]> The Tcpdump Group git mirrors - libpcap/blob - optimize.c
Generate code to check for LLC SAP values on Linux cooked captures.
[libpcap] / optimize.c
1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * Optimization module for tcpdump intermediate representation.
22 */
23 #ifndef lint
24 static const char rcsid[] =
25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.67 2000-11-19 13:37:20 itojun Exp $ (LBL)";
26 #endif
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include <sys/types.h>
33 #include <sys/time.h>
34
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <memory.h>
38
39 #include <errno.h>
40
41 #include "pcap-int.h"
42
43 #include "gencode.h"
44
45 #ifdef HAVE_OS_PROTO_H
46 #include "os-proto.h"
47 #endif
48
49 #ifdef BDEBUG
50 extern int dflag;
51 #endif
52
53 #define A_ATOM BPF_MEMWORDS
54 #define X_ATOM (BPF_MEMWORDS+1)
55
56 #define NOP -1
57
58 /*
59 * This define is used to represent *both* the accumulator and
60 * x register in use-def computations.
61 * Currently, the use-def code assumes only one definition per instruction.
62 */
63 #define AX_ATOM N_ATOMS
64
65 /*
66 * A flag to indicate that further optimization is needed.
67 * Iterative passes are continued until a given pass yields no
68 * branch movement.
69 */
70 static int done;
71
72 /*
73 * A block is marked if only if its mark equals the current mark.
74 * Rather than traverse the code array, marking each item, 'cur_mark' is
75 * incremented. This automatically makes each element unmarked.
76 */
77 static int cur_mark;
78 #define isMarked(p) ((p)->mark == cur_mark)
79 #define unMarkAll() cur_mark += 1
80 #define Mark(p) ((p)->mark = cur_mark)
81
82 static void opt_init(struct block *);
83 static void opt_cleanup(void);
84
85 static void make_marks(struct block *);
86 static void mark_code(struct block *);
87
88 static void intern_blocks(struct block *);
89
90 static int eq_slist(struct slist *, struct slist *);
91
92 static void find_levels_r(struct block *);
93
94 static void find_levels(struct block *);
95 static void find_dom(struct block *);
96 static void propedom(struct edge *);
97 static void find_edom(struct block *);
98 static void find_closure(struct block *);
99 static int atomuse(struct stmt *);
100 static int atomdef(struct stmt *);
101 static void compute_local_ud(struct block *);
102 static void find_ud(struct block *);
103 static void init_val(void);
104 static int F(int, int, int);
105 static inline void vstore(struct stmt *, int *, int, int);
106 static void opt_blk(struct block *, int);
107 static int use_conflict(struct block *, struct block *);
108 static void opt_j(struct edge *);
109 static void or_pullup(struct block *);
110 static void and_pullup(struct block *);
111 static void opt_blks(struct block *, int);
112 static inline void link_inedge(struct edge *, struct block *);
113 static void find_inedges(struct block *);
114 static void opt_root(struct block **);
115 static void opt_loop(struct block *, int);
116 static void fold_op(struct stmt *, int, int);
117 static inline struct slist *this_op(struct slist *);
118 static void opt_not(struct block *);
119 static void opt_peep(struct block *);
120 static void opt_stmt(struct stmt *, int[], int);
121 static void deadstmt(struct stmt *, struct stmt *[]);
122 static void opt_deadstores(struct block *);
123 static void opt_blk(struct block *, int);
124 static int use_conflict(struct block *, struct block *);
125 static void opt_j(struct edge *);
126 static struct block *fold_edge(struct block *, struct edge *);
127 static inline int eq_blk(struct block *, struct block *);
128 static int slength(struct slist *);
129 static int count_blocks(struct block *);
130 static void number_blks_r(struct block *);
131 static int count_stmts(struct block *);
132 static int convert_code_r(struct block *);
133 #ifdef BDEBUG
134 static void opt_dump(struct block *);
135 #endif
136
137 static int n_blocks;
138 struct block **blocks;
139 static int n_edges;
140 struct edge **edges;
141
142 /*
143 * A bit vector set representation of the dominators.
144 * We round up the set size to the next power of two.
145 */
146 static int nodewords;
147 static int edgewords;
148 struct block **levels;
149 bpf_u_int32 *space;
150 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
151 /*
152 * True if a is in uset {p}
153 */
154 #define SET_MEMBER(p, a) \
155 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
156
157 /*
158 * Add 'a' to uset p.
159 */
160 #define SET_INSERT(p, a) \
161 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
162
163 /*
164 * Delete 'a' from uset p.
165 */
166 #define SET_DELETE(p, a) \
167 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
168
169 /*
170 * a := a intersect b
171 */
172 #define SET_INTERSECT(a, b, n)\
173 {\
174 register bpf_u_int32 *_x = a, *_y = b;\
175 register int _n = n;\
176 while (--_n >= 0) *_x++ &= *_y++;\
177 }
178
179 /*
180 * a := a - b
181 */
182 #define SET_SUBTRACT(a, b, n)\
183 {\
184 register bpf_u_int32 *_x = a, *_y = b;\
185 register int _n = n;\
186 while (--_n >= 0) *_x++ &=~ *_y++;\
187 }
188
189 /*
190 * a := a union b
191 */
192 #define SET_UNION(a, b, n)\
193 {\
194 register bpf_u_int32 *_x = a, *_y = b;\
195 register int _n = n;\
196 while (--_n >= 0) *_x++ |= *_y++;\
197 }
198
199 static uset all_dom_sets;
200 static uset all_closure_sets;
201 static uset all_edge_sets;
202
203 #ifndef MAX
204 #define MAX(a,b) ((a)>(b)?(a):(b))
205 #endif
206
207 static void
208 find_levels_r(b)
209 struct block *b;
210 {
211 int level;
212
213 if (isMarked(b))
214 return;
215
216 Mark(b);
217 b->link = 0;
218
219 if (JT(b)) {
220 find_levels_r(JT(b));
221 find_levels_r(JF(b));
222 level = MAX(JT(b)->level, JF(b)->level) + 1;
223 } else
224 level = 0;
225 b->level = level;
226 b->link = levels[level];
227 levels[level] = b;
228 }
229
230 /*
231 * Level graph. The levels go from 0 at the leaves to
232 * N_LEVELS at the root. The levels[] array points to the
233 * first node of the level list, whose elements are linked
234 * with the 'link' field of the struct block.
235 */
236 static void
237 find_levels(root)
238 struct block *root;
239 {
240 memset((char *)levels, 0, n_blocks * sizeof(*levels));
241 unMarkAll();
242 find_levels_r(root);
243 }
244
245 /*
246 * Find dominator relationships.
247 * Assumes graph has been leveled.
248 */
249 static void
250 find_dom(root)
251 struct block *root;
252 {
253 int i;
254 struct block *b;
255 bpf_u_int32 *x;
256
257 /*
258 * Initialize sets to contain all nodes.
259 */
260 x = all_dom_sets;
261 i = n_blocks * nodewords;
262 while (--i >= 0)
263 *x++ = ~0;
264 /* Root starts off empty. */
265 for (i = nodewords; --i >= 0;)
266 root->dom[i] = 0;
267
268 /* root->level is the highest level no found. */
269 for (i = root->level; i >= 0; --i) {
270 for (b = levels[i]; b; b = b->link) {
271 SET_INSERT(b->dom, b->id);
272 if (JT(b) == 0)
273 continue;
274 SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
275 SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
276 }
277 }
278 }
279
280 static void
281 propedom(ep)
282 struct edge *ep;
283 {
284 SET_INSERT(ep->edom, ep->id);
285 if (ep->succ) {
286 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
287 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
288 }
289 }
290
291 /*
292 * Compute edge dominators.
293 * Assumes graph has been leveled and predecessors established.
294 */
295 static void
296 find_edom(root)
297 struct block *root;
298 {
299 int i;
300 uset x;
301 struct block *b;
302
303 x = all_edge_sets;
304 for (i = n_edges * edgewords; --i >= 0; )
305 x[i] = ~0;
306
307 /* root->level is the highest level no found. */
308 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
309 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
310 for (i = root->level; i >= 0; --i) {
311 for (b = levels[i]; b != 0; b = b->link) {
312 propedom(&b->et);
313 propedom(&b->ef);
314 }
315 }
316 }
317
318 /*
319 * Find the backwards transitive closure of the flow graph. These sets
320 * are backwards in the sense that we find the set of nodes that reach
321 * a given node, not the set of nodes that can be reached by a node.
322 *
323 * Assumes graph has been leveled.
324 */
325 static void
326 find_closure(root)
327 struct block *root;
328 {
329 int i;
330 struct block *b;
331
332 /*
333 * Initialize sets to contain no nodes.
334 */
335 memset((char *)all_closure_sets, 0,
336 n_blocks * nodewords * sizeof(*all_closure_sets));
337
338 /* root->level is the highest level no found. */
339 for (i = root->level; i >= 0; --i) {
340 for (b = levels[i]; b; b = b->link) {
341 SET_INSERT(b->closure, b->id);
342 if (JT(b) == 0)
343 continue;
344 SET_UNION(JT(b)->closure, b->closure, nodewords);
345 SET_UNION(JF(b)->closure, b->closure, nodewords);
346 }
347 }
348 }
349
350 /*
351 * Return the register number that is used by s. If A and X are both
352 * used, return AX_ATOM. If no register is used, return -1.
353 *
354 * The implementation should probably change to an array access.
355 */
356 static int
357 atomuse(s)
358 struct stmt *s;
359 {
360 register int c = s->code;
361
362 if (c == NOP)
363 return -1;
364
365 switch (BPF_CLASS(c)) {
366
367 case BPF_RET:
368 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
369 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
370
371 case BPF_LD:
372 case BPF_LDX:
373 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
374 (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
375
376 case BPF_ST:
377 return A_ATOM;
378
379 case BPF_STX:
380 return X_ATOM;
381
382 case BPF_JMP:
383 case BPF_ALU:
384 if (BPF_SRC(c) == BPF_X)
385 return AX_ATOM;
386 return A_ATOM;
387
388 case BPF_MISC:
389 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
390 }
391 abort();
392 /* NOTREACHED */
393 }
394
395 /*
396 * Return the register number that is defined by 's'. We assume that
397 * a single stmt cannot define more than one register. If no register
398 * is defined, return -1.
399 *
400 * The implementation should probably change to an array access.
401 */
402 static int
403 atomdef(s)
404 struct stmt *s;
405 {
406 if (s->code == NOP)
407 return -1;
408
409 switch (BPF_CLASS(s->code)) {
410
411 case BPF_LD:
412 case BPF_ALU:
413 return A_ATOM;
414
415 case BPF_LDX:
416 return X_ATOM;
417
418 case BPF_ST:
419 case BPF_STX:
420 return s->k;
421
422 case BPF_MISC:
423 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
424 }
425 return -1;
426 }
427
428 static void
429 compute_local_ud(b)
430 struct block *b;
431 {
432 struct slist *s;
433 atomset def = 0, use = 0, kill = 0;
434 int atom;
435
436 for (s = b->stmts; s; s = s->next) {
437 if (s->s.code == NOP)
438 continue;
439 atom = atomuse(&s->s);
440 if (atom >= 0) {
441 if (atom == AX_ATOM) {
442 if (!ATOMELEM(def, X_ATOM))
443 use |= ATOMMASK(X_ATOM);
444 if (!ATOMELEM(def, A_ATOM))
445 use |= ATOMMASK(A_ATOM);
446 }
447 else if (atom < N_ATOMS) {
448 if (!ATOMELEM(def, atom))
449 use |= ATOMMASK(atom);
450 }
451 else
452 abort();
453 }
454 atom = atomdef(&s->s);
455 if (atom >= 0) {
456 if (!ATOMELEM(use, atom))
457 kill |= ATOMMASK(atom);
458 def |= ATOMMASK(atom);
459 }
460 }
461 if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP)
462 use |= ATOMMASK(A_ATOM);
463
464 b->def = def;
465 b->kill = kill;
466 b->in_use = use;
467 }
468
469 /*
470 * Assume graph is already leveled.
471 */
472 static void
473 find_ud(root)
474 struct block *root;
475 {
476 int i, maxlevel;
477 struct block *p;
478
479 /*
480 * root->level is the highest level no found;
481 * count down from there.
482 */
483 maxlevel = root->level;
484 for (i = maxlevel; i >= 0; --i)
485 for (p = levels[i]; p; p = p->link) {
486 compute_local_ud(p);
487 p->out_use = 0;
488 }
489
490 for (i = 1; i <= maxlevel; ++i) {
491 for (p = levels[i]; p; p = p->link) {
492 p->out_use |= JT(p)->in_use | JF(p)->in_use;
493 p->in_use |= p->out_use &~ p->kill;
494 }
495 }
496 }
497
498 /*
499 * These data structures are used in a Cocke and Shwarz style
500 * value numbering scheme. Since the flowgraph is acyclic,
501 * exit values can be propagated from a node's predecessors
502 * provided it is uniquely defined.
503 */
504 struct valnode {
505 int code;
506 int v0, v1;
507 int val;
508 struct valnode *next;
509 };
510
511 #define MODULUS 213
512 static struct valnode *hashtbl[MODULUS];
513 static int curval;
514 static int maxval;
515
516 /* Integer constants mapped with the load immediate opcode. */
517 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
518
519 struct vmapinfo {
520 int is_const;
521 bpf_int32 const_val;
522 };
523
524 struct vmapinfo *vmap;
525 struct valnode *vnode_base;
526 struct valnode *next_vnode;
527
528 static void
529 init_val()
530 {
531 curval = 0;
532 next_vnode = vnode_base;
533 memset((char *)vmap, 0, maxval * sizeof(*vmap));
534 memset((char *)hashtbl, 0, sizeof hashtbl);
535 }
536
537 /* Because we really don't have an IR, this stuff is a little messy. */
538 static int
539 F(code, v0, v1)
540 int code;
541 int v0, v1;
542 {
543 u_int hash;
544 int val;
545 struct valnode *p;
546
547 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
548 hash %= MODULUS;
549
550 for (p = hashtbl[hash]; p; p = p->next)
551 if (p->code == code && p->v0 == v0 && p->v1 == v1)
552 return p->val;
553
554 val = ++curval;
555 if (BPF_MODE(code) == BPF_IMM &&
556 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
557 vmap[val].const_val = v0;
558 vmap[val].is_const = 1;
559 }
560 p = next_vnode++;
561 p->val = val;
562 p->code = code;
563 p->v0 = v0;
564 p->v1 = v1;
565 p->next = hashtbl[hash];
566 hashtbl[hash] = p;
567
568 return val;
569 }
570
571 static inline void
572 vstore(s, valp, newval, alter)
573 struct stmt *s;
574 int *valp;
575 int newval;
576 int alter;
577 {
578 if (alter && *valp == newval)
579 s->code = NOP;
580 else
581 *valp = newval;
582 }
583
584 static void
585 fold_op(s, v0, v1)
586 struct stmt *s;
587 int v0, v1;
588 {
589 bpf_int32 a, b;
590
591 a = vmap[v0].const_val;
592 b = vmap[v1].const_val;
593
594 switch (BPF_OP(s->code)) {
595 case BPF_ADD:
596 a += b;
597 break;
598
599 case BPF_SUB:
600 a -= b;
601 break;
602
603 case BPF_MUL:
604 a *= b;
605 break;
606
607 case BPF_DIV:
608 if (b == 0)
609 bpf_error("division by zero");
610 a /= b;
611 break;
612
613 case BPF_AND:
614 a &= b;
615 break;
616
617 case BPF_OR:
618 a |= b;
619 break;
620
621 case BPF_LSH:
622 a <<= b;
623 break;
624
625 case BPF_RSH:
626 a >>= b;
627 break;
628
629 case BPF_NEG:
630 a = -a;
631 break;
632
633 default:
634 abort();
635 }
636 s->k = a;
637 s->code = BPF_LD|BPF_IMM;
638 done = 0;
639 }
640
641 static inline struct slist *
642 this_op(s)
643 struct slist *s;
644 {
645 while (s != 0 && s->s.code == NOP)
646 s = s->next;
647 return s;
648 }
649
650 static void
651 opt_not(b)
652 struct block *b;
653 {
654 struct block *tmp = JT(b);
655
656 JT(b) = JF(b);
657 JF(b) = tmp;
658 }
659
660 static void
661 opt_peep(b)
662 struct block *b;
663 {
664 struct slist *s;
665 struct slist *next, *last;
666 int val;
667
668 s = b->stmts;
669 if (s == 0)
670 return;
671
672 last = s;
673 while (1) {
674 s = this_op(s);
675 if (s == 0)
676 break;
677 next = this_op(s->next);
678 if (next == 0)
679 break;
680 last = next;
681
682 /*
683 * st M[k] --> st M[k]
684 * ldx M[k] tax
685 */
686 if (s->s.code == BPF_ST &&
687 next->s.code == (BPF_LDX|BPF_MEM) &&
688 s->s.k == next->s.k) {
689 done = 0;
690 next->s.code = BPF_MISC|BPF_TAX;
691 }
692 /*
693 * ld #k --> ldx #k
694 * tax txa
695 */
696 if (s->s.code == (BPF_LD|BPF_IMM) &&
697 next->s.code == (BPF_MISC|BPF_TAX)) {
698 s->s.code = BPF_LDX|BPF_IMM;
699 next->s.code = BPF_MISC|BPF_TXA;
700 done = 0;
701 }
702 /*
703 * This is an ugly special case, but it happens
704 * when you say tcp[k] or udp[k] where k is a constant.
705 */
706 if (s->s.code == (BPF_LD|BPF_IMM)) {
707 struct slist *add, *tax, *ild;
708
709 /*
710 * Check that X isn't used on exit from this
711 * block (which the optimizer might cause).
712 * We know the code generator won't generate
713 * any local dependencies.
714 */
715 if (ATOMELEM(b->out_use, X_ATOM))
716 break;
717
718 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
719 add = next;
720 else
721 add = this_op(next->next);
722 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
723 break;
724
725 tax = this_op(add->next);
726 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
727 break;
728
729 ild = this_op(tax->next);
730 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
731 BPF_MODE(ild->s.code) != BPF_IND)
732 break;
733 /*
734 * XXX We need to check that X is not
735 * subsequently used. We know we can eliminate the
736 * accumulator modifications since it is defined
737 * by the last stmt of this sequence.
738 *
739 * We want to turn this sequence:
740 *
741 * (004) ldi #0x2 {s}
742 * (005) ldxms [14] {next} -- optional
743 * (006) addx {add}
744 * (007) tax {tax}
745 * (008) ild [x+0] {ild}
746 *
747 * into this sequence:
748 *
749 * (004) nop
750 * (005) ldxms [14]
751 * (006) nop
752 * (007) nop
753 * (008) ild [x+2]
754 *
755 */
756 ild->s.k += s->s.k;
757 s->s.code = NOP;
758 add->s.code = NOP;
759 tax->s.code = NOP;
760 done = 0;
761 }
762 s = next;
763 }
764 /*
765 * If we have a subtract to do a comparison, and the X register
766 * is a known constant, we can merge this value into the
767 * comparison.
768 */
769 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) &&
770 !ATOMELEM(b->out_use, A_ATOM)) {
771 val = b->val[X_ATOM];
772 if (vmap[val].is_const) {
773 int op;
774
775 b->s.k += vmap[val].const_val;
776 op = BPF_OP(b->s.code);
777 if (op == BPF_JGT || op == BPF_JGE) {
778 struct block *t = JT(b);
779 JT(b) = JF(b);
780 JF(b) = t;
781 b->s.k += 0x80000000;
782 }
783 last->s.code = NOP;
784 done = 0;
785 } else if (b->s.k == 0) {
786 /*
787 * sub x -> nop
788 * j #0 j x
789 */
790 last->s.code = NOP;
791 b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) |
792 BPF_X;
793 done = 0;
794 }
795 }
796 /*
797 * Likewise, a constant subtract can be simplified.
798 */
799 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) &&
800 !ATOMELEM(b->out_use, A_ATOM)) {
801 int op;
802
803 b->s.k += last->s.k;
804 last->s.code = NOP;
805 op = BPF_OP(b->s.code);
806 if (op == BPF_JGT || op == BPF_JGE) {
807 struct block *t = JT(b);
808 JT(b) = JF(b);
809 JF(b) = t;
810 b->s.k += 0x80000000;
811 }
812 done = 0;
813 }
814 /*
815 * and #k nop
816 * jeq #0 -> jset #k
817 */
818 if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
819 !ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) {
820 b->s.k = last->s.k;
821 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
822 last->s.code = NOP;
823 done = 0;
824 opt_not(b);
825 }
826 /*
827 * If the accumulator is a known constant, we can compute the
828 * comparison result.
829 */
830 val = b->val[A_ATOM];
831 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
832 bpf_int32 v = vmap[val].const_val;
833 switch (BPF_OP(b->s.code)) {
834
835 case BPF_JEQ:
836 v = v == b->s.k;
837 break;
838
839 case BPF_JGT:
840 v = (unsigned)v > b->s.k;
841 break;
842
843 case BPF_JGE:
844 v = (unsigned)v >= b->s.k;
845 break;
846
847 case BPF_JSET:
848 v &= b->s.k;
849 break;
850
851 default:
852 abort();
853 }
854 if (JF(b) != JT(b))
855 done = 0;
856 if (v)
857 JF(b) = JT(b);
858 else
859 JT(b) = JF(b);
860 }
861 }
862
863 /*
864 * Compute the symbolic value of expression of 's', and update
865 * anything it defines in the value table 'val'. If 'alter' is true,
866 * do various optimizations. This code would be cleaner if symbolic
867 * evaluation and code transformations weren't folded together.
868 */
869 static void
870 opt_stmt(s, val, alter)
871 struct stmt *s;
872 int val[];
873 int alter;
874 {
875 int op;
876 int v;
877
878 switch (s->code) {
879
880 case BPF_LD|BPF_ABS|BPF_W:
881 case BPF_LD|BPF_ABS|BPF_H:
882 case BPF_LD|BPF_ABS|BPF_B:
883 v = F(s->code, s->k, 0L);
884 vstore(s, &val[A_ATOM], v, alter);
885 break;
886
887 case BPF_LD|BPF_IND|BPF_W:
888 case BPF_LD|BPF_IND|BPF_H:
889 case BPF_LD|BPF_IND|BPF_B:
890 v = val[X_ATOM];
891 if (alter && vmap[v].is_const) {
892 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
893 s->k += vmap[v].const_val;
894 v = F(s->code, s->k, 0L);
895 done = 0;
896 }
897 else
898 v = F(s->code, s->k, v);
899 vstore(s, &val[A_ATOM], v, alter);
900 break;
901
902 case BPF_LD|BPF_LEN:
903 v = F(s->code, 0L, 0L);
904 vstore(s, &val[A_ATOM], v, alter);
905 break;
906
907 case BPF_LD|BPF_IMM:
908 v = K(s->k);
909 vstore(s, &val[A_ATOM], v, alter);
910 break;
911
912 case BPF_LDX|BPF_IMM:
913 v = K(s->k);
914 vstore(s, &val[X_ATOM], v, alter);
915 break;
916
917 case BPF_LDX|BPF_MSH|BPF_B:
918 v = F(s->code, s->k, 0L);
919 vstore(s, &val[X_ATOM], v, alter);
920 break;
921
922 case BPF_ALU|BPF_NEG:
923 if (alter && vmap[val[A_ATOM]].is_const) {
924 s->code = BPF_LD|BPF_IMM;
925 s->k = -vmap[val[A_ATOM]].const_val;
926 val[A_ATOM] = K(s->k);
927 }
928 else
929 val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
930 break;
931
932 case BPF_ALU|BPF_ADD|BPF_K:
933 case BPF_ALU|BPF_SUB|BPF_K:
934 case BPF_ALU|BPF_MUL|BPF_K:
935 case BPF_ALU|BPF_DIV|BPF_K:
936 case BPF_ALU|BPF_AND|BPF_K:
937 case BPF_ALU|BPF_OR|BPF_K:
938 case BPF_ALU|BPF_LSH|BPF_K:
939 case BPF_ALU|BPF_RSH|BPF_K:
940 op = BPF_OP(s->code);
941 if (alter) {
942 if (s->k == 0) {
943 if (op == BPF_ADD || op == BPF_SUB ||
944 op == BPF_LSH || op == BPF_RSH ||
945 op == BPF_OR) {
946 s->code = NOP;
947 break;
948 }
949 if (op == BPF_MUL || op == BPF_AND) {
950 s->code = BPF_LD|BPF_IMM;
951 val[A_ATOM] = K(s->k);
952 break;
953 }
954 }
955 if (vmap[val[A_ATOM]].is_const) {
956 fold_op(s, val[A_ATOM], K(s->k));
957 val[A_ATOM] = K(s->k);
958 break;
959 }
960 }
961 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
962 break;
963
964 case BPF_ALU|BPF_ADD|BPF_X:
965 case BPF_ALU|BPF_SUB|BPF_X:
966 case BPF_ALU|BPF_MUL|BPF_X:
967 case BPF_ALU|BPF_DIV|BPF_X:
968 case BPF_ALU|BPF_AND|BPF_X:
969 case BPF_ALU|BPF_OR|BPF_X:
970 case BPF_ALU|BPF_LSH|BPF_X:
971 case BPF_ALU|BPF_RSH|BPF_X:
972 op = BPF_OP(s->code);
973 if (alter && vmap[val[X_ATOM]].is_const) {
974 if (vmap[val[A_ATOM]].is_const) {
975 fold_op(s, val[A_ATOM], val[X_ATOM]);
976 val[A_ATOM] = K(s->k);
977 }
978 else {
979 s->code = BPF_ALU|BPF_K|op;
980 s->k = vmap[val[X_ATOM]].const_val;
981 done = 0;
982 val[A_ATOM] =
983 F(s->code, val[A_ATOM], K(s->k));
984 }
985 break;
986 }
987 /*
988 * Check if we're doing something to an accumulator
989 * that is 0, and simplify. This may not seem like
990 * much of a simplification but it could open up further
991 * optimizations.
992 * XXX We could also check for mul by 1, and -1, etc.
993 */
994 if (alter && vmap[val[A_ATOM]].is_const
995 && vmap[val[A_ATOM]].const_val == 0) {
996 if (op == BPF_ADD || op == BPF_OR ||
997 op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) {
998 s->code = BPF_MISC|BPF_TXA;
999 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1000 break;
1001 }
1002 else if (op == BPF_MUL || op == BPF_DIV ||
1003 op == BPF_AND) {
1004 s->code = BPF_LD|BPF_IMM;
1005 s->k = 0;
1006 vstore(s, &val[A_ATOM], K(s->k), alter);
1007 break;
1008 }
1009 else if (op == BPF_NEG) {
1010 s->code = NOP;
1011 break;
1012 }
1013 }
1014 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1015 break;
1016
1017 case BPF_MISC|BPF_TXA:
1018 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1019 break;
1020
1021 case BPF_LD|BPF_MEM:
1022 v = val[s->k];
1023 if (alter && vmap[v].is_const) {
1024 s->code = BPF_LD|BPF_IMM;
1025 s->k = vmap[v].const_val;
1026 done = 0;
1027 }
1028 vstore(s, &val[A_ATOM], v, alter);
1029 break;
1030
1031 case BPF_MISC|BPF_TAX:
1032 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1033 break;
1034
1035 case BPF_LDX|BPF_MEM:
1036 v = val[s->k];
1037 if (alter && vmap[v].is_const) {
1038 s->code = BPF_LDX|BPF_IMM;
1039 s->k = vmap[v].const_val;
1040 done = 0;
1041 }
1042 vstore(s, &val[X_ATOM], v, alter);
1043 break;
1044
1045 case BPF_ST:
1046 vstore(s, &val[s->k], val[A_ATOM], alter);
1047 break;
1048
1049 case BPF_STX:
1050 vstore(s, &val[s->k], val[X_ATOM], alter);
1051 break;
1052 }
1053 }
1054
1055 static void
1056 deadstmt(s, last)
1057 register struct stmt *s;
1058 register struct stmt *last[];
1059 {
1060 register int atom;
1061
1062 atom = atomuse(s);
1063 if (atom >= 0) {
1064 if (atom == AX_ATOM) {
1065 last[X_ATOM] = 0;
1066 last[A_ATOM] = 0;
1067 }
1068 else
1069 last[atom] = 0;
1070 }
1071 atom = atomdef(s);
1072 if (atom >= 0) {
1073 if (last[atom]) {
1074 done = 0;
1075 last[atom]->code = NOP;
1076 }
1077 last[atom] = s;
1078 }
1079 }
1080
1081 static void
1082 opt_deadstores(b)
1083 register struct block *b;
1084 {
1085 register struct slist *s;
1086 register int atom;
1087 struct stmt *last[N_ATOMS];
1088
1089 memset((char *)last, 0, sizeof last);
1090
1091 for (s = b->stmts; s != 0; s = s->next)
1092 deadstmt(&s->s, last);
1093 deadstmt(&b->s, last);
1094
1095 for (atom = 0; atom < N_ATOMS; ++atom)
1096 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1097 last[atom]->code = NOP;
1098 done = 0;
1099 }
1100 }
1101
1102 static void
1103 opt_blk(b, do_stmts)
1104 struct block *b;
1105 int do_stmts;
1106 {
1107 struct slist *s;
1108 struct edge *p;
1109 int i;
1110 bpf_int32 aval;
1111
1112 #if 0
1113 for (s = b->stmts; s && s->next; s = s->next)
1114 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1115 do_stmts = 0;
1116 break;
1117 }
1118 #endif
1119
1120 /*
1121 * Initialize the atom values.
1122 * If we have no predecessors, everything is undefined.
1123 * Otherwise, we inherent our values from our predecessors.
1124 * If any register has an ambiguous value (i.e. control paths are
1125 * merging) give it the undefined value of 0.
1126 */
1127 p = b->in_edges;
1128 if (p == 0)
1129 memset((char *)b->val, 0, sizeof(b->val));
1130 else {
1131 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1132 while ((p = p->next) != NULL) {
1133 for (i = 0; i < N_ATOMS; ++i)
1134 if (b->val[i] != p->pred->val[i])
1135 b->val[i] = 0;
1136 }
1137 }
1138 aval = b->val[A_ATOM];
1139 for (s = b->stmts; s; s = s->next)
1140 opt_stmt(&s->s, b->val, do_stmts);
1141
1142 /*
1143 * This is a special case: if we don't use anything from this
1144 * block, and we load the accumulator with value that is
1145 * already there, or if this block is a return,
1146 * eliminate all the statements.
1147 */
1148 if (do_stmts &&
1149 ((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) ||
1150 BPF_CLASS(b->s.code) == BPF_RET)) {
1151 if (b->stmts != 0) {
1152 b->stmts = 0;
1153 done = 0;
1154 }
1155 } else {
1156 opt_peep(b);
1157 opt_deadstores(b);
1158 }
1159 /*
1160 * Set up values for branch optimizer.
1161 */
1162 if (BPF_SRC(b->s.code) == BPF_K)
1163 b->oval = K(b->s.k);
1164 else
1165 b->oval = b->val[X_ATOM];
1166 b->et.code = b->s.code;
1167 b->ef.code = -b->s.code;
1168 }
1169
1170 /*
1171 * Return true if any register that is used on exit from 'succ', has
1172 * an exit value that is different from the corresponding exit value
1173 * from 'b'.
1174 */
1175 static int
1176 use_conflict(b, succ)
1177 struct block *b, *succ;
1178 {
1179 int atom;
1180 atomset use = succ->out_use;
1181
1182 if (use == 0)
1183 return 0;
1184
1185 for (atom = 0; atom < N_ATOMS; ++atom)
1186 if (ATOMELEM(use, atom))
1187 if (b->val[atom] != succ->val[atom])
1188 return 1;
1189 return 0;
1190 }
1191
1192 static struct block *
1193 fold_edge(child, ep)
1194 struct block *child;
1195 struct edge *ep;
1196 {
1197 int sense;
1198 int aval0, aval1, oval0, oval1;
1199 int code = ep->code;
1200
1201 if (code < 0) {
1202 code = -code;
1203 sense = 0;
1204 } else
1205 sense = 1;
1206
1207 if (child->s.code != code)
1208 return 0;
1209
1210 aval0 = child->val[A_ATOM];
1211 oval0 = child->oval;
1212 aval1 = ep->pred->val[A_ATOM];
1213 oval1 = ep->pred->oval;
1214
1215 if (aval0 != aval1)
1216 return 0;
1217
1218 if (oval0 == oval1)
1219 /*
1220 * The operands are identical, so the
1221 * result is true if a true branch was
1222 * taken to get here, otherwise false.
1223 */
1224 return sense ? JT(child) : JF(child);
1225
1226 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1227 /*
1228 * At this point, we only know the comparison if we
1229 * came down the true branch, and it was an equality
1230 * comparison with a constant. We rely on the fact that
1231 * distinct constants have distinct value numbers.
1232 */
1233 return JF(child);
1234
1235 return 0;
1236 }
1237
1238 static void
1239 opt_j(ep)
1240 struct edge *ep;
1241 {
1242 register int i, k;
1243 register struct block *target;
1244
1245 if (JT(ep->succ) == 0)
1246 return;
1247
1248 if (JT(ep->succ) == JF(ep->succ)) {
1249 /*
1250 * Common branch targets can be eliminated, provided
1251 * there is no data dependency.
1252 */
1253 if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1254 done = 0;
1255 ep->succ = JT(ep->succ);
1256 }
1257 }
1258 /*
1259 * For each edge dominator that matches the successor of this
1260 * edge, promote the edge successor to the its grandchild.
1261 *
1262 * XXX We violate the set abstraction here in favor a reasonably
1263 * efficient loop.
1264 */
1265 top:
1266 for (i = 0; i < edgewords; ++i) {
1267 register bpf_u_int32 x = ep->edom[i];
1268
1269 while (x != 0) {
1270 k = ffs(x) - 1;
1271 x &=~ (1 << k);
1272 k += i * BITS_PER_WORD;
1273
1274 target = fold_edge(ep->succ, edges[k]);
1275 /*
1276 * Check that there is no data dependency between
1277 * nodes that will be violated if we move the edge.
1278 */
1279 if (target != 0 && !use_conflict(ep->pred, target)) {
1280 done = 0;
1281 ep->succ = target;
1282 if (JT(target) != 0)
1283 /*
1284 * Start over unless we hit a leaf.
1285 */
1286 goto top;
1287 return;
1288 }
1289 }
1290 }
1291 }
1292
1293
1294 static void
1295 or_pullup(b)
1296 struct block *b;
1297 {
1298 int val, at_top;
1299 struct block *pull;
1300 struct block **diffp, **samep;
1301 struct edge *ep;
1302
1303 ep = b->in_edges;
1304 if (ep == 0)
1305 return;
1306
1307 /*
1308 * Make sure each predecessor loads the same value.
1309 * XXX why?
1310 */
1311 val = ep->pred->val[A_ATOM];
1312 for (ep = ep->next; ep != 0; ep = ep->next)
1313 if (val != ep->pred->val[A_ATOM])
1314 return;
1315
1316 if (JT(b->in_edges->pred) == b)
1317 diffp = &JT(b->in_edges->pred);
1318 else
1319 diffp = &JF(b->in_edges->pred);
1320
1321 at_top = 1;
1322 while (1) {
1323 if (*diffp == 0)
1324 return;
1325
1326 if (JT(*diffp) != JT(b))
1327 return;
1328
1329 if (!SET_MEMBER((*diffp)->dom, b->id))
1330 return;
1331
1332 if ((*diffp)->val[A_ATOM] != val)
1333 break;
1334
1335 diffp = &JF(*diffp);
1336 at_top = 0;
1337 }
1338 samep = &JF(*diffp);
1339 while (1) {
1340 if (*samep == 0)
1341 return;
1342
1343 if (JT(*samep) != JT(b))
1344 return;
1345
1346 if (!SET_MEMBER((*samep)->dom, b->id))
1347 return;
1348
1349 if ((*samep)->val[A_ATOM] == val)
1350 break;
1351
1352 /* XXX Need to check that there are no data dependencies
1353 between dp0 and dp1. Currently, the code generator
1354 will not produce such dependencies. */
1355 samep = &JF(*samep);
1356 }
1357 #ifdef notdef
1358 /* XXX This doesn't cover everything. */
1359 for (i = 0; i < N_ATOMS; ++i)
1360 if ((*samep)->val[i] != pred->val[i])
1361 return;
1362 #endif
1363 /* Pull up the node. */
1364 pull = *samep;
1365 *samep = JF(pull);
1366 JF(pull) = *diffp;
1367
1368 /*
1369 * At the top of the chain, each predecessor needs to point at the
1370 * pulled up node. Inside the chain, there is only one predecessor
1371 * to worry about.
1372 */
1373 if (at_top) {
1374 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1375 if (JT(ep->pred) == b)
1376 JT(ep->pred) = pull;
1377 else
1378 JF(ep->pred) = pull;
1379 }
1380 }
1381 else
1382 *diffp = pull;
1383
1384 done = 0;
1385 }
1386
1387 static void
1388 and_pullup(b)
1389 struct block *b;
1390 {
1391 int val, at_top;
1392 struct block *pull;
1393 struct block **diffp, **samep;
1394 struct edge *ep;
1395
1396 ep = b->in_edges;
1397 if (ep == 0)
1398 return;
1399
1400 /*
1401 * Make sure each predecessor loads the same value.
1402 */
1403 val = ep->pred->val[A_ATOM];
1404 for (ep = ep->next; ep != 0; ep = ep->next)
1405 if (val != ep->pred->val[A_ATOM])
1406 return;
1407
1408 if (JT(b->in_edges->pred) == b)
1409 diffp = &JT(b->in_edges->pred);
1410 else
1411 diffp = &JF(b->in_edges->pred);
1412
1413 at_top = 1;
1414 while (1) {
1415 if (*diffp == 0)
1416 return;
1417
1418 if (JF(*diffp) != JF(b))
1419 return;
1420
1421 if (!SET_MEMBER((*diffp)->dom, b->id))
1422 return;
1423
1424 if ((*diffp)->val[A_ATOM] != val)
1425 break;
1426
1427 diffp = &JT(*diffp);
1428 at_top = 0;
1429 }
1430 samep = &JT(*diffp);
1431 while (1) {
1432 if (*samep == 0)
1433 return;
1434
1435 if (JF(*samep) != JF(b))
1436 return;
1437
1438 if (!SET_MEMBER((*samep)->dom, b->id))
1439 return;
1440
1441 if ((*samep)->val[A_ATOM] == val)
1442 break;
1443
1444 /* XXX Need to check that there are no data dependencies
1445 between diffp and samep. Currently, the code generator
1446 will not produce such dependencies. */
1447 samep = &JT(*samep);
1448 }
1449 #ifdef notdef
1450 /* XXX This doesn't cover everything. */
1451 for (i = 0; i < N_ATOMS; ++i)
1452 if ((*samep)->val[i] != pred->val[i])
1453 return;
1454 #endif
1455 /* Pull up the node. */
1456 pull = *samep;
1457 *samep = JT(pull);
1458 JT(pull) = *diffp;
1459
1460 /*
1461 * At the top of the chain, each predecessor needs to point at the
1462 * pulled up node. Inside the chain, there is only one predecessor
1463 * to worry about.
1464 */
1465 if (at_top) {
1466 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1467 if (JT(ep->pred) == b)
1468 JT(ep->pred) = pull;
1469 else
1470 JF(ep->pred) = pull;
1471 }
1472 }
1473 else
1474 *diffp = pull;
1475
1476 done = 0;
1477 }
1478
1479 static void
1480 opt_blks(root, do_stmts)
1481 struct block *root;
1482 int do_stmts;
1483 {
1484 int i, maxlevel;
1485 struct block *p;
1486
1487 init_val();
1488 maxlevel = root->level;
1489
1490 find_inedges(root);
1491 for (i = maxlevel; i >= 0; --i)
1492 for (p = levels[i]; p; p = p->link)
1493 opt_blk(p, do_stmts);
1494
1495 if (do_stmts)
1496 /*
1497 * No point trying to move branches; it can't possibly
1498 * make a difference at this point.
1499 */
1500 return;
1501
1502 for (i = 1; i <= maxlevel; ++i) {
1503 for (p = levels[i]; p; p = p->link) {
1504 opt_j(&p->et);
1505 opt_j(&p->ef);
1506 }
1507 }
1508
1509 find_inedges(root);
1510 for (i = 1; i <= maxlevel; ++i) {
1511 for (p = levels[i]; p; p = p->link) {
1512 or_pullup(p);
1513 and_pullup(p);
1514 }
1515 }
1516 }
1517
1518 static inline void
1519 link_inedge(parent, child)
1520 struct edge *parent;
1521 struct block *child;
1522 {
1523 parent->next = child->in_edges;
1524 child->in_edges = parent;
1525 }
1526
1527 static void
1528 find_inedges(root)
1529 struct block *root;
1530 {
1531 int i;
1532 struct block *b;
1533
1534 for (i = 0; i < n_blocks; ++i)
1535 blocks[i]->in_edges = 0;
1536
1537 /*
1538 * Traverse the graph, adding each edge to the predecessor
1539 * list of its successors. Skip the leaves (i.e. level 0).
1540 */
1541 for (i = root->level; i > 0; --i) {
1542 for (b = levels[i]; b != 0; b = b->link) {
1543 link_inedge(&b->et, JT(b));
1544 link_inedge(&b->ef, JF(b));
1545 }
1546 }
1547 }
1548
1549 static void
1550 opt_root(b)
1551 struct block **b;
1552 {
1553 struct slist *tmp, *s;
1554
1555 s = (*b)->stmts;
1556 (*b)->stmts = 0;
1557 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1558 *b = JT(*b);
1559
1560 tmp = (*b)->stmts;
1561 if (tmp != 0)
1562 sappend(s, tmp);
1563 (*b)->stmts = s;
1564
1565 /*
1566 * If the root node is a return, then there is no
1567 * point executing any statements (since the bpf machine
1568 * has no side effects).
1569 */
1570 if (BPF_CLASS((*b)->s.code) == BPF_RET)
1571 (*b)->stmts = 0;
1572 }
1573
1574 static void
1575 opt_loop(root, do_stmts)
1576 struct block *root;
1577 int do_stmts;
1578 {
1579
1580 #ifdef BDEBUG
1581 if (dflag > 1)
1582 opt_dump(root);
1583 #endif
1584 do {
1585 done = 1;
1586 find_levels(root);
1587 find_dom(root);
1588 find_closure(root);
1589 find_ud(root);
1590 find_edom(root);
1591 opt_blks(root, do_stmts);
1592 #ifdef BDEBUG
1593 if (dflag > 1)
1594 opt_dump(root);
1595 #endif
1596 } while (!done);
1597 }
1598
1599 /*
1600 * Optimize the filter code in its dag representation.
1601 */
1602 void
1603 bpf_optimize(rootp)
1604 struct block **rootp;
1605 {
1606 struct block *root;
1607
1608 root = *rootp;
1609
1610 opt_init(root);
1611 opt_loop(root, 0);
1612 opt_loop(root, 1);
1613 intern_blocks(root);
1614 opt_root(rootp);
1615 opt_cleanup();
1616 }
1617
1618 static void
1619 make_marks(p)
1620 struct block *p;
1621 {
1622 if (!isMarked(p)) {
1623 Mark(p);
1624 if (BPF_CLASS(p->s.code) != BPF_RET) {
1625 make_marks(JT(p));
1626 make_marks(JF(p));
1627 }
1628 }
1629 }
1630
1631 /*
1632 * Mark code array such that isMarked(i) is true
1633 * only for nodes that are alive.
1634 */
1635 static void
1636 mark_code(p)
1637 struct block *p;
1638 {
1639 cur_mark += 1;
1640 make_marks(p);
1641 }
1642
1643 /*
1644 * True iff the two stmt lists load the same value from the packet into
1645 * the accumulator.
1646 */
1647 static int
1648 eq_slist(x, y)
1649 struct slist *x, *y;
1650 {
1651 while (1) {
1652 while (x && x->s.code == NOP)
1653 x = x->next;
1654 while (y && y->s.code == NOP)
1655 y = y->next;
1656 if (x == 0)
1657 return y == 0;
1658 if (y == 0)
1659 return x == 0;
1660 if (x->s.code != y->s.code || x->s.k != y->s.k)
1661 return 0;
1662 x = x->next;
1663 y = y->next;
1664 }
1665 }
1666
1667 static inline int
1668 eq_blk(b0, b1)
1669 struct block *b0, *b1;
1670 {
1671 if (b0->s.code == b1->s.code &&
1672 b0->s.k == b1->s.k &&
1673 b0->et.succ == b1->et.succ &&
1674 b0->ef.succ == b1->ef.succ)
1675 return eq_slist(b0->stmts, b1->stmts);
1676 return 0;
1677 }
1678
1679 static void
1680 intern_blocks(root)
1681 struct block *root;
1682 {
1683 struct block *p;
1684 int i, j;
1685 int done;
1686 top:
1687 done = 1;
1688 for (i = 0; i < n_blocks; ++i)
1689 blocks[i]->link = 0;
1690
1691 mark_code(root);
1692
1693 for (i = n_blocks - 1; --i >= 0; ) {
1694 if (!isMarked(blocks[i]))
1695 continue;
1696 for (j = i + 1; j < n_blocks; ++j) {
1697 if (!isMarked(blocks[j]))
1698 continue;
1699 if (eq_blk(blocks[i], blocks[j])) {
1700 blocks[i]->link = blocks[j]->link ?
1701 blocks[j]->link : blocks[j];
1702 break;
1703 }
1704 }
1705 }
1706 for (i = 0; i < n_blocks; ++i) {
1707 p = blocks[i];
1708 if (JT(p) == 0)
1709 continue;
1710 if (JT(p)->link) {
1711 done = 0;
1712 JT(p) = JT(p)->link;
1713 }
1714 if (JF(p)->link) {
1715 done = 0;
1716 JF(p) = JF(p)->link;
1717 }
1718 }
1719 if (!done)
1720 goto top;
1721 }
1722
1723 static void
1724 opt_cleanup()
1725 {
1726 free((void *)vnode_base);
1727 free((void *)vmap);
1728 free((void *)edges);
1729 free((void *)space);
1730 free((void *)levels);
1731 free((void *)blocks);
1732 }
1733
1734 /*
1735 * Return the number of stmts in 's'.
1736 */
1737 static int
1738 slength(s)
1739 struct slist *s;
1740 {
1741 int n = 0;
1742
1743 for (; s; s = s->next)
1744 if (s->s.code != NOP)
1745 ++n;
1746 return n;
1747 }
1748
1749 /*
1750 * Return the number of nodes reachable by 'p'.
1751 * All nodes should be initially unmarked.
1752 */
1753 static int
1754 count_blocks(p)
1755 struct block *p;
1756 {
1757 if (p == 0 || isMarked(p))
1758 return 0;
1759 Mark(p);
1760 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1761 }
1762
1763 /*
1764 * Do a depth first search on the flow graph, numbering the
1765 * the basic blocks, and entering them into the 'blocks' array.`
1766 */
1767 static void
1768 number_blks_r(p)
1769 struct block *p;
1770 {
1771 int n;
1772
1773 if (p == 0 || isMarked(p))
1774 return;
1775
1776 Mark(p);
1777 n = n_blocks++;
1778 p->id = n;
1779 blocks[n] = p;
1780
1781 number_blks_r(JT(p));
1782 number_blks_r(JF(p));
1783 }
1784
1785 /*
1786 * Return the number of stmts in the flowgraph reachable by 'p'.
1787 * The nodes should be unmarked before calling.
1788 *
1789 * Note that "stmts" means "instructions", and that this includes
1790 *
1791 * side-effect statements in 'p' (slength(p->stmts));
1792 *
1793 * statements in the true branch from 'p' (count_stmts(JT(p)));
1794 *
1795 * statements in the false branch from 'p' (count_stmts(JF(p)));
1796 *
1797 * the conditional jump itself (1);
1798 *
1799 * an extra long jump if the true branch requires it (p->longjt);
1800 *
1801 * an extra long jump if the false branch requires it (p->longjf).
1802 */
1803 static int
1804 count_stmts(p)
1805 struct block *p;
1806 {
1807 int n;
1808
1809 if (p == 0 || isMarked(p))
1810 return 0;
1811 Mark(p);
1812 n = count_stmts(JT(p)) + count_stmts(JF(p));
1813 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1814 }
1815
1816 /*
1817 * Allocate memory. All allocation is done before optimization
1818 * is begun. A linear bound on the size of all data structures is computed
1819 * from the total number of blocks and/or statements.
1820 */
1821 static void
1822 opt_init(root)
1823 struct block *root;
1824 {
1825 bpf_u_int32 *p;
1826 int i, n, max_stmts;
1827
1828 /*
1829 * First, count the blocks, so we can malloc an array to map
1830 * block number to block. Then, put the blocks into the array.
1831 */
1832 unMarkAll();
1833 n = count_blocks(root);
1834 blocks = (struct block **)malloc(n * sizeof(*blocks));
1835 unMarkAll();
1836 n_blocks = 0;
1837 number_blks_r(root);
1838
1839 n_edges = 2 * n_blocks;
1840 edges = (struct edge **)malloc(n_edges * sizeof(*edges));
1841
1842 /*
1843 * The number of levels is bounded by the number of nodes.
1844 */
1845 levels = (struct block **)malloc(n_blocks * sizeof(*levels));
1846
1847 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1848 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1849
1850 /* XXX */
1851 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1852 + n_edges * edgewords * sizeof(*space));
1853 p = space;
1854 all_dom_sets = p;
1855 for (i = 0; i < n; ++i) {
1856 blocks[i]->dom = p;
1857 p += nodewords;
1858 }
1859 all_closure_sets = p;
1860 for (i = 0; i < n; ++i) {
1861 blocks[i]->closure = p;
1862 p += nodewords;
1863 }
1864 all_edge_sets = p;
1865 for (i = 0; i < n; ++i) {
1866 register struct block *b = blocks[i];
1867
1868 b->et.edom = p;
1869 p += edgewords;
1870 b->ef.edom = p;
1871 p += edgewords;
1872 b->et.id = i;
1873 edges[i] = &b->et;
1874 b->ef.id = n_blocks + i;
1875 edges[n_blocks + i] = &b->ef;
1876 b->et.pred = b;
1877 b->ef.pred = b;
1878 }
1879 max_stmts = 0;
1880 for (i = 0; i < n; ++i)
1881 max_stmts += slength(blocks[i]->stmts) + 1;
1882 /*
1883 * We allocate at most 3 value numbers per statement,
1884 * so this is an upper bound on the number of valnodes
1885 * we'll need.
1886 */
1887 maxval = 3 * max_stmts;
1888 vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap));
1889 vnode_base = (struct valnode *)malloc(maxval * sizeof(*vnode_base));
1890 }
1891
1892 /*
1893 * Some pointers used to convert the basic block form of the code,
1894 * into the array form that BPF requires. 'fstart' will point to
1895 * the malloc'd array while 'ftail' is used during the recursive traversal.
1896 */
1897 static struct bpf_insn *fstart;
1898 static struct bpf_insn *ftail;
1899
1900 #ifdef BDEBUG
1901 int bids[1000];
1902 #endif
1903
1904 /*
1905 * Returns true if successful. Returns false if a branch has
1906 * an offset that is too large. If so, we have marked that
1907 * branch so that on a subsequent iteration, it will be treated
1908 * properly.
1909 */
1910 static int
1911 convert_code_r(p)
1912 struct block *p;
1913 {
1914 struct bpf_insn *dst;
1915 struct slist *src;
1916 int slen;
1917 u_int off;
1918 int extrajmps; /* number of extra jumps inserted */
1919 struct slist **offset = NULL;
1920
1921 if (p == 0 || isMarked(p))
1922 return (1);
1923 Mark(p);
1924
1925 if (convert_code_r(JF(p)) == 0)
1926 return (0);
1927 if (convert_code_r(JT(p)) == 0)
1928 return (0);
1929
1930 slen = slength(p->stmts);
1931 dst = ftail -= (slen + 1 + p->longjt + p->longjf);
1932 /* inflate length by any extra jumps */
1933
1934 p->offset = dst - fstart;
1935
1936 /* generate offset[] for convenience */
1937 if (slen) {
1938 offset = (struct slist **)calloc(sizeof(struct slist *), slen);
1939 if (!offset) {
1940 bpf_error("not enough core");
1941 /*NOTREACHED*/
1942 }
1943 }
1944 src = p->stmts;
1945 for (off = 0; off < slen && src; off++) {
1946 #if 0
1947 printf("off=%d src=%x\n", off, src);
1948 #endif
1949 offset[off] = src;
1950 src = src->next;
1951 }
1952
1953 off = 0;
1954 for (src = p->stmts; src; src = src->next) {
1955 if (src->s.code == NOP)
1956 continue;
1957 dst->code = (u_short)src->s.code;
1958 dst->k = src->s.k;
1959
1960 /* fill block-local relative jump */
1961 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
1962 #if 0
1963 if (src->s.jt || src->s.jf) {
1964 bpf_error("illegal jmp destination");
1965 /*NOTREACHED*/
1966 }
1967 #endif
1968 goto filled;
1969 }
1970 if (off == slen - 2) /*???*/
1971 goto filled;
1972
1973 {
1974 int i;
1975 int jt, jf;
1976 char *ljerr = "%s for block-local relative jump: off=%d";
1977
1978 #if 0
1979 printf("code=%x off=%d %x %x\n", src->s.code,
1980 off, src->s.jt, src->s.jf);
1981 #endif
1982
1983 if (!src->s.jt || !src->s.jf) {
1984 bpf_error(ljerr, "no jmp destination", off);
1985 /*NOTREACHED*/
1986 }
1987
1988 jt = jf = 0;
1989 for (i = 0; i < slen; i++) {
1990 if (offset[i] == src->s.jt) {
1991 if (jt) {
1992 bpf_error(ljerr, "multiple matches", off);
1993 /*NOTREACHED*/
1994 }
1995
1996 dst->jt = i - off - 1;
1997 jt++;
1998 }
1999 if (offset[i] == src->s.jf) {
2000 if (jf) {
2001 bpf_error(ljerr, "multiple matches", off);
2002 /*NOTREACHED*/
2003 }
2004 dst->jf = i - off - 1;
2005 jf++;
2006 }
2007 }
2008 if (!jt || !jf) {
2009 bpf_error(ljerr, "no destination found", off);
2010 /*NOTREACHED*/
2011 }
2012 }
2013 filled:
2014 ++dst;
2015 ++off;
2016 }
2017 if (offset)
2018 free(offset);
2019
2020 #ifdef BDEBUG
2021 bids[dst - fstart] = p->id + 1;
2022 #endif
2023 dst->code = (u_short)p->s.code;
2024 dst->k = p->s.k;
2025 if (JT(p)) {
2026 extrajmps = 0;
2027 off = JT(p)->offset - (p->offset + slen) - 1;
2028 if (off >= 256) {
2029 /* offset too large for branch, must add a jump */
2030 if (p->longjt == 0) {
2031 /* mark this instruction and retry */
2032 p->longjt++;
2033 return(0);
2034 }
2035 /* branch if T to following jump */
2036 dst->jt = extrajmps;
2037 extrajmps++;
2038 dst[extrajmps].code = BPF_JMP|BPF_JA;
2039 dst[extrajmps].k = off - extrajmps;
2040 }
2041 else
2042 dst->jt = off;
2043 off = JF(p)->offset - (p->offset + slen) - 1;
2044 if (off >= 256) {
2045 /* offset too large for branch, must add a jump */
2046 if (p->longjf == 0) {
2047 /* mark this instruction and retry */
2048 p->longjf++;
2049 return(0);
2050 }
2051 /* branch if F to following jump */
2052 /* if two jumps are inserted, F goes to second one */
2053 dst->jf = extrajmps;
2054 extrajmps++;
2055 dst[extrajmps].code = BPF_JMP|BPF_JA;
2056 dst[extrajmps].k = off - extrajmps;
2057 }
2058 else
2059 dst->jf = off;
2060 }
2061 return (1);
2062 }
2063
2064
2065 /*
2066 * Convert flowgraph intermediate representation to the
2067 * BPF array representation. Set *lenp to the number of instructions.
2068 */
2069 struct bpf_insn *
2070 icode_to_fcode(root, lenp)
2071 struct block *root;
2072 int *lenp;
2073 {
2074 int n;
2075 struct bpf_insn *fp;
2076
2077 /*
2078 * Loop doing convert_codr_r() until no branches remain
2079 * with too-large offsets.
2080 */
2081 while (1) {
2082 unMarkAll();
2083 n = *lenp = count_stmts(root);
2084
2085 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2086 memset((char *)fp, 0, sizeof(*fp) * n);
2087 fstart = fp;
2088 ftail = fp + n;
2089
2090 unMarkAll();
2091 if (convert_code_r(root))
2092 break;
2093 free(fp);
2094 }
2095
2096 return fp;
2097 }
2098
2099 /*
2100 * Make a copy of a BPF program and put it in the "fcode" member of
2101 * a "pcap_t".
2102 *
2103 * If we fail to allocate memory for the copy, fill in the "errbuf"
2104 * member of the "pcap_t" with an error message, and return -1;
2105 * otherwise, return 0.
2106 */
2107 int
2108 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2109 {
2110 size_t prog_size;
2111
2112 /*
2113 * Free up any already installed program.
2114 */
2115 pcap_freecode(&p->fcode);
2116
2117 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2118 p->fcode.bf_len = fp->bf_len;
2119 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2120 if (p->fcode.bf_insns == NULL) {
2121 snprintf(p->errbuf, sizeof(p->errbuf),
2122 "malloc: %s", pcap_strerror(errno));
2123 return (-1);
2124 }
2125 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2126 return (0);
2127 }
2128
2129 #ifdef BDEBUG
2130 static void
2131 opt_dump(root)
2132 struct block *root;
2133 {
2134 struct bpf_program f;
2135
2136 memset(bids, 0, sizeof bids);
2137 f.bf_insns = icode_to_fcode(root, &f.bf_len);
2138 bpf_dump(&f, 1);
2139 putchar('\n');
2140 free((char *)f.bf_insns);
2141 }
2142 #endif