]> The Tcpdump Group git mirrors - libpcap/blob - pcap-linux.c
From Daniele Orlandi <[email protected]>: add support for capturing
[libpcap] / pcap-linux.c
1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 */
27
28 #ifndef lint
29 static const char rcsid[] _U_ =
30 "@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.119 2006-01-22 20:11:26 guy Exp $ (LBL)";
31 #endif
32
33 /*
34 * Known problems with 2.0[.x] kernels:
35 *
36 * - The loopback device gives every packet twice; on 2.2[.x] kernels,
37 * if we use PF_PACKET, we can filter out the transmitted version
38 * of the packet by using data in the "sockaddr_ll" returned by
39 * "recvfrom()", but, on 2.0[.x] kernels, we have to use
40 * PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a
41 * "sockaddr_pkt" which doesn't give us enough information to let
42 * us do that.
43 *
44 * - We have to set the interface's IFF_PROMISC flag ourselves, if
45 * we're to run in promiscuous mode, which means we have to turn
46 * it off ourselves when we're done; the kernel doesn't keep track
47 * of how many sockets are listening promiscuously, which means
48 * it won't get turned off automatically when no sockets are
49 * listening promiscuously. We catch "pcap_close()" and, for
50 * interfaces we put into promiscuous mode, take them out of
51 * promiscuous mode - which isn't necessarily the right thing to
52 * do, if another socket also requested promiscuous mode between
53 * the time when we opened the socket and the time when we close
54 * the socket.
55 *
56 * - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()"
57 * return the amount of data that you could have read, rather than
58 * the amount that was returned, so we can't just allocate a buffer
59 * whose size is the snapshot length and pass the snapshot length
60 * as the byte count, and also pass MSG_TRUNC, so that the return
61 * value tells us how long the packet was on the wire.
62 *
63 * This means that, if we want to get the actual size of the packet,
64 * so we can return it in the "len" field of the packet header,
65 * we have to read the entire packet, not just the part that fits
66 * within the snapshot length, and thus waste CPU time copying data
67 * from the kernel that our caller won't see.
68 *
69 * We have to get the actual size, and supply it in "len", because
70 * otherwise, the IP dissector in tcpdump, for example, will complain
71 * about "truncated-ip", as the packet will appear to have been
72 * shorter, on the wire, than the IP header said it should have been.
73 */
74
75
76 #ifdef HAVE_CONFIG_H
77 #include "config.h"
78 #endif
79
80 #include "pcap-int.h"
81 #include "sll.h"
82
83 #ifdef HAVE_DAG_API
84 #include "pcap-dag.h"
85 #endif /* HAVE_DAG_API */
86
87 #ifdef HAVE_SEPTEL_API
88 #include "pcap-septel.h"
89 #endif /* HAVE_SEPTEL_API */
90
91 #include <errno.h>
92 #include <stdlib.h>
93 #include <unistd.h>
94 #include <fcntl.h>
95 #include <string.h>
96 #include <sys/socket.h>
97 #include <sys/ioctl.h>
98 #include <sys/utsname.h>
99 #include <net/if.h>
100 #include <netinet/in.h>
101 #include <linux/if_ether.h>
102 #include <net/if_arp.h>
103
104 /*
105 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET
106 * sockets rather than SOCK_PACKET sockets.
107 *
108 * To use them, we include <linux/if_packet.h> rather than
109 * <netpacket/packet.h>; we do so because
110 *
111 * some Linux distributions (e.g., Slackware 4.0) have 2.2 or
112 * later kernels and libc5, and don't provide a <netpacket/packet.h>
113 * file;
114 *
115 * not all versions of glibc2 have a <netpacket/packet.h> file
116 * that defines stuff needed for some of the 2.4-or-later-kernel
117 * features, so if the system has a 2.4 or later kernel, we
118 * still can't use those features.
119 *
120 * We're already including a number of other <linux/XXX.h> headers, and
121 * this code is Linux-specific (no other OS has PF_PACKET sockets as
122 * a raw packet capture mechanism), so it's not as if you gain any
123 * useful portability by using <netpacket/packet.h>
124 *
125 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET
126 * isn't defined? It only defines one data structure in 2.0.x, so
127 * it shouldn't cause any problems.
128 */
129 #ifdef PF_PACKET
130 # include <linux/if_packet.h>
131
132 /*
133 * On at least some Linux distributions (for example, Red Hat 5.2),
134 * there's no <netpacket/packet.h> file, but PF_PACKET is defined if
135 * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define
136 * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of
137 * the PACKET_xxx stuff.
138 *
139 * So we check whether PACKET_HOST is defined, and assume that we have
140 * PF_PACKET sockets only if it is defined.
141 */
142 # ifdef PACKET_HOST
143 # define HAVE_PF_PACKET_SOCKETS
144 # endif /* PACKET_HOST */
145 #endif /* PF_PACKET */
146
147 #ifdef SO_ATTACH_FILTER
148 #include <linux/types.h>
149 #include <linux/filter.h>
150 #endif
151
152 #ifndef __GLIBC__
153 typedef int socklen_t;
154 #endif
155
156 #ifndef MSG_TRUNC
157 /*
158 * This is being compiled on a system that lacks MSG_TRUNC; define it
159 * with the value it has in the 2.2 and later kernels, so that, on
160 * those kernels, when we pass it in the flags argument to "recvfrom()"
161 * we're passing the right value and thus get the MSG_TRUNC behavior
162 * we want. (We don't get that behavior on 2.0[.x] kernels, because
163 * they didn't support MSG_TRUNC.)
164 */
165 #define MSG_TRUNC 0x20
166 #endif
167
168 #ifndef SOL_PACKET
169 /*
170 * This is being compiled on a system that lacks SOL_PACKET; define it
171 * with the value it has in the 2.2 and later kernels, so that we can
172 * set promiscuous mode in the good modern way rather than the old
173 * 2.0-kernel crappy way.
174 */
175 #define SOL_PACKET 263
176 #endif
177
178 #define MAX_LINKHEADER_SIZE 256
179
180 /*
181 * When capturing on all interfaces we use this as the buffer size.
182 * Should be bigger then all MTUs that occur in real life.
183 * 64kB should be enough for now.
184 */
185 #define BIGGER_THAN_ALL_MTUS (64*1024)
186
187 /*
188 * Prototypes for internal functions
189 */
190 static void map_arphrd_to_dlt(pcap_t *, int, int);
191 static int live_open_old(pcap_t *, const char *, int, int, char *);
192 static int live_open_new(pcap_t *, const char *, int, int, char *);
193 static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *);
194 static int pcap_read_packet(pcap_t *, pcap_handler, u_char *);
195 static int pcap_inject_linux(pcap_t *, const void *, size_t);
196 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
197 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
198 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
199 static void pcap_close_linux(pcap_t *);
200
201 /*
202 * Wrap some ioctl calls
203 */
204 #ifdef HAVE_PF_PACKET_SOCKETS
205 static int iface_get_id(int fd, const char *device, char *ebuf);
206 #endif
207 static int iface_get_mtu(int fd, const char *device, char *ebuf);
208 static int iface_get_arptype(int fd, const char *device, char *ebuf);
209 #ifdef HAVE_PF_PACKET_SOCKETS
210 static int iface_bind(int fd, int ifindex, char *ebuf);
211 #endif
212 static int iface_bind_old(int fd, const char *device, char *ebuf);
213
214 #ifdef SO_ATTACH_FILTER
215 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
216 static int fix_offset(struct bpf_insn *p);
217 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
218 static int reset_kernel_filter(pcap_t *handle);
219
220 static struct sock_filter total_insn
221 = BPF_STMT(BPF_RET | BPF_K, 0);
222 static struct sock_fprog total_fcode
223 = { 1, &total_insn };
224 #endif
225
226 /*
227 * Get a handle for a live capture from the given device. You can
228 * pass NULL as device to get all packages (without link level
229 * information of course). If you pass 1 as promisc the interface
230 * will be set to promiscous mode (XXX: I think this usage should
231 * be deprecated and functions be added to select that later allow
232 * modification of that values -- Torsten).
233 *
234 * See also pcap(3).
235 */
236 pcap_t *
237 pcap_open_live(const char *device, int snaplen, int promisc, int to_ms,
238 char *ebuf)
239 {
240 pcap_t *handle;
241 int mtu;
242 int err;
243 int live_open_ok = 0;
244 struct utsname utsname;
245
246 #ifdef HAVE_DAG_API
247 if (strstr(device, "dag")) {
248 return dag_open_live(device, snaplen, promisc, to_ms, ebuf);
249 }
250 #endif /* HAVE_DAG_API */
251
252 #ifdef HAVE_SEPTEL_API
253 if (strstr(device, "septel")) {
254 return septel_open_live(device, snaplen, promisc, to_ms, ebuf);
255 }
256 #endif /* HAVE_SEPTEL_API */
257
258 /* Allocate a handle for this session. */
259
260 handle = malloc(sizeof(*handle));
261 if (handle == NULL) {
262 snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",
263 pcap_strerror(errno));
264 return NULL;
265 }
266
267 /* Initialize some components of the pcap structure. */
268
269 memset(handle, 0, sizeof(*handle));
270 handle->snapshot = snaplen;
271 handle->md.timeout = to_ms;
272
273 /*
274 * NULL and "any" are special devices which give us the hint to
275 * monitor all devices.
276 */
277 if (!device || strcmp(device, "any") == 0) {
278 device = NULL;
279 handle->md.device = strdup("any");
280 if (promisc) {
281 promisc = 0;
282 /* Just a warning. */
283 snprintf(ebuf, PCAP_ERRBUF_SIZE,
284 "Promiscuous mode not supported on the \"any\" device");
285 }
286
287 } else
288 handle->md.device = strdup(device);
289
290 if (handle->md.device == NULL) {
291 snprintf(ebuf, PCAP_ERRBUF_SIZE, "strdup: %s",
292 pcap_strerror(errno) );
293 free(handle);
294 return NULL;
295 }
296
297 /*
298 * Current Linux kernels use the protocol family PF_PACKET to
299 * allow direct access to all packets on the network while
300 * older kernels had a special socket type SOCK_PACKET to
301 * implement this feature.
302 * While this old implementation is kind of obsolete we need
303 * to be compatible with older kernels for a while so we are
304 * trying both methods with the newer method preferred.
305 */
306
307 if ((err = live_open_new(handle, device, promisc, to_ms, ebuf)) == 1)
308 live_open_ok = 1;
309 else if (err == 0) {
310 /* Non-fatal error; try old way */
311 if (live_open_old(handle, device, promisc, to_ms, ebuf))
312 live_open_ok = 1;
313 }
314 if (!live_open_ok) {
315 /*
316 * Both methods to open the packet socket failed. Tidy
317 * up and report our failure (ebuf is expected to be
318 * set by the functions above).
319 */
320
321 if (handle->md.device != NULL)
322 free(handle->md.device);
323 free(handle);
324 return NULL;
325 }
326
327 /*
328 * Compute the buffer size.
329 *
330 * If we're using SOCK_PACKET, this might be a 2.0[.x] kernel,
331 * and might require special handling - check.
332 */
333 if (handle->md.sock_packet && (uname(&utsname) < 0 ||
334 strncmp(utsname.release, "2.0", 3) == 0)) {
335 /*
336 * We're using a SOCK_PACKET structure, and either
337 * we couldn't find out what kernel release this is,
338 * or it's a 2.0[.x] kernel.
339 *
340 * In the 2.0[.x] kernel, a "recvfrom()" on
341 * a SOCK_PACKET socket, with MSG_TRUNC set, will
342 * return the number of bytes read, so if we pass
343 * a length based on the snapshot length, it'll
344 * return the number of bytes from the packet
345 * copied to userland, not the actual length
346 * of the packet.
347 *
348 * This means that, for example, the IP dissector
349 * in tcpdump will get handed a packet length less
350 * than the length in the IP header, and will
351 * complain about "truncated-ip".
352 *
353 * So we don't bother trying to copy from the
354 * kernel only the bytes in which we're interested,
355 * but instead copy them all, just as the older
356 * versions of libpcap for Linux did.
357 *
358 * The buffer therefore needs to be big enough to
359 * hold the largest packet we can get from this
360 * device. Unfortunately, we can't get the MRU
361 * of the network; we can only get the MTU. The
362 * MTU may be too small, in which case a packet larger
363 * than the buffer size will be truncated *and* we
364 * won't get the actual packet size.
365 *
366 * However, if the snapshot length is larger than
367 * the buffer size based on the MTU, we use the
368 * snapshot length as the buffer size, instead;
369 * this means that with a sufficiently large snapshot
370 * length we won't artificially truncate packets
371 * to the MTU-based size.
372 *
373 * This mess just one of many problems with packet
374 * capture on 2.0[.x] kernels; you really want a
375 * 2.2[.x] or later kernel if you want packet capture
376 * to work well.
377 */
378 mtu = iface_get_mtu(handle->fd, device, ebuf);
379 if (mtu == -1) {
380 pcap_close_linux(handle);
381 free(handle);
382 return NULL;
383 }
384 handle->bufsize = MAX_LINKHEADER_SIZE + mtu;
385 if (handle->bufsize < handle->snapshot)
386 handle->bufsize = handle->snapshot;
387 } else {
388 /*
389 * This is a 2.2[.x] or later kernel (we know that
390 * either because we're not using a SOCK_PACKET
391 * socket - PF_PACKET is supported only in 2.2
392 * and later kernels - or because we checked the
393 * kernel version).
394 *
395 * We can safely pass "recvfrom()" a byte count
396 * based on the snapshot length.
397 *
398 * If we're in cooked mode, make the snapshot length
399 * large enough to hold a "cooked mode" header plus
400 * 1 byte of packet data (so we don't pass a byte
401 * count of 0 to "recvfrom()").
402 */
403 if (handle->md.cooked) {
404 if (handle->snapshot < SLL_HDR_LEN + 1)
405 handle->snapshot = SLL_HDR_LEN + 1;
406 }
407 handle->bufsize = handle->snapshot;
408 }
409
410 /* Allocate the buffer */
411
412 handle->buffer = malloc(handle->bufsize + handle->offset);
413 if (!handle->buffer) {
414 snprintf(ebuf, PCAP_ERRBUF_SIZE,
415 "malloc: %s", pcap_strerror(errno));
416 pcap_close_linux(handle);
417 free(handle);
418 return NULL;
419 }
420
421 /*
422 * "handle->fd" is a socket, so "select()" and "poll()"
423 * should work on it.
424 */
425 handle->selectable_fd = handle->fd;
426
427 handle->read_op = pcap_read_linux;
428 handle->inject_op = pcap_inject_linux;
429 handle->setfilter_op = pcap_setfilter_linux;
430 handle->setdirection_op = pcap_setdirection_linux;
431 handle->set_datalink_op = NULL; /* can't change data link type */
432 handle->getnonblock_op = pcap_getnonblock_fd;
433 handle->setnonblock_op = pcap_setnonblock_fd;
434 handle->stats_op = pcap_stats_linux;
435 handle->close_op = pcap_close_linux;
436
437 return handle;
438 }
439
440 /*
441 * Read at most max_packets from the capture stream and call the callback
442 * for each of them. Returns the number of packets handled or -1 if an
443 * error occured.
444 */
445 static int
446 pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user)
447 {
448 /*
449 * Currently, on Linux only one packet is delivered per read,
450 * so we don't loop.
451 */
452 return pcap_read_packet(handle, callback, user);
453 }
454
455 /*
456 * Read a packet from the socket calling the handler provided by
457 * the user. Returns the number of packets received or -1 if an
458 * error occured.
459 */
460 static int
461 pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
462 {
463 u_char *bp;
464 int offset;
465 #ifdef HAVE_PF_PACKET_SOCKETS
466 struct sockaddr_ll from;
467 struct sll_header *hdrp;
468 #else
469 struct sockaddr from;
470 #endif
471 socklen_t fromlen;
472 int packet_len, caplen;
473 struct pcap_pkthdr pcap_header;
474
475 #ifdef HAVE_PF_PACKET_SOCKETS
476 /*
477 * If this is a cooked device, leave extra room for a
478 * fake packet header.
479 */
480 if (handle->md.cooked)
481 offset = SLL_HDR_LEN;
482 else
483 offset = 0;
484 #else
485 /*
486 * This system doesn't have PF_PACKET sockets, so it doesn't
487 * support cooked devices.
488 */
489 offset = 0;
490 #endif
491
492 /* Receive a single packet from the kernel */
493
494 bp = handle->buffer + handle->offset;
495 do {
496 /*
497 * Has "pcap_breakloop()" been called?
498 */
499 if (handle->break_loop) {
500 /*
501 * Yes - clear the flag that indicates that it
502 * has, and return -2 as an indication that we
503 * were told to break out of the loop.
504 */
505 handle->break_loop = 0;
506 return -2;
507 }
508 fromlen = sizeof(from);
509 packet_len = recvfrom(
510 handle->fd, bp + offset,
511 handle->bufsize - offset, MSG_TRUNC,
512 (struct sockaddr *) &from, &fromlen);
513 } while (packet_len == -1 && errno == EINTR);
514
515 /* Check if an error occured */
516
517 if (packet_len == -1) {
518 if (errno == EAGAIN)
519 return 0; /* no packet there */
520 else {
521 snprintf(handle->errbuf, sizeof(handle->errbuf),
522 "recvfrom: %s", pcap_strerror(errno));
523 return -1;
524 }
525 }
526
527 #ifdef HAVE_PF_PACKET_SOCKETS
528 if (!handle->md.sock_packet) {
529 /*
530 * Do checks based on packet direction.
531 * We can only do this if we're using PF_PACKET; the
532 * address returned for SOCK_PACKET is a "sockaddr_pkt"
533 * which lacks the relevant packet type information.
534 */
535 if (from.sll_pkttype == PACKET_OUTGOING) {
536 /*
537 * Outgoing packet.
538 * If this is from the loopback device, reject it;
539 * we'll see the packet as an incoming packet as well,
540 * and we don't want to see it twice.
541 */
542 if (from.sll_ifindex == handle->md.lo_ifindex)
543 return 0;
544
545 /*
546 * If the user only wants incoming packets, reject it.
547 */
548 if (handle->direction == PCAP_D_IN)
549 return 0;
550 } else {
551 /*
552 * Incoming packet.
553 * If the user only wants outgoing packets, reject it.
554 */
555 if (handle->direction == PCAP_D_OUT)
556 return 0;
557 }
558 }
559 #endif
560
561 #ifdef HAVE_PF_PACKET_SOCKETS
562 /*
563 * If this is a cooked device, fill in the fake packet header.
564 */
565 if (handle->md.cooked) {
566 /*
567 * Add the length of the fake header to the length
568 * of packet data we read.
569 */
570 packet_len += SLL_HDR_LEN;
571
572 hdrp = (struct sll_header *)bp;
573
574 /*
575 * Map the PACKET_ value to a LINUX_SLL_ value; we
576 * want the same numerical value to be used in
577 * the link-layer header even if the numerical values
578 * for the PACKET_ #defines change, so that programs
579 * that look at the packet type field will always be
580 * able to handle DLT_LINUX_SLL captures.
581 */
582 switch (from.sll_pkttype) {
583
584 case PACKET_HOST:
585 hdrp->sll_pkttype = htons(LINUX_SLL_HOST);
586 break;
587
588 case PACKET_BROADCAST:
589 hdrp->sll_pkttype = htons(LINUX_SLL_BROADCAST);
590 break;
591
592 case PACKET_MULTICAST:
593 hdrp->sll_pkttype = htons(LINUX_SLL_MULTICAST);
594 break;
595
596 case PACKET_OTHERHOST:
597 hdrp->sll_pkttype = htons(LINUX_SLL_OTHERHOST);
598 break;
599
600 case PACKET_OUTGOING:
601 hdrp->sll_pkttype = htons(LINUX_SLL_OUTGOING);
602 break;
603
604 default:
605 hdrp->sll_pkttype = -1;
606 break;
607 }
608
609 hdrp->sll_hatype = htons(from.sll_hatype);
610 hdrp->sll_halen = htons(from.sll_halen);
611 memcpy(hdrp->sll_addr, from.sll_addr,
612 (from.sll_halen > SLL_ADDRLEN) ?
613 SLL_ADDRLEN :
614 from.sll_halen);
615 hdrp->sll_protocol = from.sll_protocol;
616 }
617 #endif
618
619 /*
620 * XXX: According to the kernel source we should get the real
621 * packet len if calling recvfrom with MSG_TRUNC set. It does
622 * not seem to work here :(, but it is supported by this code
623 * anyway.
624 * To be honest the code RELIES on that feature so this is really
625 * broken with 2.2.x kernels.
626 * I spend a day to figure out what's going on and I found out
627 * that the following is happening:
628 *
629 * The packet comes from a random interface and the packet_rcv
630 * hook is called with a clone of the packet. That code inserts
631 * the packet into the receive queue of the packet socket.
632 * If a filter is attached to that socket that filter is run
633 * first - and there lies the problem. The default filter always
634 * cuts the packet at the snaplen:
635 *
636 * # tcpdump -d
637 * (000) ret #68
638 *
639 * So the packet filter cuts down the packet. The recvfrom call
640 * says "hey, it's only 68 bytes, it fits into the buffer" with
641 * the result that we don't get the real packet length. This
642 * is valid at least until kernel 2.2.17pre6.
643 *
644 * We currently handle this by making a copy of the filter
645 * program, fixing all "ret" instructions with non-zero
646 * operands to have an operand of 65535 so that the filter
647 * doesn't truncate the packet, and supplying that modified
648 * filter to the kernel.
649 */
650
651 caplen = packet_len;
652 if (caplen > handle->snapshot)
653 caplen = handle->snapshot;
654
655 /* Run the packet filter if not using kernel filter */
656 if (!handle->md.use_bpf && handle->fcode.bf_insns) {
657 if (bpf_filter(handle->fcode.bf_insns, bp,
658 packet_len, caplen) == 0)
659 {
660 /* rejected by filter */
661 return 0;
662 }
663 }
664
665 /* Fill in our own header data */
666
667 if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) {
668 snprintf(handle->errbuf, sizeof(handle->errbuf),
669 "ioctl: %s", pcap_strerror(errno));
670 return -1;
671 }
672 pcap_header.caplen = caplen;
673 pcap_header.len = packet_len;
674
675 /*
676 * Count the packet.
677 *
678 * Arguably, we should count them before we check the filter,
679 * as on many other platforms "ps_recv" counts packets
680 * handed to the filter rather than packets that passed
681 * the filter, but if filtering is done in the kernel, we
682 * can't get a count of packets that passed the filter,
683 * and that would mean the meaning of "ps_recv" wouldn't
684 * be the same on all Linux systems.
685 *
686 * XXX - it's not the same on all systems in any case;
687 * ideally, we should have a "get the statistics" call
688 * that supplies more counts and indicates which of them
689 * it supplies, so that we supply a count of packets
690 * handed to the filter only on platforms where that
691 * information is available.
692 *
693 * We count them here even if we can get the packet count
694 * from the kernel, as we can only determine at run time
695 * whether we'll be able to get it from the kernel (if
696 * HAVE_TPACKET_STATS isn't defined, we can't get it from
697 * the kernel, but if it is defined, the library might
698 * have been built with a 2.4 or later kernel, but we
699 * might be running on a 2.2[.x] kernel without Alexey
700 * Kuznetzov's turbopacket patches, and thus the kernel
701 * might not be able to supply those statistics). We
702 * could, I guess, try, when opening the socket, to get
703 * the statistics, and if we can not increment the count
704 * here, but it's not clear that always incrementing
705 * the count is more expensive than always testing a flag
706 * in memory.
707 *
708 * We keep the count in "md.packets_read", and use that for
709 * "ps_recv" if we can't get the statistics from the kernel.
710 * We do that because, if we *can* get the statistics from
711 * the kernel, we use "md.stat.ps_recv" and "md.stat.ps_drop"
712 * as running counts, as reading the statistics from the
713 * kernel resets the kernel statistics, and if we directly
714 * increment "md.stat.ps_recv" here, that means it will
715 * count packets *twice* on systems where we can get kernel
716 * statistics - once here, and once in pcap_stats_linux().
717 */
718 handle->md.packets_read++;
719
720 /* Call the user supplied callback function */
721 callback(userdata, &pcap_header, bp);
722
723 return 1;
724 }
725
726 static int
727 pcap_inject_linux(pcap_t *handle, const void *buf, size_t size)
728 {
729 int ret;
730
731 #ifdef HAVE_PF_PACKET_SOCKETS
732 if (!handle->md.sock_packet) {
733 /* PF_PACKET socket */
734 if (handle->md.ifindex == -1) {
735 /*
736 * We don't support sending on the "any" device.
737 */
738 strlcpy(handle->errbuf,
739 "Sending packets isn't supported on the \"any\" device",
740 PCAP_ERRBUF_SIZE);
741 return (-1);
742 }
743
744 if (handle->md.cooked) {
745 /*
746 * We don't support sending on the "any" device.
747 *
748 * XXX - how do you send on a bound cooked-mode
749 * socket?
750 * Is a "sendto()" required there?
751 */
752 strlcpy(handle->errbuf,
753 "Sending packets isn't supported in cooked mode",
754 PCAP_ERRBUF_SIZE);
755 return (-1);
756 }
757 }
758 #endif
759
760 ret = send(handle->fd, buf, size, 0);
761 if (ret == -1) {
762 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "send: %s",
763 pcap_strerror(errno));
764 return (-1);
765 }
766 return (ret);
767 }
768
769 /*
770 * Get the statistics for the given packet capture handle.
771 * Reports the number of dropped packets iff the kernel supports
772 * the PACKET_STATISTICS "getsockopt()" argument (2.4 and later
773 * kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket
774 * patches); otherwise, that information isn't available, and we lie
775 * and report 0 as the count of dropped packets.
776 */
777 static int
778 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
779 {
780 #ifdef HAVE_TPACKET_STATS
781 struct tpacket_stats kstats;
782 socklen_t len = sizeof (struct tpacket_stats);
783 #endif
784
785 #ifdef HAVE_TPACKET_STATS
786 /*
787 * Try to get the packet counts from the kernel.
788 */
789 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
790 &kstats, &len) > -1) {
791 /*
792 * In "linux/net/packet/af_packet.c", at least in the
793 * 2.4.9 kernel, "tp_packets" is incremented for every
794 * packet that passes the packet filter *and* is
795 * successfully queued on the socket; "tp_drops" is
796 * incremented for every packet dropped because there's
797 * not enough free space in the socket buffer.
798 *
799 * When the statistics are returned for a PACKET_STATISTICS
800 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
801 * so that "tp_packets" counts all packets handed to
802 * the PF_PACKET socket, including packets dropped because
803 * there wasn't room on the socket buffer - but not
804 * including packets that didn't pass the filter.
805 *
806 * In the BSD BPF, the count of received packets is
807 * incremented for every packet handed to BPF, regardless
808 * of whether it passed the filter.
809 *
810 * We can't make "pcap_stats()" work the same on both
811 * platforms, but the best approximation is to return
812 * "tp_packets" as the count of packets and "tp_drops"
813 * as the count of drops.
814 *
815 * Keep a running total because each call to
816 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
817 * resets the counters to zero.
818 */
819 handle->md.stat.ps_recv += kstats.tp_packets;
820 handle->md.stat.ps_drop += kstats.tp_drops;
821 }
822 else
823 {
824 /*
825 * If the error was EOPNOTSUPP, fall through, so that
826 * if you build the library on a system with
827 * "struct tpacket_stats" and run it on a system
828 * that doesn't, it works as it does if the library
829 * is built on a system without "struct tpacket_stats".
830 */
831 if (errno != EOPNOTSUPP) {
832 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
833 "pcap_stats: %s", pcap_strerror(errno));
834 return -1;
835 }
836 }
837 #endif
838 /*
839 * On systems where the PACKET_STATISTICS "getsockopt()" argument
840 * is supported on PF_PACKET sockets:
841 *
842 * "ps_recv" counts only packets that *passed* the filter,
843 * not packets that didn't pass the filter. This includes
844 * packets later dropped because we ran out of buffer space.
845 *
846 * "ps_drop" counts packets dropped because we ran out of
847 * buffer space. It doesn't count packets dropped by the
848 * interface driver. It counts only packets that passed
849 * the filter.
850 *
851 * Both statistics include packets not yet read from the
852 * kernel by libpcap, and thus not yet seen by the application.
853 *
854 * On systems where the PACKET_STATISTICS "getsockopt()" argument
855 * is not supported on PF_PACKET sockets:
856 *
857 * "ps_recv" counts only packets that *passed* the filter,
858 * not packets that didn't pass the filter. It does not
859 * count packets dropped because we ran out of buffer
860 * space.
861 *
862 * "ps_drop" is not supported.
863 *
864 * "ps_recv" doesn't include packets not yet read from
865 * the kernel by libpcap.
866 *
867 * We maintain the count of packets processed by libpcap in
868 * "md.packets_read", for reasons described in the comment
869 * at the end of pcap_read_packet(). We have no idea how many
870 * packets were dropped.
871 */
872 stats->ps_recv = handle->md.packets_read;
873 stats->ps_drop = 0;
874 return 0;
875 }
876
877 /*
878 * Description string for the "any" device.
879 */
880 static const char any_descr[] = "Pseudo-device that captures on all interfaces";
881
882 int
883 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
884 {
885 if (pcap_add_if(alldevsp, "any", 0, any_descr, errbuf) < 0)
886 return (-1);
887
888 #ifdef HAVE_DAG_API
889 if (dag_platform_finddevs(alldevsp, errbuf) < 0)
890 return (-1);
891 #endif /* HAVE_DAG_API */
892
893 #ifdef HAVE_SEPTEL_API
894 if (septel_platform_finddevs(alldevsp, errbuf) < 0)
895 return (-1);
896 #endif /* HAVE_SEPTEL_API */
897
898 return (0);
899 }
900
901 /*
902 * Attach the given BPF code to the packet capture device.
903 */
904 static int
905 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
906 {
907 #ifdef SO_ATTACH_FILTER
908 struct sock_fprog fcode;
909 int can_filter_in_kernel;
910 int err = 0;
911 #endif
912
913 if (!handle)
914 return -1;
915 if (!filter) {
916 strncpy(handle->errbuf, "setfilter: No filter specified",
917 sizeof(handle->errbuf));
918 return -1;
919 }
920
921 /* Make our private copy of the filter */
922
923 if (install_bpf_program(handle, filter) < 0)
924 /* install_bpf_program() filled in errbuf */
925 return -1;
926
927 /*
928 * Run user level packet filter by default. Will be overriden if
929 * installing a kernel filter succeeds.
930 */
931 handle->md.use_bpf = 0;
932
933 /* Install kernel level filter if possible */
934
935 #ifdef SO_ATTACH_FILTER
936 #ifdef USHRT_MAX
937 if (handle->fcode.bf_len > USHRT_MAX) {
938 /*
939 * fcode.len is an unsigned short for current kernel.
940 * I have yet to see BPF-Code with that much
941 * instructions but still it is possible. So for the
942 * sake of correctness I added this check.
943 */
944 fprintf(stderr, "Warning: Filter too complex for kernel\n");
945 fcode.filter = NULL;
946 can_filter_in_kernel = 0;
947 } else
948 #endif /* USHRT_MAX */
949 {
950 /*
951 * Oh joy, the Linux kernel uses struct sock_fprog instead
952 * of struct bpf_program and of course the length field is
953 * of different size. Pointed out by Sebastian
954 *
955 * Oh, and we also need to fix it up so that all "ret"
956 * instructions with non-zero operands have 65535 as the
957 * operand, and so that, if we're in cooked mode, all
958 * memory-reference instructions use special magic offsets
959 * in references to the link-layer header and assume that
960 * the link-layer payload begins at 0; "fix_program()"
961 * will do that.
962 */
963 switch (fix_program(handle, &fcode)) {
964
965 case -1:
966 default:
967 /*
968 * Fatal error; just quit.
969 * (The "default" case shouldn't happen; we
970 * return -1 for that reason.)
971 */
972 return -1;
973
974 case 0:
975 /*
976 * The program performed checks that we can't make
977 * work in the kernel.
978 */
979 can_filter_in_kernel = 0;
980 break;
981
982 case 1:
983 /*
984 * We have a filter that'll work in the kernel.
985 */
986 can_filter_in_kernel = 1;
987 break;
988 }
989 }
990
991 if (can_filter_in_kernel) {
992 if ((err = set_kernel_filter(handle, &fcode)) == 0)
993 {
994 /* Installation succeded - using kernel filter. */
995 handle->md.use_bpf = 1;
996 }
997 else if (err == -1) /* Non-fatal error */
998 {
999 /*
1000 * Print a warning if we weren't able to install
1001 * the filter for a reason other than "this kernel
1002 * isn't configured to support socket filters.
1003 */
1004 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
1005 fprintf(stderr,
1006 "Warning: Kernel filter failed: %s\n",
1007 pcap_strerror(errno));
1008 }
1009 }
1010 }
1011
1012 /*
1013 * If we're not using the kernel filter, get rid of any kernel
1014 * filter that might've been there before, e.g. because the
1015 * previous filter could work in the kernel, or because some other
1016 * code attached a filter to the socket by some means other than
1017 * calling "pcap_setfilter()". Otherwise, the kernel filter may
1018 * filter out packets that would pass the new userland filter.
1019 */
1020 if (!handle->md.use_bpf)
1021 reset_kernel_filter(handle);
1022
1023 /*
1024 * Free up the copy of the filter that was made by "fix_program()".
1025 */
1026 if (fcode.filter != NULL)
1027 free(fcode.filter);
1028
1029 if (err == -2)
1030 /* Fatal error */
1031 return -1;
1032 #endif /* SO_ATTACH_FILTER */
1033
1034 return 0;
1035 }
1036
1037 /*
1038 * Set direction flag: Which packets do we accept on a forwarding
1039 * single device? IN, OUT or both?
1040 */
1041 static int
1042 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1043 {
1044 #ifdef HAVE_PF_PACKET_SOCKETS
1045 if (!handle->md.sock_packet) {
1046 handle->direction = d;
1047 return 0;
1048 }
1049 #endif
1050 /*
1051 * We're not using PF_PACKET sockets, so we can't determine
1052 * the direction of the packet.
1053 */
1054 snprintf(handle->errbuf, sizeof(handle->errbuf),
1055 "Setting direction is not supported on SOCK_PACKET sockets");
1056 return -1;
1057 }
1058
1059 /*
1060 * Linux uses the ARP hardware type to identify the type of an
1061 * interface. pcap uses the DLT_xxx constants for this. This
1062 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
1063 * constant, as arguments, and sets "handle->linktype" to the
1064 * appropriate DLT_XXX constant and sets "handle->offset" to
1065 * the appropriate value (to make "handle->offset" plus link-layer
1066 * header length be a multiple of 4, so that the link-layer payload
1067 * will be aligned on a 4-byte boundary when capturing packets).
1068 * (If the offset isn't set here, it'll be 0; add code as appropriate
1069 * for cases where it shouldn't be 0.)
1070 *
1071 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
1072 * in cooked mode; otherwise, we can't use cooked mode, so we have
1073 * to pick some type that works in raw mode, or fail.
1074 *
1075 * Sets the link type to -1 if unable to map the type.
1076 */
1077 static void map_arphrd_to_dlt(pcap_t *handle, int arptype, int cooked_ok)
1078 {
1079 switch (arptype) {
1080
1081 case ARPHRD_ETHER:
1082 /*
1083 * This is (presumably) a real Ethernet capture; give it a
1084 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
1085 * that an application can let you choose it, in case you're
1086 * capturing DOCSIS traffic that a Cisco Cable Modem
1087 * Termination System is putting out onto an Ethernet (it
1088 * doesn't put an Ethernet header onto the wire, it puts raw
1089 * DOCSIS frames out on the wire inside the low-level
1090 * Ethernet framing).
1091 *
1092 * XXX - are there any sorts of "fake Ethernet" that have
1093 * ARPHRD_ETHER but that *shouldn't offer DLT_DOCSIS as
1094 * a Cisco CMTS won't put traffic onto it or get traffic
1095 * bridged onto it? ISDN is handled in "live_open_new()",
1096 * as we fall back on cooked mode there; are there any
1097 * others?
1098 */
1099 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
1100 /*
1101 * If that fails, just leave the list empty.
1102 */
1103 if (handle->dlt_list != NULL) {
1104 handle->dlt_list[0] = DLT_EN10MB;
1105 handle->dlt_list[1] = DLT_DOCSIS;
1106 handle->dlt_count = 2;
1107 }
1108 /* FALLTHROUGH */
1109
1110 case ARPHRD_METRICOM:
1111 case ARPHRD_LOOPBACK:
1112 handle->linktype = DLT_EN10MB;
1113 handle->offset = 2;
1114 break;
1115
1116 case ARPHRD_EETHER:
1117 handle->linktype = DLT_EN3MB;
1118 break;
1119
1120 case ARPHRD_AX25:
1121 handle->linktype = DLT_AX25;
1122 break;
1123
1124 case ARPHRD_PRONET:
1125 handle->linktype = DLT_PRONET;
1126 break;
1127
1128 case ARPHRD_CHAOS:
1129 handle->linktype = DLT_CHAOS;
1130 break;
1131
1132 #ifndef ARPHRD_IEEE802_TR
1133 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
1134 #endif
1135 case ARPHRD_IEEE802_TR:
1136 case ARPHRD_IEEE802:
1137 handle->linktype = DLT_IEEE802;
1138 handle->offset = 2;
1139 break;
1140
1141 case ARPHRD_ARCNET:
1142 handle->linktype = DLT_ARCNET_LINUX;
1143 break;
1144
1145 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
1146 #define ARPHRD_FDDI 774
1147 #endif
1148 case ARPHRD_FDDI:
1149 handle->linktype = DLT_FDDI;
1150 handle->offset = 3;
1151 break;
1152
1153 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */
1154 #define ARPHRD_ATM 19
1155 #endif
1156 case ARPHRD_ATM:
1157 /*
1158 * The Classical IP implementation in ATM for Linux
1159 * supports both what RFC 1483 calls "LLC Encapsulation",
1160 * in which each packet has an LLC header, possibly
1161 * with a SNAP header as well, prepended to it, and
1162 * what RFC 1483 calls "VC Based Multiplexing", in which
1163 * different virtual circuits carry different network
1164 * layer protocols, and no header is prepended to packets.
1165 *
1166 * They both have an ARPHRD_ type of ARPHRD_ATM, so
1167 * you can't use the ARPHRD_ type to find out whether
1168 * captured packets will have an LLC header, and,
1169 * while there's a socket ioctl to *set* the encapsulation
1170 * type, there's no ioctl to *get* the encapsulation type.
1171 *
1172 * This means that
1173 *
1174 * programs that dissect Linux Classical IP frames
1175 * would have to check for an LLC header and,
1176 * depending on whether they see one or not, dissect
1177 * the frame as LLC-encapsulated or as raw IP (I
1178 * don't know whether there's any traffic other than
1179 * IP that would show up on the socket, or whether
1180 * there's any support for IPv6 in the Linux
1181 * Classical IP code);
1182 *
1183 * filter expressions would have to compile into
1184 * code that checks for an LLC header and does
1185 * the right thing.
1186 *
1187 * Both of those are a nuisance - and, at least on systems
1188 * that support PF_PACKET sockets, we don't have to put
1189 * up with those nuisances; instead, we can just capture
1190 * in cooked mode. That's what we'll do, if we can.
1191 * Otherwise, we'll just fail.
1192 */
1193 if (cooked_ok)
1194 handle->linktype = DLT_LINUX_SLL;
1195 else
1196 handle->linktype = -1;
1197 break;
1198
1199 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
1200 #define ARPHRD_IEEE80211 801
1201 #endif
1202 case ARPHRD_IEEE80211:
1203 handle->linktype = DLT_IEEE802_11;
1204 break;
1205
1206 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
1207 #define ARPHRD_IEEE80211_PRISM 802
1208 #endif
1209 case ARPHRD_IEEE80211_PRISM:
1210 handle->linktype = DLT_PRISM_HEADER;
1211 break;
1212
1213 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
1214 #define ARPHRD_IEEE80211_RADIOTAP 803
1215 #endif
1216 case ARPHRD_IEEE80211_RADIOTAP:
1217 handle->linktype = DLT_IEEE802_11_RADIO;
1218 break;
1219
1220 case ARPHRD_PPP:
1221 /*
1222 * Some PPP code in the kernel supplies no link-layer
1223 * header whatsoever to PF_PACKET sockets; other PPP
1224 * code supplies PPP link-layer headers ("syncppp.c");
1225 * some PPP code might supply random link-layer
1226 * headers (PPP over ISDN - there's code in Ethereal,
1227 * for example, to cope with PPP-over-ISDN captures
1228 * with which the Ethereal developers have had to cope,
1229 * heuristically trying to determine which of the
1230 * oddball link-layer headers particular packets have).
1231 *
1232 * As such, we just punt, and run all PPP interfaces
1233 * in cooked mode, if we can; otherwise, we just treat
1234 * it as DLT_RAW, for now - if somebody needs to capture,
1235 * on a 2.0[.x] kernel, on PPP devices that supply a
1236 * link-layer header, they'll have to add code here to
1237 * map to the appropriate DLT_ type (possibly adding a
1238 * new DLT_ type, if necessary).
1239 */
1240 if (cooked_ok)
1241 handle->linktype = DLT_LINUX_SLL;
1242 else {
1243 /*
1244 * XXX - handle ISDN types here? We can't fall
1245 * back on cooked sockets, so we'd have to
1246 * figure out from the device name what type of
1247 * link-layer encapsulation it's using, and map
1248 * that to an appropriate DLT_ value, meaning
1249 * we'd map "isdnN" devices to DLT_RAW (they
1250 * supply raw IP packets with no link-layer
1251 * header) and "isdY" devices to a new DLT_I4L_IP
1252 * type that has only an Ethernet packet type as
1253 * a link-layer header.
1254 *
1255 * But sometimes we seem to get random crap
1256 * in the link-layer header when capturing on
1257 * ISDN devices....
1258 */
1259 handle->linktype = DLT_RAW;
1260 }
1261 break;
1262
1263 #ifndef ARPHRD_CISCO
1264 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
1265 #endif
1266 case ARPHRD_CISCO:
1267 handle->linktype = DLT_C_HDLC;
1268 break;
1269
1270 /* Not sure if this is correct for all tunnels, but it
1271 * works for CIPE */
1272 case ARPHRD_TUNNEL:
1273 #ifndef ARPHRD_SIT
1274 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */
1275 #endif
1276 case ARPHRD_SIT:
1277 case ARPHRD_CSLIP:
1278 case ARPHRD_SLIP6:
1279 case ARPHRD_CSLIP6:
1280 case ARPHRD_ADAPT:
1281 case ARPHRD_SLIP:
1282 #ifndef ARPHRD_RAWHDLC
1283 #define ARPHRD_RAWHDLC 518
1284 #endif
1285 case ARPHRD_RAWHDLC:
1286 #ifndef ARPHRD_DLCI
1287 #define ARPHRD_DLCI 15
1288 #endif
1289 case ARPHRD_DLCI:
1290 /*
1291 * XXX - should some of those be mapped to DLT_LINUX_SLL
1292 * instead? Should we just map all of them to DLT_LINUX_SLL?
1293 */
1294 handle->linktype = DLT_RAW;
1295 break;
1296
1297 #ifndef ARPHRD_FRAD
1298 #define ARPHRD_FRAD 770
1299 #endif
1300 case ARPHRD_FRAD:
1301 handle->linktype = DLT_FRELAY;
1302 break;
1303
1304 case ARPHRD_LOCALTLK:
1305 handle->linktype = DLT_LTALK;
1306 break;
1307
1308 #ifndef ARPHRD_FCPP
1309 #define ARPHRD_FCPP 784
1310 #endif
1311 case ARPHRD_FCPP:
1312 #ifndef ARPHRD_FCAL
1313 #define ARPHRD_FCAL 785
1314 #endif
1315 case ARPHRD_FCAL:
1316 #ifndef ARPHRD_FCPL
1317 #define ARPHRD_FCPL 786
1318 #endif
1319 case ARPHRD_FCPL:
1320 #ifndef ARPHRD_FCFABRIC
1321 #define ARPHRD_FCFABRIC 787
1322 #endif
1323 case ARPHRD_FCFABRIC:
1324 /*
1325 * We assume that those all mean RFC 2625 IP-over-
1326 * Fibre Channel, with the RFC 2625 header at
1327 * the beginning of the packet.
1328 */
1329 handle->linktype = DLT_IP_OVER_FC;
1330 break;
1331
1332 #ifndef ARPHRD_IRDA
1333 #define ARPHRD_IRDA 783
1334 #endif
1335 case ARPHRD_IRDA:
1336 /* Don't expect IP packet out of this interfaces... */
1337 handle->linktype = DLT_LINUX_IRDA;
1338 /* We need to save packet direction for IrDA decoding,
1339 * so let's use "Linux-cooked" mode. Jean II */
1340 //handle->md.cooked = 1;
1341 break;
1342
1343 /* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
1344 * is needed, please report it to <daniele@orlandi.com> */
1345 #ifndef ARPHRD_LAPD
1346 #define ARPHRD_LAPD 8445
1347 #endif
1348 case ARPHRD_LAPD:
1349 /* Don't expect IP packet out of this interfaces... */
1350 handle->linktype = DLT_LINUX_LAPD;
1351 break;
1352
1353 default:
1354 handle->linktype = -1;
1355 break;
1356 }
1357 }
1358
1359 /* ===== Functions to interface to the newer kernels ================== */
1360
1361 /*
1362 * Try to open a packet socket using the new kernel interface.
1363 * Returns 0 on failure.
1364 * FIXME: 0 uses to mean success (Sebastian)
1365 */
1366 static int
1367 live_open_new(pcap_t *handle, const char *device, int promisc,
1368 int to_ms, char *ebuf)
1369 {
1370 #ifdef HAVE_PF_PACKET_SOCKETS
1371 int sock_fd = -1, arptype;
1372 int err;
1373 int fatal_err = 0;
1374 struct packet_mreq mr;
1375
1376 /* One shot loop used for error handling - bail out with break */
1377
1378 do {
1379 /*
1380 * Open a socket with protocol family packet. If a device is
1381 * given we try to open it in raw mode otherwise we use
1382 * the cooked interface.
1383 */
1384 sock_fd = device ?
1385 socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
1386 : socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
1387
1388 if (sock_fd == -1) {
1389 snprintf(ebuf, PCAP_ERRBUF_SIZE, "socket: %s",
1390 pcap_strerror(errno) );
1391 break;
1392 }
1393
1394 /* It seems the kernel supports the new interface. */
1395 handle->md.sock_packet = 0;
1396
1397 /*
1398 * Get the interface index of the loopback device.
1399 * If the attempt fails, don't fail, just set the
1400 * "md.lo_ifindex" to -1.
1401 *
1402 * XXX - can there be more than one device that loops
1403 * packets back, i.e. devices other than "lo"? If so,
1404 * we'd need to find them all, and have an array of
1405 * indices for them, and check all of them in
1406 * "pcap_read_packet()".
1407 */
1408 handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", ebuf);
1409
1410 /*
1411 * Default value for offset to align link-layer payload
1412 * on a 4-byte boundary.
1413 */
1414 handle->offset = 0;
1415
1416 /*
1417 * What kind of frames do we have to deal with? Fall back
1418 * to cooked mode if we have an unknown interface type.
1419 */
1420
1421 if (device) {
1422 /* Assume for now we don't need cooked mode. */
1423 handle->md.cooked = 0;
1424
1425 arptype = iface_get_arptype(sock_fd, device, ebuf);
1426 if (arptype == -1) {
1427 fatal_err = 1;
1428 break;
1429 }
1430 map_arphrd_to_dlt(handle, arptype, 1);
1431 if (handle->linktype == -1 ||
1432 handle->linktype == DLT_LINUX_SLL ||
1433 handle->linktype == DLT_LINUX_IRDA ||
1434 handle->linktype == DLT_LINUX_LAPD ||
1435 (handle->linktype == DLT_EN10MB &&
1436 (strncmp("isdn", device, 4) == 0 ||
1437 strncmp("isdY", device, 4) == 0))) {
1438 /*
1439 * Unknown interface type (-1), or a
1440 * device we explicitly chose to run
1441 * in cooked mode (e.g., PPP devices),
1442 * or an ISDN device (whose link-layer
1443 * type we can only determine by using
1444 * APIs that may be different on different
1445 * kernels) - reopen in cooked mode.
1446 */
1447 if (close(sock_fd) == -1) {
1448 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1449 "close: %s", pcap_strerror(errno));
1450 break;
1451 }
1452 sock_fd = socket(PF_PACKET, SOCK_DGRAM,
1453 htons(ETH_P_ALL));
1454 if (sock_fd == -1) {
1455 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1456 "socket: %s", pcap_strerror(errno));
1457 break;
1458 }
1459 handle->md.cooked = 1;
1460
1461 /*
1462 * Get rid of any link-layer type list
1463 * we allocated - this only supports cooked
1464 * capture.
1465 */
1466 if (handle->dlt_list != NULL) {
1467 free(handle->dlt_list);
1468 handle->dlt_list = NULL;
1469 handle->dlt_count = 0;
1470 }
1471
1472 if (handle->linktype == -1) {
1473 /*
1474 * Warn that we're falling back on
1475 * cooked mode; we may want to
1476 * update "map_arphrd_to_dlt()"
1477 * to handle the new type.
1478 */
1479 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1480 "arptype %d not "
1481 "supported by libpcap - "
1482 "falling back to cooked "
1483 "socket",
1484 arptype);
1485 }
1486 /* IrDA capture is not a real "cooked" capture,
1487 * it's IrLAP frames, not IP packets. */
1488 if (handle->linktype != DLT_LINUX_IRDA &&
1489 handle->linktype != DLT_LINUX_LAPD)
1490 handle->linktype = DLT_LINUX_SLL;
1491 }
1492
1493 handle->md.ifindex = iface_get_id(sock_fd, device, ebuf);
1494 if (handle->md.ifindex == -1)
1495 break;
1496
1497 if ((err = iface_bind(sock_fd, handle->md.ifindex,
1498 ebuf)) < 0) {
1499 if (err == -2)
1500 fatal_err = 1;
1501 break;
1502 }
1503 } else {
1504 /*
1505 * This is cooked mode.
1506 */
1507 handle->md.cooked = 1;
1508 handle->linktype = DLT_LINUX_SLL;
1509
1510 /*
1511 * We're not bound to a device.
1512 * XXX - true? Or true only if we're using
1513 * the "any" device?
1514 * For now, we're using this as an indication
1515 * that we can't transmit; stop doing that only
1516 * if we figure out how to transmit in cooked
1517 * mode.
1518 */
1519 handle->md.ifindex = -1;
1520 }
1521
1522 /*
1523 * Select promiscuous mode on if "promisc" is set.
1524 *
1525 * Do not turn allmulti mode on if we don't select
1526 * promiscuous mode - on some devices (e.g., Orinoco
1527 * wireless interfaces), allmulti mode isn't supported
1528 * and the driver implements it by turning promiscuous
1529 * mode on, and that screws up the operation of the
1530 * card as a normal networking interface, and on no
1531 * other platform I know of does starting a non-
1532 * promiscuous capture affect which multicast packets
1533 * are received by the interface.
1534 */
1535
1536 /*
1537 * Hmm, how can we set promiscuous mode on all interfaces?
1538 * I am not sure if that is possible at all.
1539 */
1540
1541 if (device && promisc) {
1542 memset(&mr, 0, sizeof(mr));
1543 mr.mr_ifindex = handle->md.ifindex;
1544 mr.mr_type = PACKET_MR_PROMISC;
1545 if (setsockopt(sock_fd, SOL_PACKET,
1546 PACKET_ADD_MEMBERSHIP, &mr, sizeof(mr)) == -1)
1547 {
1548 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1549 "setsockopt: %s", pcap_strerror(errno));
1550 break;
1551 }
1552 }
1553
1554 /* Save the socket FD in the pcap structure */
1555
1556 handle->fd = sock_fd;
1557
1558 return 1;
1559
1560 } while(0);
1561
1562 if (sock_fd != -1)
1563 close(sock_fd);
1564
1565 if (fatal_err) {
1566 /*
1567 * Get rid of any link-layer type list we allocated.
1568 */
1569 if (handle->dlt_list != NULL)
1570 free(handle->dlt_list);
1571 return -2;
1572 } else
1573 return 0;
1574 #else
1575 strncpy(ebuf,
1576 "New packet capturing interface not supported by build "
1577 "environment", PCAP_ERRBUF_SIZE);
1578 return 0;
1579 #endif
1580 }
1581
1582 #ifdef HAVE_PF_PACKET_SOCKETS
1583 /*
1584 * Return the index of the given device name. Fill ebuf and return
1585 * -1 on failure.
1586 */
1587 static int
1588 iface_get_id(int fd, const char *device, char *ebuf)
1589 {
1590 struct ifreq ifr;
1591
1592 memset(&ifr, 0, sizeof(ifr));
1593 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1594
1595 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
1596 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1597 "ioctl: %s", pcap_strerror(errno));
1598 return -1;
1599 }
1600
1601 return ifr.ifr_ifindex;
1602 }
1603
1604 /*
1605 * Bind the socket associated with FD to the given device.
1606 */
1607 static int
1608 iface_bind(int fd, int ifindex, char *ebuf)
1609 {
1610 struct sockaddr_ll sll;
1611 int err;
1612 socklen_t errlen = sizeof(err);
1613
1614 memset(&sll, 0, sizeof(sll));
1615 sll.sll_family = AF_PACKET;
1616 sll.sll_ifindex = ifindex;
1617 sll.sll_protocol = htons(ETH_P_ALL);
1618
1619 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
1620 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1621 "bind: %s", pcap_strerror(errno));
1622 return -1;
1623 }
1624
1625 /* Any pending errors, e.g., network is down? */
1626
1627 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
1628 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1629 "getsockopt: %s", pcap_strerror(errno));
1630 return -2;
1631 }
1632
1633 if (err > 0) {
1634 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1635 "bind: %s", pcap_strerror(err));
1636 return -2;
1637 }
1638
1639 return 0;
1640 }
1641
1642 #endif
1643
1644
1645 /* ===== Functions to interface to the older kernels ================== */
1646
1647 /*
1648 * With older kernels promiscuous mode is kind of interesting because we
1649 * have to reset the interface before exiting. The problem can't really
1650 * be solved without some daemon taking care of managing usage counts.
1651 * If we put the interface into promiscuous mode, we set a flag indicating
1652 * that we must take it out of that mode when the interface is closed,
1653 * and, when closing the interface, if that flag is set we take it out
1654 * of promiscuous mode.
1655 */
1656
1657 /*
1658 * List of pcaps for which we turned promiscuous mode on by hand.
1659 * If there are any such pcaps, we arrange to call "pcap_close_all()"
1660 * when we exit, and have it close all of them to turn promiscuous mode
1661 * off.
1662 */
1663 static struct pcap *pcaps_to_close;
1664
1665 /*
1666 * TRUE if we've already called "atexit()" to cause "pcap_close_all()" to
1667 * be called on exit.
1668 */
1669 static int did_atexit;
1670
1671 static void pcap_close_all(void)
1672 {
1673 struct pcap *handle;
1674
1675 while ((handle = pcaps_to_close) != NULL)
1676 pcap_close(handle);
1677 }
1678
1679 static void pcap_close_linux( pcap_t *handle )
1680 {
1681 struct pcap *p, *prevp;
1682 struct ifreq ifr;
1683
1684 if (handle->md.clear_promisc) {
1685 /*
1686 * We put the interface into promiscuous mode; take
1687 * it out of promiscuous mode.
1688 *
1689 * XXX - if somebody else wants it in promiscuous mode,
1690 * this code cannot know that, so it'll take it out
1691 * of promiscuous mode. That's not fixable in 2.0[.x]
1692 * kernels.
1693 */
1694 memset(&ifr, 0, sizeof(ifr));
1695 strncpy(ifr.ifr_name, handle->md.device, sizeof(ifr.ifr_name));
1696 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
1697 fprintf(stderr,
1698 "Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n"
1699 "Please adjust manually.\n"
1700 "Hint: This can't happen with Linux >= 2.2.0.\n",
1701 strerror(errno));
1702 } else {
1703 if (ifr.ifr_flags & IFF_PROMISC) {
1704 /*
1705 * Promiscuous mode is currently on; turn it
1706 * off.
1707 */
1708 ifr.ifr_flags &= ~IFF_PROMISC;
1709 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
1710 fprintf(stderr,
1711 "Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n"
1712 "Please adjust manually.\n"
1713 "Hint: This can't happen with Linux >= 2.2.0.\n",
1714 strerror(errno));
1715 }
1716 }
1717 }
1718
1719 /*
1720 * Take this pcap out of the list of pcaps for which we
1721 * have to take the interface out of promiscuous mode.
1722 */
1723 for (p = pcaps_to_close, prevp = NULL; p != NULL;
1724 prevp = p, p = p->md.next) {
1725 if (p == handle) {
1726 /*
1727 * Found it. Remove it from the list.
1728 */
1729 if (prevp == NULL) {
1730 /*
1731 * It was at the head of the list.
1732 */
1733 pcaps_to_close = p->md.next;
1734 } else {
1735 /*
1736 * It was in the middle of the list.
1737 */
1738 prevp->md.next = p->md.next;
1739 }
1740 break;
1741 }
1742 }
1743 }
1744
1745 if (handle->md.device != NULL)
1746 free(handle->md.device);
1747 handle->md.device = NULL;
1748 pcap_close_common(handle);
1749 }
1750
1751 /*
1752 * Try to open a packet socket using the old kernel interface.
1753 * Returns 0 on failure.
1754 * FIXME: 0 uses to mean success (Sebastian)
1755 */
1756 static int
1757 live_open_old(pcap_t *handle, const char *device, int promisc,
1758 int to_ms, char *ebuf)
1759 {
1760 int arptype;
1761 struct ifreq ifr;
1762
1763 do {
1764 /* Open the socket */
1765
1766 handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));
1767 if (handle->fd == -1) {
1768 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1769 "socket: %s", pcap_strerror(errno));
1770 break;
1771 }
1772
1773 /* It worked - we are using the old interface */
1774 handle->md.sock_packet = 1;
1775
1776 /* ...which means we get the link-layer header. */
1777 handle->md.cooked = 0;
1778
1779 /* Bind to the given device */
1780
1781 if (!device) {
1782 strncpy(ebuf, "pcap_open_live: The \"any\" device isn't supported on 2.0[.x]-kernel systems",
1783 PCAP_ERRBUF_SIZE);
1784 break;
1785 }
1786 if (iface_bind_old(handle->fd, device, ebuf) == -1)
1787 break;
1788
1789 /*
1790 * Try to get the link-layer type.
1791 */
1792 arptype = iface_get_arptype(handle->fd, device, ebuf);
1793 if (arptype == -1)
1794 break;
1795
1796 /*
1797 * Try to find the DLT_ type corresponding to that
1798 * link-layer type.
1799 */
1800 map_arphrd_to_dlt(handle, arptype, 0);
1801 if (handle->linktype == -1) {
1802 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1803 "unknown arptype %d", arptype);
1804 break;
1805 }
1806
1807 /* Go to promisc mode if requested */
1808
1809 if (promisc) {
1810 memset(&ifr, 0, sizeof(ifr));
1811 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1812 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
1813 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1814 "ioctl: %s", pcap_strerror(errno));
1815 break;
1816 }
1817 if ((ifr.ifr_flags & IFF_PROMISC) == 0) {
1818 /*
1819 * Promiscuous mode isn't currently on,
1820 * so turn it on, and remember that
1821 * we should turn it off when the
1822 * pcap_t is closed.
1823 */
1824
1825 /*
1826 * If we haven't already done so, arrange
1827 * to have "pcap_close_all()" called when
1828 * we exit.
1829 */
1830 if (!did_atexit) {
1831 if (atexit(pcap_close_all) == -1) {
1832 /*
1833 * "atexit()" failed; don't
1834 * put the interface in
1835 * promiscuous mode, just
1836 * give up.
1837 */
1838 strncpy(ebuf, "atexit failed",
1839 PCAP_ERRBUF_SIZE);
1840 break;
1841 }
1842 did_atexit = 1;
1843 }
1844
1845 ifr.ifr_flags |= IFF_PROMISC;
1846 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
1847 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1848 "ioctl: %s",
1849 pcap_strerror(errno));
1850 break;
1851 }
1852 handle->md.clear_promisc = 1;
1853
1854 /*
1855 * Add this to the list of pcaps
1856 * to close when we exit.
1857 */
1858 handle->md.next = pcaps_to_close;
1859 pcaps_to_close = handle;
1860 }
1861 }
1862
1863 /*
1864 * Default value for offset to align link-layer payload
1865 * on a 4-byte boundary.
1866 */
1867 handle->offset = 0;
1868
1869 return 1;
1870
1871 } while (0);
1872
1873 pcap_close_linux(handle);
1874 return 0;
1875 }
1876
1877 /*
1878 * Bind the socket associated with FD to the given device using the
1879 * interface of the old kernels.
1880 */
1881 static int
1882 iface_bind_old(int fd, const char *device, char *ebuf)
1883 {
1884 struct sockaddr saddr;
1885 int err;
1886 socklen_t errlen = sizeof(err);
1887
1888 memset(&saddr, 0, sizeof(saddr));
1889 strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
1890 if (bind(fd, &saddr, sizeof(saddr)) == -1) {
1891 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1892 "bind: %s", pcap_strerror(errno));
1893 return -1;
1894 }
1895
1896 /* Any pending errors, e.g., network is down? */
1897
1898 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
1899 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1900 "getsockopt: %s", pcap_strerror(errno));
1901 return -1;
1902 }
1903
1904 if (err > 0) {
1905 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1906 "bind: %s", pcap_strerror(err));
1907 return -1;
1908 }
1909
1910 return 0;
1911 }
1912
1913
1914 /* ===== System calls available on all supported kernels ============== */
1915
1916 /*
1917 * Query the kernel for the MTU of the given interface.
1918 */
1919 static int
1920 iface_get_mtu(int fd, const char *device, char *ebuf)
1921 {
1922 struct ifreq ifr;
1923
1924 if (!device)
1925 return BIGGER_THAN_ALL_MTUS;
1926
1927 memset(&ifr, 0, sizeof(ifr));
1928 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1929
1930 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
1931 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1932 "ioctl: %s", pcap_strerror(errno));
1933 return -1;
1934 }
1935
1936 return ifr.ifr_mtu;
1937 }
1938
1939 /*
1940 * Get the hardware type of the given interface as ARPHRD_xxx constant.
1941 */
1942 static int
1943 iface_get_arptype(int fd, const char *device, char *ebuf)
1944 {
1945 struct ifreq ifr;
1946
1947 memset(&ifr, 0, sizeof(ifr));
1948 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1949
1950 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
1951 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1952 "ioctl: %s", pcap_strerror(errno));
1953 return -1;
1954 }
1955
1956 return ifr.ifr_hwaddr.sa_family;
1957 }
1958
1959 #ifdef SO_ATTACH_FILTER
1960 static int
1961 fix_program(pcap_t *handle, struct sock_fprog *fcode)
1962 {
1963 size_t prog_size;
1964 register int i;
1965 register struct bpf_insn *p;
1966 struct bpf_insn *f;
1967 int len;
1968
1969 /*
1970 * Make a copy of the filter, and modify that copy if
1971 * necessary.
1972 */
1973 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
1974 len = handle->fcode.bf_len;
1975 f = (struct bpf_insn *)malloc(prog_size);
1976 if (f == NULL) {
1977 snprintf(handle->errbuf, sizeof(handle->errbuf),
1978 "malloc: %s", pcap_strerror(errno));
1979 return -1;
1980 }
1981 memcpy(f, handle->fcode.bf_insns, prog_size);
1982 fcode->len = len;
1983 fcode->filter = (struct sock_filter *) f;
1984
1985 for (i = 0; i < len; ++i) {
1986 p = &f[i];
1987 /*
1988 * What type of instruction is this?
1989 */
1990 switch (BPF_CLASS(p->code)) {
1991
1992 case BPF_RET:
1993 /*
1994 * It's a return instruction; is the snapshot
1995 * length a constant, rather than the contents
1996 * of the accumulator?
1997 */
1998 if (BPF_MODE(p->code) == BPF_K) {
1999 /*
2000 * Yes - if the value to be returned,
2001 * i.e. the snapshot length, is anything
2002 * other than 0, make it 65535, so that
2003 * the packet is truncated by "recvfrom()",
2004 * not by the filter.
2005 *
2006 * XXX - there's nothing we can easily do
2007 * if it's getting the value from the
2008 * accumulator; we'd have to insert
2009 * code to force non-zero values to be
2010 * 65535.
2011 */
2012 if (p->k != 0)
2013 p->k = 65535;
2014 }
2015 break;
2016
2017 case BPF_LD:
2018 case BPF_LDX:
2019 /*
2020 * It's a load instruction; is it loading
2021 * from the packet?
2022 */
2023 switch (BPF_MODE(p->code)) {
2024
2025 case BPF_ABS:
2026 case BPF_IND:
2027 case BPF_MSH:
2028 /*
2029 * Yes; are we in cooked mode?
2030 */
2031 if (handle->md.cooked) {
2032 /*
2033 * Yes, so we need to fix this
2034 * instruction.
2035 */
2036 if (fix_offset(p) < 0) {
2037 /*
2038 * We failed to do so.
2039 * Return 0, so our caller
2040 * knows to punt to userland.
2041 */
2042 return 0;
2043 }
2044 }
2045 break;
2046 }
2047 break;
2048 }
2049 }
2050 return 1; /* we succeeded */
2051 }
2052
2053 static int
2054 fix_offset(struct bpf_insn *p)
2055 {
2056 /*
2057 * What's the offset?
2058 */
2059 if (p->k >= SLL_HDR_LEN) {
2060 /*
2061 * It's within the link-layer payload; that starts at an
2062 * offset of 0, as far as the kernel packet filter is
2063 * concerned, so subtract the length of the link-layer
2064 * header.
2065 */
2066 p->k -= SLL_HDR_LEN;
2067 } else if (p->k == 14) {
2068 /*
2069 * It's the protocol field; map it to the special magic
2070 * kernel offset for that field.
2071 */
2072 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
2073 } else {
2074 /*
2075 * It's within the header, but it's not one of those
2076 * fields; we can't do that in the kernel, so punt
2077 * to userland.
2078 */
2079 return -1;
2080 }
2081 return 0;
2082 }
2083
2084 static int
2085 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
2086 {
2087 int total_filter_on = 0;
2088 int save_mode;
2089 int ret;
2090 int save_errno;
2091
2092 /*
2093 * The socket filter code doesn't discard all packets queued
2094 * up on the socket when the filter is changed; this means
2095 * that packets that don't match the new filter may show up
2096 * after the new filter is put onto the socket, if those
2097 * packets haven't yet been read.
2098 *
2099 * This means, for example, that if you do a tcpdump capture
2100 * with a filter, the first few packets in the capture might
2101 * be packets that wouldn't have passed the filter.
2102 *
2103 * We therefore discard all packets queued up on the socket
2104 * when setting a kernel filter. (This isn't an issue for
2105 * userland filters, as the userland filtering is done after
2106 * packets are queued up.)
2107 *
2108 * To flush those packets, we put the socket in read-only mode,
2109 * and read packets from the socket until there are no more to
2110 * read.
2111 *
2112 * In order to keep that from being an infinite loop - i.e.,
2113 * to keep more packets from arriving while we're draining
2114 * the queue - we put the "total filter", which is a filter
2115 * that rejects all packets, onto the socket before draining
2116 * the queue.
2117 *
2118 * This code deliberately ignores any errors, so that you may
2119 * get bogus packets if an error occurs, rather than having
2120 * the filtering done in userland even if it could have been
2121 * done in the kernel.
2122 */
2123 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
2124 &total_fcode, sizeof(total_fcode)) == 0) {
2125 char drain[1];
2126
2127 /*
2128 * Note that we've put the total filter onto the socket.
2129 */
2130 total_filter_on = 1;
2131
2132 /*
2133 * Save the socket's current mode, and put it in
2134 * non-blocking mode; we drain it by reading packets
2135 * until we get an error (which is normally a
2136 * "nothing more to be read" error).
2137 */
2138 save_mode = fcntl(handle->fd, F_GETFL, 0);
2139 if (save_mode != -1 &&
2140 fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) {
2141 while (recv(handle->fd, &drain, sizeof drain,
2142 MSG_TRUNC) >= 0)
2143 ;
2144 save_errno = errno;
2145 fcntl(handle->fd, F_SETFL, save_mode);
2146 if (save_errno != EAGAIN) {
2147 /* Fatal error */
2148 reset_kernel_filter(handle);
2149 snprintf(handle->errbuf, sizeof(handle->errbuf),
2150 "recv: %s", pcap_strerror(save_errno));
2151 return -2;
2152 }
2153 }
2154 }
2155
2156 /*
2157 * Now attach the new filter.
2158 */
2159 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
2160 fcode, sizeof(*fcode));
2161 if (ret == -1 && total_filter_on) {
2162 /*
2163 * Well, we couldn't set that filter on the socket,
2164 * but we could set the total filter on the socket.
2165 *
2166 * This could, for example, mean that the filter was
2167 * too big to put into the kernel, so we'll have to
2168 * filter in userland; in any case, we'll be doing
2169 * filtering in userland, so we need to remove the
2170 * total filter so we see packets.
2171 */
2172 save_errno = errno;
2173
2174 /*
2175 * XXX - if this fails, we're really screwed;
2176 * we have the total filter on the socket,
2177 * and it won't come off. What do we do then?
2178 */
2179 reset_kernel_filter(handle);
2180
2181 errno = save_errno;
2182 }
2183 return ret;
2184 }
2185
2186 static int
2187 reset_kernel_filter(pcap_t *handle)
2188 {
2189 /* setsockopt() barfs unless it get a dummy parameter */
2190 int dummy;
2191
2192 return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
2193 &dummy, sizeof(dummy));
2194 }
2195 #endif