1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 static const char rcsid
[] _U_
=
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.260 2005-09-05 09:06:59 guy Exp $ (LBL)";
32 #include <pcap-stdinc.h>
34 #include <sys/types.h>
35 #include <sys/socket.h>
39 * XXX - why was this included even on UNIX?
48 #include <sys/param.h>
51 #include <netinet/in.h>
67 #include "ethertype.h"
72 #include "sunatmpos.h"
78 #define offsetof(s, e) ((size_t)&((s *)0)->e)
82 #include <netdb.h> /* for "struct addrinfo" */
85 #include <pcap-namedb.h>
90 #define IPPROTO_SCTP 132
93 #ifdef HAVE_OS_PROTO_H
97 #define JMP(c) ((c)|BPF_JMP|BPF_K)
100 static jmp_buf top_ctx
;
101 static pcap_t
*bpf_pcap
;
103 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
104 static u_int orig_linktype
= -1U, orig_nl
= -1U, label_stack_depth
= -1U;
108 static int pcap_fddipad
;
113 bpf_error(const char *fmt
, ...)
118 if (bpf_pcap
!= NULL
)
119 (void)vsnprintf(pcap_geterr(bpf_pcap
), PCAP_ERRBUF_SIZE
,
126 static void init_linktype(pcap_t
*);
128 static int alloc_reg(void);
129 static void free_reg(int);
131 static struct block
*root
;
134 * Value passed to gen_load_a() to indicate what the offset argument
138 OR_PACKET
, /* relative to the beginning of the packet */
139 OR_LINK
, /* relative to the link-layer header */
140 OR_NET
, /* relative to the network-layer header */
141 OR_NET_NOSNAP
, /* relative to the network-layer header, with no SNAP header at the link layer */
142 OR_TRAN_IPV4
, /* relative to the transport-layer header, with IPv4 network layer */
143 OR_TRAN_IPV6
/* relative to the transport-layer header, with IPv6 network layer */
147 * We divy out chunks of memory rather than call malloc each time so
148 * we don't have to worry about leaking memory. It's probably
149 * not a big deal if all this memory was wasted but if this ever
150 * goes into a library that would probably not be a good idea.
152 * XXX - this *is* in a library....
155 #define CHUNK0SIZE 1024
161 static struct chunk chunks
[NCHUNKS
];
162 static int cur_chunk
;
164 static void *newchunk(u_int
);
165 static void freechunks(void);
166 static inline struct block
*new_block(int);
167 static inline struct slist
*new_stmt(int);
168 static struct block
*gen_retblk(int);
169 static inline void syntax(void);
171 static void backpatch(struct block
*, struct block
*);
172 static void merge(struct block
*, struct block
*);
173 static struct block
*gen_cmp(enum e_offrel
, u_int
, u_int
, bpf_int32
);
174 static struct block
*gen_cmp_gt(enum e_offrel
, u_int
, u_int
, bpf_int32
);
175 static struct block
*gen_cmp_ge(enum e_offrel
, u_int
, u_int
, bpf_int32
);
176 static struct block
*gen_cmp_lt(enum e_offrel
, u_int
, u_int
, bpf_int32
);
177 static struct block
*gen_cmp_le(enum e_offrel
, u_int
, u_int
, bpf_int32
);
178 static struct block
*gen_mcmp(enum e_offrel
, u_int
, u_int
, bpf_int32
,
180 static struct block
*gen_bcmp(enum e_offrel
, u_int
, u_int
, const u_char
*);
181 static struct block
*gen_ncmp(enum e_offrel
, bpf_u_int32
, bpf_u_int32
,
182 bpf_u_int32
, bpf_u_int32
, int, bpf_int32
);
183 static struct slist
*gen_load_llrel(u_int
, u_int
);
184 static struct slist
*gen_load_a(enum e_offrel
, u_int
, u_int
);
185 static struct slist
*gen_loadx_iphdrlen(void);
186 static struct block
*gen_uncond(int);
187 static inline struct block
*gen_true(void);
188 static inline struct block
*gen_false(void);
189 static struct block
*gen_ether_linktype(int);
190 static struct block
*gen_linux_sll_linktype(int);
191 static void insert_radiotap_load_llprefixlen(struct block
*);
192 static void insert_load_llprefixlen(struct block
*);
193 static struct slist
*gen_llprefixlen(void);
194 static struct block
*gen_linktype(int);
195 static struct block
*gen_snap(bpf_u_int32
, bpf_u_int32
, u_int
);
196 static struct block
*gen_llc_linktype(int);
197 static struct block
*gen_hostop(bpf_u_int32
, bpf_u_int32
, int, int, u_int
, u_int
);
199 static struct block
*gen_hostop6(struct in6_addr
*, struct in6_addr
*, int, int, u_int
, u_int
);
201 static struct block
*gen_ahostop(const u_char
*, int);
202 static struct block
*gen_ehostop(const u_char
*, int);
203 static struct block
*gen_fhostop(const u_char
*, int);
204 static struct block
*gen_thostop(const u_char
*, int);
205 static struct block
*gen_wlanhostop(const u_char
*, int);
206 static struct block
*gen_ipfchostop(const u_char
*, int);
207 static struct block
*gen_dnhostop(bpf_u_int32
, int);
208 static struct block
*gen_mpls_linktype(int);
209 static struct block
*gen_host(bpf_u_int32
, bpf_u_int32
, int, int);
211 static struct block
*gen_host6(struct in6_addr
*, struct in6_addr
*, int, int);
214 static struct block
*gen_gateway(const u_char
*, bpf_u_int32
**, int, int);
216 static struct block
*gen_ipfrag(void);
217 static struct block
*gen_portatom(int, bpf_int32
);
218 static struct block
*gen_portrangeatom(int, bpf_int32
, bpf_int32
);
220 static struct block
*gen_portatom6(int, bpf_int32
);
221 static struct block
*gen_portrangeatom6(int, bpf_int32
, bpf_int32
);
223 struct block
*gen_portop(int, int, int);
224 static struct block
*gen_port(int, int, int);
225 struct block
*gen_portrangeop(int, int, int, int);
226 static struct block
*gen_portrange(int, int, int, int);
228 struct block
*gen_portop6(int, int, int);
229 static struct block
*gen_port6(int, int, int);
230 struct block
*gen_portrangeop6(int, int, int, int);
231 static struct block
*gen_portrange6(int, int, int, int);
233 static int lookup_proto(const char *, int);
234 static struct block
*gen_protochain(int, int, int);
235 static struct block
*gen_proto(int, int, int);
236 static struct slist
*xfer_to_x(struct arth
*);
237 static struct slist
*xfer_to_a(struct arth
*);
238 static struct block
*gen_mac_multicast(int);
239 static struct block
*gen_len(int, int);
241 static struct block
*gen_msg_abbrev(int type
);
252 /* XXX Round up to nearest long. */
253 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
255 /* XXX Round up to structure boundary. */
259 cp
= &chunks
[cur_chunk
];
260 if (n
> cp
->n_left
) {
261 ++cp
, k
= ++cur_chunk
;
263 bpf_error("out of memory");
264 size
= CHUNK0SIZE
<< k
;
265 cp
->m
= (void *)malloc(size
);
267 bpf_error("out of memory");
268 memset((char *)cp
->m
, 0, size
);
271 bpf_error("out of memory");
274 return (void *)((char *)cp
->m
+ cp
->n_left
);
283 for (i
= 0; i
< NCHUNKS
; ++i
)
284 if (chunks
[i
].m
!= NULL
) {
291 * A strdup whose allocations are freed after code generation is over.
295 register const char *s
;
297 int n
= strlen(s
) + 1;
298 char *cp
= newchunk(n
);
304 static inline struct block
*
310 p
= (struct block
*)newchunk(sizeof(*p
));
317 static inline struct slist
*
323 p
= (struct slist
*)newchunk(sizeof(*p
));
329 static struct block
*
333 struct block
*b
= new_block(BPF_RET
|BPF_K
);
342 bpf_error("syntax error in filter expression");
345 static bpf_u_int32 netmask
;
350 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
351 char *buf
, int optimize
, bpf_u_int32 mask
)
360 if (setjmp(top_ctx
)) {
368 snaplen
= pcap_snapshot(p
);
370 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
371 "snaplen of 0 rejects all packets");
375 lex_init(buf
? buf
: "");
383 root
= gen_retblk(snaplen
);
385 if (optimize
&& !no_optimize
) {
388 (root
->s
.code
== (BPF_RET
|BPF_K
) && root
->s
.k
== 0))
389 bpf_error("expression rejects all packets");
391 program
->bf_insns
= icode_to_fcode(root
, &len
);
392 program
->bf_len
= len
;
400 * entry point for using the compiler with no pcap open
401 * pass in all the stuff that is needed explicitly instead.
404 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
405 struct bpf_program
*program
,
406 char *buf
, int optimize
, bpf_u_int32 mask
)
411 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
414 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
420 * Clean up a "struct bpf_program" by freeing all the memory allocated
424 pcap_freecode(struct bpf_program
*program
)
427 if (program
->bf_insns
!= NULL
) {
428 free((char *)program
->bf_insns
);
429 program
->bf_insns
= NULL
;
434 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
435 * which of the jt and jf fields has been resolved and which is a pointer
436 * back to another unresolved block (or nil). At least one of the fields
437 * in each block is already resolved.
440 backpatch(list
, target
)
441 struct block
*list
, *target
;
458 * Merge the lists in b0 and b1, using the 'sense' field to indicate
459 * which of jt and jf is the link.
463 struct block
*b0
, *b1
;
465 register struct block
**p
= &b0
;
467 /* Find end of list. */
469 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
471 /* Concatenate the lists. */
479 backpatch(p
, gen_retblk(snaplen
));
480 p
->sense
= !p
->sense
;
481 backpatch(p
, gen_retblk(0));
485 * Insert before the statements of the first (root) block any
486 * statements needed to load the lengths of any variable-length
487 * headers into registers.
489 * XXX - a fancier strategy would be to insert those before the
490 * statements of all blocks that use those lengths and that
491 * have no predecessors that use them, so that we only compute
492 * the lengths if we need them. There might be even better
493 * approaches than that. However, as we're currently only
494 * handling variable-length radiotap headers, and as all
495 * filtering expressions other than raw link[M:N] tests
496 * require the length of that header, doing more for that
497 * header length isn't really worth the effort.
499 insert_load_llprefixlen(root
);
504 struct block
*b0
, *b1
;
506 backpatch(b0
, b1
->head
);
507 b0
->sense
= !b0
->sense
;
508 b1
->sense
= !b1
->sense
;
510 b1
->sense
= !b1
->sense
;
516 struct block
*b0
, *b1
;
518 b0
->sense
= !b0
->sense
;
519 backpatch(b0
, b1
->head
);
520 b0
->sense
= !b0
->sense
;
529 b
->sense
= !b
->sense
;
532 static struct block
*
533 gen_cmp(offrel
, offset
, size
, v
)
534 enum e_offrel offrel
;
538 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
541 static struct block
*
542 gen_cmp_gt(offrel
, offset
, size
, v
)
543 enum e_offrel offrel
;
547 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
550 static struct block
*
551 gen_cmp_ge(offrel
, offset
, size
, v
)
552 enum e_offrel offrel
;
556 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
559 static struct block
*
560 gen_cmp_lt(offrel
, offset
, size
, v
)
561 enum e_offrel offrel
;
565 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
568 static struct block
*
569 gen_cmp_le(offrel
, offset
, size
, v
)
570 enum e_offrel offrel
;
574 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
577 static struct block
*
578 gen_mcmp(offrel
, offset
, size
, v
, mask
)
579 enum e_offrel offrel
;
584 return gen_ncmp(offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
587 static struct block
*
588 gen_bcmp(offrel
, offset
, size
, v
)
589 enum e_offrel offrel
;
590 register u_int offset
, size
;
591 register const u_char
*v
;
593 register struct block
*b
, *tmp
;
597 register const u_char
*p
= &v
[size
- 4];
598 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
599 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
601 tmp
= gen_cmp(offrel
, offset
+ size
- 4, BPF_W
, w
);
608 register const u_char
*p
= &v
[size
- 2];
609 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
611 tmp
= gen_cmp(offrel
, offset
+ size
- 2, BPF_H
, w
);
618 tmp
= gen_cmp(offrel
, offset
, BPF_B
, (bpf_int32
)v
[0]);
627 * AND the field of size "size" at offset "offset" relative to the header
628 * specified by "offrel" with "mask", and compare it with the value "v"
629 * with the test specified by "jtype"; if "reverse" is true, the test
630 * should test the opposite of "jtype".
632 static struct block
*
633 gen_ncmp(offrel
, offset
, size
, mask
, jtype
, reverse
, v
)
634 enum e_offrel offrel
;
636 bpf_u_int32 offset
, size
, mask
, jtype
;
639 struct slist
*s
, *s2
;
642 s
= gen_load_a(offrel
, offset
, size
);
644 if (mask
!= 0xffffffff) {
645 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
650 b
= new_block(JMP(jtype
));
653 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
659 * Various code constructs need to know the layout of the data link
660 * layer. These variables give the necessary offsets from the beginning
661 * of the packet data.
663 * If the link layer has variable_length headers, the offsets are offsets
664 * from the end of the link-link-layer header, and "reg_ll_size" is
665 * the register number for a register containing the length of the
666 * link-layer header. Otherwise, "reg_ll_size" is -1.
668 static int reg_ll_size
;
671 * This is the offset of the beginning of the link-layer header.
672 * It's usually 0, except for 802.11 with a fixed-length radio header.
677 * This is the offset of the beginning of the MAC-layer header.
678 * It's usually 0, except for ATM LANE.
680 static u_int off_mac
;
683 * "off_linktype" is the offset to information in the link-layer header
684 * giving the packet type.
686 * For Ethernet, it's the offset of the Ethernet type field.
688 * For link-layer types that always use 802.2 headers, it's the
689 * offset of the LLC header.
691 * For PPP, it's the offset of the PPP type field.
693 * For Cisco HDLC, it's the offset of the CHDLC type field.
695 * For BSD loopback, it's the offset of the AF_ value.
697 * For Linux cooked sockets, it's the offset of the type field.
699 * It's set to -1 for no encapsulation, in which case, IP is assumed.
701 static u_int off_linktype
;
704 * TRUE if the link layer includes an ATM pseudo-header.
706 static int is_atm
= 0;
709 * TRUE if "lane" appeared in the filter; it causes us to generate
710 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
712 static int is_lane
= 0;
715 * These are offsets for the ATM pseudo-header.
717 static u_int off_vpi
;
718 static u_int off_vci
;
719 static u_int off_proto
;
722 * These are offsets for the MTP3 fields.
724 static u_int off_sio
;
725 static u_int off_opc
;
726 static u_int off_dpc
;
727 static u_int off_sls
;
730 * This is the offset of the first byte after the ATM pseudo_header,
731 * or -1 if there is no ATM pseudo-header.
733 static u_int off_payload
;
736 * These are offsets to the beginning of the network-layer header.
738 * If the link layer never uses 802.2 LLC:
740 * "off_nl" and "off_nl_nosnap" are the same.
742 * If the link layer always uses 802.2 LLC:
744 * "off_nl" is the offset if there's a SNAP header following
747 * "off_nl_nosnap" is the offset if there's no SNAP header.
749 * If the link layer is Ethernet:
751 * "off_nl" is the offset if the packet is an Ethernet II packet
752 * (we assume no 802.3+802.2+SNAP);
754 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
755 * with an 802.2 header following it.
758 static u_int off_nl_nosnap
;
766 linktype
= pcap_datalink(p
);
768 pcap_fddipad
= p
->fddipad
;
772 * Assume it's not raw ATM with a pseudo-header, for now.
783 * And assume we're not doing SS7.
791 * Also assume it's not 802.11 with a fixed-length radio header.
797 label_stack_depth
= 0;
805 off_nl
= 6; /* XXX in reality, variable! */
806 off_nl_nosnap
= 6; /* no 802.2 LLC */
809 case DLT_ARCNET_LINUX
:
811 off_nl
= 8; /* XXX in reality, variable! */
812 off_nl_nosnap
= 8; /* no 802.2 LLC */
817 off_nl
= 14; /* Ethernet II */
818 off_nl_nosnap
= 17; /* 802.3+802.2 */
823 * SLIP doesn't have a link level type. The 16 byte
824 * header is hacked into our SLIP driver.
828 off_nl_nosnap
= 16; /* no 802.2 LLC */
832 /* XXX this may be the same as the DLT_PPP_BSDOS case */
836 off_nl_nosnap
= 24; /* no 802.2 LLC */
843 off_nl_nosnap
= 4; /* no 802.2 LLC */
849 off_nl_nosnap
= 12; /* no 802.2 LLC */
854 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
855 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
858 off_nl_nosnap
= 4; /* no 802.2 LLC */
863 * This does no include the Ethernet header, and
864 * only covers session state.
868 off_nl_nosnap
= 8; /* no 802.2 LLC */
874 off_nl_nosnap
= 24; /* no 802.2 LLC */
879 * FDDI doesn't really have a link-level type field.
880 * We set "off_linktype" to the offset of the LLC header.
882 * To check for Ethernet types, we assume that SSAP = SNAP
883 * is being used and pick out the encapsulated Ethernet type.
884 * XXX - should we generate code to check for SNAP?
888 off_linktype
+= pcap_fddipad
;
890 off_nl
= 21; /* FDDI+802.2+SNAP */
891 off_nl_nosnap
= 16; /* FDDI+802.2 */
893 off_nl
+= pcap_fddipad
;
894 off_nl_nosnap
+= pcap_fddipad
;
900 * Token Ring doesn't really have a link-level type field.
901 * We set "off_linktype" to the offset of the LLC header.
903 * To check for Ethernet types, we assume that SSAP = SNAP
904 * is being used and pick out the encapsulated Ethernet type.
905 * XXX - should we generate code to check for SNAP?
907 * XXX - the header is actually variable-length.
908 * Some various Linux patched versions gave 38
909 * as "off_linktype" and 40 as "off_nl"; however,
910 * if a token ring packet has *no* routing
911 * information, i.e. is not source-routed, the correct
912 * values are 20 and 22, as they are in the vanilla code.
914 * A packet is source-routed iff the uppermost bit
915 * of the first byte of the source address, at an
916 * offset of 8, has the uppermost bit set. If the
917 * packet is source-routed, the total number of bytes
918 * of routing information is 2 plus bits 0x1F00 of
919 * the 16-bit value at an offset of 14 (shifted right
920 * 8 - figure out which byte that is).
923 off_nl
= 22; /* Token Ring+802.2+SNAP */
924 off_nl_nosnap
= 17; /* Token Ring+802.2 */
929 * 802.11 doesn't really have a link-level type field.
930 * We set "off_linktype" to the offset of the LLC header.
932 * To check for Ethernet types, we assume that SSAP = SNAP
933 * is being used and pick out the encapsulated Ethernet type.
934 * XXX - should we generate code to check for SNAP?
936 * XXX - the header is actually variable-length. We
937 * assume a 24-byte link-layer header, as appears in
938 * data frames in networks with no bridges. If the
939 * fromds and tods 802.11 header bits are both set,
940 * it's actually supposed to be 30 bytes.
943 off_nl
= 32; /* 802.11+802.2+SNAP */
944 off_nl_nosnap
= 27; /* 802.11+802.2 */
947 case DLT_PRISM_HEADER
:
949 * Same as 802.11, but with an additional header before
950 * the 802.11 header, containing a bunch of additional
951 * information including radio-level information.
953 * The header is 144 bytes long.
955 * XXX - same variable-length header problem; at least
956 * the Prism header is fixed-length.
959 off_linktype
= 144+24;
960 off_nl
= 144+32; /* Prism+802.11+802.2+SNAP */
961 off_nl_nosnap
= 144+27; /* Prism+802.11+802.2 */
964 case DLT_IEEE802_11_RADIO_AVS
:
966 * Same as 802.11, but with an additional header before
967 * the 802.11 header, containing a bunch of additional
968 * information including radio-level information.
970 * The header is 64 bytes long, at least in its
971 * current incarnation.
973 * XXX - same variable-length header problem, only
974 * more so; this header is also variable-length,
975 * with the length being the 32-bit big-endian
976 * number at an offset of 4 from the beginning
977 * of the radio header.
980 off_linktype
= 64+24;
981 off_nl
= 64+32; /* Radio+802.11+802.2+SNAP */
982 off_nl_nosnap
= 64+27; /* Radio+802.11+802.2 */
985 case DLT_IEEE802_11_RADIO
:
987 * Same as 802.11, but with an additional header before
988 * the 802.11 header, containing a bunch of additional
989 * information including radio-level information.
991 * The radiotap header is variable length, and we
992 * generate code to compute its length and store it
993 * in a register. These offsets are relative to the
994 * beginning of the 802.11 header.
997 off_nl
= 32; /* 802.11+802.2+SNAP */
998 off_nl_nosnap
= 27; /* 802.11+802.2 */
1001 case DLT_ATM_RFC1483
:
1002 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1004 * assume routed, non-ISO PDUs
1005 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1007 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1008 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1009 * latter would presumably be treated the way PPPoE
1010 * should be, so you can do "pppoe and udp port 2049"
1011 * or "pppoa and tcp port 80" and have it check for
1012 * PPPo{A,E} and a PPP protocol of IP and....
1015 off_nl
= 8; /* 802.2+SNAP */
1016 off_nl_nosnap
= 3; /* 802.2 */
1021 * Full Frontal ATM; you get AALn PDUs with an ATM
1025 off_vpi
= SUNATM_VPI_POS
;
1026 off_vci
= SUNATM_VCI_POS
;
1027 off_proto
= PROTO_POS
;
1028 off_mac
= -1; /* LLC-encapsulated, so no MAC-layer header */
1029 off_payload
= SUNATM_PKT_BEGIN_POS
;
1030 off_linktype
= off_payload
;
1031 off_nl
= off_payload
+8; /* 802.2+SNAP */
1032 off_nl_nosnap
= off_payload
+3; /* 802.2 */
1038 off_nl_nosnap
= 0; /* no 802.2 LLC */
1041 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
1044 off_nl_nosnap
= 16; /* no 802.2 LLC */
1049 * LocalTalk does have a 1-byte type field in the LLAP header,
1050 * but really it just indicates whether there is a "short" or
1051 * "long" DDP packet following.
1055 off_nl_nosnap
= 0; /* no 802.2 LLC */
1058 case DLT_IP_OVER_FC
:
1060 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1061 * link-level type field. We set "off_linktype" to the
1062 * offset of the LLC header.
1064 * To check for Ethernet types, we assume that SSAP = SNAP
1065 * is being used and pick out the encapsulated Ethernet type.
1066 * XXX - should we generate code to check for SNAP? RFC
1067 * 2625 says SNAP should be used.
1070 off_nl
= 24; /* IPFC+802.2+SNAP */
1071 off_nl_nosnap
= 19; /* IPFC+802.2 */
1076 * XXX - we should set this to handle SNAP-encapsulated
1077 * frames (NLPID of 0x80).
1081 off_nl_nosnap
= 0; /* no 802.2 LLC */
1084 case DLT_APPLE_IP_OVER_IEEE1394
:
1087 off_nl_nosnap
= 18; /* no 802.2 LLC */
1090 case DLT_LINUX_IRDA
:
1092 * Currently, only raw "link[N:M]" filtering is supported.
1101 * Currently, only raw "link[N:M]" filtering is supported.
1108 case DLT_SYMANTEC_FIREWALL
:
1110 off_nl
= 44; /* Ethernet II */
1111 off_nl_nosnap
= 44; /* XXX - what does it do with 802.3 packets? */
1116 /* XXX read this from pf.h? */
1117 off_nl
= PFLOG_HDRLEN
;
1118 off_nl_nosnap
= PFLOG_HDRLEN
; /* no 802.2 LLC */
1121 case DLT_JUNIPER_MFR
:
1122 case DLT_JUNIPER_MLFR
:
1123 case DLT_JUNIPER_MLPPP
:
1124 case DLT_JUNIPER_PPP
:
1125 case DLT_JUNIPER_CHDLC
:
1126 case DLT_JUNIPER_FRELAY
:
1129 off_nl_nosnap
= -1; /* no 802.2 LLC */
1132 case DLT_JUNIPER_ATM1
:
1133 off_linktype
= 4; /* in reality variable between 4-8 */
1138 case DLT_JUNIPER_ATM2
:
1139 off_linktype
= 8; /* in reality variable between 8-12 */
1144 /* frames captured on a Juniper PPPoE service PIC
1145 * contain raw ethernet frames */
1146 case DLT_JUNIPER_PPPOE
:
1147 case DLT_JUNIPER_ETHER
:
1149 off_nl
= 18; /* Ethernet II */
1150 off_nl_nosnap
= 21; /* 802.3+802.2 */
1153 case DLT_JUNIPER_PPPOE_ATM
:
1156 off_nl_nosnap
= -1; /* no 802.2 LLC */
1159 case DLT_JUNIPER_GGSN
:
1162 off_nl_nosnap
= -1; /* no 802.2 LLC */
1165 case DLT_JUNIPER_ES
:
1167 off_nl
= -1; /* not really a network layer but raw IP adresses */
1168 off_nl_nosnap
= -1; /* no 802.2 LLC */
1171 case DLT_JUNIPER_MONITOR
:
1173 off_nl
= 12; /* raw IP/IP6 header */
1174 off_nl_nosnap
= -1; /* no 802.2 LLC */
1177 case DLT_JUNIPER_SERVICES
:
1179 off_nl
= -1; /* L3 proto location dep. on cookie type */
1180 off_nl_nosnap
= -1; /* no 802.2 LLC */
1201 case DLT_LINUX_LAPD
:
1203 * Currently, only raw "link[N:M]" filtering is supported.
1210 bpf_error("unknown data link type %d", linktype
);
1215 * Load a value relative to the beginning of the link-layer header.
1216 * The link-layer header doesn't necessarily begin at the beginning
1217 * of the packet data; there might be a variable-length prefix containing
1218 * radio information.
1220 static struct slist
*
1221 gen_load_llrel(offset
, size
)
1224 struct slist
*s
, *s2
;
1226 s
= gen_llprefixlen();
1229 * If "s" is non-null, it has code to arrange that the X register
1230 * contains the length of the prefix preceding the link-layer
1234 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1238 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
1245 * Load a value relative to the beginning of the specified header.
1247 static struct slist
*
1248 gen_load_a(offrel
, offset
, size
)
1249 enum e_offrel offrel
;
1252 struct slist
*s
, *s2
;
1257 s
= gen_load_llrel(offset
, size
);
1261 s
= gen_load_llrel(off_ll
+ offset
, size
);
1265 s
= gen_load_llrel(off_nl
+ offset
, size
);
1269 s
= gen_load_llrel(off_nl_nosnap
+ offset
, size
);
1274 * Load the X register with the length of the IPv4 header,
1277 s
= gen_loadx_iphdrlen();
1280 * Load the item at {length of the link-layer header} +
1281 * {length of the IPv4 header} + {specified offset}.
1283 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1284 s2
->s
.k
= off_nl
+ offset
;
1289 s
= gen_load_llrel(off_nl
+ 40 + offset
, size
);
1300 * Generate code to load into the X register the sum of the length of
1301 * the IPv4 header and any variable-length header preceding the link-layer
1304 static struct slist
*
1305 gen_loadx_iphdrlen()
1307 struct slist
*s
, *s2
;
1309 s
= gen_llprefixlen();
1312 * There's a variable-length prefix preceding the
1313 * link-layer header. "s" points to a list of statements
1314 * that put the length of that prefix into the X register.
1315 * The 4*([k]&0xf) addressing mode can't be used, as we
1316 * don't have a constant offset, so we have to load the
1317 * value in question into the A register and add to it
1318 * the value from the X register.
1320 s2
= new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
1323 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
1326 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
1331 * The A register now contains the length of the
1332 * IP header. We need to add to it the length
1333 * of the prefix preceding the link-layer
1334 * header, which is still in the X register, and
1335 * move the result into the X register.
1337 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
1338 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
1341 * There is no variable-length header preceding the
1342 * link-layer header; if there's a fixed-length
1343 * header preceding it, its length is included in
1344 * the off_ variables, so it doesn't need to be added.
1346 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
1352 static struct block
*
1359 s
= new_stmt(BPF_LD
|BPF_IMM
);
1361 b
= new_block(JMP(BPF_JEQ
));
1367 static inline struct block
*
1370 return gen_uncond(1);
1373 static inline struct block
*
1376 return gen_uncond(0);
1380 * Byte-swap a 32-bit number.
1381 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1382 * big-endian platforms.)
1384 #define SWAPLONG(y) \
1385 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1388 * Generate code to match a particular packet type.
1390 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1391 * value, if <= ETHERMTU. We use that to determine whether to
1392 * match the type/length field or to check the type/length field for
1393 * a value <= ETHERMTU to see whether it's a type field and then do
1394 * the appropriate test.
1396 static struct block
*
1397 gen_ether_linktype(proto
)
1400 struct block
*b0
, *b1
;
1406 case LLCSAP_NETBEUI
:
1408 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1409 * so we check the DSAP and SSAP.
1411 * LLCSAP_IP checks for IP-over-802.2, rather
1412 * than IP-over-Ethernet or IP-over-SNAP.
1414 * XXX - should we check both the DSAP and the
1415 * SSAP, like this, or should we check just the
1416 * DSAP, as we do for other types <= ETHERMTU
1417 * (i.e., other SAP values)?
1419 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1421 b1
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_H
, (bpf_int32
)
1422 ((proto
<< 8) | proto
));
1430 * Ethernet_II frames, which are Ethernet
1431 * frames with a frame type of ETHERTYPE_IPX;
1433 * Ethernet_802.3 frames, which are 802.3
1434 * frames (i.e., the type/length field is
1435 * a length field, <= ETHERMTU, rather than
1436 * a type field) with the first two bytes
1437 * after the Ethernet/802.3 header being
1440 * Ethernet_802.2 frames, which are 802.3
1441 * frames with an 802.2 LLC header and
1442 * with the IPX LSAP as the DSAP in the LLC
1445 * Ethernet_SNAP frames, which are 802.3
1446 * frames with an LLC header and a SNAP
1447 * header and with an OUI of 0x000000
1448 * (encapsulated Ethernet) and a protocol
1449 * ID of ETHERTYPE_IPX in the SNAP header.
1451 * XXX - should we generate the same code both
1452 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1456 * This generates code to check both for the
1457 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1459 b0
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_B
,
1460 (bpf_int32
)LLCSAP_IPX
);
1461 b1
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_H
,
1466 * Now we add code to check for SNAP frames with
1467 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1469 b0
= gen_snap(0x000000, ETHERTYPE_IPX
, 14);
1473 * Now we generate code to check for 802.3
1474 * frames in general.
1476 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1480 * Now add the check for 802.3 frames before the
1481 * check for Ethernet_802.2 and Ethernet_802.3,
1482 * as those checks should only be done on 802.3
1483 * frames, not on Ethernet frames.
1488 * Now add the check for Ethernet_II frames, and
1489 * do that before checking for the other frame
1492 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1493 (bpf_int32
)ETHERTYPE_IPX
);
1497 case ETHERTYPE_ATALK
:
1498 case ETHERTYPE_AARP
:
1500 * EtherTalk (AppleTalk protocols on Ethernet link
1501 * layer) may use 802.2 encapsulation.
1505 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1506 * we check for an Ethernet type field less than
1507 * 1500, which means it's an 802.3 length field.
1509 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1513 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1514 * SNAP packets with an organization code of
1515 * 0x080007 (Apple, for Appletalk) and a protocol
1516 * type of ETHERTYPE_ATALK (Appletalk).
1518 * 802.2-encapsulated ETHERTYPE_AARP packets are
1519 * SNAP packets with an organization code of
1520 * 0x000000 (encapsulated Ethernet) and a protocol
1521 * type of ETHERTYPE_AARP (Appletalk ARP).
1523 if (proto
== ETHERTYPE_ATALK
)
1524 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
, 14);
1525 else /* proto == ETHERTYPE_AARP */
1526 b1
= gen_snap(0x000000, ETHERTYPE_AARP
, 14);
1530 * Check for Ethernet encapsulation (Ethertalk
1531 * phase 1?); we just check for the Ethernet
1534 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
1540 if (proto
<= ETHERMTU
) {
1542 * This is an LLC SAP value, so the frames
1543 * that match would be 802.2 frames.
1544 * Check that the frame is an 802.2 frame
1545 * (i.e., that the length/type field is
1546 * a length field, <= ETHERMTU) and
1547 * then check the DSAP.
1549 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1551 b1
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_B
,
1557 * This is an Ethernet type, so compare
1558 * the length/type field with it (if
1559 * the frame is an 802.2 frame, the length
1560 * field will be <= ETHERMTU, and, as
1561 * "proto" is > ETHERMTU, this test
1562 * will fail and the frame won't match,
1563 * which is what we want).
1565 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1572 * Generate code to match a particular packet type.
1574 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1575 * value, if <= ETHERMTU. We use that to determine whether to
1576 * match the type field or to check the type field for the special
1577 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1579 static struct block
*
1580 gen_linux_sll_linktype(proto
)
1583 struct block
*b0
, *b1
;
1589 case LLCSAP_NETBEUI
:
1591 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1592 * so we check the DSAP and SSAP.
1594 * LLCSAP_IP checks for IP-over-802.2, rather
1595 * than IP-over-Ethernet or IP-over-SNAP.
1597 * XXX - should we check both the DSAP and the
1598 * SSAP, like this, or should we check just the
1599 * DSAP, as we do for other types <= ETHERMTU
1600 * (i.e., other SAP values)?
1602 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1603 b1
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_H
, (bpf_int32
)
1604 ((proto
<< 8) | proto
));
1610 * Ethernet_II frames, which are Ethernet
1611 * frames with a frame type of ETHERTYPE_IPX;
1613 * Ethernet_802.3 frames, which have a frame
1614 * type of LINUX_SLL_P_802_3;
1616 * Ethernet_802.2 frames, which are 802.3
1617 * frames with an 802.2 LLC header (i.e, have
1618 * a frame type of LINUX_SLL_P_802_2) and
1619 * with the IPX LSAP as the DSAP in the LLC
1622 * Ethernet_SNAP frames, which are 802.3
1623 * frames with an LLC header and a SNAP
1624 * header and with an OUI of 0x000000
1625 * (encapsulated Ethernet) and a protocol
1626 * ID of ETHERTYPE_IPX in the SNAP header.
1628 * First, do the checks on LINUX_SLL_P_802_2
1629 * frames; generate the check for either
1630 * Ethernet_802.2 or Ethernet_SNAP frames, and
1631 * then put a check for LINUX_SLL_P_802_2 frames
1634 b0
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_B
,
1635 (bpf_int32
)LLCSAP_IPX
);
1636 b1
= gen_snap(0x000000, ETHERTYPE_IPX
,
1639 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1643 * Now check for 802.3 frames and OR that with
1644 * the previous test.
1646 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_3
);
1650 * Now add the check for Ethernet_II frames, and
1651 * do that before checking for the other frame
1654 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1655 (bpf_int32
)ETHERTYPE_IPX
);
1659 case ETHERTYPE_ATALK
:
1660 case ETHERTYPE_AARP
:
1662 * EtherTalk (AppleTalk protocols on Ethernet link
1663 * layer) may use 802.2 encapsulation.
1667 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1668 * we check for the 802.2 protocol type in the
1669 * "Ethernet type" field.
1671 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1674 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1675 * SNAP packets with an organization code of
1676 * 0x080007 (Apple, for Appletalk) and a protocol
1677 * type of ETHERTYPE_ATALK (Appletalk).
1679 * 802.2-encapsulated ETHERTYPE_AARP packets are
1680 * SNAP packets with an organization code of
1681 * 0x000000 (encapsulated Ethernet) and a protocol
1682 * type of ETHERTYPE_AARP (Appletalk ARP).
1684 if (proto
== ETHERTYPE_ATALK
)
1685 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
,
1687 else /* proto == ETHERTYPE_AARP */
1688 b1
= gen_snap(0x000000, ETHERTYPE_AARP
,
1693 * Check for Ethernet encapsulation (Ethertalk
1694 * phase 1?); we just check for the Ethernet
1697 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
1703 if (proto
<= ETHERMTU
) {
1705 * This is an LLC SAP value, so the frames
1706 * that match would be 802.2 frames.
1707 * Check for the 802.2 protocol type
1708 * in the "Ethernet type" field, and
1709 * then check the DSAP.
1711 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1713 b1
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_B
,
1719 * This is an Ethernet type, so compare
1720 * the length/type field with it (if
1721 * the frame is an 802.2 frame, the length
1722 * field will be <= ETHERMTU, and, as
1723 * "proto" is > ETHERMTU, this test
1724 * will fail and the frame won't match,
1725 * which is what we want).
1727 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1734 insert_radiotap_load_llprefixlen(b
)
1737 struct slist
*s1
, *s2
;
1740 * Prepend to the statements in this block code to load the
1741 * length of the radiotap header into the register assigned
1742 * to hold that length, if one has been assigned.
1744 if (reg_ll_size
!= -1) {
1746 * The 2 bytes at offsets of 2 and 3 from the beginning
1747 * of the radiotap header are the length of the radiotap
1748 * header; unfortunately, it's little-endian, so we have
1749 * to load it a byte at a time and construct the value.
1753 * Load the high-order byte, at an offset of 3, shift it
1754 * left a byte, and put the result in the X register.
1756 s1
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
1758 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
1761 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
1765 * Load the next byte, at an offset of 2, and OR the
1766 * value from the X register into it.
1768 s2
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
1771 s2
= new_stmt(BPF_ALU
|BPF_OR
|BPF_X
);
1775 * Now allocate a register to hold that value and store
1778 s2
= new_stmt(BPF_ST
);
1779 s2
->s
.k
= reg_ll_size
;
1783 * Now move it into the X register.
1785 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
1789 * Now append all the existing statements in this
1790 * block to these statements.
1792 sappend(s1
, b
->stmts
);
1799 insert_load_llprefixlen(b
)
1804 case DLT_IEEE802_11_RADIO
:
1805 insert_radiotap_load_llprefixlen(b
);
1810 static struct slist
*
1811 gen_radiotap_llprefixlen(void)
1815 if (reg_ll_size
== -1) {
1817 * We haven't yet assigned a register for the length
1818 * of the radiotap header; allocate one.
1820 reg_ll_size
= alloc_reg();
1824 * Load the register containing the radiotap length
1825 * into the X register.
1827 s
= new_stmt(BPF_LDX
|BPF_MEM
);
1828 s
->s
.k
= reg_ll_size
;
1833 * Generate code to compute the link-layer header length, if necessary,
1834 * putting it into the X register, and to return either a pointer to a
1835 * "struct slist" for the list of statements in that code, or NULL if
1836 * no code is necessary.
1838 static struct slist
*
1839 gen_llprefixlen(void)
1843 case DLT_IEEE802_11_RADIO
:
1844 return gen_radiotap_llprefixlen();
1852 * Generate code to match a particular packet type by matching the
1853 * link-layer type field or fields in the 802.2 LLC header.
1855 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1856 * value, if <= ETHERMTU.
1858 static struct block
*
1862 struct block
*b0
, *b1
, *b2
;
1864 /* are we checking MPLS-encapsulated packets? */
1865 if (label_stack_depth
> 0) {
1869 /* FIXME add other L3 proto IDs */
1870 return gen_mpls_linktype(Q_IP
);
1872 case ETHERTYPE_IPV6
:
1874 /* FIXME add other L3 proto IDs */
1875 return gen_mpls_linktype(Q_IPV6
);
1878 bpf_error("unsupported protocol over mpls");
1886 return gen_ether_linktype(proto
);
1894 proto
= (proto
<< 8 | LLCSAP_ISONS
);
1898 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1907 case DLT_IEEE802_11
:
1908 case DLT_IEEE802_11_RADIO_AVS
:
1909 case DLT_IEEE802_11_RADIO
:
1910 case DLT_PRISM_HEADER
:
1911 case DLT_ATM_RFC1483
:
1913 case DLT_IP_OVER_FC
:
1914 return gen_llc_linktype(proto
);
1920 * If "is_lane" is set, check for a LANE-encapsulated
1921 * version of this protocol, otherwise check for an
1922 * LLC-encapsulated version of this protocol.
1924 * We assume LANE means Ethernet, not Token Ring.
1928 * Check that the packet doesn't begin with an
1929 * LE Control marker. (We've already generated
1932 b0
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
1937 * Now generate an Ethernet test.
1939 b1
= gen_ether_linktype(proto
);
1944 * Check for LLC encapsulation and then check the
1947 b0
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
1948 b1
= gen_llc_linktype(proto
);
1956 return gen_linux_sll_linktype(proto
);
1961 case DLT_SLIP_BSDOS
:
1964 * These types don't provide any type field; packets
1967 * XXX - for IPv4, check for a version number of 4, and,
1968 * for IPv6, check for a version number of 6?
1974 case ETHERTYPE_IPV6
:
1976 return gen_true(); /* always true */
1979 return gen_false(); /* always false */
1986 case DLT_PPP_SERIAL
:
1989 * We use Ethernet protocol types inside libpcap;
1990 * map them to the corresponding PPP protocol types.
1999 case ETHERTYPE_IPV6
:
2008 case ETHERTYPE_ATALK
:
2022 * I'm assuming the "Bridging PDU"s that go
2023 * over PPP are Spanning Tree Protocol
2037 * We use Ethernet protocol types inside libpcap;
2038 * map them to the corresponding PPP protocol types.
2043 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_IP
);
2044 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_VJC
);
2046 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_VJNC
);
2051 case ETHERTYPE_IPV6
:
2061 case ETHERTYPE_ATALK
:
2075 * I'm assuming the "Bridging PDU"s that go
2076 * over PPP are Spanning Tree Protocol
2092 * For DLT_NULL, the link-layer header is a 32-bit
2093 * word containing an AF_ value in *host* byte order,
2094 * and for DLT_ENC, the link-layer header begins
2095 * with a 32-bit work containing an AF_ value in
2098 * In addition, if we're reading a saved capture file,
2099 * the host byte order in the capture may not be the
2100 * same as the host byte order on this machine.
2102 * For DLT_LOOP, the link-layer header is a 32-bit
2103 * word containing an AF_ value in *network* byte order.
2105 * XXX - AF_ values may, unfortunately, be platform-
2106 * dependent; for example, FreeBSD's AF_INET6 is 24
2107 * whilst NetBSD's and OpenBSD's is 26.
2109 * This means that, when reading a capture file, just
2110 * checking for our AF_INET6 value won't work if the
2111 * capture file came from another OS.
2120 case ETHERTYPE_IPV6
:
2127 * Not a type on which we support filtering.
2128 * XXX - support those that have AF_ values
2129 * #defined on this platform, at least?
2134 if (linktype
== DLT_NULL
|| linktype
== DLT_ENC
) {
2136 * The AF_ value is in host byte order, but
2137 * the BPF interpreter will convert it to
2138 * network byte order.
2140 * If this is a save file, and it's from a
2141 * machine with the opposite byte order to
2142 * ours, we byte-swap the AF_ value.
2144 * Then we run it through "htonl()", and
2145 * generate code to compare against the result.
2147 if (bpf_pcap
->sf
.rfile
!= NULL
&&
2148 bpf_pcap
->sf
.swapped
)
2149 proto
= SWAPLONG(proto
);
2150 proto
= htonl(proto
);
2152 return (gen_cmp(OR_LINK
, 0, BPF_W
, (bpf_int32
)proto
));
2156 * af field is host byte order in contrast to the rest of
2159 if (proto
== ETHERTYPE_IP
)
2160 return (gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, af
),
2161 BPF_B
, (bpf_int32
)AF_INET
));
2163 else if (proto
== ETHERTYPE_IPV6
)
2164 return (gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, af
),
2165 BPF_B
, (bpf_int32
)AF_INET6
));
2173 case DLT_ARCNET_LINUX
:
2175 * XXX should we check for first fragment if the protocol
2184 case ETHERTYPE_IPV6
:
2185 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2186 (bpf_int32
)ARCTYPE_INET6
));
2190 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2191 (bpf_int32
)ARCTYPE_IP
);
2192 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2193 (bpf_int32
)ARCTYPE_IP_OLD
);
2198 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2199 (bpf_int32
)ARCTYPE_ARP
);
2200 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2201 (bpf_int32
)ARCTYPE_ARP_OLD
);
2205 case ETHERTYPE_REVARP
:
2206 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2207 (bpf_int32
)ARCTYPE_REVARP
));
2209 case ETHERTYPE_ATALK
:
2210 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2211 (bpf_int32
)ARCTYPE_ATALK
));
2218 case ETHERTYPE_ATALK
:
2228 * XXX - assumes a 2-byte Frame Relay header with
2229 * DLCI and flags. What if the address is longer?
2235 * Check for the special NLPID for IP.
2237 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | 0xcc);
2240 case ETHERTYPE_IPV6
:
2242 * Check for the special NLPID for IPv6.
2244 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | 0x8e);
2249 * Check for several OSI protocols.
2251 * Frame Relay packets typically have an OSI
2252 * NLPID at the beginning; we check for each
2255 * What we check for is the NLPID and a frame
2256 * control field of UI, i.e. 0x03 followed
2259 b0
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
2260 b1
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
2261 b2
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
2272 case DLT_JUNIPER_MFR
:
2273 case DLT_JUNIPER_MLFR
:
2274 case DLT_JUNIPER_MLPPP
:
2275 case DLT_JUNIPER_ATM1
:
2276 case DLT_JUNIPER_ATM2
:
2277 case DLT_JUNIPER_PPPOE
:
2278 case DLT_JUNIPER_PPPOE_ATM
:
2279 case DLT_JUNIPER_GGSN
:
2280 case DLT_JUNIPER_ES
:
2281 case DLT_JUNIPER_MONITOR
:
2282 case DLT_JUNIPER_SERVICES
:
2283 case DLT_JUNIPER_ETHER
:
2284 case DLT_JUNIPER_PPP
:
2285 case DLT_JUNIPER_FRELAY
:
2286 case DLT_JUNIPER_CHDLC
:
2287 /* just lets verify the magic number for now -
2288 * on ATM we may have up to 6 different encapsulations on the wire
2289 * and need a lot of heuristics to figure out that the payload
2292 * FIXME encapsulation specific BPF_ filters
2294 return gen_mcmp(OR_LINK
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
2296 case DLT_LINUX_IRDA
:
2297 bpf_error("IrDA link-layer type filtering not implemented");
2300 bpf_error("DOCSIS link-layer type filtering not implemented");
2302 case DLT_LINUX_LAPD
:
2303 bpf_error("LAPD link-layer type filtering not implemented");
2307 * All the types that have no encapsulation should either be
2308 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
2309 * all packets are IP packets, or should be handled in some
2310 * special case, if none of them are (if some are and some
2311 * aren't, the lack of encapsulation is a problem, as we'd
2312 * have to find some other way of determining the packet type).
2314 * Therefore, if "off_linktype" is -1, there's an error.
2316 if (off_linktype
== (u_int
)-1)
2320 * Any type not handled above should always have an Ethernet
2321 * type at an offset of "off_linktype". (PPP is partially
2322 * handled above - the protocol type is mapped from the
2323 * Ethernet and LLC types we use internally to the corresponding
2324 * PPP type - but the PPP type is always specified by a value
2325 * at "off_linktype", so we don't have to do the code generation
2328 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
2332 * Check for an LLC SNAP packet with a given organization code and
2333 * protocol type; we check the entire contents of the 802.2 LLC and
2334 * snap headers, checking for DSAP and SSAP of SNAP and a control
2335 * field of 0x03 in the LLC header, and for the specified organization
2336 * code and protocol type in the SNAP header.
2338 static struct block
*
2339 gen_snap(orgcode
, ptype
, offset
)
2340 bpf_u_int32 orgcode
;
2344 u_char snapblock
[8];
2346 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
2347 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
2348 snapblock
[2] = 0x03; /* control = UI */
2349 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
2350 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
2351 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
2352 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
2353 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
2354 return gen_bcmp(OR_LINK
, offset
, 8, snapblock
);
2358 * Generate code to match a particular packet type, for link-layer types
2359 * using 802.2 LLC headers.
2361 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
2362 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
2364 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2365 * value, if <= ETHERMTU. We use that to determine whether to
2366 * match the DSAP or both DSAP and LSAP or to check the OUI and
2367 * protocol ID in a SNAP header.
2369 static struct block
*
2370 gen_llc_linktype(proto
)
2374 * XXX - handle token-ring variable-length header.
2380 case LLCSAP_NETBEUI
:
2382 * XXX - should we check both the DSAP and the
2383 * SSAP, like this, or should we check just the
2384 * DSAP, as we do for other types <= ETHERMTU
2385 * (i.e., other SAP values)?
2387 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_u_int32
)
2388 ((proto
<< 8) | proto
));
2392 * XXX - are there ever SNAP frames for IPX on
2393 * non-Ethernet 802.x networks?
2395 return gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2396 (bpf_int32
)LLCSAP_IPX
);
2398 case ETHERTYPE_ATALK
:
2400 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2401 * SNAP packets with an organization code of
2402 * 0x080007 (Apple, for Appletalk) and a protocol
2403 * type of ETHERTYPE_ATALK (Appletalk).
2405 * XXX - check for an organization code of
2406 * encapsulated Ethernet as well?
2408 return gen_snap(0x080007, ETHERTYPE_ATALK
, off_linktype
);
2412 * XXX - we don't have to check for IPX 802.3
2413 * here, but should we check for the IPX Ethertype?
2415 if (proto
<= ETHERMTU
) {
2417 * This is an LLC SAP value, so check
2420 return gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
2424 * This is an Ethernet type; we assume that it's
2425 * unlikely that it'll appear in the right place
2426 * at random, and therefore check only the
2427 * location that would hold the Ethernet type
2428 * in a SNAP frame with an organization code of
2429 * 0x000000 (encapsulated Ethernet).
2431 * XXX - if we were to check for the SNAP DSAP and
2432 * LSAP, as per XXX, and were also to check for an
2433 * organization code of 0x000000 (encapsulated
2434 * Ethernet), we'd do
2436 * return gen_snap(0x000000, proto,
2439 * here; for now, we don't, as per the above.
2440 * I don't know whether it's worth the extra CPU
2441 * time to do the right check or not.
2443 return gen_cmp(OR_LINK
, off_linktype
+6, BPF_H
,
2449 static struct block
*
2450 gen_hostop(addr
, mask
, dir
, proto
, src_off
, dst_off
)
2454 u_int src_off
, dst_off
;
2456 struct block
*b0
, *b1
;
2470 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2471 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2477 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2478 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2485 b0
= gen_linktype(proto
);
2486 b1
= gen_mcmp(OR_NET
, offset
, BPF_W
, (bpf_int32
)addr
, mask
);
2492 static struct block
*
2493 gen_hostop6(addr
, mask
, dir
, proto
, src_off
, dst_off
)
2494 struct in6_addr
*addr
;
2495 struct in6_addr
*mask
;
2497 u_int src_off
, dst_off
;
2499 struct block
*b0
, *b1
;
2514 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2515 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2521 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2522 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2529 /* this order is important */
2530 a
= (u_int32_t
*)addr
;
2531 m
= (u_int32_t
*)mask
;
2532 b1
= gen_mcmp(OR_NET
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
2533 b0
= gen_mcmp(OR_NET
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
2535 b0
= gen_mcmp(OR_NET
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
2537 b0
= gen_mcmp(OR_NET
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
2539 b0
= gen_linktype(proto
);
2545 static struct block
*
2546 gen_ehostop(eaddr
, dir
)
2547 register const u_char
*eaddr
;
2550 register struct block
*b0
, *b1
;
2554 return gen_bcmp(OR_LINK
, off_mac
+ 6, 6, eaddr
);
2557 return gen_bcmp(OR_LINK
, off_mac
+ 0, 6, eaddr
);
2560 b0
= gen_ehostop(eaddr
, Q_SRC
);
2561 b1
= gen_ehostop(eaddr
, Q_DST
);
2567 b0
= gen_ehostop(eaddr
, Q_SRC
);
2568 b1
= gen_ehostop(eaddr
, Q_DST
);
2577 * Like gen_ehostop, but for DLT_FDDI
2579 static struct block
*
2580 gen_fhostop(eaddr
, dir
)
2581 register const u_char
*eaddr
;
2584 struct block
*b0
, *b1
;
2589 return gen_bcmp(OR_LINK
, 6 + 1 + pcap_fddipad
, 6, eaddr
);
2591 return gen_bcmp(OR_LINK
, 6 + 1, 6, eaddr
);
2596 return gen_bcmp(OR_LINK
, 0 + 1 + pcap_fddipad
, 6, eaddr
);
2598 return gen_bcmp(OR_LINK
, 0 + 1, 6, eaddr
);
2602 b0
= gen_fhostop(eaddr
, Q_SRC
);
2603 b1
= gen_fhostop(eaddr
, Q_DST
);
2609 b0
= gen_fhostop(eaddr
, Q_SRC
);
2610 b1
= gen_fhostop(eaddr
, Q_DST
);
2619 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2621 static struct block
*
2622 gen_thostop(eaddr
, dir
)
2623 register const u_char
*eaddr
;
2626 register struct block
*b0
, *b1
;
2630 return gen_bcmp(OR_LINK
, 8, 6, eaddr
);
2633 return gen_bcmp(OR_LINK
, 2, 6, eaddr
);
2636 b0
= gen_thostop(eaddr
, Q_SRC
);
2637 b1
= gen_thostop(eaddr
, Q_DST
);
2643 b0
= gen_thostop(eaddr
, Q_SRC
);
2644 b1
= gen_thostop(eaddr
, Q_DST
);
2653 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2655 static struct block
*
2656 gen_wlanhostop(eaddr
, dir
)
2657 register const u_char
*eaddr
;
2660 register struct block
*b0
, *b1
, *b2
;
2661 register struct slist
*s
;
2668 * For control frames, there is no SA.
2670 * For management frames, SA is at an
2671 * offset of 10 from the beginning of
2674 * For data frames, SA is at an offset
2675 * of 10 from the beginning of the packet
2676 * if From DS is clear, at an offset of
2677 * 16 from the beginning of the packet
2678 * if From DS is set and To DS is clear,
2679 * and an offset of 24 from the beginning
2680 * of the packet if From DS is set and To DS
2685 * Generate the tests to be done for data frames
2688 * First, check for To DS set, i.e. check "link[1] & 0x01".
2690 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
2691 b1
= new_block(JMP(BPF_JSET
));
2692 b1
->s
.k
= 0x01; /* To DS */
2696 * If To DS is set, the SA is at 24.
2698 b0
= gen_bcmp(OR_LINK
, 24, 6, eaddr
);
2702 * Now, check for To DS not set, i.e. check
2703 * "!(link[1] & 0x01)".
2705 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
2706 b2
= new_block(JMP(BPF_JSET
));
2707 b2
->s
.k
= 0x01; /* To DS */
2712 * If To DS is not set, the SA is at 16.
2714 b1
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
2718 * Now OR together the last two checks. That gives
2719 * the complete set of checks for data frames with
2725 * Now check for From DS being set, and AND that with
2726 * the ORed-together checks.
2728 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
2729 b1
= new_block(JMP(BPF_JSET
));
2730 b1
->s
.k
= 0x02; /* From DS */
2735 * Now check for data frames with From DS not set.
2737 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
2738 b2
= new_block(JMP(BPF_JSET
));
2739 b2
->s
.k
= 0x02; /* From DS */
2744 * If From DS isn't set, the SA is at 10.
2746 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
2750 * Now OR together the checks for data frames with
2751 * From DS not set and for data frames with From DS
2752 * set; that gives the checks done for data frames.
2757 * Now check for a data frame.
2758 * I.e, check "link[0] & 0x08".
2760 gen_load_a(OR_LINK
, 0, BPF_B
);
2761 b1
= new_block(JMP(BPF_JSET
));
2766 * AND that with the checks done for data frames.
2771 * If the high-order bit of the type value is 0, this
2772 * is a management frame.
2773 * I.e, check "!(link[0] & 0x08)".
2775 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
2776 b2
= new_block(JMP(BPF_JSET
));
2782 * For management frames, the SA is at 10.
2784 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
2788 * OR that with the checks done for data frames.
2789 * That gives the checks done for management and
2795 * If the low-order bit of the type value is 1,
2796 * this is either a control frame or a frame
2797 * with a reserved type, and thus not a
2800 * I.e., check "!(link[0] & 0x04)".
2802 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
2803 b1
= new_block(JMP(BPF_JSET
));
2809 * AND that with the checks for data and management
2819 * For control frames, there is no DA.
2821 * For management frames, DA is at an
2822 * offset of 4 from the beginning of
2825 * For data frames, DA is at an offset
2826 * of 4 from the beginning of the packet
2827 * if To DS is clear and at an offset of
2828 * 16 from the beginning of the packet
2833 * Generate the tests to be done for data frames.
2835 * First, check for To DS set, i.e. "link[1] & 0x01".
2837 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
2838 b1
= new_block(JMP(BPF_JSET
));
2839 b1
->s
.k
= 0x01; /* To DS */
2843 * If To DS is set, the DA is at 16.
2845 b0
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
2849 * Now, check for To DS not set, i.e. check
2850 * "!(link[1] & 0x01)".
2852 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
2853 b2
= new_block(JMP(BPF_JSET
));
2854 b2
->s
.k
= 0x01; /* To DS */
2859 * If To DS is not set, the DA is at 4.
2861 b1
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
2865 * Now OR together the last two checks. That gives
2866 * the complete set of checks for data frames.
2871 * Now check for a data frame.
2872 * I.e, check "link[0] & 0x08".
2874 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
2875 b1
= new_block(JMP(BPF_JSET
));
2880 * AND that with the checks done for data frames.
2885 * If the high-order bit of the type value is 0, this
2886 * is a management frame.
2887 * I.e, check "!(link[0] & 0x08)".
2889 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
2890 b2
= new_block(JMP(BPF_JSET
));
2896 * For management frames, the DA is at 4.
2898 b1
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
2902 * OR that with the checks done for data frames.
2903 * That gives the checks done for management and
2909 * If the low-order bit of the type value is 1,
2910 * this is either a control frame or a frame
2911 * with a reserved type, and thus not a
2914 * I.e., check "!(link[0] & 0x04)".
2916 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
2917 b1
= new_block(JMP(BPF_JSET
));
2923 * AND that with the checks for data and management
2930 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2931 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2937 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2938 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2947 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
2948 * (We assume that the addresses are IEEE 48-bit MAC addresses,
2949 * as the RFC states.)
2951 static struct block
*
2952 gen_ipfchostop(eaddr
, dir
)
2953 register const u_char
*eaddr
;
2956 register struct block
*b0
, *b1
;
2960 return gen_bcmp(OR_LINK
, 10, 6, eaddr
);
2963 return gen_bcmp(OR_LINK
, 2, 6, eaddr
);
2966 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2967 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2973 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2974 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2983 * This is quite tricky because there may be pad bytes in front of the
2984 * DECNET header, and then there are two possible data packet formats that
2985 * carry both src and dst addresses, plus 5 packet types in a format that
2986 * carries only the src node, plus 2 types that use a different format and
2987 * also carry just the src node.
2991 * Instead of doing those all right, we just look for data packets with
2992 * 0 or 1 bytes of padding. If you want to look at other packets, that
2993 * will require a lot more hacking.
2995 * To add support for filtering on DECNET "areas" (network numbers)
2996 * one would want to add a "mask" argument to this routine. That would
2997 * make the filter even more inefficient, although one could be clever
2998 * and not generate masking instructions if the mask is 0xFFFF.
3000 static struct block
*
3001 gen_dnhostop(addr
, dir
)
3005 struct block
*b0
, *b1
, *b2
, *tmp
;
3006 u_int offset_lh
; /* offset if long header is received */
3007 u_int offset_sh
; /* offset if short header is received */
3012 offset_sh
= 1; /* follows flags */
3013 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
3017 offset_sh
= 3; /* follows flags, dstnode */
3018 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
3022 /* Inefficient because we do our Calvinball dance twice */
3023 b0
= gen_dnhostop(addr
, Q_SRC
);
3024 b1
= gen_dnhostop(addr
, Q_DST
);
3030 /* Inefficient because we do our Calvinball dance twice */
3031 b0
= gen_dnhostop(addr
, Q_SRC
);
3032 b1
= gen_dnhostop(addr
, Q_DST
);
3037 bpf_error("ISO host filtering not implemented");
3042 b0
= gen_linktype(ETHERTYPE_DN
);
3043 /* Check for pad = 1, long header case */
3044 tmp
= gen_mcmp(OR_NET
, 2, BPF_H
,
3045 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
3046 b1
= gen_cmp(OR_NET
, 2 + 1 + offset_lh
,
3047 BPF_H
, (bpf_int32
)ntohs(addr
));
3049 /* Check for pad = 0, long header case */
3050 tmp
= gen_mcmp(OR_NET
, 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
3051 b2
= gen_cmp(OR_NET
, 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs(addr
));
3054 /* Check for pad = 1, short header case */
3055 tmp
= gen_mcmp(OR_NET
, 2, BPF_H
,
3056 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
3057 b2
= gen_cmp(OR_NET
, 2 + 1 + offset_sh
, BPF_H
, (bpf_int32
)ntohs(addr
));
3060 /* Check for pad = 0, short header case */
3061 tmp
= gen_mcmp(OR_NET
, 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
3062 b2
= gen_cmp(OR_NET
, 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs(addr
));
3066 /* Combine with test for linktype */
3072 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
3073 * test the bottom-of-stack bit, and then check the version number
3074 * field in the IP header.
3076 static struct block
*
3077 gen_mpls_linktype(proto
)
3080 struct block
*b0
, *b1
;
3085 /* match the bottom-of-stack bit */
3086 b0
= gen_mcmp(OR_NET
, -2, BPF_B
, 0x01, 0x01);
3087 /* match the IPv4 version number */
3088 b1
= gen_mcmp(OR_NET
, 0, BPF_B
, 0x40, 0xf0);
3093 /* match the bottom-of-stack bit */
3094 b0
= gen_mcmp(OR_NET
, -2, BPF_B
, 0x01, 0x01);
3095 /* match the IPv4 version number */
3096 b1
= gen_mcmp(OR_NET
, 0, BPF_B
, 0x60, 0xf0);
3105 static struct block
*
3106 gen_host(addr
, mask
, proto
, dir
)
3112 struct block
*b0
, *b1
;
3117 b0
= gen_host(addr
, mask
, Q_IP
, dir
);
3119 * Only check for non-IPv4 addresses if we're not
3120 * checking MPLS-encapsulated packets.
3122 if (label_stack_depth
== 0) {
3123 b1
= gen_host(addr
, mask
, Q_ARP
, dir
);
3125 b0
= gen_host(addr
, mask
, Q_RARP
, dir
);
3131 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
3134 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
3137 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
3140 bpf_error("'tcp' modifier applied to host");
3143 bpf_error("'sctp' modifier applied to host");
3146 bpf_error("'udp' modifier applied to host");
3149 bpf_error("'icmp' modifier applied to host");
3152 bpf_error("'igmp' modifier applied to host");
3155 bpf_error("'igrp' modifier applied to host");
3158 bpf_error("'pim' modifier applied to host");
3161 bpf_error("'vrrp' modifier applied to host");
3164 bpf_error("ATALK host filtering not implemented");
3167 bpf_error("AARP host filtering not implemented");
3170 return gen_dnhostop(addr
, dir
);
3173 bpf_error("SCA host filtering not implemented");
3176 bpf_error("LAT host filtering not implemented");
3179 bpf_error("MOPDL host filtering not implemented");
3182 bpf_error("MOPRC host filtering not implemented");
3186 bpf_error("'ip6' modifier applied to ip host");
3189 bpf_error("'icmp6' modifier applied to host");
3193 bpf_error("'ah' modifier applied to host");
3196 bpf_error("'esp' modifier applied to host");
3199 bpf_error("ISO host filtering not implemented");
3202 bpf_error("'esis' modifier applied to host");
3205 bpf_error("'isis' modifier applied to host");
3208 bpf_error("'clnp' modifier applied to host");
3211 bpf_error("'stp' modifier applied to host");
3214 bpf_error("IPX host filtering not implemented");
3217 bpf_error("'netbeui' modifier applied to host");
3220 bpf_error("'radio' modifier applied to host");
3229 static struct block
*
3230 gen_host6(addr
, mask
, proto
, dir
)
3231 struct in6_addr
*addr
;
3232 struct in6_addr
*mask
;
3239 return gen_host6(addr
, mask
, Q_IPV6
, dir
);
3242 bpf_error("'ip' modifier applied to ip6 host");
3245 bpf_error("'rarp' modifier applied to ip6 host");
3248 bpf_error("'arp' modifier applied to ip6 host");
3251 bpf_error("'sctp' modifier applied to host");
3254 bpf_error("'tcp' modifier applied to host");
3257 bpf_error("'udp' modifier applied to host");
3260 bpf_error("'icmp' modifier applied to host");
3263 bpf_error("'igmp' modifier applied to host");
3266 bpf_error("'igrp' modifier applied to host");
3269 bpf_error("'pim' modifier applied to host");
3272 bpf_error("'vrrp' modifier applied to host");
3275 bpf_error("ATALK host filtering not implemented");
3278 bpf_error("AARP host filtering not implemented");
3281 bpf_error("'decnet' modifier applied to ip6 host");
3284 bpf_error("SCA host filtering not implemented");
3287 bpf_error("LAT host filtering not implemented");
3290 bpf_error("MOPDL host filtering not implemented");
3293 bpf_error("MOPRC host filtering not implemented");
3296 return gen_hostop6(addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
3299 bpf_error("'icmp6' modifier applied to host");
3302 bpf_error("'ah' modifier applied to host");
3305 bpf_error("'esp' modifier applied to host");
3308 bpf_error("ISO host filtering not implemented");
3311 bpf_error("'esis' modifier applied to host");
3314 bpf_error("'isis' modifier applied to host");
3317 bpf_error("'clnp' modifier applied to host");
3320 bpf_error("'stp' modifier applied to host");
3323 bpf_error("IPX host filtering not implemented");
3326 bpf_error("'netbeui' modifier applied to host");
3329 bpf_error("'radio' modifier applied to host");
3339 static struct block
*
3340 gen_gateway(eaddr
, alist
, proto
, dir
)
3341 const u_char
*eaddr
;
3342 bpf_u_int32
**alist
;
3346 struct block
*b0
, *b1
, *tmp
;
3349 bpf_error("direction applied to 'gateway'");
3356 if (linktype
== DLT_EN10MB
)
3357 b0
= gen_ehostop(eaddr
, Q_OR
);
3358 else if (linktype
== DLT_FDDI
)
3359 b0
= gen_fhostop(eaddr
, Q_OR
);
3360 else if (linktype
== DLT_IEEE802
)
3361 b0
= gen_thostop(eaddr
, Q_OR
);
3362 else if (linktype
== DLT_IEEE802_11
||
3363 linktype
== DLT_IEEE802_11_RADIO_AVS
||
3364 linktype
== DLT_IEEE802_11_RADIO
||
3365 linktype
== DLT_PRISM_HEADER
)
3366 b0
= gen_wlanhostop(eaddr
, Q_OR
);
3367 else if (linktype
== DLT_SUNATM
&& is_lane
) {
3369 * Check that the packet doesn't begin with an
3370 * LE Control marker. (We've already generated
3373 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
3378 * Now check the MAC address.
3380 b0
= gen_ehostop(eaddr
, Q_OR
);
3382 } else if (linktype
== DLT_IP_OVER_FC
)
3383 b0
= gen_ipfchostop(eaddr
, Q_OR
);
3386 "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
3388 b1
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
3390 tmp
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
3398 bpf_error("illegal modifier of 'gateway'");
3404 gen_proto_abbrev(proto
)
3413 b1
= gen_proto(IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
3415 b0
= gen_proto(IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
3421 b1
= gen_proto(IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
3423 b0
= gen_proto(IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
3429 b1
= gen_proto(IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
3431 b0
= gen_proto(IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
3437 b1
= gen_proto(IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
3440 #ifndef IPPROTO_IGMP
3441 #define IPPROTO_IGMP 2
3445 b1
= gen_proto(IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
3448 #ifndef IPPROTO_IGRP
3449 #define IPPROTO_IGRP 9
3452 b1
= gen_proto(IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
3456 #define IPPROTO_PIM 103
3460 b1
= gen_proto(IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
3462 b0
= gen_proto(IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
3467 #ifndef IPPROTO_VRRP
3468 #define IPPROTO_VRRP 112
3472 b1
= gen_proto(IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
3476 b1
= gen_linktype(ETHERTYPE_IP
);
3480 b1
= gen_linktype(ETHERTYPE_ARP
);
3484 b1
= gen_linktype(ETHERTYPE_REVARP
);
3488 bpf_error("link layer applied in wrong context");
3491 b1
= gen_linktype(ETHERTYPE_ATALK
);
3495 b1
= gen_linktype(ETHERTYPE_AARP
);
3499 b1
= gen_linktype(ETHERTYPE_DN
);
3503 b1
= gen_linktype(ETHERTYPE_SCA
);
3507 b1
= gen_linktype(ETHERTYPE_LAT
);
3511 b1
= gen_linktype(ETHERTYPE_MOPDL
);
3515 b1
= gen_linktype(ETHERTYPE_MOPRC
);
3520 b1
= gen_linktype(ETHERTYPE_IPV6
);
3523 #ifndef IPPROTO_ICMPV6
3524 #define IPPROTO_ICMPV6 58
3527 b1
= gen_proto(IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
3532 #define IPPROTO_AH 51
3535 b1
= gen_proto(IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
3537 b0
= gen_proto(IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
3543 #define IPPROTO_ESP 50
3546 b1
= gen_proto(IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
3548 b0
= gen_proto(IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
3554 b1
= gen_linktype(LLCSAP_ISONS
);
3558 b1
= gen_proto(ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
3562 b1
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
3565 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
3566 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3567 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3569 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3571 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3573 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3577 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
3578 b0
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3579 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3581 b0
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3583 b0
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3585 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3589 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
3590 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3591 b1
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3593 b0
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
3598 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3599 b1
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3604 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3605 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3607 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3609 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3614 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3615 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3620 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3621 b1
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3626 b1
= gen_proto(ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
3630 b1
= gen_linktype(LLCSAP_8021D
);
3634 b1
= gen_linktype(LLCSAP_IPX
);
3638 b1
= gen_linktype(LLCSAP_NETBEUI
);
3642 bpf_error("'radio' is not a valid protocol type");
3650 static struct block
*
3657 s
= gen_load_a(OR_NET
, 6, BPF_H
);
3658 b
= new_block(JMP(BPF_JSET
));
3667 * Generate a comparison to a port value in the transport-layer header
3668 * at the specified offset from the beginning of that header.
3670 * XXX - this handles a variable-length prefix preceding the link-layer
3671 * header, such as the radiotap or AVS radio prefix, but doesn't handle
3672 * variable-length link-layer headers (such as Token Ring or 802.11
3675 static struct block
*
3676 gen_portatom(off
, v
)
3680 return gen_cmp(OR_TRAN_IPV4
, off
, BPF_H
, v
);
3684 static struct block
*
3685 gen_portatom6(off
, v
)
3689 return gen_cmp(OR_TRAN_IPV6
, off
, BPF_H
, v
);
3694 gen_portop(port
, proto
, dir
)
3695 int port
, proto
, dir
;
3697 struct block
*b0
, *b1
, *tmp
;
3699 /* ip proto 'proto' */
3700 tmp
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)proto
);
3706 b1
= gen_portatom(0, (bpf_int32
)port
);
3710 b1
= gen_portatom(2, (bpf_int32
)port
);
3715 tmp
= gen_portatom(0, (bpf_int32
)port
);
3716 b1
= gen_portatom(2, (bpf_int32
)port
);
3721 tmp
= gen_portatom(0, (bpf_int32
)port
);
3722 b1
= gen_portatom(2, (bpf_int32
)port
);
3734 static struct block
*
3735 gen_port(port
, ip_proto
, dir
)
3740 struct block
*b0
, *b1
, *tmp
;
3745 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3746 * not LLC encapsulation with LLCSAP_IP.
3748 * For IEEE 802 networks - which includes 802.5 token ring
3749 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3750 * says that SNAP encapsulation is used, not LLC encapsulation
3753 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3754 * RFC 2225 say that SNAP encapsulation is used, not LLC
3755 * encapsulation with LLCSAP_IP.
3757 * So we always check for ETHERTYPE_IP.
3759 b0
= gen_linktype(ETHERTYPE_IP
);
3765 b1
= gen_portop(port
, ip_proto
, dir
);
3769 tmp
= gen_portop(port
, IPPROTO_TCP
, dir
);
3770 b1
= gen_portop(port
, IPPROTO_UDP
, dir
);
3772 tmp
= gen_portop(port
, IPPROTO_SCTP
, dir
);
3785 gen_portop6(port
, proto
, dir
)
3786 int port
, proto
, dir
;
3788 struct block
*b0
, *b1
, *tmp
;
3790 /* ip6 proto 'proto' */
3791 b0
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)proto
);
3795 b1
= gen_portatom6(0, (bpf_int32
)port
);
3799 b1
= gen_portatom6(2, (bpf_int32
)port
);
3804 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3805 b1
= gen_portatom6(2, (bpf_int32
)port
);
3810 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3811 b1
= gen_portatom6(2, (bpf_int32
)port
);
3823 static struct block
*
3824 gen_port6(port
, ip_proto
, dir
)
3829 struct block
*b0
, *b1
, *tmp
;
3831 /* link proto ip6 */
3832 b0
= gen_linktype(ETHERTYPE_IPV6
);
3838 b1
= gen_portop6(port
, ip_proto
, dir
);
3842 tmp
= gen_portop6(port
, IPPROTO_TCP
, dir
);
3843 b1
= gen_portop6(port
, IPPROTO_UDP
, dir
);
3845 tmp
= gen_portop6(port
, IPPROTO_SCTP
, dir
);
3857 /* gen_portrange code */
3858 static struct block
*
3859 gen_portrangeatom(off
, v1
, v2
)
3863 struct block
*b1
, *b2
;
3867 * Reverse the order of the ports, so v1 is the lower one.
3876 b1
= gen_cmp_ge(OR_TRAN_IPV4
, off
, BPF_H
, v1
);
3877 b2
= gen_cmp_le(OR_TRAN_IPV4
, off
, BPF_H
, v2
);
3885 gen_portrangeop(port1
, port2
, proto
, dir
)
3890 struct block
*b0
, *b1
, *tmp
;
3892 /* ip proto 'proto' */
3893 tmp
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)proto
);
3899 b1
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
3903 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
3908 tmp
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
3909 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
3914 tmp
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
3915 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
3927 static struct block
*
3928 gen_portrange(port1
, port2
, ip_proto
, dir
)
3933 struct block
*b0
, *b1
, *tmp
;
3936 b0
= gen_linktype(ETHERTYPE_IP
);
3942 b1
= gen_portrangeop(port1
, port2
, ip_proto
, dir
);
3946 tmp
= gen_portrangeop(port1
, port2
, IPPROTO_TCP
, dir
);
3947 b1
= gen_portrangeop(port1
, port2
, IPPROTO_UDP
, dir
);
3949 tmp
= gen_portrangeop(port1
, port2
, IPPROTO_SCTP
, dir
);
3961 static struct block
*
3962 gen_portrangeatom6(off
, v1
, v2
)
3966 struct block
*b1
, *b2
;
3970 * Reverse the order of the ports, so v1 is the lower one.
3979 b1
= gen_cmp_ge(OR_TRAN_IPV6
, off
, BPF_H
, v1
);
3980 b2
= gen_cmp_le(OR_TRAN_IPV6
, off
, BPF_H
, v2
);
3988 gen_portrangeop6(port1
, port2
, proto
, dir
)
3993 struct block
*b0
, *b1
, *tmp
;
3995 /* ip6 proto 'proto' */
3996 b0
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)proto
);
4000 b1
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
4004 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
4009 tmp
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
4010 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
4015 tmp
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
4016 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
4028 static struct block
*
4029 gen_portrange6(port1
, port2
, ip_proto
, dir
)
4034 struct block
*b0
, *b1
, *tmp
;
4036 /* link proto ip6 */
4037 b0
= gen_linktype(ETHERTYPE_IPV6
);
4043 b1
= gen_portrangeop6(port1
, port2
, ip_proto
, dir
);
4047 tmp
= gen_portrangeop6(port1
, port2
, IPPROTO_TCP
, dir
);
4048 b1
= gen_portrangeop6(port1
, port2
, IPPROTO_UDP
, dir
);
4050 tmp
= gen_portrangeop6(port1
, port2
, IPPROTO_SCTP
, dir
);
4063 lookup_proto(name
, proto
)
4064 register const char *name
;
4074 v
= pcap_nametoproto(name
);
4075 if (v
== PROTO_UNDEF
)
4076 bpf_error("unknown ip proto '%s'", name
);
4080 /* XXX should look up h/w protocol type based on linktype */
4081 v
= pcap_nametoeproto(name
);
4082 if (v
== PROTO_UNDEF
) {
4083 v
= pcap_nametollc(name
);
4084 if (v
== PROTO_UNDEF
)
4085 bpf_error("unknown ether proto '%s'", name
);
4090 if (strcmp(name
, "esis") == 0)
4092 else if (strcmp(name
, "isis") == 0)
4094 else if (strcmp(name
, "clnp") == 0)
4097 bpf_error("unknown osi proto '%s'", name
);
4117 static struct block
*
4118 gen_protochain(v
, proto
, dir
)
4123 #ifdef NO_PROTOCHAIN
4124 return gen_proto(v
, proto
, dir
);
4126 struct block
*b0
, *b
;
4127 struct slist
*s
[100];
4128 int fix2
, fix3
, fix4
, fix5
;
4129 int ahcheck
, again
, end
;
4131 int reg2
= alloc_reg();
4133 memset(s
, 0, sizeof(s
));
4134 fix2
= fix3
= fix4
= fix5
= 0;
4141 b0
= gen_protochain(v
, Q_IP
, dir
);
4142 b
= gen_protochain(v
, Q_IPV6
, dir
);
4146 bpf_error("bad protocol applied for 'protochain'");
4151 * We don't handle variable-length radiotap here headers yet.
4152 * We might want to add BPF instructions to do the protochain
4153 * work, to simplify that and, on platforms that have a BPF
4154 * interpreter with the new instructions, let the filtering
4155 * be done in the kernel. (We already require a modified BPF
4156 * engine to do the protochain stuff, to support backward
4157 * branches, and backward branch support is unlikely to appear
4158 * in kernel BPF engines.)
4160 if (linktype
== DLT_IEEE802_11_RADIO
)
4161 bpf_error("'protochain' not supported with radiotap headers");
4163 no_optimize
= 1; /*this code is not compatible with optimzer yet */
4166 * s[0] is a dummy entry to protect other BPF insn from damage
4167 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
4168 * hard to find interdependency made by jump table fixup.
4171 s
[i
] = new_stmt(0); /*dummy*/
4176 b0
= gen_linktype(ETHERTYPE_IP
);
4179 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
4180 s
[i
]->s
.k
= off_nl
+ 9;
4182 /* X = ip->ip_hl << 2 */
4183 s
[i
] = new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
4189 b0
= gen_linktype(ETHERTYPE_IPV6
);
4191 /* A = ip6->ip_nxt */
4192 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
4193 s
[i
]->s
.k
= off_nl
+ 6;
4195 /* X = sizeof(struct ip6_hdr) */
4196 s
[i
] = new_stmt(BPF_LDX
|BPF_IMM
);
4202 bpf_error("unsupported proto to gen_protochain");
4206 /* again: if (A == v) goto end; else fall through; */
4208 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
4210 s
[i
]->s
.jt
= NULL
; /*later*/
4211 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
4215 #ifndef IPPROTO_NONE
4216 #define IPPROTO_NONE 59
4218 /* if (A == IPPROTO_NONE) goto end */
4219 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
4220 s
[i
]->s
.jt
= NULL
; /*later*/
4221 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
4222 s
[i
]->s
.k
= IPPROTO_NONE
;
4223 s
[fix5
]->s
.jf
= s
[i
];
4228 if (proto
== Q_IPV6
) {
4229 int v6start
, v6end
, v6advance
, j
;
4232 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
4233 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
4234 s
[i
]->s
.jt
= NULL
; /*later*/
4235 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
4236 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
4237 s
[fix2
]->s
.jf
= s
[i
];
4239 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
4240 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
4241 s
[i
]->s
.jt
= NULL
; /*later*/
4242 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
4243 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
4245 /* if (A == IPPROTO_ROUTING) goto v6advance */
4246 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
4247 s
[i
]->s
.jt
= NULL
; /*later*/
4248 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
4249 s
[i
]->s
.k
= IPPROTO_ROUTING
;
4251 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
4252 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
4253 s
[i
]->s
.jt
= NULL
; /*later*/
4254 s
[i
]->s
.jf
= NULL
; /*later*/
4255 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
4266 * X = X + (P[X + 1] + 1) * 8;
4269 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
4271 /* A = P[X + packet head] */
4272 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
4276 s
[i
] = new_stmt(BPF_ST
);
4280 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
4283 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
4287 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
4289 /* A = P[X + packet head]; */
4290 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
4294 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
4298 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
4302 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
4305 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
4309 /* goto again; (must use BPF_JA for backward jump) */
4310 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
4311 s
[i
]->s
.k
= again
- i
- 1;
4312 s
[i
- 1]->s
.jf
= s
[i
];
4316 for (j
= v6start
; j
<= v6end
; j
++)
4317 s
[j
]->s
.jt
= s
[v6advance
];
4322 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
4324 s
[fix2
]->s
.jf
= s
[i
];
4330 /* if (A == IPPROTO_AH) then fall through; else goto end; */
4331 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
4332 s
[i
]->s
.jt
= NULL
; /*later*/
4333 s
[i
]->s
.jf
= NULL
; /*later*/
4334 s
[i
]->s
.k
= IPPROTO_AH
;
4336 s
[fix3
]->s
.jf
= s
[ahcheck
];
4343 * X = X + (P[X + 1] + 2) * 4;
4346 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
4348 /* A = P[X + packet head]; */
4349 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
4353 s
[i
] = new_stmt(BPF_ST
);
4357 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
4360 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
4364 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
4366 /* A = P[X + packet head] */
4367 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
4371 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
4375 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
4379 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
4382 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
4386 /* goto again; (must use BPF_JA for backward jump) */
4387 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
4388 s
[i
]->s
.k
= again
- i
- 1;
4393 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
4395 s
[fix2
]->s
.jt
= s
[end
];
4396 s
[fix4
]->s
.jf
= s
[end
];
4397 s
[fix5
]->s
.jt
= s
[end
];
4404 for (i
= 0; i
< max
- 1; i
++)
4405 s
[i
]->next
= s
[i
+ 1];
4406 s
[max
- 1]->next
= NULL
;
4411 b
= new_block(JMP(BPF_JEQ
));
4412 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
4423 * Generate code that checks whether the packet is a packet for protocol
4424 * <proto> and whether the type field in that protocol's header has
4425 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
4426 * IP packet and checks the protocol number in the IP header against <v>.
4428 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
4429 * against Q_IP and Q_IPV6.
4431 static struct block
*
4432 gen_proto(v
, proto
, dir
)
4437 struct block
*b0
, *b1
;
4439 if (dir
!= Q_DEFAULT
)
4440 bpf_error("direction applied to 'proto'");
4445 b0
= gen_proto(v
, Q_IP
, dir
);
4446 b1
= gen_proto(v
, Q_IPV6
, dir
);
4454 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4455 * not LLC encapsulation with LLCSAP_IP.
4457 * For IEEE 802 networks - which includes 802.5 token ring
4458 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4459 * says that SNAP encapsulation is used, not LLC encapsulation
4462 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4463 * RFC 2225 say that SNAP encapsulation is used, not LLC
4464 * encapsulation with LLCSAP_IP.
4466 * So we always check for ETHERTYPE_IP.
4469 b0
= gen_linktype(ETHERTYPE_IP
);
4471 b1
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)v
);
4473 b1
= gen_protochain(v
, Q_IP
);
4483 * Frame Relay packets typically have an OSI
4484 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
4485 * generates code to check for all the OSI
4486 * NLPIDs, so calling it and then adding a check
4487 * for the particular NLPID for which we're
4488 * looking is bogus, as we can just check for
4491 * What we check for is the NLPID and a frame
4492 * control field value of UI, i.e. 0x03 followed
4495 * XXX - assumes a 2-byte Frame Relay header with
4496 * DLCI and flags. What if the address is longer?
4498 * XXX - what about SNAP-encapsulated frames?
4500 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | v
);
4506 * Cisco uses an Ethertype lookalike - for OSI,
4509 b0
= gen_linktype(LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
4510 /* OSI in C-HDLC is stuffed with a fudge byte */
4511 b1
= gen_cmp(OR_NET_NOSNAP
, 1, BPF_B
, (long)v
);
4516 b0
= gen_linktype(LLCSAP_ISONS
);
4517 b1
= gen_cmp(OR_NET_NOSNAP
, 0, BPF_B
, (long)v
);
4523 b0
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
4525 * 4 is the offset of the PDU type relative to the IS-IS
4528 b1
= gen_cmp(OR_NET_NOSNAP
, 4, BPF_B
, (long)v
);
4533 bpf_error("arp does not encapsulate another protocol");
4537 bpf_error("rarp does not encapsulate another protocol");
4541 bpf_error("atalk encapsulation is not specifiable");
4545 bpf_error("decnet encapsulation is not specifiable");
4549 bpf_error("sca does not encapsulate another protocol");
4553 bpf_error("lat does not encapsulate another protocol");
4557 bpf_error("moprc does not encapsulate another protocol");
4561 bpf_error("mopdl does not encapsulate another protocol");
4565 return gen_linktype(v
);
4568 bpf_error("'udp proto' is bogus");
4572 bpf_error("'tcp proto' is bogus");
4576 bpf_error("'sctp proto' is bogus");
4580 bpf_error("'icmp proto' is bogus");
4584 bpf_error("'igmp proto' is bogus");
4588 bpf_error("'igrp proto' is bogus");
4592 bpf_error("'pim proto' is bogus");
4596 bpf_error("'vrrp proto' is bogus");
4601 b0
= gen_linktype(ETHERTYPE_IPV6
);
4603 b1
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)v
);
4605 b1
= gen_protochain(v
, Q_IPV6
);
4611 bpf_error("'icmp6 proto' is bogus");
4615 bpf_error("'ah proto' is bogus");
4618 bpf_error("'ah proto' is bogus");
4621 bpf_error("'stp proto' is bogus");
4624 bpf_error("'ipx proto' is bogus");
4627 bpf_error("'netbeui proto' is bogus");
4630 bpf_error("'radio proto' is bogus");
4641 register const char *name
;
4644 int proto
= q
.proto
;
4648 bpf_u_int32 mask
, addr
;
4650 bpf_u_int32
**alist
;
4653 struct sockaddr_in
*sin
;
4654 struct sockaddr_in6
*sin6
;
4655 struct addrinfo
*res
, *res0
;
4656 struct in6_addr mask128
;
4658 struct block
*b
, *tmp
;
4659 int port
, real_proto
;
4665 addr
= pcap_nametonetaddr(name
);
4667 bpf_error("unknown network '%s'", name
);
4668 /* Left justify network addr and calculate its network mask */
4670 while (addr
&& (addr
& 0xff000000) == 0) {
4674 return gen_host(addr
, mask
, proto
, dir
);
4678 if (proto
== Q_LINK
) {
4682 eaddr
= pcap_ether_hostton(name
);
4685 "unknown ether host '%s'", name
);
4686 b
= gen_ehostop(eaddr
, dir
);
4691 eaddr
= pcap_ether_hostton(name
);
4694 "unknown FDDI host '%s'", name
);
4695 b
= gen_fhostop(eaddr
, dir
);
4700 eaddr
= pcap_ether_hostton(name
);
4703 "unknown token ring host '%s'", name
);
4704 b
= gen_thostop(eaddr
, dir
);
4708 case DLT_IEEE802_11
:
4709 case DLT_IEEE802_11_RADIO_AVS
:
4710 case DLT_IEEE802_11_RADIO
:
4711 case DLT_PRISM_HEADER
:
4712 eaddr
= pcap_ether_hostton(name
);
4715 "unknown 802.11 host '%s'", name
);
4716 b
= gen_wlanhostop(eaddr
, dir
);
4720 case DLT_IP_OVER_FC
:
4721 eaddr
= pcap_ether_hostton(name
);
4724 "unknown Fibre Channel host '%s'", name
);
4725 b
= gen_ipfchostop(eaddr
, dir
);
4734 * Check that the packet doesn't begin
4735 * with an LE Control marker. (We've
4736 * already generated a test for LANE.)
4738 tmp
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
4742 eaddr
= pcap_ether_hostton(name
);
4745 "unknown ether host '%s'", name
);
4746 b
= gen_ehostop(eaddr
, dir
);
4752 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
4753 } else if (proto
== Q_DECNET
) {
4754 unsigned short dn_addr
= __pcap_nametodnaddr(name
);
4756 * I don't think DECNET hosts can be multihomed, so
4757 * there is no need to build up a list of addresses
4759 return (gen_host(dn_addr
, 0, proto
, dir
));
4762 alist
= pcap_nametoaddr(name
);
4763 if (alist
== NULL
|| *alist
== NULL
)
4764 bpf_error("unknown host '%s'", name
);
4766 if (off_linktype
== (u_int
)-1 && tproto
== Q_DEFAULT
)
4768 b
= gen_host(**alist
++, 0xffffffff, tproto
, dir
);
4770 tmp
= gen_host(**alist
++, 0xffffffff,
4777 memset(&mask128
, 0xff, sizeof(mask128
));
4778 res0
= res
= pcap_nametoaddrinfo(name
);
4780 bpf_error("unknown host '%s'", name
);
4782 tproto
= tproto6
= proto
;
4783 if (off_linktype
== -1 && tproto
== Q_DEFAULT
) {
4787 for (res
= res0
; res
; res
= res
->ai_next
) {
4788 switch (res
->ai_family
) {
4790 if (tproto
== Q_IPV6
)
4793 sin
= (struct sockaddr_in
*)
4795 tmp
= gen_host(ntohl(sin
->sin_addr
.s_addr
),
4796 0xffffffff, tproto
, dir
);
4799 if (tproto6
== Q_IP
)
4802 sin6
= (struct sockaddr_in6
*)
4804 tmp
= gen_host6(&sin6
->sin6_addr
,
4805 &mask128
, tproto6
, dir
);
4816 bpf_error("unknown host '%s'%s", name
,
4817 (proto
== Q_DEFAULT
)
4819 : " for specified address family");
4826 if (proto
!= Q_DEFAULT
&&
4827 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
4828 bpf_error("illegal qualifier of 'port'");
4829 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
4830 bpf_error("unknown port '%s'", name
);
4831 if (proto
== Q_UDP
) {
4832 if (real_proto
== IPPROTO_TCP
)
4833 bpf_error("port '%s' is tcp", name
);
4834 else if (real_proto
== IPPROTO_SCTP
)
4835 bpf_error("port '%s' is sctp", name
);
4837 /* override PROTO_UNDEF */
4838 real_proto
= IPPROTO_UDP
;
4840 if (proto
== Q_TCP
) {
4841 if (real_proto
== IPPROTO_UDP
)
4842 bpf_error("port '%s' is udp", name
);
4844 else if (real_proto
== IPPROTO_SCTP
)
4845 bpf_error("port '%s' is sctp", name
);
4847 /* override PROTO_UNDEF */
4848 real_proto
= IPPROTO_TCP
;
4850 if (proto
== Q_SCTP
) {
4851 if (real_proto
== IPPROTO_UDP
)
4852 bpf_error("port '%s' is udp", name
);
4854 else if (real_proto
== IPPROTO_TCP
)
4855 bpf_error("port '%s' is tcp", name
);
4857 /* override PROTO_UNDEF */
4858 real_proto
= IPPROTO_SCTP
;
4861 return gen_port(port
, real_proto
, dir
);
4865 b
= gen_port(port
, real_proto
, dir
);
4866 gen_or(gen_port6(port
, real_proto
, dir
), b
);
4872 if (proto
!= Q_DEFAULT
&&
4873 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
4874 bpf_error("illegal qualifier of 'portrange'");
4875 if (pcap_nametoportrange(name
, &port1
, &port2
, &real_proto
) == 0)
4876 bpf_error("unknown port in range '%s'", name
);
4877 if (proto
== Q_UDP
) {
4878 if (real_proto
== IPPROTO_TCP
)
4879 bpf_error("port in range '%s' is tcp", name
);
4880 else if (real_proto
== IPPROTO_SCTP
)
4881 bpf_error("port in range '%s' is sctp", name
);
4883 /* override PROTO_UNDEF */
4884 real_proto
= IPPROTO_UDP
;
4886 if (proto
== Q_TCP
) {
4887 if (real_proto
== IPPROTO_UDP
)
4888 bpf_error("port in range '%s' is udp", name
);
4889 else if (real_proto
== IPPROTO_SCTP
)
4890 bpf_error("port in range '%s' is sctp", name
);
4892 /* override PROTO_UNDEF */
4893 real_proto
= IPPROTO_TCP
;
4895 if (proto
== Q_SCTP
) {
4896 if (real_proto
== IPPROTO_UDP
)
4897 bpf_error("port in range '%s' is udp", name
);
4898 else if (real_proto
== IPPROTO_TCP
)
4899 bpf_error("port in range '%s' is tcp", name
);
4901 /* override PROTO_UNDEF */
4902 real_proto
= IPPROTO_SCTP
;
4905 return gen_portrange(port1
, port2
, real_proto
, dir
);
4909 b
= gen_portrange(port1
, port2
, real_proto
, dir
);
4910 gen_or(gen_portrange6(port1
, port2
, real_proto
, dir
), b
);
4917 eaddr
= pcap_ether_hostton(name
);
4919 bpf_error("unknown ether host: %s", name
);
4921 alist
= pcap_nametoaddr(name
);
4922 if (alist
== NULL
|| *alist
== NULL
)
4923 bpf_error("unknown host '%s'", name
);
4924 b
= gen_gateway(eaddr
, alist
, proto
, dir
);
4928 bpf_error("'gateway' not supported in this configuration");
4932 real_proto
= lookup_proto(name
, proto
);
4933 if (real_proto
>= 0)
4934 return gen_proto(real_proto
, proto
, dir
);
4936 bpf_error("unknown protocol: %s", name
);
4939 real_proto
= lookup_proto(name
, proto
);
4940 if (real_proto
>= 0)
4941 return gen_protochain(real_proto
, proto
, dir
);
4943 bpf_error("unknown protocol: %s", name
);
4955 gen_mcode(s1
, s2
, masklen
, q
)
4956 register const char *s1
, *s2
;
4957 register int masklen
;
4960 register int nlen
, mlen
;
4963 nlen
= __pcap_atoin(s1
, &n
);
4964 /* Promote short ipaddr */
4968 mlen
= __pcap_atoin(s2
, &m
);
4969 /* Promote short ipaddr */
4972 bpf_error("non-network bits set in \"%s mask %s\"",
4975 /* Convert mask len to mask */
4977 bpf_error("mask length must be <= 32");
4978 m
= 0xffffffff << (32 - masklen
);
4980 bpf_error("non-network bits set in \"%s/%d\"",
4987 return gen_host(n
, m
, q
.proto
, q
.dir
);
4990 bpf_error("Mask syntax for networks only");
4998 register const char *s
;
5003 int proto
= q
.proto
;
5009 else if (q
.proto
== Q_DECNET
)
5010 vlen
= __pcap_atodn(s
, &v
);
5012 vlen
= __pcap_atoin(s
, &v
);
5019 if (proto
== Q_DECNET
)
5020 return gen_host(v
, 0, proto
, dir
);
5021 else if (proto
== Q_LINK
) {
5022 bpf_error("illegal link layer address");
5025 if (s
== NULL
&& q
.addr
== Q_NET
) {
5026 /* Promote short net number */
5027 while (v
&& (v
& 0xff000000) == 0) {
5032 /* Promote short ipaddr */
5036 return gen_host(v
, mask
, proto
, dir
);
5041 proto
= IPPROTO_UDP
;
5042 else if (proto
== Q_TCP
)
5043 proto
= IPPROTO_TCP
;
5044 else if (proto
== Q_SCTP
)
5045 proto
= IPPROTO_SCTP
;
5046 else if (proto
== Q_DEFAULT
)
5047 proto
= PROTO_UNDEF
;
5049 bpf_error("illegal qualifier of 'port'");
5052 return gen_port((int)v
, proto
, dir
);
5056 b
= gen_port((int)v
, proto
, dir
);
5057 gen_or(gen_port6((int)v
, proto
, dir
), b
);
5064 proto
= IPPROTO_UDP
;
5065 else if (proto
== Q_TCP
)
5066 proto
= IPPROTO_TCP
;
5067 else if (proto
== Q_SCTP
)
5068 proto
= IPPROTO_SCTP
;
5069 else if (proto
== Q_DEFAULT
)
5070 proto
= PROTO_UNDEF
;
5072 bpf_error("illegal qualifier of 'portrange'");
5075 return gen_portrange((int)v
, (int)v
, proto
, dir
);
5079 b
= gen_portrange((int)v
, (int)v
, proto
, dir
);
5080 gen_or(gen_portrange6((int)v
, (int)v
, proto
, dir
), b
);
5086 bpf_error("'gateway' requires a name");
5090 return gen_proto((int)v
, proto
, dir
);
5093 return gen_protochain((int)v
, proto
, dir
);
5108 gen_mcode6(s1
, s2
, masklen
, q
)
5109 register const char *s1
, *s2
;
5110 register int masklen
;
5113 struct addrinfo
*res
;
5114 struct in6_addr
*addr
;
5115 struct in6_addr mask
;
5120 bpf_error("no mask %s supported", s2
);
5122 res
= pcap_nametoaddrinfo(s1
);
5124 bpf_error("invalid ip6 address %s", s1
);
5126 bpf_error("%s resolved to multiple address", s1
);
5127 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
5129 if (sizeof(mask
) * 8 < masklen
)
5130 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
5131 memset(&mask
, 0, sizeof(mask
));
5132 memset(&mask
, 0xff, masklen
/ 8);
5134 mask
.s6_addr
[masklen
/ 8] =
5135 (0xff << (8 - masklen
% 8)) & 0xff;
5138 a
= (u_int32_t
*)addr
;
5139 m
= (u_int32_t
*)&mask
;
5140 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
5141 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
5142 bpf_error("non-network bits set in \"%s/%d\"", s1
, masklen
);
5150 bpf_error("Mask syntax for networks only");
5154 b
= gen_host6(addr
, &mask
, q
.proto
, q
.dir
);
5159 bpf_error("invalid qualifier against IPv6 address");
5167 register const u_char
*eaddr
;
5170 struct block
*b
, *tmp
;
5172 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
5173 if (linktype
== DLT_EN10MB
)
5174 return gen_ehostop(eaddr
, (int)q
.dir
);
5175 if (linktype
== DLT_FDDI
)
5176 return gen_fhostop(eaddr
, (int)q
.dir
);
5177 if (linktype
== DLT_IEEE802
)
5178 return gen_thostop(eaddr
, (int)q
.dir
);
5179 if (linktype
== DLT_IEEE802_11
||
5180 linktype
== DLT_IEEE802_11_RADIO_AVS
||
5181 linktype
== DLT_IEEE802_11_RADIO
||
5182 linktype
== DLT_PRISM_HEADER
)
5183 return gen_wlanhostop(eaddr
, (int)q
.dir
);
5184 if (linktype
== DLT_SUNATM
&& is_lane
) {
5186 * Check that the packet doesn't begin with an
5187 * LE Control marker. (We've already generated
5190 tmp
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
5195 * Now check the MAC address.
5197 b
= gen_ehostop(eaddr
, (int)q
.dir
);
5201 if (linktype
== DLT_IP_OVER_FC
)
5202 return gen_ipfchostop(eaddr
, (int)q
.dir
);
5203 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5205 bpf_error("ethernet address used in non-ether expression");
5211 struct slist
*s0
, *s1
;
5214 * This is definitely not the best way to do this, but the
5215 * lists will rarely get long.
5222 static struct slist
*
5228 s
= new_stmt(BPF_LDX
|BPF_MEM
);
5233 static struct slist
*
5239 s
= new_stmt(BPF_LD
|BPF_MEM
);
5245 * Modify "index" to use the value stored into its register as an
5246 * offset relative to the beginning of the header for the protocol
5247 * "proto", and allocate a register and put an item "size" bytes long
5248 * (1, 2, or 4) at that offset into that register, making it the register
5252 gen_load(proto
, index
, size
)
5257 struct slist
*s
, *tmp
;
5259 int regno
= alloc_reg();
5261 free_reg(index
->regno
);
5265 bpf_error("data size must be 1, 2, or 4");
5281 bpf_error("unsupported index operation");
5285 * The offset is relative to the beginning of the packet
5286 * data, if we have a radio header. (If we don't, this
5289 if (linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
5290 linktype
!= DLT_IEEE802_11_RADIO
&&
5291 linktype
!= DLT_PRISM_HEADER
)
5292 bpf_error("radio information not present in capture");
5295 * Load into the X register the offset computed into the
5296 * register specifed by "index".
5298 s
= xfer_to_x(index
);
5301 * Load the item at that offset.
5303 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
5305 sappend(index
->s
, s
);
5310 * The offset is relative to the beginning of
5311 * the link-layer header.
5313 * XXX - what about ATM LANE? Should the index be
5314 * relative to the beginning of the AAL5 frame, so
5315 * that 0 refers to the beginning of the LE Control
5316 * field, or relative to the beginning of the LAN
5317 * frame, so that 0 refers, for Ethernet LANE, to
5318 * the beginning of the destination address?
5320 s
= gen_llprefixlen();
5323 * If "s" is non-null, it has code to arrange that the
5324 * X register contains the length of the prefix preceding
5325 * the link-layer header. Add to it the offset computed
5326 * into the register specified by "index", and move that
5327 * into the X register. Otherwise, just load into the X
5328 * register the offset computed into the register specifed
5332 sappend(s
, xfer_to_a(index
));
5333 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
5334 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
5336 s
= xfer_to_x(index
);
5339 * Load the item at the sum of the offset we've put in the
5340 * X register and the offset of the start of the link
5341 * layer header (which is 0 if the radio header is
5342 * variable-length; that header length is what we put
5343 * into the X register and then added to the index).
5345 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
5348 sappend(index
->s
, s
);
5364 * The offset is relative to the beginning of
5365 * the network-layer header.
5366 * XXX - are there any cases where we want
5369 s
= gen_llprefixlen();
5372 * If "s" is non-null, it has code to arrange that the
5373 * X register contains the length of the prefix preceding
5374 * the link-layer header. Add to it the offset computed
5375 * into the register specified by "index", and move that
5376 * into the X register. Otherwise, just load into the X
5377 * register the offset computed into the register specifed
5381 sappend(s
, xfer_to_a(index
));
5382 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
5383 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
5385 s
= xfer_to_x(index
);
5388 * Load the item at the sum of the offset we've put in the
5389 * X register and the offset of the start of the network
5392 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
5395 sappend(index
->s
, s
);
5398 * Do the computation only if the packet contains
5399 * the protocol in question.
5401 b
= gen_proto_abbrev(proto
);
5403 gen_and(index
->b
, b
);
5416 * The offset is relative to the beginning of
5417 * the transport-layer header.
5418 * XXX - are there any cases where we want
5420 * XXX - we should, if we're built with
5421 * IPv6 support, generate code to load either
5422 * IPv4, IPv6, or both, as appropriate.
5424 s
= gen_loadx_iphdrlen();
5427 * The X register now contains the sum of the offset
5428 * of the beginning of the link-layer header and
5429 * the length of the network-layer header. Load
5430 * into the A register the offset relative to
5431 * the beginning of the transport layer header,
5432 * add the X register to that, move that to the
5433 * X register, and load with an offset from the
5434 * X register equal to the offset of the network
5435 * layer header relative to the beginning of
5436 * the link-layer header.
5438 sappend(s
, xfer_to_a(index
));
5439 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
5440 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
5441 sappend(s
, tmp
= new_stmt(BPF_LD
|BPF_IND
|size
));
5443 sappend(index
->s
, s
);
5446 * Do the computation only if the packet contains
5447 * the protocol in question - which is true only
5448 * if this is an IP datagram and is the first or
5449 * only fragment of that datagram.
5451 gen_and(gen_proto_abbrev(proto
), b
= gen_ipfrag());
5453 gen_and(index
->b
, b
);
5455 gen_and(gen_proto_abbrev(Q_IP
), b
);
5461 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
5465 index
->regno
= regno
;
5466 s
= new_stmt(BPF_ST
);
5468 sappend(index
->s
, s
);
5474 gen_relation(code
, a0
, a1
, reversed
)
5476 struct arth
*a0
, *a1
;
5479 struct slist
*s0
, *s1
, *s2
;
5480 struct block
*b
, *tmp
;
5484 if (code
== BPF_JEQ
) {
5485 s2
= new_stmt(BPF_ALU
|BPF_SUB
|BPF_X
);
5486 b
= new_block(JMP(code
));
5490 b
= new_block(BPF_JMP
|code
|BPF_X
);
5496 sappend(a0
->s
, a1
->s
);
5500 free_reg(a0
->regno
);
5501 free_reg(a1
->regno
);
5503 /* 'and' together protocol checks */
5506 gen_and(a0
->b
, tmp
= a1
->b
);
5522 int regno
= alloc_reg();
5523 struct arth
*a
= (struct arth
*)newchunk(sizeof(*a
));
5526 s
= new_stmt(BPF_LD
|BPF_LEN
);
5527 s
->next
= new_stmt(BPF_ST
);
5528 s
->next
->s
.k
= regno
;
5543 a
= (struct arth
*)newchunk(sizeof(*a
));
5547 s
= new_stmt(BPF_LD
|BPF_IMM
);
5549 s
->next
= new_stmt(BPF_ST
);
5565 s
= new_stmt(BPF_ALU
|BPF_NEG
);
5568 s
= new_stmt(BPF_ST
);
5576 gen_arth(code
, a0
, a1
)
5578 struct arth
*a0
, *a1
;
5580 struct slist
*s0
, *s1
, *s2
;
5584 s2
= new_stmt(BPF_ALU
|BPF_X
|code
);
5589 sappend(a0
->s
, a1
->s
);
5591 free_reg(a0
->regno
);
5592 free_reg(a1
->regno
);
5594 s0
= new_stmt(BPF_ST
);
5595 a0
->regno
= s0
->s
.k
= alloc_reg();
5602 * Here we handle simple allocation of the scratch registers.
5603 * If too many registers are alloc'd, the allocator punts.
5605 static int regused
[BPF_MEMWORDS
];
5609 * Return the next free register.
5614 int n
= BPF_MEMWORDS
;
5617 if (regused
[curreg
])
5618 curreg
= (curreg
+ 1) % BPF_MEMWORDS
;
5620 regused
[curreg
] = 1;
5624 bpf_error("too many registers needed to evaluate expression");
5629 * Return a register to the table so it can
5639 static struct block
*
5646 s
= new_stmt(BPF_LD
|BPF_LEN
);
5647 b
= new_block(JMP(jmp
));
5658 return gen_len(BPF_JGE
, n
);
5662 * Actually, this is less than or equal.
5670 b
= gen_len(BPF_JGT
, n
);
5677 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
5678 * the beginning of the link-layer header.
5679 * XXX - that means you can't test values in the radiotap header, but
5680 * as that header is difficult if not impossible to parse generally
5681 * without a loop, that might not be a severe problem. A new keyword
5682 * "radio" could be added for that, although what you'd really want
5683 * would be a way of testing particular radio header values, which
5684 * would generate code appropriate to the radio header in question.
5687 gen_byteop(op
, idx
, val
)
5698 return gen_cmp(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
5701 b
= gen_cmp_lt(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
5705 b
= gen_cmp_gt(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
5709 s
= new_stmt(BPF_ALU
|BPF_OR
|BPF_K
);
5713 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
5717 b
= new_block(JMP(BPF_JEQ
));
5724 static u_char abroadcast
[] = { 0x0 };
5727 gen_broadcast(proto
)
5730 bpf_u_int32 hostmask
;
5731 struct block
*b0
, *b1
, *b2
;
5732 static u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5738 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
5739 return gen_ahostop(abroadcast
, Q_DST
);
5740 if (linktype
== DLT_EN10MB
)
5741 return gen_ehostop(ebroadcast
, Q_DST
);
5742 if (linktype
== DLT_FDDI
)
5743 return gen_fhostop(ebroadcast
, Q_DST
);
5744 if (linktype
== DLT_IEEE802
)
5745 return gen_thostop(ebroadcast
, Q_DST
);
5746 if (linktype
== DLT_IEEE802_11
||
5747 linktype
== DLT_IEEE802_11_RADIO_AVS
||
5748 linktype
== DLT_IEEE802_11_RADIO
||
5749 linktype
== DLT_PRISM_HEADER
)
5750 return gen_wlanhostop(ebroadcast
, Q_DST
);
5751 if (linktype
== DLT_IP_OVER_FC
)
5752 return gen_ipfchostop(ebroadcast
, Q_DST
);
5753 if (linktype
== DLT_SUNATM
&& is_lane
) {
5755 * Check that the packet doesn't begin with an
5756 * LE Control marker. (We've already generated
5759 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
5764 * Now check the MAC address.
5766 b0
= gen_ehostop(ebroadcast
, Q_DST
);
5770 bpf_error("not a broadcast link");
5774 b0
= gen_linktype(ETHERTYPE_IP
);
5775 hostmask
= ~netmask
;
5776 b1
= gen_mcmp(OR_NET
, 16, BPF_W
, (bpf_int32
)0, hostmask
);
5777 b2
= gen_mcmp(OR_NET
, 16, BPF_W
,
5778 (bpf_int32
)(~0 & hostmask
), hostmask
);
5783 bpf_error("only link-layer/IP broadcast filters supported");
5788 * Generate code to test the low-order bit of a MAC address (that's
5789 * the bottom bit of the *first* byte).
5791 static struct block
*
5792 gen_mac_multicast(offset
)
5795 register struct block
*b0
;
5796 register struct slist
*s
;
5798 /* link[offset] & 1 != 0 */
5799 s
= gen_load_a(OR_LINK
, offset
, BPF_B
);
5800 b0
= new_block(JMP(BPF_JSET
));
5807 gen_multicast(proto
)
5810 register struct block
*b0
, *b1
, *b2
;
5811 register struct slist
*s
;
5817 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
5818 /* all ARCnet multicasts use the same address */
5819 return gen_ahostop(abroadcast
, Q_DST
);
5821 if (linktype
== DLT_EN10MB
) {
5822 /* ether[0] & 1 != 0 */
5823 return gen_mac_multicast(0);
5826 if (linktype
== DLT_FDDI
) {
5828 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
5830 * XXX - was that referring to bit-order issues?
5832 /* fddi[1] & 1 != 0 */
5833 return gen_mac_multicast(1);
5836 if (linktype
== DLT_IEEE802
) {
5837 /* tr[2] & 1 != 0 */
5838 return gen_mac_multicast(2);
5841 if (linktype
== DLT_IEEE802_11
||
5842 linktype
== DLT_IEEE802_11_RADIO_AVS
||
5843 linktype
== DLT_IEEE802_11_RADIO
||
5844 linktype
== DLT_PRISM_HEADER
) {
5848 * For control frames, there is no DA.
5850 * For management frames, DA is at an
5851 * offset of 4 from the beginning of
5854 * For data frames, DA is at an offset
5855 * of 4 from the beginning of the packet
5856 * if To DS is clear and at an offset of
5857 * 16 from the beginning of the packet
5862 * Generate the tests to be done for data frames.
5864 * First, check for To DS set, i.e. "link[1] & 0x01".
5866 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
5867 b1
= new_block(JMP(BPF_JSET
));
5868 b1
->s
.k
= 0x01; /* To DS */
5872 * If To DS is set, the DA is at 16.
5874 b0
= gen_mac_multicast(16);
5878 * Now, check for To DS not set, i.e. check
5879 * "!(link[1] & 0x01)".
5881 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
5882 b2
= new_block(JMP(BPF_JSET
));
5883 b2
->s
.k
= 0x01; /* To DS */
5888 * If To DS is not set, the DA is at 4.
5890 b1
= gen_mac_multicast(4);
5894 * Now OR together the last two checks. That gives
5895 * the complete set of checks for data frames.
5900 * Now check for a data frame.
5901 * I.e, check "link[0] & 0x08".
5903 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
5904 b1
= new_block(JMP(BPF_JSET
));
5909 * AND that with the checks done for data frames.
5914 * If the high-order bit of the type value is 0, this
5915 * is a management frame.
5916 * I.e, check "!(link[0] & 0x08)".
5918 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
5919 b2
= new_block(JMP(BPF_JSET
));
5925 * For management frames, the DA is at 4.
5927 b1
= gen_mac_multicast(4);
5931 * OR that with the checks done for data frames.
5932 * That gives the checks done for management and
5938 * If the low-order bit of the type value is 1,
5939 * this is either a control frame or a frame
5940 * with a reserved type, and thus not a
5943 * I.e., check "!(link[0] & 0x04)".
5945 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
5946 b1
= new_block(JMP(BPF_JSET
));
5952 * AND that with the checks for data and management
5959 if (linktype
== DLT_IP_OVER_FC
) {
5960 b0
= gen_mac_multicast(2);
5964 if (linktype
== DLT_SUNATM
&& is_lane
) {
5966 * Check that the packet doesn't begin with an
5967 * LE Control marker. (We've already generated
5970 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
5974 /* ether[off_mac] & 1 != 0 */
5975 b0
= gen_mac_multicast(off_mac
);
5980 /* Link not known to support multicasts */
5984 b0
= gen_linktype(ETHERTYPE_IP
);
5985 b1
= gen_cmp_ge(OR_NET
, 16, BPF_B
, (bpf_int32
)224);
5991 b0
= gen_linktype(ETHERTYPE_IPV6
);
5992 b1
= gen_cmp(OR_NET
, 24, BPF_B
, (bpf_int32
)255);
5997 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
6002 * generate command for inbound/outbound. It's here so we can
6003 * make it link-type specific. 'dir' = 0 implies "inbound",
6004 * = 1 implies "outbound".
6010 register struct block
*b0
;
6013 * Only some data link types support inbound/outbound qualifiers.
6017 b0
= gen_relation(BPF_JEQ
,
6018 gen_load(Q_LINK
, gen_loadi(0), 1),
6026 * Match packets sent by this machine.
6028 b0
= gen_cmp(OR_LINK
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
6031 * Match packets sent to this machine.
6032 * (No broadcast or multicast packets, or
6033 * packets sent to some other machine and
6034 * received promiscuously.)
6036 * XXX - packets sent to other machines probably
6037 * shouldn't be matched, but what about broadcast
6038 * or multicast packets we received?
6040 b0
= gen_cmp(OR_LINK
, 0, BPF_H
, LINUX_SLL_HOST
);
6045 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, dir
), BPF_B
,
6046 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
6051 /* match outgoing packets */
6052 b0
= gen_cmp(OR_LINK
, 0, BPF_B
, PPP_PPPD_OUT
);
6054 /* match incoming packets */
6055 b0
= gen_cmp(OR_LINK
, 0, BPF_B
, PPP_PPPD_IN
);
6059 case DLT_JUNIPER_MFR
:
6060 case DLT_JUNIPER_MLFR
:
6061 case DLT_JUNIPER_MLPPP
:
6062 case DLT_JUNIPER_ATM1
:
6063 case DLT_JUNIPER_ATM2
:
6064 case DLT_JUNIPER_PPPOE
:
6065 case DLT_JUNIPER_PPPOE_ATM
:
6066 case DLT_JUNIPER_GGSN
:
6067 case DLT_JUNIPER_ES
:
6068 case DLT_JUNIPER_MONITOR
:
6069 case DLT_JUNIPER_SERVICES
:
6070 case DLT_JUNIPER_ETHER
:
6071 case DLT_JUNIPER_PPP
:
6072 case DLT_JUNIPER_FRELAY
:
6073 case DLT_JUNIPER_CHDLC
:
6074 /* juniper flags (including direction) are stored
6075 * the byte after the 3-byte magic number */
6077 /* match outgoing packets */
6078 b0
= gen_mcmp(OR_LINK
, 3, BPF_B
, 0, 0x01);
6080 /* match incoming packets */
6081 b0
= gen_mcmp(OR_LINK
, 3, BPF_B
, 1, 0x01);
6086 bpf_error("inbound/outbound not supported on linktype %d",
6094 /* PF firewall log matched interface */
6096 gen_pf_ifname(const char *ifname
)
6101 if (linktype
== DLT_PFLOG
) {
6102 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
6103 off
= offsetof(struct pfloghdr
, ifname
);
6105 bpf_error("ifname not supported on linktype 0x%x", linktype
);
6108 if (strlen(ifname
) >= len
) {
6109 bpf_error("ifname interface names can only be %d characters",
6113 b0
= gen_bcmp(OR_LINK
, off
, strlen(ifname
), (const u_char
*)ifname
);
6117 /* PF firewall log ruleset name */
6119 gen_pf_ruleset(char *ruleset
)
6123 if (linktype
!= DLT_PFLOG
) {
6124 bpf_error("ruleset not supported on linktype 0x%x", linktype
);
6127 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
6128 bpf_error("ruleset names can only be %ld characters",
6129 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
6132 b0
= gen_bcmp(OR_LINK
, offsetof(struct pfloghdr
, ruleset
),
6133 strlen(ruleset
), (const u_char
*)ruleset
);
6137 /* PF firewall log rule number */
6143 if (linktype
== DLT_PFLOG
) {
6144 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
6147 bpf_error("rnr not supported on linktype 0x%x", linktype
);
6154 /* PF firewall log sub-rule number */
6156 gen_pf_srnr(int srnr
)
6160 if (linktype
!= DLT_PFLOG
) {
6161 bpf_error("srnr not supported on linktype 0x%x", linktype
);
6165 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
6170 /* PF firewall log reason code */
6172 gen_pf_reason(int reason
)
6176 if (linktype
== DLT_PFLOG
) {
6177 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, reason
), BPF_B
,
6180 bpf_error("reason not supported on linktype 0x%x", linktype
);
6187 /* PF firewall log action */
6189 gen_pf_action(int action
)
6193 if (linktype
== DLT_PFLOG
) {
6194 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, action
), BPF_B
,
6197 bpf_error("action not supported on linktype 0x%x", linktype
);
6206 register const u_char
*eaddr
;
6209 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
6210 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
6211 return gen_ahostop(eaddr
, (int)q
.dir
);
6213 bpf_error("ARCnet address used in non-arc expression");
6217 static struct block
*
6218 gen_ahostop(eaddr
, dir
)
6219 register const u_char
*eaddr
;
6222 register struct block
*b0
, *b1
;
6225 /* src comes first, different from Ethernet */
6227 return gen_bcmp(OR_LINK
, 0, 1, eaddr
);
6230 return gen_bcmp(OR_LINK
, 1, 1, eaddr
);
6233 b0
= gen_ahostop(eaddr
, Q_SRC
);
6234 b1
= gen_ahostop(eaddr
, Q_DST
);
6240 b0
= gen_ahostop(eaddr
, Q_SRC
);
6241 b1
= gen_ahostop(eaddr
, Q_DST
);
6250 * support IEEE 802.1Q VLAN trunk over ethernet
6256 struct block
*b0
, *b1
;
6258 /* can't check for VLAN-encapsulated packets inside MPLS */
6259 if (label_stack_depth
> 0)
6260 bpf_error("no VLAN match after MPLS");
6263 * Change the offsets to point to the type and data fields within
6264 * the VLAN packet. Just increment the offsets, so that we
6265 * can support a hierarchy, e.g. "vlan 300 && vlan 200" to
6266 * capture VLAN 200 encapsulated within VLAN 100.
6268 * XXX - this is a bit of a kludge. If we were to split the
6269 * compiler into a parser that parses an expression and
6270 * generates an expression tree, and a code generator that
6271 * takes an expression tree (which could come from our
6272 * parser or from some other parser) and generates BPF code,
6273 * we could perhaps make the offsets parameters of routines
6274 * and, in the handler for an "AND" node, pass to subnodes
6275 * other than the VLAN node the adjusted offsets.
6277 * This would mean that "vlan" would, instead of changing the
6278 * behavior of *all* tests after it, change only the behavior
6279 * of tests ANDed with it. That would change the documented
6280 * semantics of "vlan", which might break some expressions.
6281 * However, it would mean that "(vlan and ip) or ip" would check
6282 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6283 * checking only for VLAN-encapsulated IP, so that could still
6284 * be considered worth doing; it wouldn't break expressions
6285 * that are of the form "vlan and ..." or "vlan N and ...",
6286 * which I suspect are the most common expressions involving
6287 * "vlan". "vlan or ..." doesn't necessarily do what the user
6288 * would really want, now, as all the "or ..." tests would
6289 * be done assuming a VLAN, even though the "or" could be viewed
6290 * as meaning "or, if this isn't a VLAN packet...".
6292 orig_linktype
= off_linktype
; /* save original values */
6304 bpf_error("no VLAN support for data link type %d",
6309 /* check for VLAN */
6310 b0
= gen_cmp(OR_LINK
, orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_8021Q
);
6312 /* If a specific VLAN is requested, check VLAN id */
6313 if (vlan_num
>= 0) {
6314 b1
= gen_mcmp(OR_LINK
, orig_nl
, BPF_H
, (bpf_int32
)vlan_num
,
6330 struct block
*b0
,*b1
;
6333 * Change the offsets to point to the type and data fields within
6334 * the MPLS packet. Just increment the offsets, so that we
6335 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
6336 * capture packets with an outer label of 100000 and an inner
6339 * XXX - this is a bit of a kludge. See comments in gen_vlan().
6343 if (label_stack_depth
> 0) {
6344 /* just match the bottom-of-stack bit clear */
6345 b0
= gen_mcmp(OR_LINK
, orig_nl
-2, BPF_B
, 0, 0x01);
6348 * Indicate that we're checking MPLS-encapsulated headers,
6349 * to make sure higher level code generators don't try to
6350 * match against IP-related protocols such as Q_ARP, Q_RARP
6355 case DLT_C_HDLC
: /* fall through */
6357 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
6358 (bpf_int32
)ETHERTYPE_MPLS
);
6362 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
6363 (bpf_int32
)PPP_MPLS_UCAST
);
6366 /* FIXME add other DLT_s ...
6367 * for Frame-Relay/and ATM this may get messy due to SNAP headers
6368 * leave it for now */
6371 bpf_error("no MPLS support for data link type %d",
6379 /* If a specific MPLS label is requested, check it */
6380 if (label_num
>= 0) {
6381 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
6382 b1
= gen_mcmp(OR_LINK
, orig_nl
, BPF_W
, (bpf_int32
)label_num
,
6383 0xfffff000); /* only compare the first 20 bits */
6390 label_stack_depth
++;
6395 * Support PPPOE discovery and session.
6400 /* check for PPPoE discovery */
6401 return gen_linktype((bpf_int32
)ETHERTYPE_PPPOED
);
6410 * Test against the PPPoE session link-layer type.
6412 b0
= gen_linktype((bpf_int32
)ETHERTYPE_PPPOES
);
6415 * Change the offsets to point to the type and data fields within
6418 * XXX - this is a bit of a kludge. If we were to split the
6419 * compiler into a parser that parses an expression and
6420 * generates an expression tree, and a code generator that
6421 * takes an expression tree (which could come from our
6422 * parser or from some other parser) and generates BPF code,
6423 * we could perhaps make the offsets parameters of routines
6424 * and, in the handler for an "AND" node, pass to subnodes
6425 * other than the PPPoE node the adjusted offsets.
6427 * This would mean that "pppoes" would, instead of changing the
6428 * behavior of *all* tests after it, change only the behavior
6429 * of tests ANDed with it. That would change the documented
6430 * semantics of "pppoes", which might break some expressions.
6431 * However, it would mean that "(pppoes and ip) or ip" would check
6432 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6433 * checking only for VLAN-encapsulated IP, so that could still
6434 * be considered worth doing; it wouldn't break expressions
6435 * that are of the form "pppoes and ..." which I suspect are the
6436 * most common expressions involving "pppoes". "pppoes or ..."
6437 * doesn't necessarily do what the user would really want, now,
6438 * as all the "or ..." tests would be done assuming PPPoE, even
6439 * though the "or" could be viewed as meaning "or, if this isn't
6440 * a PPPoE packet...".
6442 orig_linktype
= off_linktype
; /* save original values */
6446 * The "network-layer" protocol is PPPoE, which has a 6-byte
6447 * PPPoE header, followed by PPP payload, so we set the
6448 * offsets to the network layer offset plus 6 bytes for
6449 * the PPPoE header plus the values appropriate for PPP when
6450 * encapsulated in Ethernet (which means there's no HDLC
6453 off_linktype
= orig_nl
+ 6;
6454 off_nl
= orig_nl
+ 6 + 2;
6455 off_nl_nosnap
= orig_nl
+ 6 + 2;
6458 * Set the link-layer type to PPP, as all subsequent tests will
6459 * be on the encapsulated PPP header.
6467 gen_atmfield_code(atmfield
, jvalue
, jtype
, reverse
)
6479 bpf_error("'vpi' supported only on raw ATM");
6480 if (off_vpi
== (u_int
)-1)
6482 b0
= gen_ncmp(OR_LINK
, off_vpi
, BPF_B
, 0xffffffff, jtype
,
6488 bpf_error("'vci' supported only on raw ATM");
6489 if (off_vci
== (u_int
)-1)
6491 b0
= gen_ncmp(OR_LINK
, off_vci
, BPF_H
, 0xffffffff, jtype
,
6496 if (off_proto
== (u_int
)-1)
6497 abort(); /* XXX - this isn't on FreeBSD */
6498 b0
= gen_ncmp(OR_LINK
, off_proto
, BPF_B
, 0x0f, jtype
,
6503 if (off_payload
== (u_int
)-1)
6505 b0
= gen_ncmp(OR_LINK
, off_payload
+ MSG_TYPE_POS
, BPF_B
,
6506 0xffffffff, jtype
, reverse
, jvalue
);
6511 bpf_error("'callref' supported only on raw ATM");
6512 if (off_proto
== (u_int
)-1)
6514 b0
= gen_ncmp(OR_LINK
, off_proto
, BPF_B
, 0xffffffff,
6515 jtype
, reverse
, jvalue
);
6525 gen_atmtype_abbrev(type
)
6528 struct block
*b0
, *b1
;
6533 /* Get all packets in Meta signalling Circuit */
6535 bpf_error("'metac' supported only on raw ATM");
6536 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
6537 b1
= gen_atmfield_code(A_VCI
, 1, BPF_JEQ
, 0);
6542 /* Get all packets in Broadcast Circuit*/
6544 bpf_error("'bcc' supported only on raw ATM");
6545 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
6546 b1
= gen_atmfield_code(A_VCI
, 2, BPF_JEQ
, 0);
6551 /* Get all cells in Segment OAM F4 circuit*/
6553 bpf_error("'oam4sc' supported only on raw ATM");
6554 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
6555 b1
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
6560 /* Get all cells in End-to-End OAM F4 Circuit*/
6562 bpf_error("'oam4ec' supported only on raw ATM");
6563 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
6564 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
6569 /* Get all packets in connection Signalling Circuit */
6571 bpf_error("'sc' supported only on raw ATM");
6572 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
6573 b1
= gen_atmfield_code(A_VCI
, 5, BPF_JEQ
, 0);
6578 /* Get all packets in ILMI Circuit */
6580 bpf_error("'ilmic' supported only on raw ATM");
6581 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
6582 b1
= gen_atmfield_code(A_VCI
, 16, BPF_JEQ
, 0);
6587 /* Get all LANE packets */
6589 bpf_error("'lane' supported only on raw ATM");
6590 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
6593 * Arrange that all subsequent tests assume LANE
6594 * rather than LLC-encapsulated packets, and set
6595 * the offsets appropriately for LANE-encapsulated
6598 * "off_mac" is the offset of the Ethernet header,
6599 * which is 2 bytes past the ATM pseudo-header
6600 * (skipping the pseudo-header and 2-byte LE Client
6601 * field). The other offsets are Ethernet offsets
6602 * relative to "off_mac".
6605 off_mac
= off_payload
+ 2; /* MAC header */
6606 off_linktype
= off_mac
+ 12;
6607 off_nl
= off_mac
+ 14; /* Ethernet II */
6608 off_nl_nosnap
= off_mac
+ 17; /* 802.3+802.2 */
6612 /* Get all LLC-encapsulated packets */
6614 bpf_error("'llc' supported only on raw ATM");
6615 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
6626 gen_mtp3field_code(mtp3field
, jvalue
, jtype
, reverse
)
6633 bpf_u_int32 val1
, val2
, val3
;
6635 switch (mtp3field
) {
6638 if (off_sio
== (u_int
)-1)
6639 bpf_error("'sio' supported only on SS7");
6640 /* sio coded on 1 byte so max value 255 */
6642 bpf_error("sio value %u too big; max value = 255",
6644 b0
= gen_ncmp(OR_PACKET
, off_sio
, BPF_B
, 0xffffffff,
6645 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
6649 if (off_opc
== (u_int
)-1)
6650 bpf_error("'opc' supported only on SS7");
6651 /* opc coded on 14 bits so max value 16383 */
6653 bpf_error("opc value %u too big; max value = 16383",
6655 /* the following instructions are made to convert jvalue
6656 * to the form used to write opc in an ss7 message*/
6657 val1
= jvalue
& 0x00003c00;
6659 val2
= jvalue
& 0x000003fc;
6661 val3
= jvalue
& 0x00000003;
6663 jvalue
= val1
+ val2
+ val3
;
6664 b0
= gen_ncmp(OR_PACKET
, off_opc
, BPF_W
, 0x00c0ff0f,
6665 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
6669 if (off_dpc
== (u_int
)-1)
6670 bpf_error("'dpc' supported only on SS7");
6671 /* dpc coded on 14 bits so max value 16383 */
6673 bpf_error("dpc value %u too big; max value = 16383",
6675 /* the following instructions are made to convert jvalue
6676 * to the forme used to write dpc in an ss7 message*/
6677 val1
= jvalue
& 0x000000ff;
6679 val2
= jvalue
& 0x00003f00;
6681 jvalue
= val1
+ val2
;
6682 b0
= gen_ncmp(OR_PACKET
, off_dpc
, BPF_W
, 0xff3f0000,
6683 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
6687 if (off_sls
== (u_int
)-1)
6688 bpf_error("'sls' supported only on SS7");
6689 /* sls coded on 4 bits so max value 15 */
6691 bpf_error("sls value %u too big; max value = 15",
6693 /* the following instruction is made to convert jvalue
6694 * to the forme used to write sls in an ss7 message*/
6695 jvalue
= jvalue
<< 4;
6696 b0
= gen_ncmp(OR_PACKET
, off_sls
, BPF_B
, 0xf0,
6697 (u_int
)jtype
,reverse
, (u_int
)jvalue
);
6706 static struct block
*
6707 gen_msg_abbrev(type
)
6713 * Q.2931 signalling protocol messages for handling virtual circuits
6714 * establishment and teardown
6719 b1
= gen_atmfield_code(A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
6723 b1
= gen_atmfield_code(A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
6727 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
6731 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
6735 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
6738 case A_RELEASE_DONE
:
6739 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
6749 gen_atmmulti_abbrev(type
)
6752 struct block
*b0
, *b1
;
6758 bpf_error("'oam' supported only on raw ATM");
6759 b1
= gen_atmmulti_abbrev(A_OAMF4
);
6764 bpf_error("'oamf4' supported only on raw ATM");
6766 b0
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
6767 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
6769 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
6775 * Get Q.2931 signalling messages for switched
6776 * virtual connection
6779 bpf_error("'connectmsg' supported only on raw ATM");
6780 b0
= gen_msg_abbrev(A_SETUP
);
6781 b1
= gen_msg_abbrev(A_CALLPROCEED
);
6783 b0
= gen_msg_abbrev(A_CONNECT
);
6785 b0
= gen_msg_abbrev(A_CONNECTACK
);
6787 b0
= gen_msg_abbrev(A_RELEASE
);
6789 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
6791 b0
= gen_atmtype_abbrev(A_SC
);
6797 bpf_error("'metaconnect' supported only on raw ATM");
6798 b0
= gen_msg_abbrev(A_SETUP
);
6799 b1
= gen_msg_abbrev(A_CALLPROCEED
);
6801 b0
= gen_msg_abbrev(A_CONNECT
);
6803 b0
= gen_msg_abbrev(A_RELEASE
);
6805 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
6807 b0
= gen_atmtype_abbrev(A_METAC
);