1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 static const char rcsid
[] _U_
=
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.220 2005-03-17 07:02:31 guy Exp $ (LBL)";
32 #include <pcap-stdinc.h>
34 #include <sys/types.h>
35 #include <sys/socket.h>
39 * XXX - why was this included even on UNIX?
48 #include <sys/param.h>
51 #include <netinet/in.h>
67 #include "ethertype.h"
72 #include "sunatmpos.h"
78 #define offsetof(s, e) ((size_t)&((s *)0)->e)
82 #include <netdb.h> /* for "struct addrinfo" */
85 #include <pcap-namedb.h>
90 #define IPPROTO_SCTP 132
93 #ifdef HAVE_OS_PROTO_H
97 #define JMP(c) ((c)|BPF_JMP|BPF_K)
100 static jmp_buf top_ctx
;
101 static pcap_t
*bpf_pcap
;
103 /* Hack for updating VLAN, MPLS offsets. */
104 static u_int orig_linktype
= -1U, orig_nl
= -1U, orig_nl_nosnap
= -1U;
108 static int pcap_fddipad
;
113 bpf_error(const char *fmt
, ...)
119 if (bpf_pcap
!= NULL
)
120 (void)vsnprintf(pcap_geterr(bpf_pcap
), PCAP_ERRBUF_SIZE
,
127 static void init_linktype(pcap_t
*);
129 static int alloc_reg(void);
130 static void free_reg(int);
132 static struct block
*root
;
135 * We divy out chunks of memory rather than call malloc each time so
136 * we don't have to worry about leaking memory. It's probably
137 * not a big deal if all this memory was wasted but if this ever
138 * goes into a library that would probably not be a good idea.
140 * XXX - this *is* in a library....
143 #define CHUNK0SIZE 1024
149 static struct chunk chunks
[NCHUNKS
];
150 static int cur_chunk
;
152 static void *newchunk(u_int
);
153 static void freechunks(void);
154 static inline struct block
*new_block(int);
155 static inline struct slist
*new_stmt(int);
156 static struct block
*gen_retblk(int);
157 static inline void syntax(void);
159 static void backpatch(struct block
*, struct block
*);
160 static void merge(struct block
*, struct block
*);
161 static struct block
*gen_cmp(u_int
, u_int
, bpf_int32
);
162 static struct block
*gen_cmp_gt(u_int
, u_int
, bpf_int32
);
163 static struct block
*gen_mcmp(u_int
, u_int
, bpf_int32
, bpf_u_int32
);
164 static struct block
*gen_bcmp(u_int
, u_int
, const u_char
*);
165 static struct block
*gen_ncmp(bpf_u_int32
, bpf_u_int32
, bpf_u_int32
,
166 bpf_u_int32
, bpf_u_int32
, int);
167 static struct block
*gen_uncond(int);
168 static inline struct block
*gen_true(void);
169 static inline struct block
*gen_false(void);
170 static struct block
*gen_ether_linktype(int);
171 static struct block
*gen_linux_sll_linktype(int);
172 static struct block
*gen_linktype(int);
173 static struct block
*gen_snap(bpf_u_int32
, bpf_u_int32
, u_int
);
174 static struct block
*gen_llc(int);
175 static struct block
*gen_hostop(bpf_u_int32
, bpf_u_int32
, int, int, u_int
, u_int
);
177 static struct block
*gen_hostop6(struct in6_addr
*, struct in6_addr
*, int, int, u_int
, u_int
);
179 static struct block
*gen_ahostop(const u_char
*, int);
180 static struct block
*gen_ehostop(const u_char
*, int);
181 static struct block
*gen_fhostop(const u_char
*, int);
182 static struct block
*gen_thostop(const u_char
*, int);
183 static struct block
*gen_wlanhostop(const u_char
*, int);
184 static struct block
*gen_ipfchostop(const u_char
*, int);
185 static struct block
*gen_dnhostop(bpf_u_int32
, int, u_int
);
186 static struct block
*gen_host(bpf_u_int32
, bpf_u_int32
, int, int);
188 static struct block
*gen_host6(struct in6_addr
*, struct in6_addr
*, int, int);
191 static struct block
*gen_gateway(const u_char
*, bpf_u_int32
**, int, int);
193 static struct block
*gen_ipfrag(void);
194 static struct block
*gen_portatom(int, bpf_int32
);
196 static struct block
*gen_portatom6(int, bpf_int32
);
198 struct block
*gen_portop(int, int, int);
199 static struct block
*gen_port(int, int, int);
201 struct block
*gen_portop6(int, int, int);
202 static struct block
*gen_port6(int, int, int);
204 static int lookup_proto(const char *, int);
205 static struct block
*gen_protochain(int, int, int);
206 static struct block
*gen_proto(int, int, int);
207 static struct slist
*xfer_to_x(struct arth
*);
208 static struct slist
*xfer_to_a(struct arth
*);
209 static struct block
*gen_mac_multicast(int);
210 static struct block
*gen_len(int, int);
212 static struct block
*gen_msg_abbrev(int type
);
223 /* XXX Round up to nearest long. */
224 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
226 /* XXX Round up to structure boundary. */
230 cp
= &chunks
[cur_chunk
];
231 if (n
> cp
->n_left
) {
232 ++cp
, k
= ++cur_chunk
;
234 bpf_error("out of memory");
235 size
= CHUNK0SIZE
<< k
;
236 cp
->m
= (void *)malloc(size
);
238 bpf_error("out of memory");
239 memset((char *)cp
->m
, 0, size
);
242 bpf_error("out of memory");
245 return (void *)((char *)cp
->m
+ cp
->n_left
);
254 for (i
= 0; i
< NCHUNKS
; ++i
)
255 if (chunks
[i
].m
!= NULL
) {
262 * A strdup whose allocations are freed after code generation is over.
266 register const char *s
;
268 int n
= strlen(s
) + 1;
269 char *cp
= newchunk(n
);
275 static inline struct block
*
281 p
= (struct block
*)newchunk(sizeof(*p
));
288 static inline struct slist
*
294 p
= (struct slist
*)newchunk(sizeof(*p
));
300 static struct block
*
304 struct block
*b
= new_block(BPF_RET
|BPF_K
);
313 bpf_error("syntax error in filter expression");
316 static bpf_u_int32 netmask
;
321 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
322 char *buf
, int optimize
, bpf_u_int32 mask
)
331 if (setjmp(top_ctx
)) {
339 snaplen
= pcap_snapshot(p
);
341 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
342 "snaplen of 0 rejects all packets");
346 lex_init(buf
? buf
: "");
354 root
= gen_retblk(snaplen
);
356 if (optimize
&& !no_optimize
) {
359 (root
->s
.code
== (BPF_RET
|BPF_K
) && root
->s
.k
== 0))
360 bpf_error("expression rejects all packets");
362 program
->bf_insns
= icode_to_fcode(root
, &len
);
363 program
->bf_len
= len
;
371 * entry point for using the compiler with no pcap open
372 * pass in all the stuff that is needed explicitly instead.
375 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
376 struct bpf_program
*program
,
377 char *buf
, int optimize
, bpf_u_int32 mask
)
382 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
385 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
391 * Clean up a "struct bpf_program" by freeing all the memory allocated
395 pcap_freecode(struct bpf_program
*program
)
398 if (program
->bf_insns
!= NULL
) {
399 free((char *)program
->bf_insns
);
400 program
->bf_insns
= NULL
;
405 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
406 * which of the jt and jf fields has been resolved and which is a pointer
407 * back to another unresolved block (or nil). At least one of the fields
408 * in each block is already resolved.
411 backpatch(list
, target
)
412 struct block
*list
, *target
;
429 * Merge the lists in b0 and b1, using the 'sense' field to indicate
430 * which of jt and jf is the link.
434 struct block
*b0
, *b1
;
436 register struct block
**p
= &b0
;
438 /* Find end of list. */
440 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
442 /* Concatenate the lists. */
450 backpatch(p
, gen_retblk(snaplen
));
451 p
->sense
= !p
->sense
;
452 backpatch(p
, gen_retblk(0));
458 struct block
*b0
, *b1
;
460 backpatch(b0
, b1
->head
);
461 b0
->sense
= !b0
->sense
;
462 b1
->sense
= !b1
->sense
;
464 b1
->sense
= !b1
->sense
;
470 struct block
*b0
, *b1
;
472 b0
->sense
= !b0
->sense
;
473 backpatch(b0
, b1
->head
);
474 b0
->sense
= !b0
->sense
;
483 b
->sense
= !b
->sense
;
486 static struct block
*
487 gen_cmp(offset
, size
, v
)
494 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
497 b
= new_block(JMP(BPF_JEQ
));
504 static struct block
*
505 gen_cmp_gt(offset
, size
, v
)
512 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
515 b
= new_block(JMP(BPF_JGT
));
522 static struct block
*
523 gen_mcmp(offset
, size
, v
, mask
)
528 struct block
*b
= gen_cmp(offset
, size
, v
);
531 if (mask
!= 0xffffffff) {
532 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
539 static struct block
*
540 gen_bcmp(offset
, size
, v
)
541 register u_int offset
, size
;
542 register const u_char
*v
;
544 register struct block
*b
, *tmp
;
548 register const u_char
*p
= &v
[size
- 4];
549 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
550 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
552 tmp
= gen_cmp(offset
+ size
- 4, BPF_W
, w
);
559 register const u_char
*p
= &v
[size
- 2];
560 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
562 tmp
= gen_cmp(offset
+ size
- 2, BPF_H
, w
);
569 tmp
= gen_cmp(offset
, BPF_B
, (bpf_int32
)v
[0]);
577 static struct block
*
578 gen_ncmp(datasize
, offset
, mask
, jtype
, jvalue
, reverse
)
579 bpf_u_int32 datasize
, offset
, mask
, jtype
, jvalue
;
585 s
= new_stmt(BPF_LD
|datasize
|BPF_ABS
);
588 if (mask
!= 0xffffffff) {
589 s
->next
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
593 b
= new_block(JMP(jtype
));
596 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
602 * Various code constructs need to know the layout of the data link
603 * layer. These variables give the necessary offsets.
607 * This is the offset of the beginning of the MAC-layer header.
608 * It's usually 0, except for ATM LANE.
610 static u_int off_mac
;
613 * "off_linktype" is the offset to information in the link-layer header
614 * giving the packet type.
616 * For Ethernet, it's the offset of the Ethernet type field.
618 * For link-layer types that always use 802.2 headers, it's the
619 * offset of the LLC header.
621 * For PPP, it's the offset of the PPP type field.
623 * For Cisco HDLC, it's the offset of the CHDLC type field.
625 * For BSD loopback, it's the offset of the AF_ value.
627 * For Linux cooked sockets, it's the offset of the type field.
629 * It's set to -1 for no encapsulation, in which case, IP is assumed.
631 static u_int off_linktype
;
634 * TRUE if the link layer includes an ATM pseudo-header.
636 static int is_atm
= 0;
639 * TRUE if "lane" appeared in the filter; it causes us to generate
640 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
642 static int is_lane
= 0;
645 * These are offsets for the ATM pseudo-header.
647 static u_int off_vpi
;
648 static u_int off_vci
;
649 static u_int off_proto
;
652 * This is the offset of the first byte after the ATM pseudo_header,
653 * or -1 if there is no ATM pseudo-header.
655 static u_int off_payload
;
658 * These are offsets to the beginning of the network-layer header.
660 * If the link layer never uses 802.2 LLC:
662 * "off_nl" and "off_nl_nosnap" are the same.
664 * If the link layer always uses 802.2 LLC:
666 * "off_nl" is the offset if there's a SNAP header following
669 * "off_nl_nosnap" is the offset if there's no SNAP header.
671 * If the link layer is Ethernet:
673 * "off_nl" is the offset if the packet is an Ethernet II packet
674 * (we assume no 802.3+802.2+SNAP);
676 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
677 * with an 802.2 header following it.
680 static u_int off_nl_nosnap
;
688 linktype
= pcap_datalink(p
);
690 pcap_fddipad
= p
->fddipad
;
694 * Assume it's not raw ATM with a pseudo-header, for now.
712 off_nl
= 6; /* XXX in reality, variable! */
713 off_nl_nosnap
= 6; /* no 802.2 LLC */
716 case DLT_ARCNET_LINUX
:
718 off_nl
= 8; /* XXX in reality, variable! */
719 off_nl_nosnap
= 8; /* no 802.2 LLC */
724 off_nl
= 14; /* Ethernet II */
725 off_nl_nosnap
= 17; /* 802.3+802.2 */
730 * SLIP doesn't have a link level type. The 16 byte
731 * header is hacked into our SLIP driver.
735 off_nl_nosnap
= 16; /* no 802.2 LLC */
739 /* XXX this may be the same as the DLT_PPP_BSDOS case */
743 off_nl_nosnap
= 24; /* no 802.2 LLC */
750 off_nl_nosnap
= 4; /* no 802.2 LLC */
756 off_nl_nosnap
= 12; /* no 802.2 LLC */
761 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
762 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
765 off_nl_nosnap
= 4; /* no 802.2 LLC */
770 * This does no include the Ethernet header, and
771 * only covers session state.
775 off_nl_nosnap
= 8; /* no 802.2 LLC */
781 off_nl_nosnap
= 24; /* no 802.2 LLC */
786 * FDDI doesn't really have a link-level type field.
787 * We set "off_linktype" to the offset of the LLC header.
789 * To check for Ethernet types, we assume that SSAP = SNAP
790 * is being used and pick out the encapsulated Ethernet type.
791 * XXX - should we generate code to check for SNAP?
795 off_linktype
+= pcap_fddipad
;
797 off_nl
= 21; /* FDDI+802.2+SNAP */
798 off_nl_nosnap
= 16; /* FDDI+802.2 */
800 off_nl
+= pcap_fddipad
;
801 off_nl_nosnap
+= pcap_fddipad
;
807 * Token Ring doesn't really have a link-level type field.
808 * We set "off_linktype" to the offset of the LLC header.
810 * To check for Ethernet types, we assume that SSAP = SNAP
811 * is being used and pick out the encapsulated Ethernet type.
812 * XXX - should we generate code to check for SNAP?
814 * XXX - the header is actually variable-length.
815 * Some various Linux patched versions gave 38
816 * as "off_linktype" and 40 as "off_nl"; however,
817 * if a token ring packet has *no* routing
818 * information, i.e. is not source-routed, the correct
819 * values are 20 and 22, as they are in the vanilla code.
821 * A packet is source-routed iff the uppermost bit
822 * of the first byte of the source address, at an
823 * offset of 8, has the uppermost bit set. If the
824 * packet is source-routed, the total number of bytes
825 * of routing information is 2 plus bits 0x1F00 of
826 * the 16-bit value at an offset of 14 (shifted right
827 * 8 - figure out which byte that is).
830 off_nl
= 22; /* Token Ring+802.2+SNAP */
831 off_nl_nosnap
= 17; /* Token Ring+802.2 */
836 * 802.11 doesn't really have a link-level type field.
837 * We set "off_linktype" to the offset of the LLC header.
839 * To check for Ethernet types, we assume that SSAP = SNAP
840 * is being used and pick out the encapsulated Ethernet type.
841 * XXX - should we generate code to check for SNAP?
843 * XXX - the header is actually variable-length. We
844 * assume a 24-byte link-layer header, as appears in
845 * data frames in networks with no bridges. If the
846 * fromds and tods 802.11 header bits are both set,
847 * it's actually supposed to be 30 bytes.
850 off_nl
= 32; /* 802.11+802.2+SNAP */
851 off_nl_nosnap
= 27; /* 802.11+802.2 */
854 case DLT_PRISM_HEADER
:
856 * Same as 802.11, but with an additional header before
857 * the 802.11 header, containing a bunch of additional
858 * information including radio-level information.
860 * The header is 144 bytes long.
862 * XXX - same variable-length header problem; at least
863 * the Prism header is fixed-length.
865 off_linktype
= 144+24;
866 off_nl
= 144+32; /* Prism+802.11+802.2+SNAP */
867 off_nl_nosnap
= 144+27; /* Prism+802.11+802.2 */
870 case DLT_IEEE802_11_RADIO_AVS
:
872 * Same as 802.11, but with an additional header before
873 * the 802.11 header, containing a bunch of additional
874 * information including radio-level information.
876 * The header is 64 bytes long, at least in its
877 * current incarnation.
879 * XXX - same variable-length header problem, only
880 * more so; this header is also variable-length,
881 * with the length being the 32-bit big-endian
882 * number at an offset of 4 from the beginning
883 * of the radio header.
885 off_linktype
= 64+24;
886 off_nl
= 64+32; /* Radio+802.11+802.2+SNAP */
887 off_nl_nosnap
= 64+27; /* Radio+802.11+802.2 */
890 case DLT_IEEE802_11_RADIO
:
892 * Same as 802.11, but with an additional header before
893 * the 802.11 header, containing a bunch of additional
894 * information including radio-level information.
896 * XXX - same variable-length header problem, only
897 * even *more* so; this header is also variable-length,
898 * with the length being the 16-bit number at an offset
899 * of 2 from the beginning of the radio header, and it's
900 * device-dependent (different devices might supply
901 * different amounts of information), so we can't even
902 * assume a fixed length for the current version of the
905 * Therefore, currently, only raw "link[N:M]" filtering is
913 case DLT_ATM_RFC1483
:
914 case DLT_ATM_CLIP
: /* Linux ATM defines this */
916 * assume routed, non-ISO PDUs
917 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
920 off_nl
= 8; /* 802.2+SNAP */
921 off_nl_nosnap
= 3; /* 802.2 */
926 * Full Frontal ATM; you get AALn PDUs with an ATM
930 off_vpi
= SUNATM_VPI_POS
;
931 off_vci
= SUNATM_VCI_POS
;
932 off_proto
= PROTO_POS
;
933 off_mac
= -1; /* LLC-encapsulated, so no MAC-layer header */
934 off_payload
= SUNATM_PKT_BEGIN_POS
;
935 off_linktype
= off_payload
;
936 off_nl
= off_payload
+8; /* 802.2+SNAP */
937 off_nl_nosnap
= off_payload
+3; /* 802.2 */
943 off_nl_nosnap
= 0; /* no 802.2 LLC */
946 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
949 off_nl_nosnap
= 16; /* no 802.2 LLC */
954 * LocalTalk does have a 1-byte type field in the LLAP header,
955 * but really it just indicates whether there is a "short" or
956 * "long" DDP packet following.
960 off_nl_nosnap
= 0; /* no 802.2 LLC */
965 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
966 * link-level type field. We set "off_linktype" to the
967 * offset of the LLC header.
969 * To check for Ethernet types, we assume that SSAP = SNAP
970 * is being used and pick out the encapsulated Ethernet type.
971 * XXX - should we generate code to check for SNAP? RFC
972 * 2625 says SNAP should be used.
975 off_nl
= 24; /* IPFC+802.2+SNAP */
976 off_nl_nosnap
= 19; /* IPFC+802.2 */
981 * XXX - we should set this to handle SNAP-encapsulated
982 * frames (NLPID of 0x80).
986 off_nl_nosnap
= 0; /* no 802.2 LLC */
989 case DLT_APPLE_IP_OVER_IEEE1394
:
992 off_nl_nosnap
= 0; /* no 802.2 LLC */
997 * Currently, only raw "link[N:M]" filtering is supported.
1006 * Currently, only raw "link[N:M]" filtering is supported.
1013 case DLT_SYMANTEC_FIREWALL
:
1015 off_nl
= 44; /* Ethernet II */
1016 off_nl_nosnap
= 44; /* XXX - what does it do with 802.3 packets? */
1021 /* XXX read from header? */
1022 off_nl
= PFLOG_HDRLEN
;
1023 off_nl_nosnap
= PFLOG_HDRLEN
;
1026 case DLT_JUNIPER_MLFR
:
1027 case DLT_JUNIPER_MLPPP
:
1033 case DLT_JUNIPER_ATM1
:
1034 off_linktype
= 4; /* in reality variable between 4-8 */
1039 case DLT_JUNIPER_ATM2
:
1040 off_linktype
= 8; /* in reality variable between 8-12 */
1053 bpf_error("unknown data link type %d", linktype
);
1057 static struct block
*
1064 s
= new_stmt(BPF_LD
|BPF_IMM
);
1066 b
= new_block(JMP(BPF_JEQ
));
1072 static inline struct block
*
1075 return gen_uncond(1);
1078 static inline struct block
*
1081 return gen_uncond(0);
1085 * Byte-swap a 32-bit number.
1086 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1087 * big-endian platforms.)
1089 #define SWAPLONG(y) \
1090 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1092 static struct block
*
1093 gen_ether_linktype(proto
)
1096 struct block
*b0
, *b1
;
1102 * OSI protocols always use 802.2 encapsulation.
1103 * XXX - should we check both the DSAP and the
1104 * SSAP, like this, or should we check just the
1107 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1109 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1110 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1115 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1117 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1118 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1122 case LLCSAP_NETBEUI
:
1124 * NetBEUI always uses 802.2 encapsulation.
1125 * XXX - should we check both the DSAP and the
1126 * SSAP, like this, or should we check just the
1129 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1131 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1132 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1140 * Ethernet_II frames, which are Ethernet
1141 * frames with a frame type of ETHERTYPE_IPX;
1143 * Ethernet_802.3 frames, which are 802.3
1144 * frames (i.e., the type/length field is
1145 * a length field, <= ETHERMTU, rather than
1146 * a type field) with the first two bytes
1147 * after the Ethernet/802.3 header being
1150 * Ethernet_802.2 frames, which are 802.3
1151 * frames with an 802.2 LLC header and
1152 * with the IPX LSAP as the DSAP in the LLC
1155 * Ethernet_SNAP frames, which are 802.3
1156 * frames with an LLC header and a SNAP
1157 * header and with an OUI of 0x000000
1158 * (encapsulated Ethernet) and a protocol
1159 * ID of ETHERTYPE_IPX in the SNAP header.
1161 * XXX - should we generate the same code both
1162 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1166 * This generates code to check both for the
1167 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1169 b0
= gen_cmp(off_linktype
+ 2, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1170 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)0xFFFF);
1174 * Now we add code to check for SNAP frames with
1175 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1177 b0
= gen_snap(0x000000, ETHERTYPE_IPX
, 14);
1181 * Now we generate code to check for 802.3
1182 * frames in general.
1184 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1188 * Now add the check for 802.3 frames before the
1189 * check for Ethernet_802.2 and Ethernet_802.3,
1190 * as those checks should only be done on 802.3
1191 * frames, not on Ethernet frames.
1196 * Now add the check for Ethernet_II frames, and
1197 * do that before checking for the other frame
1200 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
1204 case ETHERTYPE_ATALK
:
1205 case ETHERTYPE_AARP
:
1207 * EtherTalk (AppleTalk protocols on Ethernet link
1208 * layer) may use 802.2 encapsulation.
1212 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1213 * we check for an Ethernet type field less than
1214 * 1500, which means it's an 802.3 length field.
1216 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1220 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1221 * SNAP packets with an organization code of
1222 * 0x080007 (Apple, for Appletalk) and a protocol
1223 * type of ETHERTYPE_ATALK (Appletalk).
1225 * 802.2-encapsulated ETHERTYPE_AARP packets are
1226 * SNAP packets with an organization code of
1227 * 0x000000 (encapsulated Ethernet) and a protocol
1228 * type of ETHERTYPE_AARP (Appletalk ARP).
1230 if (proto
== ETHERTYPE_ATALK
)
1231 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
, 14);
1232 else /* proto == ETHERTYPE_AARP */
1233 b1
= gen_snap(0x000000, ETHERTYPE_AARP
, 14);
1237 * Check for Ethernet encapsulation (Ethertalk
1238 * phase 1?); we just check for the Ethernet
1241 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1247 if (proto
<= ETHERMTU
) {
1249 * This is an LLC SAP value, so the frames
1250 * that match would be 802.2 frames.
1251 * Check that the frame is an 802.2 frame
1252 * (i.e., that the length/type field is
1253 * a length field, <= ETHERMTU) and
1254 * then check the DSAP.
1256 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1258 b1
= gen_cmp(off_linktype
+ 2, BPF_B
, (bpf_int32
)proto
);
1263 * This is an Ethernet type, so compare
1264 * the length/type field with it (if
1265 * the frame is an 802.2 frame, the length
1266 * field will be <= ETHERMTU, and, as
1267 * "proto" is > ETHERMTU, this test
1268 * will fail and the frame won't match,
1269 * which is what we want).
1271 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1276 static struct block
*
1277 gen_linux_sll_linktype(proto
)
1280 struct block
*b0
, *b1
;
1285 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1286 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1287 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1293 * OSI protocols always use 802.2 encapsulation.
1294 * XXX - should we check both the DSAP and the
1295 * SSAP, like this, or should we check just the
1298 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1299 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1300 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1304 case LLCSAP_NETBEUI
:
1306 * NetBEUI always uses 802.2 encapsulation.
1307 * XXX - should we check both the DSAP and the
1308 * LSAP, like this, or should we check just the
1311 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1312 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1313 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1319 * Ethernet_II frames, which are Ethernet
1320 * frames with a frame type of ETHERTYPE_IPX;
1322 * Ethernet_802.3 frames, which have a frame
1323 * type of LINUX_SLL_P_802_3;
1325 * Ethernet_802.2 frames, which are 802.3
1326 * frames with an 802.2 LLC header (i.e, have
1327 * a frame type of LINUX_SLL_P_802_2) and
1328 * with the IPX LSAP as the DSAP in the LLC
1331 * Ethernet_SNAP frames, which are 802.3
1332 * frames with an LLC header and a SNAP
1333 * header and with an OUI of 0x000000
1334 * (encapsulated Ethernet) and a protocol
1335 * ID of ETHERTYPE_IPX in the SNAP header.
1337 * First, do the checks on LINUX_SLL_P_802_2
1338 * frames; generate the check for either
1339 * Ethernet_802.2 or Ethernet_SNAP frames, and
1340 * then put a check for LINUX_SLL_P_802_2 frames
1343 b0
= gen_cmp(off_linktype
+ 2, BPF_B
,
1344 (bpf_int32
)LLCSAP_IPX
);
1345 b1
= gen_snap(0x000000, ETHERTYPE_IPX
,
1348 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1352 * Now check for 802.3 frames and OR that with
1353 * the previous test.
1355 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_3
);
1359 * Now add the check for Ethernet_II frames, and
1360 * do that before checking for the other frame
1363 b0
= gen_cmp(off_linktype
, BPF_H
,
1364 (bpf_int32
)ETHERTYPE_IPX
);
1368 case ETHERTYPE_ATALK
:
1369 case ETHERTYPE_AARP
:
1371 * EtherTalk (AppleTalk protocols on Ethernet link
1372 * layer) may use 802.2 encapsulation.
1376 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1377 * we check for the 802.2 protocol type in the
1378 * "Ethernet type" field.
1380 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1383 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1384 * SNAP packets with an organization code of
1385 * 0x080007 (Apple, for Appletalk) and a protocol
1386 * type of ETHERTYPE_ATALK (Appletalk).
1388 * 802.2-encapsulated ETHERTYPE_AARP packets are
1389 * SNAP packets with an organization code of
1390 * 0x000000 (encapsulated Ethernet) and a protocol
1391 * type of ETHERTYPE_AARP (Appletalk ARP).
1393 if (proto
== ETHERTYPE_ATALK
)
1394 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
,
1396 else /* proto == ETHERTYPE_AARP */
1397 b1
= gen_snap(0x000000, ETHERTYPE_AARP
,
1402 * Check for Ethernet encapsulation (Ethertalk
1403 * phase 1?); we just check for the Ethernet
1406 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1412 if (proto
<= ETHERMTU
) {
1414 * This is an LLC SAP value, so the frames
1415 * that match would be 802.2 frames.
1416 * Check for the 802.2 protocol type
1417 * in the "Ethernet type" field, and
1418 * then check the DSAP.
1420 b0
= gen_cmp(off_linktype
, BPF_H
,
1422 b1
= gen_cmp(off_linktype
+ 2, BPF_B
,
1428 * This is an Ethernet type, so compare
1429 * the length/type field with it (if
1430 * the frame is an 802.2 frame, the length
1431 * field will be <= ETHERMTU, and, as
1432 * "proto" is > ETHERMTU, this test
1433 * will fail and the frame won't match,
1434 * which is what we want).
1436 return gen_cmp(off_linktype
, BPF_H
,
1442 static struct block
*
1446 struct block
*b0
, *b1
, *b2
;
1451 return gen_ether_linktype(proto
);
1459 proto
= (proto
<< 8 | LLCSAP_ISONS
);
1463 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1469 case DLT_IEEE802_11
:
1470 case DLT_PRISM_HEADER
:
1471 case DLT_IEEE802_11_RADIO
:
1474 case DLT_ATM_RFC1483
:
1476 case DLT_IP_OVER_FC
:
1477 return gen_llc(proto
);
1483 * If "is_lane" is set, check for a LANE-encapsulated
1484 * version of this protocol, otherwise check for an
1485 * LLC-encapsulated version of this protocol.
1487 * We assume LANE means Ethernet, not Token Ring.
1491 * Check that the packet doesn't begin with an
1492 * LE Control marker. (We've already generated
1495 b0
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
1499 * Now generate an Ethernet test.
1501 b1
= gen_ether_linktype(proto
);
1506 * Check for LLC encapsulation and then check the
1509 b0
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
1510 b1
= gen_llc(proto
);
1516 return gen_linux_sll_linktype(proto
);
1521 case DLT_SLIP_BSDOS
:
1524 * These types don't provide any type field; packets
1527 * XXX - for IPv4, check for a version number of 4, and,
1528 * for IPv6, check for a version number of 6?
1534 case ETHERTYPE_IPV6
:
1536 return gen_true(); /* always true */
1539 return gen_false(); /* always false */
1546 case DLT_PPP_SERIAL
:
1549 * We use Ethernet protocol types inside libpcap;
1550 * map them to the corresponding PPP protocol types.
1559 case ETHERTYPE_IPV6
:
1568 case ETHERTYPE_ATALK
:
1582 * I'm assuming the "Bridging PDU"s that go
1583 * over PPP are Spanning Tree Protocol
1597 * We use Ethernet protocol types inside libpcap;
1598 * map them to the corresponding PPP protocol types.
1603 b0
= gen_cmp(off_linktype
, BPF_H
, PPP_IP
);
1604 b1
= gen_cmp(off_linktype
, BPF_H
, PPP_VJC
);
1606 b0
= gen_cmp(off_linktype
, BPF_H
, PPP_VJNC
);
1611 case ETHERTYPE_IPV6
:
1621 case ETHERTYPE_ATALK
:
1635 * I'm assuming the "Bridging PDU"s that go
1636 * over PPP are Spanning Tree Protocol
1652 * For DLT_NULL, the link-layer header is a 32-bit
1653 * word containing an AF_ value in *host* byte order,
1654 * and for DLT_ENC, the link-layer header begins
1655 * with a 32-bit work containing an AF_ value in
1658 * In addition, if we're reading a saved capture file,
1659 * the host byte order in the capture may not be the
1660 * same as the host byte order on this machine.
1662 * For DLT_LOOP, the link-layer header is a 32-bit
1663 * word containing an AF_ value in *network* byte order.
1665 * XXX - AF_ values may, unfortunately, be platform-
1666 * dependent; for example, FreeBSD's AF_INET6 is 24
1667 * whilst NetBSD's and OpenBSD's is 26.
1669 * This means that, when reading a capture file, just
1670 * checking for our AF_INET6 value won't work if the
1671 * capture file came from another OS.
1680 case ETHERTYPE_IPV6
:
1687 * Not a type on which we support filtering.
1688 * XXX - support those that have AF_ values
1689 * #defined on this platform, at least?
1694 if (linktype
== DLT_NULL
|| linktype
== DLT_ENC
) {
1696 * The AF_ value is in host byte order, but
1697 * the BPF interpreter will convert it to
1698 * network byte order.
1700 * If this is a save file, and it's from a
1701 * machine with the opposite byte order to
1702 * ours, we byte-swap the AF_ value.
1704 * Then we run it through "htonl()", and
1705 * generate code to compare against the result.
1707 if (bpf_pcap
->sf
.rfile
!= NULL
&&
1708 bpf_pcap
->sf
.swapped
)
1709 proto
= SWAPLONG(proto
);
1710 proto
= htonl(proto
);
1712 return (gen_cmp(0, BPF_W
, (bpf_int32
)proto
));
1716 * af field is host byte order in contrast to the rest of
1719 if (proto
== ETHERTYPE_IP
)
1720 return (gen_cmp(offsetof(struct pfloghdr
, af
), BPF_B
,
1721 (bpf_int32
)AF_INET
));
1723 else if (proto
== ETHERTYPE_IPV6
)
1724 return (gen_cmp(offsetof(struct pfloghdr
, af
), BPF_B
,
1725 (bpf_int32
)AF_INET6
));
1733 case DLT_ARCNET_LINUX
:
1735 * XXX should we check for first fragment if the protocol
1744 case ETHERTYPE_IPV6
:
1745 return (gen_cmp(off_linktype
, BPF_B
,
1746 (bpf_int32
)ARCTYPE_INET6
));
1750 b0
= gen_cmp(off_linktype
, BPF_B
,
1751 (bpf_int32
)ARCTYPE_IP
);
1752 b1
= gen_cmp(off_linktype
, BPF_B
,
1753 (bpf_int32
)ARCTYPE_IP_OLD
);
1758 b0
= gen_cmp(off_linktype
, BPF_B
,
1759 (bpf_int32
)ARCTYPE_ARP
);
1760 b1
= gen_cmp(off_linktype
, BPF_B
,
1761 (bpf_int32
)ARCTYPE_ARP_OLD
);
1765 case ETHERTYPE_REVARP
:
1766 return (gen_cmp(off_linktype
, BPF_B
,
1767 (bpf_int32
)ARCTYPE_REVARP
));
1769 case ETHERTYPE_ATALK
:
1770 return (gen_cmp(off_linktype
, BPF_B
,
1771 (bpf_int32
)ARCTYPE_ATALK
));
1778 case ETHERTYPE_ATALK
:
1788 * XXX - assumes a 2-byte Frame Relay header with
1789 * DLCI and flags. What if the address is longer?
1795 * Check for the special NLPID for IP.
1797 return gen_cmp(2, BPF_H
, (0x03<<8) | 0xcc);
1800 case ETHERTYPE_IPV6
:
1802 * Check for the special NLPID for IPv6.
1804 return gen_cmp(2, BPF_H
, (0x03<<8) | 0x8e);
1809 * Check for several OSI protocols.
1811 * Frame Relay packets typically have an OSI
1812 * NLPID at the beginning; we check for each
1815 * What we check for is the NLPID and a frame
1816 * control field of UI, i.e. 0x03 followed
1819 b0
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
1820 b1
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
1821 b2
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
1832 case DLT_JUNIPER_MLFR
:
1833 case DLT_JUNIPER_MLPPP
:
1834 case DLT_JUNIPER_ATM1
:
1835 case DLT_JUNIPER_ATM2
:
1836 /* just lets verify the magic number for now -
1837 * on ATM we may have up to 6 different encapsulations on the wire
1838 * and need a lot of heuristics to figure out that the payload
1841 * FIXME encapsulation specific BPF_ filters
1843 return gen_mcmp(0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
1845 case DLT_LINUX_IRDA
:
1846 bpf_error("IrDA link-layer type filtering not implemented");
1849 bpf_error("DOCSIS link-layer type filtering not implemented");
1853 * All the types that have no encapsulation should either be
1854 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
1855 * all packets are IP packets, or should be handled in some
1856 * special case, if none of them are (if some are and some
1857 * aren't, the lack of encapsulation is a problem, as we'd
1858 * have to find some other way of determining the packet type).
1860 * Therefore, if "off_linktype" is -1, there's an error.
1862 if (off_linktype
== (u_int
)-1)
1866 * Any type not handled above should always have an Ethernet
1867 * type at an offset of "off_linktype". (PPP is partially
1868 * handled above - the protocol type is mapped from the
1869 * Ethernet and LLC types we use internally to the corresponding
1870 * PPP type - but the PPP type is always specified by a value
1871 * at "off_linktype", so we don't have to do the code generation
1874 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1878 * Check for an LLC SNAP packet with a given organization code and
1879 * protocol type; we check the entire contents of the 802.2 LLC and
1880 * snap headers, checking for DSAP and SSAP of SNAP and a control
1881 * field of 0x03 in the LLC header, and for the specified organization
1882 * code and protocol type in the SNAP header.
1884 static struct block
*
1885 gen_snap(orgcode
, ptype
, offset
)
1886 bpf_u_int32 orgcode
;
1890 u_char snapblock
[8];
1892 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
1893 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
1894 snapblock
[2] = 0x03; /* control = UI */
1895 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
1896 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
1897 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
1898 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
1899 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
1900 return gen_bcmp(offset
, 8, snapblock
);
1904 * Check for a given protocol value assuming an 802.2 LLC header.
1906 static struct block
*
1911 * XXX - handle token-ring variable-length header.
1916 return gen_cmp(off_linktype
, BPF_H
, (long)
1917 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1920 return gen_cmp(off_linktype
, BPF_H
, (long)
1921 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1923 case LLCSAP_NETBEUI
:
1924 return gen_cmp(off_linktype
, BPF_H
, (long)
1925 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1929 * XXX - are there ever SNAP frames for IPX on
1930 * non-Ethernet 802.x networks?
1932 return gen_cmp(off_linktype
, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1934 case ETHERTYPE_ATALK
:
1936 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1937 * SNAP packets with an organization code of
1938 * 0x080007 (Apple, for Appletalk) and a protocol
1939 * type of ETHERTYPE_ATALK (Appletalk).
1941 * XXX - check for an organization code of
1942 * encapsulated Ethernet as well?
1944 return gen_snap(0x080007, ETHERTYPE_ATALK
, off_linktype
);
1948 * XXX - we don't have to check for IPX 802.3
1949 * here, but should we check for the IPX Ethertype?
1951 if (proto
<= ETHERMTU
) {
1953 * This is an LLC SAP value, so check
1956 return gen_cmp(off_linktype
, BPF_B
, (bpf_int32
)proto
);
1959 * This is an Ethernet type; we assume that it's
1960 * unlikely that it'll appear in the right place
1961 * at random, and therefore check only the
1962 * location that would hold the Ethernet type
1963 * in a SNAP frame with an organization code of
1964 * 0x000000 (encapsulated Ethernet).
1966 * XXX - if we were to check for the SNAP DSAP and
1967 * LSAP, as per XXX, and were also to check for an
1968 * organization code of 0x000000 (encapsulated
1969 * Ethernet), we'd do
1971 * return gen_snap(0x000000, proto,
1974 * here; for now, we don't, as per the above.
1975 * I don't know whether it's worth the extra CPU
1976 * time to do the right check or not.
1978 return gen_cmp(off_linktype
+6, BPF_H
, (bpf_int32
)proto
);
1983 static struct block
*
1984 gen_hostop(addr
, mask
, dir
, proto
, src_off
, dst_off
)
1988 u_int src_off
, dst_off
;
1990 struct block
*b0
, *b1
;
2004 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2005 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2011 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2012 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2019 b0
= gen_linktype(proto
);
2020 b1
= gen_mcmp(offset
, BPF_W
, (bpf_int32
)addr
, mask
);
2026 static struct block
*
2027 gen_hostop6(addr
, mask
, dir
, proto
, src_off
, dst_off
)
2028 struct in6_addr
*addr
;
2029 struct in6_addr
*mask
;
2031 u_int src_off
, dst_off
;
2033 struct block
*b0
, *b1
;
2048 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2049 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2055 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2056 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2063 /* this order is important */
2064 a
= (u_int32_t
*)addr
;
2065 m
= (u_int32_t
*)mask
;
2066 b1
= gen_mcmp(offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
2067 b0
= gen_mcmp(offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
2069 b0
= gen_mcmp(offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
2071 b0
= gen_mcmp(offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
2073 b0
= gen_linktype(proto
);
2079 static struct block
*
2080 gen_ehostop(eaddr
, dir
)
2081 register const u_char
*eaddr
;
2084 register struct block
*b0
, *b1
;
2088 return gen_bcmp(off_mac
+ 6, 6, eaddr
);
2091 return gen_bcmp(off_mac
+ 0, 6, eaddr
);
2094 b0
= gen_ehostop(eaddr
, Q_SRC
);
2095 b1
= gen_ehostop(eaddr
, Q_DST
);
2101 b0
= gen_ehostop(eaddr
, Q_SRC
);
2102 b1
= gen_ehostop(eaddr
, Q_DST
);
2111 * Like gen_ehostop, but for DLT_FDDI
2113 static struct block
*
2114 gen_fhostop(eaddr
, dir
)
2115 register const u_char
*eaddr
;
2118 struct block
*b0
, *b1
;
2123 return gen_bcmp(6 + 1 + pcap_fddipad
, 6, eaddr
);
2125 return gen_bcmp(6 + 1, 6, eaddr
);
2130 return gen_bcmp(0 + 1 + pcap_fddipad
, 6, eaddr
);
2132 return gen_bcmp(0 + 1, 6, eaddr
);
2136 b0
= gen_fhostop(eaddr
, Q_SRC
);
2137 b1
= gen_fhostop(eaddr
, Q_DST
);
2143 b0
= gen_fhostop(eaddr
, Q_SRC
);
2144 b1
= gen_fhostop(eaddr
, Q_DST
);
2153 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2155 static struct block
*
2156 gen_thostop(eaddr
, dir
)
2157 register const u_char
*eaddr
;
2160 register struct block
*b0
, *b1
;
2164 return gen_bcmp(8, 6, eaddr
);
2167 return gen_bcmp(2, 6, eaddr
);
2170 b0
= gen_thostop(eaddr
, Q_SRC
);
2171 b1
= gen_thostop(eaddr
, Q_DST
);
2177 b0
= gen_thostop(eaddr
, Q_SRC
);
2178 b1
= gen_thostop(eaddr
, Q_DST
);
2187 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2189 static struct block
*
2190 gen_wlanhostop(eaddr
, dir
)
2191 register const u_char
*eaddr
;
2194 register struct block
*b0
, *b1
, *b2
;
2195 register struct slist
*s
;
2202 * For control frames, there is no SA.
2204 * For management frames, SA is at an
2205 * offset of 10 from the beginning of
2208 * For data frames, SA is at an offset
2209 * of 10 from the beginning of the packet
2210 * if From DS is clear, at an offset of
2211 * 16 from the beginning of the packet
2212 * if From DS is set and To DS is clear,
2213 * and an offset of 24 from the beginning
2214 * of the packet if From DS is set and To DS
2219 * Generate the tests to be done for data frames
2222 * First, check for To DS set, i.e. check "link[1] & 0x01".
2224 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2226 b1
= new_block(JMP(BPF_JSET
));
2227 b1
->s
.k
= 0x01; /* To DS */
2231 * If To DS is set, the SA is at 24.
2233 b0
= gen_bcmp(24, 6, eaddr
);
2237 * Now, check for To DS not set, i.e. check
2238 * "!(link[1] & 0x01)".
2240 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2242 b2
= new_block(JMP(BPF_JSET
));
2243 b2
->s
.k
= 0x01; /* To DS */
2248 * If To DS is not set, the SA is at 16.
2250 b1
= gen_bcmp(16, 6, eaddr
);
2254 * Now OR together the last two checks. That gives
2255 * the complete set of checks for data frames with
2261 * Now check for From DS being set, and AND that with
2262 * the ORed-together checks.
2264 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2266 b1
= new_block(JMP(BPF_JSET
));
2267 b1
->s
.k
= 0x02; /* From DS */
2272 * Now check for data frames with From DS not set.
2274 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2276 b2
= new_block(JMP(BPF_JSET
));
2277 b2
->s
.k
= 0x02; /* From DS */
2282 * If From DS isn't set, the SA is at 10.
2284 b1
= gen_bcmp(10, 6, eaddr
);
2288 * Now OR together the checks for data frames with
2289 * From DS not set and for data frames with From DS
2290 * set; that gives the checks done for data frames.
2295 * Now check for a data frame.
2296 * I.e, check "link[0] & 0x08".
2298 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2300 b1
= new_block(JMP(BPF_JSET
));
2305 * AND that with the checks done for data frames.
2310 * If the high-order bit of the type value is 0, this
2311 * is a management frame.
2312 * I.e, check "!(link[0] & 0x08)".
2314 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2316 b2
= new_block(JMP(BPF_JSET
));
2322 * For management frames, the SA is at 10.
2324 b1
= gen_bcmp(10, 6, eaddr
);
2328 * OR that with the checks done for data frames.
2329 * That gives the checks done for management and
2335 * If the low-order bit of the type value is 1,
2336 * this is either a control frame or a frame
2337 * with a reserved type, and thus not a
2340 * I.e., check "!(link[0] & 0x04)".
2342 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2344 b1
= new_block(JMP(BPF_JSET
));
2350 * AND that with the checks for data and management
2360 * For control frames, there is no DA.
2362 * For management frames, DA is at an
2363 * offset of 4 from the beginning of
2366 * For data frames, DA is at an offset
2367 * of 4 from the beginning of the packet
2368 * if To DS is clear and at an offset of
2369 * 16 from the beginning of the packet
2374 * Generate the tests to be done for data frames.
2376 * First, check for To DS set, i.e. "link[1] & 0x01".
2378 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2380 b1
= new_block(JMP(BPF_JSET
));
2381 b1
->s
.k
= 0x01; /* To DS */
2385 * If To DS is set, the DA is at 16.
2387 b0
= gen_bcmp(16, 6, eaddr
);
2391 * Now, check for To DS not set, i.e. check
2392 * "!(link[1] & 0x01)".
2394 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2396 b2
= new_block(JMP(BPF_JSET
));
2397 b2
->s
.k
= 0x01; /* To DS */
2402 * If To DS is not set, the DA is at 4.
2404 b1
= gen_bcmp(4, 6, eaddr
);
2408 * Now OR together the last two checks. That gives
2409 * the complete set of checks for data frames.
2414 * Now check for a data frame.
2415 * I.e, check "link[0] & 0x08".
2417 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2419 b1
= new_block(JMP(BPF_JSET
));
2424 * AND that with the checks done for data frames.
2429 * If the high-order bit of the type value is 0, this
2430 * is a management frame.
2431 * I.e, check "!(link[0] & 0x08)".
2433 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2435 b2
= new_block(JMP(BPF_JSET
));
2441 * For management frames, the DA is at 4.
2443 b1
= gen_bcmp(4, 6, eaddr
);
2447 * OR that with the checks done for data frames.
2448 * That gives the checks done for management and
2454 * If the low-order bit of the type value is 1,
2455 * this is either a control frame or a frame
2456 * with a reserved type, and thus not a
2459 * I.e., check "!(link[0] & 0x04)".
2461 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2463 b1
= new_block(JMP(BPF_JSET
));
2469 * AND that with the checks for data and management
2476 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2477 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2483 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2484 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2493 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
2494 * (We assume that the addresses are IEEE 48-bit MAC addresses,
2495 * as the RFC states.)
2497 static struct block
*
2498 gen_ipfchostop(eaddr
, dir
)
2499 register const u_char
*eaddr
;
2502 register struct block
*b0
, *b1
;
2506 return gen_bcmp(10, 6, eaddr
);
2509 return gen_bcmp(2, 6, eaddr
);
2512 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2513 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2519 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2520 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2529 * This is quite tricky because there may be pad bytes in front of the
2530 * DECNET header, and then there are two possible data packet formats that
2531 * carry both src and dst addresses, plus 5 packet types in a format that
2532 * carries only the src node, plus 2 types that use a different format and
2533 * also carry just the src node.
2537 * Instead of doing those all right, we just look for data packets with
2538 * 0 or 1 bytes of padding. If you want to look at other packets, that
2539 * will require a lot more hacking.
2541 * To add support for filtering on DECNET "areas" (network numbers)
2542 * one would want to add a "mask" argument to this routine. That would
2543 * make the filter even more inefficient, although one could be clever
2544 * and not generate masking instructions if the mask is 0xFFFF.
2546 static struct block
*
2547 gen_dnhostop(addr
, dir
, base_off
)
2552 struct block
*b0
, *b1
, *b2
, *tmp
;
2553 u_int offset_lh
; /* offset if long header is received */
2554 u_int offset_sh
; /* offset if short header is received */
2559 offset_sh
= 1; /* follows flags */
2560 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
2564 offset_sh
= 3; /* follows flags, dstnode */
2565 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
2569 /* Inefficient because we do our Calvinball dance twice */
2570 b0
= gen_dnhostop(addr
, Q_SRC
, base_off
);
2571 b1
= gen_dnhostop(addr
, Q_DST
, base_off
);
2577 /* Inefficient because we do our Calvinball dance twice */
2578 b0
= gen_dnhostop(addr
, Q_SRC
, base_off
);
2579 b1
= gen_dnhostop(addr
, Q_DST
, base_off
);
2584 bpf_error("ISO host filtering not implemented");
2589 b0
= gen_linktype(ETHERTYPE_DN
);
2590 /* Check for pad = 1, long header case */
2591 tmp
= gen_mcmp(base_off
+ 2, BPF_H
,
2592 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
2593 b1
= gen_cmp(base_off
+ 2 + 1 + offset_lh
,
2594 BPF_H
, (bpf_int32
)ntohs(addr
));
2596 /* Check for pad = 0, long header case */
2597 tmp
= gen_mcmp(base_off
+ 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
2598 b2
= gen_cmp(base_off
+ 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs(addr
));
2601 /* Check for pad = 1, short header case */
2602 tmp
= gen_mcmp(base_off
+ 2, BPF_H
,
2603 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
2604 b2
= gen_cmp(base_off
+ 2 + 1 + offset_sh
,
2605 BPF_H
, (bpf_int32
)ntohs(addr
));
2608 /* Check for pad = 0, short header case */
2609 tmp
= gen_mcmp(base_off
+ 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
2610 b2
= gen_cmp(base_off
+ 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs(addr
));
2614 /* Combine with test for linktype */
2619 static struct block
*
2620 gen_host(addr
, mask
, proto
, dir
)
2626 struct block
*b0
, *b1
;
2631 b0
= gen_host(addr
, mask
, Q_IP
, dir
);
2632 if (off_linktype
!= (u_int
)-1) {
2633 b1
= gen_host(addr
, mask
, Q_ARP
, dir
);
2635 b0
= gen_host(addr
, mask
, Q_RARP
, dir
);
2641 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_IP
,
2642 off_nl
+ 12, off_nl
+ 16);
2645 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_REVARP
,
2646 off_nl
+ 14, off_nl
+ 24);
2649 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_ARP
,
2650 off_nl
+ 14, off_nl
+ 24);
2653 bpf_error("'tcp' modifier applied to host");
2656 bpf_error("'sctp' modifier applied to host");
2659 bpf_error("'udp' modifier applied to host");
2662 bpf_error("'icmp' modifier applied to host");
2665 bpf_error("'igmp' modifier applied to host");
2668 bpf_error("'igrp' modifier applied to host");
2671 bpf_error("'pim' modifier applied to host");
2674 bpf_error("'vrrp' modifier applied to host");
2677 bpf_error("ATALK host filtering not implemented");
2680 bpf_error("AARP host filtering not implemented");
2683 return gen_dnhostop(addr
, dir
, off_nl
);
2686 bpf_error("SCA host filtering not implemented");
2689 bpf_error("LAT host filtering not implemented");
2692 bpf_error("MOPDL host filtering not implemented");
2695 bpf_error("MOPRC host filtering not implemented");
2699 bpf_error("'ip6' modifier applied to ip host");
2702 bpf_error("'icmp6' modifier applied to host");
2706 bpf_error("'ah' modifier applied to host");
2709 bpf_error("'esp' modifier applied to host");
2712 bpf_error("ISO host filtering not implemented");
2715 bpf_error("'esis' modifier applied to host");
2718 bpf_error("'isis' modifier applied to host");
2721 bpf_error("'clnp' modifier applied to host");
2724 bpf_error("'stp' modifier applied to host");
2727 bpf_error("IPX host filtering not implemented");
2730 bpf_error("'netbeui' modifier applied to host");
2739 static struct block
*
2740 gen_host6(addr
, mask
, proto
, dir
)
2741 struct in6_addr
*addr
;
2742 struct in6_addr
*mask
;
2749 return gen_host6(addr
, mask
, Q_IPV6
, dir
);
2752 bpf_error("'ip' modifier applied to ip6 host");
2755 bpf_error("'rarp' modifier applied to ip6 host");
2758 bpf_error("'arp' modifier applied to ip6 host");
2761 bpf_error("'sctp' modifier applied to host");
2764 bpf_error("'tcp' modifier applied to host");
2767 bpf_error("'udp' modifier applied to host");
2770 bpf_error("'icmp' modifier applied to host");
2773 bpf_error("'igmp' modifier applied to host");
2776 bpf_error("'igrp' modifier applied to host");
2779 bpf_error("'pim' modifier applied to host");
2782 bpf_error("'vrrp' modifier applied to host");
2785 bpf_error("ATALK host filtering not implemented");
2788 bpf_error("AARP host filtering not implemented");
2791 bpf_error("'decnet' modifier applied to ip6 host");
2794 bpf_error("SCA host filtering not implemented");
2797 bpf_error("LAT host filtering not implemented");
2800 bpf_error("MOPDL host filtering not implemented");
2803 bpf_error("MOPRC host filtering not implemented");
2806 return gen_hostop6(addr
, mask
, dir
, ETHERTYPE_IPV6
,
2807 off_nl
+ 8, off_nl
+ 24);
2810 bpf_error("'icmp6' modifier applied to host");
2813 bpf_error("'ah' modifier applied to host");
2816 bpf_error("'esp' modifier applied to host");
2819 bpf_error("ISO host filtering not implemented");
2822 bpf_error("'esis' modifier applied to host");
2825 bpf_error("'isis' modifier applied to host");
2828 bpf_error("'clnp' modifier applied to host");
2831 bpf_error("'stp' modifier applied to host");
2834 bpf_error("IPX host filtering not implemented");
2837 bpf_error("'netbeui' modifier applied to host");
2847 static struct block
*
2848 gen_gateway(eaddr
, alist
, proto
, dir
)
2849 const u_char
*eaddr
;
2850 bpf_u_int32
**alist
;
2854 struct block
*b0
, *b1
, *tmp
;
2857 bpf_error("direction applied to 'gateway'");
2864 if (linktype
== DLT_EN10MB
)
2865 b0
= gen_ehostop(eaddr
, Q_OR
);
2866 else if (linktype
== DLT_FDDI
)
2867 b0
= gen_fhostop(eaddr
, Q_OR
);
2868 else if (linktype
== DLT_IEEE802
)
2869 b0
= gen_thostop(eaddr
, Q_OR
);
2870 else if (linktype
== DLT_IEEE802_11
)
2871 b0
= gen_wlanhostop(eaddr
, Q_OR
);
2872 else if (linktype
== DLT_SUNATM
&& is_lane
) {
2874 * Check that the packet doesn't begin with an
2875 * LE Control marker. (We've already generated
2878 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
2882 * Now check the MAC address.
2884 b0
= gen_ehostop(eaddr
, Q_OR
);
2886 } else if (linktype
== DLT_IP_OVER_FC
)
2887 b0
= gen_ipfchostop(eaddr
, Q_OR
);
2890 "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
2892 b1
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
2894 tmp
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
2902 bpf_error("illegal modifier of 'gateway'");
2908 gen_proto_abbrev(proto
)
2917 b1
= gen_proto(IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
2919 b0
= gen_proto(IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
2925 b1
= gen_proto(IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
2927 b0
= gen_proto(IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
2933 b1
= gen_proto(IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
2935 b0
= gen_proto(IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
2941 b1
= gen_proto(IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
2944 #ifndef IPPROTO_IGMP
2945 #define IPPROTO_IGMP 2
2949 b1
= gen_proto(IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
2952 #ifndef IPPROTO_IGRP
2953 #define IPPROTO_IGRP 9
2956 b1
= gen_proto(IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
2960 #define IPPROTO_PIM 103
2964 b1
= gen_proto(IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
2966 b0
= gen_proto(IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
2971 #ifndef IPPROTO_VRRP
2972 #define IPPROTO_VRRP 112
2976 b1
= gen_proto(IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
2980 b1
= gen_linktype(ETHERTYPE_IP
);
2984 b1
= gen_linktype(ETHERTYPE_ARP
);
2988 b1
= gen_linktype(ETHERTYPE_REVARP
);
2992 bpf_error("link layer applied in wrong context");
2995 b1
= gen_linktype(ETHERTYPE_ATALK
);
2999 b1
= gen_linktype(ETHERTYPE_AARP
);
3003 b1
= gen_linktype(ETHERTYPE_DN
);
3007 b1
= gen_linktype(ETHERTYPE_SCA
);
3011 b1
= gen_linktype(ETHERTYPE_LAT
);
3015 b1
= gen_linktype(ETHERTYPE_MOPDL
);
3019 b1
= gen_linktype(ETHERTYPE_MOPRC
);
3024 b1
= gen_linktype(ETHERTYPE_IPV6
);
3027 #ifndef IPPROTO_ICMPV6
3028 #define IPPROTO_ICMPV6 58
3031 b1
= gen_proto(IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
3036 #define IPPROTO_AH 51
3039 b1
= gen_proto(IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
3041 b0
= gen_proto(IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
3047 #define IPPROTO_ESP 50
3050 b1
= gen_proto(IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
3052 b0
= gen_proto(IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
3058 b1
= gen_linktype(LLCSAP_ISONS
);
3062 b1
= gen_proto(ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
3066 b1
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
3069 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
3070 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3071 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3073 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3075 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3077 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3081 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
3082 b0
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3083 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3085 b0
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3087 b0
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3089 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3093 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
3094 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3095 b1
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3097 b0
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
3102 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3103 b1
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3108 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3109 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3111 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3113 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3118 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3119 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3124 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3125 b1
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3130 b1
= gen_proto(ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
3134 b1
= gen_linktype(LLCSAP_8021D
);
3138 b1
= gen_linktype(LLCSAP_IPX
);
3142 b1
= gen_linktype(LLCSAP_NETBEUI
);
3151 static struct block
*
3158 s
= new_stmt(BPF_LD
|BPF_H
|BPF_ABS
);
3159 s
->s
.k
= off_nl
+ 6;
3160 b
= new_block(JMP(BPF_JSET
));
3168 static struct block
*
3169 gen_portatom(off
, v
)
3176 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
3179 s
->next
= new_stmt(BPF_LD
|BPF_IND
|BPF_H
);
3180 s
->next
->s
.k
= off_nl
+ off
;
3182 b
= new_block(JMP(BPF_JEQ
));
3190 static struct block
*
3191 gen_portatom6(off
, v
)
3195 return gen_cmp(off_nl
+ 40 + off
, BPF_H
, v
);
3200 gen_portop(port
, proto
, dir
)
3201 int port
, proto
, dir
;
3203 struct block
*b0
, *b1
, *tmp
;
3205 /* ip proto 'proto' */
3206 tmp
= gen_cmp(off_nl
+ 9, BPF_B
, (bpf_int32
)proto
);
3212 b1
= gen_portatom(0, (bpf_int32
)port
);
3216 b1
= gen_portatom(2, (bpf_int32
)port
);
3221 tmp
= gen_portatom(0, (bpf_int32
)port
);
3222 b1
= gen_portatom(2, (bpf_int32
)port
);
3227 tmp
= gen_portatom(0, (bpf_int32
)port
);
3228 b1
= gen_portatom(2, (bpf_int32
)port
);
3240 static struct block
*
3241 gen_port(port
, ip_proto
, dir
)
3246 struct block
*b0
, *b1
, *tmp
;
3251 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3252 * not LLC encapsulation with LLCSAP_IP.
3254 * For IEEE 802 networks - which includes 802.5 token ring
3255 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3256 * says that SNAP encapsulation is used, not LLC encapsulation
3259 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3260 * RFC 2225 say that SNAP encapsulation is used, not LLC
3261 * encapsulation with LLCSAP_IP.
3263 * So we always check for ETHERTYPE_IP.
3265 b0
= gen_linktype(ETHERTYPE_IP
);
3271 b1
= gen_portop(port
, ip_proto
, dir
);
3275 tmp
= gen_portop(port
, IPPROTO_TCP
, dir
);
3276 b1
= gen_portop(port
, IPPROTO_UDP
, dir
);
3278 tmp
= gen_portop(port
, IPPROTO_SCTP
, dir
);
3291 gen_portop6(port
, proto
, dir
)
3292 int port
, proto
, dir
;
3294 struct block
*b0
, *b1
, *tmp
;
3296 /* ip proto 'proto' */
3297 b0
= gen_cmp(off_nl
+ 6, BPF_B
, (bpf_int32
)proto
);
3301 b1
= gen_portatom6(0, (bpf_int32
)port
);
3305 b1
= gen_portatom6(2, (bpf_int32
)port
);
3310 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3311 b1
= gen_portatom6(2, (bpf_int32
)port
);
3316 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3317 b1
= gen_portatom6(2, (bpf_int32
)port
);
3329 static struct block
*
3330 gen_port6(port
, ip_proto
, dir
)
3335 struct block
*b0
, *b1
, *tmp
;
3337 /* ether proto ip */
3338 b0
= gen_linktype(ETHERTYPE_IPV6
);
3344 b1
= gen_portop6(port
, ip_proto
, dir
);
3348 tmp
= gen_portop6(port
, IPPROTO_TCP
, dir
);
3349 b1
= gen_portop6(port
, IPPROTO_UDP
, dir
);
3351 tmp
= gen_portop6(port
, IPPROTO_SCTP
, dir
);
3364 lookup_proto(name
, proto
)
3365 register const char *name
;
3375 v
= pcap_nametoproto(name
);
3376 if (v
== PROTO_UNDEF
)
3377 bpf_error("unknown ip proto '%s'", name
);
3381 /* XXX should look up h/w protocol type based on linktype */
3382 v
= pcap_nametoeproto(name
);
3383 if (v
== PROTO_UNDEF
) {
3384 v
= pcap_nametollc(name
);
3385 if (v
== PROTO_UNDEF
)
3386 bpf_error("unknown ether proto '%s'", name
);
3391 if (strcmp(name
, "esis") == 0)
3393 else if (strcmp(name
, "isis") == 0)
3395 else if (strcmp(name
, "clnp") == 0)
3398 bpf_error("unknown osi proto '%s'", name
);
3418 static struct block
*
3419 gen_protochain(v
, proto
, dir
)
3424 #ifdef NO_PROTOCHAIN
3425 return gen_proto(v
, proto
, dir
);
3427 struct block
*b0
, *b
;
3428 struct slist
*s
[100];
3429 int fix2
, fix3
, fix4
, fix5
;
3430 int ahcheck
, again
, end
;
3432 int reg2
= alloc_reg();
3434 memset(s
, 0, sizeof(s
));
3435 fix2
= fix3
= fix4
= fix5
= 0;
3442 b0
= gen_protochain(v
, Q_IP
, dir
);
3443 b
= gen_protochain(v
, Q_IPV6
, dir
);
3447 bpf_error("bad protocol applied for 'protochain'");
3451 no_optimize
= 1; /*this code is not compatible with optimzer yet */
3454 * s[0] is a dummy entry to protect other BPF insn from damaged
3455 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
3456 * hard to find interdependency made by jump table fixup.
3459 s
[i
] = new_stmt(0); /*dummy*/
3464 b0
= gen_linktype(ETHERTYPE_IP
);
3467 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
3468 s
[i
]->s
.k
= off_nl
+ 9;
3470 /* X = ip->ip_hl << 2 */
3471 s
[i
] = new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
3477 b0
= gen_linktype(ETHERTYPE_IPV6
);
3479 /* A = ip6->ip_nxt */
3480 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
3481 s
[i
]->s
.k
= off_nl
+ 6;
3483 /* X = sizeof(struct ip6_hdr) */
3484 s
[i
] = new_stmt(BPF_LDX
|BPF_IMM
);
3490 bpf_error("unsupported proto to gen_protochain");
3494 /* again: if (A == v) goto end; else fall through; */
3496 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3498 s
[i
]->s
.jt
= NULL
; /*later*/
3499 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3503 #ifndef IPPROTO_NONE
3504 #define IPPROTO_NONE 59
3506 /* if (A == IPPROTO_NONE) goto end */
3507 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3508 s
[i
]->s
.jt
= NULL
; /*later*/
3509 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3510 s
[i
]->s
.k
= IPPROTO_NONE
;
3511 s
[fix5
]->s
.jf
= s
[i
];
3516 if (proto
== Q_IPV6
) {
3517 int v6start
, v6end
, v6advance
, j
;
3520 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
3521 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3522 s
[i
]->s
.jt
= NULL
; /*later*/
3523 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3524 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
3525 s
[fix2
]->s
.jf
= s
[i
];
3527 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
3528 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3529 s
[i
]->s
.jt
= NULL
; /*later*/
3530 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3531 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
3533 /* if (A == IPPROTO_ROUTING) goto v6advance */
3534 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3535 s
[i
]->s
.jt
= NULL
; /*later*/
3536 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3537 s
[i
]->s
.k
= IPPROTO_ROUTING
;
3539 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
3540 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3541 s
[i
]->s
.jt
= NULL
; /*later*/
3542 s
[i
]->s
.jf
= NULL
; /*later*/
3543 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
3554 * X = X + (P[X + 1] + 1) * 8;
3557 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3559 /* A = P[X + packet head] */
3560 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3564 s
[i
] = new_stmt(BPF_ST
);
3568 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3571 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3575 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3577 /* A = P[X + packet head]; */
3578 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3582 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3586 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
3590 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3593 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
3597 /* goto again; (must use BPF_JA for backward jump) */
3598 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
3599 s
[i
]->s
.k
= again
- i
- 1;
3600 s
[i
- 1]->s
.jf
= s
[i
];
3604 for (j
= v6start
; j
<= v6end
; j
++)
3605 s
[j
]->s
.jt
= s
[v6advance
];
3610 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3612 s
[fix2
]->s
.jf
= s
[i
];
3618 /* if (A == IPPROTO_AH) then fall through; else goto end; */
3619 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3620 s
[i
]->s
.jt
= NULL
; /*later*/
3621 s
[i
]->s
.jf
= NULL
; /*later*/
3622 s
[i
]->s
.k
= IPPROTO_AH
;
3624 s
[fix3
]->s
.jf
= s
[ahcheck
];
3631 * X = X + (P[X + 1] + 2) * 4;
3634 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3636 /* A = P[X + packet head]; */
3637 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3641 s
[i
] = new_stmt(BPF_ST
);
3645 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3648 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3652 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3654 /* A = P[X + packet head] */
3655 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3659 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3663 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
3667 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3670 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
3674 /* goto again; (must use BPF_JA for backward jump) */
3675 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
3676 s
[i
]->s
.k
= again
- i
- 1;
3681 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3683 s
[fix2
]->s
.jt
= s
[end
];
3684 s
[fix4
]->s
.jf
= s
[end
];
3685 s
[fix5
]->s
.jt
= s
[end
];
3692 for (i
= 0; i
< max
- 1; i
++)
3693 s
[i
]->next
= s
[i
+ 1];
3694 s
[max
- 1]->next
= NULL
;
3699 b
= new_block(JMP(BPF_JEQ
));
3700 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
3710 static struct block
*
3711 gen_proto(v
, proto
, dir
)
3716 struct block
*b0
, *b1
;
3718 if (dir
!= Q_DEFAULT
)
3719 bpf_error("direction applied to 'proto'");
3724 b0
= gen_proto(v
, Q_IP
, dir
);
3725 b1
= gen_proto(v
, Q_IPV6
, dir
);
3733 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3734 * not LLC encapsulation with LLCSAP_IP.
3736 * For IEEE 802 networks - which includes 802.5 token ring
3737 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3738 * says that SNAP encapsulation is used, not LLC encapsulation
3741 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3742 * RFC 2225 say that SNAP encapsulation is used, not LLC
3743 * encapsulation with LLCSAP_IP.
3745 * So we always check for ETHERTYPE_IP.
3747 b0
= gen_linktype(ETHERTYPE_IP
);
3749 b1
= gen_cmp(off_nl
+ 9, BPF_B
, (bpf_int32
)v
);
3751 b1
= gen_protochain(v
, Q_IP
);
3761 * Frame Relay packets typically have an OSI
3762 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
3763 * generates code to check for all the OSI
3764 * NLPIDs, so calling it and then adding a check
3765 * for the particular NLPID for which we're
3766 * looking is bogus, as we can just check for
3769 * What we check for is the NLPID and a frame
3770 * control field value of UI, i.e. 0x03 followed
3773 * XXX - assumes a 2-byte Frame Relay header with
3774 * DLCI and flags. What if the address is longer?
3776 * XXX - what about SNAP-encapsulated frames?
3778 return gen_cmp(2, BPF_H
, (0x03<<8) | v
);
3784 * Cisco uses an Ethertype lookalike - for OSI,
3787 b0
= gen_linktype(LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
3788 /* OSI in C-HDLC is stuffed with a fudge byte */
3789 b1
= gen_cmp(off_nl_nosnap
+1, BPF_B
, (long)v
);
3794 b0
= gen_linktype(LLCSAP_ISONS
);
3795 b1
= gen_cmp(off_nl_nosnap
, BPF_B
, (long)v
);
3801 b0
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
3803 * 4 is the offset of the PDU type relative to the IS-IS
3806 b1
= gen_cmp(off_nl_nosnap
+4, BPF_B
, (long)v
);
3811 bpf_error("arp does not encapsulate another protocol");
3815 bpf_error("rarp does not encapsulate another protocol");
3819 bpf_error("atalk encapsulation is not specifiable");
3823 bpf_error("decnet encapsulation is not specifiable");
3827 bpf_error("sca does not encapsulate another protocol");
3831 bpf_error("lat does not encapsulate another protocol");
3835 bpf_error("moprc does not encapsulate another protocol");
3839 bpf_error("mopdl does not encapsulate another protocol");
3843 return gen_linktype(v
);
3846 bpf_error("'udp proto' is bogus");
3850 bpf_error("'tcp proto' is bogus");
3854 bpf_error("'sctp proto' is bogus");
3858 bpf_error("'icmp proto' is bogus");
3862 bpf_error("'igmp proto' is bogus");
3866 bpf_error("'igrp proto' is bogus");
3870 bpf_error("'pim proto' is bogus");
3874 bpf_error("'vrrp proto' is bogus");
3879 b0
= gen_linktype(ETHERTYPE_IPV6
);
3881 b1
= gen_cmp(off_nl
+ 6, BPF_B
, (bpf_int32
)v
);
3883 b1
= gen_protochain(v
, Q_IPV6
);
3889 bpf_error("'icmp6 proto' is bogus");
3893 bpf_error("'ah proto' is bogus");
3896 bpf_error("'ah proto' is bogus");
3899 bpf_error("'stp proto' is bogus");
3902 bpf_error("'ipx proto' is bogus");
3905 bpf_error("'netbeui proto' is bogus");
3916 register const char *name
;
3919 int proto
= q
.proto
;
3923 bpf_u_int32 mask
, addr
;
3925 bpf_u_int32
**alist
;
3928 struct sockaddr_in
*sin
;
3929 struct sockaddr_in6
*sin6
;
3930 struct addrinfo
*res
, *res0
;
3931 struct in6_addr mask128
;
3933 struct block
*b
, *tmp
;
3934 int port
, real_proto
;
3939 addr
= pcap_nametonetaddr(name
);
3941 bpf_error("unknown network '%s'", name
);
3942 /* Left justify network addr and calculate its network mask */
3944 while (addr
&& (addr
& 0xff000000) == 0) {
3948 return gen_host(addr
, mask
, proto
, dir
);
3952 if (proto
== Q_LINK
) {
3956 eaddr
= pcap_ether_hostton(name
);
3959 "unknown ether host '%s'", name
);
3960 b
= gen_ehostop(eaddr
, dir
);
3965 eaddr
= pcap_ether_hostton(name
);
3968 "unknown FDDI host '%s'", name
);
3969 b
= gen_fhostop(eaddr
, dir
);
3974 eaddr
= pcap_ether_hostton(name
);
3977 "unknown token ring host '%s'", name
);
3978 b
= gen_thostop(eaddr
, dir
);
3982 case DLT_IEEE802_11
:
3983 eaddr
= pcap_ether_hostton(name
);
3986 "unknown 802.11 host '%s'", name
);
3987 b
= gen_wlanhostop(eaddr
, dir
);
3991 case DLT_IP_OVER_FC
:
3992 eaddr
= pcap_ether_hostton(name
);
3995 "unknown Fibre Channel host '%s'", name
);
3996 b
= gen_ipfchostop(eaddr
, dir
);
4005 * Check that the packet doesn't begin
4006 * with an LE Control marker. (We've
4007 * already generated a test for LANE.)
4009 tmp
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
,
4013 eaddr
= pcap_ether_hostton(name
);
4016 "unknown ether host '%s'", name
);
4017 b
= gen_ehostop(eaddr
, dir
);
4023 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
4024 } else if (proto
== Q_DECNET
) {
4025 unsigned short dn_addr
= __pcap_nametodnaddr(name
);
4027 * I don't think DECNET hosts can be multihomed, so
4028 * there is no need to build up a list of addresses
4030 return (gen_host(dn_addr
, 0, proto
, dir
));
4033 alist
= pcap_nametoaddr(name
);
4034 if (alist
== NULL
|| *alist
== NULL
)
4035 bpf_error("unknown host '%s'", name
);
4037 if (off_linktype
== (u_int
)-1 && tproto
== Q_DEFAULT
)
4039 b
= gen_host(**alist
++, 0xffffffff, tproto
, dir
);
4041 tmp
= gen_host(**alist
++, 0xffffffff,
4048 memset(&mask128
, 0xff, sizeof(mask128
));
4049 res0
= res
= pcap_nametoaddrinfo(name
);
4051 bpf_error("unknown host '%s'", name
);
4053 tproto
= tproto6
= proto
;
4054 if (off_linktype
== -1 && tproto
== Q_DEFAULT
) {
4058 for (res
= res0
; res
; res
= res
->ai_next
) {
4059 switch (res
->ai_family
) {
4061 if (tproto
== Q_IPV6
)
4064 sin
= (struct sockaddr_in
*)
4066 tmp
= gen_host(ntohl(sin
->sin_addr
.s_addr
),
4067 0xffffffff, tproto
, dir
);
4070 if (tproto6
== Q_IP
)
4073 sin6
= (struct sockaddr_in6
*)
4075 tmp
= gen_host6(&sin6
->sin6_addr
,
4076 &mask128
, tproto6
, dir
);
4087 bpf_error("unknown host '%s'%s", name
,
4088 (proto
== Q_DEFAULT
)
4090 : " for specified address family");
4097 if (proto
!= Q_DEFAULT
&&
4098 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
4099 bpf_error("illegal qualifier of 'port'");
4100 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
4101 bpf_error("unknown port '%s'", name
);
4102 if (proto
== Q_UDP
) {
4103 if (real_proto
== IPPROTO_TCP
)
4104 bpf_error("port '%s' is tcp", name
);
4105 else if (real_proto
== IPPROTO_SCTP
)
4106 bpf_error("port '%s' is sctp", name
);
4108 /* override PROTO_UNDEF */
4109 real_proto
= IPPROTO_UDP
;
4111 if (proto
== Q_TCP
) {
4112 if (real_proto
== IPPROTO_UDP
)
4113 bpf_error("port '%s' is udp", name
);
4115 else if (real_proto
== IPPROTO_SCTP
)
4116 bpf_error("port '%s' is sctp", name
);
4118 /* override PROTO_UNDEF */
4119 real_proto
= IPPROTO_TCP
;
4121 if (proto
== Q_SCTP
) {
4122 if (real_proto
== IPPROTO_UDP
)
4123 bpf_error("port '%s' is udp", name
);
4125 else if (real_proto
== IPPROTO_TCP
)
4126 bpf_error("port '%s' is tcp", name
);
4128 /* override PROTO_UNDEF */
4129 real_proto
= IPPROTO_SCTP
;
4132 return gen_port(port
, real_proto
, dir
);
4136 b
= gen_port(port
, real_proto
, dir
);
4137 gen_or(gen_port6(port
, real_proto
, dir
), b
);
4144 eaddr
= pcap_ether_hostton(name
);
4146 bpf_error("unknown ether host: %s", name
);
4148 alist
= pcap_nametoaddr(name
);
4149 if (alist
== NULL
|| *alist
== NULL
)
4150 bpf_error("unknown host '%s'", name
);
4151 b
= gen_gateway(eaddr
, alist
, proto
, dir
);
4155 bpf_error("'gateway' not supported in this configuration");
4159 real_proto
= lookup_proto(name
, proto
);
4160 if (real_proto
>= 0)
4161 return gen_proto(real_proto
, proto
, dir
);
4163 bpf_error("unknown protocol: %s", name
);
4166 real_proto
= lookup_proto(name
, proto
);
4167 if (real_proto
>= 0)
4168 return gen_protochain(real_proto
, proto
, dir
);
4170 bpf_error("unknown protocol: %s", name
);
4182 gen_mcode(s1
, s2
, masklen
, q
)
4183 register const char *s1
, *s2
;
4184 register int masklen
;
4187 register int nlen
, mlen
;
4190 nlen
= __pcap_atoin(s1
, &n
);
4191 /* Promote short ipaddr */
4195 mlen
= __pcap_atoin(s2
, &m
);
4196 /* Promote short ipaddr */
4199 bpf_error("non-network bits set in \"%s mask %s\"",
4202 /* Convert mask len to mask */
4204 bpf_error("mask length must be <= 32");
4205 m
= 0xffffffff << (32 - masklen
);
4207 bpf_error("non-network bits set in \"%s/%d\"",
4214 return gen_host(n
, m
, q
.proto
, q
.dir
);
4217 bpf_error("Mask syntax for networks only");
4225 register const char *s
;
4230 int proto
= q
.proto
;
4236 else if (q
.proto
== Q_DECNET
)
4237 vlen
= __pcap_atodn(s
, &v
);
4239 vlen
= __pcap_atoin(s
, &v
);
4246 if (proto
== Q_DECNET
)
4247 return gen_host(v
, 0, proto
, dir
);
4248 else if (proto
== Q_LINK
) {
4249 bpf_error("illegal link layer address");
4252 if (s
== NULL
&& q
.addr
== Q_NET
) {
4253 /* Promote short net number */
4254 while (v
&& (v
& 0xff000000) == 0) {
4259 /* Promote short ipaddr */
4263 return gen_host(v
, mask
, proto
, dir
);
4268 proto
= IPPROTO_UDP
;
4269 else if (proto
== Q_TCP
)
4270 proto
= IPPROTO_TCP
;
4271 else if (proto
== Q_SCTP
)
4272 proto
= IPPROTO_SCTP
;
4273 else if (proto
== Q_DEFAULT
)
4274 proto
= PROTO_UNDEF
;
4276 bpf_error("illegal qualifier of 'port'");
4279 return gen_port((int)v
, proto
, dir
);
4283 b
= gen_port((int)v
, proto
, dir
);
4284 gen_or(gen_port6((int)v
, proto
, dir
), b
);
4290 bpf_error("'gateway' requires a name");
4294 return gen_proto((int)v
, proto
, dir
);
4297 return gen_protochain((int)v
, proto
, dir
);
4312 gen_mcode6(s1
, s2
, masklen
, q
)
4313 register const char *s1
, *s2
;
4314 register int masklen
;
4317 struct addrinfo
*res
;
4318 struct in6_addr
*addr
;
4319 struct in6_addr mask
;
4324 bpf_error("no mask %s supported", s2
);
4326 res
= pcap_nametoaddrinfo(s1
);
4328 bpf_error("invalid ip6 address %s", s1
);
4330 bpf_error("%s resolved to multiple address", s1
);
4331 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
4333 if (sizeof(mask
) * 8 < masklen
)
4334 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
4335 memset(&mask
, 0, sizeof(mask
));
4336 memset(&mask
, 0xff, masklen
/ 8);
4338 mask
.s6_addr
[masklen
/ 8] =
4339 (0xff << (8 - masklen
% 8)) & 0xff;
4342 a
= (u_int32_t
*)addr
;
4343 m
= (u_int32_t
*)&mask
;
4344 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
4345 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
4346 bpf_error("non-network bits set in \"%s/%d\"", s1
, masklen
);
4354 bpf_error("Mask syntax for networks only");
4358 b
= gen_host6(addr
, &mask
, q
.proto
, q
.dir
);
4363 bpf_error("invalid qualifier against IPv6 address");
4371 register const u_char
*eaddr
;
4374 struct block
*b
, *tmp
;
4376 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
4377 if (linktype
== DLT_EN10MB
)
4378 return gen_ehostop(eaddr
, (int)q
.dir
);
4379 if (linktype
== DLT_FDDI
)
4380 return gen_fhostop(eaddr
, (int)q
.dir
);
4381 if (linktype
== DLT_IEEE802
)
4382 return gen_thostop(eaddr
, (int)q
.dir
);
4383 if (linktype
== DLT_IEEE802_11
)
4384 return gen_wlanhostop(eaddr
, (int)q
.dir
);
4385 if (linktype
== DLT_SUNATM
&& is_lane
) {
4387 * Check that the packet doesn't begin with an
4388 * LE Control marker. (We've already generated
4391 tmp
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
4395 * Now check the MAC address.
4397 b
= gen_ehostop(eaddr
, (int)q
.dir
);
4401 if (linktype
== DLT_IP_OVER_FC
)
4402 return gen_ipfchostop(eaddr
, (int)q
.dir
);
4403 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4405 bpf_error("ethernet address used in non-ether expression");
4411 struct slist
*s0
, *s1
;
4414 * This is definitely not the best way to do this, but the
4415 * lists will rarely get long.
4422 static struct slist
*
4428 s
= new_stmt(BPF_LDX
|BPF_MEM
);
4433 static struct slist
*
4439 s
= new_stmt(BPF_LD
|BPF_MEM
);
4445 gen_load(proto
, index
, size
)
4450 struct slist
*s
, *tmp
;
4452 int regno
= alloc_reg();
4454 free_reg(index
->regno
);
4458 bpf_error("data size must be 1, 2, or 4");
4474 bpf_error("unsupported index operation");
4478 * XXX - what about ATM LANE? Should the index be
4479 * relative to the beginning of the AAL5 frame, so
4480 * that 0 refers to the beginning of the LE Control
4481 * field, or relative to the beginning of the LAN
4482 * frame, so that 0 refers, for Ethernet LANE, to
4483 * the beginning of the destination address?
4485 s
= xfer_to_x(index
);
4486 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
4488 sappend(index
->s
, s
);
4503 /* XXX Note that we assume a fixed link header here. */
4504 s
= xfer_to_x(index
);
4505 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
4508 sappend(index
->s
, s
);
4510 b
= gen_proto_abbrev(proto
);
4512 gen_and(index
->b
, b
);
4524 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
4526 sappend(s
, xfer_to_a(index
));
4527 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
4528 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
4529 sappend(s
, tmp
= new_stmt(BPF_LD
|BPF_IND
|size
));
4531 sappend(index
->s
, s
);
4533 gen_and(gen_proto_abbrev(proto
), b
= gen_ipfrag());
4535 gen_and(index
->b
, b
);
4537 gen_and(gen_proto_abbrev(Q_IP
), b
);
4543 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
4547 index
->regno
= regno
;
4548 s
= new_stmt(BPF_ST
);
4550 sappend(index
->s
, s
);
4556 gen_relation(code
, a0
, a1
, reversed
)
4558 struct arth
*a0
, *a1
;
4561 struct slist
*s0
, *s1
, *s2
;
4562 struct block
*b
, *tmp
;
4566 if (code
== BPF_JEQ
) {
4567 s2
= new_stmt(BPF_ALU
|BPF_SUB
|BPF_X
);
4568 b
= new_block(JMP(code
));
4572 b
= new_block(BPF_JMP
|code
|BPF_X
);
4578 sappend(a0
->s
, a1
->s
);
4582 free_reg(a0
->regno
);
4583 free_reg(a1
->regno
);
4585 /* 'and' together protocol checks */
4588 gen_and(a0
->b
, tmp
= a1
->b
);
4604 int regno
= alloc_reg();
4605 struct arth
*a
= (struct arth
*)newchunk(sizeof(*a
));
4608 s
= new_stmt(BPF_LD
|BPF_LEN
);
4609 s
->next
= new_stmt(BPF_ST
);
4610 s
->next
->s
.k
= regno
;
4625 a
= (struct arth
*)newchunk(sizeof(*a
));
4629 s
= new_stmt(BPF_LD
|BPF_IMM
);
4631 s
->next
= new_stmt(BPF_ST
);
4647 s
= new_stmt(BPF_ALU
|BPF_NEG
);
4650 s
= new_stmt(BPF_ST
);
4658 gen_arth(code
, a0
, a1
)
4660 struct arth
*a0
, *a1
;
4662 struct slist
*s0
, *s1
, *s2
;
4666 s2
= new_stmt(BPF_ALU
|BPF_X
|code
);
4671 sappend(a0
->s
, a1
->s
);
4673 free_reg(a0
->regno
);
4674 free_reg(a1
->regno
);
4676 s0
= new_stmt(BPF_ST
);
4677 a0
->regno
= s0
->s
.k
= alloc_reg();
4684 * Here we handle simple allocation of the scratch registers.
4685 * If too many registers are alloc'd, the allocator punts.
4687 static int regused
[BPF_MEMWORDS
];
4691 * Return the next free register.
4696 int n
= BPF_MEMWORDS
;
4699 if (regused
[curreg
])
4700 curreg
= (curreg
+ 1) % BPF_MEMWORDS
;
4702 regused
[curreg
] = 1;
4706 bpf_error("too many registers needed to evaluate expression");
4711 * Return a register to the table so it can
4721 static struct block
*
4728 s
= new_stmt(BPF_LD
|BPF_LEN
);
4729 b
= new_block(JMP(jmp
));
4740 return gen_len(BPF_JGE
, n
);
4744 * Actually, this is less than or equal.
4752 b
= gen_len(BPF_JGT
, n
);
4759 gen_byteop(op
, idx
, val
)
4770 return gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4773 b
= gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4774 b
->s
.code
= JMP(BPF_JGE
);
4779 b
= gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4780 b
->s
.code
= JMP(BPF_JGT
);
4784 s
= new_stmt(BPF_ALU
|BPF_OR
|BPF_K
);
4788 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
4792 b
= new_block(JMP(BPF_JEQ
));
4799 static u_char abroadcast
[] = { 0x0 };
4802 gen_broadcast(proto
)
4805 bpf_u_int32 hostmask
;
4806 struct block
*b0
, *b1
, *b2
;
4807 static u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4813 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
4814 return gen_ahostop(abroadcast
, Q_DST
);
4815 if (linktype
== DLT_EN10MB
)
4816 return gen_ehostop(ebroadcast
, Q_DST
);
4817 if (linktype
== DLT_FDDI
)
4818 return gen_fhostop(ebroadcast
, Q_DST
);
4819 if (linktype
== DLT_IEEE802
)
4820 return gen_thostop(ebroadcast
, Q_DST
);
4821 if (linktype
== DLT_IEEE802_11
)
4822 return gen_wlanhostop(ebroadcast
, Q_DST
);
4823 if (linktype
== DLT_IP_OVER_FC
)
4824 return gen_ipfchostop(ebroadcast
, Q_DST
);
4825 if (linktype
== DLT_SUNATM
&& is_lane
) {
4827 * Check that the packet doesn't begin with an
4828 * LE Control marker. (We've already generated
4831 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
4835 * Now check the MAC address.
4837 b0
= gen_ehostop(ebroadcast
, Q_DST
);
4841 bpf_error("not a broadcast link");
4845 b0
= gen_linktype(ETHERTYPE_IP
);
4846 hostmask
= ~netmask
;
4847 b1
= gen_mcmp(off_nl
+ 16, BPF_W
, (bpf_int32
)0, hostmask
);
4848 b2
= gen_mcmp(off_nl
+ 16, BPF_W
,
4849 (bpf_int32
)(~0 & hostmask
), hostmask
);
4854 bpf_error("only link-layer/IP broadcast filters supported");
4859 * Generate code to test the low-order bit of a MAC address (that's
4860 * the bottom bit of the *first* byte).
4862 static struct block
*
4863 gen_mac_multicast(offset
)
4866 register struct block
*b0
;
4867 register struct slist
*s
;
4869 /* link[offset] & 1 != 0 */
4870 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4872 b0
= new_block(JMP(BPF_JSET
));
4879 gen_multicast(proto
)
4882 register struct block
*b0
, *b1
, *b2
;
4883 register struct slist
*s
;
4889 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
4890 /* all ARCnet multicasts use the same address */
4891 return gen_ahostop(abroadcast
, Q_DST
);
4893 if (linktype
== DLT_EN10MB
) {
4894 /* ether[0] & 1 != 0 */
4895 return gen_mac_multicast(0);
4898 if (linktype
== DLT_FDDI
) {
4900 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
4902 * XXX - was that referring to bit-order issues?
4904 /* fddi[1] & 1 != 0 */
4905 return gen_mac_multicast(1);
4908 if (linktype
== DLT_IEEE802
) {
4909 /* tr[2] & 1 != 0 */
4910 return gen_mac_multicast(2);
4913 if (linktype
== DLT_IEEE802_11
) {
4917 * For control frames, there is no DA.
4919 * For management frames, DA is at an
4920 * offset of 4 from the beginning of
4923 * For data frames, DA is at an offset
4924 * of 4 from the beginning of the packet
4925 * if To DS is clear and at an offset of
4926 * 16 from the beginning of the packet
4931 * Generate the tests to be done for data frames.
4933 * First, check for To DS set, i.e. "link[1] & 0x01".
4935 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4937 b1
= new_block(JMP(BPF_JSET
));
4938 b1
->s
.k
= 0x01; /* To DS */
4942 * If To DS is set, the DA is at 16.
4944 b0
= gen_mac_multicast(16);
4948 * Now, check for To DS not set, i.e. check
4949 * "!(link[1] & 0x01)".
4951 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4953 b2
= new_block(JMP(BPF_JSET
));
4954 b2
->s
.k
= 0x01; /* To DS */
4959 * If To DS is not set, the DA is at 4.
4961 b1
= gen_mac_multicast(4);
4965 * Now OR together the last two checks. That gives
4966 * the complete set of checks for data frames.
4971 * Now check for a data frame.
4972 * I.e, check "link[0] & 0x08".
4974 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4976 b1
= new_block(JMP(BPF_JSET
));
4981 * AND that with the checks done for data frames.
4986 * If the high-order bit of the type value is 0, this
4987 * is a management frame.
4988 * I.e, check "!(link[0] & 0x08)".
4990 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4992 b2
= new_block(JMP(BPF_JSET
));
4998 * For management frames, the DA is at 4.
5000 b1
= gen_mac_multicast(4);
5004 * OR that with the checks done for data frames.
5005 * That gives the checks done for management and
5011 * If the low-order bit of the type value is 1,
5012 * this is either a control frame or a frame
5013 * with a reserved type, and thus not a
5016 * I.e., check "!(link[0] & 0x04)".
5018 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
5020 b1
= new_block(JMP(BPF_JSET
));
5026 * AND that with the checks for data and management
5033 if (linktype
== DLT_IP_OVER_FC
) {
5034 b0
= gen_mac_multicast(2);
5038 if (linktype
== DLT_SUNATM
&& is_lane
) {
5040 * Check that the packet doesn't begin with an
5041 * LE Control marker. (We've already generated
5044 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
5047 /* ether[off_mac] & 1 != 0 */
5048 b0
= gen_mac_multicast(off_mac
);
5053 /* Link not known to support multicasts */
5057 b0
= gen_linktype(ETHERTYPE_IP
);
5058 b1
= gen_cmp(off_nl
+ 16, BPF_B
, (bpf_int32
)224);
5059 b1
->s
.code
= JMP(BPF_JGE
);
5065 b0
= gen_linktype(ETHERTYPE_IPV6
);
5066 b1
= gen_cmp(off_nl
+ 24, BPF_B
, (bpf_int32
)255);
5071 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
5076 * generate command for inbound/outbound. It's here so we can
5077 * make it link-type specific. 'dir' = 0 implies "inbound",
5078 * = 1 implies "outbound".
5084 register struct block
*b0
;
5087 * Only some data link types support inbound/outbound qualifiers.
5091 b0
= gen_relation(BPF_JEQ
,
5092 gen_load(Q_LINK
, gen_loadi(0), 1),
5100 * Match packets sent by this machine.
5102 b0
= gen_cmp(0, BPF_H
, LINUX_SLL_OUTGOING
);
5105 * Match packets sent to this machine.
5106 * (No broadcast or multicast packets, or
5107 * packets sent to some other machine and
5108 * received promiscuously.)
5110 * XXX - packets sent to other machines probably
5111 * shouldn't be matched, but what about broadcast
5112 * or multicast packets we received?
5114 b0
= gen_cmp(0, BPF_H
, LINUX_SLL_HOST
);
5119 b0
= gen_cmp(offsetof(struct pfloghdr
, dir
), BPF_B
,
5120 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
5125 /* match outgoing packets */
5126 b0
= gen_cmp(0, BPF_B
, PPP_PPPD_OUT
);
5128 /* match incoming packets */
5129 b0
= gen_cmp(0, BPF_B
, PPP_PPPD_IN
);
5133 case DLT_JUNIPER_MLFR
:
5134 case DLT_JUNIPER_MLPPP
:
5135 case DLT_JUNIPER_ATM1
:
5136 case DLT_JUNIPER_ATM2
:
5137 /* juniper flags (including direction) are stored
5138 * the byte after the 3-byte magic number */
5140 /* match outgoing packets */
5141 b0
= gen_mcmp(3, BPF_B
, 0, 0x01);
5143 /* match incoming packets */
5144 b0
= gen_mcmp(3, BPF_B
, 1, 0x01);
5149 bpf_error("inbound/outbound not supported on linktype %d",
5157 /* PF firewall log matched interface */
5159 gen_pf_ifname(const char *ifname
)
5164 if (linktype
== DLT_PFLOG
) {
5165 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
5166 off
= offsetof(struct pfloghdr
, ifname
);
5168 bpf_error("ifname not supported on linktype 0x%x", linktype
);
5171 if (strlen(ifname
) >= len
) {
5172 bpf_error("ifname interface names can only be %d characters",
5176 b0
= gen_bcmp(off
, strlen(ifname
), (const u_char
*)ifname
);
5180 /* PF firewall log matched interface */
5182 gen_pf_ruleset(char *ruleset
)
5186 if (linktype
!= DLT_PFLOG
) {
5187 bpf_error("ruleset not supported on linktype 0x%x", linktype
);
5190 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
5191 bpf_error("ruleset names can only be %ld characters",
5192 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
5195 b0
= gen_bcmp(offsetof(struct pfloghdr
, ruleset
),
5196 strlen(ruleset
), (const u_char
*)ruleset
);
5200 /* PF firewall log rule number */
5206 if (linktype
== DLT_PFLOG
) {
5207 b0
= gen_cmp(offsetof(struct pfloghdr
, rulenr
), BPF_W
,
5210 bpf_error("rnr not supported on linktype 0x%x", linktype
);
5217 /* PF firewall log sub-rule number */
5219 gen_pf_srnr(int srnr
)
5223 if (linktype
!= DLT_PFLOG
) {
5224 bpf_error("srnr not supported on linktype 0x%x", linktype
);
5228 b0
= gen_cmp(offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
5233 /* PF firewall log reason code */
5235 gen_pf_reason(int reason
)
5239 if (linktype
== DLT_PFLOG
) {
5240 b0
= gen_cmp(offsetof(struct pfloghdr
, reason
), BPF_B
,
5243 bpf_error("reason not supported on linktype 0x%x", linktype
);
5250 /* PF firewall log action */
5252 gen_pf_action(int action
)
5256 if (linktype
== DLT_PFLOG
) {
5257 b0
= gen_cmp(offsetof(struct pfloghdr
, action
), BPF_B
,
5260 bpf_error("action not supported on linktype 0x%x", linktype
);
5269 register const u_char
*eaddr
;
5272 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
5273 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
5274 return gen_ahostop(eaddr
, (int)q
.dir
);
5276 bpf_error("ARCnet address used in non-arc expression");
5280 static struct block
*
5281 gen_ahostop(eaddr
, dir
)
5282 register const u_char
*eaddr
;
5285 register struct block
*b0
, *b1
;
5288 /* src comes first, different from Ethernet */
5290 return gen_bcmp(0, 1, eaddr
);
5293 return gen_bcmp(1, 1, eaddr
);
5296 b0
= gen_ahostop(eaddr
, Q_SRC
);
5297 b1
= gen_ahostop(eaddr
, Q_DST
);
5303 b0
= gen_ahostop(eaddr
, Q_SRC
);
5304 b1
= gen_ahostop(eaddr
, Q_DST
);
5313 * support IEEE 802.1Q VLAN trunk over ethernet
5322 * Change the offsets to point to the type and data fields within
5323 * the VLAN packet. This is somewhat of a kludge.
5325 if (orig_nl
== (u_int
)-1) {
5326 orig_linktype
= off_linktype
; /* save original values */
5328 orig_nl_nosnap
= off_nl_nosnap
;
5339 bpf_error("no VLAN support for data link type %d",
5345 /* check for VLAN */
5346 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_8021Q
);
5348 /* If a specific VLAN is requested, check VLAN id */
5349 if (vlan_num
>= 0) {
5352 b1
= gen_mcmp(orig_nl
, BPF_H
, (bpf_int32
)vlan_num
, 0x0fff);
5370 * Change the offsets to point to the type and data fields within
5371 * the MPLS packet. This is somewhat of a kludge.
5373 if (orig_nl
== (u_int
)-1) {
5374 orig_linktype
= off_linktype
; /* save original values */
5376 orig_nl_nosnap
= off_nl_nosnap
;
5385 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_MPLS
);
5393 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)PPP_MPLS_UCAST
);
5401 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_MPLS
);
5404 /* FIXME add other DLT_s ...
5405 * for Frame-Relay/and ATM this may get messy due to SNAP headers
5406 * leave it for now */
5409 bpf_error("no MPLS support for data link type %d",
5414 bpf_error("'mpls' can't be combined with 'vlan' or another 'mpls'");
5418 /* If a specific MPLS label is requested, check it */
5419 if (label_num
>= 0) {
5422 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
5423 b1
= gen_mcmp(orig_nl
, BPF_W
, (bpf_int32
)label_num
, 0xfffff000); /* only compare the first 20 bits */
5432 gen_atmfield_code(atmfield
, jvalue
, jtype
, reverse
)
5444 bpf_error("'vpi' supported only on raw ATM");
5445 if (off_vpi
== (u_int
)-1)
5447 b0
= gen_ncmp(BPF_B
, off_vpi
, 0xffffffff, (u_int
)jtype
,
5448 (u_int
)jvalue
, reverse
);
5453 bpf_error("'vci' supported only on raw ATM");
5454 if (off_vci
== (u_int
)-1)
5456 b0
= gen_ncmp(BPF_H
, off_vci
, 0xffffffff, (u_int
)jtype
,
5457 (u_int
)jvalue
, reverse
);
5461 if (off_proto
== (u_int
)-1)
5462 abort(); /* XXX - this isn't on FreeBSD */
5463 b0
= gen_ncmp(BPF_B
, off_proto
, 0x0f, (u_int
)jtype
,
5464 (u_int
)jvalue
, reverse
);
5468 if (off_payload
== (u_int
)-1)
5470 b0
= gen_ncmp(BPF_B
, off_payload
+ MSG_TYPE_POS
, 0xffffffff,
5471 (u_int
)jtype
, (u_int
)jvalue
, reverse
);
5476 bpf_error("'callref' supported only on raw ATM");
5477 if (off_proto
== (u_int
)-1)
5479 b0
= gen_ncmp(BPF_B
, off_proto
, 0xffffffff, (u_int
)jtype
,
5480 (u_int
)jvalue
, reverse
);
5490 gen_atmtype_abbrev(type
)
5493 struct block
*b0
, *b1
;
5498 /* Get all packets in Meta signalling Circuit */
5500 bpf_error("'metac' supported only on raw ATM");
5501 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5502 b1
= gen_atmfield_code(A_VCI
, 1, BPF_JEQ
, 0);
5507 /* Get all packets in Broadcast Circuit*/
5509 bpf_error("'bcc' supported only on raw ATM");
5510 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5511 b1
= gen_atmfield_code(A_VCI
, 2, BPF_JEQ
, 0);
5516 /* Get all cells in Segment OAM F4 circuit*/
5518 bpf_error("'oam4sc' supported only on raw ATM");
5519 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5520 b1
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
5525 /* Get all cells in End-to-End OAM F4 Circuit*/
5527 bpf_error("'oam4ec' supported only on raw ATM");
5528 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5529 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
5534 /* Get all packets in connection Signalling Circuit */
5536 bpf_error("'sc' supported only on raw ATM");
5537 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5538 b1
= gen_atmfield_code(A_VCI
, 5, BPF_JEQ
, 0);
5543 /* Get all packets in ILMI Circuit */
5545 bpf_error("'ilmic' supported only on raw ATM");
5546 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5547 b1
= gen_atmfield_code(A_VCI
, 16, BPF_JEQ
, 0);
5552 /* Get all LANE packets */
5554 bpf_error("'lane' supported only on raw ATM");
5555 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
5558 * Arrange that all subsequent tests assume LANE
5559 * rather than LLC-encapsulated packets, and set
5560 * the offsets appropriately for LANE-encapsulated
5563 * "off_mac" is the offset of the Ethernet header,
5564 * which is 2 bytes past the ATM pseudo-header
5565 * (skipping the pseudo-header and 2-byte LE Client
5566 * field). The other offsets are Ethernet offsets
5567 * relative to "off_mac".
5570 off_mac
= off_payload
+ 2; /* MAC header */
5571 off_linktype
= off_mac
+ 12;
5572 off_nl
= off_mac
+ 14; /* Ethernet II */
5573 off_nl_nosnap
= off_mac
+ 17; /* 802.3+802.2 */
5577 /* Get all LLC-encapsulated packets */
5579 bpf_error("'llc' supported only on raw ATM");
5580 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
5591 static struct block
*
5592 gen_msg_abbrev(type
)
5598 * Q.2931 signalling protocol messages for handling virtual circuits
5599 * establishment and teardown
5604 b1
= gen_atmfield_code(A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
5608 b1
= gen_atmfield_code(A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
5612 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
5616 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
5620 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
5623 case A_RELEASE_DONE
:
5624 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
5634 gen_atmmulti_abbrev(type
)
5637 struct block
*b0
, *b1
;
5643 bpf_error("'oam' supported only on raw ATM");
5644 b1
= gen_atmmulti_abbrev(A_OAMF4
);
5649 bpf_error("'oamf4' supported only on raw ATM");
5651 b0
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
5652 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
5654 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5660 * Get Q.2931 signalling messages for switched
5661 * virtual connection
5664 bpf_error("'connectmsg' supported only on raw ATM");
5665 b0
= gen_msg_abbrev(A_SETUP
);
5666 b1
= gen_msg_abbrev(A_CALLPROCEED
);
5668 b0
= gen_msg_abbrev(A_CONNECT
);
5670 b0
= gen_msg_abbrev(A_CONNECTACK
);
5672 b0
= gen_msg_abbrev(A_RELEASE
);
5674 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
5676 b0
= gen_atmtype_abbrev(A_SC
);
5682 bpf_error("'metaconnect' supported only on raw ATM");
5683 b0
= gen_msg_abbrev(A_SETUP
);
5684 b1
= gen_msg_abbrev(A_CALLPROCEED
);
5686 b0
= gen_msg_abbrev(A_CONNECT
);
5688 b0
= gen_msg_abbrev(A_RELEASE
);
5690 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
5692 b0
= gen_atmtype_abbrev(A_METAC
);