
380 * and later kernels - or because we checked the
381 * kernel version).
382 *
383 * We can safely pass "recvfrom()" a byte count
384 * based on the snapshot length.
385 */
386 handle->bufsize = handle->snapshot;
387 }
388
389 /* Allocate the buffer */
390
391 handle->buffer = malloc(handle->bufsize + handle->offset);
392 if (!handle->buffer) {
393 snprintf(ebuf, PCAP_ERRBUF_SIZE,
394 "malloc: %s", pcap_strerror(errno));
395 pcap_close_linux(handle);
396 free(handle);
397 return NULL;
398 }
399
400 /*
401 * "handle->fd" is a socket, so "select()" and "poll()"
402 * should work on it.
403 */
404 handle->selectable_fd = handle->fd;
405
406 handle->read_op = pcap_read_linux;
407 handle->setfilter_op = pcap_setfilter_linux;
408 handle->set_datalink_op = NULL; /* can't change data link type */
409 handle->getnonblock_op = pcap_getnonblock_fd;
410 handle->setnonblock_op = pcap_setnonblock_fd;
411 handle->stats_op = pcap_stats_linux;
412 handle->close_op = pcap_close_linux;
413
414 return handle;
415 }
416
417 /*
418 * Read at most max_packets from the capture stream and call the callback
419 * for each of them. Returns the number of packets handled or -1 if an
420 * error occured.
421 */
422 static int
423 pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user)
424 {
425 /*
426 * Currently, on Linux only one packet is delivered per read,
427 * so we don't loop.
428 */
429 return pcap_read_packet(handle, callback, user);
430 }
431
432 /*
433 * Read a packet from the socket calling the handler provided by
434 * the user. Returns the number of packets received or -1 if an
435 * error occured.
436 */
437 static int
438 pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
439 {
440 u_char *bp;
441 int offset;
442 #ifdef HAVE_PF_PACKET_SOCKETS
443 struct sockaddr_ll from;
444 struct sll_header *hdrp;
445 #else
446 struct sockaddr from;
447 #endif
448 socklen_t fromlen;
449 int packet_len, caplen;
450 struct pcap_pkthdr pcap_header;
451
452 #ifdef HAVE_PF_PACKET_SOCKETS
453 /*
454 * If this is a cooked device, leave extra room for a
455 * fake packet header.
456 */
457 if (handle->md.cooked)
458 offset = SLL_HDR_LEN;
459 else
460 offset = 0;
461 #else
462 /*
463 * This system doesn't have PF_PACKET sockets, so it doesn't
464 * support cooked devices.
465 */
466 offset = 0;
467 #endif
468
469 /* Receive a single packet from the kernel */
470
471 bp = handle->buffer + handle->offset;
472 do {
473 /*
474 * Has "pcap_breakloop()" been called?
475 */
476 if (handle->break_loop) {
477 /*
478 * Yes - clear the flag that indicates that it
479 * has, and return -2 as an indication that we
480 * were told to break out of the loop.
481 */
482 handle->break_loop = 0;
483 return -2;
484 }
485 fromlen = sizeof(from);
486 packet_len = recvfrom(
487 handle->fd, bp + offset,
488 handle->bufsize - offset, MSG_TRUNC,
489 (struct sockaddr *) &from, &fromlen);
490 } while (packet_len == -1 && errno == EINTR);
491
492 /* Check if an error occured */
493
494 if (packet_len == -1) {
495 if (errno == EAGAIN)
496 return 0; /* no packet there */
497 else {
498 snprintf(handle->errbuf, sizeof(handle->errbuf),
499 "recvfrom: %s", pcap_strerror(errno));
500 return -1;
501 }
502 }
503
504 #ifdef HAVE_PF_PACKET_SOCKETS
505 /*
506 * If this is from the loopback device, reject outgoing packets;
507 * we'll see the packet as an incoming packet as well, and
508 * we don't want to see it twice.
509 *
510 * We can only do this if we're using PF_PACKET; the address
511 * returned for SOCK_PACKET is a "sockaddr_pkt" which lacks
512 * the relevant packet type information.
513 */
514 if (!handle->md.sock_packet &&
515 from.sll_ifindex == handle->md.lo_ifindex &&
516 from.sll_pkttype == PACKET_OUTGOING)
517 return 0;
518 #endif
519
520 #ifdef HAVE_PF_PACKET_SOCKETS
521 /*
522 * If this is a cooked device, fill in the fake packet header.
523 */
524 if (handle->md.cooked) {
525 /*
526 * Add the length of the fake header to the length
527 * of packet data we read.
528 */
529 packet_len += SLL_HDR_LEN;
530
531 hdrp = (struct sll_header *)bp;
532
533 /*
534 * Map the PACKET_ value to a LINUX_SLL_ value; we
535 * want the same numerical value to be used in
536 * the link-layer header even if the numerical values
537 * for the PACKET_ #defines change, so that programs
538 * that look at the packet type field will always be
539 * able to handle DLT_LINUX_SLL captures.
540 */
541 switch (from.sll_pkttype) {
542
543 case PACKET_HOST:
544 hdrp->sll_pkttype = htons(LINUX_SLL_HOST);
545 break;
546
547 case PACKET_BROADCAST:
548 hdrp->sll_pkttype = htons(LINUX_SLL_BROADCAST);
549 break;
550
551 case PACKET_MULTICAST:
552 hdrp->sll_pkttype = htons(LINUX_SLL_MULTICAST);
553 break;
554
555 case PACKET_OTHERHOST:
556 hdrp->sll_pkttype = htons(LINUX_SLL_OTHERHOST);
557 break;
558
559 case PACKET_OUTGOING:
560 hdrp->sll_pkttype = htons(LINUX_SLL_OUTGOING);
561 break;
562
563 default:
564 hdrp->sll_pkttype = -1;
565 break;
566 }
567
568 hdrp->sll_hatype = htons(from.sll_hatype);
569 hdrp->sll_halen = htons(from.sll_halen);
570 memcpy(hdrp->sll_addr, from.sll_addr,
571 (from.sll_halen > SLL_ADDRLEN) ?
572 SLL_ADDRLEN :
573 from.sll_halen);
574 hdrp->sll_protocol = from.sll_protocol;
575 }
576 #endif
577
578 /*
579 * XXX: According to the kernel source we should get the real
580 * packet len if calling recvfrom with MSG_TRUNC set. It does
581 * not seem to work here :(, but it is supported by this code
582 * anyway.
583 * To be honest the code RELIES on that feature so this is really
584 * broken with 2.2.x kernels.
585 * I spend a day to figure out what's going on and I found out
586 * that the following is happening:
587 *
588 * The packet comes from a random interface and the packet_rcv
589 * hook is called with a clone of the packet. That code inserts
590 * the packet into the receive queue of the packet socket.
591 * If a filter is attached to that socket that filter is run
592 * first - and there lies the problem. The default filter always
593 * cuts the packet at the snaplen:
594 *
595 * # tcpdump -d
596 * (000) ret #68
597 *
598 * So the packet filter cuts down the packet. The recvfrom call
599 * says "hey, it's only 68 bytes, it fits into the buffer" with
600 * the result that we don't get the real packet length. This
601 * is valid at least until kernel 2.2.17pre6.
602 *
603 * We currently handle this by making a copy of the filter
604 * program, fixing all "ret" instructions with non-zero
605 * operands to have an operand of 65535 so that the filter
606 * doesn't truncate the packet, and supplying that modified
607 * filter to the kernel.
608 */
609
610 caplen = packet_len;
611 if (caplen > handle->snapshot)
612 caplen = handle->snapshot;
613
614 /* Run the packet filter if not using kernel filter */
615 if (!handle->md.use_bpf && handle->fcode.bf_insns) {
616 if (bpf_filter(handle->fcode.bf_insns, bp,
617 packet_len, caplen) == 0)
618 {
619 /* rejected by filter */
620 return 0;
621 }
622 }
623
624 /* Fill in our own header data */
625
626 if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) {
627 snprintf(handle->errbuf, sizeof(handle->errbuf),
628 "ioctl: %s", pcap_strerror(errno));
629 return -1;
630 }
631 pcap_header.caplen = caplen;
632 pcap_header.len = packet_len;
633
634 /*
635 * Count the packet.
636 *
637 * Arguably, we should count them before we check the filter,
638 * as on many other platforms "ps_recv" counts packets
639 * handed to the filter rather than packets that passed
640 * the filter, but if filtering is done in the kernel, we
641 * can't get a count of packets that passed the filter,
642 * and that would mean the meaning of "ps_recv" wouldn't
643 * be the same on all Linux systems.
644 *
645 * XXX - it's not the same on all systems in any case;
646 * ideally, we should have a "get the statistics" call
647 * that supplies more counts and indicates which of them
648 * it supplies, so that we supply a count of packets
649 * handed to the filter only on platforms where that
650 * information is available.
651 *
652 * We count them here even if we can get the packet count
653 * from the kernel, as we can only determine at run time
654 * whether we'll be able to get it from the kernel (if
655 * HAVE_TPACKET_STATS isn't defined, we can't get it from
656 * the kernel, but if it is defined, the library might
657 * have been built with a 2.4 or later kernel, but we
658 * might be running on a 2.2[.x] kernel without Alexey
659 * Kuznetzov's turbopacket patches, and thus the kernel
660 * might not be able to supply those statistics). We
661 * could, I guess, try, when opening the socket, to get
662 * the statistics, and if we can not increment the count
663 * here, but it's not clear that always incrementing
664 * the count is more expensive than always testing a flag
665 * in memory.
666 */
667 handle->md.stat.ps_recv++;
668
669 /* Call the user supplied callback function */
670 callback(userdata, &pcap_header, bp);
671
672 return 1;
673 }
674
675 /*
676 * Get the statistics for the given packet capture handle.
677 * Reports the number of dropped packets iff the kernel supports
678 * the PACKET_STATISTICS "getsockopt()" argument (2.4 and later
679 * kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket
680 * patches); otherwise, that information isn't available, and we lie
681 * and report 0 as the count of dropped packets.
682 */
683 static int
684 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
685 {
686 #ifdef HAVE_TPACKET_STATS
687 struct tpacket_stats kstats;
688 socklen_t len = sizeof (struct tpacket_stats);
689 #endif
690
691 #ifdef HAVE_TPACKET_STATS
692 /*
693 * Try to get the packet counts from the kernel.
694 */
695 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
696 &kstats, &len) > -1) {
697 /*
698 * In "linux/net/packet/af_packet.c", at least in the
699 * 2.4.9 kernel, "tp_packets" is incremented for every
700 * packet that passes the packet filter *and* is
701 * successfully queued on the socket; "tp_drops" is
702 * incremented for every packet dropped because there's
703 * not enough free space in the socket buffer.
704 *
705 * When the statistics are returned for a PACKET_STATISTICS
706 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
707 * so that "tp_packets" counts all packets handed to
708 * the PF_PACKET socket, including packets dropped because
709 * there wasn't room on the socket buffer - but not
710 * including packets that didn't pass the filter.
711 *
712 * In the BSD BPF, the count of received packets is
713 * incremented for every packet handed to BPF, regardless
714 * of whether it passed the filter.
715 *
716 * We can't make "pcap_stats()" work the same on both
717 * platforms, but the best approximation is to return
718 * "tp_packets" as the count of packets and "tp_drops"
719 * as the count of drops.
720 */
721 handle->md.stat.ps_recv = kstats.tp_packets;
722 handle->md.stat.ps_drop = kstats.tp_drops;
723 }
724 else
725 {
726 /*
727 * If the error was EOPNOTSUPP, fall through, so that
728 * if you build the library on a system with
729 * "struct tpacket_stats" and run it on a system
730 * that doesn't, it works as it does if the library
731 * is built on a system without "struct tpacket_stats".
732 */
733 if (errno != EOPNOTSUPP) {
734 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
735 "pcap_stats: %s", pcap_strerror(errno));
736 return -1;
737 }
738 }
739 #endif
740 /*
741 * On systems where the PACKET_STATISTICS "getsockopt()" argument
742 * is supported on PF_PACKET sockets:
743 *
744 * "ps_recv" counts only packets that *passed* the filter,
745 * not packets that didn't pass the filter. This includes
746 * packets later dropped because we ran out of buffer space.
747 *
748 * "ps_drop" counts packets dropped because we ran out of
749 * buffer space. It doesn't count packets dropped by the
750 * interface driver. It counts only packets that passed
751 * the filter.
752 *
753 * Both statistics include packets not yet read from the
754 * kernel by libpcap, and thus not yet seen by the application.
755 *
756 * On systems where the PACKET_STATISTICS "getsockopt()" argument
757 * is not supported on PF_PACKET sockets:
758 *
759 * "ps_recv" counts only packets that *passed* the filter,
760 * not packets that didn't pass the filter. It does not
761 * count packets dropped because we ran out of buffer
762 * space.
763 *
764 * "ps_drop" is not supported.
765 *
766 * "ps_recv" doesn't include packets not yet read from
767 * the kernel by libpcap.
768 */
769 *stats = handle->md.stat;
770 return 0;
771 }
772
773 /*
774 * Description string for the "any" device.
775 */
776 static const char any_descr[] = "Pseudo-device that captures on all interfaces";
777
778 int
779 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
780 {
781 if (pcap_add_if(alldevsp, "any", 0, any_descr, errbuf) < 0)
782 return (-1);
783
784 #ifdef HAVE_DAG_API
785 if (dag_platform_finddevs(alldevsp, errbuf) < 0)
786 return (-1);
787 #endif /* HAVE_DAG_API */
788
789 return (0);
790 }
791
792 /*
793 * Attach the given BPF code to the packet capture device.
794 */
795 static int
796 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
797 {
798 #ifdef SO_ATTACH_FILTER
799 struct sock_fprog fcode;
800 int can_filter_in_kernel;
801 int err = 0;
802 #endif
803
804 if (!handle)
805 return -1;
806 if (!filter) {
807 strncpy(handle->errbuf, "setfilter: No filter specified",
808 sizeof(handle->errbuf));
809 return -1;
810 }
811
812 /* Make our private copy of the filter */
813
814 if (install_bpf_program(handle, filter) < 0)
815 /* install_bpf_program() filled in errbuf */
816 return -1;
817
818 /*
819 * Run user level packet filter by default. Will be overriden if
820 * installing a kernel filter succeeds.
821 */
822 handle->md.use_bpf = 0;
823
824 /* Install kernel level filter if possible */
825
826 #ifdef SO_ATTACH_FILTER
827 #ifdef USHRT_MAX
828 if (handle->fcode.bf_len > USHRT_MAX) {
829 /*
830 * fcode.len is an unsigned short for current kernel.
831 * I have yet to see BPF-Code with that much
832 * instructions but still it is possible. So for the
833 * sake of correctness I added this check.
834 */
835 fprintf(stderr, "Warning: Filter too complex for kernel\n");
836 fcode.filter = NULL;
837 can_filter_in_kernel = 0;
838 } else
839 #endif /* USHRT_MAX */
840 {
841 /*
842 * Oh joy, the Linux kernel uses struct sock_fprog instead
843 * of struct bpf_program and of course the length field is
844 * of different size. Pointed out by Sebastian
845 *
846 * Oh, and we also need to fix it up so that all "ret"
847 * instructions with non-zero operands have 65535 as the
848 * operand, and so that, if we're in cooked mode, all
849 * memory-reference instructions use special magic offsets
850 * in references to the link-layer header and assume that
851 * the link-layer payload begins at 0; "fix_program()"
852 * will do that.
853 */
854 switch (fix_program(handle, &fcode)) {
855
856 case -1:
857 default:
858 /*
859 * Fatal error; just quit.
860 * (The "default" case shouldn't happen; we
861 * return -1 for that reason.)
862 */
863 return -1;
864
865 case 0:
866 /*
867 * The program performed checks that we can't make
868 * work in the kernel.
869 */
870 can_filter_in_kernel = 0;
871 break;
872
873 case 1:
874 /*
875 * We have a filter that'll work in the kernel.
876 */
877 can_filter_in_kernel = 1;
878 break;
879 }
880 }
881
882 if (can_filter_in_kernel) {
883 if ((err = set_kernel_filter(handle, &fcode)) == 0)
884 {
885 /* Installation succeded - using kernel filter. */
886 handle->md.use_bpf = 1;
887 }
888 else if (err == -1) /* Non-fatal error */
889 {
890 /*
891 * Print a warning if we weren't able to install
892 * the filter for a reason other than "this kernel
893 * isn't configured to support socket filters.
894 */
895 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
896 fprintf(stderr,
897 "Warning: Kernel filter failed: %s\n",
898 pcap_strerror(errno));
899 }
900 }
901 }
902
903 /*
904 * If we're not using the kernel filter, get rid of any kernel
905 * filter that might've been there before, e.g. because the
906 * previous filter could work in the kernel, or because some other
907 * code attached a filter to the socket by some means other than
908 * calling "pcap_setfilter()". Otherwise, the kernel filter may
909 * filter out packets that would pass the new userland filter.
910 */
911 if (!handle->md.use_bpf)
912 reset_kernel_filter(handle);
913
914 /*
915 * Free up the copy of the filter that was made by "fix_program()".
916 */
917 if (fcode.filter != NULL)
918 free(fcode.filter);
919
920 if (err == -2)
921 /* Fatal error */
922 return -1;
923 #endif /* SO_ATTACH_FILTER */
924
925 return 0;
926 }
927
928 /*
929 * Linux uses the ARP hardware type to identify the type of an
930 * interface. pcap uses the DLT_xxx constants for this. This
931 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
932 * constant, as arguments, and sets "handle->linktype" to the
933 * appropriate DLT_XXX constant and sets "handle->offset" to
934 * the appropriate value (to make "handle->offset" plus link-layer
935 * header length be a multiple of 4, so that the link-layer payload
936 * will be aligned on a 4-byte boundary when capturing packets).
937 * (If the offset isn't set here, it'll be 0; add code as appropriate
938 * for cases where it shouldn't be 0.)
939 *
940 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
941 * in cooked mode; otherwise, we can't use cooked mode, so we have
942 * to pick some type that works in raw mode, or fail.
943 *
944 * Sets the link type to -1 if unable to map the type.
945 */
946 static void map_arphrd_to_dlt(pcap_t *handle, int arptype, int cooked_ok)
947 {
948 switch (arptype) {
949
950 case ARPHRD_ETHER:
951 case ARPHRD_METRICOM:
952 case ARPHRD_LOOPBACK:
953 handle->linktype = DLT_EN10MB;
954 handle->offset = 2;
955 break;
956
957 case ARPHRD_EETHER:
958 handle->linktype = DLT_EN3MB;
959 break;
960
961 case ARPHRD_AX25:
962 handle->linktype = DLT_AX25;
963 break;
964
965 case ARPHRD_PRONET:
966 handle->linktype = DLT_PRONET;
967 break;
968
969 case ARPHRD_CHAOS:
970 handle->linktype = DLT_CHAOS;
971 break;
972
973 #ifndef ARPHRD_IEEE802_TR
974 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
975 #endif
976 case ARPHRD_IEEE802_TR:
977 case ARPHRD_IEEE802:
978 handle->linktype = DLT_IEEE802;
979 handle->offset = 2;
980 break;
981
982 case ARPHRD_ARCNET:
983 handle->linktype = DLT_ARCNET_LINUX;
984 break;
985
986 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
987 #define ARPHRD_FDDI 774
988 #endif
989 case ARPHRD_FDDI:
990 handle->linktype = DLT_FDDI;
991 handle->offset = 3;
992 break;
993
994 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */
995 #define ARPHRD_ATM 19
996 #endif
997 case ARPHRD_ATM:
998 /*
999 * The Classical IP implementation in ATM for Linux
1000 * supports both what RFC 1483 calls "LLC Encapsulation",
1001 * in which each packet has an LLC header, possibly
1002 * with a SNAP header as well, prepended to it, and
1003 * what RFC 1483 calls "VC Based Multiplexing", in which
1004 * different virtual circuits carry different network
1005 * layer protocols, and no header is prepended to packets.
1006 *
1007 * They both have an ARPHRD_ type of ARPHRD_ATM, so
1008 * you can't use the ARPHRD_ type to find out whether
1009 * captured packets will have an LLC header, and,
1010 * while there's a socket ioctl to *set* the encapsulation
1011 * type, there's no ioctl to *get* the encapsulation type.
1012 *
1013 * This means that
1014 *
1015 * programs that dissect Linux Classical IP frames
1016 * would have to check for an LLC header and,
1017 * depending on whether they see one or not, dissect
1018 * the frame as LLC-encapsulated or as raw IP (I
1019 * don't know whether there's any traffic other than
1020 * IP that would show up on the socket, or whether
1021 * there's any support for IPv6 in the Linux
1022 * Classical IP code);
1023 *
1024 * filter expressions would have to compile into
1025 * code that checks for an LLC header and does
1026 * the right thing.
1027 *
1028 * Both of those are a nuisance - and, at least on systems
1029 * that support PF_PACKET sockets, we don't have to put
1030 * up with those nuisances; instead, we can just capture
1031 * in cooked mode. That's what we'll do, if we can.
1032 * Otherwise, we'll just fail.
1033 */
1034 if (cooked_ok)
1035 handle->linktype = DLT_LINUX_SLL;
1036 else
1037 handle->linktype = -1;
1038 break;
1039
1040 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
1041 #define ARPHRD_IEEE80211 801
1042 #endif
1043 case ARPHRD_IEEE80211:
1044 handle->linktype = DLT_IEEE802_11;
1045 break;
1046
1047 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
1048 #define ARPHRD_IEEE80211_PRISM 802
1049 #endif
1050 case ARPHRD_IEEE80211_PRISM:
1051 handle->linktype = DLT_PRISM_HEADER;
1052 break;
1053
1054 case ARPHRD_PPP:
1055 /*
1056 * Some PPP code in the kernel supplies no link-layer
1057 * header whatsoever to PF_PACKET sockets; other PPP
1058 * code supplies PPP link-layer headers ("syncppp.c");
1059 * some PPP code might supply random link-layer
1060 * headers (PPP over ISDN - there's code in Ethereal,
1061 * for example, to cope with PPP-over-ISDN captures
1062 * with which the Ethereal developers have had to cope,
1063 * heuristically trying to determine which of the
1064 * oddball link-layer headers particular packets have).
1065 *
1066 * As such, we just punt, and run all PPP interfaces
1067 * in cooked mode, if we can; otherwise, we just treat
1068 * it as DLT_RAW, for now - if somebody needs to capture,
1069 * on a 2.0[.x] kernel, on PPP devices that supply a
1070 * link-layer header, they'll have to add code here to
1071 * map to the appropriate DLT_ type (possibly adding a
1072 * new DLT_ type, if necessary).
1073 */
1074 if (cooked_ok)
1075 handle->linktype = DLT_LINUX_SLL;
1076 else {
1077 /*
1078 * XXX - handle ISDN types here? We can't fall
1079 * back on cooked sockets, so we'd have to
1080 * figure out from the device name what type of
1081 * link-layer encapsulation it's using, and map
1082 * that to an appropriate DLT_ value, meaning
1083 * we'd map "isdnN" devices to DLT_RAW (they
1084 * supply raw IP packets with no link-layer
1085 * header) and "isdY" devices to a new DLT_I4L_IP
1086 * type that has only an Ethernet packet type as
1087 * a link-layer header.
1088 *
1089 * But sometimes we seem to get random crap
1090 * in the link-layer header when capturing on
1091 * ISDN devices....
1092 */
1093 handle->linktype = DLT_RAW;
1094 }
1095 break;
1096
1097 #ifndef ARPHRD_CISCO
1098 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
1099 #endif
1100 case ARPHRD_CISCO:
1101 handle->linktype = DLT_C_HDLC;
1102 break;
1103
1104 /* Not sure if this is correct for all tunnels, but it
1105 * works for CIPE */
1106 case ARPHRD_TUNNEL:
1107 #ifndef ARPHRD_SIT
1108 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */
1109 #endif
1110 case ARPHRD_SIT:
1111 case ARPHRD_CSLIP:
1112 case ARPHRD_SLIP6:
1113 case ARPHRD_CSLIP6:
1114 case ARPHRD_ADAPT:
1115 case ARPHRD_SLIP:
1116 #ifndef ARPHRD_RAWHDLC
1117 #define ARPHRD_RAWHDLC 518
1118 #endif
1119 case ARPHRD_RAWHDLC:
1120 #ifndef ARPHRD_DLCI
1121 #define ARPHRD_DLCI 15
1122 #endif
1123 case ARPHRD_DLCI:
1124 /*
1125 * XXX - should some of those be mapped to DLT_LINUX_SLL
1126 * instead? Should we just map all of them to DLT_LINUX_SLL?
1127 */
1128 handle->linktype = DLT_RAW;
1129 break;
1130
1131 #ifndef ARPHRD_FRAD
1132 #define ARPHRD_FRAD 770
1133 #endif
1134 case ARPHRD_FRAD:
1135 handle->linktype = DLT_FRELAY;
1136 break;
1137
1138 case ARPHRD_LOCALTLK:
1139 handle->linktype = DLT_LTALK;
1140 break;
1141
1142 #ifndef ARPHRD_FCPP
1143 #define ARPHRD_FCPP 784
1144 #endif
1145 case ARPHRD_FCPP:
1146 #ifndef ARPHRD_FCAL
1147 #define ARPHRD_FCAL 785
1148 #endif
1149 case ARPHRD_FCAL:
1150 #ifndef ARPHRD_FCPL
1151 #define ARPHRD_FCPL 786
1152 #endif
1153 case ARPHRD_FCPL:
1154 #ifndef ARPHRD_FCFABRIC
1155 #define ARPHRD_FCFABRIC 787
1156 #endif
1157 case ARPHRD_FCFABRIC:
1158 /*
1159 * We assume that those all mean RFC 2625 IP-over-
1160 * Fibre Channel, with the RFC 2625 header at
1161 * the beginning of the packet.
1162 */
1163 handle->linktype = DLT_IP_OVER_FC;
1164 break;
1165
1166 case ARPHRD_IRDA:
1167 /* Don't expect IP packet out of this interfaces... */
1168 handle->linktype = DLT_LINUX_IRDA;
1169 /* We need to save packet direction for IrDA decoding,
1170 * so let's use "Linux-cooked" mode. Jean II */
1171 //handle->md.cooked = 1;
1172 break;
1173
1174 default:
1175 handle->linktype = -1;
1176 break;
1177 }
1178 }
1179
1180 /* ===== Functions to interface to the newer kernels ================== */
1181
1182 /*
1183 * Try to open a packet socket using the new kernel interface.
1184 * Returns 0 on failure.
1185 * FIXME: 0 uses to mean success (Sebastian)
1186 */
1187 static int
1188 live_open_new(pcap_t *handle, const char *device, int promisc,
1189 int to_ms, char *ebuf)
1190 {
1191 #ifdef HAVE_PF_PACKET_SOCKETS
1192 int sock_fd = -1, device_id, arptype;
1193 int err;
1194 int fatal_err = 0;
1195 struct packet_mreq mr;
1196
1197 /* One shot loop used for error handling - bail out with break */
1198
1199 do {
1200 /*
1201 * Open a socket with protocol family packet. If a device is
1202 * given we try to open it in raw mode otherwise we use
1203 * the cooked interface.
1204 */
1205 sock_fd = device ?
1206 socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
1207 : socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
1208
1209 if (sock_fd == -1) {
1210 snprintf(ebuf, PCAP_ERRBUF_SIZE, "socket: %s",
1211 pcap_strerror(errno) );
1212 break;
1213 }
1214
1215 /* It seems the kernel supports the new interface. */
1216 handle->md.sock_packet = 0;
1217
1218 /*
1219 * Get the interface index of the loopback device.
1220 * If the attempt fails, don't fail, just set the
1221 * "md.lo_ifindex" to -1.
1222 *
1223 * XXX - can there be more than one device that loops
1224 * packets back, i.e. devices other than "lo"? If so,
1225 * we'd need to find them all, and have an array of
1226 * indices for them, and check all of them in
1227 * "pcap_read_packet()".
1228 */
1229 handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", ebuf);
1230
1231 /*
1232 * Default value for offset to align link-layer payload
1233 * on a 4-byte boundary.
1234 */
1235 handle->offset = 0;
1236
1237 /*
1238 * What kind of frames do we have to deal with? Fall back
1239 * to cooked mode if we have an unknown interface type.
1240 */
1241
1242 if (device) {
1243 /* Assume for now we don't need cooked mode. */
1244 handle->md.cooked = 0;
1245
1246 arptype = iface_get_arptype(sock_fd, device, ebuf);
1247 if (arptype == -1) {
1248 fatal_err = 1;
1249 break;
1250 }
1251 map_arphrd_to_dlt(handle, arptype, 1);
1252 if (handle->linktype == -1 ||
1253 handle->linktype == DLT_LINUX_SLL ||
1254 handle->linktype == DLT_LINUX_IRDA ||
1255 (handle->linktype == DLT_EN10MB &&
1256 (strncmp("isdn", device, 4) == 0 ||
1257 strncmp("isdY", device, 4) == 0))) {
1258 /*
1259 * Unknown interface type (-1), or a
1260 * device we explicitly chose to run
1261 * in cooked mode (e.g., PPP devices),
1262 * or an ISDN device (whose link-layer
1263 * type we can only determine by using
1264 * APIs that may be different on different
1265 * kernels) - reopen in cooked mode.
1266 */
1267 if (close(sock_fd) == -1) {
1268 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1269 "close: %s", pcap_strerror(errno));
1270 break;
1271 }
1272 sock_fd = socket(PF_PACKET, SOCK_DGRAM,
1273 htons(ETH_P_ALL));
1274 if (sock_fd == -1) {
1275 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1276 "socket: %s", pcap_strerror(errno));
1277 break;
1278 }
1279 handle->md.cooked = 1;
1280
1281 if (handle->linktype == -1) {
1282 /*
1283 * Warn that we're falling back on
1284 * cooked mode; we may want to
1285 * update "map_arphrd_to_dlt()"
1286 * to handle the new type.
1287 */
1288 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1289 "arptype %d not "
1290 "supported by libpcap - "
1291 "falling back to cooked "
1292 "socket",
1293 arptype);
1294 }
1295 /* IrDA capture is not a real "cooked" capture,
1296 * it's IrLAP frames, not IP packets. */
1297 if(handle->linktype != DLT_LINUX_IRDA)
1298 handle->linktype = DLT_LINUX_SLL;
1299 }
1300
1301 device_id = iface_get_id(sock_fd, device, ebuf);
1302 if (device_id == -1)
1303 break;
1304
1305 if ((err = iface_bind(sock_fd, device_id, ebuf)) < 0) {
1306 if (err == -2)
1307 fatal_err = 1;
1308 break;
1309 }
1310 } else {
1311 /*
1312 * This is cooked mode.
1313 */
1314 handle->md.cooked = 1;
1315 handle->linktype = DLT_LINUX_SLL;
1316
1317 /*
1318 * XXX - squelch GCC complaints about
1319 * uninitialized variables; if we can't
1320 * select promiscuous mode on all interfaces,
1321 * we should move the code below into the
1322 * "if (device)" branch of the "if" and
1323 * get rid of the next statement.
1324 */
1325 device_id = -1;
1326 }
1327
1328 /*
1329 * Select promiscuous mode on if "promisc" is set.
1330 *
1331 * Do not turn allmulti mode on if we don't select
1332 * promiscuous mode - on some devices (e.g., Orinoco
1333 * wireless interfaces), allmulti mode isn't supported
1334 * and the driver implements it by turning promiscuous
1335 * mode on, and that screws up the operation of the
1336 * card as a normal networking interface, and on no
1337 * other platform I know of does starting a non-
1338 * promiscuous capture affect which multicast packets
1339 * are received by the interface.
1340 */
1341
1342 /*
1343 * Hmm, how can we set promiscuous mode on all interfaces?
1344 * I am not sure if that is possible at all.
1345 */
1346
1347 if (device && promisc) {
1348 memset(&mr, 0, sizeof(mr));
1349 mr.mr_ifindex = device_id;
1350 mr.mr_type = PACKET_MR_PROMISC;
1351 if (setsockopt(sock_fd, SOL_PACKET,
1352 PACKET_ADD_MEMBERSHIP, &mr, sizeof(mr)) == -1)
1353 {
1354 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1355 "setsockopt: %s", pcap_strerror(errno));
1356 break;
1357 }
1358 }
1359
1360 /* Save the socket FD in the pcap structure */
1361
1362 handle->fd = sock_fd;
1363
1364 return 1;
1365
1366 } while(0);
1367
1368 if (sock_fd != -1)
1369 close(sock_fd);
1370
1371 if (fatal_err)
1372 return -2;
1373 else
1374 return 0;
1375 #else
1376 strncpy(ebuf,
1377 "New packet capturing interface not supported by build "
1378 "environment", PCAP_ERRBUF_SIZE);
1379 return 0;
1380 #endif
1381 }
1382
1383 #ifdef HAVE_PF_PACKET_SOCKETS
1384 /*
1385 * Return the index of the given device name. Fill ebuf and return
1386 * -1 on failure.
1387 */
1388 static int
1389 iface_get_id(int fd, const char *device, char *ebuf)
1390 {
1391 struct ifreq ifr;
1392
1393 memset(&ifr, 0, sizeof(ifr));
1394 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1395
1396 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
1397 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1398 "ioctl: %s", pcap_strerror(errno));
1399 return -1;
1400 }
1401
1402 return ifr.ifr_ifindex;
1403 }
1404
1405 /*
1406 * Bind the socket associated with FD to the given device.
1407 */
1408 static int
1409 iface_bind(int fd, int ifindex, char *ebuf)
1410 {
1411 struct sockaddr_ll sll;
1412 int err;
1413 socklen_t errlen = sizeof(err);
1414
1415 memset(&sll, 0, sizeof(sll));
1416 sll.sll_family = AF_PACKET;
1417 sll.sll_ifindex = ifindex;
1418 sll.sll_protocol = htons(ETH_P_ALL);
1419
1420 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
1421 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1422 "bind: %s", pcap_strerror(errno));
1423 return -1;
1424 }
1425
1426 /* Any pending errors, e.g., network is down? */
1427
1428 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
1429 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1430 "getsockopt: %s", pcap_strerror(errno));
1431 return -2;
1432 }
1433
1434 if (err > 0) {
1435 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1436 "bind: %s", pcap_strerror(err));
1437 return -2;
1438 }
1439
1440 return 0;
1441 }
1442
1443 #endif
1444
1445
1446 /* ===== Functions to interface to the older kernels ================== */
1447
1448 /*
1449 * With older kernels promiscuous mode is kind of interesting because we
1450 * have to reset the interface before exiting. The problem can't really
1451 * be solved without some daemon taking care of managing usage counts.
1452 * If we put the interface into promiscuous mode, we set a flag indicating
1453 * that we must take it out of that mode when the interface is closed,
1454 * and, when closing the interface, if that flag is set we take it out
1455 * of promiscuous mode.
1456 */
1457
1458 /*
1459 * List of pcaps for which we turned promiscuous mode on by hand.
1460 * If there are any such pcaps, we arrange to call "pcap_close_all()"
1461 * when we exit, and have it close all of them to turn promiscuous mode
1462 * off.
1463 */
1464 static struct pcap *pcaps_to_close;
1465
1466 /*
1467 * TRUE if we've already called "atexit()" to cause "pcap_close_all()" to
1468 * be called on exit.
1469 */
1470 static int did_atexit;
1471
1472 static void pcap_close_all(void)
1473 {
1474 struct pcap *handle;
1475
1476 while ((handle = pcaps_to_close) != NULL)
1477 pcap_close(handle);
1478 }
1479
1480 static void pcap_close_linux( pcap_t *handle )
1481 {
1482 struct pcap *p, *prevp;
1483 struct ifreq ifr;
1484
1485 if (handle->md.clear_promisc) {
1486 /*
1487 * We put the interface into promiscuous mode; take
1488 * it out of promiscuous mode.
1489 *
1490 * XXX - if somebody else wants it in promiscuous mode,
1491 * this code cannot know that, so it'll take it out
1492 * of promiscuous mode. That's not fixable in 2.0[.x]
1493 * kernels.
1494 */
1495 memset(&ifr, 0, sizeof(ifr));
1496 strncpy(ifr.ifr_name, handle->md.device, sizeof(ifr.ifr_name));
1497 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
1498 fprintf(stderr,
1499 "Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n"
1500 "Please adjust manually.\n"
1501 "Hint: This can't happen with Linux >= 2.2.0.\n",
1502 strerror(errno));
1503 } else {
1504 if (ifr.ifr_flags & IFF_PROMISC) {
1505 /*
1506 * Promiscuous mode is currently on; turn it
1507 * off.
1508 */
1509 ifr.ifr_flags &= ~IFF_PROMISC;
1510 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
1511 fprintf(stderr,
1512 "Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n"
1513 "Please adjust manually.\n"
1514 "Hint: This can't happen with Linux >= 2.2.0.\n",
1515 strerror(errno));
1516 }
1517 }
1518 }
1519
1520 /*
1521 * Take this pcap out of the list of pcaps for which we
1522 * have to take the interface out of promiscuous mode.
1523 */
1524 for (p = pcaps_to_close, prevp = NULL; p != NULL;
1525 prevp = p, p = p->md.next) {
1526 if (p == handle) {
1527 /*
1528 * Found it. Remove it from the list.
1529 */
1530 if (prevp == NULL) {
1531 /*
1532 * It was at the head of the list.
1533 */
1534 pcaps_to_close = p->md.next;
1535 } else {
1536 /*
1537 * It was in the middle of the list.
1538 */
1539 prevp->md.next = p->md.next;
1540 }
1541 break;
1542 }
1543 }
1544 }
1545
1546 if (handle->md.device != NULL)
1547 free(handle->md.device);
1548 handle->md.device = NULL;
1549 if (handle->buffer != NULL)
1550 free(handle->buffer);
1551 if (handle->fd >= 0)
1552 close(handle->fd);
1553 }
1554
1555 /*
1556 * Try to open a packet socket using the old kernel interface.
1557 * Returns 0 on failure.
1558 * FIXME: 0 uses to mean success (Sebastian)
1559 */
1560 static int
1561 live_open_old(pcap_t *handle, const char *device, int promisc,
1562 int to_ms, char *ebuf)
1563 {
1564 int arptype;
1565 struct ifreq ifr;
1566
1567 do {
1568 /* Open the socket */
1569
1570 handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));
1571 if (handle->fd == -1) {
1572 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1573 "socket: %s", pcap_strerror(errno));
1574 break;
1575 }
1576
1577 /* It worked - we are using the old interface */
1578 handle->md.sock_packet = 1;
1579
1580 /* ...which means we get the link-layer header. */
1581 handle->md.cooked = 0;
1582
1583 /* Bind to the given device */
1584
1585 if (!device) {
1586 strncpy(ebuf, "pcap_open_live: The \"any\" device isn't supported on 2.0[.x]-kernel systems",
1587 PCAP_ERRBUF_SIZE);
1588 break;
1589 }
1590 if (iface_bind_old(handle->fd, device, ebuf) == -1)
1591 break;
1592
1593 /*
1594 * Try to get the link-layer type.
1595 */
1596 arptype = iface_get_arptype(handle->fd, device, ebuf);
1597 if (arptype == -1)
1598 break;
1599
1600 /*
1601 * Try to find the DLT_ type corresponding to that
1602 * link-layer type.
1603 */
1604 map_arphrd_to_dlt(handle, arptype, 0);
1605 if (handle->linktype == -1) {
1606 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1607 "unknown arptype %d", arptype);
1608 break;
1609 }
1610
1611 /* Go to promisc mode if requested */
1612
1613 if (promisc) {
1614 memset(&ifr, 0, sizeof(ifr));
1615 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1616 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
1617 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1618 "ioctl: %s", pcap_strerror(errno));
1619 break;
1620 }
1621 if ((ifr.ifr_flags & IFF_PROMISC) == 0) {
1622 /*
1623 * Promiscuous mode isn't currently on,
1624 * so turn it on, and remember that
1625 * we should turn it off when the
1626 * pcap_t is closed.
1627 */
1628
1629 /*
1630 * If we haven't already done so, arrange
1631 * to have "pcap_close_all()" called when
1632 * we exit.
1633 */
1634 if (!did_atexit) {
1635 if (atexit(pcap_close_all) == -1) {
1636 /*
1637 * "atexit()" failed; don't
1638 * put the interface in
1639 * promiscuous mode, just
1640 * give up.
1641 */
1642 strncpy(ebuf, "atexit failed",
1643 PCAP_ERRBUF_SIZE);
1644 break;
1645 }
1646 did_atexit = 1;
1647 }
1648
1649 ifr.ifr_flags |= IFF_PROMISC;
1650 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
1651 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1652 "ioctl: %s",
1653 pcap_strerror(errno));
1654 break;
1655 }
1656 handle->md.clear_promisc = 1;
1657
1658 /*
1659 * Add this to the list of pcaps
1660 * to close when we exit.
1661 */
1662 handle->md.next = pcaps_to_close;
1663 pcaps_to_close = handle;
1664 }
1665 }
1666
1667 /*
1668 * Default value for offset to align link-layer payload
1669 * on a 4-byte boundary.
1670 */
1671 handle->offset = 0;
1672
1673 return 1;
1674
1675 } while (0);
1676
1677 pcap_close_linux(handle);
1678 return 0;
1679 }
1680
1681 /*
1682 * Bind the socket associated with FD to the given device using the
1683 * interface of the old kernels.
1684 */
1685 static int
1686 iface_bind_old(int fd, const char *device, char *ebuf)
1687 {
1688 struct sockaddr saddr;
1689 int err;
1690 socklen_t errlen = sizeof(err);
1691
1692 memset(&saddr, 0, sizeof(saddr));
1693 strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
1694 if (bind(fd, &saddr, sizeof(saddr)) == -1) {
1695 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1696 "bind: %s", pcap_strerror(errno));
1697 return -1;
1698 }
1699
1700 /* Any pending errors, e.g., network is down? */
1701
1702 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
1703 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1704 "getsockopt: %s", pcap_strerror(errno));
1705 return -1;
1706 }
1707
1708 if (err > 0) {
1709 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1710 "bind: %s", pcap_strerror(err));
1711 return -1;
1712 }
1713
1714 return 0;
1715 }
1716
1717
1718 /* ===== System calls available on all supported kernels ============== */
1719
1720 /*
1721 * Query the kernel for the MTU of the given interface.
1722 */
1723 static int
1724 iface_get_mtu(int fd, const char *device, char *ebuf)
1725 {
1726 struct ifreq ifr;
1727
1728 if (!device)
1729 return BIGGER_THAN_ALL_MTUS;
1730
1731 memset(&ifr, 0, sizeof(ifr));
1732 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1733
1734 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
1735 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1736 "ioctl: %s", pcap_strerror(errno));
1737 return -1;
1738 }
1739
1740 return ifr.ifr_mtu;
1741 }
1742
1743 /*
1744 * Get the hardware type of the given interface as ARPHRD_xxx constant.
1745 */
1746 static int
1747 iface_get_arptype(int fd, const char *device, char *ebuf)
1748 {
1749 struct ifreq ifr;
1750
1751 memset(&ifr, 0, sizeof(ifr));
1752 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1753
1754 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
1755 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1756 "ioctl: %s", pcap_strerror(errno));
1757 return -1;
1758 }
1759
1760 return ifr.ifr_hwaddr.sa_family;
1761 }
1762
1763 #ifdef SO_ATTACH_FILTER
1764 static int
1765 fix_program(pcap_t *handle, struct sock_fprog *fcode)
1766 {
1767 size_t prog_size;
1768 register int i;
1769 register struct bpf_insn *p;
1770 struct bpf_insn *f;
1771 int len;
1772
1773 /*
1774 * Make a copy of the filter, and modify that copy if
1775 * necessary.
1776 */
1777 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
1778 len = handle->fcode.bf_len;
1779 f = (struct bpf_insn *)malloc(prog_size);
1780 if (f == NULL) {
1781 snprintf(handle->errbuf, sizeof(handle->errbuf),
1782 "malloc: %s", pcap_strerror(errno));
1783 return -1;
1784 }
1785 memcpy(f, handle->fcode.bf_insns, prog_size);
1786 fcode->len = len;
1787 fcode->filter = (struct sock_filter *) f;
1788
1789 for (i = 0; i < len; ++i) {
1790 p = &f[i];
1791 /*
1792 * What type of instruction is this?
1793 */
1794 switch (BPF_CLASS(p->code)) {
1795
1796 case BPF_RET:
1797 /*
1798 * It's a return instruction; is the snapshot
1799 * length a constant, rather than the contents
1800 * of the accumulator?
1801 */
1802 if (BPF_MODE(p->code) == BPF_K) {
1803 /*
1804 * Yes - if the value to be returned,
1805 * i.e. the snapshot length, is anything
1806 * other than 0, make it 65535, so that
1807 * the packet is truncated by "recvfrom()",
1808 * not by the filter.
1809 *
1810 * XXX - there's nothing we can easily do
1811 * if it's getting the value from the
1812 * accumulator; we'd have to insert
1813 * code to force non-zero values to be
1814 * 65535.
1815 */
1816 if (p->k != 0)
1817 p->k = 65535;
1818 }
1819 break;
1820
1821 case BPF_LD:
1822 case BPF_LDX:
1823 /*
1824 * It's a load instruction; is it loading
1825 * from the packet?
1826 */
1827 switch (BPF_MODE(p->code)) {
1828
1829 case BPF_ABS:
1830 case BPF_IND:
1831 case BPF_MSH:
1832 /*
1833 * Yes; are we in cooked mode?
1834 */
1835 if (handle->md.cooked) {
1836 /*
1837 * Yes, so we need to fix this
1838 * instruction.
1839 */
1840 if (fix_offset(p) < 0) {
1841 /*
1842 * We failed to do so.
1843 * Return 0, so our caller
1844 * knows to punt to userland.
1845 */
1846 return 0;
1847 }
1848 }
1849 break;
1850 }
1851 break;
1852 }
1853 }
1854 return 1; /* we succeeded */
1855 }
1856
1857 static int
1858 fix_offset(struct bpf_insn *p)
1859 {
1860 /*
1861 * What's the offset?
1862 */
1863 if (p->k >= SLL_HDR_LEN) {
1864 /*
1865 * It's within the link-layer payload; that starts at an
1866 * offset of 0, as far as the kernel packet filter is
1867 * concerned, so subtract the length of the link-layer
1868 * header.
1869 */
1870 p->k -= SLL_HDR_LEN;
1871 } else if (p->k == 14) {
1872 /*
1873 * It's the protocol field; map it to the special magic
1874 * kernel offset for that field.
1875 */
1876 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
1877 } else {
1878 /*
1879 * It's within the header, but it's not one of those
1880 * fields; we can't do that in the kernel, so punt
1881 * to userland.
1882 */
1883 return -1;
1884 }
1885 return 0;
1886 }
1887
1888 static int
1889 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
1890 {
1891 int total_filter_on = 0;
1892 int save_mode;
1893 int ret;
1894 int save_errno;
1895
1896 /*
1897 * The socket filter code doesn't discard all packets queued
1898 * up on the socket when the filter is changed; this means
1899 * that packets that don't match the new filter may show up
1900 * after the new filter is put onto the socket, if those
1901 * packets haven't yet been read.
1902 *
1903 * This means, for example, that if you do a tcpdump capture
1904 * with a filter, the first few packets in the capture might
1905 * be packets that wouldn't have passed the filter.
1906 *
1907 * We therefore discard all packets queued up on the socket
1908 * when setting a kernel filter. (This isn't an issue for
1909 * userland filters, as the userland filtering is done after
1910 * packets are queued up.)
1911 *
1912 * To flush those packets, we put the socket in read-only mode,
1913 * and read packets from the socket until there are no more to
1914 * read.
1915 *
1916 * In order to keep that from being an infinite loop - i.e.,
1917 * to keep more packets from arriving while we're draining
1918 * the queue - we put the "total filter", which is a filter
1919 * that rejects all packets, onto the socket before draining
1920 * the queue.
1921 *
1922 * This code deliberately ignores any errors, so that you may
1923 * get bogus packets if an error occurs, rather than having
1924 * the filtering done in userland even if it could have been
1925 * done in the kernel.
1926 */
1927 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
1928 &total_fcode, sizeof(total_fcode)) == 0) {
1929 char drain[1];
1930
1931 /*
1932 * Note that we've put the total filter onto the socket.
1933 */
1934 total_filter_on = 1;
1935
1936 /*
1937 * Save the socket's current mode, and put it in
1938 * non-blocking mode; we drain it by reading packets
1939 * until we get an error (which is normally a
1940 * "nothing more to be read" error).
1941 */
1942 save_mode = fcntl(handle->fd, F_GETFL, 0);
1943 if (save_mode != -1 &&
1944 fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) {
1945 while (recv(handle->fd, &drain, sizeof drain,
1946 MSG_TRUNC) >= 0)
1947 ;
1948 save_errno = errno;
1949 fcntl(handle->fd, F_SETFL, save_mode);
1950 if (save_errno != EAGAIN) {
1951 /* Fatal error */
1952 reset_kernel_filter(handle);
1953 snprintf(handle->errbuf, sizeof(handle->errbuf),
1954 "recv: %s", pcap_strerror(save_errno));
1955 return -2;
1956 }
1957 }
1958 }
1959
1960 /*
1961 * Now attach the new filter.
1962 */
1963 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
1964 fcode, sizeof(*fcode));
1965 if (ret == -1 && total_filter_on) {
1966 /*
1967 * Well, we couldn't set that filter on the socket,
1968 * but we could set the total filter on the socket.
1969 *
1970 * This could, for example, mean that the filter was
1971 * too big to put into the kernel, so we'll have to
1972 * filter in userland; in any case, we'll be doing
1973 * filtering in userland, so we need to remove the
1974 * total filter so we see packets.
1975 */
1976 save_errno = errno;
1977
1978 /*
1979 * XXX - if this fails, we're really screwed;
1980 * we have the total filter on the socket,
1981 * and it won't come off. What do we do then?
1982 */
1983 reset_kernel_filter(handle);
1984
1985 errno = save_errno;
1986 }
1987 return ret;
1988 }
1989
1990 static int
1991 reset_kernel_filter(pcap_t *handle)
1992 {
1993 /* setsockopt() barfs unless it get a dummy parameter */
1994 int dummy;
1995
1996 return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
1997 &dummy, sizeof(dummy));
1998 }
1999 #endif