]>
The Tcpdump Group git mirrors - libpcap/blob - optimize.c
c39f899265e150a4b28bdc28cf7a03d438eb82cf
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
24 static const char rcsid
[] =
25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.64 2000-09-06 07:40:03 itojun Exp $ (LBL)";
32 #include <sys/types.h>
43 #ifdef HAVE_OS_PROTO_H
51 #define A_ATOM BPF_MEMWORDS
52 #define X_ATOM (BPF_MEMWORDS+1)
57 * This define is used to represent *both* the accumulator and
58 * x register in use-def computations.
59 * Currently, the use-def code assumes only one definition per instruction.
61 #define AX_ATOM N_ATOMS
64 * A flag to indicate that further optimization is needed.
65 * Iterative passes are continued until a given pass yields no
71 * A block is marked if only if its mark equals the current mark.
72 * Rather than traverse the code array, marking each item, 'cur_mark' is
73 * incremented. This automatically makes each element unmarked.
76 #define isMarked(p) ((p)->mark == cur_mark)
77 #define unMarkAll() cur_mark += 1
78 #define Mark(p) ((p)->mark = cur_mark)
80 static void opt_init(struct block
*);
81 static void opt_cleanup(void);
83 static void make_marks(struct block
*);
84 static void mark_code(struct block
*);
86 static void intern_blocks(struct block
*);
88 static int eq_slist(struct slist
*, struct slist
*);
90 static void find_levels_r(struct block
*);
92 static void find_levels(struct block
*);
93 static void find_dom(struct block
*);
94 static void propedom(struct edge
*);
95 static void find_edom(struct block
*);
96 static void find_closure(struct block
*);
97 static int atomuse(struct stmt
*);
98 static int atomdef(struct stmt
*);
99 static void compute_local_ud(struct block
*);
100 static void find_ud(struct block
*);
101 static void init_val(void);
102 static int F(int, int, int);
103 static inline void vstore(struct stmt
*, int *, int, int);
104 static void opt_blk(struct block
*, int);
105 static int use_conflict(struct block
*, struct block
*);
106 static void opt_j(struct edge
*);
107 static void or_pullup(struct block
*);
108 static void and_pullup(struct block
*);
109 static void opt_blks(struct block
*, int);
110 static inline void link_inedge(struct edge
*, struct block
*);
111 static void find_inedges(struct block
*);
112 static void opt_root(struct block
**);
113 static void opt_loop(struct block
*, int);
114 static void fold_op(struct stmt
*, int, int);
115 static inline struct slist
*this_op(struct slist
*);
116 static void opt_not(struct block
*);
117 static void opt_peep(struct block
*);
118 static void opt_stmt(struct stmt
*, int[], int);
119 static void deadstmt(struct stmt
*, struct stmt
*[]);
120 static void opt_deadstores(struct block
*);
121 static void opt_blk(struct block
*, int);
122 static int use_conflict(struct block
*, struct block
*);
123 static void opt_j(struct edge
*);
124 static struct block
*fold_edge(struct block
*, struct edge
*);
125 static inline int eq_blk(struct block
*, struct block
*);
126 static int slength(struct slist
*);
127 static int count_blocks(struct block
*);
128 static void number_blks_r(struct block
*);
129 static int count_stmts(struct block
*);
130 static int convert_code_r(struct block
*);
132 static void opt_dump(struct block
*);
136 struct block
**blocks
;
141 * A bit vector set representation of the dominators.
142 * We round up the set size to the next power of two.
144 static int nodewords
;
145 static int edgewords
;
146 struct block
**levels
;
148 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
150 * True if a is in uset {p}
152 #define SET_MEMBER(p, a) \
153 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
158 #define SET_INSERT(p, a) \
159 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
162 * Delete 'a' from uset p.
164 #define SET_DELETE(p, a) \
165 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
170 #define SET_INTERSECT(a, b, n)\
172 register bpf_u_int32 *_x = a, *_y = b;\
173 register int _n = n;\
174 while (--_n >= 0) *_x++ &= *_y++;\
180 #define SET_SUBTRACT(a, b, n)\
182 register bpf_u_int32 *_x = a, *_y = b;\
183 register int _n = n;\
184 while (--_n >= 0) *_x++ &=~ *_y++;\
190 #define SET_UNION(a, b, n)\
192 register bpf_u_int32 *_x = a, *_y = b;\
193 register int _n = n;\
194 while (--_n >= 0) *_x++ |= *_y++;\
197 static uset all_dom_sets
;
198 static uset all_closure_sets
;
199 static uset all_edge_sets
;
202 #define MAX(a,b) ((a)>(b)?(a):(b))
218 find_levels_r(JT(b
));
219 find_levels_r(JF(b
));
220 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
224 b
->link
= levels
[level
];
229 * Level graph. The levels go from 0 at the leaves to
230 * N_LEVELS at the root. The levels[] array points to the
231 * first node of the level list, whose elements are linked
232 * with the 'link' field of the struct block.
238 memset((char *)levels
, 0, n_blocks
* sizeof(*levels
));
244 * Find dominator relationships.
245 * Assumes graph has been leveled.
256 * Initialize sets to contain all nodes.
259 i
= n_blocks
* nodewords
;
262 /* Root starts off empty. */
263 for (i
= nodewords
; --i
>= 0;)
266 /* root->level is the highest level no found. */
267 for (i
= root
->level
; i
>= 0; --i
) {
268 for (b
= levels
[i
]; b
; b
= b
->link
) {
269 SET_INSERT(b
->dom
, b
->id
);
272 SET_INTERSECT(JT(b
)->dom
, b
->dom
, nodewords
);
273 SET_INTERSECT(JF(b
)->dom
, b
->dom
, nodewords
);
282 SET_INSERT(ep
->edom
, ep
->id
);
284 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, edgewords
);
285 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, edgewords
);
290 * Compute edge dominators.
291 * Assumes graph has been leveled and predecessors established.
302 for (i
= n_edges
* edgewords
; --i
>= 0; )
305 /* root->level is the highest level no found. */
306 memset(root
->et
.edom
, 0, edgewords
* sizeof(*(uset
)0));
307 memset(root
->ef
.edom
, 0, edgewords
* sizeof(*(uset
)0));
308 for (i
= root
->level
; i
>= 0; --i
) {
309 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
317 * Find the backwards transitive closure of the flow graph. These sets
318 * are backwards in the sense that we find the set of nodes that reach
319 * a given node, not the set of nodes that can be reached by a node.
321 * Assumes graph has been leveled.
331 * Initialize sets to contain no nodes.
333 memset((char *)all_closure_sets
, 0,
334 n_blocks
* nodewords
* sizeof(*all_closure_sets
));
336 /* root->level is the highest level no found. */
337 for (i
= root
->level
; i
>= 0; --i
) {
338 for (b
= levels
[i
]; b
; b
= b
->link
) {
339 SET_INSERT(b
->closure
, b
->id
);
342 SET_UNION(JT(b
)->closure
, b
->closure
, nodewords
);
343 SET_UNION(JF(b
)->closure
, b
->closure
, nodewords
);
349 * Return the register number that is used by s. If A and X are both
350 * used, return AX_ATOM. If no register is used, return -1.
352 * The implementation should probably change to an array access.
358 register int c
= s
->code
;
363 switch (BPF_CLASS(c
)) {
366 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
367 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
371 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
372 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
382 if (BPF_SRC(c
) == BPF_X
)
387 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
394 * Return the register number that is defined by 's'. We assume that
395 * a single stmt cannot define more than one register. If no register
396 * is defined, return -1.
398 * The implementation should probably change to an array access.
407 switch (BPF_CLASS(s
->code
)) {
421 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
431 atomset def
= 0, use
= 0, kill
= 0;
434 for (s
= b
->stmts
; s
; s
= s
->next
) {
435 if (s
->s
.code
== NOP
)
437 atom
= atomuse(&s
->s
);
439 if (atom
== AX_ATOM
) {
440 if (!ATOMELEM(def
, X_ATOM
))
441 use
|= ATOMMASK(X_ATOM
);
442 if (!ATOMELEM(def
, A_ATOM
))
443 use
|= ATOMMASK(A_ATOM
);
445 else if (atom
< N_ATOMS
) {
446 if (!ATOMELEM(def
, atom
))
447 use
|= ATOMMASK(atom
);
452 atom
= atomdef(&s
->s
);
454 if (!ATOMELEM(use
, atom
))
455 kill
|= ATOMMASK(atom
);
456 def
|= ATOMMASK(atom
);
459 if (!ATOMELEM(def
, A_ATOM
) && BPF_CLASS(b
->s
.code
) == BPF_JMP
)
460 use
|= ATOMMASK(A_ATOM
);
468 * Assume graph is already leveled.
478 * root->level is the highest level no found;
479 * count down from there.
481 maxlevel
= root
->level
;
482 for (i
= maxlevel
; i
>= 0; --i
)
483 for (p
= levels
[i
]; p
; p
= p
->link
) {
488 for (i
= 1; i
<= maxlevel
; ++i
) {
489 for (p
= levels
[i
]; p
; p
= p
->link
) {
490 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
491 p
->in_use
|= p
->out_use
&~ p
->kill
;
497 * These data structures are used in a Cocke and Shwarz style
498 * value numbering scheme. Since the flowgraph is acyclic,
499 * exit values can be propagated from a node's predecessors
500 * provided it is uniquely defined.
506 struct valnode
*next
;
510 static struct valnode
*hashtbl
[MODULUS
];
514 /* Integer constants mapped with the load immediate opcode. */
515 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
522 struct vmapinfo
*vmap
;
523 struct valnode
*vnode_base
;
524 struct valnode
*next_vnode
;
530 next_vnode
= vnode_base
;
531 memset((char *)vmap
, 0, maxval
* sizeof(*vmap
));
532 memset((char *)hashtbl
, 0, sizeof hashtbl
);
535 /* Because we really don't have an IR, this stuff is a little messy. */
545 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
548 for (p
= hashtbl
[hash
]; p
; p
= p
->next
)
549 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
553 if (BPF_MODE(code
) == BPF_IMM
&&
554 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
555 vmap
[val
].const_val
= v0
;
556 vmap
[val
].is_const
= 1;
563 p
->next
= hashtbl
[hash
];
570 vstore(s
, valp
, newval
, alter
)
576 if (alter
&& *valp
== newval
)
589 a
= vmap
[v0
].const_val
;
590 b
= vmap
[v1
].const_val
;
592 switch (BPF_OP(s
->code
)) {
607 bpf_error("division by zero");
635 s
->code
= BPF_LD
|BPF_IMM
;
639 static inline struct slist
*
643 while (s
!= 0 && s
->s
.code
== NOP
)
652 struct block
*tmp
= JT(b
);
663 struct slist
*next
, *last
;
675 next
= this_op(s
->next
);
681 * st M[k] --> st M[k]
684 if (s
->s
.code
== BPF_ST
&&
685 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
686 s
->s
.k
== next
->s
.k
) {
688 next
->s
.code
= BPF_MISC
|BPF_TAX
;
694 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
695 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
696 s
->s
.code
= BPF_LDX
|BPF_IMM
;
697 next
->s
.code
= BPF_MISC
|BPF_TXA
;
701 * This is an ugly special case, but it happens
702 * when you say tcp[k] or udp[k] where k is a constant.
704 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
705 struct slist
*add
, *tax
, *ild
;
708 * Check that X isn't used on exit from this
709 * block (which the optimizer might cause).
710 * We know the code generator won't generate
711 * any local dependencies.
713 if (ATOMELEM(b
->out_use
, X_ATOM
))
716 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
719 add
= this_op(next
->next
);
720 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
723 tax
= this_op(add
->next
);
724 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
727 ild
= this_op(tax
->next
);
728 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
729 BPF_MODE(ild
->s
.code
) != BPF_IND
)
732 * XXX We need to check that X is not
733 * subsequently used. We know we can eliminate the
734 * accumulator modifications since it is defined
735 * by the last stmt of this sequence.
737 * We want to turn this sequence:
740 * (005) ldxms [14] {next} -- optional
743 * (008) ild [x+0] {ild}
745 * into this sequence:
763 * If we have a subtract to do a comparison, and the X register
764 * is a known constant, we can merge this value into the
767 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
) &&
768 !ATOMELEM(b
->out_use
, A_ATOM
)) {
769 val
= b
->val
[X_ATOM
];
770 if (vmap
[val
].is_const
) {
773 b
->s
.k
+= vmap
[val
].const_val
;
774 op
= BPF_OP(b
->s
.code
);
775 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
776 struct block
*t
= JT(b
);
779 b
->s
.k
+= 0x80000000;
783 } else if (b
->s
.k
== 0) {
789 b
->s
.code
= BPF_CLASS(b
->s
.code
) | BPF_OP(b
->s
.code
) |
795 * Likewise, a constant subtract can be simplified.
797 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
) &&
798 !ATOMELEM(b
->out_use
, A_ATOM
)) {
803 op
= BPF_OP(b
->s
.code
);
804 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
805 struct block
*t
= JT(b
);
808 b
->s
.k
+= 0x80000000;
816 if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
817 !ATOMELEM(b
->out_use
, A_ATOM
) && b
->s
.k
== 0) {
819 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
825 * If the accumulator is a known constant, we can compute the
828 val
= b
->val
[A_ATOM
];
829 if (vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
830 bpf_int32 v
= vmap
[val
].const_val
;
831 switch (BPF_OP(b
->s
.code
)) {
838 v
= (unsigned)v
> b
->s
.k
;
842 v
= (unsigned)v
>= b
->s
.k
;
862 * Compute the symbolic value of expression of 's', and update
863 * anything it defines in the value table 'val'. If 'alter' is true,
864 * do various optimizations. This code would be cleaner if symbolic
865 * evaluation and code transformations weren't folded together.
868 opt_stmt(s
, val
, alter
)
878 case BPF_LD
|BPF_ABS
|BPF_W
:
879 case BPF_LD
|BPF_ABS
|BPF_H
:
880 case BPF_LD
|BPF_ABS
|BPF_B
:
881 v
= F(s
->code
, s
->k
, 0L);
882 vstore(s
, &val
[A_ATOM
], v
, alter
);
885 case BPF_LD
|BPF_IND
|BPF_W
:
886 case BPF_LD
|BPF_IND
|BPF_H
:
887 case BPF_LD
|BPF_IND
|BPF_B
:
889 if (alter
&& vmap
[v
].is_const
) {
890 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
891 s
->k
+= vmap
[v
].const_val
;
892 v
= F(s
->code
, s
->k
, 0L);
896 v
= F(s
->code
, s
->k
, v
);
897 vstore(s
, &val
[A_ATOM
], v
, alter
);
901 v
= F(s
->code
, 0L, 0L);
902 vstore(s
, &val
[A_ATOM
], v
, alter
);
907 vstore(s
, &val
[A_ATOM
], v
, alter
);
910 case BPF_LDX
|BPF_IMM
:
912 vstore(s
, &val
[X_ATOM
], v
, alter
);
915 case BPF_LDX
|BPF_MSH
|BPF_B
:
916 v
= F(s
->code
, s
->k
, 0L);
917 vstore(s
, &val
[X_ATOM
], v
, alter
);
920 case BPF_ALU
|BPF_NEG
:
921 if (alter
&& vmap
[val
[A_ATOM
]].is_const
) {
922 s
->code
= BPF_LD
|BPF_IMM
;
923 s
->k
= -vmap
[val
[A_ATOM
]].const_val
;
924 val
[A_ATOM
] = K(s
->k
);
927 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], 0L);
930 case BPF_ALU
|BPF_ADD
|BPF_K
:
931 case BPF_ALU
|BPF_SUB
|BPF_K
:
932 case BPF_ALU
|BPF_MUL
|BPF_K
:
933 case BPF_ALU
|BPF_DIV
|BPF_K
:
934 case BPF_ALU
|BPF_AND
|BPF_K
:
935 case BPF_ALU
|BPF_OR
|BPF_K
:
936 case BPF_ALU
|BPF_LSH
|BPF_K
:
937 case BPF_ALU
|BPF_RSH
|BPF_K
:
938 op
= BPF_OP(s
->code
);
941 if (op
== BPF_ADD
|| op
== BPF_SUB
||
942 op
== BPF_LSH
|| op
== BPF_RSH
||
947 if (op
== BPF_MUL
|| op
== BPF_AND
) {
948 s
->code
= BPF_LD
|BPF_IMM
;
949 val
[A_ATOM
] = K(s
->k
);
953 if (vmap
[val
[A_ATOM
]].is_const
) {
954 fold_op(s
, val
[A_ATOM
], K(s
->k
));
955 val
[A_ATOM
] = K(s
->k
);
959 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], K(s
->k
));
962 case BPF_ALU
|BPF_ADD
|BPF_X
:
963 case BPF_ALU
|BPF_SUB
|BPF_X
:
964 case BPF_ALU
|BPF_MUL
|BPF_X
:
965 case BPF_ALU
|BPF_DIV
|BPF_X
:
966 case BPF_ALU
|BPF_AND
|BPF_X
:
967 case BPF_ALU
|BPF_OR
|BPF_X
:
968 case BPF_ALU
|BPF_LSH
|BPF_X
:
969 case BPF_ALU
|BPF_RSH
|BPF_X
:
970 op
= BPF_OP(s
->code
);
971 if (alter
&& vmap
[val
[X_ATOM
]].is_const
) {
972 if (vmap
[val
[A_ATOM
]].is_const
) {
973 fold_op(s
, val
[A_ATOM
], val
[X_ATOM
]);
974 val
[A_ATOM
] = K(s
->k
);
977 s
->code
= BPF_ALU
|BPF_K
|op
;
978 s
->k
= vmap
[val
[X_ATOM
]].const_val
;
981 F(s
->code
, val
[A_ATOM
], K(s
->k
));
986 * Check if we're doing something to an accumulator
987 * that is 0, and simplify. This may not seem like
988 * much of a simplification but it could open up further
990 * XXX We could also check for mul by 1, and -1, etc.
992 if (alter
&& vmap
[val
[A_ATOM
]].is_const
993 && vmap
[val
[A_ATOM
]].const_val
== 0) {
994 if (op
== BPF_ADD
|| op
== BPF_OR
||
995 op
== BPF_LSH
|| op
== BPF_RSH
|| op
== BPF_SUB
) {
996 s
->code
= BPF_MISC
|BPF_TXA
;
997 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1000 else if (op
== BPF_MUL
|| op
== BPF_DIV
||
1002 s
->code
= BPF_LD
|BPF_IMM
;
1004 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1007 else if (op
== BPF_NEG
) {
1012 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1015 case BPF_MISC
|BPF_TXA
:
1016 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1019 case BPF_LD
|BPF_MEM
:
1021 if (alter
&& vmap
[v
].is_const
) {
1022 s
->code
= BPF_LD
|BPF_IMM
;
1023 s
->k
= vmap
[v
].const_val
;
1026 vstore(s
, &val
[A_ATOM
], v
, alter
);
1029 case BPF_MISC
|BPF_TAX
:
1030 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1033 case BPF_LDX
|BPF_MEM
:
1035 if (alter
&& vmap
[v
].is_const
) {
1036 s
->code
= BPF_LDX
|BPF_IMM
;
1037 s
->k
= vmap
[v
].const_val
;
1040 vstore(s
, &val
[X_ATOM
], v
, alter
);
1044 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1048 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1055 register struct stmt
*s
;
1056 register struct stmt
*last
[];
1062 if (atom
== AX_ATOM
) {
1073 last
[atom
]->code
= NOP
;
1081 register struct block
*b
;
1083 register struct slist
*s
;
1085 struct stmt
*last
[N_ATOMS
];
1087 memset((char *)last
, 0, sizeof last
);
1089 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1090 deadstmt(&s
->s
, last
);
1091 deadstmt(&b
->s
, last
);
1093 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1094 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1095 last
[atom
]->code
= NOP
;
1101 opt_blk(b
, do_stmts
)
1111 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1112 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1119 * Initialize the atom values.
1120 * If we have no predecessors, everything is undefined.
1121 * Otherwise, we inherent our values from our predecessors.
1122 * If any register has an ambiguous value (i.e. control paths are
1123 * merging) give it the undefined value of 0.
1127 memset((char *)b
->val
, 0, sizeof(b
->val
));
1129 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1130 while ((p
= p
->next
) != NULL
) {
1131 for (i
= 0; i
< N_ATOMS
; ++i
)
1132 if (b
->val
[i
] != p
->pred
->val
[i
])
1136 aval
= b
->val
[A_ATOM
];
1137 for (s
= b
->stmts
; s
; s
= s
->next
)
1138 opt_stmt(&s
->s
, b
->val
, do_stmts
);
1141 * This is a special case: if we don't use anything from this
1142 * block, and we load the accumulator with value that is
1143 * already there, or if this block is a return,
1144 * eliminate all the statements.
1147 ((b
->out_use
== 0 && aval
!= 0 &&b
->val
[A_ATOM
] == aval
) ||
1148 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1149 if (b
->stmts
!= 0) {
1158 * Set up values for branch optimizer.
1160 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1161 b
->oval
= K(b
->s
.k
);
1163 b
->oval
= b
->val
[X_ATOM
];
1164 b
->et
.code
= b
->s
.code
;
1165 b
->ef
.code
= -b
->s
.code
;
1169 * Return true if any register that is used on exit from 'succ', has
1170 * an exit value that is different from the corresponding exit value
1174 use_conflict(b
, succ
)
1175 struct block
*b
, *succ
;
1178 atomset use
= succ
->out_use
;
1183 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1184 if (ATOMELEM(use
, atom
))
1185 if (b
->val
[atom
] != succ
->val
[atom
])
1190 static struct block
*
1191 fold_edge(child
, ep
)
1192 struct block
*child
;
1196 int aval0
, aval1
, oval0
, oval1
;
1197 int code
= ep
->code
;
1205 if (child
->s
.code
!= code
)
1208 aval0
= child
->val
[A_ATOM
];
1209 oval0
= child
->oval
;
1210 aval1
= ep
->pred
->val
[A_ATOM
];
1211 oval1
= ep
->pred
->oval
;
1218 * The operands are identical, so the
1219 * result is true if a true branch was
1220 * taken to get here, otherwise false.
1222 return sense
? JT(child
) : JF(child
);
1224 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1226 * At this point, we only know the comparison if we
1227 * came down the true branch, and it was an equality
1228 * comparison with a constant. We rely on the fact that
1229 * distinct constants have distinct value numbers.
1241 register struct block
*target
;
1243 if (JT(ep
->succ
) == 0)
1246 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1248 * Common branch targets can be eliminated, provided
1249 * there is no data dependency.
1251 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1253 ep
->succ
= JT(ep
->succ
);
1257 * For each edge dominator that matches the successor of this
1258 * edge, promote the edge successor to the its grandchild.
1260 * XXX We violate the set abstraction here in favor a reasonably
1264 for (i
= 0; i
< edgewords
; ++i
) {
1265 register bpf_u_int32 x
= ep
->edom
[i
];
1270 k
+= i
* BITS_PER_WORD
;
1272 target
= fold_edge(ep
->succ
, edges
[k
]);
1274 * Check that there is no data dependency between
1275 * nodes that will be violated if we move the edge.
1277 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1280 if (JT(target
) != 0)
1282 * Start over unless we hit a leaf.
1298 struct block
**diffp
, **samep
;
1306 * Make sure each predecessor loads the same value.
1309 val
= ep
->pred
->val
[A_ATOM
];
1310 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1311 if (val
!= ep
->pred
->val
[A_ATOM
])
1314 if (JT(b
->in_edges
->pred
) == b
)
1315 diffp
= &JT(b
->in_edges
->pred
);
1317 diffp
= &JF(b
->in_edges
->pred
);
1324 if (JT(*diffp
) != JT(b
))
1327 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1330 if ((*diffp
)->val
[A_ATOM
] != val
)
1333 diffp
= &JF(*diffp
);
1336 samep
= &JF(*diffp
);
1341 if (JT(*samep
) != JT(b
))
1344 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1347 if ((*samep
)->val
[A_ATOM
] == val
)
1350 /* XXX Need to check that there are no data dependencies
1351 between dp0 and dp1. Currently, the code generator
1352 will not produce such dependencies. */
1353 samep
= &JF(*samep
);
1356 /* XXX This doesn't cover everything. */
1357 for (i
= 0; i
< N_ATOMS
; ++i
)
1358 if ((*samep
)->val
[i
] != pred
->val
[i
])
1361 /* Pull up the node. */
1367 * At the top of the chain, each predecessor needs to point at the
1368 * pulled up node. Inside the chain, there is only one predecessor
1372 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1373 if (JT(ep
->pred
) == b
)
1374 JT(ep
->pred
) = pull
;
1376 JF(ep
->pred
) = pull
;
1391 struct block
**diffp
, **samep
;
1399 * Make sure each predecessor loads the same value.
1401 val
= ep
->pred
->val
[A_ATOM
];
1402 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1403 if (val
!= ep
->pred
->val
[A_ATOM
])
1406 if (JT(b
->in_edges
->pred
) == b
)
1407 diffp
= &JT(b
->in_edges
->pred
);
1409 diffp
= &JF(b
->in_edges
->pred
);
1416 if (JF(*diffp
) != JF(b
))
1419 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1422 if ((*diffp
)->val
[A_ATOM
] != val
)
1425 diffp
= &JT(*diffp
);
1428 samep
= &JT(*diffp
);
1433 if (JF(*samep
) != JF(b
))
1436 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1439 if ((*samep
)->val
[A_ATOM
] == val
)
1442 /* XXX Need to check that there are no data dependencies
1443 between diffp and samep. Currently, the code generator
1444 will not produce such dependencies. */
1445 samep
= &JT(*samep
);
1448 /* XXX This doesn't cover everything. */
1449 for (i
= 0; i
< N_ATOMS
; ++i
)
1450 if ((*samep
)->val
[i
] != pred
->val
[i
])
1453 /* Pull up the node. */
1459 * At the top of the chain, each predecessor needs to point at the
1460 * pulled up node. Inside the chain, there is only one predecessor
1464 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1465 if (JT(ep
->pred
) == b
)
1466 JT(ep
->pred
) = pull
;
1468 JF(ep
->pred
) = pull
;
1478 opt_blks(root
, do_stmts
)
1486 maxlevel
= root
->level
;
1487 for (i
= maxlevel
; i
>= 0; --i
)
1488 for (p
= levels
[i
]; p
; p
= p
->link
)
1489 opt_blk(p
, do_stmts
);
1493 * No point trying to move branches; it can't possibly
1494 * make a difference at this point.
1498 for (i
= 1; i
<= maxlevel
; ++i
) {
1499 for (p
= levels
[i
]; p
; p
= p
->link
) {
1504 for (i
= 1; i
<= maxlevel
; ++i
) {
1505 for (p
= levels
[i
]; p
; p
= p
->link
) {
1513 link_inedge(parent
, child
)
1514 struct edge
*parent
;
1515 struct block
*child
;
1517 parent
->next
= child
->in_edges
;
1518 child
->in_edges
= parent
;
1528 for (i
= 0; i
< n_blocks
; ++i
)
1529 blocks
[i
]->in_edges
= 0;
1532 * Traverse the graph, adding each edge to the predecessor
1533 * list of its successors. Skip the leaves (i.e. level 0).
1535 for (i
= root
->level
; i
> 0; --i
) {
1536 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
1537 link_inedge(&b
->et
, JT(b
));
1538 link_inedge(&b
->ef
, JF(b
));
1547 struct slist
*tmp
, *s
;
1551 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1560 * If the root node is a return, then there is no
1561 * point executing any statements (since the bpf machine
1562 * has no side effects).
1564 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1569 opt_loop(root
, do_stmts
)
1586 opt_blks(root
, do_stmts
);
1595 * Optimize the filter code in its dag representation.
1599 struct block
**rootp
;
1608 intern_blocks(root
);
1619 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1627 * Mark code array such that isMarked(i) is true
1628 * only for nodes that are alive.
1639 * True iff the two stmt lists load the same value from the packet into
1644 struct slist
*x
, *y
;
1647 while (x
&& x
->s
.code
== NOP
)
1649 while (y
&& y
->s
.code
== NOP
)
1655 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1664 struct block
*b0
, *b1
;
1666 if (b0
->s
.code
== b1
->s
.code
&&
1667 b0
->s
.k
== b1
->s
.k
&&
1668 b0
->et
.succ
== b1
->et
.succ
&&
1669 b0
->ef
.succ
== b1
->ef
.succ
)
1670 return eq_slist(b0
->stmts
, b1
->stmts
);
1683 for (i
= 0; i
< n_blocks
; ++i
)
1684 blocks
[i
]->link
= 0;
1688 for (i
= n_blocks
- 1; --i
>= 0; ) {
1689 if (!isMarked(blocks
[i
]))
1691 for (j
= i
+ 1; j
< n_blocks
; ++j
) {
1692 if (!isMarked(blocks
[j
]))
1694 if (eq_blk(blocks
[i
], blocks
[j
])) {
1695 blocks
[i
]->link
= blocks
[j
]->link
?
1696 blocks
[j
]->link
: blocks
[j
];
1701 for (i
= 0; i
< n_blocks
; ++i
) {
1707 JT(p
) = JT(p
)->link
;
1711 JF(p
) = JF(p
)->link
;
1721 free((void *)vnode_base
);
1723 free((void *)edges
);
1724 free((void *)space
);
1725 free((void *)levels
);
1726 free((void *)blocks
);
1730 * Return the number of stmts in 's'.
1738 for (; s
; s
= s
->next
)
1739 if (s
->s
.code
!= NOP
)
1745 * Return the number of nodes reachable by 'p'.
1746 * All nodes should be initially unmarked.
1752 if (p
== 0 || isMarked(p
))
1755 return count_blocks(JT(p
)) + count_blocks(JF(p
)) + 1;
1759 * Do a depth first search on the flow graph, numbering the
1760 * the basic blocks, and entering them into the 'blocks' array.`
1768 if (p
== 0 || isMarked(p
))
1776 number_blks_r(JT(p
));
1777 number_blks_r(JF(p
));
1781 * Return the number of stmts in the flowgraph reachable by 'p'.
1782 * The nodes should be unmarked before calling.
1790 if (p
== 0 || isMarked(p
))
1793 n
= count_stmts(JT(p
)) + count_stmts(JF(p
));
1794 return slength(p
->stmts
) + n
+ 1;
1798 * Allocate memory. All allocation is done before optimization
1799 * is begun. A linear bound on the size of all data structures is computed
1800 * from the total number of blocks and/or statements.
1807 int i
, n
, max_stmts
;
1810 * First, count the blocks, so we can malloc an array to map
1811 * block number to block. Then, put the blocks into the array.
1814 n
= count_blocks(root
);
1815 blocks
= (struct block
**)malloc(n
* sizeof(*blocks
));
1818 number_blks_r(root
);
1820 n_edges
= 2 * n_blocks
;
1821 edges
= (struct edge
**)malloc(n_edges
* sizeof(*edges
));
1824 * The number of levels is bounded by the number of nodes.
1826 levels
= (struct block
**)malloc(n_blocks
* sizeof(*levels
));
1828 edgewords
= n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
1829 nodewords
= n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
1832 space
= (bpf_u_int32
*)malloc(2 * n_blocks
* nodewords
* sizeof(*space
)
1833 + n_edges
* edgewords
* sizeof(*space
));
1836 for (i
= 0; i
< n
; ++i
) {
1840 all_closure_sets
= p
;
1841 for (i
= 0; i
< n
; ++i
) {
1842 blocks
[i
]->closure
= p
;
1846 for (i
= 0; i
< n
; ++i
) {
1847 register struct block
*b
= blocks
[i
];
1855 b
->ef
.id
= n_blocks
+ i
;
1856 edges
[n_blocks
+ i
] = &b
->ef
;
1861 for (i
= 0; i
< n
; ++i
)
1862 max_stmts
+= slength(blocks
[i
]->stmts
) + 1;
1864 * We allocate at most 3 value numbers per statement,
1865 * so this is an upper bound on the number of valnodes
1868 maxval
= 3 * max_stmts
;
1869 vmap
= (struct vmapinfo
*)malloc(maxval
* sizeof(*vmap
));
1870 vnode_base
= (struct valnode
*)malloc(maxval
* sizeof(*vnode_base
));
1874 * Some pointers used to convert the basic block form of the code,
1875 * into the array form that BPF requires. 'fstart' will point to
1876 * the malloc'd array while 'ftail' is used during the recursive traversal.
1878 static struct bpf_insn
*fstart
;
1879 static struct bpf_insn
*ftail
;
1886 * Returns true if successful. Returns false if a branch has
1887 * an offset that is too large. If so, we have marked that
1888 * branch so that on a subsequent iteration, it will be treated
1895 struct bpf_insn
*dst
;
1899 int extrajmps
; /* number of extra jumps inserted */
1900 struct slist
**offset
= NULL
;
1902 if (p
== 0 || isMarked(p
))
1906 if (convert_code_r(JF(p
)) == 0)
1908 if (convert_code_r(JT(p
)) == 0)
1911 slen
= slength(p
->stmts
);
1912 dst
= ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
1913 /* inflate length by any extra jumps */
1915 p
->offset
= dst
- fstart
;
1917 /* generate offset[] for convenience */
1919 offset
= (struct slist
**)calloc(sizeof(struct slist
*), slen
);
1921 bpf_error("not enough core");
1926 for (off
= 0; off
< slen
&& src
; off
++) {
1928 printf("off=%d src=%x\n", off
, src
);
1935 for (src
= p
->stmts
; src
; src
= src
->next
) {
1936 if (src
->s
.code
== NOP
)
1938 dst
->code
= (u_short
)src
->s
.code
;
1941 /* fill block-local relative jump */
1942 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
1944 if (src
->s
.jt
|| src
->s
.jf
) {
1945 bpf_error("illegal jmp destination");
1951 if (off
== slen
- 2) /*???*/
1957 char *ljerr
= "%s for block-local relative jump: off=%d";
1960 printf("code=%x off=%d %x %x\n", src
->s
.code
,
1961 off
, src
->s
.jt
, src
->s
.jf
);
1964 if (!src
->s
.jt
|| !src
->s
.jf
) {
1965 bpf_error(ljerr
, "no jmp destination", off
);
1970 for (i
= 0; i
< slen
; i
++) {
1971 if (offset
[i
] == src
->s
.jt
) {
1973 bpf_error(ljerr
, "multiple matches", off
);
1977 dst
->jt
= i
- off
- 1;
1980 if (offset
[i
] == src
->s
.jf
) {
1982 bpf_error(ljerr
, "multiple matches", off
);
1985 dst
->jf
= i
- off
- 1;
1990 bpf_error(ljerr
, "no destination found", off
);
2002 bids
[dst
- fstart
] = p
->id
+ 1;
2004 dst
->code
= (u_short
)p
->s
.code
;
2008 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2010 /* offset too large for branch, must add a jump */
2011 if (p
->longjt
== 0) {
2012 /* mark this instruction and retry */
2016 /* branch if T to following jump */
2017 dst
->jt
= extrajmps
;
2019 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2020 dst
[extrajmps
].k
= off
- extrajmps
;
2024 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2026 /* offset too large for branch, must add a jump */
2027 if (p
->longjf
== 0) {
2028 /* mark this instruction and retry */
2032 /* branch if F to following jump */
2033 /* if two jumps are inserted, F goes to second one */
2034 dst
->jf
= extrajmps
;
2036 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2037 dst
[extrajmps
].k
= off
- extrajmps
;
2047 * Convert flowgraph intermediate representation to the
2048 * BPF array representation. Set *lenp to the number of instructions.
2051 icode_to_fcode(root
, lenp
)
2056 struct bpf_insn
*fp
;
2059 * Loop doing convert_codr_r() until no branches remain
2060 * with too-large offsets.
2064 n
= *lenp
= count_stmts(root
);
2066 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2067 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2072 if (convert_code_r(root
))
2085 struct bpf_program f
;
2087 memset(bids
, 0, sizeof bids
);
2088 f
.bf_insns
= icode_to_fcode(root
, &f
.bf_len
);
2091 free((char *)f
.bf_insns
);