2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <netinet/in.h>
43 #include "ethertype.h"
46 #include "ieee80211.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
75 uint16_t u6_addr16
[8];
76 uint32_t u6_addr32
[4];
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
84 typedef unsigned short sa_family_t
;
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
89 /* Ditto, for IPv6. */
92 __SOCKADDR_COMMON (sin6_
);
93 uint16_t sin6_port
; /* Transport layer port # */
94 uint32_t sin6_flowinfo
; /* IPv6 flow information */
95 struct in6_addr sin6_addr
; /* IPv6 address */
98 #ifndef EAI_ADDRFAMILY
100 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family
; /* PF_xxx */
102 int ai_socktype
; /* SOCK_xxx */
103 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen
; /* length of ai_addr */
105 char *ai_canonname
; /* canonical name for hostname */
106 struct sockaddr
*ai_addr
; /* binary address */
107 struct addrinfo
*ai_next
; /* next structure in linked list */
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
113 #include <netdb.h> /* for "struct addrinfo" */
115 #include <pcap/namedb.h>
117 #include "nametoaddr.h"
119 #define ETHERMTU 1500
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
134 #define IPPROTO_SCTP 132
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
162 /* Based on UNI3.1 standard by ATM Forum */
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
211 /* format of signalling messages */
214 #define FIELD_BEGIN_POS 4
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
230 /* Types missing from some systems */
233 * Network layer protocol identifiers
236 #define ISO8473_CLNP 0x81
239 #define ISO9542_ESIS 0x82
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
262 #define ISIS_PDU_TYPE_MAX 0x1FU
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
271 // Same as in tcpdump/print-sl.c.
273 #define SLIPDIR_OUT 1
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
298 * Offset "not set" value.
300 #define OFFSET_NOT_SET 0xffffffffU
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
309 * bpf_abs_offset is a structure containing all that information:
311 * is_variable is 1 if there's a variable part.
313 * constant_part is the constant part of the value, possibly zero;
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
330 OR_PACKET
, /* full packet data */
331 OR_LINKHDR
, /* link-layer header */
332 OR_PREVLINKHDR
, /* previous link-layer header */
333 OR_LLC
, /* 802.2 LLC header */
334 OR_PREVMPLSHDR
, /* previous MPLS header */
335 OR_LINKTYPE
, /* link-layer type */
336 OR_LINKPL
, /* link-layer payload */
337 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
348 * XXX - this *is* in a library....
351 #define CHUNK0SIZE 1024
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
377 /* Code generator state */
379 struct _compiler_state
{
390 int outermostlinktype
;
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth
;
397 u_int vlan_stack_depth
;
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
427 * Absolute offset of the beginning of the link-layer header.
429 bpf_abs_offset off_linkhdr
;
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
437 bpf_abs_offset off_prevlinkhdr
;
440 * This is the equivalent information for the outermost layers'
443 bpf_abs_offset off_outermostlinkhdr
;
446 * Absolute offset of the beginning of the link-layer payload.
448 bpf_abs_offset off_linkpl
;
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
462 * For PPP, it's the offset of the PPP type field.
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
466 * For BSD loopback, it's the offset of the AF_ value.
468 * For Linux cooked sockets, it's the offset of the type field.
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
473 bpf_abs_offset off_linktype
;
476 * TRUE if the link layer includes an ATM pseudo-header.
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
488 * TRUE if we need variable length part of VLAN offset
490 int is_vlan_vloffset
;
493 * These are offsets for the ATM pseudo-header.
500 * These are offsets for the MTP2 fields.
506 * These are offsets for the MTP3 fields.
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
525 * If the link layer never uses 802.2 LLC:
527 * "off_nl" and "off_nl_nosnap" are the same.
529 * If the link layer always uses 802.2 LLC:
531 * "off_nl" is the offset if there's a SNAP header following
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
536 * If the link layer is Ethernet:
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
551 int regused
[BPF_MEMWORDS
];
557 struct chunk chunks
[NCHUNKS
];
562 * For use by routines outside this file.
566 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
579 if (!cstate
->error_set
) {
581 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
584 cstate
->error_set
= 1;
589 * For use *ONLY* in routines in this file.
591 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
601 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
604 longjmp(cstate
->top_ctx
, 1);
611 static int init_linktype(compiler_state_t
*, pcap_t
*);
613 static void init_regs(compiler_state_t
*);
614 static int alloc_reg(compiler_state_t
*);
615 static void free_reg(compiler_state_t
*, int);
617 static void initchunks(compiler_state_t
*cstate
);
618 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
619 static void *newchunk(compiler_state_t
*cstate
, size_t);
620 static void freechunks(compiler_state_t
*cstate
);
621 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
622 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
623 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
624 static inline void syntax(compiler_state_t
*cstate
);
626 static void backpatch(struct block
*, struct block
*);
627 static void merge(struct block
*, struct block
*);
628 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
630 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
632 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
634 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
636 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
638 static struct block
*gen_cmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
639 u_int size
, bpf_u_int32
);
640 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
641 u_int
, bpf_u_int32
, bpf_u_int32
);
642 static struct block
*gen_mcmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
643 u_int
, bpf_u_int32
, bpf_u_int32
);
644 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
645 u_int
, const u_char
*);
646 static struct block
*gen_jmp(compiler_state_t
*, int, bpf_u_int32
,
648 static struct block
*gen_set(compiler_state_t
*, bpf_u_int32
, struct slist
*);
649 static struct block
*gen_unset(compiler_state_t
*, bpf_u_int32
, struct slist
*);
650 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
651 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
652 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
654 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
656 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
657 static struct block
*gen_uncond(compiler_state_t
*, int);
658 static inline struct block
*gen_true(compiler_state_t
*);
659 static inline struct block
*gen_false(compiler_state_t
*);
660 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
661 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
662 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
663 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
664 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
665 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
666 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
667 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
668 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
669 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
671 static bpf_u_int32
ethertype_to_ppptype(bpf_u_int32
);
672 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
673 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
674 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
675 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
678 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
679 struct in6_addr
*, int, u_int
, u_int
);
681 static struct block
*gen_ahostop(compiler_state_t
*, const uint8_t, int);
682 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
683 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
684 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
685 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
686 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
687 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
688 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
689 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
692 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
693 struct in6_addr
*, int, int, int);
696 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
697 struct addrinfo
*, int);
699 static struct block
*gen_ipfrag(compiler_state_t
*);
700 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_u_int32
);
701 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, bpf_u_int32
,
703 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_u_int32
);
704 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, bpf_u_int32
,
706 static struct block
*gen_portop(compiler_state_t
*, u_int
, u_int
, int);
707 static struct block
*gen_port(compiler_state_t
*, u_int
, int, int);
708 static struct block
*gen_portrangeop(compiler_state_t
*, u_int
, u_int
,
710 static struct block
*gen_portrange(compiler_state_t
*, u_int
, u_int
, int, int);
711 struct block
*gen_portop6(compiler_state_t
*, u_int
, u_int
, int);
712 static struct block
*gen_port6(compiler_state_t
*, u_int
, int, int);
713 static struct block
*gen_portrangeop6(compiler_state_t
*, u_int
, u_int
,
715 static struct block
*gen_portrange6(compiler_state_t
*, u_int
, u_int
, int, int);
716 static int lookup_proto(compiler_state_t
*, const char *, int);
717 #if !defined(NO_PROTOCHAIN)
718 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
719 #endif /* !defined(NO_PROTOCHAIN) */
720 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int);
721 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
722 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
723 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
724 static struct block
*gen_len(compiler_state_t
*, int, int);
725 static struct block
*gen_encap_ll_check(compiler_state_t
*cstate
);
727 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
728 bpf_u_int32
, int, int);
729 static struct block
*gen_atmtype_llc(compiler_state_t
*);
730 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
733 initchunks(compiler_state_t
*cstate
)
737 for (i
= 0; i
< NCHUNKS
; i
++) {
738 cstate
->chunks
[i
].n_left
= 0;
739 cstate
->chunks
[i
].m
= NULL
;
741 cstate
->cur_chunk
= 0;
745 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
751 /* Round up to chunk alignment. */
752 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
754 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
755 if (n
> cp
->n_left
) {
757 k
= ++cstate
->cur_chunk
;
759 bpf_set_error(cstate
, "out of memory");
762 size
= CHUNK0SIZE
<< k
;
763 cp
->m
= (void *)malloc(size
);
765 bpf_set_error(cstate
, "out of memory");
768 memset((char *)cp
->m
, 0, size
);
771 bpf_set_error(cstate
, "out of memory");
776 return (void *)((char *)cp
->m
+ cp
->n_left
);
780 newchunk(compiler_state_t
*cstate
, size_t n
)
784 p
= newchunk_nolongjmp(cstate
, n
);
786 longjmp(cstate
->top_ctx
, 1);
793 freechunks(compiler_state_t
*cstate
)
797 for (i
= 0; i
< NCHUNKS
; ++i
)
798 if (cstate
->chunks
[i
].m
!= NULL
)
799 free(cstate
->chunks
[i
].m
);
803 * A strdup whose allocations are freed after code generation is over.
804 * This is used by the lexical analyzer, so it can't longjmp; it just
805 * returns NULL on an allocation error, and the callers must check
809 sdup(compiler_state_t
*cstate
, const char *s
)
811 size_t n
= strlen(s
) + 1;
812 char *cp
= newchunk_nolongjmp(cstate
, n
);
816 pcapint_strlcpy(cp
, s
, n
);
820 static inline struct block
*
821 new_block(compiler_state_t
*cstate
, int code
)
825 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
832 static inline struct slist
*
833 new_stmt(compiler_state_t
*cstate
, int code
)
837 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
843 static struct block
*
844 gen_retblk_internal(compiler_state_t
*cstate
, int v
)
846 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
852 static struct block
*
853 gen_retblk(compiler_state_t
*cstate
, int v
)
855 if (setjmp(cstate
->top_ctx
)) {
857 * gen_retblk() only fails because a memory
858 * allocation failed in newchunk(), meaning
859 * that it can't return a pointer.
865 return gen_retblk_internal(cstate
, v
);
868 static inline PCAP_NORETURN_DEF
void
869 syntax(compiler_state_t
*cstate
)
871 bpf_error(cstate
, "syntax error in filter expression");
875 * For the given integer return a string with the keyword (or the nominal
876 * keyword if there is more than one). This is a simpler version of tok2str()
877 * in tcpdump because in this problem space a valid integer value is not
881 qual2kw(const char *kind
, const unsigned id
, const char *tokens
[],
884 static char buf
[4][64];
887 if (id
< size
&& tokens
[id
])
890 char *ret
= buf
[idx
];
891 idx
= (idx
+ 1) % (sizeof(buf
) / sizeof(buf
[0]));
892 ret
[0] = '\0'; // just in case
893 snprintf(ret
, sizeof(buf
[0]), "<invalid %s %u>", kind
, id
);
897 // protocol qualifier keywords
899 pqkw(const unsigned id
)
901 const char * tokens
[] = {
913 [Q_DECNET
] = "decnet",
919 [Q_ICMPV6
] = "icmp6",
931 [Q_NETBEUI
] = "netbeui",
934 [Q_ISIS_IIH
] = "iih",
935 [Q_ISIS_SNP
] = "snp",
936 [Q_ISIS_CSNP
] = "csnp",
937 [Q_ISIS_PSNP
] = "psnp",
938 [Q_ISIS_LSP
] = "lsp",
942 return qual2kw("proto", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
945 // direction qualifier keywords
947 dqkw(const unsigned id
)
949 const char * map
[] = {
952 [Q_OR
] = "src or dst",
953 [Q_AND
] = "src and dst",
961 return qual2kw("dir", id
, map
, sizeof(map
) / sizeof(map
[0]));
966 atmkw(const unsigned id
)
968 const char * tokens
[] = {
971 [A_OAMF4SC
] = "oamf4sc",
972 [A_OAMF4EC
] = "oamf4ec",
978 // no keyword for A_SETUP
979 // no keyword for A_CALLPROCEED
980 // no keyword for A_CONNECT
981 // no keyword for A_CONNECTACK
982 // no keyword for A_RELEASE
983 // no keyword for A_RELEASE_DONE
986 // no keyword for A_PROTOTYPE
987 // no keyword for A_MSGTYPE
988 [A_CONNECTMSG
] = "connectmsg",
989 [A_METACONNECT
] = "metaconnect",
991 return qual2kw("ATM keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
996 ss7kw(const unsigned id
)
998 const char * tokens
[] = {
1002 [MH_FISU
] = "hfisu",
1003 [MH_LSSU
] = "hlssu",
1014 return qual2kw("MTP keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1017 static PCAP_NORETURN_DEF
void
1018 fail_kw_on_dlt(compiler_state_t
*cstate
, const char *keyword
)
1020 bpf_error(cstate
, "'%s' not supported on %s", keyword
,
1021 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
1025 assert_pflog(compiler_state_t
*cstate
, const char *kw
)
1027 if (cstate
->linktype
!= DLT_PFLOG
)
1028 bpf_error(cstate
, "'%s' supported only on PFLOG linktype", kw
);
1032 assert_atm(compiler_state_t
*cstate
, const char *kw
)
1035 * Belt and braces: init_linktype() sets either all of these struct
1036 * members (for DLT_SUNATM) or none (otherwise).
1038 if (cstate
->linktype
!= DLT_SUNATM
||
1040 cstate
->off_vpi
== OFFSET_NOT_SET
||
1041 cstate
->off_vci
== OFFSET_NOT_SET
||
1042 cstate
->off_proto
== OFFSET_NOT_SET
||
1043 cstate
->off_payload
== OFFSET_NOT_SET
)
1044 bpf_error(cstate
, "'%s' supported only on SUNATM", kw
);
1048 assert_ss7(compiler_state_t
*cstate
, const char *kw
)
1050 switch (cstate
->linktype
) {
1053 case DLT_MTP2_WITH_PHDR
:
1054 // Belt and braces, same as in assert_atm().
1055 if (cstate
->off_sio
!= OFFSET_NOT_SET
&&
1056 cstate
->off_opc
!= OFFSET_NOT_SET
&&
1057 cstate
->off_dpc
!= OFFSET_NOT_SET
&&
1058 cstate
->off_sls
!= OFFSET_NOT_SET
)
1061 bpf_error(cstate
, "'%s' supported only on SS7", kw
);
1065 assert_maxval(compiler_state_t
*cstate
, const char *name
,
1066 const bpf_u_int32 val
, const bpf_u_int32 maxval
)
1069 bpf_error(cstate
, "%s %u greater than maximum %u",
1073 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1074 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1076 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1078 port_pq_to_ipproto(compiler_state_t
*cstate
, const int proto
, const char *kw
)
1086 return IPPROTO_SCTP
;
1090 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), kw
);
1094 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
1095 const char *buf
, int optimize
, bpf_u_int32 mask
)
1101 compiler_state_t cstate
;
1102 yyscan_t scanner
= NULL
;
1103 YY_BUFFER_STATE in_buffer
= NULL
;
1108 * If this pcap_t hasn't been activated, it doesn't have a
1109 * link-layer type, so we can't use it.
1111 if (!p
->activated
) {
1112 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1113 "not-yet-activated pcap_t passed to pcap_compile");
1114 return (PCAP_ERROR
);
1119 * Initialize Winsock, asking for the latest version (2.2),
1120 * as we may be calling Winsock routines to translate
1121 * host names to addresses.
1123 err
= WSAStartup(MAKEWORD(2, 2), &wsaData
);
1125 pcapint_fmt_errmsg_for_win32_err(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1126 err
, "Error calling WSAStartup()");
1127 return (PCAP_ERROR
);
1131 #ifdef ENABLE_REMOTE
1133 * If the device on which we're capturing need to be notified
1134 * that a new filter is being compiled, do so.
1136 * This allows them to save a copy of it, in case, for example,
1137 * they're implementing a form of remote packet capture, and
1138 * want the remote machine to filter out the packets in which
1139 * it's sending the packets it's captured.
1141 * XXX - the fact that we happen to be compiling a filter
1142 * doesn't necessarily mean we'll be installing it as the
1143 * filter for this pcap_t; we might be running it from userland
1144 * on captured packets to do packet classification. We really
1145 * need a better way of handling this, but this is all that
1146 * the WinPcap remote capture code did.
1148 if (p
->save_current_filter_op
!= NULL
)
1149 (p
->save_current_filter_op
)(p
, buf
);
1152 initchunks(&cstate
);
1153 cstate
.no_optimize
= 0;
1158 cstate
.ic
.root
= NULL
;
1159 cstate
.ic
.cur_mark
= 0;
1160 cstate
.bpf_pcap
= p
;
1161 cstate
.error_set
= 0;
1164 cstate
.netmask
= mask
;
1166 cstate
.snaplen
= pcap_snapshot(p
);
1167 if (cstate
.snaplen
== 0) {
1168 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1169 "snaplen of 0 rejects all packets");
1174 if (pcap_lex_init(&scanner
) != 0) {
1175 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1176 errno
, "can't initialize scanner");
1180 in_buffer
= pcap__scan_string(buf
? buf
: "", scanner
);
1183 * Associate the compiler state with the lexical analyzer
1186 pcap_set_extra(&cstate
, scanner
);
1188 if (init_linktype(&cstate
, p
) == -1) {
1192 if (pcap_parse(scanner
, &cstate
) != 0) {
1194 if (cstate
.ai
!= NULL
)
1195 freeaddrinfo(cstate
.ai
);
1197 if (cstate
.e
!= NULL
)
1203 if (cstate
.ic
.root
== NULL
) {
1204 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
1207 * Catch errors reported by gen_retblk().
1209 if (cstate
.ic
.root
== NULL
) {
1215 if (optimize
&& !cstate
.no_optimize
) {
1216 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
1221 if (cstate
.ic
.root
== NULL
||
1222 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
1223 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1224 "expression rejects all packets");
1229 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
1230 cstate
.ic
.root
, &len
, p
->errbuf
);
1231 if (program
->bf_insns
== NULL
) {
1236 program
->bf_len
= len
;
1238 rc
= 0; /* We're all okay */
1242 * Clean up everything for the lexical analyzer.
1244 if (in_buffer
!= NULL
)
1245 pcap__delete_buffer(in_buffer
, scanner
);
1246 if (scanner
!= NULL
)
1247 pcap_lex_destroy(scanner
);
1250 * Clean up our own allocated memory.
1252 freechunks(&cstate
);
1262 * entry point for using the compiler with no pcap open
1263 * pass in all the stuff that is needed explicitly instead.
1266 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
1267 struct bpf_program
*program
,
1268 const char *buf
, int optimize
, bpf_u_int32 mask
)
1273 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
1275 return (PCAP_ERROR
);
1276 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
1282 * Clean up a "struct bpf_program" by freeing all the memory allocated
1286 pcap_freecode(struct bpf_program
*program
)
1288 program
->bf_len
= 0;
1289 if (program
->bf_insns
!= NULL
) {
1290 free((char *)program
->bf_insns
);
1291 program
->bf_insns
= NULL
;
1296 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1297 * which of the jt and jf fields has been resolved and which is a pointer
1298 * back to another unresolved block (or nil). At least one of the fields
1299 * in each block is already resolved.
1302 backpatch(struct block
*list
, struct block
*target
)
1319 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1320 * which of jt and jf is the link.
1323 merge(struct block
*b0
, struct block
*b1
)
1325 register struct block
**p
= &b0
;
1327 /* Find end of list. */
1329 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
1331 /* Concatenate the lists. */
1336 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
1339 * Catch errors reported by us and routines below us, and return -1
1342 if (setjmp(cstate
->top_ctx
))
1346 * Insert before the statements of the first (root) block any
1347 * statements needed to load the lengths of any variable-length
1348 * headers into registers.
1350 * XXX - a fancier strategy would be to insert those before the
1351 * statements of all blocks that use those lengths and that
1352 * have no predecessors that use them, so that we only compute
1353 * the lengths if we need them. There might be even better
1354 * approaches than that.
1356 * However, those strategies would be more complicated, and
1357 * as we don't generate code to compute a length if the
1358 * program has no tests that use the length, and as most
1359 * tests will probably use those lengths, we would just
1360 * postpone computing the lengths so that it's not done
1361 * for tests that fail early, and it's not clear that's
1364 insert_compute_vloffsets(cstate
, p
->head
);
1367 * For DLT_PPI captures, generate a check of the per-packet
1368 * DLT value to make sure it's DLT_IEEE802_11.
1370 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1371 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1372 * with appropriate Ethernet information and use that rather
1373 * than using something such as DLT_PPI where you don't know
1374 * the link-layer header type until runtime, which, in the
1375 * general case, would force us to generate both Ethernet *and*
1376 * 802.11 code (*and* anything else for which PPI is used)
1377 * and choose between them early in the BPF program?
1379 if (cstate
->linktype
== DLT_PPI
) {
1380 struct block
*ppi_dlt_check
= gen_cmp(cstate
, OR_PACKET
,
1381 4, BPF_W
, SWAPLONG(DLT_IEEE802_11
));
1382 gen_and(ppi_dlt_check
, p
);
1385 backpatch(p
, gen_retblk_internal(cstate
, cstate
->snaplen
));
1386 p
->sense
= !p
->sense
;
1387 backpatch(p
, gen_retblk_internal(cstate
, 0));
1388 cstate
->ic
.root
= p
->head
;
1393 gen_and(struct block
*b0
, struct block
*b1
)
1395 backpatch(b0
, b1
->head
);
1396 b0
->sense
= !b0
->sense
;
1397 b1
->sense
= !b1
->sense
;
1399 b1
->sense
= !b1
->sense
;
1400 b1
->head
= b0
->head
;
1404 gen_or(struct block
*b0
, struct block
*b1
)
1406 b0
->sense
= !b0
->sense
;
1407 backpatch(b0
, b1
->head
);
1408 b0
->sense
= !b0
->sense
;
1410 b1
->head
= b0
->head
;
1414 gen_not(struct block
*b
)
1416 b
->sense
= !b
->sense
;
1419 static struct block
*
1420 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1421 u_int size
, bpf_u_int32 v
)
1423 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1426 static struct block
*
1427 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1428 u_int size
, bpf_u_int32 v
)
1430 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1433 static struct block
*
1434 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1435 u_int size
, bpf_u_int32 v
)
1437 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1440 static struct block
*
1441 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1442 u_int size
, bpf_u_int32 v
)
1444 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1447 static struct block
*
1448 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1449 u_int size
, bpf_u_int32 v
)
1451 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1454 static struct block
*
1455 gen_cmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1456 u_int size
, bpf_u_int32 v
)
1458 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 1, v
);
1461 static struct block
*
1462 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1463 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1465 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1468 static struct block
*
1469 gen_mcmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1470 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1472 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 1, v
);
1475 static struct block
*
1476 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1477 u_int size
, const u_char
*v
)
1479 register struct block
*b
, *tmp
;
1483 register const u_char
*p
= &v
[size
- 4];
1485 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1493 register const u_char
*p
= &v
[size
- 2];
1495 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1503 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1511 static struct block
*
1512 gen_jmp(compiler_state_t
*cstate
, int jtype
, bpf_u_int32 v
, struct slist
*stmts
)
1514 struct block
*b
= new_block(cstate
, JMP(jtype
));
1520 static struct block
*
1521 gen_set(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1523 return gen_jmp(cstate
, BPF_JSET
, v
, stmts
);
1526 static struct block
*
1527 gen_unset(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1529 struct block
*b
= gen_set(cstate
, v
, stmts
);
1535 * AND the field of size "size" at offset "offset" relative to the header
1536 * specified by "offrel" with "mask", and compare it with the value "v"
1537 * with the test specified by "jtype"; if "reverse" is true, the test
1538 * should test the opposite of "jtype".
1540 static struct block
*
1541 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1542 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1545 struct slist
*s
, *s2
;
1548 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1550 if (mask
!= 0xffffffff) {
1551 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1556 b
= gen_jmp(cstate
, jtype
, v
, s
);
1563 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1565 cstate
->pcap_fddipad
= p
->fddipad
;
1568 * We start out with only one link-layer header.
1570 cstate
->outermostlinktype
= pcap_datalink(p
);
1571 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1572 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1573 cstate
->off_outermostlinkhdr
.reg
= -1;
1575 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1576 cstate
->off_prevlinkhdr
.constant_part
= 0;
1577 cstate
->off_prevlinkhdr
.is_variable
= 0;
1578 cstate
->off_prevlinkhdr
.reg
= -1;
1580 cstate
->linktype
= cstate
->outermostlinktype
;
1581 cstate
->off_linkhdr
.constant_part
= 0;
1582 cstate
->off_linkhdr
.is_variable
= 0;
1583 cstate
->off_linkhdr
.reg
= -1;
1588 cstate
->off_linkpl
.constant_part
= 0;
1589 cstate
->off_linkpl
.is_variable
= 0;
1590 cstate
->off_linkpl
.reg
= -1;
1592 cstate
->off_linktype
.constant_part
= 0;
1593 cstate
->off_linktype
.is_variable
= 0;
1594 cstate
->off_linktype
.reg
= -1;
1597 * Assume it's not raw ATM with a pseudo-header, for now.
1600 cstate
->off_vpi
= OFFSET_NOT_SET
;
1601 cstate
->off_vci
= OFFSET_NOT_SET
;
1602 cstate
->off_proto
= OFFSET_NOT_SET
;
1603 cstate
->off_payload
= OFFSET_NOT_SET
;
1606 * And not encapsulated with either Geneve or VXLAN.
1608 cstate
->is_encap
= 0;
1611 * No variable length VLAN offset by default
1613 cstate
->is_vlan_vloffset
= 0;
1616 * And assume we're not doing SS7.
1618 cstate
->off_li
= OFFSET_NOT_SET
;
1619 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1620 cstate
->off_sio
= OFFSET_NOT_SET
;
1621 cstate
->off_opc
= OFFSET_NOT_SET
;
1622 cstate
->off_dpc
= OFFSET_NOT_SET
;
1623 cstate
->off_sls
= OFFSET_NOT_SET
;
1625 cstate
->label_stack_depth
= 0;
1626 cstate
->vlan_stack_depth
= 0;
1628 switch (cstate
->linktype
) {
1631 cstate
->off_linktype
.constant_part
= 2;
1632 cstate
->off_linkpl
.constant_part
= 6;
1633 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1634 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1637 case DLT_ARCNET_LINUX
:
1638 cstate
->off_linktype
.constant_part
= 4;
1639 cstate
->off_linkpl
.constant_part
= 8;
1640 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1641 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1645 cstate
->off_linktype
.constant_part
= 12;
1646 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1647 cstate
->off_nl
= 0; /* Ethernet II */
1648 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1653 * SLIP doesn't have a link level type. The 16 byte
1654 * header is hacked into our SLIP driver.
1656 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1657 cstate
->off_linkpl
.constant_part
= 16;
1659 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1662 case DLT_SLIP_BSDOS
:
1663 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1664 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1666 cstate
->off_linkpl
.constant_part
= 24;
1668 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1673 cstate
->off_linktype
.constant_part
= 0;
1674 cstate
->off_linkpl
.constant_part
= 4;
1676 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1680 cstate
->off_linktype
.constant_part
= 0;
1681 cstate
->off_linkpl
.constant_part
= 12;
1683 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1688 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1689 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1690 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1691 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1692 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1694 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1699 * This does not include the Ethernet header, and
1700 * only covers session state.
1702 cstate
->off_linktype
.constant_part
= 6;
1703 cstate
->off_linkpl
.constant_part
= 8;
1705 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1709 cstate
->off_linktype
.constant_part
= 5;
1710 cstate
->off_linkpl
.constant_part
= 24;
1712 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1717 * FDDI doesn't really have a link-level type field.
1718 * We set "off_linktype" to the offset of the LLC header.
1720 * To check for Ethernet types, we assume that SSAP = SNAP
1721 * is being used and pick out the encapsulated Ethernet type.
1722 * XXX - should we generate code to check for SNAP?
1724 cstate
->off_linktype
.constant_part
= 13;
1725 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1726 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1727 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1728 cstate
->off_nl
= 8; /* 802.2+SNAP */
1729 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1734 * Token Ring doesn't really have a link-level type field.
1735 * We set "off_linktype" to the offset of the LLC header.
1737 * To check for Ethernet types, we assume that SSAP = SNAP
1738 * is being used and pick out the encapsulated Ethernet type.
1739 * XXX - should we generate code to check for SNAP?
1741 * XXX - the header is actually variable-length.
1742 * Some various Linux patched versions gave 38
1743 * as "off_linktype" and 40 as "off_nl"; however,
1744 * if a token ring packet has *no* routing
1745 * information, i.e. is not source-routed, the correct
1746 * values are 20 and 22, as they are in the vanilla code.
1748 * A packet is source-routed iff the uppermost bit
1749 * of the first byte of the source address, at an
1750 * offset of 8, has the uppermost bit set. If the
1751 * packet is source-routed, the total number of bytes
1752 * of routing information is 2 plus bits 0x1F00 of
1753 * the 16-bit value at an offset of 14 (shifted right
1754 * 8 - figure out which byte that is).
1756 cstate
->off_linktype
.constant_part
= 14;
1757 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1758 cstate
->off_nl
= 8; /* 802.2+SNAP */
1759 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1762 case DLT_PRISM_HEADER
:
1763 case DLT_IEEE802_11_RADIO_AVS
:
1764 case DLT_IEEE802_11_RADIO
:
1765 cstate
->off_linkhdr
.is_variable
= 1;
1766 /* Fall through, 802.11 doesn't have a variable link
1767 * prefix but is otherwise the same. */
1770 case DLT_IEEE802_11
:
1772 * 802.11 doesn't really have a link-level type field.
1773 * We set "off_linktype.constant_part" to the offset of
1776 * To check for Ethernet types, we assume that SSAP = SNAP
1777 * is being used and pick out the encapsulated Ethernet type.
1778 * XXX - should we generate code to check for SNAP?
1780 * We also handle variable-length radio headers here.
1781 * The Prism header is in theory variable-length, but in
1782 * practice it's always 144 bytes long. However, some
1783 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1784 * sometimes or always supply an AVS header, so we
1785 * have to check whether the radio header is a Prism
1786 * header or an AVS header, so, in practice, it's
1789 cstate
->off_linktype
.constant_part
= 24;
1790 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1791 cstate
->off_linkpl
.is_variable
= 1;
1792 cstate
->off_nl
= 8; /* 802.2+SNAP */
1793 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1798 * At the moment we treat PPI the same way that we treat
1799 * normal Radiotap encoded packets. The difference is in
1800 * the function that generates the code at the beginning
1801 * to compute the header length. Since this code generator
1802 * of PPI supports bare 802.11 encapsulation only (i.e.
1803 * the encapsulated DLT should be DLT_IEEE802_11) we
1804 * generate code to check for this too.
1806 cstate
->off_linktype
.constant_part
= 24;
1807 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1808 cstate
->off_linkpl
.is_variable
= 1;
1809 cstate
->off_linkhdr
.is_variable
= 1;
1810 cstate
->off_nl
= 8; /* 802.2+SNAP */
1811 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1814 case DLT_ATM_RFC1483
:
1815 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1817 * assume routed, non-ISO PDUs
1818 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1820 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1821 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1822 * latter would presumably be treated the way PPPoE
1823 * should be, so you can do "pppoe and udp port 2049"
1824 * or "pppoa and tcp port 80" and have it check for
1825 * PPPo{A,E} and a PPP protocol of IP and....
1827 cstate
->off_linktype
.constant_part
= 0;
1828 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1829 cstate
->off_nl
= 8; /* 802.2+SNAP */
1830 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1835 * Full Frontal ATM; you get AALn PDUs with an ATM
1839 cstate
->off_vpi
= SUNATM_VPI_POS
;
1840 cstate
->off_vci
= SUNATM_VCI_POS
;
1841 cstate
->off_proto
= PROTO_POS
;
1842 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1843 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1844 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1845 cstate
->off_nl
= 8; /* 802.2+SNAP */
1846 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1852 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1853 cstate
->off_linkpl
.constant_part
= 0;
1855 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1858 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1859 cstate
->off_linktype
.constant_part
= 14;
1860 cstate
->off_linkpl
.constant_part
= 16;
1862 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1865 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1866 cstate
->off_linktype
.constant_part
= 0;
1867 cstate
->off_linkpl
.constant_part
= 20;
1869 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1874 * LocalTalk does have a 1-byte type field in the LLAP header,
1875 * but really it just indicates whether there is a "short" or
1876 * "long" DDP packet following.
1878 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1879 cstate
->off_linkpl
.constant_part
= 0;
1881 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1884 case DLT_IP_OVER_FC
:
1886 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1887 * link-level type field. We set "off_linktype" to the
1888 * offset of the LLC header.
1890 * To check for Ethernet types, we assume that SSAP = SNAP
1891 * is being used and pick out the encapsulated Ethernet type.
1892 * XXX - should we generate code to check for SNAP? RFC
1893 * 2625 says SNAP should be used.
1895 cstate
->off_linktype
.constant_part
= 16;
1896 cstate
->off_linkpl
.constant_part
= 16;
1897 cstate
->off_nl
= 8; /* 802.2+SNAP */
1898 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1903 * XXX - we should set this to handle SNAP-encapsulated
1904 * frames (NLPID of 0x80).
1906 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1907 cstate
->off_linkpl
.constant_part
= 0;
1909 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1913 * the only BPF-interesting FRF.16 frames are non-control frames;
1914 * Frame Relay has a variable length link-layer
1915 * so lets start with offset 4 for now and increments later on (FIXME);
1918 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1919 cstate
->off_linkpl
.constant_part
= 0;
1921 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1924 case DLT_APPLE_IP_OVER_IEEE1394
:
1925 cstate
->off_linktype
.constant_part
= 16;
1926 cstate
->off_linkpl
.constant_part
= 18;
1928 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1931 case DLT_SYMANTEC_FIREWALL
:
1932 cstate
->off_linktype
.constant_part
= 6;
1933 cstate
->off_linkpl
.constant_part
= 44;
1934 cstate
->off_nl
= 0; /* Ethernet II */
1935 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1939 cstate
->off_linktype
.constant_part
= 0;
1940 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1941 cstate
->off_linkpl
.is_variable
= 1;
1943 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1946 case DLT_JUNIPER_MFR
:
1947 case DLT_JUNIPER_MLFR
:
1948 case DLT_JUNIPER_MLPPP
:
1949 case DLT_JUNIPER_PPP
:
1950 case DLT_JUNIPER_CHDLC
:
1951 case DLT_JUNIPER_FRELAY
:
1952 cstate
->off_linktype
.constant_part
= 4;
1953 cstate
->off_linkpl
.constant_part
= 4;
1955 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1958 case DLT_JUNIPER_ATM1
:
1959 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1960 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1962 cstate
->off_nl_nosnap
= 10;
1965 case DLT_JUNIPER_ATM2
:
1966 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1967 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1969 cstate
->off_nl_nosnap
= 10;
1972 /* frames captured on a Juniper PPPoE service PIC
1973 * contain raw ethernet frames */
1974 case DLT_JUNIPER_PPPOE
:
1975 case DLT_JUNIPER_ETHER
:
1976 cstate
->off_linkpl
.constant_part
= 14;
1977 cstate
->off_linktype
.constant_part
= 16;
1978 cstate
->off_nl
= 18; /* Ethernet II */
1979 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1982 case DLT_JUNIPER_PPPOE_ATM
:
1983 cstate
->off_linktype
.constant_part
= 4;
1984 cstate
->off_linkpl
.constant_part
= 6;
1986 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1989 case DLT_JUNIPER_GGSN
:
1990 cstate
->off_linktype
.constant_part
= 6;
1991 cstate
->off_linkpl
.constant_part
= 12;
1993 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1996 case DLT_JUNIPER_ES
:
1997 cstate
->off_linktype
.constant_part
= 6;
1998 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1999 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
2000 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2003 case DLT_JUNIPER_MONITOR
:
2004 cstate
->off_linktype
.constant_part
= 12;
2005 cstate
->off_linkpl
.constant_part
= 12;
2006 cstate
->off_nl
= 0; /* raw IP/IP6 header */
2007 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2010 case DLT_BACNET_MS_TP
:
2011 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2012 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2013 cstate
->off_nl
= OFFSET_NOT_SET
;
2014 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2017 case DLT_JUNIPER_SERVICES
:
2018 cstate
->off_linktype
.constant_part
= 12;
2019 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2020 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2021 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2024 case DLT_JUNIPER_VP
:
2025 cstate
->off_linktype
.constant_part
= 18;
2026 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2027 cstate
->off_nl
= OFFSET_NOT_SET
;
2028 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2031 case DLT_JUNIPER_ST
:
2032 cstate
->off_linktype
.constant_part
= 18;
2033 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2034 cstate
->off_nl
= OFFSET_NOT_SET
;
2035 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2038 case DLT_JUNIPER_ISM
:
2039 cstate
->off_linktype
.constant_part
= 8;
2040 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2041 cstate
->off_nl
= OFFSET_NOT_SET
;
2042 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2045 case DLT_JUNIPER_VS
:
2046 case DLT_JUNIPER_SRX_E2E
:
2047 case DLT_JUNIPER_FIBRECHANNEL
:
2048 case DLT_JUNIPER_ATM_CEMIC
:
2049 cstate
->off_linktype
.constant_part
= 8;
2050 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2051 cstate
->off_nl
= OFFSET_NOT_SET
;
2052 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2057 cstate
->off_li_hsl
= 4;
2058 cstate
->off_sio
= 3;
2059 cstate
->off_opc
= 4;
2060 cstate
->off_dpc
= 4;
2061 cstate
->off_sls
= 7;
2062 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2063 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2064 cstate
->off_nl
= OFFSET_NOT_SET
;
2065 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2068 case DLT_MTP2_WITH_PHDR
:
2070 cstate
->off_li_hsl
= 8;
2071 cstate
->off_sio
= 7;
2072 cstate
->off_opc
= 8;
2073 cstate
->off_dpc
= 8;
2074 cstate
->off_sls
= 11;
2075 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2076 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2077 cstate
->off_nl
= OFFSET_NOT_SET
;
2078 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2082 cstate
->off_li
= 22;
2083 cstate
->off_li_hsl
= 24;
2084 cstate
->off_sio
= 23;
2085 cstate
->off_opc
= 24;
2086 cstate
->off_dpc
= 24;
2087 cstate
->off_sls
= 27;
2088 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2089 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2090 cstate
->off_nl
= OFFSET_NOT_SET
;
2091 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2095 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2096 cstate
->off_linkpl
.constant_part
= 4;
2098 cstate
->off_nl_nosnap
= 0;
2103 * Currently, only raw "link[N:M]" filtering is supported.
2105 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
2106 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2107 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
2108 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2112 cstate
->off_linktype
.constant_part
= 1;
2113 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
2115 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2118 case DLT_NETANALYZER
:
2119 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
2120 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2121 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
2122 cstate
->off_nl
= 0; /* Ethernet II */
2123 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2126 case DLT_NETANALYZER_TRANSPARENT
:
2127 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2128 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2129 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2130 cstate
->off_nl
= 0; /* Ethernet II */
2131 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2136 * For values in the range in which we've assigned new
2137 * DLT_ values, only raw "link[N:M]" filtering is supported.
2139 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
2140 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
2141 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2142 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2143 cstate
->off_nl
= OFFSET_NOT_SET
;
2144 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2146 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
2147 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
2153 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
2158 * Load a value relative to the specified absolute offset.
2160 static struct slist
*
2161 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
2162 u_int offset
, u_int size
)
2164 struct slist
*s
, *s2
;
2166 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
2169 * If "s" is non-null, it has code to arrange that the X register
2170 * contains the variable part of the absolute offset, so we
2171 * generate a load relative to that, with an offset of
2172 * abs_offset->constant_part + offset.
2174 * Otherwise, we can do an absolute load with an offset of
2175 * abs_offset->constant_part + offset.
2179 * "s" points to a list of statements that puts the
2180 * variable part of the absolute offset into the X register.
2181 * Do an indirect load, to use the X register as an offset.
2183 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2184 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
2188 * There is no variable part of the absolute offset, so
2189 * just do an absolute load.
2191 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2192 s
->s
.k
= abs_offset
->constant_part
+ offset
;
2198 * Load a value relative to the beginning of the specified header.
2200 static struct slist
*
2201 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
2204 struct slist
*s
, *s2
;
2207 * Squelch warnings from compilers that *don't* assume that
2208 * offrel always has a valid enum value and therefore don't
2209 * assume that we'll always go through one of the case arms.
2211 * If we have a default case, compilers that *do* assume that
2212 * will then complain about the default case code being
2215 * Damned if you do, damned if you don't.
2222 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2227 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
2230 case OR_PREVLINKHDR
:
2231 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
2235 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
2238 case OR_PREVMPLSHDR
:
2239 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
2243 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
2246 case OR_LINKPL_NOSNAP
:
2247 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
2251 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
2256 * Load the X register with the length of the IPv4 header
2257 * (plus the offset of the link-layer header, if it's
2258 * preceded by a variable-length header such as a radio
2259 * header), in bytes.
2261 s
= gen_loadx_iphdrlen(cstate
);
2264 * Load the item at {offset of the link-layer payload} +
2265 * {offset, relative to the start of the link-layer
2266 * payload, of the IPv4 header} + {length of the IPv4 header} +
2267 * {specified offset}.
2269 * If the offset of the link-layer payload is variable,
2270 * the variable part of that offset is included in the
2271 * value in the X register, and we include the constant
2272 * part in the offset of the load.
2274 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2275 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
2280 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
2287 * Generate code to load into the X register the sum of the length of
2288 * the IPv4 header and the variable part of the offset of the link-layer
2291 static struct slist
*
2292 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
2294 struct slist
*s
, *s2
;
2296 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
2299 * The offset of the link-layer payload has a variable
2300 * part. "s" points to a list of statements that put
2301 * the variable part of that offset into the X register.
2303 * The 4*([k]&0xf) addressing mode can't be used, as we
2304 * don't have a constant offset, so we have to load the
2305 * value in question into the A register and add to it
2306 * the value from the X register.
2308 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2309 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2311 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2314 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2319 * The A register now contains the length of the IP header.
2320 * We need to add to it the variable part of the offset of
2321 * the link-layer payload, which is still in the X
2322 * register, and move the result into the X register.
2324 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
2325 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
2328 * The offset of the link-layer payload is a constant,
2329 * so no code was generated to load the (nonexistent)
2330 * variable part of that offset.
2332 * This means we can use the 4*([k]&0xf) addressing
2333 * mode. Load the length of the IPv4 header, which
2334 * is at an offset of cstate->off_nl from the beginning of
2335 * the link-layer payload, and thus at an offset of
2336 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2337 * of the raw packet data, using that addressing mode.
2339 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
2340 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2346 static struct block
*
2347 gen_uncond(compiler_state_t
*cstate
, int rsense
)
2351 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
2353 return gen_jmp(cstate
, BPF_JEQ
, 0, s
);
2356 static inline struct block
*
2357 gen_true(compiler_state_t
*cstate
)
2359 return gen_uncond(cstate
, 1);
2362 static inline struct block
*
2363 gen_false(compiler_state_t
*cstate
)
2365 return gen_uncond(cstate
, 0);
2369 * Generate code to match a particular packet type.
2371 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2372 * value, if <= ETHERMTU. We use that to determine whether to
2373 * match the type/length field or to check the type/length field for
2374 * a value <= ETHERMTU to see whether it's a type field and then do
2375 * the appropriate test.
2377 static struct block
*
2378 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2380 struct block
*b0
, *b1
;
2386 case LLCSAP_NETBEUI
:
2388 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2389 * so we check the DSAP and SSAP.
2391 * LLCSAP_IP checks for IP-over-802.2, rather
2392 * than IP-over-Ethernet or IP-over-SNAP.
2394 * XXX - should we check both the DSAP and the
2395 * SSAP, like this, or should we check just the
2396 * DSAP, as we do for other types <= ETHERMTU
2397 * (i.e., other SAP values)?
2399 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2400 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2408 * Ethernet_II frames, which are Ethernet
2409 * frames with a frame type of ETHERTYPE_IPX;
2411 * Ethernet_802.3 frames, which are 802.3
2412 * frames (i.e., the type/length field is
2413 * a length field, <= ETHERMTU, rather than
2414 * a type field) with the first two bytes
2415 * after the Ethernet/802.3 header being
2418 * Ethernet_802.2 frames, which are 802.3
2419 * frames with an 802.2 LLC header and
2420 * with the IPX LSAP as the DSAP in the LLC
2423 * Ethernet_SNAP frames, which are 802.3
2424 * frames with an LLC header and a SNAP
2425 * header and with an OUI of 0x000000
2426 * (encapsulated Ethernet) and a protocol
2427 * ID of ETHERTYPE_IPX in the SNAP header.
2429 * XXX - should we generate the same code both
2430 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2434 * This generates code to check both for the
2435 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2437 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2438 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2442 * Now we add code to check for SNAP frames with
2443 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2445 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2449 * Now we generate code to check for 802.3
2450 * frames in general.
2452 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2455 * Now add the check for 802.3 frames before the
2456 * check for Ethernet_802.2 and Ethernet_802.3,
2457 * as those checks should only be done on 802.3
2458 * frames, not on Ethernet frames.
2463 * Now add the check for Ethernet_II frames, and
2464 * do that before checking for the other frame
2467 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2471 case ETHERTYPE_ATALK
:
2472 case ETHERTYPE_AARP
:
2474 * EtherTalk (AppleTalk protocols on Ethernet link
2475 * layer) may use 802.2 encapsulation.
2479 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2480 * we check for an Ethernet type field less or equal than
2481 * 1500, which means it's an 802.3 length field.
2483 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2486 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2487 * SNAP packets with an organization code of
2488 * 0x080007 (Apple, for Appletalk) and a protocol
2489 * type of ETHERTYPE_ATALK (Appletalk).
2491 * 802.2-encapsulated ETHERTYPE_AARP packets are
2492 * SNAP packets with an organization code of
2493 * 0x000000 (encapsulated Ethernet) and a protocol
2494 * type of ETHERTYPE_AARP (Appletalk ARP).
2496 if (ll_proto
== ETHERTYPE_ATALK
)
2497 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2498 else /* ll_proto == ETHERTYPE_AARP */
2499 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2503 * Check for Ethernet encapsulation (Ethertalk
2504 * phase 1?); we just check for the Ethernet
2507 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2513 if (ll_proto
<= ETHERMTU
) {
2515 * This is an LLC SAP value, so the frames
2516 * that match would be 802.2 frames.
2517 * Check that the frame is an 802.2 frame
2518 * (i.e., that the length/type field is
2519 * a length field, <= ETHERMTU) and
2520 * then check the DSAP.
2522 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2523 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2528 * This is an Ethernet type, so compare
2529 * the length/type field with it (if
2530 * the frame is an 802.2 frame, the length
2531 * field will be <= ETHERMTU, and, as
2532 * "ll_proto" is > ETHERMTU, this test
2533 * will fail and the frame won't match,
2534 * which is what we want).
2536 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2541 static struct block
*
2542 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2545 * For DLT_NULL, the link-layer header is a 32-bit word
2546 * containing an AF_ value in *host* byte order, and for
2547 * DLT_ENC, the link-layer header begins with a 32-bit
2548 * word containing an AF_ value in host byte order.
2550 * In addition, if we're reading a saved capture file,
2551 * the host byte order in the capture may not be the
2552 * same as the host byte order on this machine.
2554 * For DLT_LOOP, the link-layer header is a 32-bit
2555 * word containing an AF_ value in *network* byte order.
2557 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2559 * The AF_ value is in host byte order, but the BPF
2560 * interpreter will convert it to network byte order.
2562 * If this is a save file, and it's from a machine
2563 * with the opposite byte order to ours, we byte-swap
2566 * Then we run it through "htonl()", and generate
2567 * code to compare against the result.
2569 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2570 ll_proto
= SWAPLONG(ll_proto
);
2571 ll_proto
= htonl(ll_proto
);
2573 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2577 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2578 * or IPv6 then we have an error.
2580 static struct block
*
2581 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2586 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2589 case ETHERTYPE_IPV6
:
2590 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2597 return gen_false(cstate
);
2601 * Generate code to match a particular packet type.
2603 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2604 * value, if <= ETHERMTU. We use that to determine whether to
2605 * match the type field or to check the type field for the special
2606 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2608 static struct block
*
2609 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2611 struct block
*b0
, *b1
;
2617 case LLCSAP_NETBEUI
:
2619 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2620 * so we check the DSAP and SSAP.
2622 * LLCSAP_IP checks for IP-over-802.2, rather
2623 * than IP-over-Ethernet or IP-over-SNAP.
2625 * XXX - should we check both the DSAP and the
2626 * SSAP, like this, or should we check just the
2627 * DSAP, as we do for other types <= ETHERMTU
2628 * (i.e., other SAP values)?
2630 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2631 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2637 * Ethernet_II frames, which are Ethernet
2638 * frames with a frame type of ETHERTYPE_IPX;
2640 * Ethernet_802.3 frames, which have a frame
2641 * type of LINUX_SLL_P_802_3;
2643 * Ethernet_802.2 frames, which are 802.3
2644 * frames with an 802.2 LLC header (i.e, have
2645 * a frame type of LINUX_SLL_P_802_2) and
2646 * with the IPX LSAP as the DSAP in the LLC
2649 * Ethernet_SNAP frames, which are 802.3
2650 * frames with an LLC header and a SNAP
2651 * header and with an OUI of 0x000000
2652 * (encapsulated Ethernet) and a protocol
2653 * ID of ETHERTYPE_IPX in the SNAP header.
2655 * First, do the checks on LINUX_SLL_P_802_2
2656 * frames; generate the check for either
2657 * Ethernet_802.2 or Ethernet_SNAP frames, and
2658 * then put a check for LINUX_SLL_P_802_2 frames
2661 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2662 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2664 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2668 * Now check for 802.3 frames and OR that with
2669 * the previous test.
2671 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2675 * Now add the check for Ethernet_II frames, and
2676 * do that before checking for the other frame
2679 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2683 case ETHERTYPE_ATALK
:
2684 case ETHERTYPE_AARP
:
2686 * EtherTalk (AppleTalk protocols on Ethernet link
2687 * layer) may use 802.2 encapsulation.
2691 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2692 * we check for the 802.2 protocol type in the
2693 * "Ethernet type" field.
2695 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2698 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2699 * SNAP packets with an organization code of
2700 * 0x080007 (Apple, for Appletalk) and a protocol
2701 * type of ETHERTYPE_ATALK (Appletalk).
2703 * 802.2-encapsulated ETHERTYPE_AARP packets are
2704 * SNAP packets with an organization code of
2705 * 0x000000 (encapsulated Ethernet) and a protocol
2706 * type of ETHERTYPE_AARP (Appletalk ARP).
2708 if (ll_proto
== ETHERTYPE_ATALK
)
2709 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2710 else /* ll_proto == ETHERTYPE_AARP */
2711 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2715 * Check for Ethernet encapsulation (Ethertalk
2716 * phase 1?); we just check for the Ethernet
2719 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2725 if (ll_proto
<= ETHERMTU
) {
2727 * This is an LLC SAP value, so the frames
2728 * that match would be 802.2 frames.
2729 * Check for the 802.2 protocol type
2730 * in the "Ethernet type" field, and
2731 * then check the DSAP.
2733 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2734 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2740 * This is an Ethernet type, so compare
2741 * the length/type field with it (if
2742 * the frame is an 802.2 frame, the length
2743 * field will be <= ETHERMTU, and, as
2744 * "ll_proto" is > ETHERMTU, this test
2745 * will fail and the frame won't match,
2746 * which is what we want).
2748 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2754 * Load a value relative to the beginning of the link-layer header after the
2757 static struct slist
*
2758 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2760 struct slist
*s1
, *s2
;
2763 * Generate code to load the length of the pflog header into
2764 * the register assigned to hold that length, if one has been
2765 * assigned. (If one hasn't been assigned, no code we've
2766 * generated uses that prefix, so we don't need to generate any
2769 if (cstate
->off_linkpl
.reg
!= -1) {
2771 * The length is in the first byte of the header.
2773 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2777 * Round it up to a multiple of 4.
2778 * Add 3, and clear the lower 2 bits.
2780 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2783 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2784 s2
->s
.k
= 0xfffffffc;
2788 * Now allocate a register to hold that value and store
2791 s2
= new_stmt(cstate
, BPF_ST
);
2792 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2796 * Now move it into the X register.
2798 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2806 static struct slist
*
2807 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2809 struct slist
*s1
, *s2
;
2810 struct slist
*sjeq_avs_cookie
;
2811 struct slist
*sjcommon
;
2814 * This code is not compatible with the optimizer, as
2815 * we are generating jmp instructions within a normal
2816 * slist of instructions
2818 cstate
->no_optimize
= 1;
2821 * Generate code to load the length of the radio header into
2822 * the register assigned to hold that length, if one has been
2823 * assigned. (If one hasn't been assigned, no code we've
2824 * generated uses that prefix, so we don't need to generate any
2827 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2828 * or always use the AVS header rather than the Prism header.
2829 * We load a 4-byte big-endian value at the beginning of the
2830 * raw packet data, and see whether, when masked with 0xFFFFF000,
2831 * it's equal to 0x80211000. If so, that indicates that it's
2832 * an AVS header (the masked-out bits are the version number).
2833 * Otherwise, it's a Prism header.
2835 * XXX - the Prism header is also, in theory, variable-length,
2836 * but no known software generates headers that aren't 144
2839 if (cstate
->off_linkhdr
.reg
!= -1) {
2843 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2847 * AND it with 0xFFFFF000.
2849 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2850 s2
->s
.k
= 0xFFFFF000;
2854 * Compare with 0x80211000.
2856 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2857 sjeq_avs_cookie
->s
.k
= 0x80211000;
2858 sappend(s1
, sjeq_avs_cookie
);
2863 * The 4 bytes at an offset of 4 from the beginning of
2864 * the AVS header are the length of the AVS header.
2865 * That field is big-endian.
2867 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2870 sjeq_avs_cookie
->s
.jt
= s2
;
2873 * Now jump to the code to allocate a register
2874 * into which to save the header length and
2875 * store the length there. (The "jump always"
2876 * instruction needs to have the k field set;
2877 * it's added to the PC, so, as we're jumping
2878 * over a single instruction, it should be 1.)
2880 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2882 sappend(s1
, sjcommon
);
2885 * Now for the code that handles the Prism header.
2886 * Just load the length of the Prism header (144)
2887 * into the A register. Have the test for an AVS
2888 * header branch here if we don't have an AVS header.
2890 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2893 sjeq_avs_cookie
->s
.jf
= s2
;
2896 * Now allocate a register to hold that value and store
2897 * it. The code for the AVS header will jump here after
2898 * loading the length of the AVS header.
2900 s2
= new_stmt(cstate
, BPF_ST
);
2901 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2903 sjcommon
->s
.jf
= s2
;
2906 * Now move it into the X register.
2908 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2916 static struct slist
*
2917 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2919 struct slist
*s1
, *s2
;
2922 * Generate code to load the length of the AVS header into
2923 * the register assigned to hold that length, if one has been
2924 * assigned. (If one hasn't been assigned, no code we've
2925 * generated uses that prefix, so we don't need to generate any
2928 if (cstate
->off_linkhdr
.reg
!= -1) {
2930 * The 4 bytes at an offset of 4 from the beginning of
2931 * the AVS header are the length of the AVS header.
2932 * That field is big-endian.
2934 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2938 * Now allocate a register to hold that value and store
2941 s2
= new_stmt(cstate
, BPF_ST
);
2942 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2946 * Now move it into the X register.
2948 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2956 static struct slist
*
2957 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2959 struct slist
*s1
, *s2
;
2962 * Generate code to load the length of the radiotap header into
2963 * the register assigned to hold that length, if one has been
2964 * assigned. (If one hasn't been assigned, no code we've
2965 * generated uses that prefix, so we don't need to generate any
2968 if (cstate
->off_linkhdr
.reg
!= -1) {
2970 * The 2 bytes at offsets of 2 and 3 from the beginning
2971 * of the radiotap header are the length of the radiotap
2972 * header; unfortunately, it's little-endian, so we have
2973 * to load it a byte at a time and construct the value.
2977 * Load the high-order byte, at an offset of 3, shift it
2978 * left a byte, and put the result in the X register.
2980 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2982 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2985 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2989 * Load the next byte, at an offset of 2, and OR the
2990 * value from the X register into it.
2992 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2995 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2999 * Now allocate a register to hold that value and store
3002 s2
= new_stmt(cstate
, BPF_ST
);
3003 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3007 * Now move it into the X register.
3009 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3018 * At the moment we treat PPI as normal Radiotap encoded
3019 * packets. The difference is in the function that generates
3020 * the code at the beginning to compute the header length.
3021 * Since this code generator of PPI supports bare 802.11
3022 * encapsulation only (i.e. the encapsulated DLT should be
3023 * DLT_IEEE802_11) we generate code to check for this too;
3024 * that's done in finish_parse().
3026 static struct slist
*
3027 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
3029 struct slist
*s1
, *s2
;
3032 * Generate code to load the length of the radiotap header
3033 * into the register assigned to hold that length, if one has
3036 if (cstate
->off_linkhdr
.reg
!= -1) {
3038 * The 2 bytes at offsets of 2 and 3 from the beginning
3039 * of the radiotap header are the length of the radiotap
3040 * header; unfortunately, it's little-endian, so we have
3041 * to load it a byte at a time and construct the value.
3045 * Load the high-order byte, at an offset of 3, shift it
3046 * left a byte, and put the result in the X register.
3048 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3050 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
3053 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3057 * Load the next byte, at an offset of 2, and OR the
3058 * value from the X register into it.
3060 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3063 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3067 * Now allocate a register to hold that value and store
3070 s2
= new_stmt(cstate
, BPF_ST
);
3071 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3075 * Now move it into the X register.
3077 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3086 * Load a value relative to the beginning of the link-layer header after the 802.11
3087 * header, i.e. LLC_SNAP.
3088 * The link-layer header doesn't necessarily begin at the beginning
3089 * of the packet data; there might be a variable-length prefix containing
3090 * radio information.
3092 static struct slist
*
3093 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
3096 struct slist
*sjset_data_frame_1
;
3097 struct slist
*sjset_data_frame_2
;
3098 struct slist
*sjset_qos
;
3099 struct slist
*sjset_radiotap_flags_present
;
3100 struct slist
*sjset_radiotap_ext_present
;
3101 struct slist
*sjset_radiotap_tsft_present
;
3102 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
3103 struct slist
*s_roundup
;
3105 if (cstate
->off_linkpl
.reg
== -1) {
3107 * No register has been assigned to the offset of
3108 * the link-layer payload, which means nobody needs
3109 * it; don't bother computing it - just return
3110 * what we already have.
3116 * This code is not compatible with the optimizer, as
3117 * we are generating jmp instructions within a normal
3118 * slist of instructions
3120 cstate
->no_optimize
= 1;
3123 * If "s" is non-null, it has code to arrange that the X register
3124 * contains the length of the prefix preceding the link-layer
3127 * Otherwise, the length of the prefix preceding the link-layer
3128 * header is "off_outermostlinkhdr.constant_part".
3132 * There is no variable-length header preceding the
3133 * link-layer header.
3135 * Load the length of the fixed-length prefix preceding
3136 * the link-layer header (if any) into the X register,
3137 * and store it in the cstate->off_linkpl.reg register.
3138 * That length is off_outermostlinkhdr.constant_part.
3140 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
3141 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
3145 * The X register contains the offset of the beginning of the
3146 * link-layer header; add 24, which is the minimum length
3147 * of the MAC header for a data frame, to that, and store it
3148 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3149 * which is at the offset in the X register, with an indexed load.
3151 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
3153 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
3156 s2
= new_stmt(cstate
, BPF_ST
);
3157 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3160 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
3165 * Check the Frame Control field to see if this is a data frame;
3166 * a data frame has the 0x08 bit (b3) in that field set and the
3167 * 0x04 bit (b2) clear.
3169 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
3170 sjset_data_frame_1
->s
.k
= IEEE80211_FC0_TYPE_DATA
;
3171 sappend(s
, sjset_data_frame_1
);
3174 * If b3 is set, test b2, otherwise go to the first statement of
3175 * the rest of the program.
3177 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
3178 sjset_data_frame_2
->s
.k
= IEEE80211_FC0_TYPE_CTL
;
3179 sappend(s
, sjset_data_frame_2
);
3180 sjset_data_frame_1
->s
.jf
= snext
;
3183 * If b2 is not set, this is a data frame; test the QoS bit.
3184 * Otherwise, go to the first statement of the rest of the
3187 sjset_data_frame_2
->s
.jt
= snext
;
3188 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
3189 sjset_qos
->s
.k
= IEEE80211_FC0_SUBTYPE_QOS
;
3190 sappend(s
, sjset_qos
);
3193 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3195 * Otherwise, go to the first statement of the rest of the
3198 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3199 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3201 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3204 s2
= new_stmt(cstate
, BPF_ST
);
3205 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3209 * If we have a radiotap header, look at it to see whether
3210 * there's Atheros padding between the MAC-layer header
3213 * Note: all of the fields in the radiotap header are
3214 * little-endian, so we byte-swap all of the values
3215 * we test against, as they will be loaded as big-endian
3218 * XXX - in the general case, we would have to scan through
3219 * *all* the presence bits, if there's more than one word of
3220 * presence bits. That would require a loop, meaning that
3221 * we wouldn't be able to run the filter in the kernel.
3223 * We assume here that the Atheros adapters that insert the
3224 * annoying padding don't have multiple antennae and therefore
3225 * do not generate radiotap headers with multiple presence words.
3227 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
3229 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3230 * in the first presence flag word?
3232 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
3236 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3237 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
3238 sappend(s
, sjset_radiotap_flags_present
);
3241 * If not, skip all of this.
3243 sjset_radiotap_flags_present
->s
.jf
= snext
;
3246 * Otherwise, is the "extension" bit set in that word?
3248 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3249 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
3250 sappend(s
, sjset_radiotap_ext_present
);
3251 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
3254 * If so, skip all of this.
3256 sjset_radiotap_ext_present
->s
.jt
= snext
;
3259 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3261 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3262 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
3263 sappend(s
, sjset_radiotap_tsft_present
);
3264 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
3267 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3268 * at an offset of 16 from the beginning of the raw packet
3269 * data (8 bytes for the radiotap header and 8 bytes for
3272 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3275 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3278 sjset_radiotap_tsft_present
->s
.jt
= s2
;
3280 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3281 sjset_tsft_datapad
->s
.k
= 0x20;
3282 sappend(s
, sjset_tsft_datapad
);
3285 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3286 * at an offset of 8 from the beginning of the raw packet
3287 * data (8 bytes for the radiotap header).
3289 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3292 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3295 sjset_radiotap_tsft_present
->s
.jf
= s2
;
3297 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3298 sjset_notsft_datapad
->s
.k
= 0x20;
3299 sappend(s
, sjset_notsft_datapad
);
3302 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3303 * set, round the length of the 802.11 header to
3304 * a multiple of 4. Do that by adding 3 and then
3305 * dividing by and multiplying by 4, which we do by
3308 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3309 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
3310 sappend(s
, s_roundup
);
3311 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3314 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
3315 s2
->s
.k
= (bpf_u_int32
)~3;
3317 s2
= new_stmt(cstate
, BPF_ST
);
3318 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3321 sjset_tsft_datapad
->s
.jt
= s_roundup
;
3322 sjset_tsft_datapad
->s
.jf
= snext
;
3323 sjset_notsft_datapad
->s
.jt
= s_roundup
;
3324 sjset_notsft_datapad
->s
.jf
= snext
;
3326 sjset_qos
->s
.jf
= snext
;
3332 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
3336 /* There is an implicit dependency between the link
3337 * payload and link header since the payload computation
3338 * includes the variable part of the header. Therefore,
3339 * if nobody else has allocated a register for the link
3340 * header and we need it, do it now. */
3341 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
3342 cstate
->off_linkhdr
.reg
== -1)
3343 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
3346 * For link-layer types that have a variable-length header
3347 * preceding the link-layer header, generate code to load
3348 * the offset of the link-layer header into the register
3349 * assigned to that offset, if any.
3351 * XXX - this, and the next switch statement, won't handle
3352 * encapsulation of 802.11 or 802.11+radio information in
3353 * some other protocol stack. That's significantly more
3356 switch (cstate
->outermostlinktype
) {
3358 case DLT_PRISM_HEADER
:
3359 s
= gen_load_prism_llprefixlen(cstate
);
3362 case DLT_IEEE802_11_RADIO_AVS
:
3363 s
= gen_load_avs_llprefixlen(cstate
);
3366 case DLT_IEEE802_11_RADIO
:
3367 s
= gen_load_radiotap_llprefixlen(cstate
);
3371 s
= gen_load_ppi_llprefixlen(cstate
);
3380 * For link-layer types that have a variable-length link-layer
3381 * header, generate code to load the offset of the link-layer
3382 * payload into the register assigned to that offset, if any.
3384 switch (cstate
->outermostlinktype
) {
3386 case DLT_IEEE802_11
:
3387 case DLT_PRISM_HEADER
:
3388 case DLT_IEEE802_11_RADIO_AVS
:
3389 case DLT_IEEE802_11_RADIO
:
3391 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
3395 s
= gen_load_pflog_llprefixlen(cstate
);
3400 * If there is no initialization yet and we need variable
3401 * length offsets for VLAN, initialize them to zero
3403 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3406 if (cstate
->off_linkpl
.reg
== -1)
3407 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3408 if (cstate
->off_linktype
.reg
== -1)
3409 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3411 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3413 s2
= new_stmt(cstate
, BPF_ST
);
3414 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3416 s2
= new_stmt(cstate
, BPF_ST
);
3417 s2
->s
.k
= cstate
->off_linktype
.reg
;
3422 * If we have any offset-loading code, append all the
3423 * existing statements in the block to those statements,
3424 * and make the resulting list the list of statements
3428 sappend(s
, b
->stmts
);
3434 * Take an absolute offset, and:
3436 * if it has no variable part, return NULL;
3438 * if it has a variable part, generate code to load the register
3439 * containing that variable part into the X register, returning
3440 * a pointer to that code - if no register for that offset has
3441 * been allocated, allocate it first.
3443 * (The code to set that register will be generated later, but will
3444 * be placed earlier in the code sequence.)
3446 static struct slist
*
3447 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3451 if (off
->is_variable
) {
3452 if (off
->reg
== -1) {
3454 * We haven't yet assigned a register for the
3455 * variable part of the offset of the link-layer
3456 * header; allocate one.
3458 off
->reg
= alloc_reg(cstate
);
3462 * Load the register containing the variable part of the
3463 * offset of the link-layer header into the X register.
3465 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3470 * That offset isn't variable, there's no variable part,
3471 * so we don't need to generate any code.
3478 * Map an Ethernet type to the equivalent PPP type.
3481 ethertype_to_ppptype(bpf_u_int32 ll_proto
)
3489 case ETHERTYPE_IPV6
:
3490 ll_proto
= PPP_IPV6
;
3494 ll_proto
= PPP_DECNET
;
3497 case ETHERTYPE_ATALK
:
3498 ll_proto
= PPP_APPLE
;
3511 * I'm assuming the "Bridging PDU"s that go
3512 * over PPP are Spanning Tree Protocol
3515 ll_proto
= PPP_BRPDU
;
3526 * Generate any tests that, for encapsulation of a link-layer packet
3527 * inside another protocol stack, need to be done to check for those
3528 * link-layer packets (and that haven't already been done by a check
3529 * for that encapsulation).
3531 static struct block
*
3532 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3534 if (cstate
->is_encap
)
3535 return gen_encap_ll_check(cstate
);
3537 switch (cstate
->prevlinktype
) {
3541 * This is LANE-encapsulated Ethernet; check that the LANE
3542 * packet doesn't begin with an LE Control marker, i.e.
3543 * that it's data, not a control message.
3545 * (We've already generated a test for LANE.)
3547 return gen_cmp_ne(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3551 * No such tests are necessary.
3559 * The three different values we should check for when checking for an
3560 * IPv6 packet with DLT_NULL.
3562 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3563 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3564 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3567 * Generate code to match a particular packet type by matching the
3568 * link-layer type field or fields in the 802.2 LLC header.
3570 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3571 * value, if <= ETHERMTU.
3573 static struct block
*
3574 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3576 struct block
*b0
, *b1
, *b2
;
3578 /* are we checking MPLS-encapsulated packets? */
3579 if (cstate
->label_stack_depth
> 0)
3580 return gen_mpls_linktype(cstate
, ll_proto
);
3582 switch (cstate
->linktype
) {
3585 case DLT_NETANALYZER
:
3586 case DLT_NETANALYZER_TRANSPARENT
:
3587 /* Geneve has an EtherType regardless of whether there is an
3588 * L2 header. VXLAN always has an EtherType. */
3589 if (!cstate
->is_encap
)
3590 b0
= gen_prevlinkhdr_check(cstate
);
3594 b1
= gen_ether_linktype(cstate
, ll_proto
);
3605 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3609 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3613 case DLT_IEEE802_11
:
3614 case DLT_PRISM_HEADER
:
3615 case DLT_IEEE802_11_RADIO_AVS
:
3616 case DLT_IEEE802_11_RADIO
:
3619 * Check that we have a data frame.
3621 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
3622 IEEE80211_FC0_TYPE_DATA
,
3623 IEEE80211_FC0_TYPE_MASK
);
3626 * Now check for the specified link-layer type.
3628 b1
= gen_llc_linktype(cstate
, ll_proto
);
3635 * XXX - check for LLC frames.
3637 return gen_llc_linktype(cstate
, ll_proto
);
3642 * XXX - check for LLC PDUs, as per IEEE 802.5.
3644 return gen_llc_linktype(cstate
, ll_proto
);
3647 case DLT_ATM_RFC1483
:
3649 case DLT_IP_OVER_FC
:
3650 return gen_llc_linktype(cstate
, ll_proto
);
3655 * Check for an LLC-encapsulated version of this protocol;
3656 * if we were checking for LANE, linktype would no longer
3659 * Check for LLC encapsulation and then check the protocol.
3661 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3662 b1
= gen_llc_linktype(cstate
, ll_proto
);
3668 return gen_linux_sll_linktype(cstate
, ll_proto
);
3672 case DLT_SLIP_BSDOS
:
3675 * These types don't provide any type field; packets
3676 * are always IPv4 or IPv6.
3678 * XXX - for IPv4, check for a version number of 4, and,
3679 * for IPv6, check for a version number of 6?
3684 /* Check for a version number of 4. */
3685 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3687 case ETHERTYPE_IPV6
:
3688 /* Check for a version number of 6. */
3689 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3692 return gen_false(cstate
); /* always false */
3698 * Raw IPv4, so no type field.
3700 if (ll_proto
== ETHERTYPE_IP
)
3701 return gen_true(cstate
); /* always true */
3703 /* Checking for something other than IPv4; always false */
3704 return gen_false(cstate
);
3709 * Raw IPv6, so no type field.
3711 if (ll_proto
== ETHERTYPE_IPV6
)
3712 return gen_true(cstate
); /* always true */
3714 /* Checking for something other than IPv6; always false */
3715 return gen_false(cstate
);
3720 case DLT_PPP_SERIAL
:
3723 * We use Ethernet protocol types inside libpcap;
3724 * map them to the corresponding PPP protocol types.
3726 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3727 ethertype_to_ppptype(ll_proto
));
3732 * We use Ethernet protocol types inside libpcap;
3733 * map them to the corresponding PPP protocol types.
3739 * Also check for Van Jacobson-compressed IP.
3740 * XXX - do this for other forms of PPP?
3742 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3743 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3745 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3750 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3751 ethertype_to_ppptype(ll_proto
));
3761 return (gen_loopback_linktype(cstate
, AF_INET
));
3763 case ETHERTYPE_IPV6
:
3765 * AF_ values may, unfortunately, be platform-
3766 * dependent; AF_INET isn't, because everybody
3767 * used 4.2BSD's value, but AF_INET6 is, because
3768 * 4.2BSD didn't have a value for it (given that
3769 * IPv6 didn't exist back in the early 1980's),
3770 * and they all picked their own values.
3772 * This means that, if we're reading from a
3773 * savefile, we need to check for all the
3776 * If we're doing a live capture, we only need
3777 * to check for this platform's value; however,
3778 * Npcap uses 24, which isn't Windows's AF_INET6
3779 * value. (Given the multiple different values,
3780 * programs that read pcap files shouldn't be
3781 * checking for their platform's AF_INET6 value
3782 * anyway, they should check for all of the
3783 * possible values. and they might as well do
3784 * that even for live captures.)
3786 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3788 * Savefile - check for all three
3789 * possible IPv6 values.
3791 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3792 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3794 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3799 * Live capture, so we only need to
3800 * check for the value used on this
3805 * Npcap doesn't use Windows's AF_INET6,
3806 * as that collides with AF_IPX on
3807 * some BSDs (both have the value 23).
3808 * Instead, it uses 24.
3810 return (gen_loopback_linktype(cstate
, 24));
3813 return (gen_loopback_linktype(cstate
, AF_INET6
));
3814 #else /* AF_INET6 */
3816 * I guess this platform doesn't support
3817 * IPv6, so we just reject all packets.
3819 return gen_false(cstate
);
3820 #endif /* AF_INET6 */
3826 * Not a type on which we support filtering.
3827 * XXX - support those that have AF_ values
3828 * #defined on this platform, at least?
3830 return gen_false(cstate
);
3835 * af field is host byte order in contrast to the rest of
3838 if (ll_proto
== ETHERTYPE_IP
)
3839 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3841 else if (ll_proto
== ETHERTYPE_IPV6
)
3842 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3845 return gen_false(cstate
);
3849 case DLT_ARCNET_LINUX
:
3851 * XXX should we check for first fragment if the protocol
3857 return gen_false(cstate
);
3859 case ETHERTYPE_IPV6
:
3860 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3864 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3866 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3872 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3874 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3879 case ETHERTYPE_REVARP
:
3880 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3883 case ETHERTYPE_ATALK
:
3884 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3891 case ETHERTYPE_ATALK
:
3892 return gen_true(cstate
);
3894 return gen_false(cstate
);
3900 * XXX - assumes a 2-byte Frame Relay header with
3901 * DLCI and flags. What if the address is longer?
3907 * Check for the special NLPID for IP.
3909 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3911 case ETHERTYPE_IPV6
:
3913 * Check for the special NLPID for IPv6.
3915 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3919 * Check for several OSI protocols.
3921 * Frame Relay packets typically have an OSI
3922 * NLPID at the beginning; we check for each
3925 * What we check for is the NLPID and a frame
3926 * control field of UI, i.e. 0x03 followed
3929 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3930 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3931 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3937 return gen_false(cstate
);
3942 break; // not implemented
3944 case DLT_JUNIPER_MFR
:
3945 case DLT_JUNIPER_MLFR
:
3946 case DLT_JUNIPER_MLPPP
:
3947 case DLT_JUNIPER_ATM1
:
3948 case DLT_JUNIPER_ATM2
:
3949 case DLT_JUNIPER_PPPOE
:
3950 case DLT_JUNIPER_PPPOE_ATM
:
3951 case DLT_JUNIPER_GGSN
:
3952 case DLT_JUNIPER_ES
:
3953 case DLT_JUNIPER_MONITOR
:
3954 case DLT_JUNIPER_SERVICES
:
3955 case DLT_JUNIPER_ETHER
:
3956 case DLT_JUNIPER_PPP
:
3957 case DLT_JUNIPER_FRELAY
:
3958 case DLT_JUNIPER_CHDLC
:
3959 case DLT_JUNIPER_VP
:
3960 case DLT_JUNIPER_ST
:
3961 case DLT_JUNIPER_ISM
:
3962 case DLT_JUNIPER_VS
:
3963 case DLT_JUNIPER_SRX_E2E
:
3964 case DLT_JUNIPER_FIBRECHANNEL
:
3965 case DLT_JUNIPER_ATM_CEMIC
:
3967 /* just lets verify the magic number for now -
3968 * on ATM we may have up to 6 different encapsulations on the wire
3969 * and need a lot of heuristics to figure out that the payload
3972 * FIXME encapsulation specific BPF_ filters
3974 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3976 case DLT_BACNET_MS_TP
:
3977 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3980 return gen_ipnet_linktype(cstate
, ll_proto
);
3982 case DLT_LINUX_IRDA
:
3985 case DLT_MTP2_WITH_PHDR
:
3988 case DLT_LINUX_LAPD
:
3989 case DLT_USB_FREEBSD
:
3991 case DLT_USB_LINUX_MMAPPED
:
3993 case DLT_BLUETOOTH_HCI_H4
:
3994 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3996 case DLT_CAN_SOCKETCAN
:
3997 case DLT_IEEE802_15_4
:
3998 case DLT_IEEE802_15_4_LINUX
:
3999 case DLT_IEEE802_15_4_NONASK_PHY
:
4000 case DLT_IEEE802_15_4_NOFCS
:
4001 case DLT_IEEE802_15_4_TAP
:
4002 case DLT_IEEE802_16_MAC_CPS_RADIO
:
4005 case DLT_IPMB_KONTRON
:
4009 /* Using the fixed-size NFLOG header it is possible to tell only
4010 * the address family of the packet, other meaningful data is
4011 * either missing or behind TLVs.
4013 break; // not implemented
4017 * Does this link-layer header type have a field
4018 * indicating the type of the next protocol? If
4019 * so, off_linktype.constant_part will be the offset of that
4020 * field in the packet; if not, it will be OFFSET_NOT_SET.
4022 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
4024 * Yes; assume it's an Ethernet type. (If
4025 * it's not, it needs to be handled specially
4028 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
4032 bpf_error(cstate
, "link-layer type filtering not implemented for %s",
4033 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
4037 * Check for an LLC SNAP packet with a given organization code and
4038 * protocol type; we check the entire contents of the 802.2 LLC and
4039 * snap headers, checking for DSAP and SSAP of SNAP and a control
4040 * field of 0x03 in the LLC header, and for the specified organization
4041 * code and protocol type in the SNAP header.
4043 static struct block
*
4044 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
4046 u_char snapblock
[8];
4048 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
4049 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
4050 snapblock
[2] = 0x03; /* control = UI */
4051 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
4052 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
4053 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
4054 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
4055 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
4056 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
4060 * Generate code to match frames with an LLC header.
4062 static struct block
*
4063 gen_llc_internal(compiler_state_t
*cstate
)
4065 struct block
*b0
, *b1
;
4067 switch (cstate
->linktype
) {
4071 * We check for an Ethernet type field less or equal than
4072 * 1500, which means it's an 802.3 length field.
4074 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
4077 * Now check for the purported DSAP and SSAP not being
4078 * 0xFF, to rule out NetWare-over-802.3.
4080 b1
= gen_cmp_ne(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
4086 * We check for LLC traffic.
4088 b0
= gen_atmtype_llc(cstate
);
4091 case DLT_IEEE802
: /* Token Ring */
4093 * XXX - check for LLC frames.
4095 return gen_true(cstate
);
4099 * XXX - check for LLC frames.
4101 return gen_true(cstate
);
4103 case DLT_ATM_RFC1483
:
4105 * For LLC encapsulation, these are defined to have an
4108 * For VC encapsulation, they don't, but there's no
4109 * way to check for that; the protocol used on the VC
4110 * is negotiated out of band.
4112 return gen_true(cstate
);
4114 case DLT_IEEE802_11
:
4115 case DLT_PRISM_HEADER
:
4116 case DLT_IEEE802_11_RADIO
:
4117 case DLT_IEEE802_11_RADIO_AVS
:
4120 * Check that we have a data frame.
4122 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
4123 IEEE80211_FC0_TYPE_DATA
,
4124 IEEE80211_FC0_TYPE_MASK
);
4127 fail_kw_on_dlt(cstate
, "llc");
4133 gen_llc(compiler_state_t
*cstate
)
4136 * Catch errors reported by us and routines below us, and return NULL
4139 if (setjmp(cstate
->top_ctx
))
4142 return gen_llc_internal(cstate
);
4146 gen_llc_i(compiler_state_t
*cstate
)
4148 struct block
*b0
, *b1
;
4152 * Catch errors reported by us and routines below us, and return NULL
4155 if (setjmp(cstate
->top_ctx
))
4159 * Check whether this is an LLC frame.
4161 b0
= gen_llc_internal(cstate
);
4164 * Load the control byte and test the low-order bit; it must
4165 * be clear for I frames.
4167 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
4168 b1
= gen_unset(cstate
, 0x01, s
);
4175 gen_llc_s(compiler_state_t
*cstate
)
4177 struct block
*b0
, *b1
;
4180 * Catch errors reported by us and routines below us, and return NULL
4183 if (setjmp(cstate
->top_ctx
))
4187 * Check whether this is an LLC frame.
4189 b0
= gen_llc_internal(cstate
);
4192 * Now compare the low-order 2 bit of the control byte against
4193 * the appropriate value for S frames.
4195 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
4201 gen_llc_u(compiler_state_t
*cstate
)
4203 struct block
*b0
, *b1
;
4206 * Catch errors reported by us and routines below us, and return NULL
4209 if (setjmp(cstate
->top_ctx
))
4213 * Check whether this is an LLC frame.
4215 b0
= gen_llc_internal(cstate
);
4218 * Now compare the low-order 2 bit of the control byte against
4219 * the appropriate value for U frames.
4221 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
4227 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4229 struct block
*b0
, *b1
;
4232 * Catch errors reported by us and routines below us, and return NULL
4235 if (setjmp(cstate
->top_ctx
))
4239 * Check whether this is an LLC frame.
4241 b0
= gen_llc_internal(cstate
);
4244 * Now check for an S frame with the appropriate type.
4246 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
4252 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4254 struct block
*b0
, *b1
;
4257 * Catch errors reported by us and routines below us, and return NULL
4260 if (setjmp(cstate
->top_ctx
))
4264 * Check whether this is an LLC frame.
4266 b0
= gen_llc_internal(cstate
);
4269 * Now check for a U frame with the appropriate type.
4271 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
4277 * Generate code to match a particular packet type, for link-layer types
4278 * using 802.2 LLC headers.
4280 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4281 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4283 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4284 * value, if <= ETHERMTU. We use that to determine whether to
4285 * match the DSAP or both DSAP and LSAP or to check the OUI and
4286 * protocol ID in a SNAP header.
4288 static struct block
*
4289 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4292 * XXX - handle token-ring variable-length header.
4298 case LLCSAP_NETBEUI
:
4300 * XXX - should we check both the DSAP and the
4301 * SSAP, like this, or should we check just the
4302 * DSAP, as we do for other SAP values?
4304 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
4305 ((ll_proto
<< 8) | ll_proto
));
4309 * XXX - are there ever SNAP frames for IPX on
4310 * non-Ethernet 802.x networks?
4312 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
4314 case ETHERTYPE_ATALK
:
4316 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4317 * SNAP packets with an organization code of
4318 * 0x080007 (Apple, for Appletalk) and a protocol
4319 * type of ETHERTYPE_ATALK (Appletalk).
4321 * XXX - check for an organization code of
4322 * encapsulated Ethernet as well?
4324 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
4328 * XXX - we don't have to check for IPX 802.3
4329 * here, but should we check for the IPX Ethertype?
4331 if (ll_proto
<= ETHERMTU
) {
4333 * This is an LLC SAP value, so check
4336 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4339 * This is an Ethernet type; we assume that it's
4340 * unlikely that it'll appear in the right place
4341 * at random, and therefore check only the
4342 * location that would hold the Ethernet type
4343 * in a SNAP frame with an organization code of
4344 * 0x000000 (encapsulated Ethernet).
4346 * XXX - if we were to check for the SNAP DSAP and
4347 * LSAP, as per XXX, and were also to check for an
4348 * organization code of 0x000000 (encapsulated
4349 * Ethernet), we'd do
4351 * return gen_snap(cstate, 0x000000, ll_proto);
4353 * here; for now, we don't, as per the above.
4354 * I don't know whether it's worth the extra CPU
4355 * time to do the right check or not.
4357 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4362 static struct block
*
4363 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4364 int dir
, u_int src_off
, u_int dst_off
)
4366 struct block
*b0
, *b1
;
4380 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4381 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4387 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4388 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4398 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4405 return gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4409 static struct block
*
4410 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4411 struct in6_addr
*mask
, int dir
, u_int src_off
, u_int dst_off
)
4413 struct block
*b0
, *b1
;
4416 * Code below needs to access four separate 32-bit parts of the 128-bit
4417 * IPv6 address and mask. In some OSes this is as simple as using the
4418 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4419 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4420 * far as libpcap sees it. Hence copy the data before use to avoid
4421 * potential unaligned memory access and the associated compiler
4422 * warnings (whether genuine or not).
4424 bpf_u_int32 a
[4], m
[4];
4437 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4438 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4444 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4445 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4455 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4462 /* this order is important */
4463 memcpy(a
, addr
, sizeof(a
));
4464 memcpy(m
, mask
, sizeof(m
));
4465 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
4466 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
4468 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
4470 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
4476 static struct block
*
4477 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4479 register struct block
*b0
, *b1
;
4483 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
4486 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
4489 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4490 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4496 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4497 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4507 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4515 * Like gen_ehostop, but for DLT_FDDI
4517 static struct block
*
4518 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4520 struct block
*b0
, *b1
;
4524 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4527 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4530 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4531 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4537 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4538 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4548 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4556 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4558 static struct block
*
4559 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4561 register struct block
*b0
, *b1
;
4565 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4568 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4571 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4572 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4578 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4579 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4589 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4597 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4598 * various 802.11 + radio headers.
4600 static struct block
*
4601 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4603 register struct block
*b0
, *b1
, *b2
;
4604 register struct slist
*s
;
4606 #ifdef ENABLE_WLAN_FILTERING_PATCH
4609 * We need to disable the optimizer because the optimizer is buggy
4610 * and wipes out some LD instructions generated by the below
4611 * code to validate the Frame Control bits
4613 cstate
->no_optimize
= 1;
4614 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4621 * For control frames, there is no SA.
4623 * For management frames, SA is at an
4624 * offset of 10 from the beginning of
4627 * For data frames, SA is at an offset
4628 * of 10 from the beginning of the packet
4629 * if From DS is clear, at an offset of
4630 * 16 from the beginning of the packet
4631 * if From DS is set and To DS is clear,
4632 * and an offset of 24 from the beginning
4633 * of the packet if From DS is set and To DS
4638 * Generate the tests to be done for data frames
4641 * First, check for To DS set, i.e. check "link[1] & 0x01".
4643 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4644 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4647 * If To DS is set, the SA is at 24.
4649 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4653 * Now, check for To DS not set, i.e. check
4654 * "!(link[1] & 0x01)".
4656 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4657 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4660 * If To DS is not set, the SA is at 16.
4662 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4666 * Now OR together the last two checks. That gives
4667 * the complete set of checks for data frames with
4673 * Now check for From DS being set, and AND that with
4674 * the ORed-together checks.
4676 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4677 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4681 * Now check for data frames with From DS not set.
4683 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4684 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4687 * If From DS isn't set, the SA is at 10.
4689 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4693 * Now OR together the checks for data frames with
4694 * From DS not set and for data frames with From DS
4695 * set; that gives the checks done for data frames.
4700 * Now check for a data frame.
4701 * I.e, check "link[0] & 0x08".
4703 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4704 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4707 * AND that with the checks done for data frames.
4712 * If the high-order bit of the type value is 0, this
4713 * is a management frame.
4714 * I.e, check "!(link[0] & 0x08)".
4716 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4717 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4720 * For management frames, the SA is at 10.
4722 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4726 * OR that with the checks done for data frames.
4727 * That gives the checks done for management and
4733 * If the low-order bit of the type value is 1,
4734 * this is either a control frame or a frame
4735 * with a reserved type, and thus not a
4738 * I.e., check "!(link[0] & 0x04)".
4740 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4741 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4744 * AND that with the checks for data and management
4754 * For control frames, there is no DA.
4756 * For management frames, DA is at an
4757 * offset of 4 from the beginning of
4760 * For data frames, DA is at an offset
4761 * of 4 from the beginning of the packet
4762 * if To DS is clear and at an offset of
4763 * 16 from the beginning of the packet
4768 * Generate the tests to be done for data frames.
4770 * First, check for To DS set, i.e. "link[1] & 0x01".
4772 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4773 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4776 * If To DS is set, the DA is at 16.
4778 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4782 * Now, check for To DS not set, i.e. check
4783 * "!(link[1] & 0x01)".
4785 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4786 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4789 * If To DS is not set, the DA is at 4.
4791 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4795 * Now OR together the last two checks. That gives
4796 * the complete set of checks for data frames.
4801 * Now check for a data frame.
4802 * I.e, check "link[0] & 0x08".
4804 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4805 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4808 * AND that with the checks done for data frames.
4813 * If the high-order bit of the type value is 0, this
4814 * is a management frame.
4815 * I.e, check "!(link[0] & 0x08)".
4817 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4818 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4821 * For management frames, the DA is at 4.
4823 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4827 * OR that with the checks done for data frames.
4828 * That gives the checks done for management and
4834 * If the low-order bit of the type value is 1,
4835 * this is either a control frame or a frame
4836 * with a reserved type, and thus not a
4839 * I.e., check "!(link[0] & 0x04)".
4841 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4842 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4845 * AND that with the checks for data and management
4852 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4853 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4859 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4860 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4865 * XXX - add BSSID keyword?
4868 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4872 * Not present in CTS or ACK control frames.
4874 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4875 IEEE80211_FC0_TYPE_MASK
);
4876 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4877 IEEE80211_FC0_SUBTYPE_MASK
);
4878 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4879 IEEE80211_FC0_SUBTYPE_MASK
);
4882 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4888 * Not present in control frames.
4890 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4891 IEEE80211_FC0_TYPE_MASK
);
4892 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4898 * Present only if the direction mask has both "From DS"
4899 * and "To DS" set. Neither control frames nor management
4900 * frames should have both of those set, so we don't
4901 * check the frame type.
4903 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4904 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4905 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4911 * Not present in management frames; addr1 in other
4916 * If the high-order bit of the type value is 0, this
4917 * is a management frame.
4918 * I.e, check "(link[0] & 0x08)".
4920 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4921 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4926 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4929 * AND that with the check of addr1.
4936 * Not present in management frames; addr2, if present,
4941 * Not present in CTS or ACK control frames.
4943 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4944 IEEE80211_FC0_TYPE_MASK
);
4945 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4946 IEEE80211_FC0_SUBTYPE_MASK
);
4947 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4948 IEEE80211_FC0_SUBTYPE_MASK
);
4953 * If the high-order bit of the type value is 0, this
4954 * is a management frame.
4955 * I.e, check "(link[0] & 0x08)".
4957 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4958 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4961 * AND that with the check for frames other than
4962 * CTS and ACK frames.
4969 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4978 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4979 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4980 * as the RFC states.)
4982 static struct block
*
4983 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4985 register struct block
*b0
, *b1
;
4989 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4992 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4995 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4996 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5002 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
5003 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5013 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5021 * This is quite tricky because there may be pad bytes in front of the
5022 * DECNET header, and then there are two possible data packet formats that
5023 * carry both src and dst addresses, plus 5 packet types in a format that
5024 * carries only the src node, plus 2 types that use a different format and
5025 * also carry just the src node.
5029 * Instead of doing those all right, we just look for data packets with
5030 * 0 or 1 bytes of padding. If you want to look at other packets, that
5031 * will require a lot more hacking.
5033 * To add support for filtering on DECNET "areas" (network numbers)
5034 * one would want to add a "mask" argument to this routine. That would
5035 * make the filter even more inefficient, although one could be clever
5036 * and not generate masking instructions if the mask is 0xFFFF.
5038 static struct block
*
5039 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
5041 struct block
*b0
, *b1
, *b2
, *tmp
;
5042 u_int offset_lh
; /* offset if long header is received */
5043 u_int offset_sh
; /* offset if short header is received */
5048 offset_sh
= 1; /* follows flags */
5049 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
5053 offset_sh
= 3; /* follows flags, dstnode */
5054 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
5058 /* Inefficient because we do our Calvinball dance twice */
5059 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5060 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5066 /* Inefficient because we do our Calvinball dance twice */
5067 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5068 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5078 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5086 * In a DECnet message inside an Ethernet frame the first two bytes
5087 * immediately after EtherType are the [litle-endian] DECnet message
5088 * length, which is irrelevant in this context.
5090 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
5091 * 8-bit bitmap of the optional padding before the packet route header.
5092 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
5093 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
5094 * means there aren't any PAD bytes after the bitmap, so the header
5095 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
5096 * is set to 0, thus the header begins at the third byte.
5098 * The header can be in several (as mentioned above) formats, all of
5099 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
5100 * (PF, "pad field") set to 0 regardless of any padding present before
5101 * the header. "Short header" means bits 0-2 of the bitmap encode the
5102 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
5104 * To test PLENGTH and FLAGS, use multiple-byte constants with the
5105 * values and the masks, this maps to the required single bytes of
5106 * the message correctly on both big-endian and little-endian hosts.
5107 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
5108 * because the wire encoding is little-endian and BPF multiple-byte
5109 * loads are big-endian. When the destination address is near enough
5110 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
5113 /* Check for pad = 1, long header case */
5114 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8106U
, 0xFF07U
);
5115 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
5116 BPF_H
, SWAPSHORT(addr
));
5118 /* Check for pad = 0, long header case */
5119 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x06U
, 0x07U
);
5120 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
5124 /* Check for pad = 1, short header case */
5126 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5127 0x81020000U
| SWAPSHORT(addr
),
5130 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8102U
, 0xFF07U
);
5131 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
5136 /* Check for pad = 0, short header case */
5138 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5139 0x02000000U
| SWAPSHORT(addr
) << 8,
5142 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x02U
, 0x07U
);
5143 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
5153 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5154 * test the bottom-of-stack bit, and then check the version number
5155 * field in the IP header.
5157 static struct block
*
5158 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
5160 struct block
*b0
, *b1
;
5165 /* match the bottom-of-stack bit */
5166 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5167 /* match the IPv4 version number */
5168 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
5172 case ETHERTYPE_IPV6
:
5173 /* match the bottom-of-stack bit */
5174 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5175 /* match the IPv4 version number */
5176 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
5181 /* FIXME add other L3 proto IDs */
5182 bpf_error(cstate
, "unsupported protocol over mpls");
5187 static struct block
*
5188 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
5189 int proto
, int dir
, int type
)
5191 struct block
*b0
, *b1
;
5196 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
5198 * Only check for non-IPv4 addresses if we're not
5199 * checking MPLS-encapsulated packets.
5201 if (cstate
->label_stack_depth
== 0) {
5202 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5204 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5210 // "link net NETNAME" and variations thereof
5211 break; // invalid qualifier
5214 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5215 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 12, 16);
5220 b0
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5221 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5226 b0
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5227 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5238 break; // invalid qualifier
5241 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
5242 b1
= gen_dnhostop(cstate
, addr
, dir
);
5273 break; // invalid qualifier
5278 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5279 type
== Q_NET
? "ip net" : "ip host");
5284 static struct block
*
5285 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5286 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5288 struct block
*b0
, *b1
;
5294 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5295 b1
= gen_hostop6(cstate
, addr
, mask
, dir
, 8, 24);
5337 break; // invalid qualifier
5342 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5343 type
== Q_NET
? "ip6 net" : "ip6 host");
5350 * This primitive is non-directional by design, so the grammar does not allow
5351 * to qualify it with a direction.
5353 static struct block
*
5354 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5355 struct addrinfo
*alist
, int proto
)
5357 struct block
*b0
, *b1
, *tmp
;
5358 struct addrinfo
*ai
;
5359 struct sockaddr_in
*sin
;
5366 switch (cstate
->linktype
) {
5368 case DLT_NETANALYZER
:
5369 case DLT_NETANALYZER_TRANSPARENT
:
5370 b1
= gen_prevlinkhdr_check(cstate
);
5371 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
5376 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
5379 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
5381 case DLT_IEEE802_11
:
5382 case DLT_PRISM_HEADER
:
5383 case DLT_IEEE802_11_RADIO_AVS
:
5384 case DLT_IEEE802_11_RADIO
:
5386 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
5388 case DLT_IP_OVER_FC
:
5389 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
5393 * This is LLC-multiplexed traffic; if it were
5394 * LANE, cstate->linktype would have been set to
5400 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5403 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5405 * Does it have an address?
5407 if (ai
->ai_addr
!= NULL
) {
5409 * Yes. Is it an IPv4 address?
5411 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5413 * Generate an entry for it.
5415 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5416 tmp
= gen_host(cstate
,
5417 ntohl(sin
->sin_addr
.s_addr
),
5418 0xffffffff, proto
, Q_OR
, Q_HOST
);
5420 * Is it the *first* IPv4 address?
5424 * Yes, so start with it.
5429 * No, so OR it into the
5441 * No IPv4 addresses found.
5449 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "gateway");
5454 static struct block
*
5455 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5458 struct block
*b1
= NULL
;
5463 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
);
5467 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
);
5471 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
);
5475 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
);
5478 #ifndef IPPROTO_IGMP
5479 #define IPPROTO_IGMP 2
5483 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
);
5486 #ifndef IPPROTO_IGRP
5487 #define IPPROTO_IGRP 9
5490 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
);
5494 #define IPPROTO_PIM 103
5498 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
);
5501 #ifndef IPPROTO_VRRP
5502 #define IPPROTO_VRRP 112
5506 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
);
5509 #ifndef IPPROTO_CARP
5510 #define IPPROTO_CARP 112
5514 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
);
5518 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
5522 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5526 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5530 break; // invalid syntax
5533 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5537 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5541 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5545 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5549 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5553 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5557 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5561 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5564 #ifndef IPPROTO_ICMPV6
5565 #define IPPROTO_ICMPV6 58
5568 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
);
5572 #define IPPROTO_AH 51
5575 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
);
5579 #define IPPROTO_ESP 50
5582 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
);
5586 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5590 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
);
5594 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
5597 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5598 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5599 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5601 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5603 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5605 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5609 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5610 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5611 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5613 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5615 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5617 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5621 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5622 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5623 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5625 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
);
5630 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5631 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5636 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5637 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5639 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5641 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5646 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5647 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5652 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5653 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5658 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
);
5662 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5666 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5670 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5674 break; // invalid syntax
5681 bpf_error(cstate
, "'%s' cannot be used as an abbreviation", pqkw(proto
));
5685 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5688 * Catch errors reported by us and routines below us, and return NULL
5691 if (setjmp(cstate
->top_ctx
))
5694 return gen_proto_abbrev_internal(cstate
, proto
);
5697 static struct block
*
5698 gen_ipfrag(compiler_state_t
*cstate
)
5702 /* not IPv4 frag other than the first frag */
5703 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5704 return gen_unset(cstate
, 0x1fff, s
);
5708 * Generate a comparison to a port value in the transport-layer header
5709 * at the specified offset from the beginning of that header.
5711 * XXX - this handles a variable-length prefix preceding the link-layer
5712 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5713 * variable-length link-layer headers (such as Token Ring or 802.11
5716 static struct block
*
5717 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5719 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5722 static struct block
*
5723 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5725 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5728 static struct block
*
5729 gen_portop(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5731 struct block
*b0
, *b1
, *tmp
;
5733 /* ip proto 'proto' and not a fragment other than the first fragment */
5734 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5735 b0
= gen_ipfrag(cstate
);
5740 b1
= gen_portatom(cstate
, 0, port
);
5744 b1
= gen_portatom(cstate
, 2, port
);
5748 tmp
= gen_portatom(cstate
, 0, port
);
5749 b1
= gen_portatom(cstate
, 2, port
);
5755 tmp
= gen_portatom(cstate
, 0, port
);
5756 b1
= gen_portatom(cstate
, 2, port
);
5766 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "port");
5778 static struct block
*
5779 gen_port(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5781 struct block
*b0
, *b1
, *tmp
;
5786 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5787 * not LLC encapsulation with LLCSAP_IP.
5789 * For IEEE 802 networks - which includes 802.5 token ring
5790 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5791 * says that SNAP encapsulation is used, not LLC encapsulation
5794 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5795 * RFC 2225 say that SNAP encapsulation is used, not LLC
5796 * encapsulation with LLCSAP_IP.
5798 * So we always check for ETHERTYPE_IP.
5800 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5806 b1
= gen_portop(cstate
, port
, (u_int
)ip_proto
, dir
);
5810 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5811 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5813 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5825 gen_portop6(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5827 struct block
*b0
, *b1
, *tmp
;
5829 /* ip6 proto 'proto' */
5830 /* XXX - catch the first fragment of a fragmented packet? */
5831 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5835 b1
= gen_portatom6(cstate
, 0, port
);
5839 b1
= gen_portatom6(cstate
, 2, port
);
5843 tmp
= gen_portatom6(cstate
, 0, port
);
5844 b1
= gen_portatom6(cstate
, 2, port
);
5850 tmp
= gen_portatom6(cstate
, 0, port
);
5851 b1
= gen_portatom6(cstate
, 2, port
);
5863 static struct block
*
5864 gen_port6(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5866 struct block
*b0
, *b1
, *tmp
;
5868 /* link proto ip6 */
5869 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5875 b1
= gen_portop6(cstate
, port
, (u_int
)ip_proto
, dir
);
5879 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5880 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5882 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5893 /* gen_portrange code */
5894 static struct block
*
5895 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
5899 return gen_portatom(cstate
, off
, v1
);
5901 struct block
*b1
, *b2
;
5903 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, min(v1
, v2
));
5904 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, max(v1
, v2
));
5911 static struct block
*
5912 gen_portrangeop(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
5913 bpf_u_int32 proto
, int dir
)
5915 struct block
*b0
, *b1
, *tmp
;
5917 /* ip proto 'proto' and not a fragment other than the first fragment */
5918 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5919 b0
= gen_ipfrag(cstate
);
5924 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5928 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5932 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5933 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5939 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5940 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5950 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "portrange");
5962 static struct block
*
5963 gen_portrange(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
5966 struct block
*b0
, *b1
, *tmp
;
5969 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5975 b1
= gen_portrangeop(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
5980 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5981 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5983 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5994 static struct block
*
5995 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
5999 return gen_portatom6(cstate
, off
, v1
);
6001 struct block
*b1
, *b2
;
6003 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, min(v1
, v2
));
6004 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, max(v1
, v2
));
6011 static struct block
*
6012 gen_portrangeop6(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
6013 bpf_u_int32 proto
, int dir
)
6015 struct block
*b0
, *b1
, *tmp
;
6017 /* ip6 proto 'proto' */
6018 /* XXX - catch the first fragment of a fragmented packet? */
6019 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
6023 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6027 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6031 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6032 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6038 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6039 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6051 static struct block
*
6052 gen_portrange6(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
6055 struct block
*b0
, *b1
, *tmp
;
6057 /* link proto ip6 */
6058 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6064 b1
= gen_portrangeop6(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
6069 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
6070 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
6072 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
6084 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
6093 v
= pcap_nametoproto(name
);
6094 if (v
== PROTO_UNDEF
)
6095 bpf_error(cstate
, "unknown ip proto '%s'", name
);
6099 /* XXX should look up h/w protocol type based on cstate->linktype */
6100 v
= pcap_nametoeproto(name
);
6101 if (v
== PROTO_UNDEF
) {
6102 v
= pcap_nametollc(name
);
6103 if (v
== PROTO_UNDEF
)
6104 bpf_error(cstate
, "unknown ether proto '%s'", name
);
6109 if (strcmp(name
, "esis") == 0)
6111 else if (strcmp(name
, "isis") == 0)
6113 else if (strcmp(name
, "clnp") == 0)
6116 bpf_error(cstate
, "unknown osi proto '%s'", name
);
6126 #if !defined(NO_PROTOCHAIN)
6128 * This primitive is non-directional by design, so the grammar does not allow
6129 * to qualify it with a direction.
6131 static struct block
*
6132 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6134 struct block
*b0
, *b
;
6135 struct slist
*s
[100];
6136 int fix2
, fix3
, fix4
, fix5
;
6137 int ahcheck
, again
, end
;
6139 int reg2
= alloc_reg(cstate
);
6141 memset(s
, 0, sizeof(s
));
6142 fix3
= fix4
= fix5
= 0;
6149 b0
= gen_protochain(cstate
, v
, Q_IP
);
6150 b
= gen_protochain(cstate
, v
, Q_IPV6
);
6154 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "protochain");
6159 * We don't handle variable-length prefixes before the link-layer
6160 * header, or variable-length link-layer headers, here yet.
6161 * We might want to add BPF instructions to do the protochain
6162 * work, to simplify that and, on platforms that have a BPF
6163 * interpreter with the new instructions, let the filtering
6164 * be done in the kernel. (We already require a modified BPF
6165 * engine to do the protochain stuff, to support backward
6166 * branches, and backward branch support is unlikely to appear
6167 * in kernel BPF engines.)
6169 if (cstate
->off_linkpl
.is_variable
)
6170 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6173 * To quote a comment in optimize.c:
6175 * "These data structures are used in a Cocke and Schwartz style
6176 * value numbering scheme. Since the flowgraph is acyclic,
6177 * exit values can be propagated from a node's predecessors
6178 * provided it is uniquely defined."
6180 * "Acyclic" means "no backward branches", which means "no
6181 * loops", so we have to turn the optimizer off.
6183 cstate
->no_optimize
= 1;
6186 * s[0] is a dummy entry to protect other BPF insn from damage
6187 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6188 * hard to find interdependency made by jump table fixup.
6191 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6196 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6199 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6200 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6202 /* X = ip->ip_hl << 2 */
6203 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6204 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6209 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6211 /* A = ip6->ip_nxt */
6212 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6213 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6215 /* X = sizeof(struct ip6_hdr) */
6216 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6222 bpf_error(cstate
, "unsupported proto to gen_protochain");
6226 /* again: if (A == v) goto end; else fall through; */
6228 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6230 s
[i
]->s
.jt
= NULL
; /*later*/
6231 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6235 #ifndef IPPROTO_NONE
6236 #define IPPROTO_NONE 59
6238 /* if (A == IPPROTO_NONE) goto end */
6239 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6240 s
[i
]->s
.jt
= NULL
; /*later*/
6241 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6242 s
[i
]->s
.k
= IPPROTO_NONE
;
6243 s
[fix5
]->s
.jf
= s
[i
];
6247 if (proto
== Q_IPV6
) {
6248 int v6start
, v6end
, v6advance
, j
;
6251 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6252 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6253 s
[i
]->s
.jt
= NULL
; /*later*/
6254 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6255 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6256 s
[fix2
]->s
.jf
= s
[i
];
6258 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6259 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6260 s
[i
]->s
.jt
= NULL
; /*later*/
6261 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6262 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6264 /* if (A == IPPROTO_ROUTING) goto v6advance */
6265 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6266 s
[i
]->s
.jt
= NULL
; /*later*/
6267 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6268 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6270 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6271 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6272 s
[i
]->s
.jt
= NULL
; /*later*/
6273 s
[i
]->s
.jf
= NULL
; /*later*/
6274 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6284 * A = P[X + packet head];
6285 * X = X + (P[X + packet head + 1] + 1) * 8;
6287 /* A = P[X + packet head] */
6288 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6289 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6292 s
[i
] = new_stmt(cstate
, BPF_ST
);
6295 /* A = P[X + packet head + 1]; */
6296 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6297 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6300 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6304 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6308 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6312 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6315 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6319 /* goto again; (must use BPF_JA for backward jump) */
6320 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6321 s
[i
]->s
.k
= again
- i
- 1;
6322 s
[i
- 1]->s
.jf
= s
[i
];
6326 for (j
= v6start
; j
<= v6end
; j
++)
6327 s
[j
]->s
.jt
= s
[v6advance
];
6330 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6332 s
[fix2
]->s
.jf
= s
[i
];
6338 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6339 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6340 s
[i
]->s
.jt
= NULL
; /*later*/
6341 s
[i
]->s
.jf
= NULL
; /*later*/
6342 s
[i
]->s
.k
= IPPROTO_AH
;
6344 s
[fix3
]->s
.jf
= s
[ahcheck
];
6351 * X = X + (P[X + 1] + 2) * 4;
6354 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6356 /* A = P[X + packet head]; */
6357 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6358 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6361 s
[i
] = new_stmt(cstate
, BPF_ST
);
6365 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6368 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6372 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6374 /* A = P[X + packet head] */
6375 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6376 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6379 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6383 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6387 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6390 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6394 /* goto again; (must use BPF_JA for backward jump) */
6395 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6396 s
[i
]->s
.k
= again
- i
- 1;
6401 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6403 s
[fix2
]->s
.jt
= s
[end
];
6404 s
[fix4
]->s
.jf
= s
[end
];
6405 s
[fix5
]->s
.jt
= s
[end
];
6412 for (i
= 0; i
< max
- 1; i
++)
6413 s
[i
]->next
= s
[i
+ 1];
6414 s
[max
- 1]->next
= NULL
;
6418 * Remember, s[0] is dummy.
6420 b
= gen_jmp(cstate
, BPF_JEQ
, v
, s
[1]);
6422 free_reg(cstate
, reg2
);
6427 #endif /* !defined(NO_PROTOCHAIN) */
6430 * Generate code that checks whether the packet is a packet for protocol
6431 * <proto> and whether the type field in that protocol's header has
6432 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6433 * IP packet and checks the protocol number in the IP header against <v>.
6435 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6436 * against Q_IP and Q_IPV6.
6438 * This primitive is non-directional by design, so the grammar does not allow
6439 * to qualify it with a direction.
6441 static struct block
*
6442 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6444 struct block
*b0
, *b1
;
6449 b0
= gen_proto(cstate
, v
, Q_IP
);
6450 b1
= gen_proto(cstate
, v
, Q_IPV6
);
6455 return gen_linktype(cstate
, v
);
6459 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6460 * not LLC encapsulation with LLCSAP_IP.
6462 * For IEEE 802 networks - which includes 802.5 token ring
6463 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6464 * says that SNAP encapsulation is used, not LLC encapsulation
6467 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6468 * RFC 2225 say that SNAP encapsulation is used, not LLC
6469 * encapsulation with LLCSAP_IP.
6471 * So we always check for ETHERTYPE_IP.
6473 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6474 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, v
);
6492 break; // invalid qualifier
6495 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6497 * Also check for a fragment header before the final
6500 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6501 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6503 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, v
);
6514 break; // invalid qualifier
6517 assert_maxval(cstate
, "ISO protocol", v
, UINT8_MAX
);
6518 switch (cstate
->linktype
) {
6522 * Frame Relay packets typically have an OSI
6523 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6524 * generates code to check for all the OSI
6525 * NLPIDs, so calling it and then adding a check
6526 * for the particular NLPID for which we're
6527 * looking is bogus, as we can just check for
6530 * What we check for is the NLPID and a frame
6531 * control field value of UI, i.e. 0x03 followed
6534 * XXX - assumes a 2-byte Frame Relay header with
6535 * DLCI and flags. What if the address is longer?
6537 * XXX - what about SNAP-encapsulated frames?
6539 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6545 * Cisco uses an Ethertype lookalike - for OSI,
6548 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6549 /* OSI in C-HDLC is stuffed with a fudge byte */
6550 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6555 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6556 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6562 break; // invalid qualifier
6565 assert_maxval(cstate
, "IS-IS PDU type", v
, ISIS_PDU_TYPE_MAX
);
6566 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
6568 * 4 is the offset of the PDU type relative to the IS-IS
6570 * Except when it is not, see above.
6572 unsigned pdu_type_offset
;
6573 switch (cstate
->linktype
) {
6576 pdu_type_offset
= 5;
6579 pdu_type_offset
= 4;
6581 b1
= gen_mcmp(cstate
, OR_LINKPL_NOSNAP
, pdu_type_offset
, BPF_B
,
6582 v
, ISIS_PDU_TYPE_MAX
);
6599 break; // invalid qualifier
6605 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "proto");
6610 * Convert a non-numeric name to a port number.
6613 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6615 struct addrinfo hints
, *res
, *ai
;
6617 struct sockaddr_in
*in4
;
6619 struct sockaddr_in6
*in6
;
6624 * We check for both TCP and UDP in case there are
6625 * ambiguous entries.
6627 memset(&hints
, 0, sizeof(hints
));
6628 hints
.ai_family
= PF_UNSPEC
;
6629 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6630 hints
.ai_protocol
= ipproto
;
6631 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6638 * No such port. Just return -1.
6645 * We don't use strerror() because it's not
6646 * guaranteed to be thread-safe on all platforms
6647 * (probably because it might use a non-thread-local
6648 * buffer into which to format an error message
6649 * if the error code isn't one for which it has
6650 * a canned string; three cheers for C string
6653 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6655 port
= -2; /* a real error */
6661 * This is a real error, not just "there's
6662 * no such service name".
6664 * We don't use gai_strerror() because it's not
6665 * guaranteed to be thread-safe on all platforms
6666 * (probably because it might use a non-thread-local
6667 * buffer into which to format an error message
6668 * if the error code isn't one for which it has
6669 * a canned string; three cheers for C string
6672 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6674 port
= -2; /* a real error */
6679 * OK, we found it. Did it find anything?
6681 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6683 * Does it have an address?
6685 if (ai
->ai_addr
!= NULL
) {
6687 * Yes. Get a port number; we're done.
6689 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6690 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6691 port
= ntohs(in4
->sin_port
);
6695 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6696 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6697 port
= ntohs(in6
->sin6_port
);
6709 * Convert a string to a port number.
6712 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6722 * See if it's a number.
6724 ret
= stoulen(string
, string_size
, &val
, cstate
);
6728 /* Unknown port type - it's just a number. */
6729 *proto
= PROTO_UNDEF
;
6732 case STOULEN_NOT_OCTAL_NUMBER
:
6733 case STOULEN_NOT_HEX_NUMBER
:
6734 case STOULEN_NOT_DECIMAL_NUMBER
:
6736 * Not a valid number; try looking it up as a port.
6738 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6739 memcpy(cpy
, string
, string_size
);
6740 cpy
[string_size
] = '\0';
6741 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6742 if (tcp_port
== -2) {
6744 * We got a hard error; the error string has
6748 longjmp(cstate
->top_ctx
, 1);
6751 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6752 if (udp_port
== -2) {
6754 * We got a hard error; the error string has
6758 longjmp(cstate
->top_ctx
, 1);
6763 * We need to check /etc/services for ambiguous entries.
6764 * If we find an ambiguous entry, and it has the
6765 * same port number, change the proto to PROTO_UNDEF
6766 * so both TCP and UDP will be checked.
6768 if (tcp_port
>= 0) {
6769 val
= (bpf_u_int32
)tcp_port
;
6770 *proto
= IPPROTO_TCP
;
6771 if (udp_port
>= 0) {
6772 if (udp_port
== tcp_port
)
6773 *proto
= PROTO_UNDEF
;
6776 /* Can't handle ambiguous names that refer
6777 to different port numbers. */
6778 warning("ambiguous port %s in /etc/services",
6785 if (udp_port
>= 0) {
6786 val
= (bpf_u_int32
)udp_port
;
6787 *proto
= IPPROTO_UDP
;
6791 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6793 longjmp(cstate
->top_ctx
, 1);
6800 /* Error already set. */
6801 longjmp(cstate
->top_ctx
, 1);
6808 /* Should not happen */
6809 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6810 longjmp(cstate
->top_ctx
, 1);
6817 * Convert a string in the form PPP-PPP, which correspond to ports, to
6818 * a starting and ending port in a port range.
6821 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6822 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6825 const char *first
, *second
;
6826 size_t first_size
, second_size
;
6829 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6830 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6833 * Make sure there are no other hyphens.
6835 * XXX - we support named ports, but there are some port names
6836 * in /etc/services that include hyphens, so this would rule
6839 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6840 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6844 * Get the length of the first port.
6847 first_size
= hyphen_off
- string
;
6848 if (first_size
== 0) {
6849 /* Range of "-port", which we don't support. */
6850 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6854 * Try to convert it to a port.
6856 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6857 save_proto
= *proto
;
6860 * Get the length of the second port.
6862 second
= hyphen_off
+ 1;
6863 second_size
= strlen(second
);
6864 if (second_size
== 0) {
6865 /* Range of "port-", which we don't support. */
6866 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6870 * Try to convert it to a port.
6872 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6873 if (*proto
!= save_proto
)
6874 *proto
= PROTO_UNDEF
;
6878 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6880 int proto
= q
.proto
;
6884 bpf_u_int32 mask
, addr
;
6885 struct addrinfo
*res
, *res0
;
6886 struct sockaddr_in
*sin4
;
6889 struct sockaddr_in6
*sin6
;
6890 struct in6_addr mask128
;
6892 struct block
*b
, *tmp
;
6893 int port
, real_proto
;
6894 bpf_u_int32 port1
, port2
;
6897 * Catch errors reported by us and routines below us, and return NULL
6900 if (setjmp(cstate
->top_ctx
))
6906 addr
= pcap_nametonetaddr(name
);
6908 bpf_error(cstate
, "unknown network '%s'", name
);
6909 /* Left justify network addr and calculate its network mask */
6911 while (addr
&& (addr
& 0xff000000) == 0) {
6915 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6919 if (proto
== Q_LINK
) {
6920 switch (cstate
->linktype
) {
6923 case DLT_NETANALYZER
:
6924 case DLT_NETANALYZER_TRANSPARENT
:
6925 eaddr
= pcap_ether_hostton(name
);
6928 "unknown ether host '%s'", name
);
6929 tmp
= gen_prevlinkhdr_check(cstate
);
6930 b
= gen_ehostop(cstate
, eaddr
, dir
);
6937 eaddr
= pcap_ether_hostton(name
);
6940 "unknown FDDI host '%s'", name
);
6941 b
= gen_fhostop(cstate
, eaddr
, dir
);
6946 eaddr
= pcap_ether_hostton(name
);
6949 "unknown token ring host '%s'", name
);
6950 b
= gen_thostop(cstate
, eaddr
, dir
);
6954 case DLT_IEEE802_11
:
6955 case DLT_PRISM_HEADER
:
6956 case DLT_IEEE802_11_RADIO_AVS
:
6957 case DLT_IEEE802_11_RADIO
:
6959 eaddr
= pcap_ether_hostton(name
);
6962 "unknown 802.11 host '%s'", name
);
6963 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6967 case DLT_IP_OVER_FC
:
6968 eaddr
= pcap_ether_hostton(name
);
6971 "unknown Fibre Channel host '%s'", name
);
6972 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6977 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6978 } else if (proto
== Q_DECNET
) {
6980 * A long time ago on Ultrix libpcap supported
6981 * translation of DECnet host names into DECnet
6982 * addresses, but this feature is history now.
6984 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
6987 memset(&mask128
, 0xff, sizeof(mask128
));
6989 res0
= res
= pcap_nametoaddrinfo(name
);
6991 bpf_error(cstate
, "unknown host '%s'", name
);
6998 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6999 tproto
== Q_DEFAULT
) {
7005 for (res
= res0
; res
; res
= res
->ai_next
) {
7006 switch (res
->ai_family
) {
7009 if (tproto
== Q_IPV6
)
7013 sin4
= (struct sockaddr_in
*)
7015 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
7016 0xffffffff, tproto
, dir
, q
.addr
);
7020 if (tproto6
== Q_IP
)
7023 sin6
= (struct sockaddr_in6
*)
7025 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
7026 &mask128
, tproto6
, dir
, q
.addr
);
7039 bpf_error(cstate
, "unknown host '%s'%s", name
,
7040 (proto
== Q_DEFAULT
)
7042 : " for specified address family");
7048 (void)port_pq_to_ipproto(cstate
, proto
, "port"); // validate only
7049 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
7050 bpf_error(cstate
, "unknown port '%s'", name
);
7051 if (proto
== Q_UDP
) {
7052 if (real_proto
== IPPROTO_TCP
)
7053 bpf_error(cstate
, "port '%s' is tcp", name
);
7054 else if (real_proto
== IPPROTO_SCTP
)
7055 bpf_error(cstate
, "port '%s' is sctp", name
);
7057 /* override PROTO_UNDEF */
7058 real_proto
= IPPROTO_UDP
;
7060 if (proto
== Q_TCP
) {
7061 if (real_proto
== IPPROTO_UDP
)
7062 bpf_error(cstate
, "port '%s' is udp", name
);
7064 else if (real_proto
== IPPROTO_SCTP
)
7065 bpf_error(cstate
, "port '%s' is sctp", name
);
7067 /* override PROTO_UNDEF */
7068 real_proto
= IPPROTO_TCP
;
7070 if (proto
== Q_SCTP
) {
7071 if (real_proto
== IPPROTO_UDP
)
7072 bpf_error(cstate
, "port '%s' is udp", name
);
7074 else if (real_proto
== IPPROTO_TCP
)
7075 bpf_error(cstate
, "port '%s' is tcp", name
);
7077 /* override PROTO_UNDEF */
7078 real_proto
= IPPROTO_SCTP
;
7081 bpf_error(cstate
, "illegal port number %d < 0", port
);
7083 bpf_error(cstate
, "illegal port number %d > 65535", port
);
7084 b
= gen_port(cstate
, port
, real_proto
, dir
);
7085 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
7089 (void)port_pq_to_ipproto(cstate
, proto
, "portrange"); // validate only
7090 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
7091 if (proto
== Q_UDP
) {
7092 if (real_proto
== IPPROTO_TCP
)
7093 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7094 else if (real_proto
== IPPROTO_SCTP
)
7095 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7097 /* override PROTO_UNDEF */
7098 real_proto
= IPPROTO_UDP
;
7100 if (proto
== Q_TCP
) {
7101 if (real_proto
== IPPROTO_UDP
)
7102 bpf_error(cstate
, "port in range '%s' is udp", name
);
7103 else if (real_proto
== IPPROTO_SCTP
)
7104 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7106 /* override PROTO_UNDEF */
7107 real_proto
= IPPROTO_TCP
;
7109 if (proto
== Q_SCTP
) {
7110 if (real_proto
== IPPROTO_UDP
)
7111 bpf_error(cstate
, "port in range '%s' is udp", name
);
7112 else if (real_proto
== IPPROTO_TCP
)
7113 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7115 /* override PROTO_UNDEF */
7116 real_proto
= IPPROTO_SCTP
;
7119 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
7121 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
7123 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
7124 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
7129 eaddr
= pcap_ether_hostton(name
);
7131 bpf_error(cstate
, "unknown ether host: %s", name
);
7133 res
= pcap_nametoaddrinfo(name
);
7136 bpf_error(cstate
, "unknown host '%s'", name
);
7137 b
= gen_gateway(cstate
, eaddr
, res
, proto
);
7142 bpf_error(cstate
, "unknown host '%s'", name
);
7145 bpf_error(cstate
, "'gateway' not supported in this configuration");
7149 real_proto
= lookup_proto(cstate
, name
, proto
);
7150 if (real_proto
>= 0)
7151 return gen_proto(cstate
, real_proto
, proto
);
7153 bpf_error(cstate
, "unknown protocol: %s", name
);
7155 #if !defined(NO_PROTOCHAIN)
7157 real_proto
= lookup_proto(cstate
, name
, proto
);
7158 if (real_proto
>= 0)
7159 return gen_protochain(cstate
, real_proto
, proto
);
7161 bpf_error(cstate
, "unknown protocol: %s", name
);
7162 #endif /* !defined(NO_PROTOCHAIN) */
7173 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
7174 bpf_u_int32 masklen
, struct qual q
)
7176 register int nlen
, mlen
;
7181 * Catch errors reported by us and routines below us, and return NULL
7184 if (setjmp(cstate
->top_ctx
))
7187 nlen
= pcapint_atoin(s1
, &n
);
7189 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
7190 /* Promote short ipaddr */
7194 mlen
= pcapint_atoin(s2
, &m
);
7196 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
7197 /* Promote short ipaddr */
7200 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
7203 /* Convert mask len to mask */
7205 bpf_error(cstate
, "mask length must be <= 32");
7206 m64
= UINT64_C(0xffffffff) << (32 - masklen
);
7207 m
= (bpf_u_int32
)m64
;
7209 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7216 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7219 // Q_HOST and Q_GATEWAY only (see the grammar)
7220 bpf_error(cstate
, "Mask syntax for networks only");
7227 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7235 * Catch errors reported by us and routines below us, and return NULL
7238 if (setjmp(cstate
->top_ctx
))
7245 * v contains a 32-bit unsigned parsed from a string of the
7246 * form {N}, which could be decimal, hexadecimal or octal.
7247 * Although it would be possible to use the value as a raw
7248 * 16-bit DECnet address when the value fits into 16 bits, this
7249 * would be a questionable feature: DECnet address wire
7250 * encoding is little-endian, so this would not work as
7251 * intuitively as the same works for [big-endian] IPv4
7252 * addresses (0x01020304 means 1.2.3.4).
7254 if (proto
== Q_DECNET
)
7255 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7257 } else if (proto
== Q_DECNET
) {
7259 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7260 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7261 * for a valid DECnet address.
7263 vlen
= pcapint_atodn(s
, &v
);
7265 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7268 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7269 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7272 vlen
= pcapint_atoin(s
, &v
);
7274 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7282 if (proto
== Q_DECNET
)
7283 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7284 else if (proto
== Q_LINK
) {
7285 // "link (host|net) IPV4ADDR" and variations thereof
7286 bpf_error(cstate
, "illegal link layer address");
7289 if (s
== NULL
&& q
.addr
== Q_NET
) {
7290 /* Promote short net number */
7291 while (v
&& (v
& 0xff000000) == 0) {
7296 /* Promote short ipaddr */
7298 mask
<<= 32 - vlen
;
7300 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7304 proto
= port_pq_to_ipproto(cstate
, proto
, "port");
7307 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7311 b
= gen_port(cstate
, v
, proto
, dir
);
7312 gen_or(gen_port6(cstate
, v
, proto
, dir
), b
);
7317 proto
= port_pq_to_ipproto(cstate
, proto
, "portrange");
7320 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7324 b
= gen_portrange(cstate
, v
, v
, proto
, dir
);
7325 gen_or(gen_portrange6(cstate
, v
, v
, proto
, dir
), b
);
7330 bpf_error(cstate
, "'gateway' requires a name");
7334 return gen_proto(cstate
, v
, proto
);
7336 #if !defined(NO_PROTOCHAIN)
7338 return gen_protochain(cstate
, v
, proto
);
7354 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7357 struct addrinfo
*res
;
7358 struct in6_addr
*addr
;
7359 struct in6_addr mask
;
7361 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7364 * Catch errors reported by us and routines below us, and return NULL
7367 if (setjmp(cstate
->top_ctx
))
7370 res
= pcap_nametoaddrinfo(s
);
7372 bpf_error(cstate
, "invalid ip6 address %s", s
);
7375 bpf_error(cstate
, "%s resolved to multiple address", s
);
7376 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7378 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7379 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7380 memset(&mask
, 0, sizeof(mask
));
7381 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7383 mask
.s6_addr
[masklen
/ 8] =
7384 (0xff << (8 - masklen
% 8)) & 0xff;
7387 memcpy(a
, addr
, sizeof(a
));
7388 memcpy(m
, &mask
, sizeof(m
));
7389 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7390 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7391 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7399 bpf_error(cstate
, "Mask syntax for networks only");
7403 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7409 // Q_GATEWAY only (see the grammar)
7410 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7417 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7419 struct block
*b
, *tmp
;
7422 * Catch errors reported by us and routines below us, and return NULL
7425 if (setjmp(cstate
->top_ctx
))
7428 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7429 cstate
->e
= pcap_ether_aton(s
);
7430 if (cstate
->e
== NULL
)
7431 bpf_error(cstate
, "malloc");
7432 switch (cstate
->linktype
) {
7434 case DLT_NETANALYZER
:
7435 case DLT_NETANALYZER_TRANSPARENT
:
7436 tmp
= gen_prevlinkhdr_check(cstate
);
7437 b
= gen_ehostop(cstate
, cstate
->e
, (int)q
.dir
);
7442 b
= gen_fhostop(cstate
, cstate
->e
, (int)q
.dir
);
7445 b
= gen_thostop(cstate
, cstate
->e
, (int)q
.dir
);
7447 case DLT_IEEE802_11
:
7448 case DLT_PRISM_HEADER
:
7449 case DLT_IEEE802_11_RADIO_AVS
:
7450 case DLT_IEEE802_11_RADIO
:
7452 b
= gen_wlanhostop(cstate
, cstate
->e
, (int)q
.dir
);
7454 case DLT_IP_OVER_FC
:
7455 b
= gen_ipfchostop(cstate
, cstate
->e
, (int)q
.dir
);
7460 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7467 bpf_error(cstate
, "ethernet address used in non-ether expression");
7472 sappend(struct slist
*s0
, struct slist
*s1
)
7475 * This is definitely not the best way to do this, but the
7476 * lists will rarely get long.
7483 static struct slist
*
7484 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7488 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7493 static struct slist
*
7494 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7498 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7504 * Modify "index" to use the value stored into its register as an
7505 * offset relative to the beginning of the header for the protocol
7506 * "proto", and allocate a register and put an item "size" bytes long
7507 * (1, 2, or 4) at that offset into that register, making it the register
7510 static struct arth
*
7511 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7515 struct slist
*s
, *tmp
;
7517 int regno
= alloc_reg(cstate
);
7519 free_reg(cstate
, inst
->regno
);
7523 bpf_error(cstate
, "data size must be 1, 2, or 4");
7540 bpf_error(cstate
, "'%s' does not support the index operation", pqkw(proto
));
7544 * The offset is relative to the beginning of the packet
7545 * data, if we have a radio header. (If we don't, this
7548 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7549 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7550 cstate
->linktype
!= DLT_PRISM_HEADER
)
7551 bpf_error(cstate
, "radio information not present in capture");
7554 * Load into the X register the offset computed into the
7555 * register specified by "index".
7557 s
= xfer_to_x(cstate
, inst
);
7560 * Load the item at that offset.
7562 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7564 sappend(inst
->s
, s
);
7569 * The offset is relative to the beginning of
7570 * the link-layer header.
7572 * XXX - what about ATM LANE? Should the index be
7573 * relative to the beginning of the AAL5 frame, so
7574 * that 0 refers to the beginning of the LE Control
7575 * field, or relative to the beginning of the LAN
7576 * frame, so that 0 refers, for Ethernet LANE, to
7577 * the beginning of the destination address?
7579 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7582 * If "s" is non-null, it has code to arrange that the
7583 * X register contains the length of the prefix preceding
7584 * the link-layer header. Add to it the offset computed
7585 * into the register specified by "index", and move that
7586 * into the X register. Otherwise, just load into the X
7587 * register the offset computed into the register specified
7591 sappend(s
, xfer_to_a(cstate
, inst
));
7592 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7593 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7595 s
= xfer_to_x(cstate
, inst
);
7598 * Load the item at the sum of the offset we've put in the
7599 * X register and the offset of the start of the link
7600 * layer header (which is 0 if the radio header is
7601 * variable-length; that header length is what we put
7602 * into the X register and then added to the index).
7604 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7605 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7607 sappend(inst
->s
, s
);
7621 * The offset is relative to the beginning of
7622 * the network-layer header.
7623 * XXX - are there any cases where we want
7624 * cstate->off_nl_nosnap?
7626 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7629 * If "s" is non-null, it has code to arrange that the
7630 * X register contains the variable part of the offset
7631 * of the link-layer payload. Add to it the offset
7632 * computed into the register specified by "index",
7633 * and move that into the X register. Otherwise, just
7634 * load into the X register the offset computed into
7635 * the register specified by "index".
7638 sappend(s
, xfer_to_a(cstate
, inst
));
7639 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7640 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7642 s
= xfer_to_x(cstate
, inst
);
7645 * Load the item at the sum of the offset we've put in the
7646 * X register, the offset of the start of the network
7647 * layer header from the beginning of the link-layer
7648 * payload, and the constant part of the offset of the
7649 * start of the link-layer payload.
7651 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7652 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7654 sappend(inst
->s
, s
);
7657 * Do the computation only if the packet contains
7658 * the protocol in question.
7660 b
= gen_proto_abbrev_internal(cstate
, proto
);
7662 gen_and(inst
->b
, b
);
7676 * The offset is relative to the beginning of
7677 * the transport-layer header.
7679 * Load the X register with the length of the IPv4 header
7680 * (plus the offset of the link-layer header, if it's
7681 * a variable-length header), in bytes.
7683 * XXX - are there any cases where we want
7684 * cstate->off_nl_nosnap?
7685 * XXX - we should, if we're built with
7686 * IPv6 support, generate code to load either
7687 * IPv4, IPv6, or both, as appropriate.
7689 s
= gen_loadx_iphdrlen(cstate
);
7692 * The X register now contains the sum of the variable
7693 * part of the offset of the link-layer payload and the
7694 * length of the network-layer header.
7696 * Load into the A register the offset relative to
7697 * the beginning of the transport layer header,
7698 * add the X register to that, move that to the
7699 * X register, and load with an offset from the
7700 * X register equal to the sum of the constant part of
7701 * the offset of the link-layer payload and the offset,
7702 * relative to the beginning of the link-layer payload,
7703 * of the network-layer header.
7705 sappend(s
, xfer_to_a(cstate
, inst
));
7706 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7707 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7708 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7709 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7710 sappend(inst
->s
, s
);
7713 * Do the computation only if the packet contains
7714 * the protocol in question - which is true only
7715 * if this is an IP datagram and is the first or
7716 * only fragment of that datagram.
7718 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7720 gen_and(inst
->b
, b
);
7721 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7726 * Do the computation only if the packet contains
7727 * the protocol in question.
7729 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7731 gen_and(inst
->b
, b
);
7735 * Check if we have an icmp6 next header
7737 b
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, 58);
7739 gen_and(inst
->b
, b
);
7742 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7744 * If "s" is non-null, it has code to arrange that the
7745 * X register contains the variable part of the offset
7746 * of the link-layer payload. Add to it the offset
7747 * computed into the register specified by "index",
7748 * and move that into the X register. Otherwise, just
7749 * load into the X register the offset computed into
7750 * the register specified by "index".
7753 sappend(s
, xfer_to_a(cstate
, inst
));
7754 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7755 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7757 s
= xfer_to_x(cstate
, inst
);
7760 * Load the item at the sum of the offset we've put in the
7761 * X register, the offset of the start of the network
7762 * layer header from the beginning of the link-layer
7763 * payload, and the constant part of the offset of the
7764 * start of the link-layer payload.
7766 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7767 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7770 sappend(inst
->s
, s
);
7774 inst
->regno
= regno
;
7775 s
= new_stmt(cstate
, BPF_ST
);
7777 sappend(inst
->s
, s
);
7783 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7787 * Catch errors reported by us and routines below us, and return NULL
7790 if (setjmp(cstate
->top_ctx
))
7793 return gen_load_internal(cstate
, proto
, inst
, size
);
7796 static struct block
*
7797 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7798 struct arth
*a1
, int reversed
)
7800 struct slist
*s0
, *s1
, *s2
;
7801 struct block
*b
, *tmp
;
7803 s0
= xfer_to_x(cstate
, a1
);
7804 s1
= xfer_to_a(cstate
, a0
);
7805 if (code
== BPF_JEQ
) {
7806 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7807 b
= new_block(cstate
, JMP(code
));
7811 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7817 sappend(a0
->s
, a1
->s
);
7821 free_reg(cstate
, a0
->regno
);
7822 free_reg(cstate
, a1
->regno
);
7824 /* 'and' together protocol checks */
7827 gen_and(a0
->b
, tmp
= a1
->b
);
7841 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7842 struct arth
*a1
, int reversed
)
7845 * Catch errors reported by us and routines below us, and return NULL
7848 if (setjmp(cstate
->top_ctx
))
7851 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7855 gen_loadlen(compiler_state_t
*cstate
)
7862 * Catch errors reported by us and routines below us, and return NULL
7865 if (setjmp(cstate
->top_ctx
))
7868 regno
= alloc_reg(cstate
);
7869 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7870 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7871 s
->next
= new_stmt(cstate
, BPF_ST
);
7872 s
->next
->s
.k
= regno
;
7879 static struct arth
*
7880 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7886 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7888 reg
= alloc_reg(cstate
);
7890 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7892 s
->next
= new_stmt(cstate
, BPF_ST
);
7901 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
7904 * Catch errors reported by us and routines below us, and return NULL
7907 if (setjmp(cstate
->top_ctx
))
7910 return gen_loadi_internal(cstate
, val
);
7914 * The a_arg dance is to avoid annoying whining by compilers that
7915 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7916 * It's not *used* after setjmp returns.
7919 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
7921 struct arth
*a
= a_arg
;
7925 * Catch errors reported by us and routines below us, and return NULL
7928 if (setjmp(cstate
->top_ctx
))
7931 s
= xfer_to_a(cstate
, a
);
7933 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7936 s
= new_stmt(cstate
, BPF_ST
);
7944 * The a0_arg dance is to avoid annoying whining by compilers that
7945 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7946 * It's not *used* after setjmp returns.
7949 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
7952 struct arth
*a0
= a0_arg
;
7953 struct slist
*s0
, *s1
, *s2
;
7956 * Catch errors reported by us and routines below us, and return NULL
7959 if (setjmp(cstate
->top_ctx
))
7963 * Disallow division by, or modulus by, zero; we do this here
7964 * so that it gets done even if the optimizer is disabled.
7966 * Also disallow shifts by a value greater than 31; we do this
7967 * here, for the same reason.
7969 if (code
== BPF_DIV
) {
7970 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7971 bpf_error(cstate
, "division by zero");
7972 } else if (code
== BPF_MOD
) {
7973 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7974 bpf_error(cstate
, "modulus by zero");
7975 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7976 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
7977 bpf_error(cstate
, "shift by more than 31 bits");
7979 s0
= xfer_to_x(cstate
, a1
);
7980 s1
= xfer_to_a(cstate
, a0
);
7981 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7986 sappend(a0
->s
, a1
->s
);
7988 free_reg(cstate
, a0
->regno
);
7989 free_reg(cstate
, a1
->regno
);
7991 s0
= new_stmt(cstate
, BPF_ST
);
7992 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7999 * Initialize the table of used registers and the current register.
8002 init_regs(compiler_state_t
*cstate
)
8005 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
8009 * Return the next free register.
8012 alloc_reg(compiler_state_t
*cstate
)
8014 int n
= BPF_MEMWORDS
;
8017 if (cstate
->regused
[cstate
->curreg
])
8018 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
8020 cstate
->regused
[cstate
->curreg
] = 1;
8021 return cstate
->curreg
;
8024 bpf_error(cstate
, "too many registers needed to evaluate expression");
8029 * Return a register to the table so it can
8033 free_reg(compiler_state_t
*cstate
, int n
)
8035 cstate
->regused
[n
] = 0;
8038 static struct block
*
8039 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
8043 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
8044 return gen_jmp(cstate
, jmp
, n
, s
);
8048 gen_greater(compiler_state_t
*cstate
, int n
)
8051 * Catch errors reported by us and routines below us, and return NULL
8054 if (setjmp(cstate
->top_ctx
))
8057 return gen_len(cstate
, BPF_JGE
, n
);
8061 * Actually, this is less than or equal.
8064 gen_less(compiler_state_t
*cstate
, int n
)
8069 * Catch errors reported by us and routines below us, and return NULL
8072 if (setjmp(cstate
->top_ctx
))
8075 b
= gen_len(cstate
, BPF_JGT
, n
);
8082 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8083 * the beginning of the link-layer header.
8084 * XXX - that means you can't test values in the radiotap header, but
8085 * as that header is difficult if not impossible to parse generally
8086 * without a loop, that might not be a severe problem. A new keyword
8087 * "radio" could be added for that, although what you'd really want
8088 * would be a way of testing particular radio header values, which
8089 * would generate code appropriate to the radio header in question.
8092 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
8098 * Catch errors reported by us and routines below us, and return NULL
8101 if (setjmp(cstate
->top_ctx
))
8104 assert_maxval(cstate
, "byte argument", val
, UINT8_MAX
);
8111 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8114 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8118 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8122 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
8126 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8130 // Load the required byte first.
8131 struct slist
*s0
= gen_load_a(cstate
, OR_LINKHDR
, idx
, BPF_B
);
8133 b
= gen_jmp(cstate
, BPF_JEQ
, 0, s0
);
8140 gen_broadcast(compiler_state_t
*cstate
, int proto
)
8142 bpf_u_int32 hostmask
;
8143 struct block
*b0
, *b1
, *b2
;
8144 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8147 * Catch errors reported by us and routines below us, and return NULL
8150 if (setjmp(cstate
->top_ctx
))
8157 switch (cstate
->linktype
) {
8159 case DLT_ARCNET_LINUX
:
8160 // ARCnet broadcast is [8-bit] destination address 0.
8161 return gen_ahostop(cstate
, 0, Q_DST
);
8163 case DLT_NETANALYZER
:
8164 case DLT_NETANALYZER_TRANSPARENT
:
8165 b1
= gen_prevlinkhdr_check(cstate
);
8166 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
8171 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
8173 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
8174 case DLT_IEEE802_11
:
8175 case DLT_PRISM_HEADER
:
8176 case DLT_IEEE802_11_RADIO_AVS
:
8177 case DLT_IEEE802_11_RADIO
:
8179 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
8180 case DLT_IP_OVER_FC
:
8181 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
8183 fail_kw_on_dlt(cstate
, "broadcast");
8188 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8189 * as an indication that we don't know the netmask, and fail
8192 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
8193 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
8194 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8195 hostmask
= ~cstate
->netmask
;
8196 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
8197 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, hostmask
, hostmask
);
8202 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "broadcast");
8207 * Generate code to test the low-order bit of a MAC address (that's
8208 * the bottom bit of the *first* byte).
8210 static struct block
*
8211 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
8213 register struct slist
*s
;
8215 /* link[offset] & 1 != 0 */
8216 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
8217 return gen_set(cstate
, 1, s
);
8221 gen_multicast(compiler_state_t
*cstate
, int proto
)
8223 register struct block
*b0
, *b1
, *b2
;
8224 register struct slist
*s
;
8227 * Catch errors reported by us and routines below us, and return NULL
8230 if (setjmp(cstate
->top_ctx
))
8237 switch (cstate
->linktype
) {
8239 case DLT_ARCNET_LINUX
:
8240 // ARCnet multicast is the same as broadcast.
8241 return gen_ahostop(cstate
, 0, Q_DST
);
8243 case DLT_NETANALYZER
:
8244 case DLT_NETANALYZER_TRANSPARENT
:
8245 b1
= gen_prevlinkhdr_check(cstate
);
8246 /* ether[0] & 1 != 0 */
8247 b0
= gen_mac_multicast(cstate
, 0);
8253 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8255 * XXX - was that referring to bit-order issues?
8257 /* fddi[1] & 1 != 0 */
8258 return gen_mac_multicast(cstate
, 1);
8260 /* tr[2] & 1 != 0 */
8261 return gen_mac_multicast(cstate
, 2);
8262 case DLT_IEEE802_11
:
8263 case DLT_PRISM_HEADER
:
8264 case DLT_IEEE802_11_RADIO_AVS
:
8265 case DLT_IEEE802_11_RADIO
:
8270 * For control frames, there is no DA.
8272 * For management frames, DA is at an
8273 * offset of 4 from the beginning of
8276 * For data frames, DA is at an offset
8277 * of 4 from the beginning of the packet
8278 * if To DS is clear and at an offset of
8279 * 16 from the beginning of the packet
8284 * Generate the tests to be done for data frames.
8286 * First, check for To DS set, i.e. "link[1] & 0x01".
8288 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8289 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8292 * If To DS is set, the DA is at 16.
8294 b0
= gen_mac_multicast(cstate
, 16);
8298 * Now, check for To DS not set, i.e. check
8299 * "!(link[1] & 0x01)".
8301 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8302 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8305 * If To DS is not set, the DA is at 4.
8307 b1
= gen_mac_multicast(cstate
, 4);
8311 * Now OR together the last two checks. That gives
8312 * the complete set of checks for data frames.
8317 * Now check for a data frame.
8318 * I.e, check "link[0] & 0x08".
8320 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8321 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8324 * AND that with the checks done for data frames.
8329 * If the high-order bit of the type value is 0, this
8330 * is a management frame.
8331 * I.e, check "!(link[0] & 0x08)".
8333 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8334 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8337 * For management frames, the DA is at 4.
8339 b1
= gen_mac_multicast(cstate
, 4);
8343 * OR that with the checks done for data frames.
8344 * That gives the checks done for management and
8350 * If the low-order bit of the type value is 1,
8351 * this is either a control frame or a frame
8352 * with a reserved type, and thus not a
8355 * I.e., check "!(link[0] & 0x04)".
8357 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8358 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
8361 * AND that with the checks for data and management
8366 case DLT_IP_OVER_FC
:
8367 b0
= gen_mac_multicast(cstate
, 2);
8372 fail_kw_on_dlt(cstate
, "multicast");
8376 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8377 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8382 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8383 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8387 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "multicast");
8393 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8394 * we can look at special meta-data in the filter expression; otherwise we
8395 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8396 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8397 * pcap_activate() conditionally sets.
8400 require_basic_bpf_extensions(compiler_state_t
*cstate
, const char *keyword
)
8402 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_BASIC_HANDLING
)
8404 bpf_error(cstate
, "%s not supported on %s (not a live capture)",
8406 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8411 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8413 register struct block
*b0
;
8416 * Catch errors reported by us and routines below us, and return NULL
8419 if (setjmp(cstate
->top_ctx
))
8423 * Only some data link types support ifindex qualifiers.
8425 switch (cstate
->linktype
) {
8426 case DLT_LINUX_SLL2
:
8427 /* match packets on this interface */
8428 b0
= gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8431 #if defined(__linux__)
8432 require_basic_bpf_extensions(cstate
, "ifindex");
8434 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8436 #else /* defined(__linux__) */
8437 fail_kw_on_dlt(cstate
, "ifindex");
8439 #endif /* defined(__linux__) */
8445 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8446 * Outbound traffic is sent by this machine, while inbound traffic is
8447 * sent by a remote machine (and may include packets destined for a
8448 * unicast or multicast link-layer address we are not subscribing to).
8449 * These are the same definitions implemented by pcap_setdirection().
8450 * Capturing only unicast traffic destined for this host is probably
8451 * better accomplished using a higher-layer filter.
8454 gen_inbound_outbound(compiler_state_t
*cstate
, const int outbound
)
8456 register struct block
*b0
;
8459 * Catch errors reported by us and routines below us, and return NULL
8462 if (setjmp(cstate
->top_ctx
))
8466 * Only some data link types support inbound/outbound qualifiers.
8468 switch (cstate
->linktype
) {
8470 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
8471 outbound
? SLIPDIR_OUT
: SLIPDIR_IN
);
8475 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
,
8476 outbound
? IPNET_OUTBOUND
: IPNET_INBOUND
);
8480 /* match outgoing packets */
8481 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8483 /* to filter on inbound traffic, invert the match */
8488 case DLT_LINUX_SLL2
:
8489 /* match outgoing packets */
8490 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8492 /* to filter on inbound traffic, invert the match */
8498 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8499 outbound
? PF_OUT
: PF_IN
);
8503 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, outbound
? PPP_PPPD_OUT
: PPP_PPPD_IN
);
8506 case DLT_JUNIPER_MFR
:
8507 case DLT_JUNIPER_MLFR
:
8508 case DLT_JUNIPER_MLPPP
:
8509 case DLT_JUNIPER_ATM1
:
8510 case DLT_JUNIPER_ATM2
:
8511 case DLT_JUNIPER_PPPOE
:
8512 case DLT_JUNIPER_PPPOE_ATM
:
8513 case DLT_JUNIPER_GGSN
:
8514 case DLT_JUNIPER_ES
:
8515 case DLT_JUNIPER_MONITOR
:
8516 case DLT_JUNIPER_SERVICES
:
8517 case DLT_JUNIPER_ETHER
:
8518 case DLT_JUNIPER_PPP
:
8519 case DLT_JUNIPER_FRELAY
:
8520 case DLT_JUNIPER_CHDLC
:
8521 case DLT_JUNIPER_VP
:
8522 case DLT_JUNIPER_ST
:
8523 case DLT_JUNIPER_ISM
:
8524 case DLT_JUNIPER_VS
:
8525 case DLT_JUNIPER_SRX_E2E
:
8526 case DLT_JUNIPER_FIBRECHANNEL
:
8527 case DLT_JUNIPER_ATM_CEMIC
:
8528 /* juniper flags (including direction) are stored
8529 * the byte after the 3-byte magic number */
8530 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, outbound
? 0 : 1, 0x01);
8535 * If we have packet meta-data indicating a direction,
8536 * and that metadata can be checked by BPF code, check
8537 * it. Otherwise, give up, as this link-layer type has
8538 * nothing in the packet data.
8540 * Currently, the only platform where a BPF filter can
8541 * check that metadata is Linux with the in-kernel
8542 * BPF interpreter. If other packet capture mechanisms
8543 * and BPF filters also supported this, it would be
8544 * nice. It would be even better if they made that
8545 * metadata available so that we could provide it
8546 * with newer capture APIs, allowing it to be saved
8549 #if defined(__linux__)
8550 require_basic_bpf_extensions(cstate
, outbound
? "outbound" : "inbound");
8551 /* match outgoing packets */
8552 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8555 /* to filter on inbound traffic, invert the match */
8558 #else /* defined(__linux__) */
8559 fail_kw_on_dlt(cstate
, outbound
? "outbound" : "inbound");
8561 #endif /* defined(__linux__) */
8566 /* PF firewall log matched interface */
8568 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8574 * Catch errors reported by us and routines below us, and return NULL
8577 if (setjmp(cstate
->top_ctx
))
8580 assert_pflog(cstate
, "ifname");
8582 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8583 off
= offsetof(struct pfloghdr
, ifname
);
8584 if (strlen(ifname
) >= len
) {
8585 bpf_error(cstate
, "ifname interface names can only be %d characters",
8589 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8590 (const u_char
*)ifname
);
8594 /* PF firewall log ruleset name */
8596 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8601 * Catch errors reported by us and routines below us, and return NULL
8604 if (setjmp(cstate
->top_ctx
))
8607 assert_pflog(cstate
, "ruleset");
8609 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8610 bpf_error(cstate
, "ruleset names can only be %ld characters",
8611 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8615 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8616 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8620 /* PF firewall log rule number */
8622 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8627 * Catch errors reported by us and routines below us, and return NULL
8630 if (setjmp(cstate
->top_ctx
))
8633 assert_pflog(cstate
, "rnr");
8635 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8640 /* PF firewall log sub-rule number */
8642 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8647 * Catch errors reported by us and routines below us, and return NULL
8650 if (setjmp(cstate
->top_ctx
))
8653 assert_pflog(cstate
, "srnr");
8655 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8660 /* PF firewall log reason code */
8662 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8667 * Catch errors reported by us and routines below us, and return NULL
8670 if (setjmp(cstate
->top_ctx
))
8673 assert_pflog(cstate
, "reason");
8675 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8676 (bpf_u_int32
)reason
);
8680 /* PF firewall log action */
8682 gen_pf_action(compiler_state_t
*cstate
, int action
)
8687 * Catch errors reported by us and routines below us, and return NULL
8690 if (setjmp(cstate
->top_ctx
))
8693 assert_pflog(cstate
, "action");
8695 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8696 (bpf_u_int32
)action
);
8700 /* IEEE 802.11 wireless header */
8702 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8707 * Catch errors reported by us and routines below us, and return NULL
8710 if (setjmp(cstate
->top_ctx
))
8713 switch (cstate
->linktype
) {
8715 case DLT_IEEE802_11
:
8716 case DLT_PRISM_HEADER
:
8717 case DLT_IEEE802_11_RADIO_AVS
:
8718 case DLT_IEEE802_11_RADIO
:
8720 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8724 fail_kw_on_dlt(cstate
, "type/subtype");
8732 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8737 * Catch errors reported by us and routines below us, and return NULL
8740 if (setjmp(cstate
->top_ctx
))
8743 switch (cstate
->linktype
) {
8745 case DLT_IEEE802_11
:
8746 case DLT_PRISM_HEADER
:
8747 case DLT_IEEE802_11_RADIO_AVS
:
8748 case DLT_IEEE802_11_RADIO
:
8753 fail_kw_on_dlt(cstate
, "dir");
8757 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8758 IEEE80211_FC1_DIR_MASK
);
8763 // Process an ARCnet host address string.
8765 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8768 * Catch errors reported by us and routines below us, and return NULL
8771 if (setjmp(cstate
->top_ctx
))
8774 switch (cstate
->linktype
) {
8777 case DLT_ARCNET_LINUX
:
8778 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8779 q
.proto
== Q_LINK
) {
8782 * The lexer currently defines the address format in a
8783 * way that makes this error condition never true.
8784 * Let's check it anyway in case this part of the lexer
8785 * changes in future.
8787 if (! pcapint_atoan(s
, &addr
))
8788 bpf_error(cstate
, "invalid ARCnet address '%s'", s
);
8789 return gen_ahostop(cstate
, addr
, (int)q
.dir
);
8791 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8795 bpf_error(cstate
, "aid supported only on ARCnet");
8800 // Compare an ARCnet host address with the given value.
8801 static struct block
*
8802 gen_ahostop(compiler_state_t
*cstate
, const uint8_t eaddr
, int dir
)
8804 register struct block
*b0
, *b1
;
8808 * ARCnet is different from Ethernet: the source address comes before
8809 * the destination address, each is one byte long. This holds for all
8810 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8811 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8812 * by Datapoint (document number 61610-01).
8815 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, eaddr
);
8818 return gen_cmp(cstate
, OR_LINKHDR
, 1, BPF_B
, eaddr
);
8821 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8822 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8828 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8829 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8839 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
8846 static struct block
*
8847 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8849 struct block
*b0
, *b1
;
8851 /* check for VLAN, including 802.1ad and QinQ */
8852 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8853 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8856 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8862 static struct block
*
8863 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8865 assert_maxval(cstate
, "VLAN tag", vlan_num
, 0x0fff);
8866 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
8869 static struct block
*
8870 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8873 struct block
*b0
, *b1
;
8875 b0
= gen_vlan_tpid_test(cstate
);
8878 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8884 * Both payload and link header type follow the VLAN tags so that
8885 * both need to be updated.
8887 cstate
->off_linkpl
.constant_part
+= 4;
8888 cstate
->off_linktype
.constant_part
+= 4;
8893 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8894 /* add v to variable part of off */
8896 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
8897 bpf_u_int32 v
, struct slist
*s
)
8901 if (!off
->is_variable
)
8902 off
->is_variable
= 1;
8904 off
->reg
= alloc_reg(cstate
);
8906 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8909 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8912 s2
= new_stmt(cstate
, BPF_ST
);
8918 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8919 * and link type offsets first
8922 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8926 /* offset determined at run time, shift variable part */
8928 cstate
->is_vlan_vloffset
= 1;
8929 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8930 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8932 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8933 sappend(s
.next
, b_tpid
->head
->stmts
);
8934 b_tpid
->head
->stmts
= s
.next
;
8938 * patch block b_vid (VLAN id test) to load VID value either from packet
8939 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8942 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8944 struct slist
*s
, *s2
, *sjeq
;
8947 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8948 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8950 /* true -> next instructions, false -> beginning of b_vid */
8951 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8953 sjeq
->s
.jf
= b_vid
->stmts
;
8956 s2
= new_stmt(cstate
, BPF_LD
|BPF_H
|BPF_ABS
);
8957 s2
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG
);
8961 /* Jump to the test in b_vid. We need to jump one instruction before
8962 * the end of the b_vid block so that we only skip loading the TCI
8963 * from packet data and not the 'and' instruction extracting VID.
8966 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8968 s2
= new_stmt(cstate
, JMP(BPF_JA
));
8972 /* insert our statements at the beginning of b_vid */
8973 sappend(s
, b_vid
->stmts
);
8978 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8979 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8980 * tag can be either in metadata or in packet data; therefore if the
8981 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8982 * header for VLAN tag. As the decision is done at run time, we need
8983 * update variable part of the offsets
8985 static struct block
*
8986 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8989 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
8992 /* generate new filter code based on extracting packet
8994 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8995 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8997 b0
= gen_jmp(cstate
, BPF_JEQ
, 1, s
);
9000 * This is tricky. We need to insert the statements updating variable
9001 * parts of offsets before the traditional TPID and VID tests so
9002 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9003 * we do not want this update to affect those checks. That's why we
9004 * generate both test blocks first and insert the statements updating
9005 * variable parts of both offsets after that. This wouldn't work if
9006 * there already were variable length link header when entering this
9007 * function but gen_vlan_bpf_extensions() isn't called in that case.
9009 b_tpid
= gen_vlan_tpid_test(cstate
);
9011 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
9013 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
9018 gen_vlan_patch_vid_test(cstate
, b_vid
);
9028 * support IEEE 802.1Q VLAN trunk over ethernet
9031 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
9036 * Catch errors reported by us and routines below us, and return NULL
9039 if (setjmp(cstate
->top_ctx
))
9042 /* can't check for VLAN-encapsulated packets inside MPLS */
9043 if (cstate
->label_stack_depth
> 0)
9044 bpf_error(cstate
, "no VLAN match after MPLS");
9047 * Check for a VLAN packet, and then change the offsets to point
9048 * to the type and data fields within the VLAN packet. Just
9049 * increment the offsets, so that we can support a hierarchy, e.g.
9050 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
9053 * XXX - this is a bit of a kludge. If we were to split the
9054 * compiler into a parser that parses an expression and
9055 * generates an expression tree, and a code generator that
9056 * takes an expression tree (which could come from our
9057 * parser or from some other parser) and generates BPF code,
9058 * we could perhaps make the offsets parameters of routines
9059 * and, in the handler for an "AND" node, pass to subnodes
9060 * other than the VLAN node the adjusted offsets.
9062 * This would mean that "vlan" would, instead of changing the
9063 * behavior of *all* tests after it, change only the behavior
9064 * of tests ANDed with it. That would change the documented
9065 * semantics of "vlan", which might break some expressions.
9066 * However, it would mean that "(vlan and ip) or ip" would check
9067 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9068 * checking only for VLAN-encapsulated IP, so that could still
9069 * be considered worth doing; it wouldn't break expressions
9070 * that are of the form "vlan and ..." or "vlan N and ...",
9071 * which I suspect are the most common expressions involving
9072 * "vlan". "vlan or ..." doesn't necessarily do what the user
9073 * would really want, now, as all the "or ..." tests would
9074 * be done assuming a VLAN, even though the "or" could be viewed
9075 * as meaning "or, if this isn't a VLAN packet...".
9077 switch (cstate
->linktype
) {
9081 * Newer version of the Linux kernel pass around
9082 * packets in which the VLAN tag has been removed
9083 * from the packet data and put into metadata.
9085 * This requires special treatment.
9087 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9088 /* Verify that this is the outer part of the packet and
9089 * not encapsulated somehow. */
9090 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
9091 cstate
->off_linkhdr
.constant_part
==
9092 cstate
->off_outermostlinkhdr
.constant_part
) {
9094 * Do we need special VLAN handling?
9096 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
9097 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
9100 b0
= gen_vlan_no_bpf_extensions(cstate
,
9101 vlan_num
, has_vlan_tag
);
9104 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
9108 case DLT_NETANALYZER
:
9109 case DLT_NETANALYZER_TRANSPARENT
:
9110 case DLT_IEEE802_11
:
9111 case DLT_PRISM_HEADER
:
9112 case DLT_IEEE802_11_RADIO_AVS
:
9113 case DLT_IEEE802_11_RADIO
:
9115 * These are either Ethernet packets with an additional
9116 * metadata header (the NetAnalyzer types), or 802.11
9117 * packets, possibly with an additional metadata header.
9119 * For the first of those, the VLAN tag is in the normal
9120 * place, so the special-case handling above isn't
9123 * For the second of those, we don't do the special-case
9126 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
9130 bpf_error(cstate
, "no VLAN support for %s",
9131 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9135 cstate
->vlan_stack_depth
++;
9143 * The label_num_arg dance is to avoid annoying whining by compilers that
9144 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9145 * It's not *used* after setjmp returns.
9147 static struct block
*
9148 gen_mpls_internal(compiler_state_t
*cstate
, bpf_u_int32 label_num
,
9151 struct block
*b0
, *b1
;
9153 if (cstate
->label_stack_depth
> 0) {
9154 /* just match the bottom-of-stack bit clear */
9155 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
9158 * We're not in an MPLS stack yet, so check the link-layer
9159 * type against MPLS.
9161 switch (cstate
->linktype
) {
9163 case DLT_C_HDLC
: /* fall through */
9166 case DLT_NETANALYZER
:
9167 case DLT_NETANALYZER_TRANSPARENT
:
9168 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
9172 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
9175 /* FIXME add other DLT_s ...
9176 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9177 * leave it for now */
9180 bpf_error(cstate
, "no MPLS support for %s",
9181 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9186 /* If a specific MPLS label is requested, check it */
9187 if (has_label_num
) {
9188 assert_maxval(cstate
, "MPLS label", label_num
, 0xFFFFF);
9189 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
9190 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
9191 0xfffff000); /* only compare the first 20 bits */
9197 * Change the offsets to point to the type and data fields within
9198 * the MPLS packet. Just increment the offsets, so that we
9199 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9200 * capture packets with an outer label of 100000 and an inner
9203 * Increment the MPLS stack depth as well; this indicates that
9204 * we're checking MPLS-encapsulated headers, to make sure higher
9205 * level code generators don't try to match against IP-related
9206 * protocols such as Q_ARP, Q_RARP etc.
9208 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9210 cstate
->off_nl_nosnap
+= 4;
9211 cstate
->off_nl
+= 4;
9212 cstate
->label_stack_depth
++;
9217 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
9220 * Catch errors reported by us and routines below us, and return NULL
9223 if (setjmp(cstate
->top_ctx
))
9226 return gen_mpls_internal(cstate
, label_num
, has_label_num
);
9230 * Support PPPOE discovery and session.
9233 gen_pppoed(compiler_state_t
*cstate
)
9236 * Catch errors reported by us and routines below us, and return NULL
9239 if (setjmp(cstate
->top_ctx
))
9242 /* check for PPPoE discovery */
9243 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
9247 * RFC 2516 Section 4:
9249 * The Ethernet payload for PPPoE is as follows:
9252 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
9253 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9254 * | VER | TYPE | CODE | SESSION_ID |
9255 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9256 * | LENGTH | payload ~
9257 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9260 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
9262 struct block
*b0
, *b1
;
9265 * Catch errors reported by us and routines below us, and return NULL
9268 if (setjmp(cstate
->top_ctx
))
9272 * Test against the PPPoE session link-layer type.
9274 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
9276 /* If a specific session is requested, check PPPoE session id */
9278 assert_maxval(cstate
, "PPPoE session number", sess_num
, UINT16_MAX
);
9279 b1
= gen_cmp(cstate
, OR_LINKPL
, 2, BPF_H
, sess_num
);
9285 * Change the offsets to point to the type and data fields within
9286 * the PPP packet, and note that this is PPPoE rather than
9289 * XXX - this is a bit of a kludge. See the comments in
9292 * The "network-layer" protocol is PPPoE, which has a 6-byte
9293 * PPPoE header, followed by a PPP packet.
9295 * There is no HDLC encapsulation for the PPP packet (it's
9296 * encapsulated in PPPoES instead), so the link-layer type
9297 * starts at the first byte of the PPP packet. For PPPoE,
9298 * that offset is relative to the beginning of the total
9299 * link-layer payload, including any 802.2 LLC header, so
9300 * it's 6 bytes past cstate->off_nl.
9302 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9303 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9304 cstate
->off_linkpl
.reg
);
9306 cstate
->off_linktype
= cstate
->off_linkhdr
;
9307 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9310 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9315 /* Check that this is Geneve and the VNI is correct if
9316 * specified. Parameterized to handle both IPv4 and IPv6. */
9317 static struct block
*
9318 gen_geneve_check(compiler_state_t
*cstate
,
9319 struct block
*(*gen_portfn
)(compiler_state_t
*, u_int
, int, int),
9320 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9322 struct block
*b0
, *b1
;
9324 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9326 /* Check that we are operating on version 0. Otherwise, we
9327 * can't decode the rest of the fields. The version is 2 bits
9328 * in the first byte of the Geneve header. */
9329 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9334 assert_maxval(cstate
, "Geneve VNI", vni
, 0xffffff);
9335 vni
<<= 8; /* VNI is in the upper 3 bytes */
9336 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9344 /* The IPv4 and IPv6 Geneve checks need to do two things:
9345 * - Verify that this actually is Geneve with the right VNI.
9346 * - Place the IP header length (plus variable link prefix if
9347 * needed) into register A to be used later to compute
9348 * the inner packet offsets. */
9349 static struct block
*
9350 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9352 struct block
*b0
, *b1
;
9353 struct slist
*s
, *s1
;
9355 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9357 /* Load the IP header length into A. */
9358 s
= gen_loadx_iphdrlen(cstate
);
9360 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9363 /* Forcibly append these statements to the true condition
9364 * of the protocol check by creating a new block that is
9365 * always true and ANDing them. */
9366 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9373 static struct block
*
9374 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9376 struct block
*b0
, *b1
;
9377 struct slist
*s
, *s1
;
9379 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9381 /* Load the IP header length. We need to account for a
9382 * variable length link prefix if there is one. */
9383 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9385 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9389 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9393 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9397 /* Forcibly append these statements to the true condition
9398 * of the protocol check by creating a new block that is
9399 * always true and ANDing them. */
9400 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9403 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9410 /* We need to store three values based on the Geneve header::
9411 * - The offset of the linktype.
9412 * - The offset of the end of the Geneve header.
9413 * - The offset of the end of the encapsulated MAC header. */
9414 static struct slist
*
9415 gen_geneve_offsets(compiler_state_t
*cstate
)
9417 struct slist
*s
, *s1
, *s_proto
;
9419 /* First we need to calculate the offset of the Geneve header
9420 * itself. This is composed of the IP header previously calculated
9421 * (include any variable link prefix) and stored in A plus the
9422 * fixed sized headers (fixed link prefix, MAC length, and UDP
9424 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9425 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9427 /* Stash this in X since we'll need it later. */
9428 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9431 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9433 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9437 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9438 cstate
->off_linktype
.is_variable
= 1;
9439 cstate
->off_linktype
.constant_part
= 0;
9441 s1
= new_stmt(cstate
, BPF_ST
);
9442 s1
->s
.k
= cstate
->off_linktype
.reg
;
9445 /* Load the Geneve option length and mask and shift to get the
9446 * number of bytes. It is stored in the first byte of the Geneve
9448 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9452 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9456 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9460 /* Add in the rest of the Geneve base header. */
9461 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9465 /* Add the Geneve header length to its offset and store. */
9466 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9470 /* Set the encapsulated type as Ethernet. Even though we may
9471 * not actually have Ethernet inside there are two reasons this
9473 * - The linktype field is always in EtherType format regardless
9474 * of whether it is in Geneve or an inner Ethernet frame.
9475 * - The only link layer that we have specific support for is
9476 * Ethernet. We will confirm that the packet actually is
9477 * Ethernet at runtime before executing these checks. */
9478 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9480 s1
= new_stmt(cstate
, BPF_ST
);
9481 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9484 /* Calculate whether we have an Ethernet header or just raw IP/
9485 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9486 * and linktype by 14 bytes so that the network header can be found
9487 * seamlessly. Otherwise, keep what we've calculated already. */
9489 /* We have a bare jmp so we can't use the optimizer. */
9490 cstate
->no_optimize
= 1;
9492 /* Load the EtherType in the Geneve header, 2 bytes in. */
9493 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9497 /* Load X with the end of the Geneve header. */
9498 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9499 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9502 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9503 * end of this check, we should have the total length in X. In
9504 * the non-Ethernet case, it's already there. */
9505 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9506 s_proto
->s
.k
= ETHERTYPE_TEB
;
9507 sappend(s
, s_proto
);
9509 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9513 /* Since this is Ethernet, use the EtherType of the payload
9514 * directly as the linktype. Overwrite what we already have. */
9515 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9519 s1
= new_stmt(cstate
, BPF_ST
);
9520 s1
->s
.k
= cstate
->off_linktype
.reg
;
9523 /* Advance two bytes further to get the end of the Ethernet
9525 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9529 /* Move the result to X. */
9530 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9533 /* Store the final result of our linkpl calculation. */
9534 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9535 cstate
->off_linkpl
.is_variable
= 1;
9536 cstate
->off_linkpl
.constant_part
= 0;
9538 s1
= new_stmt(cstate
, BPF_STX
);
9539 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9548 /* Check to see if this is a Geneve packet. */
9550 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9552 struct block
*b0
, *b1
;
9556 * Catch errors reported by us and routines below us, and return NULL
9559 if (setjmp(cstate
->top_ctx
))
9562 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9563 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9568 /* Later filters should act on the payload of the Geneve frame,
9569 * update all of the header pointers. Attach this code so that
9570 * it gets executed in the event that the Geneve filter matches. */
9571 s
= gen_geneve_offsets(cstate
);
9573 b1
= gen_true(cstate
);
9574 sappend(s
, b1
->stmts
);
9579 cstate
->is_encap
= 1;
9584 /* Check that this is VXLAN and the VNI is correct if
9585 * specified. Parameterized to handle both IPv4 and IPv6. */
9586 static struct block
*
9587 gen_vxlan_check(compiler_state_t
*cstate
,
9588 struct block
*(*gen_portfn
)(compiler_state_t
*, u_int
, int, int),
9589 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9591 struct block
*b0
, *b1
;
9593 b0
= gen_portfn(cstate
, VXLAN_PORT
, IPPROTO_UDP
, Q_DST
);
9595 /* Check that the VXLAN header has the flag bits set
9597 b1
= gen_cmp(cstate
, offrel
, 8, BPF_B
, 0x08);
9602 assert_maxval(cstate
, "VXLAN VNI", vni
, 0xffffff);
9603 vni
<<= 8; /* VNI is in the upper 3 bytes */
9604 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9612 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9613 * - Verify that this actually is VXLAN with the right VNI.
9614 * - Place the IP header length (plus variable link prefix if
9615 * needed) into register A to be used later to compute
9616 * the inner packet offsets. */
9617 static struct block
*
9618 gen_vxlan4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9620 struct block
*b0
, *b1
;
9621 struct slist
*s
, *s1
;
9623 b0
= gen_vxlan_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9625 /* Load the IP header length into A. */
9626 s
= gen_loadx_iphdrlen(cstate
);
9628 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9631 /* Forcibly append these statements to the true condition
9632 * of the protocol check by creating a new block that is
9633 * always true and ANDing them. */
9634 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9641 static struct block
*
9642 gen_vxlan6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9644 struct block
*b0
, *b1
;
9645 struct slist
*s
, *s1
;
9647 b0
= gen_vxlan_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9649 /* Load the IP header length. We need to account for a
9650 * variable length link prefix if there is one. */
9651 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9653 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9657 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9661 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9665 /* Forcibly append these statements to the true condition
9666 * of the protocol check by creating a new block that is
9667 * always true and ANDing them. */
9668 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9671 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9678 /* We need to store three values based on the VXLAN header:
9679 * - The offset of the linktype.
9680 * - The offset of the end of the VXLAN header.
9681 * - The offset of the end of the encapsulated MAC header. */
9682 static struct slist
*
9683 gen_vxlan_offsets(compiler_state_t
*cstate
)
9685 struct slist
*s
, *s1
;
9687 /* Calculate the offset of the VXLAN header itself. This
9688 * includes the IP header computed previously (including any
9689 * variable link prefix) and stored in A plus the fixed size
9690 * headers (fixed link prefix, MAC length, UDP header). */
9691 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9692 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9694 /* Add the VXLAN header length to its offset and store */
9695 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9699 /* Push the link header. VXLAN packets always contain Ethernet
9701 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9703 s1
= new_stmt(cstate
, BPF_ST
);
9704 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9707 /* As the payload is an Ethernet packet, we can use the
9708 * EtherType of the payload directly as the linktype. */
9709 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9713 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9714 cstate
->off_linktype
.is_variable
= 1;
9715 cstate
->off_linktype
.constant_part
= 0;
9717 s1
= new_stmt(cstate
, BPF_ST
);
9718 s1
->s
.k
= cstate
->off_linktype
.reg
;
9721 /* Two bytes further is the end of the Ethernet header and the
9722 * start of the payload. */
9723 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9727 /* Move the result to X. */
9728 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9731 /* Store the final result of our linkpl calculation. */
9732 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9733 cstate
->off_linkpl
.is_variable
= 1;
9734 cstate
->off_linkpl
.constant_part
= 0;
9736 s1
= new_stmt(cstate
, BPF_STX
);
9737 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9745 /* Check to see if this is a VXLAN packet. */
9747 gen_vxlan(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9749 struct block
*b0
, *b1
;
9753 * Catch errors reported by us and routines below us, and return NULL
9756 if (setjmp(cstate
->top_ctx
))
9759 b0
= gen_vxlan4(cstate
, vni
, has_vni
);
9760 b1
= gen_vxlan6(cstate
, vni
, has_vni
);
9765 /* Later filters should act on the payload of the VXLAN frame,
9766 * update all of the header pointers. Attach this code so that
9767 * it gets executed in the event that the VXLAN filter matches. */
9768 s
= gen_vxlan_offsets(cstate
);
9770 b1
= gen_true(cstate
);
9771 sappend(s
, b1
->stmts
);
9776 cstate
->is_encap
= 1;
9781 /* Check that the encapsulated frame has a link layer header
9782 * for Ethernet filters. */
9783 static struct block
*
9784 gen_encap_ll_check(compiler_state_t
*cstate
)
9787 struct slist
*s
, *s1
;
9789 /* The easiest way to see if there is a link layer present
9790 * is to check if the link layer header and payload are not
9793 /* Geneve always generates pure variable offsets so we can
9794 * compare only the registers. */
9795 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9796 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9798 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9799 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9802 b0
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9808 static struct block
*
9809 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9810 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9815 * This check is a no-op for A_MSGTYPE so long as the only incoming
9816 * code path is from gen_atmmulti_abbrev(), which makes the same
9817 * check first; also for A_PROTOTYPE so long as the only incoming code
9818 * paths are from gen_atmtype_abbrev(), which makes the same check
9819 * first, or from gen_llc_internal() or gen_linktype(), which restrict
9822 assert_atm(cstate
, atmkw(atmfield
));
9827 assert_maxval(cstate
, "VPI", jvalue
, UINT8_MAX
);
9828 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9829 0xffffffffU
, jtype
, reverse
, jvalue
);
9833 assert_maxval(cstate
, "VCI", jvalue
, UINT16_MAX
);
9834 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9835 0xffffffffU
, jtype
, reverse
, jvalue
);
9839 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
,
9840 0x0fU
, jtype
, reverse
, jvalue
);
9844 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
9845 0xffffffffU
, jtype
, reverse
, jvalue
);
9854 static struct block
*
9855 gen_atmtype_metac(compiler_state_t
*cstate
)
9857 struct block
*b0
, *b1
;
9859 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9860 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
9865 static struct block
*
9866 gen_atmtype_sc(compiler_state_t
*cstate
)
9868 struct block
*b0
, *b1
;
9870 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9871 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
9876 static struct block
*
9877 gen_atmtype_llc(compiler_state_t
*cstate
)
9881 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
9882 cstate
->linktype
= cstate
->prevlinktype
;
9887 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9888 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9891 * Catch errors reported by us and routines below us, and return NULL
9894 if (setjmp(cstate
->top_ctx
))
9897 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9902 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9904 struct block
*b0
, *b1
;
9907 * Catch errors reported by us and routines below us, and return NULL
9910 if (setjmp(cstate
->top_ctx
))
9913 assert_atm(cstate
, atmkw(type
));
9918 /* Get all packets in Meta signalling Circuit */
9919 b1
= gen_atmtype_metac(cstate
);
9923 /* Get all packets in Broadcast Circuit*/
9924 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9925 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
9930 /* Get all cells in Segment OAM F4 circuit*/
9931 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9932 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9937 /* Get all cells in End-to-End OAM F4 Circuit*/
9938 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9939 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9944 /* Get all packets in connection Signalling Circuit */
9945 b1
= gen_atmtype_sc(cstate
);
9949 /* Get all packets in ILMI Circuit */
9950 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9951 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
9956 /* Get all LANE packets */
9957 b1
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
9960 * Arrange that all subsequent tests assume LANE
9961 * rather than LLC-encapsulated packets, and set
9962 * the offsets appropriately for LANE-encapsulated
9965 * We assume LANE means Ethernet, not Token Ring.
9967 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9968 cstate
->off_payload
+ 2, /* Ethernet header */
9970 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
9971 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
9972 cstate
->off_nl
= 0; /* Ethernet II */
9973 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
9983 * Filtering for MTP2 messages based on li value
9984 * FISU, length is null
9985 * LSSU, length is 1 or 2
9986 * MSU, length is 3 or more
9987 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9990 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
9992 struct block
*b0
, *b1
;
9995 * Catch errors reported by us and routines below us, and return NULL
9998 if (setjmp(cstate
->top_ctx
))
10001 assert_ss7(cstate
, ss7kw(type
));
10006 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10007 0x3fU
, BPF_JEQ
, 0, 0U);
10011 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10012 0x3fU
, BPF_JGT
, 1, 2U);
10013 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10014 0x3fU
, BPF_JGT
, 0, 0U);
10019 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10020 0x3fU
, BPF_JGT
, 0, 2U);
10024 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10025 0xff80U
, BPF_JEQ
, 0, 0U);
10029 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10030 0xff80U
, BPF_JGT
, 1, 0x0100U
);
10031 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10032 0xff80U
, BPF_JGT
, 0, 0U);
10037 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10038 0xff80U
, BPF_JGT
, 0, 0x0100U
);
10048 * These maximum valid values are all-ones, so they double as the bitmasks
10049 * before any bitwise shifting.
10051 #define MTP2_SIO_MAXVAL UINT8_MAX
10052 #define MTP3_PC_MAXVAL 0x3fffU
10053 #define MTP3_SLS_MAXVAL 0xfU
10055 static struct block
*
10056 gen_mtp3field_code_internal(compiler_state_t
*cstate
, int mtp3field
,
10057 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10065 newoff_sio
= cstate
->off_sio
;
10066 newoff_opc
= cstate
->off_opc
;
10067 newoff_dpc
= cstate
->off_dpc
;
10068 newoff_sls
= cstate
->off_sls
;
10070 assert_ss7(cstate
, ss7kw(mtp3field
));
10072 switch (mtp3field
) {
10075 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
10077 * SIO is the simplest field: the size is one byte and the offset is a
10078 * multiple of bytes, so the only detail to get right is the value of
10079 * the [right-to-left] field offset.
10082 newoff_sio
+= 3; /* offset for MTP2_HSL */
10086 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP2_SIO_MAXVAL
);
10087 // Here the bitmask means "do not apply a bitmask".
10088 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, UINT32_MAX
,
10089 jtype
, reverse
, jvalue
);
10093 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
10095 * SLS, OPC and DPC are more complicated: none of these is sized in a
10096 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
10097 * diagrams are meant to be read right-to-left. This means in the
10098 * diagrams within individual fields and concatenations thereof
10099 * bitwise shifts and masks can be noted in the common left-to-right
10100 * manner until each final value is ready to be byte-swapped and
10101 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
10102 * similar problem in a similar way.
10104 * Offsets of fields within the packet header always have the
10105 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
10106 * DLTs the offset does not include the F (Flag) field at the
10107 * beginning of each message.
10109 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
10110 * 32-bit standard routing header has a 4 byte [RTL] offset and could
10111 * be tested entirely using a single BPF_W comparison. In this case
10112 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
10113 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
10114 * [LTR] bitmask would be (0xF << 28), all of which conveniently
10115 * correlates with the [RTL] packet diagram until the byte-swapping is
10118 * The code below uses this approach for OPC, which spans 3 bytes.
10119 * DPC and SLS use shorter loads, SLS also uses a different offset.
10126 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10127 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
,
10128 SWAPLONG(MTP3_PC_MAXVAL
<< 14), jtype
, reverse
,
10129 SWAPLONG(jvalue
<< 14));
10137 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10138 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_H
,
10139 SWAPSHORT(MTP3_PC_MAXVAL
), jtype
, reverse
,
10140 SWAPSHORT(jvalue
));
10148 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_SLS_MAXVAL
);
10149 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
,
10150 MTP3_SLS_MAXVAL
<< 4, jtype
, reverse
,
10161 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
10162 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10165 * Catch errors reported by us and routines below us, and return NULL
10168 if (setjmp(cstate
->top_ctx
))
10171 return gen_mtp3field_code_internal(cstate
, mtp3field
, jvalue
, jtype
,
10175 static struct block
*
10176 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
10181 * Q.2931 signalling protocol messages for handling virtual circuits
10182 * establishment and teardown
10187 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
10190 case A_CALLPROCEED
:
10191 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
10195 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
10199 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
10203 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
10206 case A_RELEASE_DONE
:
10207 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
10217 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
10219 struct block
*b0
, *b1
;
10222 * Catch errors reported by us and routines below us, and return NULL
10225 if (setjmp(cstate
->top_ctx
))
10228 assert_atm(cstate
, atmkw(type
));
10234 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10235 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10237 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10243 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10244 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10246 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10252 * Get Q.2931 signalling messages for switched
10253 * virtual connection
10255 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10256 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10258 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10260 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
10262 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10264 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10266 b0
= gen_atmtype_sc(cstate
);
10270 case A_METACONNECT
:
10271 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10272 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10274 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10276 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10278 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10280 b0
= gen_atmtype_metac(cstate
);